WO2000028131A2 - Verfahren zur hydrophilen ausrüstung von fasern auf basis von polyolefinen oder polyester unter einsatz von heterocyclen - Google Patents

Verfahren zur hydrophilen ausrüstung von fasern auf basis von polyolefinen oder polyester unter einsatz von heterocyclen Download PDF

Info

Publication number
WO2000028131A2
WO2000028131A2 PCT/EP1999/008281 EP9908281W WO0028131A2 WO 2000028131 A2 WO2000028131 A2 WO 2000028131A2 EP 9908281 W EP9908281 W EP 9908281W WO 0028131 A2 WO0028131 A2 WO 0028131A2
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
fibers
heterocycles
radical
polyolefin
Prior art date
Application number
PCT/EP1999/008281
Other languages
English (en)
French (fr)
Other versions
WO2000028131A3 (de
Inventor
Paul Birnbrich
Norbert Bialas
Raymond Mathis
Petra Padurschel
Sven Wucherpfennig
Original Assignee
Cognis Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland Gmbh filed Critical Cognis Deutschland Gmbh
Priority to EP99968769A priority Critical patent/EP1137839A2/de
Publication of WO2000028131A2 publication Critical patent/WO2000028131A2/de
Publication of WO2000028131A3 publication Critical patent/WO2000028131A3/de

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/225Mixtures of macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/06Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • C07D233/08Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms with alkyl radicals, containing more than four carbon atoms, directly attached to ring carbon atoms
    • C07D233/12Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms with alkyl radicals, containing more than four carbon atoms, directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D233/16Radicals substituted by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/08Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D263/10Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D263/12Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with radicals containing only hydrogen and carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/353Five-membered rings
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • D01F6/06Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins from polypropylene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Definitions

  • the invention relates to a process for the hydrophilic finishing of fibers which contain polyolefins or polyesters exclusively or entirely. Special heterocycles are used.
  • the surface of plastic products must be provided with special effects that can either not be created at all or only incompletely for technical reasons, or can only be produced disadvantageously for economic reasons.
  • One such effect is, for example, the improvement of wettability with polar liquids such as water - technical applications are, for example, in the field of the manufacture of hygiene articles.
  • absorbent materials are used to absorb aqueous liquids.
  • this material is covered with a thin, water-permeable nonwoven.
  • nonwovens are usually made of synthetic fibers, such as polyolefin or polyester fibers, because these fibers are inexpensive to produce, have good mechanical properties and are thermally stable.
  • untreated polyolefin or polyester fibers are not suitable for this purpose because their hydrophobic surface means that they do not have sufficient permeability to aqueous liquids.
  • the fiber surface must be made hydrophilic by an appropriate preparation. It is also desirable that the hydrophilic finish of the fiber is preserved as long as possible without the water permeability of the nonwoven being reduced. If such nonwovens are processed, for example, in diapers, they can be used several times without becoming water-impermeable. In this way, the wearing time of the diapers is increased and the waste caused by used diapers is reduced.
  • US-A-5,045,387 describes an agent for the hydrophilic finishing of polyolefin fibers which contains a mixture of an alkoxylated ricinoleic acid derivative, a hydrogenated ricinoleic acid derivative, a cig fatty acid and a polyalkoxylated polymethylsiloxane. This agent must be applied from the outside to the surface of the fibers or films.
  • US Pat. No. 5,654,086 describes the hydrophilic finishing of otherwise hydrophobic fibers based on thermoplastic plastics, the hydrophobic fiber being treated with a mixture of five surface-active substances (surfactants). It is to (A) polyoxyalkylene adducts of C28-50 ⁇ alcohols or fatty acid amides or alkyl amines on the basis of C30-50 fatty acids, (B) polyoxyalkylene adducts of fatty acid amides on the basis of C20-28 F ⁇ ett acids, (C) fatty acid amides based on Ci6_28 fatty acids and alkanolamines, (D) polyoxyalkylene adducts C ⁇ o-22 "alkyl phosphate salts and (E) Ci2-16 ⁇ alkyl sulfonate salts.
  • A polyoxyalkylene adducts of C28-50 ⁇ alcohols or fatty acid amides or alkyl amines on the basis of C30
  • EP-A-400,622 describes a method for imparting hydrophilic properties to nonwoven materials containing hydrophobic fibers.
  • a composition containing special polyoxyalkylated secondary or tertiary amines is introduced into a molten composition containing polyolefin before spinning.
  • EP-B-372 890 describes fibers based on polyolefin or polyester with a lubricant adhered to the surface.
  • This lubricant comprises a mixture of (1) fatty acid diethanolamide, (2) a polyether-modified silicone, (3) a sorbitan fatty acid ester and (4) a metal salt of an alkyl sulfonate; Components (1) to (4) are available in special proportions. According to page 3, lines 20-26, the mixture of components (1) to (4) is applied to the surface. This technique of applying the mixture containing the four components to the surface of finished fibers is also explained in more detail on page 4, lines 6-9. There are listed as application techniques: a) the use of rollers, b) spraying and c) immersion.
  • EP-B-616 622 relates to extrudable, compostable polymer compositions comprising an extrudable, thermoplastic polymer, copolymer or mixtures thereof, which comprise a degradation-promoting system comprising an autooxidative component and a Contains transition metal.
  • the autooxidative system comprises a fatty acid, a substituted fatty acid or derivatives or mixtures thereof, the fatty acid having 10 to 22 carbon atoms and containing at least 0.1% by weight of unsaturated compounds and at least 0.1% by weight of free acid .
  • the transition metal is contained in the composition in an amount of 5-500 ppm in the form of a salt and selected from the group cobalt, manganese, copper, cerium, vanadium and iron.
  • the composition should be in the form of a film about 100 microns thick at 60 ° C and a relative humidity of at least 80% biodegradable within 14 days for embrittlement.
  • WO 98/42898 describes the use of amphiphiles for the permanent hydrophilization of the surfaces of polyolefin-based moldings, fibers and films.
  • a mixture comprising (a) predominantly one or more polyolefins, (b) 0.01 to 10% by weight, based on the polyolefins, of one or more migratable amphiphiles and (c) 0.01 to 1000 ppm, are subjected several transition metal compounds - metal content of the transition metal compounds based on the polyolefins - at temperatures in the range from 180 to 320 ° C. in a customary manner in shaping processing such as extrusion, calendering, injection molding and the like.
  • plastic surface it is also known to improve the properties of the plastic surface in order to achieve special effects by, for example, oxidative aftertreatment methods such as corona or plasma treatment.
  • oxidative aftertreatment methods such as corona or plasma treatment.
  • the plastic is oxidized or chemically modified in the presence of gases and discharges on the surface, which means that certain surface properties of the plastic can be modified.
  • These methods in addition to high energy consumption, they always require an additional operation and lead to ozone emissions in the manufacture of plastic parts.
  • chemical pretreatment processes such as treatment with fluorine or chlorine gas, with chromosulfuric acid or fluorosulfonic acid, etc., have long been known.
  • hydrophobic fibers are made wettable by water by hydrophilization, which for example improves the washability of Synthetic fiber articles, as well as for a better wearing comfort of such articles, are examples of measuring indicators of successful hydrophilization include wetting (the surface spread of a liquid) or the height of rise (a measure of the speed with which water is transported in textile fabrics against gravity ).
  • hydrophilization synonymously for this also the term “hydrophilic finishing” is used below - is understood to mean that polyolefin or polyester surfaces which form a wetting angle of more than 90 ° with water - that is "Hydrophobic" interfaces - be modified by a special measure so that their critical angle is too small after this measure - values are shifted towards this.
  • hydrophilization are explicitly distinguished from phenomena in which molecules or substrates are in permanent fixation in contact with the polymer surface, as is the case, for example, with coatings and adhesive bonds or with dyeing and printing is.
  • the invention relates to a process for the hydrophilic finishing of fibers which exclusively or entirely contain polyolefins or polyesters, a mixture comprising (a) predominantly polyolefins or polyesters and (b) 0.01 to 10% by weight, based on the Sum of polyolefin and polyester - a composition which contains at least one compound from the class of the heterocycles, is subjected at a temperature in the range from 180 to 320 ° C. in a customary manner to shaping into fibers, where
  • heterocycles (b) are selected from the class of the oxazolines of the general structure (I),
  • radical Rl is a saturated or unsaturated alkyl radical having 7 to 21 carbon atoms and the radicals R-2 and R-3 independently of one another are hydrogen or a methyl radical, and the class of the imidazolines of the general structure (II),
  • radical R ⁇ is a saturated or unsaturated alkyl radical having 7 to 21 carbon atoms and the radical R ⁇ is hydrogen or a group CH3, C2H5, CH2-CH2-NH2 or CH2-CH2-OH and that
  • the heterocycles (b) need at least four cycles in the individual wetting test to fail.
  • the "individual wetting test” is carried out as follows:
  • the temperature of the heating zones and the speed of the twin screw can be controlled via a PL 2000 data processing plast corder, which is connected to the extruder via a PC interface.
  • the heating zones I, II and III are each set to a temperature of 200 ° C., the three heating zones being air-cooled in order to keep the temperature constant.
  • the mixture of polyopropylene granules and test substance is automatically drawn into the extruder by the twin screw running against each other and transported along the screw.
  • the speed is set to 25 revolutions per minute to ensure thorough mixing and homogenization. This homogeneous and practically bubble-free mixture finally reaches a nozzle, which is a fourth heating zone.
  • the temperature of this nozzle is set to 200 ° C - at this temperature the mixture leaves the extruder.
  • the nozzle is selected so that the average diameter of the strand after it emerges from this nozzle is in the range of approximately 2-3 mm.
  • This strand is granulated, ie cut into small pieces, with lengths of about 2-4 mm being set.
  • the granules obtained are allowed to cool to 20 ° C.
  • These granules are gravimetrically (ie by gravity) converted into fibers in a melt spinning system at a processing temperature of 280 ° C (ie both the melt star temperature and the temperature of the spinneret are set to 280 ° C).
  • the fibers obtained have a fiber titer in the range from about 10 to 30 dtex (1 dtex corresponds to 1 g fiber per 10000 m fiber length). Then 500 m of this fiber are wound on a roll with a diameter of 6.4 cm. This fiber wound on the roll is withdrawn from the roll and the withdrawn circular structure is stabilized by central knotting, whereby a structure which has the shape of an "8" is obtained; this structure is referred to below as "strands”.
  • a 1-1 measuring cylinder glass cylinder with an inner diameter of 6.0 cm
  • the strand is left go and use a stopwatch to measure the time in seconds it takes for the strand to move from the 1000 ml mark to the 200 ml mark.
  • the start and end of the measuring time are defined by the fact that the bottom end of the strand passes the 1000 ml and 200 ml mark, respectively. In the present test arrangement, this means that the strand has covered an immersion distance of 28.3 cm on its way between the markings mentioned.
  • This first measured value is referred to as the Cl value (“value of the first wetting cycle”).
  • step 3 The strand is removed from the measuring cylinder immediately after the Cl value has been determined, blotted with cellulose and dried for 1 hour in a forced-air drying cabinet (type UT 5042 EK from Heraeus) at 40 ° C. Then step 2 is repeated.
  • the value now obtained in seconds of the 28.3 cm sink time is referred to as the C2 value ("value of the second wetting cycle"). Drying and determination of the 28.3 cm sink time are now repeated again, the C3 value (“value of the third wetting cycle”) being obtained. Drying and determination of the The 28.3 cm sink time is now repeated again, giving the C4 value (“value of the fourth wetting cycle”).
  • the individual wetting test is passed if the values for Cl, C2 and C3 are each a maximum of 50 seconds or less.
  • a test substance suitable according to the invention i.e. a heterocycle (b)
  • a heterocycle (b) is suitable for the purposes of the present invention if a failure, that is to say a 28.3 cm sink time value above 50 seconds, occurs at the earliest at the C4 value.
  • the oxazolines to be used according to the invention are characterized by the general structure (I).
  • the radical R1 can be saturated or unsaturated, straight-chain or branched. These compounds can be used both individually and in combination with one another. In a preferred embodiment, those oxazolines (I) are used in which the R 1 radical is a saturated alkyl group with 7 C atoms.
  • the imidazolines to be used according to the invention are characterized by the general structure (II).
  • the radical R4 can be saturated or unsaturated, straight-chain or branched. These compounds can be used both individually and in combination with one another. In a preferred embodiment, those imidazolines (II) are used in which the radical R4 is a saturated alkyl group with 7 carbon atoms.
  • compounds (b) are used which require at least six cycles in the individual wetting test to fail.
  • all the values C1, C2, C3, C4 and C5 in the individual wetting test described above are below 50 seconds.
  • the compounds (b) to be used according to the invention are capable of migration. This is to be understood to mean that these compounds are able to reach the surface of the resulting polyolefin or polyester molded body in the course of the production of the fibers by, for example, extrusion processes. As a result, they accumulate on the surface or the areas close to the surface of the plastic matrix, which has been verified by the applicant by successive removal of surface layers in the order of magnitude of a few nanometers each and subsequent scanning techniques.
  • the polyolefin or polyester fibers which can be obtained by the process according to the invention and textile fabrics which can be produced therefrom — for example nonwovens — are distinguished by excellent wettability by aqueous media.
  • the technical action within the meaning of the teaching according to the invention ensures on the one hand that the desired improved and permanent surface hydrophilicity is achieved, and on the other hand that this can be achieved without impairing other material parameters.
  • the incorporation of the heterocycles (b) into the plastic matrix takes place in the course of customary shaping processing processes such as extrusion processes and the like. It may be desirable to use a pre-assembled mixture of components a) and b).
  • auxiliaries which have been used and which have generally proven themselves in the processing of plastics and which are known to the person skilled in the art, for example slip agents, antistatic agents, lubricants, mold release agents, UV stabilizers, antioxidants, fillers, fire retardants, mold release agents, nucleating agents and antiblocking agents can be pre-assembled accordingly in separate form and added during the final mixing of the finished products.
  • the extrusion technology it may also be desirable, for example when using the extrusion technology, to meter all or part of the components b) and / or other additives directly into the polymer melt on the extruder, so that the mixture of components a) and b) - and optionally other auxiliaries - is not already available as a ready-made product from the start, but is only present in the extruder itself.
  • Such a technique is useful, for example, when the compounds b) to be metered into the polymer melt are in liquid form and injection of this component is easier than pre-assembly.
  • Polyolefins are preferred as component a) in the context of the invention. All known polymer and copolymer types based on ethylene or propylene are suitable here. Mixtures of pure polyolefins with copolymers are also generally suitable. Polymer types which are particularly suitable for the teaching according to the invention are listed in the following compilation: Poly (ethylene) such as HDPE (high density polyethylene), LDPE (low density polyethylene), VLDPE (very low density polyethylene), LLDPE (linear low density polyethylene), MDPE (medium density polyethylene), UHMPE (ultra high molecular polyethylene), VPE (cross-linked polyethylene), HPPE (high pressure polyethylene); isotactic polypropylene; syndiotactic polypropylene; Metallocene-catalyzed polypropylene, impact modified polypropylene, random copolymers based on ethylene and propylene, block copolymers based on ethylene and propylene; EPM (poly [ethylene-co-propylene
  • polystyrene poly (styrene); Poly (methylstyrene); Poly (oxymethylene); Metallocene-catalyzed alpha-olefin or cycloolefin copolymers such as norbornene-ethylene copolymers; Copolymers containing at least 80% ethylene and / or styrene and less than 20% monomers such as vinyl acetate, acrylic acid esters, methacrylic acid esters, acrylic acid, acrylonitrile, vinyl chloride.
  • polymers examples include: poly (ethylene-co-ethyl acrylate), poly (ethylene-co-vinyl acetate), poly (ethylene-co-vinyl chloride), poly (styrene-co-acrylonitrile).
  • Graft copolymers and polymer blends are also suitable, that is to say mixtures of polymers which contain, inter alia, the abovementioned polymers, for example polymer blends based on polyethylene and polypropylene.
  • homopolymers and copolymers based on ethylene and propylene are particularly preferred.
  • only polyethylene is used as the polyolefin, in another embodiment only polypropylene, in another embodiment, copolymers based on ethylene and propylene.
  • component a) is polypropylene.
  • Another object of the invention is the use of the hydrophilized polyolefin or polyester-based fibers produced by the process described above and wettable by aqueous media for the production of textile fabrics.
  • the textile fabrics are preferably nonwovens. In a particularly preferred embodiment, these textile fabrics are intended for use in diapers.
  • the individual wetting test represents a suitable simulation. Diapers are usually worn over a period of 3 to 5 hours, the inside of which is wetted with urine on average up to 3 times. It must then be ensured that a hydrophilically finished fleece based on an otherwise hydrophobic plastic is sufficiently wettable so that the urine can penetrate through the fleece and be bound by the absorber material of the diaper.
  • Nonwovens can be produced by all methods of nonwoven production known in the prior art, as described for example in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 17, VCH Weinheim 1994, pages 572-581. Nonwovens which are produced either by the so-called “dry laid” method or by spunbonding or spunbonding are preferred.
  • the "dry laid” method is based on staple fibers which are usually separated into individual fibers by carding and then using a aerodynamic or hydrodynamic processes are combined to form the unconsolidated nonwoven. This is then bonded, for example, to the finished nonwoven by a thermal treatment (the so-called “thermobonding”).
  • the synthetic fibers are either heated to such an extent that their surface melts and the individual fibers are bonded to one another at the contact points, or the fibers are mixed with an additive coated, which melts during the heat treatment and thus connects the individual fibers with one another _ _

Abstract

Gegenstand der Erfindung ist ein Verfahren zur hydrophilen Ausrüstung von Fasern, die ausschliesslich oder ganz Polyolefine oder Polyester enthalten, wobei man eine Mischung enthaltend (a) überwiegend Polyolefine oder Polyester und (b) 0,01 bis 10 Gew.-% - bezogen auf die Summe von Polyolefin oder Polyester - einer Zusammensetzung, die mindestens eine Verbindung aus der Klasse der Heterocyclen enthält, bei Temperaturen im Bereich von 180 bis 320 °C auf übliche Weise einer formgebenden Verarbeitung zu Fasern unterwirft, wobei (i) man Mischung, die man der formgebenden Verarbeitung unterwirft, vor oder während dieser formgebenden Verarbeitung keine Übergangsmetallverbindungen zudosiert, (ii) die Heterocyclen (b) ausgewählt sind aus der Klasse der Oxazoline der allgemeinen Struktur (I), worin der Rest R1 einen gesättigten oder ungesättigten Alkylrest mit 7 bis 21 C-Atomen und die Reste R?2 und R3¿ unabhängig voneinander Wasserstoff oder einen Methylrest bedeuten, und der Klasse der Imidazoline der allgemeinen Struktur (II), worin der Rest R4 einen gesättigten oder ungesättigten Alkylrest mit 7 bis 21 C-Atomen und der Rest R5 Wasserstoff oder eine Gruppe CH¿3?, C2H5, CH2-CH2-NH2 oder CH2-CH2-OH bedeuten und dass (iii) die Heterocyclen (b) im individuellen Benetzungstest mindestens vier Cyclen bis zum Versagen benötigen.

Description

"Verfahren zur hydrophilen Ausrüstung von Fasern auf Basis von Polyolefinen oder Polyester unter Einsatz von Heterocyclen"
Gebiet der Erfindung
Die Erfindung betrifft ein Verfahren zur hydrophilen Ausrüstung von Fasern, die ausschließlich oder ganz Polyolefine oder Polyester enthalten. Dabei kommen spezielle Heterocyclen zum Einsatz.
Stand der Technik
In zahlreichen Fällen muß die Oberfläche von Kunststoff-Erzeugnissen mit speziellen Effekten versehen werden, die sich während der Formgebung entweder aus technischen Gründen gar nicht bzw. nur unvollkommen oder aber aus wirtschaftlichen Gründen nur unvorteilhaft erzeugen lassen. Ein solcher Effekte ist beispielsweise die Verbesserung der Benetzbarkeit mit polaren Flüssigkeiten wie Wasser - technische Anwendungen liegen hier beispielsweise auf dem Gebiet der Herstellung von Hygieneartikeln.
Bei der Herstellung von Hygieneartikeln, wie Windeln oder Damenbinden, werden absorbierende Materialien verwendet, um wäßrige Flüssigkeiten aufzunehmen. Um den direkten Kontakt mit dem absorbierenden Material beim Tragen zu verhindern und den Tragekomfort zu erhöhen wird dieses Material mit einem dünnen, wasserdurchlässigen Vliesstoff umhüllt. Derartige Vliesstoffe werden üblicherweise aus synthetischen Fasern, wie Polyolefin- oder Polyesterfasern hergestellt, da diese Fasern preiswert zu produzieren sind, gute mechanische Eigenschaften aufweisen und thermisch belastbar sind. Allerdings eignen sich unbehandelte Polyolefin- oder Polyesterfasern für diesen Einsatzzweck nicht, da sie aufgrund ihrer hydrophoben Oberfläche keine ausreichende Durchlässigkeit für wäßrige Flüssigkeiten aufweisen.
Zu diesem Zweck muß die Faseroberfläche durch eine entsprechende Präparation hydrophil ausgerüstet werden. Gewünscht ist weiterhin, daß die hydrophile Ausrüstung der Faser möglichst lange erhalten bleibt, ohne daß die Wasserdurchlässigkeit des Vliesstoffs verringert wird. Werden derartige Vliesstoffe beispielsweise in Windeln verarbeitet, können diese mehrfach beansprucht werden, ohne wasserundurchlässig zu werden. Auf diese Weise wird die Tragezeit der Windeln erhöht und der durch verbrauchte Windeln verursachte Abfall verringert.
US-A-5,045,387 beschreibt beispielsweise ein Mittel zur hydrophilen Ausrüstung von Polyolefinfasern welches eine Mischung aus einem alkoxyliertem Ricinolsäurederivat, einem hydrierten Ricinolsäurederivat, einer Cig-Fettsäure und einem polyalkoxylierten Polymethylsiloxan enthält. Dieses Mittel muß von außen auf die Oberfläche der Fasern oder Folien aufgebracht werden.
US-A-5,654,086 beschreibt die hydrophile Ausrüstung von ansonsten hydrophoben Fasern auf Basis thermoplastischer Kunststoffe, wobei man die hydrophobe Faser mit einer Mischung aus fünf oberflächenaktiven Substanzen (Tensiden) behandelt. Dabei handelt es sich um (A) Polyoxyalkylen-Addukte von C28-50~Alkoholen oder -Alkylaminen oder Fettsäureamiden auf Basis von C30-50-Fettsäuren, (B) Polyoxyalkylen-Addukte von Fettsäureamiden auf Basis von C20-28~Fettsäuren, (C) Fettsäureamide auf Basis von Ci6_28-Fettsäuren und Alkanolaminen, (D) Polyoxyalkylen-Addukte Cιo-22" Alkylphosphat-Salzen und (E) Ci2-16~Alkylsulfonatsalzen.
EP-A-400,622 beschreibt ein Verfahren, um nichtgewebten Materialien, die hydrophobe Fasern enthalten, hydrophile Eigenschaften zu verleihen. Dabei wird eine Zusammensetzung, die spezielle polyoxyalkylierte sekundäre oder tertiäre Amine enthält, vor dem Verspinnen in eine geschmolzene Zusammensetzung eingebracht, die Polyolefin enthält.
EP-B-372 890 beschreibt Fasern auf Polyolefin- oder Polyester-Basis mit einem mit der Oberfläche verhafteten Schmiermittel. Dieses Schmiermittel umfaßt eine Mischung aus (1) Fettsäurediethanolamid, (2) einem Polyether-modifizierten Silikon, (3) einem Sorbi- tan-Fettsäureester und (4) einem Metallsalz eines Alkylsulfonats; dabei liegen die Komponenten (1) bis (4) in speziellen Mengenverhältnissen vor. Gemäß Seite 3, Zeilen 20-26 wird die Mischung der Komponenten (1) bis (4) auf die Oberfläche aufgebracht. Diese Technik des Aufbringens der die vier Komponenten enthaltenden Mischung auf die Oberfläche bereits fertiger Fasern wird auch auf Seite 4, Zeilen 6-9 nochmals näher erläutert. Dort sind als Aufbring-Techniken genannt: a) der Einsatz von Rollen, b) ein Aufsprühen und c) das Eintauchen. Es handelt sich demnach um ein Verfahren, bei dem eine Mischung der Komponenten (1) bis (4) in einem zusätzlichen Verarbeitungsschritt auf die Oberfläche von Polyolefin-Formteilen aufgebracht wird. Der in Anspruch 1 der EP-B-372 890 verwendete Ausdruck „mit der Faseroberfläche verhaftet" ist demnach vom Fachmann klar in der Weise zu verstehen, daß es sich dabei lediglich um eine lockere und temporäre Haftung - etwa durch relativ schwache Adhäsionskräfte - handelt, keinesfalls aber um eine dauerhafte Verankerung.
EP-B-616 622 betrifft extrudierbare, kompostierbare Polymerzusammensetzungen, umfassend ein extrudierbares, thermoplastisches Polymer, Copolymer oder Mischungen davon, die ein abbauforderndes System aus einem autooxidativen Bestandteil und einem Übergangsmetall enthält. Das autooxidative System umfaßt dabei eine Fettsäure, eine substituierte Fettsäure oder Derivate oder Mischungen davon, wobei die Fettsäure 10 bis 22 C-Atome aufweist und mindestens 0,1 Gew.-% ungesättigter Verbindungen und mindestens 0,1 Gew.-% freie Säure enthält. Das Übergangsmetall ist in der Zusammensetzung in einer Menge von 5-500 ppm in Form eines Salzes enthalten und ausgewählt aus der Gruppe Kobalt, Mangan, Kupfer, Cer, Vanadium und Eisen. Die Zusammensetzung soll in Form einer Folie einer Dicke von etwa 100 Mikron bei 60 °C und einer relativen Feuchtigkeit von mindestens 80% innerhalb von 14 Tagen oxidativ zur Versprödung abbaubar sein.
WO 98/42898 beschreibt die Verwendung von Amphiphilen zur dauerhaften Hydrophili- sierung der Oberflächen von Polyolefin-basierten Formkörpern, Fasern und Folien. Dabei unterwirft man eine Mischung enthaltend (a) überwiegend ein oder mehrere Polyolefine, (b) 0,01 bis 10 Gew.-% - bezogen auf die Polyolefine - ein oder mehrerer migrationsfähiger Amphiphile und (c) 0,01 bis 1000 ppm ein oder mehrerer Übergangsmetall- Verbindungen - Metallgehalt der Übergangsmetall-Verbindungen bezogen auf die Polyolefine - bei Temperaturen im Bereich von 180 bis 320 °C auf übliche Weise einer formgebenden Verarbeitung wie Extrusions-, Kalandrier-, Spritzgußverfahren und dergleichen. Gemäß der technischen Lehre der WO 98/42898 ist bei der Herstellung der hy- drophilisierten Polyolefin-Formkörper zwingend, daß alle drei Merkmale (a), (b) und (c) beachtet werden, d.h. daß bei der Herstellung zwingend eine Übergangsmetall- Verbindung, die als Katalysator anzusehen ist, eingesetzt wird.
Es ist auch bekannt, die Eigenschaften der Kunststoff-Oberfläche zur Erzielung spezieller Effekte durch beispielsweise oxidative Nachbehandlungsverfahren wie Corona- oder Plasmabehandlung zu verbessern. Hierbei wird der Kunststoff in Gegenwart von Gasen und Entladungen an der Oberfläche oxidiert oder chemisch modifiziert, wodurch sich gewisse Oberflächen-Eigenschaften des Kunststoffs modifizieren lassen. Diese Methoden erfordern jedoch neben einem hohen Energieeinsatz stets einen zusätzlichen Arbeitsgang und führen zu Ozonemissionen bei der Fertigung von Kunststoffteilen. Daneben sind chemische Vorbehandlungsverfahren wie z.B. das Behandeln mit Fluor- oder Chlorgas, mit Chromschwefelsäure oder Fluorsulfonsäure, usw. seit längerem bekannt.
Beschreibung der Erfindung
Aufgabe der vorliegenden Erfindung war es, Arbeitsmittel bereitzustellen, mit denen Fasern auf Basis von Polyolefinen oder Polyester sowie davon abgeleitete Werkstoffe wie Vliese nachhaltig hydrophil ausgerüstet und der mehrfachen Benetzung durch wäßrige Medien - beispielsweise Urin - zugänglich gemacht werden können.
Der Begriff der Hydrophilisierung - in jüngerer Zeit spricht man auch oft von Hydrophi- lierung - ist dem Fachmann wohlvertraut. Hierzu wird in dem bekannten Standardwerk „Lexikon für Textilveredlung" (Herausgeber: Hans-Karl Rouette; Band 1; Dülmen 1995, Seiten 859-862) ausgeführt, daß durch Hydrophilisierung hydrophobe Fasern für Wasser benetzbar gemacht werden, was etwa für eine bessere Auswaschbarkeit von Synthesefaserartikeln wie auch für einen besseren Tragekomfort solcher Artikel sinnvoll ist. Beispiele für meßtechnische Indikatoren einer erfolgreichen Hydrophilisierung sind etwa das Netzen (die Oberflächenausbreitung einer Flüssigkeit) oder die Steighöhe (ein Maß für die Geschwindigkeit, mit der Wasser in textilen Flächengebilden entgegen der Schwerkraft transportiert wird).
Im Rahmen der vorliegenden Erfindung wird unter Hydrophilisierung - synonym hierfür wird im folgenden auch der Begriff der "hydrophilen Ausrüstung" verwendet - verstanden, daß Polyolefin- bzw. Polyester-Oberflächen, die mit Wasser einen Benetzungswin- kel von mehr als 90° bilden - also „hydrophobe" Grenzflächen - durch eine spezielle Maßnahme so modifiziert werden, daß ihr Grenzwinkel nach dieser Maßnahme zu kleine- ren Werten hin verschoben ist. Es handelt sich hier um eher dynamische Wechselwirkungen entsprechend modifizierter Polymeroberflächen mit Molekülen oder Substraten, die nicht immobilisiert, sondern in flexibler Weise mit der Polymeroberfläche in Kontakt stehen. In dieser Hinsicht grenzen sich die Wirkungen, die unter den Begriff der Hydrophilisierung fallen, ausdrücklich von Phänomenen ab, bei denen Moleküle oder Substraten in dauerhafter Fixierung mit der Polymeroberfläche in Kontakt stehen, wie es etwa bei Beschichtungen und Verklebungen oder beim Färben und Bedrucken der Fall ist.
Gegenstand der Erfindung ist ein Verfahren zur hydrophilen Ausrüstung von Fasern, die ausschließlich oder ganz Polyolefine oder Polyester enthalten, wobei man eine Mischung enthaltend (a) überwiegend Polyolefine oder Polyester und (b) 0,01 bis 10 Gew.-% - bezogen auf die Summe von Polyolefin und Polyester - einer Zusammensetzung, die mindestens eine Verbindung aus der Klasse der Heterocyclen enthält, bei Temperaturen im Bereich von 180 bis 320 °C auf übliche Weise einer formgebenden Verarbeitung zu Fasern unterwirft, wobei
(i) man der Mischung, die man der formgebenden Verarbeitung unterwirft, vor oder während dieser formgebenden Verarbeitung keine Übergangsmetallverbindungen zudosiert,
(ii) die Heterocyclen (b) ausgewählt sind aus der Klasse der Oxazoline der allgemeinen Struktur (I),
Figure imgf000008_0001
(I)
worin der Rest Rl einen gesättigten oder ungesättigten Alkylrest mit 7 bis 21 C- Atomen und die Reste R-2 und R-3 unabhängig voneinander Wasserstoff oder einen Methylrest bedeuten, und der Klasse der Imidazoline der allgemeinen Struktur (II),
R4
R5-N^N
(II)
worin der Rest R^ einen gesättigten oder ungesättigten Alkylrest mit 7 bis 21 C- Atomen und der Rest R^ Wasserstoff oder eine Gruppe CH3, C2H5, CH2-CH2- NH2 oder CH2-CH2-OH bedeuten und daß
(iii) die Heterocyclen (b) im individuellen Benetzungstest mindestens vier Cyclen bis zum Versagen benötigen.
Der "individuelle Benetzungstest" ist wie folgt durchzuführen:
1. Man vermengt 600 g eines hochmolekularen Polypropylen-Granulates (Handelsprodukt "Eltex PHY 671" der Firma Solvay) mit 9,0 g (=1,5 Gew.-%) der - hinsichtlich einer hydrophilen Ausrüstung - zu prüfenden Substanz. Diese Mischung wird durch einen Trichter in einen Extruder eingebracht (Doppelschneckenextruder DSK 42/7 der Firma Brabender OHG / Duisburg). Ein Extruder ist - wie dem Fachmann hinlänglich bekannt - eine Kunststoff- Verarbeitungsmaschine, welche zum kontinuierlichen Mischen und Plastifizieren sowohl von pulver- als auch granulatförmigen Thermoplasten geeignet ist. Unter dem Einfülltrichter befindet sich neben einer Wasserkühlung, die ein verfrühtes Schmelzen des Granulates bzw. Pulvers verhindern soll, auch eine ge- . _
genläufige Doppelschnecke, die der Länge nach in drei Heizzonen aufgeteilt ist. Die Temperatur der Heizzonen und die Drehzahl der Doppelschnecke lassen sich über einen Datenverarbeitungs-Plast-Corder PL 2000 regeln, der über eine PC-Schnittstelle mit dem Extruder verbunden ist. Dabei werden die Heizzonen I, II und III auf eine Temperatur von jeweils 200°C eingestellt, wobei die drei Heizzonen luftgekühlt werden, um die Temperatur konstant zu halten. Die Mischung von Polyopropylen- Granulat und Prüfsubstanz wird automatisch durch die gegeneinander laufende Doppelschnecke in den Extruder eingezogen und entlang der Schnecke befördert. Die Drehzahl wird auf 25 Umdrehungen pro Minute eingestellt, um eine gute Durchmischung und Homogenisierung zu gewährleisten. Diese homogene und praktisch bläschenfreie Mischung gelangt schließlich in eine Düse, die eine vierte Heizzone darstellt. Die Temperatur dieser Düse wird auf 200 °C eingestellt - bei dieser Temperatur verläßt also die Mischung den Extruder. Die Düse wird so gewählt, daß der mittlere Durchmesser des Stranges nach dem Austritt aus dieser Düse im Bereich von etwa 2 - 3 mm liegt. Dieser Strang wird granuliert, d.h. in kleine Stücke geschnitten, wobei man Längen von etwa 2-4 mm einstellt. Das erhaltene Granulat läßt man auf 20 °C abkülen. Dieses Granulat wird in einer Schmelzspinnanlage bei einer Verarbeitungstemperatur von 280 °C (d.h man stellt sowohl die Schmelzsterntemperatur als auch die Temperatur der Spinndüse auf 280 °C ein) gravimetrisch (d.h. durch Schwerkrafteinwirkung) in Fasern überführt. Die erhaltenen Fasern weisen einen Fa- sertiter im Bereich von etwa 10 - 30 dtex auf (1 dtex entspricht 1 g Faser pro 10000 m Faserlänge). Anschließend werden 500 m dieser Faser auf eine Rolle mit einem Durchmesser von 6,4 cm aufgewickelt. Diese auf die Rolle aufgewickelte Faser wird von der Rolle abgezogen und das abgezogene kreisförmige Gebilde durch mittiges Verknoten stabilisiert, wobei ein Gebilde erhalten wird, das die Form einer "8" hat; dieses Gebilde wird nachfolgend als "Strängchen" bezeichnet. . Man füllt einen 1-1-Meßzylinder (Glaszylinder mit einem Innendurchmesser von 6,0 cm) mit destilliertem Wasser von 20 °C und zwar bis zur 1000-ml-Markierung. Nun hält man das zu prüfende Strängchen in der Weise, das seine Längsrichtung mit der Vertikale des Meßzylinders übereinstimmt, d.h. daß das Strängchen als vertikale "8" erscheint. An den untersten Teil dieser "8" hängt man nun ein Gewicht, das aus Cu- Draht besteht, wobei die Masse des Cu-Drahtes 0,2064 g Cu pro Gramm Strängchen beträgt. Dieser Cu-Draht wird in Form von Windungen an dem Strängchen befestigt, wobei der Durchmesser der Cu-Draht-Windungen etwa 1 bis 2 cm beträgt; anschließend werden diese Cu-Draht-Windungen durch leichtes Drücken zwischen Daumen und Zeigefinger zusammengepreßt. Nun hält man das Strängchen mit dem Cu- Gewicht über die Wasseroberfläche des Meßzylinders und zwar so, daß der untere Teil des Cu-Gewichtes in das Wasser eintaucht und der unterste Teil des Strängchens sich etwa 2 mm über der Wasseroberfläche befindet Dann läßt man das Strängchen los und mißt mit einer Stoppuhr die Zeit in Sekunden, die das Strängchen benötigt, um von der 1000-ml-Markierung bis zur 200-ml-Markierung zu gelangen. Beginn und Ende der Meßzeit sind dadurch definiert, daß das unterste Ende des Strängchens jeweils die 1000-ml- bzw. die 200-ml-Marke passiert. In der vorliegenden Versuchsanordnung bedeutet das, daß das Strängchen auf seinem Weg zwischen den genannten Markierungen eine Tauchstrecke von 28,3 cm zurückgelegt hat. Dieser erste Meßwert wird als Cl-Wert ("Wert des ersten Benetzungscyclus") bezeichnet.
3. Das Strängchen wird unmittelbar nach Bestimmung des Cl -Wertes aus dem Meßzylinder genommen, mit Zellstoff abgetupft und 1 Stunde in einem Umlufttrocken- schrank (Typ UT 5042 EK der Firma Heraeus) bei 40 °C getrocknet. Anschließend wird Schritt 2 wiederholt. Der jetzt erhaltene Wert in Sekunden der 28,3-cm-Sinkzeit wird als C2-Wert ("Wert des zweiten Benetzungscyclus") bezeichnet. Trocknung und Bestimmung der 28, 3 -cm- Sinkzeit werden nun erneut wiederholt, wobei man den C3- Wert ("Wert des dritten Benetzungscyclus") erhält. Trocknung und Bestimmung der 28,3-cm-Sinkzeit werden nun erneut wiederholt, wobei man den C4-Wert ("Wert des vierten Benetzungscyclus") erhält. Trocknung und Bestimmung der 28,3-cm-Sinkzeit werden nun erneut wiederholt, wobei man den C5-Wert ("Wert des fünften Benetzungscyclus") erhält. Gewünschtenfalls kann die beschriebene Prozedur auch noch mehrfach wiederholt werden, es können also bei Bedarf auch noch C5-, C6-, C7- usw. Werte bestimmt werden.
4. Sofern 28,3-cm-Sinkzeiten (Cl- bis C5-Werte) oberhalb von 180 Sekunden liegen, wird der jeweilige Cyclus beendet.
5. Sofern an dem Strängchen, vorwiegend in dessen oberen Teil, beim Eintauchen in das Wasser des Meßzylinders Luftblasen hängenbleiben, werden diese sofort mittels eines Drahtes oder durch kurzes Berühren mit einem Finger entfernt.
Der individuelle Benetzungstest gilt als bestanden, wenn die Werte für Cl, C2 und C3 jeweils maximal 50 Sekunden oder weniger betragen. Dies ist gleichbedeutend damit, daß beim Einsatz einer erfindungsgemäß geeigneten Prüfsubstanz, d.h eines Heterocyclus (b), zur hydrophilen Ausrüstung des Polypropylens frühestens beim Durchlaufen des vierten Cyclus (C4-Wert) ein Wert oberhalb von 50 Sekunden erreicht wird. Ein Heterocyclus (b) ist dann geeignet im Sinne der vorliegenden Erfindung, wenn ein Versagen, also ein 28,3- cm-Sinkzeiten-Wert oberhalb von 50 Sekunden, frühestens beim C4-Wert eintritt.
Die erfindungsgemäß einzusetzenden Oxazoline sind wie bereits gesagt durch die allgemeine Struktur (I) charakterisiert. Der Rest Rl kann dabei gesättigt oder ungesättigt, ge- radkettig oder verzweigt sein. Diese Verbindungen können sowohl einzeln als auch in Kombination miteinander eingesetzt werden. In einer bevorzugten Ausführungsform setzt man solche Oxazoline (I) ein, bei denen der Rest Rl eine gesättigte Alkylgruppe mit 7 C- Atomen ist. Die erfindungsgemäß einzusetzenden Imidazoline sind wie bereits gesagt durch die allgemeine Struktur (II) charakterisiert. Der Rest R4 kann dabei gesättigt oder ungesättigt, geradkettig oder verzweigt sein. Diese Verbindungen können sowohl einzeln als auch in Kombination miteinander eingesetzt werden. In einer bevorzugten Ausführungsform setzt man solche Imidazoline (II) ein, bei denen der Rest R4 eine gesättigte Alkylgruppe mit 7 C-Atomen ist.
In einer weiteren bevorzugten Ausführungsform der Erfindung setzt man solche Verbindungen (b) ein, die im individuellen Benetzungstest mindestens sechs Cyclen bis zum Versagen benötigen. Bei diesen Verbindungen sind also sämtliche Werte Cl, C2, C3, C4 und C5 im oben beschriebenen individuellen Benetzungstest unterhalb von 50 Sekunden.
Die erfindungsgemäß einzusetzenden Verbindungen (b) sind zur Migration befähigt. Darunter ist zu verstehen, daß diese Verbindungen in der Lage sind, im Zuge der Herstellung der Fasern durch beispielsweise Extrusionsverfahren an die Oberfläche des resultierenden Polyolefin- bzw. Polyester-Formkörpers zu gelangen. Sie reichern sich dadurch an der Oberfläche bzw. den Oberflächen-nahen Bereichen der Kunststoff-Matrix an, was durch sukzessives Abtragen von Oberflächenschichten in der Größenordnung von jeweils wenigen Nanometern und anschließende Abscan-Techniken von der Anmelderin verifiziert wurde.
Die durch das erfindungsgemäße Verfahren zugänglichen Polyolefin- bzw. Polyesterfasern sowie daraus herstellbare textile Flächengebilde - etwa Vliese - zeichnen sich durch eine ausgezeichnete Benetzbarkeit durch wäßrige Medien aus.
Durch das technische Handeln im Sinne der erfindungsgemäßen Lehre wird einerseits sichergestellt, daß die angestrebte verbesserte und dauerhafte Oberflächen-Hydrophilie erreicht wird, andererseits, daß dies ohne Beeinträchtigung anderer Werkstoffparameter gelingt. Die Einarbeitung der Heterocyclen (b) in die Kunststoff-Matrix geschieht im Rahmen üblicher formgebender Verarbeitungsprozesse wie Extrusionsverfahren und dergleichen. Dabei kann es gewünscht sein, eine vorkonfektionierte Mischung der Komponenten a) und b) einzusetzen. Mitverwendete weitere übliche Hilfsstoffe, die sich bei der Verarbeitung von Kunststoffen allgemein bewährt haben und die dem Fachmann bekannt sind, beispielsweise Slipmittel, Antistatika, Gleitmittel, Trennmittel, UV-Stabilisatoren, Anti- oxidantien, Füllstoffe, Brandschutzmittel, Entformungsmittel, Nukleirungsmittel und An- tiblockmittel können entsprechend in getrennter Form vorkonfektioniert und bei der abschließenden Aufmischung der Fertigprodukte zugegeben werden. Es kann aber - beispielsweise bei Anwendung der Extrudiertechnik - auch gewünscht sein, die Komponenten b) und/ oder andere Additive ganz oder teilweise direkt in die Polymerschmelze am Extruder einzudosieren, so daß die Mischung der Komponenten a) und b) - und gegebenenfalls weiterer Hilfsstoffe - nicht schon von vornherein als Vorkonfektionat vorhanden ist, sondern erst im Extruder selbst vorliegt. Eine derartige Technik bietet sich beispielsweise dann an, wenn die der Polymerschmelze zuzudosierenden Verbindungen b) in flüssiger Form vorliegen und ein Einspritzen dieser Komponente einfacher ist, als eine Vor- konfektionierung.
Es kann auch gewünscht sein - obgleich zur Erzielung des erfindungsgemäßen Effektes nicht erforderlich - im Anschluß an den erfindungsgemäßen Einsatz der Komponenten a) und b) auf übliche Weise eine Corona- oder Plasmabehandlung vorzunehmen.
Als Komponente a) sind im Rahmen der Erfindung Polyolefine bevorzugt. Hier eigenen sich an sich alle heute bekannten Polymer- und Copolymertypen auf Ethylen- beziehungsweise Propylen-Basis. Auch Abmischungen reiner Polyolefine mit Copolymeren sind grundsätzlich geeignet. Für die erfindungs gemäße Lehre besonders geeignete Polymertypen sind in der nachfolgenden Zusammenstellung aufgezählt: Poly(ethylene) wie HDPE (high density polyethylene), LDPE (low density polyethylene), VLDPE (very low density polyethylene), LLDPE (linear low density polyethylene), MDPE (medium density polyethylene), UHMPE (ultra high molecular polyethylene), VPE (vernetztes Polyethylen), HPPE (high pressure polyethylene); isotaktisches Polypropylen; syndiotaktisches Polypropylen; Metallocen-katalysiert hergestelltes Polypropylen, schlagzäh-modifiziertes Polypropylen, Random-Copolymere auf Basis Ethylen und Pro- pylen, Blockcopolymere auf Basis Ethylen und Propylen; EPM (Poly[ethylen-co- propylen]); EPDM (Poly[ethylen-co-propylen-co-konjugiertes Dien]).
Weitere geeignete Polymertypen sind: Poly(styrol); Poly(methylstyrol); Po- ly(oxymethylen); Metallocen-katalysierte alpha-Olefin- oder Cycloolefin-Copolymere wie Norbornen-Ethylen-Copolymere; Copolymere, die zu mindestens 80 % Ethylen und/oder Styrol enthalten und zu weniger als 20 % Monomere wie Vinylacetat, Acrylsäu- reester, Methacrylsäureester, Acrylsäure, Acrylnitril, Vinylchlorid. Beispiele solcher Polymeren sind: Poly(ethylen-co-ethylacrylat), Poly(ethylen-co-vinylacetat), Po- ly(ethylen-co-vinylchlorid), Poly(styrol-co-acrylnitril). Geeignet sind weiterhin Pfropfco- polymere sowie Polymerblends, das heißt, Mischungen von Polymeren, in denen unter anderem die vorgenannten Polymere enthalten sind, beispielsweise Polymerblends auf Basis von Polyethylen und Polypropylen.
Im Rahmen der vorliegenden Erfindung sind Homo- und Copolymere auf Basis von Ethylen und Propylen besonders bevorzugt. In einer Ausführungsform der vorliegenden Erfindung setzt man dementsprechen als Polyolefin ausschließlich Polyethylen ein, in einer anderen Ausführungsform ausschließlich Polypropylen, in einer weiteren Ausfüh- rungsfrom Copolymere auf Basis von Ethylen und Propylen.
In einer ganz besonders bevorzugten Ausführungsform der Erfindung ist Komponente a) Polypropylen. Ein weiterer Gegenstand der Erfindung ist die Verwendung der gemäß dem oben beschriebenen Verfahren hergestellten hydrophilisierten und durch wäßrige Medien benetzbaren Fasern auf Polyolefin bzw. Polyester-Basis zur Herstellung textiler Flächengebilde. Vorzugsweise sind dabei die textilen Flächengebilde Vliesstoffe. In einer besonders bevorzugten Ausführungsform sind diese textilen Flächengebilde zum Einsatz in Windeln bestimmt.
Für den letztgenannten Fall, den Einsatz von textilen Flächengebilden in Windeln, stellt der individuelle Benetzungstest eine geeignete Simulation dar. Windeln werden nämlich üblicherweise über einen Zeitraum von 3 bis 5 Stunden getragen, wobei ihre Innenseite durchschnittlich bis zu 3 -mal mit Urin benetzt wird. Es muß dann gewährleistet sein, daß ein hydrophil ausgerüstetes Vlies auf Basis eines ansonsten hydrophoben Kunststoffs jeweils ausreichend benetzbar ist, so daß der Urin durch das Vlies penetrieren und vom Absorbermaterial der Windel gebunden werden kann.
Vliesstoffe können nach allen im Stand der Technik bekannten Verfahren der Vliesherstellung, wie sie beispielsweise in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 17, VCH Weinheim 1994, Seiten 572 - 581, beschrieben werden, hergestellt werden. Bevorzugt sind dabei Vliese, die entweder nach dem sogenannte „dry laid"- oder dem Spinnvlies- oder spunbond- Verfahren hergestellt wurden. Das „dry laid"- Verfahren geht von Stapelfasern aus, die üblicherweise durch Kardieren in Einzelfasern getrennt und anschließend unter Einsatz eines aerodynamischen oder hydrodynamischen Verfahrens zum unverfestigten Vliesstoff zusammengelegt werden. Dieser wird dann beispielsweise durch eine thermische Behandlung zum fertigen Vlies verbunden (das sogenannte „thermobonding"). Dabei werden die synthetischen Fasern entweder soweit erwärmt, daß deren Oberfläche schmilzt und die Einzelfasern an den Kontakstellen miteinander verbunden werden, oder die Fasern werden mit einem Additiv überzogen, welches bei der Wärmebehandlung schmilzt und so die einzelnen Fasern miteinander verbindet. Durch _ _
Abkühlung wird die Verbindung fixiert. Neben diesem Verfahren sind natürlich auch alle anderen Verfahren geeignet, die im Stand der Technik zum Verbinden von Vliesstoffen eingesetzt werden. Die Spinnvliesbildung geht dagegen von einzelnen Filamenten aus, die nach dem Schmelzspinnverfahren aus extrudierten Polymeren gebildet werden, welche unter hohem Druck durch Spinndüsen gedrückt werden. Die aus den Spinndüsen austretenden Filamente werden gebündelt, gestreckt und zu einem Vlies abgelegt, welches üblicherweise durch „thermobonding" verfestigt wird.
B e i s p i e l e
Mit unterschiedlichen Prüfsubstanzen (Bl und B2 = erfindungsgemäße Beispiele) ausgerüstete Polypropylen-Prüfkörper wurden dem oben beschriebenen individuellen Benetzungstest unterworfen. Die Versuchsergebnisse sind in Tabelle 1 zusammengestellt; angegeben sind dabei die 28,3-cm-Sinkzeiten (in Sekunden) nach ein, zwei, drei, vier und fünf Benetzungscyclen (Spalten Cl bis C5).
Tabelle 1
Figure imgf000018_0001
(1) "Loxamid 8512" der Firma Henkel KGaA / Düsseldorf; (2) "Casamin O" der Firma Thomas Sworn / England
Es ist deutlich, daß die Werte Cl, C2 und C3 bei den Beispielen Bl und B2 sämtlich unterhalb des kritischen Wertes von 50 Sekunden liegen. Beispiel B2 zeigt sogar noch nach fünf Benetzungscyclen ganz ausgezeichnete Werte.

Claims

P a t e n t a n s p r ü c h e
1. Verfahren zur hydrophilen Ausrüstung von Fasern, die ausschließlich oder ganz Polyolefine oder Polyester enthalten, wobei man eine Mischung enthaltend (a) überwiegend Polyolefine oder Polyester und (b) 0,01 bis 10 Gew.-% - bezogen auf die Summe von Polyolefin und Polyester - einer Zusammensetzung, die mindestens eine Verbindung aus der Klasse der Heterocyclen enthält, bei Temperaturen im Bereich von 180 bis 320 °C auf übliche Weise einer formgebenden Verarbeitung zu Fasern unterwirft, dadurch gekennzeichnet, daß
(i) man der Mischung, die man der formgebenden Verarbeitung unterwirft, vor oder während dieser formgebenden Verarbeitung keine Übergangsmetallverbindungen zudosiert,
(ii) die Heterocyclen (b) ausgewählt sind aus der Klasse der Oxazoline der allgemeinen Struktur (I),
Figure imgf000019_0001
(I)
worin der Rest Rl einen gesättigten oder ungesättigten Alkylrest mit 7 bis 21 C-Atomen und die Reste R^ und R-* unabhängig voneinander Wasserstoff oder einen Methylrest bedeuten, und der Klasse der Imidazoline der allgemeinen Struktur (II),
Figure imgf000020_0001
(II)
worin der Rest R^ einen gesättigten oder ungesättigten Alkylrest mit 7 bis 21 C-Atomen und der Rest R-5 Wasserstoff oder eine Gruppe CH3, C2H5, CH2- CH2-NH2 oder CH2-CH2-OH bedeuten und daß
(iii) die Heterocyclen (b) im individuellen Benetzungstest mindestens vier Cyclen bis zum Versagen benötigen.
2. Verfahren nach Anspruch 1, wobei man als Komponente a) Polypropylen einsetzt.
3. Verfahren nach Anspruch 1 oder 2, wobei man als Komponente b) Undecyloxazolin und/oder l-Aminoethyl-2-oleyl-imidazolin einsetzt.
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei man bei der formgebenden Verarbeitung übliche weitere Hilfsstoffe zur Verarbeitung von Kunststoffen zusetzt und/oder als zusätzlichen weiteren Verarbeitungsschritt auf übliche Weise eine Corona- oder Plasmabehandlung vornimmt.
5. Verfahren um nichtgewebten Materialien, die Fasern aus Polyolefin oder Polyester enthalten, hydrophile Eigenschaften zu verleihen und sie für wäßrige Medien durchlässig zu machen, dadurch gekennzeichnet, daß man die gemäß dem Verfahren nach einem der Ansprüche 1 bis 4 hergestellten hydrophil ausgerüsteten Fasern auf Basis _ _
von Polyolefin oder Polyester auf übliche Weise - beispielsweise zu Vliesstoffen - weiterverarbeitet.
6. Verwendung der gemäß dem Verfahren nach einem der Ansprüche 1 bis 4 hergestellten hydrophilisierten und durch wäßrige Medien benetzbaren Fasern auf Polyolefin- oder Polyester-Basis zur Herstellung textiler Flächengebilde.
7. Verwendung nach Anspruch 6, wobei die textilen Flächengebilde Vliesstoffe sind.
8. Verwendung nach Anspruch 6 oder 7, wobei die textilen Flächengebilde zum Einsatz in Windeln bestimmt sind.
PCT/EP1999/008281 1998-11-10 1999-10-30 Verfahren zur hydrophilen ausrüstung von fasern auf basis von polyolefinen oder polyester unter einsatz von heterocyclen WO2000028131A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP99968769A EP1137839A2 (de) 1998-11-10 1999-10-30 Verfahren zur hydrophilen ausrüstung von fasern auf basis von polyolefinen oder polyester unter einsatz von heterocyclen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19851685.1 1998-11-10
DE19851685A DE19851685A1 (de) 1998-11-10 1998-11-10 Verfahren zur hydrophilen Ausrüstung von Fasern auf Basis von Polyolefinen oder Polyester unter Einsatz von Heterocyclen

Publications (2)

Publication Number Publication Date
WO2000028131A2 true WO2000028131A2 (de) 2000-05-18
WO2000028131A3 WO2000028131A3 (de) 2000-08-03

Family

ID=7887231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/008281 WO2000028131A2 (de) 1998-11-10 1999-10-30 Verfahren zur hydrophilen ausrüstung von fasern auf basis von polyolefinen oder polyester unter einsatz von heterocyclen

Country Status (3)

Country Link
EP (1) EP1137839A2 (de)
DE (1) DE19851685A1 (de)
WO (1) WO2000028131A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10428454B2 (en) 2013-12-27 2019-10-01 Dow Global Technologies Llc Textile treatment compositions including quternary bis-imidazoline compounds derived from linear tetramines useful to improve moisture management and provide antimicrobial protection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB920522A (en) * 1960-09-09 1963-03-06 Ici Ltd Polyolefine compositions and shaped articles
GB1079990A (en) * 1964-10-07 1967-08-16 Hoechst Ag Improvements in and relating to macromolecular organic compounds
WO1998042898A1 (de) * 1997-03-25 1998-10-01 Henkel Kommanditgesellschaft Auf Aktien Verwendung von amphiphilen zur hydrophilisierung von polyolefin-basierten formkörpern, fasern und folien

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB920522A (en) * 1960-09-09 1963-03-06 Ici Ltd Polyolefine compositions and shaped articles
GB1079990A (en) * 1964-10-07 1967-08-16 Hoechst Ag Improvements in and relating to macromolecular organic compounds
WO1998042898A1 (de) * 1997-03-25 1998-10-01 Henkel Kommanditgesellschaft Auf Aktien Verwendung von amphiphilen zur hydrophilisierung von polyolefin-basierten formkörpern, fasern und folien

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10428454B2 (en) 2013-12-27 2019-10-01 Dow Global Technologies Llc Textile treatment compositions including quternary bis-imidazoline compounds derived from linear tetramines useful to improve moisture management and provide antimicrobial protection

Also Published As

Publication number Publication date
WO2000028131A3 (de) 2000-08-03
DE19851685A1 (de) 2000-05-11
EP1137839A2 (de) 2001-10-04

Similar Documents

Publication Publication Date Title
DE69723315T2 (de) Strahlungsabbau-Polypropylen und daraus hergestellten Fasern
DE69424060T3 (de) Vliesstoffe mit dauerhafter benetzbarkeit
DE60117300T2 (de) Benetzbare polyolefinfasern und -flächengebilde
DE10085257B3 (de) Biologisch abbaubare hydrophile Bindefasern
EP2197952B1 (de) Polypropylenmischung
EP1818356B1 (de) Verwendung von Triglyceriden als Weichmacher für Polyolefine
DE69631739T2 (de) Poröser Film und Verfahren zu seiner Herstellung
EP1138810B1 (de) Hydrophilieadditiv
DE102012021742A1 (de) Zusammensetzung zur permanenten Hydrophilierung von Polyolefinfasern und deren Verwendung
WO2016102469A1 (de) Zusammensetzung zur permanent-hydrophilen ausrüstung von textilfasern und textilerzeugnissen
EP1187949A1 (de) Verfahren zur herstellung von spinnvlies- oder meltblown-fasern/filamenten, verfahren zur herstellung von folien sowie spinnvlies- oder meltblown-fasern/filamente, folien, vliesstoff
DE102013113656A1 (de) Verwendung einer Tensidzusammensetzung zur hydrophilen Ausrüstung von Textilfasern und daraus hergestellten Textilerzeugnissen
EP2883987A1 (de) Verwendung eines Vliesstoffes als Depoteinrichtung für zumindest ein Wirkmedium und Vliesstoff
WO2000028143A2 (de) Verfahren zur hydrophilen ausrustung von fasern
WO2000028131A2 (de) Verfahren zur hydrophilen ausrüstung von fasern auf basis von polyolefinen oder polyester unter einsatz von heterocyclen
EP1001056A1 (de) Verfahren zur hydrophilen Ausrüstung von Fasern auf Basis von Polyolefinen oder Polyester unter Einsatz von Fettsäureamiden
EP1137838A2 (de) Verfahren zur hydrophilen ausrüstung von fasern
WO1998042898A1 (de) Verwendung von amphiphilen zur hydrophilisierung von polyolefin-basierten formkörpern, fasern und folien
DE60212094T2 (de) Lotionen für Vliesstoffe
EP1581590B1 (de) Hydrophile polyolefinmaterialien und verfahren zu deren herstellung
EP1402091B1 (de) Hydrophilieadditive
DE2002095C3 (de) Antielektrostatische Fäden und Fasern aus Polyolefinen
DE10257730A1 (de) Mischung zur Herstellung hydrophiler Polyolefinmaterialien
DE10028215A1 (de) Hydrophobierender Zusatz
DE2255710A1 (de) Verfahren zur herstellung einer nichtgewebten bahn

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999968769

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09831513

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999968769

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999968769

Country of ref document: EP