WO2000024952A1 - Highly oriented polyolefin fibre - Google Patents

Highly oriented polyolefin fibre Download PDF

Info

Publication number
WO2000024952A1
WO2000024952A1 PCT/NL1999/000099 NL9900099W WO0024952A1 WO 2000024952 A1 WO2000024952 A1 WO 2000024952A1 NL 9900099 W NL9900099 W NL 9900099W WO 0024952 A1 WO0024952 A1 WO 0024952A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibre
solvent
polyolefin
highly oriented
oriented polyolefin
Prior art date
Application number
PCT/NL1999/000099
Other languages
English (en)
French (fr)
Inventor
Joseph Arnold Paul Maria Simmelink
Jacobus Johannes Mencke
Original Assignee
Dsm N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=19768039&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2000024952(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dsm N.V. filed Critical Dsm N.V.
Priority to AU27489/99A priority Critical patent/AU2748999A/en
Priority to EP99907960A priority patent/EP1137828B2/en
Priority to DE69904361T priority patent/DE69904361T3/de
Priority to CA002348518A priority patent/CA2348518C/en
Publication of WO2000024952A1 publication Critical patent/WO2000024952A1/en
Priority to IL142789A priority patent/IL142789A/en
Priority to US09/844,247 priority patent/US6723267B2/en
Priority to HK02103857.4A priority patent/HK1042121B/zh
Priority to US10/781,915 priority patent/US6916533B2/en
Priority to IL172893A priority patent/IL172893A/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins

Definitions

  • the invention relates to a highly oriented polyolefin fibre containing polyolefin with an intrinsic viscosity of at least 5 dl/g, which fibre has a tensile strength of at least 26 cN/dtex and a modulus of tension of at least 700 cN/dtex, a process for the preparation thereof and the use in ropes or anti- ballistic shaped articles.
  • the invention also relates to improved ropes and anti -ballistic shaped articles.
  • the said highly-oriented polyolefin fibres are known from EP-A-0.205.960.
  • the highly oriented polyolefin fibres described there have a very high tensile strength and modulus of tension and a low creep rate, making them particularly suitable for use in, inter alia, ropes and anti-ballistic shaped articles.
  • the fibres are prepared by spinning a solution of a polyolefin into a gel fibre, extracting the solvent from the fibre, and drawing the extracted and dried fibre in one or more steps.
  • the aim of the invention therefore is to provide highly oriented polyolefin fibres with improved properties in said applications.
  • the fibre contains 0.05 - 5 wt . % of a solvent for the polyolefin (relative to the fibre's total weight).
  • SEA Specific Energy Absorption
  • the fibres according to the invention are eminently suitable for use in anti-ballistic shaped articles since shaped articles on the basis of these fibres have a high Specific Energy Absorption (SEA) , which means that less fibre, and hence less weight, is needed to obtain the same level of protection.
  • SEA Specific Energy Absorption
  • the fibres according to the invention are suitable for use in ropes, inter alia because their compactness is better without any loss in flexibility and because the strength of the ropes is enhanced.
  • the improved quality of the fibres is particularly surprising since up to now the presence of a significant amount of solvent in the fibre has been considered undesirable as this reduces the mechanical properties of the fibre, in particular because the fibre's creep rate is higher and its strength and modulus are lower. It is also surprising that solvent - containing fibres have a higher anti-ballistic quality than "dry" fibres of comparable strength and modulus, for in itself the solvent cannot contribute to the level of protection, while it does increase the areal density.
  • Fibres that contain solvent are known in the state of the art. However, these fibres are not highly oriented and they are unsuitable for the desired applications as their mechanical properties are not good enough. Within the context of the present application, highly oriented is understood to mean that the fibre has a modulus of tension of at least 700 cN/dtex and a tensile strength of at least 26 cN/dtex (as determined according to the method specified below) .
  • the known solvent-containing fibres are intermediates in a process in which the fibre is prepared from a solution. The description makes it clear that the solvent is undesirable in the end product and therefore still needs to be removed. US-A- 5,213,745, for example, describes optimum extraction agents for the removal of mineral oil solvent from an undrawn gel fibre.
  • EP-A-0 , 115, 192 describes fibres having a high solvent content and a low tensile strength and modulus of tension. These fibres, too, are intermediates, and as such unsuitable for use in the said applications.
  • the tensile strength (or strength) and the modulus of tension (or modulus) are defined and are determined as specified in ASTM D885M, using a nominal gauge length of the fibre of 500 mm, a crosshead speed of 50%/min and Instron 2714 clamps. Before the measurement the fibre is twisted at 31 turns per metre. On the basis of the measured stress-strain curve the modulus is determined as the gradient between 0.3 and 1% strain. For calculation of the modulus and strength, the tensile forces measured are divided by the titer, as determined by weighing 10 metres of fibre. Creep is here and hereinafter understood to be the elongation as a percentage of the original length after 5 hours under a load of 8.11 gr/dtex at 50 °C. The elongation includes the elastic elongation.
  • a fibre is understood to be a continuous or semi -continuous object such as a monofilament , multifilament yarn, tapes or staple fibre yarn.
  • the filaments may have any cross-sectional shape and thickness.
  • the filament titer is at most 5, more preferably at most 3 denier per filament.
  • the advantage of such a low filament titer is that the fibre has better anti-ballistic properties.
  • Varying polyolefins can be used in the fibre according to the invention.
  • Particularly suitable polyolefins are homo- and copolymers of polyethylene and polypropylene.
  • the polyolefins used may contain small amounts of one or more other polymers, in particular other alkene- 1 -polymers .
  • linear polyethylene is chosen as polyolefin.
  • Linear polyethylene is here understood to be polyethylene with fewer than one side chain per 100 carbon atoms, and preferably fewer than one side chain per 300 carbon atoms, which may moreover contain up to 5 mol% of or more alkenes that can be copolymerized with it, such as propylene, butene, pentene, 4-methylpentene or octene.
  • the fibre may contain small amounts of the additives that are customary for such fibres, such as anti-oxidants , spinfinish, thermal stabilizers, colourants, etc.
  • the polyolefin fibre in particular the polyethylene fibre, has an intrinsic viscosity (IV) of more than 5 dl/g.
  • IV intrinsic viscosity
  • polyolefin fibres with such an IV have very good mechanical properties, such as a high tensile strength, modulus, energy absorption at break. This is also the reason why even more preferably the polyolefin is a polyethylene with an IV of more than 10 dl/g.
  • the IV is determined according to method PTC- 179 (Hercules Inc. Rev. Apr. 29, 1982) at 135°C in decalin, the dissolution time being 16 hours, the anti-oxidant is DBPC, in an amount of 2 g/1 solution, and the viscosity at different concentrations is extrapolated to zero concentration.
  • the tensile strength of the fibre is at least 26 cN/dtex and the modulus at least 700 cN/dtex.
  • the modulus is at least 880 cN/dtex, more preferably at least 1060 cN/dtex, and most preferably at least 1235 cN/dtex.
  • the strength is preferably at least 31 cN/dtex, more preferably at least 33 cN/dtex, and most preferably at least 35 cN/dtex.
  • the fibre according to the invention has a tensile strength of at least 26 cN/dtex, a modulus of at least 700 cN/dtex, a solvent content of 0.05 - 2 wt . % and a creep of at most 20%, more preferably at most 15%/h, even more preferably at most 10%/h and most preferably at most 5%.
  • a low creep is favourable in particular for use in ropes.
  • the creep can be reduced further.
  • the creep then is at most 10% and more preferably at most 5%.
  • Solvent is here and hereinafter understood to be a substance that is capable of dissolving the polyolefin in question.
  • Suitable solvents for polyolefins are known to one skilled in the art. They can, for example, be chosen from the 'Polymer Handbook' by J. Brandrup and E.H. Immergut , third edition, chapter VII, pages 379 - 402.
  • suitable solvents for polyolefin, in particular for polyethylene are, separately or in combination: decalin, tetralin, toluene, lower n-alkanes such as hexane, (para- ) xylene , paraffin oil, squalane, mineral oil, paraffin wax, cyclooctane.
  • the solvent is most preferably paraffin oil or decalin.
  • the solvent is a non-volatile solvent, such as paraffin oil.
  • a non-volatile solvent such as paraffin oil.
  • a nonvolatile solvent is understood to be a solvent that virtually does not evaporate at a temperature below the melting temperature of the polyolefin.
  • the fibre according to the invention contains 0.05 - 5 wt . % of a solvent for polyolefin.
  • Solvent contents below 0.05 wt . % have no or hardly any effect. Contents higher than 5 wt . % have the disadvantage that they no longer essentially contribute to the improvement m, or even impair, the anti- ballistic properties.
  • the SEA increases with the solvent content up to a certain optimum solvent content, at which the contribution to the energy absorption no longer compensates for the increase m areal density and above which the SEA drops again.
  • the solvent content is preferably chosen with a view to obtaining the highest possible anti-ballistic quality. The optimum solvent content also depends on the fibre configuration, the quality of the solvent chosen, and the compression conditions.
  • the solvent content m the fibre is preferably from 0.1 to 3 wt . % , more preferably 0.2 - 2 wt . % , even more preferably 0.2 - 1.2 wt.%, and most preferably 0.3 - 1.0 wt . % .
  • Such low solvent contents are preferably used for good solvents, m particular solvents having a chi-parameter lower than 0.5, and for use in uni-directional composites.
  • the solvent content of the fibres can be determined in a known way, for example directly by means of infrared techniques, C13 NMR, or indirectly by solvent removal, for example by extraction or head-space chromatography or combinations of said techniques.
  • the fibre according to the invention can be prepared by contacting a highly oriented "dry" polyolefin fibre with a solvent for the polyolefin, with the fibre taking up 0.05 - 5 wt.% of the solvent.
  • the highly oriented "dry" polyolefin fibre may have been prepared m a known way from the polyolefin polymer, for example by gel spinning (Smith and Lemstra) , by solid phase processing of virgin reactor powder (Chanzy and Smith) , by extrusion from the melt (Ward) or by extrusion from powder recrystallized from solution (Kanamoto) with one or more drawing steps to increase the orientation.
  • the fibre is prepared directly in a gel spinning process.
  • the invention also relates to a process for the preparation of a highly oriented polyolefin fibre according to the invention comprising: forming a solution of a polyolefin in a solvent, forming a gel fibre by extruding this solution through one or more spinning apertures and subsequently cooling it to obtain a gel fibre, removing the solvent from the gel fibre and drawing the fibre in one or more steps.
  • a process is known from EP-A-0 , 205 , 960.
  • this process is adapted in that not all of the solvent is removed from the gel fibre resulting, after one or more drawing steps, in the formation of a solvent containing precursor which is subsequently, at a temperature above the equilibrium melting temperature of the polyolefin, drawn to obtain the highly oriented polyolefin fibre containing 0.05 to 5 wt.% of solvent.
  • An advantage of the process according to the invention is that fewer steps are needed for the preparation of the fibre and that the fibre obtained by this process has better anti-ballistic properties than a fibre of comparable strength and modulus to which a similar amount of solvent has been added in another manner.
  • a further advantage of the process according to the invention is that less fibre breakage occurs during drawing of the solvent- containing precursor fibre to a highly oriented fibre, at otherwise unchanged conditions. As a result, there are fewer production stops and a higher productivity can be achieved.
  • the precursor fibre may have been formed in a single step by simultaneous drawing and solvent removal or by separate solvent removal and drawing steps.
  • the solvent content in the precursor fibre is chosen so that the end product, the highly oriented polyolefin fibre, contains the desired amount of solvent, between 0.05 and 5 wt.%, after drawing. It is possible that part of the solvent is removed during the last drawing step.
  • a non-volatile solvent is used, with the solvent content during drawing of the precursor fibre in the last drawing step being virtually constant. This has the advantage of better drawing process control, resulting in better drawability .
  • the solvent in the highly oriented polyolefin fibre is the same as the solvent of the solution from which spinning takes place.
  • the solvent content of the precursor fibre can be set by incomplete solvent removal , for example by shortening the evaporation or extraction time or by influencing the evaporation or extraction rate.
  • the solvent substantially consists of a mixture of a first solvent (A) and a second solvent (B) , with (A) being removed and (B) remaining in the fibre.
  • the physico-chemical properties of these solvents (A) and (B) are so different that the solvent removal technique employed results in removal of (A) while solvent (B) substantially remains in the fibres.
  • the advantage of this embodiment is that the amount of solvent (B) in the precursor fibre can be set directly and more accurately through the choice of the spinning solvent composition, without major changes in the other process parameters. In the light of the aim of the invention it is not necessary for the amount of (B) present in the solution during removal of (A) and/or drawing to remain completely in the fibre, but for process control purposes it is advantageous if the full amount of (B) remains in the fibre, at any rate during the removal of (A) , so as to prevent contamination of the process.
  • (B) preferably almost entirely remains in the fibre also during drawing. There is no need for (A) to be fully removed, but for process control reasons (A) is preferably fully removed.
  • the content of (A) in the fibre is not higher than 0.5 wt.%, preferably lower than 0.3 wt.%, more preferably lower than 0.2 wt.%, and most preferably lower than 0.1 wt.%.
  • (B) has a higher boiling point than (A) and (A) is removed by evaporation at a temperature at which no or hardly any evaporation of (B) takes place.
  • the boiling temperature of (B) is chosen so that no or hardly any evaporation of (B) takes place at the drawing temperature, either.
  • This has the advantage that drawing is better controlled since the fibre composition does not change during drawing and since the fibre is not cooled by withdrawal of the heat of solvent evaporation.
  • (B) is a non-volatile paraffin in the process and (A) a volatile solvent, preferably decalin.
  • a volatile solvent preferably decalin.
  • (B) has a higher melting temperature than (A) and (A) is removed by extraction at a temperature at which no or hardly any extraction of (B) takes place.
  • (B) then is a paraffin wax and (A) paraffin oil.
  • the solvent-containing precursor fibre is drawn to a highly oriented polyolefin fibre at a temperature above approximately the equilibrium melting temperature of the polyolefin.
  • the equilibrium melting temperature of the polyolefin is understood to be the peak temperature of the melting curve of the polyolefin powder, measured using a DSC at a heating-up rate of 10 °C a minute. For polyethylene fibres this is preferably above about 140 °C.
  • the drawing temperature is not chosen so high that effective drawing can no longer take place.
  • the drawing temperature is between 145 and 160 °C and the solvent content of the precursor fibre during the last drawing step is everywhere between 0.05 and 5 wt.%. This has the advantage of a good productivity in combination with a very good strength and modulus.
  • the invention also relates to a highly oriented polyolefin fibre obtainable by the process described above. This fibre has better anti-ballistic properties than a fibre with otherwise comparable properties to which a similar amount of solvent has been added in a different way.
  • the invention also relates to the use of highly oriented polyolefin fibres according to the invention for the manufacture of ropes and to ropes containing highly oriented polyolefin fibres according to the invention.
  • the solvent -containing fibres can more easily be processed into ropes.
  • the ropes are more compact, their feel is less woolly, and yet their flexibility is good. It has been found that the rope is also stronger.
  • the invention also relates to the use of the highly oriented fibres according to the invention as described above for the manufacture of anti- ballistic shaped articles.
  • the advantage of the use of these fibres is in particular that the customary process for the preparation of these shaped articles can be used without essential modifications. Such processes are disclosed, for example, in WO97/00766 and WO95/00318.
  • a major added advantage is that, for example in contrast with fibres or fibre layers that are wetted afterwards, the process equipment is not fouled with solvent .
  • the invention also relates to anti- ballistic shaped articles that contain highly oriented polyolefin fibres according to the invention. Compared with shaped articles on the basis of solvent-free fibres, these shaped articles have a higher anti- ballistic protection level at a comparable areal density.
  • the anti-ballistic shaped article according to the invention has a specific energy absorption (SEA) when hit by an AK47 MSC point of at least 115 J/kg/m 2 , preferably more than 120 J/kg/m 2 , even more preferably more than 135 J/kg/m 2 , and most preferably more than 145 J/kg/m 2 .
  • SEA specific energy absorption
  • Woven fabric Comparative experiment A SK76 Dyneema yarn without paraffin was woven into a simple fabric with 8 yarns/cm in the warp and the weft. The areal density of the woven fabric was 318 gr/m 2 . Twenty layers of this fabric were compressed to form flat panels with 60 micron Stamylex (LLDPE) film between each layer. The pressure was 10 bar, the temperature was 125 °C and the compression time was 20 min. After this compression time the panels were cooled while the pressure was maintained. The V50 was determined according to the Stanag 2920 standard test using 17 grain FSP. The V50 was 532 m/s, corresponding to an energy absorption (SEA) of 21.4 J/kg/m 2 .
  • SEA energy absorption
  • the properties of the SK76 yarn employed are :
  • SK76 Dyneema yarn with a particular paraffin content was prepared by gel spinning under the conditions usually used for SK76 yarns, from a solution of UHMWPE and a volatile solvent to which a particular amount of paraffin had been added.
  • D ⁇ npoundig paraffin from Merck having a dynamic viscosity of 25-80 MPa/ . sec and a density of 0.818-0.875 gr/cm 3 was used as the paraffin.
  • the specified paraffin content was calculated on the basis of the percentage of paraffin added to the solvent at complete retention of the paraffin in the fibre during the fibre production process.
  • a panel was produced and tested according to Comparative Experiment A, except that SK76 yarns containing approximately 0.8% paraffin solvent were used. The strength, modulus and creep of the yarn we e the same as those of the solvent -free yarn. The areal density of the woven fabric was 302 g/m 2 . The resulting V50 of the solvent-containing panel was 560 m/s, corresponding to an energy absorption of 24 J/kg/m2
  • Dyneema SK75 yarns without solvent were woven to form a twill 3/1 style fabric with 3.75 yarns/cm in the warp and the weft and an AD of 276 g/m 2 .22 Layers of this fabric were compressed to form panels with 30 micron Stamylex (LLDPE) film between the layers and tested in a way as specified in Example 4.
  • the V50 was 534 m/s, corresponding to an SEA of 23.8 J/kg/m 2 .
  • a twill woven fabric as in Comparative Experiment B was produced, only now using SK75 fibres containing approximately 2000 ppm decalin. Although the yarn properties were the same, the V50 of the panels was higher, namely 600 m/s, corresponding to an SEA of 28 J/kg/m 2 .
  • UD composite Comparative Experiment C and Examples 3-7 SK76 and SK75 Dyneema yarns with different concentrations of paraffin, produced as described in Example 1, were processed to form monolayers of unidirectionally oriented yarns bound in a Kraton matrix (isopropene-styrene copolymer from Shell) .
  • Four monolayers were formed into a UD stack in which the fibre direction in each monolayer was at an angle of 90 degrees with respect to the fibre direction in the neighbouring layer.
  • 75 of such UD stacks were compressed to form an anti-ballistic shaped article at a temperature of 125 °C and a pressure of 165 bar for 35 minutes.
  • the shaped article was cooled with water while the pressure was maintained.
  • the shaped articles were tested according to the Stanag 2920 standard using AK47 MSC rounds. The yarn properties had not been affected by the addition of the paraffin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
PCT/NL1999/000099 1998-10-28 1999-02-24 Highly oriented polyolefin fibre WO2000024952A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU27489/99A AU2748999A (en) 1998-10-28 1999-02-24 Highly oriented polyolefin fibre
EP99907960A EP1137828B2 (en) 1998-10-28 1999-02-24 Highly oriented polyolefin fibre
DE69904361T DE69904361T3 (de) 1998-10-28 1999-02-24 Hochorientierte polyolefinfaser
CA002348518A CA2348518C (en) 1998-10-28 1999-02-24 Highly oriented polyolefin fibre
IL142789A IL142789A (en) 1998-10-28 2001-04-24 High directional polyolefin fibers
US09/844,247 US6723267B2 (en) 1998-10-28 2001-04-30 Process of making highly oriented polyolefin fiber
HK02103857.4A HK1042121B (zh) 1998-10-28 2002-05-22 高度取向聚烯烴纖維及其製備方法和用途
US10/781,915 US6916533B2 (en) 1998-10-28 2004-02-20 Highly oriented polyolefin fibre
IL172893A IL172893A (en) 1998-10-28 2005-12-29 Process of making highly oriented polyolefin fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL1010413 1998-10-28
NL1010413A NL1010413C1 (nl) 1998-10-28 1998-10-28 Hooggeoriënteerde polyolefinevezel.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/844,247 Continuation US6723267B2 (en) 1998-10-28 2001-04-30 Process of making highly oriented polyolefin fiber

Publications (1)

Publication Number Publication Date
WO2000024952A1 true WO2000024952A1 (en) 2000-05-04

Family

ID=19768039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NL1999/000099 WO2000024952A1 (en) 1998-10-28 1999-02-24 Highly oriented polyolefin fibre

Country Status (11)

Country Link
EP (2) EP1256641A3 (es)
CN (1) CN1122124C (es)
AU (1) AU2748999A (es)
CA (1) CA2348518C (es)
DE (1) DE69904361T3 (es)
ES (1) ES2189394T5 (es)
HK (1) HK1042121B (es)
IL (2) IL142789A (es)
NL (1) NL1010413C1 (es)
TW (1) TW444074B (es)
WO (1) WO2000024952A1 (es)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1647615A1 (en) * 2004-10-14 2006-04-19 DSM IP Assets B.V. Process for making a monofilament-like product
WO2006124054A2 (en) * 2004-09-03 2006-11-23 Honeywell International Inc. Drawn gel-spun polyethylene yarns and process for drawing
WO2008141406A1 (en) * 2007-05-24 2008-11-27 Braskem S. A. Process for the preparation of polymer yarns from ultra high molecular weight homopolymers or copolymers, polymer yarns, molded polymer parts, and the use of polymer yarns
EP2063004A1 (en) * 2006-04-07 2009-05-27 Dsm Ip B.V. Polyethylene fiber and method for production thereof
US8070998B2 (en) 2004-09-03 2011-12-06 Honeywell International Inc. Process for drawing gel-spun polyethylene yarns

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8709562B2 (en) * 2007-08-21 2014-04-29 Honeywell International, Inc. Hybrid fiber constructions to mitigate creep in composites
WO2009129175A1 (en) 2008-04-14 2009-10-22 Dow Corning Corporation Emulsions of boron crosslinked organopolysiloxanes
US7964518B1 (en) * 2010-04-19 2011-06-21 Honeywell International Inc. Enhanced ballistic performance of polymer fibers
KR20140006954A (ko) 2011-02-24 2014-01-16 디에스엠 아이피 어셋츠 비.브이. 중합체성 연신된 물체를 인발하기 위한 다단계 인발 방법
CN108570172B (zh) * 2017-03-14 2020-01-31 中国科学院化学研究所 一种含有高沸点溶剂的超高分子量聚烯烃溶胀物及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2042414A (en) * 1979-02-08 1980-09-24 Stamicarbon Dry-spinning polymer filaments
EP0064167A1 (en) * 1981-04-30 1982-11-10 Allied Corporation Process for producing high tenacity, high modulus crystalline thermoplastic article and novel product fibers
US5213745A (en) * 1991-12-09 1993-05-25 Allied-Signal Inc. Method for removal of spinning solvent from spun fiber
WO1993012276A1 (en) * 1991-12-09 1993-06-24 Allied-Signal Inc. Method for removal of spinning solvent from spun fiber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60151311A (ja) 1984-01-13 1985-08-09 Toyobo Co Ltd 流動パラフインを含有するポリエチレン繊維
NL1010399C1 (nl) 1998-10-26 2000-04-27 Dsm Nv Werkwijze voor het vervaardigen van een vormdeel.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2042414A (en) * 1979-02-08 1980-09-24 Stamicarbon Dry-spinning polymer filaments
EP0064167A1 (en) * 1981-04-30 1982-11-10 Allied Corporation Process for producing high tenacity, high modulus crystalline thermoplastic article and novel product fibers
US5213745A (en) * 1991-12-09 1993-05-25 Allied-Signal Inc. Method for removal of spinning solvent from spun fiber
WO1993012276A1 (en) * 1991-12-09 1993-06-24 Allied-Signal Inc. Method for removal of spinning solvent from spun fiber

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006124054A2 (en) * 2004-09-03 2006-11-23 Honeywell International Inc. Drawn gel-spun polyethylene yarns and process for drawing
WO2006124054A3 (en) * 2004-09-03 2007-01-04 Honeywell Int Inc Drawn gel-spun polyethylene yarns and process for drawing
EP2028295A1 (en) * 2004-09-03 2009-02-25 Honeywell International Inc. Polyethylene yarns
EP2028294A1 (en) * 2004-09-03 2009-02-25 Honeywell International Inc. Polyethylene
EP2028293A1 (en) * 2004-09-03 2009-02-25 Honeywell International Inc. Polyethylene yarns
US8070998B2 (en) 2004-09-03 2011-12-06 Honeywell International Inc. Process for drawing gel-spun polyethylene yarns
EP1647615A1 (en) * 2004-10-14 2006-04-19 DSM IP Assets B.V. Process for making a monofilament-like product
JP4834859B2 (ja) * 2004-10-14 2011-12-14 ディーエスエム アイピー アセッツ ビー.ブイ. モノフィラメント様製品の製造方法
EP2063004A1 (en) * 2006-04-07 2009-05-27 Dsm Ip B.V. Polyethylene fiber and method for production thereof
EP2063004A4 (en) * 2006-04-07 2009-12-02 Dsm Ip B V POLYETHYLENE FIBER AND PROCESS FOR PRODUCING THE SAME
WO2008141406A1 (en) * 2007-05-24 2008-11-27 Braskem S. A. Process for the preparation of polymer yarns from ultra high molecular weight homopolymers or copolymers, polymer yarns, molded polymer parts, and the use of polymer yarns

Also Published As

Publication number Publication date
CN1122124C (zh) 2003-09-24
EP1137828B2 (en) 2005-11-23
DE69904361T2 (de) 2003-10-30
EP1256641A3 (en) 2003-03-26
NL1010413C1 (nl) 2000-05-01
CN1332812A (zh) 2002-01-23
DE69904361T3 (de) 2007-01-18
CA2348518C (en) 2007-07-03
TW444074B (en) 2001-07-01
EP1137828B1 (en) 2002-12-04
HK1042121A1 (en) 2002-08-02
ES2189394T3 (es) 2003-07-01
HK1042121B (zh) 2004-06-25
DE69904361D1 (de) 2003-01-16
IL142789A (en) 2006-04-10
ES2189394T5 (es) 2006-05-01
AU2748999A (en) 2000-05-15
EP1137828A1 (en) 2001-10-04
IL172893A (en) 2008-03-20
CA2348518A1 (en) 2000-05-04
EP1256641A2 (en) 2002-11-13

Similar Documents

Publication Publication Date Title
US6723267B2 (en) Process of making highly oriented polyolefin fiber
US11505879B2 (en) High-performance polyethylene multifilament yarn
US7811498B2 (en) Process for the production of a shaped article
IL172893A (en) Process of making highly oriented polyolefin fiber
CA2864551C (en) High tenacity high modulus uhmwpe fiber and the process of making

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99815150.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BA BB BG BR CA CN CU CZ EE GD GE HR HU ID IL IN IS JP KP KR LC LK LR LT LV MG MK MN MX NO NZ PL RO SG SI SK SL TR TT UA US UZ VN YU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 142789

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2348518

Country of ref document: CA

Ref document number: 2348518

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09844247

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999907960

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999907960

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999907960

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 172893

Country of ref document: IL