WO2000021596A1 - Appareil d'assistance respiratoire comportant plusieurs sources de gaz respiratoire agencees en serie - Google Patents

Appareil d'assistance respiratoire comportant plusieurs sources de gaz respiratoire agencees en serie Download PDF

Info

Publication number
WO2000021596A1
WO2000021596A1 PCT/FR1999/002448 FR9902448W WO0021596A1 WO 2000021596 A1 WO2000021596 A1 WO 2000021596A1 FR 9902448 W FR9902448 W FR 9902448W WO 0021596 A1 WO0021596 A1 WO 0021596A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
gas
inspiratory
respiratory
respiratory gas
Prior art date
Application number
PCT/FR1999/002448
Other languages
English (en)
Inventor
Béatrice BOSSART
Enrique Vega
Laurent Preveyraud
Original Assignee
Taema
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taema filed Critical Taema
Priority to EP99947542A priority Critical patent/EP1121169A1/fr
Priority to JP2000575568A priority patent/JP2002527152A/ja
Priority to AU60951/99A priority patent/AU6095199A/en
Publication of WO2000021596A1 publication Critical patent/WO2000021596A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0066Blowers or centrifugal pumps
    • A61M16/0069Blowers or centrifugal pumps the speed thereof being controlled by respiratory parameters, e.g. by inhalation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/206Capsule valves, e.g. mushroom, membrane valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/208Non-controlled one-way valves, e.g. exhalation, check, pop-off non-rebreathing valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • A61M2016/0018Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
    • A61M2016/0021Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical with a proportional output signal, e.g. from a thermistor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0039Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the inspiratory circuit

Definitions

  • the present invention relates to a respiratory assistance device, commonly called a ventilator, which can be used in the context of respiratory assistance at home or in a hospital environment.
  • respiratory assistance consists of ventilating a patient using a pressurized gas, for example air or oxygen-enriched air, that is to say to apply during the inspiratory phase. , usually initiated by the patient, a constant positive pressure in the "patient" circuit of a respiratory system.
  • a pressurized gas for example air or oxygen-enriched air
  • the "patient” circuit or inspiratory branch usually consists of channeling elements making it possible to connect the patient's airways with the source of gas under pressure; the patient circuit therefore includes elements, such as the respiratory tract (s), a mask or breathing goggles, a tracheostomy probe.
  • the pressure in the patient circuit varies depending on the respiratory phase: inspiratory phase or expiratory phase.
  • a gas flow source such as, for example, a turbine or a compressor
  • PEEP pressure given positive expiratory
  • Exhalation of exhaled gases is usually carried out through either one (or more) exhalation valve fitted on the patient circuit, or through holes or gills fitted in the respiratory mask.
  • Respiratory devices operating on this principle are commonly called two-level respiratory devices.
  • Respiratory assistance devices with two pressure levels fitted with one or more exhalation valves are therefore preferred.
  • EP-B-0317417 which describes a breathing assistance device in which the patient circuit includes an expiration valve with pneumatic control.
  • the control input of this valve is subjected to the pressure of a pressurized flow source, which closes the exhalation valve and makes it possible to tightly connect the patient circuit with said pressurized gas flow source.
  • control electronics completely interrupt the operation of the pressurized flow source, whose structure is such that its outlet orifice is then reduced to atmospheric pressure, which pressure is applied to the exhalation valve, allowing it to open.
  • EP-A-0425092 relates to a breathing aid device comprising, in place of the exhalation valve, a permanent, calibrated leak orifice, while the pressure of the pressure is adjusted at two different levels a flow source, depending on whether you are in the inspiration or expiration phase.
  • WO-A-94/06499 further describes a breathing aid device comprising a patient circuit having a inspiratory branch connected to a source of pressurized inspiratory flow and an expiratory branch, in which is installed an exhalation valve controlled to be closed during inspiration.
  • EP-A-839 545 describes a respiratory assistance device comprising an inspiratory branch permanently connected, at its upstream end, to a first source of flow of gas under pressure and, at its downstream end, to the respiratory tract of a user, at least first and second expiratory valves arranged on said respiratory branch controlled to be closed during the inspiratory phase, a detection means detecting, near the downstream end of the inspiratory branch, l respiratory activity of the user and transmitting respiratory activity data to control means, said control means controlling the first source of gas flow so as to deliver, in the inspiratory branch, a flow of gas with non-flow null and appreciably constant throughout the expiratory phase.
  • the control means control the first source of gas flow so as to deliver, in the inspiratory branch, a gas flow whose flow, during an expiratory phase, is substantially equal to the flow delivered at the end of the previous inspiratory phase.
  • a second flow source not connected to the first flow source and controlled by said control means, makes it possible to control the opening of the pneumatic valves during the expiratory phase.
  • the electro-pneumatic elements used to generate the flows or pressures of respiratory gas are usually compressors, turbines or motorized bellows.
  • motorized bellows are not reliable sources of pressure, in particular because of their poor ability to compensate for gas leaks occurring on the patient circuit.
  • compressors are, in general, of a size and an electrical consumption incompatible with the compactness and the autonomy expected from such a device, in particular when this device is intended for use at home or to be placed on a wheelchair or the like.
  • the object of the present invention is therefore to propose a respiratory assistance device not presenting the abovementioned problems, namely a device capable of compensating for leaks, of maintaining a flow rate.
  • a respiratory assistance device not presenting the abovementioned problems, namely a device capable of compensating for leaks, of maintaining a flow rate.
  • high respiratory gas even in the presence of a significant back pressure, which allows to maintain a non-zero ventilation of the patient even in case of failure of the main source of respiratory gas and / or which has a compactness and / or a compatible autonomy both with hospital and home use.
  • the present invention therefore relates to a respiratory assistance device comprising:
  • At least one inspiratory branch connecting means for supplying respiratory gas to the respiratory tract of a user said means for supplying respiratory gas comprise at least a first source of respiratory gas and at least a second source of respiratory gas, said first and second sources being pneumatically connected in series during at least part of at least one inspiratory phase,
  • the inspiratory branch comprising a secondary valve and an expiratory valve, the opening and closing of which are ensured by pneumatic balloons or membranes
  • - switching means comprising two solenoid valves EV1, EV2 controlled by control means 16 making it possible to connect , in a substantially sealed manner, said first and second sources of respiratory gas, pneumatically connected in series, to said inspiratory branch and to make said inspiratory branch pneumatically sealed, during at least part of at least one inspiratory phase, by acting on said pneumatic balloons or said membranes of said secondary valve and expiratory valve to allow supply of said inspiratory branch with respiratory gas, and
  • an annex branch comprising gas conduits and said two solenoid valves EV1, EV2 which are controlled by the control means.
  • Pulmatically connected or connected in series means that one of the two sources of respiratory gas delivers pressurized breathing gas to or from the other source of breathing gas.
  • the device of the invention may include one or more of the following characteristics:
  • the first and second sources of respiratory gas are motorized, preferably motorized turbines.
  • the first and second sources of respiratory gas are turbines with low inertia, for example turbines having an adjustable rotation speed of between 5,000 and 25,000 rpm and / or a turbine diameter of less than 100 mm, preferably less than 80 mm, as described for example in document FR-A-2663547.
  • the electronic control means are of analog and / or digital type, for example one or more microprocessors or microcontrollers.
  • Said piloting means control said first and second sources of respiratory gas independently of one another.
  • auxiliary gas source connected to said inspiratory branch via at least one auxiliary circuit comprising at least one auxiliary valve, preferably, said auxiliary valve is controlled by said control means, so as to periodically or continuously inject an auxiliary gas into said inspiratory branch conveying respiratory gas, advantageously, a non-return valve or similar means is arranged so as to protect the first and second sources of respiratory gas by avoiding any untimely rise of auxiliary gas to said first and second gas sources;
  • - It further comprises at least one pressure sensor and / or at least one flow sensor arranged on said inspiratory branch and cooperating with said control means. it further comprises a pressure balancing line or branch. - the pressure balancing line or bypass tends to balance the pressures prevailing: . either, on the one hand, in the fourth conduit connecting the inspiratory branch and the annex branch and, on the other hand, in the third conduit connecting the portion of inspiratory branch connecting the first and second sources of respiratory gas, one to the other, and the second conduit;
  • the invention further relates to a method of controlling a respiratory assistance device according to the invention for the supply of a respiratory gas or gas mixture to the upper airways of a user, said device respiratory assistance including:
  • At least one inspiratory branch connecting means for supplying respiratory gas to the respiratory tract of a user means for supplying respiratory gas comprising at least first and second sources of respiratory gas arranged in series, in particular motorized turbines ,
  • - piloting means in which at least part of at least one inspiratory phase is supplied, at least the inspiratory branch with respiratory gas delivered by said first and second sources of gas, said first and second sources of gas being pneumatically connected in series during at least part of at least one inspiratory phase.
  • the method of the invention may include one or more of the following characteristics:
  • - we adjust or maintain a breathing gas flow in the inspiratory branch less than or equal to 200 l.mi and / or we adjust or maintain a breathing gas pressure in the inspiratory branch less than or equal to 12000 Pa, preferably lower or equal to 8000 Pa, in acting on the first and / or second sources of respiratory gas arranged in series.
  • the respiratory gas is chosen from gas mixtures containing nitrogen and at least 15% oxygen, in particular air or air enriched with oxygen, optionally supplemented with one or more annex gases, in particular nitrogen monoxide (NO), helium, carbon dioxide or an anesthetic gas.
  • nitrogen monoxide NO
  • helium helium
  • carbon dioxide or an anesthetic gas.
  • said first and second sources of respiratory gas are controlled independently of one another.
  • FIG. 1 represents the diagram of a first embodiment of a respiratory assistance device according to the present invention, which comprises a first and a second source of respiratory gas, which here are two turbines T1 and T2 arranged in series and delivering a respiratory assistance gas, for example compressed air, into the inspiratory branch 7 or patient circuit, which inspiratory branch 7 routes the respiratory assistance gas to the upper airways of a patient P 1 (not shown).
  • a respiratory assistance gas for example compressed air
  • connection between the inspiratory branch or patient circuit 7 and the patient P ' is carried out by means of a nasal and / or buccal piece, such as a mask 14 or the like.
  • the inspiratory branch 7 comprises two valves 10 and 11, namely a secondary valve 10 and an exhalation valve 11, the opening and closing of which are controlled by pneumatic balloons 12 and 13 or the like, for example membranes.
  • the flow rate D and pressure P sensors are arranged on said inspiratory branch 7 and are connected, via the links 50 and 51, respectively, to electronic control means 16 of analog and / or digital type, so as to supply these control means 16 for flow and / or pressure information, respectively.
  • this assistance device also includes an annex branch 17 comprising first, second, third, fourth and fifth gas conduits 1 to 5, respectively, and two solenoid valves EV1 and EV2. As seen in the figures:
  • the second conduit 2 corresponds to the portion of the annex branch 17 located between the solenoid valves EVl and EV2, the fourth conduit 4 connects the inspiratory branch 7, from a site located between the second turbine T2 and the valve 10, to branch annex 17, via the EV2 solenoid valve,
  • the third conduit 3 connects the inspiratory branch portion 7 'connecting the first and second sources Tl and T2 of respiratory gas, one to the other, to said second conduit 2 via the solenoid valve EVl.
  • solenoid valves EV1 and EV2 are also controlled, via links 55 and 56, respectively, by the control means 16, which control means 16 also control, via links 54 and 53, the flow rate and / or the pressure of the gas delivered by each of the turbines Tl and T2, respectively.
  • the turbines Tl and T2 are regulated in flow rate and / or in pressure as a function of the ventilation mode selected and on the basis of the flow rate and / or pressure values measured by the flow sensor D and / or the pressure sensor. P.
  • control means 16 control the solenoid valve EVl so as to connect the third and second conduits 3 and 2, which implies, on the one hand, that the gas delivered by the turbine Tl cannot escape to the atmosphere via the first conduit 1 and, on the other hand, that the third conduit 3 and the second conduit 2 are under pressure; however, the second conduit 2 does not communicate with the annex branch 17.
  • control means 16 also control the electrovalve EV2 so as to put the fourth conduit 4 and the branch 17 into communication, and therefore also the patient circuit or inspiratory branch 7 and the branch 17 via said fourth conduit 4.
  • the pressure of the patient circuit 7 delivered by T1 and T2, which are connected in series, is then transmitted to the balloons 12 and 13 of the secondary 10 and expiratory 11 valves, respectively, and this, by by means of said fourth conduit 4 and of annex branch 17, which has the effect of inflating the balloons 12 and 13 and of closing these valves 10 and
  • the pressurized breathing gas is then conveyed by the inspiratory branch 7 to the patient P ', since the inspiratory branch 7 is closed in a sealed manner, since the valves 10 and 11 are closed, thus preventing escape to the atmosphere, by said valves 10 and 11, of the gas carried by inspiratory branch 7.
  • an auxiliary gas source 20 for example an oxygen source, is connected to the inspiratory branch 7 by means of an auxiliary circuit 9 comprising an electrovalve EV3 and a non-return valve 15.
  • the EV3 valve or auxiliary valve is controlled by said control means 16, via a link 52, so as to periodically inject an auxiliary gas, for example oxygen, into said inspiratory branch 7 conveying the respiratory gas to the patient P '.
  • an auxiliary gas for example oxygen
  • the turbines Tl and T2 are regulated in flow rate by the control means 16, that is to say that the flow rate of each of the two turbines Tl and T2 adapts to the value of total desired flow from which the flow of oxygen injected by the auxiliary source is subtracted 20.
  • the valve EV3 of the auxiliary circuit 9 is controlled by the means pilot 16 so as to stop or limit the supply of auxiliary gas and thus avoid overpressures in the inspiratory branch 7.
  • the EV1 solenoid valve is controlled, via the link 55, by the control means 16 so as to connect the third and second conduits 3 and 2, and the EV2 solenoid valve is controlled, via the link. 56, so as to connect the second conduit 2 and the annex branch 17.
  • the turbine Tl makes it possible to maintain, via the annex branch 17, a determined pressure in the balloons 12 and 13 of the secondary 10 and expiratory valves 11, respectively, so as to reduce the gas leakage through these valves 10 and 11, and thus maintain the pressure of the inspiratory branch 7 at the desired value during expiration, that is to say at a positive expiratory pressure or PEP.
  • the control voltage of the turbine T2 is moreover kept substantially constant and a flow of respiratory gas escapes through the valves 10 and 11, respectively.
  • this auxiliary gas escapes during the expiration by the valve 11 arranged, preferably, near the interface 14, for example a breathing mask, or a tracheostomy or intubation probe.
  • a non-return valve 31 or similar means is arranged downstream of the inspiratory valve 10, as shown diagrammatically in FIG. 1. If the desired PEEP value is zero, then 1 • EVl solenoid valve is controlled by the control means 16 so as to connect the second and first conduits 2 and 1, and the solenoid valve EV2 is controlled in order to connect the second conduit 2 and the branch branch 17 so as to escape from the atmosphere the gas under pressure contained in the annex branch 17 and, thereby, obtain complete deflation of the balloons 12 and 13 of the secondary 10 and expiratory valves 11, respectively, which cancels or reduces the pressure prevailing in the inspiratory branch 7, 1 • excess pressure, that is to say gas, being evacuated to the atmosphere by said valves 10 and 11.
  • turbines T1 and T2 are controlled so as to maintain their speed at a given value making it possible to reduce their response time at the start of the next inspiration phase.
  • the gas flow delivered by these turbines Tl and T2 escapes through the valves 10 and 11, and the oxygen flow coming from the auxiliary source 20 possibly present escapes through the valve 11.
  • the balancing line 5 allows to achieve an equalization of the respective speeds of the turbines T1 and T2.
  • the two turbines Tl and T2 have, permanently, substantially the same rotational speeds so that they age and wear out slower otherwise, if for example the second turbine brakes the first turbine by turning less quickly it, the wear of the first turbine will be faster than that of the second turbine.
  • Figure 2 shows schematically an alternative embodiment of the device according to the invention almost identical to that of Figure 1, with the exception that, as shown in the FIG. 2, the balancing line or branch 5 intended to balance the pressures prevailing, on the one hand, in the fourth conduit 4 connecting the inspiratory branch 7 and adjoining branch 17 and, on the other hand, in the third conduit 3 connecting the portion 7 ′ of the inspiratory branch 7 connecting the first and second sources T1, T2 of respiratory gas, one to the other, and in the second conduit 2.
  • the balancing line or branch 5 intended to balance the pressures prevailing, on the one hand, in the fourth conduit 4 connecting the inspiratory branch 7 and adjoining branch 17 and, on the other hand, in the third conduit 3 connecting the portion 7 ′ of the inspiratory branch 7 connecting the first and second sources T1, T2 of respiratory gas, one to the other, and in the second conduit 2.
  • a restriction 30 is added, for example a calibrated orifice, on the conduit 3 in order to better control the pressure of the balloons 12 and 13 when it is desired to regulate a non-zero pressure in the circuit 7 , upon expiration.
  • the bypass line 5 therefore retains exactly the same function in the two embodiments ( Figures 1 and 2) but its position according to Figure 2 allows better control of the pressure in the balloons 12 and 13 during expiration, in all cases, while always equalizing the speeds of the turbines and thus avoiding their premature wear.
  • a device according to the present invention has an indisputable advantage compared to conventional devices, given that, in the event of failure of one of the two flow sources Tl or T2, the remaining flow source ensures ventilation at patient's minimum minimum.
  • the ventilation device of the invention can be used to treat respiratory insufficiencies of any type, in particular those resulting from restrictive diseases, in particular neuromuscular, such as myopathy, or obstructive, such as chronic obstructive pulmonary disease or emphysema.

Landscapes

  • Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Emergency Medicine (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

Dispositif d'assistance respiratoire comprenant une branche inspiratoire (7) reliant des turbines motorisées (T1, T2) aux voies respiratoires d'un utilisateur. Les turbines (T1, T2) sont reliées pneumatiquement en série pendant les phases inspiratoires de l'utilisateur. La branche inspiratoire (7) comprend une valve secondaire (10) et une valve expiratoire (11) dont l'ouverture et la fermeture sont assurées par des ballonnets pneumatiques (12, 13) ou des membranes. Des moyens de commutation comprenant deux électrovannes (EV1, EV2) commandées par des moyens de pilotage (16) permettent de relier, de manière sensiblement étanche, les turbines à la branche inspiratoire (7), durant les phases inspiratoires, en agissant sur les ballonnets pneumatiques (12, 13) des valves (10, 11) pour permettre une alimentation de la branche inspiratoire (7) en gaz. Une branche annexe (17) comprend des conduits de gaz (1 à 5) et les deux électrovannes (EV1, EV2). Procédé de commande du dispositif.

Description

APPΆPFITT, TTΆSSTSTANΠT: PTCSPTKATOTKE COMPO TΆNT PT.TTSTTCTTRS .qnïT C .q m KA7, PTCSPTPΆTOT T? WF.KΓ.-F.V.R EN .g pT :
La présente invention concerne un dispositif d'assistance respiratoire, communément appelé ventilateur, utilisable dans le cadre d'une assistance respiratoire à domicile ou en milieu hospitalier.
Classiquement, l'assistance respiratoire consiste à ventiler un patient à l'aide d'un gaz sous pression, par exemple de l'air ou de l'air enrichi en oxygène, c'est-à-dire à appliquer pendant la phase inspiratoire, initiée habituellement par le patient, une pression positive constante dans le circuit "patient" d'un appareil respiratoire.
A l'inverse, dans certains cas, c'est le débit de gaz respiratoire qui est maintenu constant, alors que la pression varie.
Le circuit "patient" ou branche inspiratoire est habituellement constitué d'éléments de canalisation permettant de relier les voies aériennes du patient avec la source de gaz sous pression; le circuit patient comprend donc des éléments, tels le ou les conduits respiratoires, un masque ou des lunettes respiratoires, une sonde de trachéotomie.
La pression régnant dans le circuit patient varie en fonction de la phase respiratoire: phase inspiratoire ou phase expiratoire. En effet, durant la phase inspiratoire, le gaz sous pression issu d'une source de débit de gaz, tels, par exemple, une turbine ou un compresseur, est distribué aux voies respiratoires du patient à une pression inspiratoire donnée, alors que durant la phase expiratoire, l'expiration s'effectue à la pression atmosphérique ou à une pression expiratoire positive donnée, encore appelée PEP, en général contrôlée par le ventilateur.
L'échappement des gaz expirés s'effectue habituellement au travers soit d'une (ou plusieurs) valve expiratoire aménagée sur le circuit patient, soit au travers de trous ou d'ouïes aménagés dans le masque respiratoire.
Les dispositifs d'assistance respiratoire fonctionnant sur ce principe sont communément appelés dispositifs d'assistance respiratoire à deux niveaux de pression.
Les dispositifs d'assistance respiratoire à deux niveaux de pression munis d'une ou plusieurs valves expiratoires sont donc préférés.
On peut citer EP-B-0317417, qui décrit un dispositif d'assistance à la respiration dans lequel le circuit patient comprend une valve d'expiration à commande pneumatique. Pendant la phase d'inspiration, l'entrée de commande de cette valve est soumise à la pression d'une source de débit pressurisée, ce qui ferme la valve d'expiration et permet de relier, de manière étanche, le circuit patient avec ladite source de débit de gaz pressurisé. Lorsqu'une diminution significative du débit inspiré est détecté, une électronique de commande interrompt totalement le fonctionnement de la source de débit pressurisé, dont la structure est telle que son orifice de sortie se trouve alors ramené à la pression atmosphérique, laquelle pression est appliquée à la valve d'expiration, lui permettant ainsi de s'ouvrir.
EP-A-0425092 a trait à un dispositif d'aide à la respiration comportant, à la place de la valve d'expiration, un orifice de fuite permanente, calibrée, tandis que l'on règle à deux niveaux différents la pression d'une source de débit, selon qu'on se trouve en phase d'inspiration ou d'expiration.
Le fonctionnement de ce dispositif est donc basé sur une interruption au moins partielle, et généralement totale, de la source de débit de gaz durant la phase expiratoire. WO-A-94/06499 décrit, par ailleurs, un dispositif d'aide à la respiration comprenant un circuit patient ayant une branche inspiratoire reliée à une source de débit inspiratoire pressurisée et une branche expiratoire, dans laquelle est installée une valve d'expiration commandée pour être fermée pendant l'inspiration.
Il en résulte que pour être performants et efficaces, ces dispositifs doivent nécessairement être dotés d'une source de débit de gaz puissante et à faible inertie mécanique. Or, les sources de débit de gaz, actuellement disponibles dans le commerce, qui permettent de répondre à de telles spécifications de puissance et d'inertie, présentent habituellement des inconvénients incompatibles avec une utilisation à domicile et, plus généralement, dans le domaine médical: encombrement excessif, nuisances sonores...
En définitive, les solutions apportées par ces documents n'étant pas satisfaisantes, il a été nécessaire de développer de nouveaux matériels permettant de pallier les problèmes précédemment cités, lesquels ne présenteraient pas les inconvénients de ces dispositifs de l'art antérieur.
Ainsi, EP-A-839545, incorporé ici par références, décrit un dispositif d'assistance respiratoire comprenant une branche inspiratoire reliée en permanence, à son extrémité amont, à une première source de débit de gaz sous pression et, à son extrémité aval, aux voies respiratoires d'un utilisateur, au moins une première et une deuxième valves expiratoires agencées sur ladite branche respiratoire commandées pour être fermées pendant la phase inspiratoire, un moyen de détection détectant, à proximité de l'extrémité aval de la branche inspiratoire, l'activité respiratoire de l'utilisateur et transmettant une donnée d'activité respiratoire à des moyens de pilotage, lesdits moyens de pilotage commandant la première source de débit de gaz de manière à délivrer, dans la branche inspiratoire, un flux de gaz à débit non nul et sensiblement constant pendant toute la phase expiratoire. Les moyens de pilotage commandent la première source de débit de gaz de manière à délivrer, dans la branche inspiratoire, un flux de gaz dont le débit, pendant une phase expiratoire, est sensiblement égal au débit délivré en fin de phase inspiratoire précédente.
En outre, une deuxième source de débit, non reliée à la première source de débit et commandée par lesdits moyens de pilotage, permet de contrôler l'ouverture des valves pneumatiques durant les phase expiratoires.
Cependant, dans certains ventilateurs ou dispositifs d'assistance respiratoire, notamment dans les ventilateurs de type à domicile, les éléments électro-pneumatiques mis en oeuvre pour générer les débits ou les pressions de gaz respiratoire, c'est-à-dire les sources de gaz respiratoire, sont habituellement des compresseurs, des turbines ou des soufflets motorisés.
Or, ceux-ci présentent un certain nombre d' inconvénients . Ainsi, les soufflets motorisés ne sont pas des sources de pression fiables, notamment en raison de leur faible aptitude à compenser les fuites de gaz ayant lieu sur le circuit patient.
En outre, les turbines actuellement disponibles ne permettent pas de maintenir un débit de gaz élevé lorsque la contre-pression est importante ; la valeur de contre-pression maximale dépendant du type de turbine utilisée.
Par ailleurs, les compresseurs sont, en général, d'un encombrement et d'une consommation électrique incompatible avec la compacité et l'autonomie attendue d'un tel appareil, en particulier lorsque cet appareil est destiné à une utilisation à domicile ou à être placé sur un fauteuil roulant ou analogue.
De manière générale, en cas de défaillance de la source de gaz respiratoire, c'est-à-dire du générateur de débit et/ou pression, la ventilation ou assistance respiratoire du patient n'est plus assurée.
Le but de la présente invention est alors de proposer un dispositif d'assistance respiratoire ne présentant pas les problèmes susmentionnés, à savoir un dispositif susceptible de permettre de compenser les fuites, de maintenir un débit de gaz respiratoire élevé même en présence d'une contre- pression importante, qui permette de maintenir une ventilation non nulle du patient même en cas de défaillance de la source de gaz respiratoire principale et/ou qui présente une compacité et/ou une autonomie compatible tant avec une utilisation en milieu hospitalier qu'à domicile.
La présente invention concerne alors un dispositif d'assistance respiratoire comprenant :
- au moins une branche inspiratoire reliant des moyens de fourniture de gaz respiratoire aux voies respiratoires d'un utilisateur, lesdits moyens de fourniture de gaz respiratoire comprennent au moins une première source de gaz respiratoire et au moins une deuxième source de gaz respiratoire, lesdites première et deuxième sources étant reliées pneumatiquement en série pendant au moins une partie d'au moins une phase inspiratoire,
- la branche inspiratoire comprenant une valve secondaire et une valve expiratoire dont 1 ' ouverture et la fermeture sont assurées par des ballonnets pneumatiques ou des membranes, - des moyens de commutation comprenant deux électrovannes EVl, EV2 commandées par des moyens de pilotage 16 permettant de relier, de manière sensiblement étanche, lesdites première et deuxième sources de gaz respiratoire, reliées pneumatiquement en série, à ladite branche inspiratoire et de rendre pneumatiquement étanche ladite branche inspiratoire, durant au moins une partie d'au moins une phase inspiratoire, en agissant sur lesdits ballonnets pneumatiques ou lesdites membranes desdites valve secondaire et valve expiratoire pour permettre une alimentation de ladite branche inspiratoire en gaz respiratoire, et
- une branche annexe comprenant des conduits de gaz et lesdites deux électrovannes EVl, EV2 qui sont commandées par les moyens de pilotage.
Par "reliées ou connectées pneumatiquement en série" , on entend que l'une des deux sources de gaz respiratoire débite du gaz respiratoire sous pression vers ou dans l'autre source de gaz respiratoire.
Selon le cas, le dispositif de l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes:
- les première et deuxième sources de gaz respiratoire sont motorisées, de préférence des turbines motorisées.
- les première et deuxième sources de gaz respiratoire sont des turbines à faible inertie, par exemple des turbines ayant une vitesse de rotation ajustable comprise entre 5 000 et 25 000 tours/minute et/ou un diamètre de turbine inférieur à 100 mm, de préférence inférieur à 80 mm, telle que décrite par exemple dans le document FR-A-2663547.
- les moyens de pilotage électroniques sont de type analogique et/ou numérique, par exemple un ou des microprocesseurs ou microcontrôleurs. - lesdits moyens de pilotage commandent lesdites première et deuxième sources de gaz respiratoire indépendamment l'une de l'autre.
- il comporte, en outre, une source de gaz auxiliaire reliée à ladite branche inspiratoire par l'intermédiaire d'au moins un circuit auxiliaire comportant au moins une vanne auxiliaire, de préférence, ladite vanne auxiliaire est commandée par lesdits moyens de pilotage, de manière à injecter périodiquement ou en continu un gaz auxiliaire dans ladite branche inspiratoire véhiculant le gaz respiratoire, avantageusement, un clapet anti-retour ou un moyen analogue est agencé de manière à protéger les première et deuxième sources de gaz respiratoire en évitant toute remontée intempestive de gaz auxiliaire vers lesdites première et deuxième sources de gaz ; - il comporte, en outre, au moins un capteur de pression et/ou au moins un capteur de débit agencés sur ladite branche inspiratoire et coopérant avec lesdits moyens de pilotage. il comporte, en outre, une ligne ou dérivation d'équilibrage de pression. - la ligne ou dérivation d'équilibrage de pression permet de tendre à équilibrer les pressions régnant : . soit, d'une part, dans le quatrième conduit reliant la branche inspiratoire et la branche annexe et, d'autre part, dans le troisième conduit reliant la portion de branche inspiratoire reliant les première et deuxième sources de gaz respiratoire, l'une à l'autre, et le deuxième conduit ;
. soit, d'une part, dans la branche inspiratoire et, d'autre part, dans la branche annexe.
L'invention concerne, en outre, un procédé de commande d'un dispositif d'assistance respiratoire selon l'invention pour la fourniture d'un gaz ou d'un mélange gazeux respiratoire aux voies aériennes supérieures d'un utilisateur, ledit dispositif d'assistance respiratoire comprenant :
- au moins une branche inspiratoire reliant des moyens de fourniture de gaz respiratoire aux voies respiratoires d'un utilisateur, des moyens de fourniture de gaz respiratoire comprenant au moins une première et une deuxième sources de gaz respiratoire agencées en série, en particulier des turbines motorisées,
- des moyens de pilotage, dans lequel on alimente, pendant au moins une partie d'au moins une phase inspiratoire, au moins la branche inspiratoire en gaz respiratoire délivré par lesdites première et deuxième sources de gaz, lesdites première et deuxième sources de gaz étant connectées pneumatiquement en série pendant au moins une partie d'au moins une phase inspiratoire.
Selon le cas, le procédé de l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes:
- on ajuste ou on maintient un débit de gaz respiratoire dans la branche inspiratoire inférieur ou égal à 200 l.mi et/ou on ajuste ou on maintient une pression de gaz respiratoire dans la branche inspiratoire inférieure ou égale à 12000 Pa, de préférence inférieure ou égale à 8000 Pa, en agissant sur les première et/ou deuxième sources de gaz respiratoire agencées en série.
- le gaz respiratoire est choisi parmi les mélanges gazeux contenant de l'azote et au moins 15% d'oxygène, en particulier de l'air ou de l'air enrichi en oxygène, éventuellement additionnés d'un ou plusieurs gaz annexes, notamment du monoxyde d'azote (NO), de l'hélium, du dioxyde de carbone ou un gaz anesthésique.
- pendant au moins une partie d'au moins une phase expiratoire, on pilote lesdites première et deuxième sources de gaz respiratoire indépendamment l'une de l'autre.
L'invention va maintenant être décrite plus en détail à l'aide des figures annexées, données à titre illustratif mais non limitatif.
La figure 1 représente le schéma d'un premier mode de réalisation d'un dispositif d'assistance respiratoire conforme à la présente invention, lequel comprend une première et une deuxième source de gaz respiratoire, qui sont ici deux turbines Tl et T2 agencées en série et délivrant un gaz d'assistance respiratoire, par exemple de l'air comprimé, dans la branche inspiratoire 7 ou circuit patient, laquelle branche inspiratoire 7 achemine le gaz d'assistance respiratoire jusqu'aux voies aériennes supérieures d'un patient P1 (non représenté).
Plus précisément, la liaison entre la branche inspiratoire ou circuit patient 7 et le patient P' est réalisée grâce à une pièce nasale et/ou buccale, tel un masque 14 ou analogue.
En outre, on voit que la branche inspiratoire 7 comprend deux valves 10 et 11, à savoir une valve secondaire 10 et une valve expiratoire 11, dont l'ouverture et la fermeture sont commandés par des ballonnets pneumatiques 12 et 13 ou analogues, par exemples des membranes.
Le débit de gaz respiratoire dans la branche inspiratoire
7 est déterminé au moyen d'un capteur de débit D et la pression dudit gaz respiratoire dans ladite branche inspiratoire 7 est, quant à elle, déterminée au moyen d'un capteur de pression P.
Les capteurs de débit D et de pression P sont agencés sur ladite branche inspiratoire 7 et sont raccordés, via les liaisons 50 et 51, respectivement, à des moyens de pilotage 16 électroniques de type analogique et/ou numérique, de manière à fournir à ces moyens de pilotage 16 une information de débit et/ou de pression, respectivement.
Par ailleurs, ce dispositif d'assistance comprend également une branche annexe 17 comprenant des premier, deuxième, troisième, quatrième et cinquième conduits de gaz 1 à 5, respectivement, et deux électrovannes EVl et EV2. Comme on le voit sur les figures :
- le deuxième conduit 2 correspond à la portion de la branche annexe 17 située entre les électrovannes EVl et EV2 , - le quatrième conduit 4 relie la branche inspiratoire 7, à partir d'un site localisé entre la deuxième turbine T2 et la valve 10, à la branche annexe 17, via 1 ' électrovanne EV2 ,
- le troisième conduit 3 relie la portion de branche inspiratoire 7 ' reliant les première et deuxième sources Tl et T2 de gaz respiratoire, l'une à l'autre, audit deuxième conduit 2 via 1 ' électrovanne EVl.
Par ailleurs, les électrovannes EVl et EV2 sont, elles aussi, commandées, via des liaisons 55 et 56, respectivement, par les moyens de pilotage 16, lesquels moyens de pilotage 16 commandent également, via des liaisons 54 et 53, le débit et/ou la pression du gaz délivrés par chacune des turbines Tl et T2, respectivement.
Plus précisément, les turbines Tl et T2 sont régulées en débit et/ou en pression en fonction du mode de ventilation sélectionné et à partir des valeurs de débit et/ou de pression mesurées par le capteur de débit D et/ou le capteur de pression P.
Ainsi, pendant la phase inspiratoire, les moyens de pilotage 16 commandent 1 'électrovanne EVl de manière à relier les troisième et deuxième conduits 3 et 2 , ce qui implique, d'une part, que le gaz délivré par la turbine Tl ne peut pas s'échapper à l'atmosphère via le premier conduit 1 et, d'autre part, que le troisième conduit 3 et le deuxième conduit 2 sont sous pression ; toutefois, le deuxième conduit 2 ne communique pas avec la branche annexe 17.
De façon analogue, pendant la phase inspiratoire, les moyens de pilotage 16 commandent aussi 1 ' électrovanne EV2 de manière à mettre en communication le quatrième conduit 4 et la branche annexe 17 , et donc aussi le circuit patient ou branche inspiratoire 7 et la branche annexe 17 par 1 ' intermédiaire dudit quatrième conduit 4. La pression du circuit patient 7 délivrée par Tl et T2 , qui sont reliées en série, est alors transmise aux ballonnets 12 et 13 des valves secondaire 10 et expiratoire 11, respectivement, et ce, par l'intermédiaire dudit quatrième conduit 4 et de la branche annexe 17, ce qui a pour effet de gonfler les ballonnets 12 et 13 et de fermer ces valves 10 et
11, c'est-à-dire de rendre étanche la branche inspiratoire 7.
Le gaz respiratoire sous pression est alors acheminé par la branche inspiratoire 7 jusqu'au patient P', étant donné que la branche inspiratoire 7 est fermée de manière étanche, puisque les valves 10 et 11 sont fermées, empêchant donc ainsi l'échappement à l'atmosphère, par lesdites vannes 10 et 11, du gaz véhiculé par branche inspiratoire 7.
De manière optionnelle, une source de gaz auxiliaire 20, par exemple une source d'oxygène, est reliée à la branche inspiratoire 7 par l'intermédiaire d'un circuit auxiliaire 9 comportant une électrovanne EV3 et un clapet anti-retour 15.
La valve EV3 ou vanne auxiliaire est contrôlée par lesdits moyens de pilotage 16, via une liaison 52, de manière à injecter périodiquement un gaz auxiliaire, par exemple de l'oxygène, dans ladite branche 7 inspiratoire véhiculant le gaz respiratoire jusqu'au patient P'.
Lorsque l'injection du gaz auxiliaire est réalisée à débit constant dans la branche inspiratoire 7 via le conduit auxiliaire 9, les turbines Tl et T2 sont régulées en débit par les moyens de pilotage 16, c'est-à-dire que le débit de chacune des deux turbines Tl et T2 s ' adapte à la valeur du débit total désirée auquel est soustrait le débit d'oxygène injecté par la source auxiliaire 20.
A l'inverse, si les turbines Tl et T2 sont régulées en pression, au moment ou le débit total mesuré par le capteur D devient, par exemple, inférieur à un seuil prédéterminé, la vanne EV3 du circuit auxiliaire 9 est commandée par les moyens de pilotage 16 de manière à arrêter ou à limiter l'alimentation en gaz auxiliaire et ainsi éviter les surpressions dans la branche inspiratoire 7.
Par ailleurs, pendant les phases expiratoires, 1 ' électrovanne EVl est pilotée, via la liaison 55, par les moyens de pilotage 16 de manière à relier les troisième et deuxième conduits 3 et 2, et l'électrovanne EV2 est commandée, via la liaison 56, de manière à relier le deuxième conduit 2 et la branche annexe 17. II s'ensuit alors que la turbine Tl permet de maintenir, via la branche annexe 17 , une pression déterminée dans les ballonnets 12 et 13 des valves secondaire 10 et expiratoire 11, respectivement, de façon à réduire la fuite de gaz par ces valves 10 et 11, et ainsi maintenir la pression de la branche inspiratoire 7 à la valeur désirée pendant l'expiration, c'est-à-dire à une pression expiratoire positive ou PEP.
La tension de commande de la turbine T2 est, par ailleurs, maintenue sensiblement constante et un flux de gaz respiratoire s'échappe par les valves 10 et 11, respectivement.
Lorsqu'une injection d'un débit constant d'oxygène est réalisée, via le circuit auxiliaire 9, ce gaz auxiliaire s'échappe pendant l'expiration par la valve 11 agencée, de préférence, à proximité de l'interface 14, par exemple un masque respiratoire, ou une sonde de trachéotomie ou d' intubation.
On peut prévoir d'aménager une ligne ou dérivation d'équilibrage 5 destinée à équilibrer les pressions régnant, d'une part, dans la branche inspiratoire 7 et, d'autre part, dans la branche annexe 17, laquelle ligne 5 ou dérivation d'équilibrage peut être munie d'une restriction 30 ou d'un orifice à diamètre ou passage calibré.
En outre, un clapet anti-retour 31 ou un moyen analogue est aménagé en aval de la valve inspiratoire 10, ainsi que schématisé sur la figure 1. Si la valeur de la PEP souhaitée est nulle, alors 1 •électrovanne EVl est commandée par les moyens de pilotage 16 de manière à relier les deuxième et premier conduits 2 et 1, et l' électrovanne EV2 est commandée afin de relier le deuxième conduit 2 et la branche annexe 17 de manière à échapper à l'atmosphère le gaz sous pression contenu dans la branche annexe 17 et, par-là même, obtenir un dégonflage complet des ballonnets 12 et 13 des valves secondaire 10 et expiratoire 11, respectivement, ce qui annule ou réduit la pression régnant dans la branche inspiratoire 7 , 1 • excès de pression, c'est-à-dire de gaz, étant évacué à l'atmosphère par lesdites valves 10 et 11.
En outre, les turbines Tl et T2 sont commandées de manière à maintenir leur régime à une valeur donnée permettant de réduire leur temps de réponse au début de la phase d'inspiration suivante.
Le débit de gaz délivré par ces turbines Tl et T2 s'échappe par les valves 10 et 11, et le débit d'oxygène issu de la source auxiliaire 20 éventuellement présente s'échappe par la valve 11. La ligne d'équilibrage 5 permet d'aboutir à une égalisation des vitesses respectives des turbines Tl et T2.
En effet, il est souhaitable que les deux turbines Tl et T2 aient, en permanence, sensiblement les mêmes vitesses de rotation pour qu'elles vieillissent et s'usent moins vite sinon, si par exemple la deuxième turbine freine la première turbine en tournant moins vite qu'elle, l'usure de la première turbine va être plus rapide que celle de la deuxième turbine.
La figure 2 schématise une variante de réalisation du dispositif selon l'invention quasi-identique à celui de la figure 1, à l'exception du fait que, comme représenté sur la figure 2, la ligne ou dérivation d'équilibrage 5 destinée à équilibrer les pressions régnant, d'une part, dans le quatrième conduit 4 reliant la branche inspiratoire 7 et branche annexe 17 et, d'autre part, dans le troisième conduit 3 reliant la portion 7 ' de branche inspiratoire 7 reliant les première et deuxième sources Tl, T2 de gaz respiratoire, l'une à l'autre, et dans le deuxième conduit 2.
Dans le cas particulier où l'on ne veut pas de pression dans le circuit patient 7 pendant l'expiration, ce sont alors les conduits 1, 2 et la branche annexe 17 qui sont mis en communication. Ainsi, les ballonnets 12 et 13 des valves 10 et 11 devraient se dégonfler totalement et tout le gaz provenant des turbines Tl et T2 devrait s ' échapper à l'atmosphère par lesdites valves 10 et 11 et ce, sans faire monter la pression dans le circuit 7. Or, la ligne de dérivation 5 telle qu'elle est placée dans le mode de réalisation de la figure 1 renvoie une partie du débit de gaz dans les ballonnets 12 et 13, les gonfle légèrement et peut empêcher d'avoir la pression nulle recherchée. A l'inverse, avec une ligne de dérivation 5 telle qu'elle est placée dans le mode de réalisation de la figure 2, le problème mentionné ci-dessus n'existe plus, c'est-à- dire la pression nulle recherchée peut être obtenue, y compris dans le cas particulier où l'on ne veut pas de pression dans le circuit patient 7 pendant l'expiration.
Avantageusement, comme montré sur la figure 2, on rajoute une restriction 30", par exemple un orifice calibré, sur le conduit 3 afin de mieux maîtriser la pression des ballonnets 12 et 13 lorsqu'on souhaite réguler une pression non nulle dans le circuit 7, à l'expiration.
La ligne de dérivation 5 garde donc exactement la même fonction dans les deux modes de réalisation (figures 1 et 2) mais sa position selon la figure 2 permet de mieux maîtriser la pression dans les ballonnets 12 et 13 durant l'expiration, dans tous les cas de figures, tout en égalant toujours les vitesses des turbines et évitant ainsi leur usure prématurée. De façon générale, un dispositif selon la présente invention présente un avantage incontestable par rapport aux dispositifs classiques, étant donné, qu'en cas de défaillance d ' une des deux sources de débit Tl ou T2 , la source de débit restante assure une ventilation au moins minimum du patient. En outre, le dispositif de ventilation de l'invention peut-être utilisé pour traiter les insuffisances respiratoires de tout type, notamment de celles conséquentes à des maladies restrictives, notamment neuromusculaires, tel la myopathie, ou obstructives, tels la broncho-pneumopathie chronique obstructive ou l'emphysème.

Claims

Revendications
1. Dispositif d'assistance respiratoire comprenant :
- au moins une branche inspiratoire (7) reliant des moyens de fourniture (Tl, T2) de gaz respiratoire aux voies respiratoires d'un utilisateur, lesdits moyens de fourniture (Tl, T2) de gaz respiratoire comprennent au moins une première source (Tl) de gaz respiratoire et au moins une deuxième source (T2) de gaz respiratoire, lesdites première et deuxième sources (Tl, T2) étant reliées pneumatiquement en série pendant au moins une partie d'au moins une phase inspiratoire, la branche inspiratoire (7) comprenant une valve secondaire (10) et une valve expiratoire (11) dont l'ouverture et la fermeture sont assurées par des ballonnets pneumatiques (12, 13) ou des membranes,
- des moyens de commutation comprenant deux électrovannes (EVl, EV2) commandées par des moyens de pilotage (16) permettant de relier, de manière sensiblement étanche, lesdites première et deuxième sources de gaz respiratoire reliées pneumatiquement en série, à ladite branche inspiratoire (7) et de rendre pneumatiquement étanche ladite branche inspiratoire (7) , durant au moins une phase inspiratoire, en agissant sur lesdits ballonnets pneumatiques (12, 13) ou lesdites membranes des valve secondaire (10) et valve expiratoire (11) pour permettre une alimentation de ladite branche inspiratoire (7) en gaz respiratoire, et
- une branche annexe (17) comprenant des conduits de gaz (1 à 5) et lesdites deux électrovannes (EVl, EV2) qui sont commandées par les moyens de pilotage (16) .
2. Dispositif selon la revendication 1, caractérisé en ce que les première et deuxième sources (Tl, T2) de gaz respiratoire sont motorisées, de préférence les première et deuxième sources (Tl, T2) de gaz respiratoire sont des turbines motorisées ayant une vitesse de rotation ajustable comprise entre 5 000 et 25 000 tours/minute.
3. Dispositif selon l'une des revendications 1 ou 2 , caractérisé en ce que les moyens de pilotage (16) électroniques sont de type analogique et/ou numérique, de préférence lesdits moyens de pilotage (16) commandent lesdites première et deuxième sources (Tl, T2) de gaz respiratoire indépendamment l'une de l'autre.
4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce qu'il comporte, en outre, au moins une source de gaz auxiliaire (20) reliée à ladite branche inspiratoire (7) par l'intermédiaire d'au moins un circuit auxiliaire (9) comportant au moins une vanne auxiliaire (EV3) , de préférence ladite vanne auxiliaire (EV3) est commandée par lesdits moyens de pilotage (16) , de manière à injecter (22) périodiquement ou en continu un gaz auxiliaire dans ladite branche inspiratoire (7) véhiculant le gaz respiratoire.
5. Dispositif selon l'une des revendications l à 4, caractérisé en ce qu'il comporte, en outre, au moins un capteur (P) de pression et/ou au moins un capteur de débit (D) agencés sur ladite branche inspiratoire (7) et coopérant avec lesdits moyens de pilotage (16) et/ou au moins un clapet anti-retour (31) agencé dans ladite branche inspiratoire (7) en amont du site d'injection (22) dudit gaz auxiliaire.
6. Dispositif selon l'une des revendications 1 à 5, caractérisé en ce qu'il comporte, en outre, une ligne ou dérivation d'équilibrage (5).
7. Dispositif selon l'une des revendications 1 à 6, caractérisé en ce que la ligne ou dérivation d'équilibrage (5) est agencée de sorte de tendre à équilibrer les pressions régnant : - soit, d'une part, dans le quatrième conduit (4) reliant la branche inspiratoire (7) et la branche annexe (17) et, d'autre part, dans le troisième conduit (3) reliant la portion (7') de branche inspiratoire (7) reliant les première et deuxième sources (Tl, T2) de gaz respiratoire, l'une à l'autre, au deuxième conduit (2) ; - soit, d'une part, dans la branche inspiratoire (7) et, d'autre part, dans la branche annexe (17) .
8. Dispositif selon l'une des revendications 1 à 7, caractérisé en ce que, pendant la phase inspiratoire, les moyens de pilotage (16) commandent l' électrovanne (EVl) de manière à relier les troisième et deuxième conduits (3) et
(2) et, en outre, l' électrovanne (EV2) de manière à relier le quatrième conduit (4) et la branche annexe (17) , la pression du circuit patient (7) étant alors transmise aux ballonnets
(12, 13) des valves secondaire (10) et expiratoire (11), respectivement, ce qui a pour effet de fermer ces valves (10, 11) et de rendre étanche la branche inspiratoire (7) .
9. Dispositif selon l'une des revendications 1 à 7, caractérisé en ce que, pendant les phases expiratoires, 1 ' électrovanne (EVl) est pilotée par les moyens de pilotage (16) de manière à relier les troisième et deuxième conduits
(3) et (2), et 1 ' électrovanne (EV2) est commandée de manière à relier le deuxième conduit (2) et la branche annexe (17) , de manière à permettre à la turbine (Tl) de maintenir une pression déterminée dans les ballonnets (12) et (13) des valves secondaire (10) et expiratoire (11) , respectivement, de façon à réduire la fuite de gaz par ces valves (10) et (11) et maintenir la pression de la branche inspiratoire à la valeur de PEP désirée pendant l'expiration.
10. Dispositif selon la revendication 9, caractérisé en ce que, si la valeur de la PEP souhaitée est nulle, alors 1 ' électrovanne (EVl) est commandée afin de relier les deuxième et premier conduits (2) et (1) et 1 ' électrovanne (EV2) est commandée afin de relier le deuxième conduit (2) et la branche annexe (17), de manière à échapper à l'atmosphère le gaz sous pression contenu dans la branche annexe (17) et obtenir un dégonflage des ballonnets (12) et (13) des valves secondaire (10) et expiratoire (11) , respectivement, ce qui annule la pression régnant dans la branche inspiratoire (7) .
11. Dispositif selon l'une des revendications 1 à 10, caractérisé en ce que les turbines (Tl) et (T2) sont commandées de manière à maintenir leur régime à une valeur donnée permettant de réduire leur temps de réponse au début de la phase d'inspiration suivante.
12. Dispositif selon l'une des revendications 1 à 11, caractérisé en ce que, lorsque l'injection du gaz auxiliaire est réalisée à débit constant dans la branche inspiratoire (7) via le conduit auxiliaire (9) , les turbines (Tl) et (T2) sont régulées en débit par les moyens de pilotage (16) .
13. Dispositif selon l'une des revendications 1 à 12 , caractérisé en ce que, lorsque les turbines (Tl) et (T2) sont régulées en pression, au moment où le débit total mesuré par le capteur (D) devient inférieur à un seuil prédéterminé, la vanne (EV3) du circuit auxiliaire (9) est commandée par les moyens de pilotage (16) de manière à arrêter ou à limiter l'alimentation en gaz auxiliaire et ainsi éviter toute surpression dans la branche inspiratoire (7) .
14. Procédé de commande d'un dispositif d'assistance respiratoire selon l'une des revendications 1 à 13 pour la fourniture d'un gaz ou d'un mélange gazeux respiratoire aux voies aériennes supérieures d'un utilisateur, ledit dispositif d'assistance respiratoire comprenant : - au moins une branche inspiratoire (7) reliant des moyens de fourniture de gaz (Tl, T2) respiratoire aux voies respiratoires d'un utilisateur (P'), des moyens de fourniture de gaz respiratoire comprenant au moins une première et une deuxième sources (Tl, T2) de gaz respiratoire agencées en série, en particulier des turbines motorisées,
- des moyens de pilotage (16) , dans lequel on alimente, pendant au moins une partie d'au moins une phase inspiratoire, au moins la branche inspiratoire (7) en gaz respiratoire délivré par lesdites première et deuxième sources (Tl, T2) de gaz, lesdites première et deuxième sources de gaz (Tl, T2) étant connectées pneumatiquement en série pendant au moins une partie d'au moins une phase inspiratoire.
15. Procédé selon la revendication 14, caractérisé en ce que, pendant au moins une partie d'au moins une phase expiratoire, on pilote lesdites première et deuxième sources
(Tl, T2) de gaz respiratoire indépendamment l'une de l'autre.
16. Procédé selon l'une des revendications 14 ou 15, caractérisé en ce qu'on ajuste ou on maintient un débit de gaz respiratoire dans la branche inspiratoire inférieur ou égal à 200 l. in-1 et/ou on ajuste ou on maintient une pression de gaz respiratoire dans la branche inspiratoire inférieure ou égale à 12000 Pa, de préférence inférieure ou égale à 8000 Pa, en agissant sur les première et deuxième sources (Tl, T2) de gaz respiratoire agencées en série.
17. Procédé selon l'une des revendications 14 à 16, caractérisé en ce le gaz respiratoire est choisi parmi les mélanges gazeux contenant de l'azote et au moins 15% d'oxygène, en particulier de l'air ou de l'air enrichi en oxygène, éventuellement additionnés d'un ou plusieurs gaz annexes, notamment du monoxyde d'azote (NO), de l'hélium, du dioxyde de carbone ou un gaz anesthésique.
PCT/FR1999/002448 1998-10-12 1999-10-12 Appareil d'assistance respiratoire comportant plusieurs sources de gaz respiratoire agencees en serie WO2000021596A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP99947542A EP1121169A1 (fr) 1998-10-12 1999-10-12 Appareil d'assistance respiratoire comportant plusieurs sources de gaz respiratoire agencees en serie
JP2000575568A JP2002527152A (ja) 1998-10-12 1999-10-12 直列に接続された呼吸用混合ガスの数個のソースを備えた呼吸補助装置
AU60951/99A AU6095199A (en) 1998-10-12 1999-10-12 Apparatus for respiratory assistance comprising several sources of breathing mixture arranged in series

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR98/12737 1998-10-12
FR9812737A FR2784297B1 (fr) 1998-10-12 1998-10-12 Appareil d'assistance respiratoire comportant plusieurs sources de gaz respiratoire agencees en serie

Publications (1)

Publication Number Publication Date
WO2000021596A1 true WO2000021596A1 (fr) 2000-04-20

Family

ID=9531432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/002448 WO2000021596A1 (fr) 1998-10-12 1999-10-12 Appareil d'assistance respiratoire comportant plusieurs sources de gaz respiratoire agencees en serie

Country Status (5)

Country Link
EP (1) EP1121169A1 (fr)
JP (1) JP2002527152A (fr)
AU (1) AU6095199A (fr)
FR (1) FR2784297B1 (fr)
WO (1) WO2000021596A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1311315A1 (fr) * 2000-07-05 2003-05-21 Compumedics Sleep Pty. Ltd. Ventilateur a double pression pour dispositif a pression d'air positive
EP3040096A1 (fr) * 2015-01-05 2016-07-06 Air Liquide Medical Systems Appareil d'assistance respiratoire avec détection de tout arrêt de la turbine
EP3936177A1 (fr) * 2020-07-09 2022-01-12 Albert, Alfred Respirateur
CN117180577A (zh) * 2023-10-18 2023-12-08 深圳华声医疗技术股份有限公司 麻醉机的通气控制方法、麻醉机及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2379353C (fr) * 2002-03-28 2012-07-31 Joseph Fisher Nouvelle methode de mesure continue du flux de gaz dans les poumons au cours de la respiration
JP6346914B2 (ja) * 2016-05-13 2018-06-20 アトムメディカル株式会社 呼吸用気体の供給装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE946258C (de) * 1950-07-12 1956-07-26 Draegerwerk Ag Atmungsgeraet
US4255089A (en) * 1979-03-22 1981-03-10 Dravo Corporation Method of controlling series fans driving a variable load
WO1992011054A1 (fr) * 1990-12-21 1992-07-09 Puritan-Bennett Corporation Systeme de pression inspiratoire des voies respiratoires
FR2695830A1 (fr) * 1992-09-18 1994-03-25 Pierre Medical Sa Dispositif d'aide à la respiration.
US5694926A (en) * 1994-10-14 1997-12-09 Bird Products Corporation Portable drag compressor powered mechanical ventilator
US5701883A (en) * 1996-09-03 1997-12-30 Respironics, Inc. Oxygen mixing in a blower-based ventilator
EP0839545A1 (fr) * 1996-10-30 1998-05-06 Taema Dispositif d'assistance respiratoire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE946258C (de) * 1950-07-12 1956-07-26 Draegerwerk Ag Atmungsgeraet
US4255089A (en) * 1979-03-22 1981-03-10 Dravo Corporation Method of controlling series fans driving a variable load
WO1992011054A1 (fr) * 1990-12-21 1992-07-09 Puritan-Bennett Corporation Systeme de pression inspiratoire des voies respiratoires
FR2695830A1 (fr) * 1992-09-18 1994-03-25 Pierre Medical Sa Dispositif d'aide à la respiration.
US5694926A (en) * 1994-10-14 1997-12-09 Bird Products Corporation Portable drag compressor powered mechanical ventilator
US5701883A (en) * 1996-09-03 1997-12-30 Respironics, Inc. Oxygen mixing in a blower-based ventilator
EP0839545A1 (fr) * 1996-10-30 1998-05-06 Taema Dispositif d'assistance respiratoire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1311315A1 (fr) * 2000-07-05 2003-05-21 Compumedics Sleep Pty. Ltd. Ventilateur a double pression pour dispositif a pression d'air positive
EP1311315A4 (fr) * 2000-07-05 2006-04-05 Compumedics Sleep Pty Ltd Ventilateur a double pression pour dispositif a pression d'air positive
EP3040096A1 (fr) * 2015-01-05 2016-07-06 Air Liquide Medical Systems Appareil d'assistance respiratoire avec détection de tout arrêt de la turbine
FR3031313A1 (fr) * 2015-01-05 2016-07-08 Air Liquide Medical Systems Appareil d'assistance respiratoire avec detection de tout arret de la turbine
EP3936177A1 (fr) * 2020-07-09 2022-01-12 Albert, Alfred Respirateur
CN117180577A (zh) * 2023-10-18 2023-12-08 深圳华声医疗技术股份有限公司 麻醉机的通气控制方法、麻醉机及存储介质

Also Published As

Publication number Publication date
EP1121169A1 (fr) 2001-08-08
FR2784297A1 (fr) 2000-04-14
JP2002527152A (ja) 2002-08-27
FR2784297B1 (fr) 2002-10-11
AU6095199A (en) 2000-05-01

Similar Documents

Publication Publication Date Title
EP0839545A1 (fr) Dispositif d'assistance respiratoire
EP0662009B1 (fr) Dispositif d'aide a la respiration
EP0344280B1 (fr) Procédé de fonctionnement d'un dispositif de ventilation artificielle et un tel dispositif
EP0782462B1 (fr) Dispositif d'aide respiratoire commande en pression
EP0042321B1 (fr) Respirateur à correction automatique de ventilation
WO2007068849A2 (fr) Appareil d'anesthesie ventilatoire avec dispositif de mesure de la concentration de xenon
WO2000021596A1 (fr) Appareil d'assistance respiratoire comportant plusieurs sources de gaz respiratoire agencees en serie
WO1994006499A1 (fr) Dispositif d'aide a la respiration
EP3040096B1 (fr) Appareil d'assistance respiratoire avec détection de tout arrêt de la turbine
EP3552648B1 (fr) Appareil de ventilation artificielle à sécurité améliorée
FR2804607A1 (fr) Ventilateur d'anesthesie avec controle automatique du mode de ventilation selectionne
EP1118345B1 (fr) Appareil d'anesthésie respiratoire à gestion automatique des débits gazeux
FR2727023A1 (fr) Appareil d'aide a la respiration
FR3031447A1 (fr) Ventilateur medical a vanne d'echappement proportionnelle associee a un capteur de debit bidirectionnel
FR2806919A1 (fr) Appareil d'anesthesie respiratoire a dispositif d'accumulation de gaz unique
CA3207226A1 (fr) Installation de fourniture de gaz comprenant un ventilateur medical et un dispositif de delivrance de no avec un systeme de dosage d'urgence
FR3118584A1 (fr) Appareil d’assistance respiratoire avec contrôle de PEP
EP4052748A1 (fr) Interface de ventilation de patient destinée à être couplée à un ventilateur médical et à une source de gaz
FR3133316A1 (fr) Dispositif de délivrance de NO avec circuit de secours
CA3191787A1 (fr) Appareil de delivrance de no a deux sorties de gaz
FR3009966A1 (fr) Appareil d'assistance respiratoire pour des personnes souffrant de troubles respiratoires et procede de ventilation mis en œuvre par ledit appareil
CA3191354A1 (fr) Appareil de delivrance de no avec systeme de ventilation manuelle
EP4039302A1 (fr) Appareil de fourniture de gaz thérapeutique à un patient avec contrôle de la pression au masque
FR3133318A1 (fr) Dispositif de délivrance de NO avec circuit de secours à débit contrôlé
WO2024023420A1 (fr) Système respiratoire, notamment pour un aéronef, avec régulation de la proportion d'oxygène

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999947542

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 575568

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09807034

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999947542

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1999947542

Country of ref document: EP