WO2000016924A1 - Production method for double-structure container - Google Patents

Production method for double-structure container Download PDF

Info

Publication number
WO2000016924A1
WO2000016924A1 PCT/JP1999/005184 JP9905184W WO0016924A1 WO 2000016924 A1 WO2000016924 A1 WO 2000016924A1 JP 9905184 W JP9905184 W JP 9905184W WO 0016924 A1 WO0016924 A1 WO 0016924A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
outer cylinder
axis
gap
section
Prior art date
Application number
PCT/JP1999/005184
Other languages
French (fr)
Japanese (ja)
Inventor
Tohru Irie
Masashi Ota
Original Assignee
Sango Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sango Co., Ltd. filed Critical Sango Co., Ltd.
Priority to EP99944778A priority Critical patent/EP1025923A1/en
Publication of WO2000016924A1 publication Critical patent/WO2000016924A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1872Construction facilitating manufacture, assembly, or disassembly the assembly using stamp-formed parts or otherwise deformed sheet-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/14Spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/14Spinning
    • B21D22/18Spinning using tools guided to produce the required profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/02Silencing apparatus characterised by method of silencing by using resonance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2842Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration specially adapted for monolithic supports, e.g. of honeycomb type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • F01N3/2885Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices with exhaust silencers in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/24Concentric tubes or tubes being concentric to housing, e.g. telescopically assembled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/26Tubes being formed by extrusion, drawing or rolling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2490/00Structure, disposition or shape of gas-chambers
    • F01N2490/15Plurality of resonance or dead chambers
    • F01N2490/155Plurality of resonance or dead chambers being disposed one after the other in flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2490/00Structure, disposition or shape of gas-chambers
    • F01N2490/20Chambers being formed inside the exhaust pipe without enlargement of the cross section of the pipe, e.g. resonance chambers

Definitions

  • the present invention relates to a method for manufacturing a double-structured container, and more particularly, to a method for manufacturing a double-structured container by simultaneously changing the cross-sectional shapes of an inner cylinder and an outer cylinder.
  • an integrated inner cylinder whose cross-sectional shape changes continuously in the axial direction, and an integrated outer cylinder whose both ends are tapered in shape Insulated pipe structures that are arranged concentrically while maintaining a gap between them are often used.
  • a metal inner cylinder 104 having a catalyst simple substance 101 fitted therein and having tapered diameter reduced portions 102, 103 at both ends is provided.
  • a metal outer cylinder 107 having tapered diameter portions 105, 106 at both ends, a gap 108 is formed between the inner cylinder 104 and the outer cylinder 107. Provision is often made.
  • This configuration is disclosed in, for example, Japanese Patent Application Laid-Open No. 6-110465.
  • the outer cylinder 107 which is provided with a predetermined gap 108 outside the inner cylinder 104, which has been previously reduced in diameter, is reduced in diameter. There is something to do. However, the method is difficult and costly to manufacture.
  • the molding of the outer cylinder 107 is particularly problematic. That is, in the formation of the outer cylinder 107 having a cross-sectional shape which somewhat follows the cross-sectional change in the axial direction of the inner cylinder 104 and maintains the desired air gap 108, the desired air gap 100 is formed over the entire length in the axial direction. Forming the integral outer cylinder 107 so as to form 8 was extremely difficult.
  • thermos there is a method in which an inner cylinder having only one side opening and an outer cylinder having only one end opening are separately formed in an arbitrary cross section by a spying process, and these are polymerized. This is disclosed, for example, in Japanese Patent Application Laid-Open No. 10-15631 and Japanese Patent Application Laid-Open No. 7-284454.
  • An object of the present invention is to provide a method for manufacturing a double-structured container that meets the above demand.
  • the inner cylinder is disposed inside the outer cylinder while maintaining a gap, and solid inclusions are sandwiched in at least one section of the gap in the cylinder axis direction. It is characterized in that the outer cylinder is subjected to spying processing to change the cross-sections of the inner cylinder and the outer cylinder at the same time.
  • the inner and outer cylinders holding the solid inclusions are rotated around the axis of the cylinder, and the spinning roller is pressed against the outer cylinder to carry out spinning calorie, whereby the pressing force is increased.
  • the cross section of the outer cylinder changes due to The pressing force is transmitted to the inner cylinder via the deformable solid inclusion sandwiched in the gap, and the cross section of the inner cylinder changes simultaneously.
  • each end of the inner and outer cylinders can be simultaneously formed into a desired cross-sectional shape in one spinning process.
  • the revolving spinning roller is pressed against the stationary outer cylinder to perform the spinning process, whereby the cross section of the outer cylinder changes due to the pressing force. Further, the pressing force is transmitted from the outer cylinder to the inner cylinder via a deformable solid inclusion sandwiched in the gap, so that the cross section of the inner cylinder can be simultaneously changed.
  • each end of the inner and outer cylinders can be simultaneously formed into a desired cross-sectional shape in a single spying process.
  • the inner cylinder is disposed inside the outer cylinder while maintaining a gap, and at least one section of the gap in the cylinder axis direction is sandwiched by solid inclusions.
  • the outer cylinder is revolved and spinning is applied to the outer cylinder, and the cross section of the inner cylinder and the outer cylinder is simultaneously changed eccentrically to the cylinder axis of the material of the inner and outer cylinders. It is.
  • the respective ends of the inner and outer cylinders which are eccentrically changed with respect to the cylinder axis of the material are formed by the same operation as the manufacturing method of revolving the spinning roller of the first surface. Can be formed simultaneously by one spinning process.
  • the inner cylinder is disposed inside the outer cylinder while maintaining a gap, and solid inclusions are sandwiched in at least one section of the gap in the cylinder axis direction.
  • the cylinder axis of the material is tilted with respect to the axis of the spinning roller, and the spinning port is revolved to spin the outer cylinder.
  • the cross section of the inner cylinder and the outer cylinder is changed to the cylinder axis of the inner and outer cylinder material.
  • it is characterized in that the bending is simultaneously changed.
  • the solid inclusion may be a solidified state of a heat-meltable resin, a thermoplastic resin, or a molten salt.
  • FIG. 1 is a longitudinal sectional view showing an example of a spinning machine used in the manufacturing method of the present invention.
  • FIG. 2 is a partially cutaway plan view of the spying machine in FIG.
  • FIGS. 3A and 3B are schematic perspective views of a clamp portion and a roll portion of the material of the spinning machine in FIG.
  • FIGS. 4A to 4D are process diagrams showing a first embodiment of the manufacturing method according to the present invention.
  • 5A to 5D are process diagrams showing a second embodiment of the manufacturing method according to the present invention.
  • FIG. 6 is a longitudinal sectional view showing a third embodiment of the manufacturing method according to the present invention.
  • FIG. 7 is a cross-sectional view showing a fourth embodiment of the manufacturing method according to the present invention.
  • FIG. 8 is a longitudinal sectional view showing a fifth embodiment of the manufacturing method according to the present invention.
  • 9A to 9C are process diagrams in the fifth embodiment of FIG.
  • FIG. 10 is a longitudinal sectional view showing a sixth embodiment of the manufacturing method according to the present invention.
  • FIG. 11 is a process chart of the sixth embodiment of FIG.
  • FIG. 12 is a perspective view of a material formed by the manufacturing method of the sixth embodiment shown in FIG.
  • FIG. 13 is a view showing the product of the embodiment shown in FIG. 10 obtained by performing the contraction process of FIG. 11 on both sides of the blank.
  • FIG. 14 is a process chart showing a seventh embodiment of the manufacturing method according to the present invention.
  • FIG. 15 is a longitudinal sectional view showing a first conventional manufacturing method.
  • FIG. 16 is a longitudinal sectional view showing a second conventional manufacturing method.
  • Fig. 1 is a partially cutaway side view of the spinning machine
  • Fig. 2 is a partially cutaway plan view of the spinning machine of Fig. 1.
  • One side of the fixed base 1 has a material ( ⁇ 1 H)
  • a drive unit 2 is provided, and a mouth drive unit 3 is provided on the other side.
  • On the base 1 of the material drive unit 2 side, which will be described later roll 2 8 revolution axis X 5 parallel direction X-direction slide rails 5 Article 2 parallel fixedly provided along (referred to as X direction) of Have been.
  • An X-direction slider 6 is mounted on the X-direction slide rail 5 so as to be slidable in the X-direction, and a ball spline shaft 8 is screwed to a boss 7 provided on the X-direction slider 6.
  • a driving means 9 such as a motor, the X-direction slider 6 can be moved forward and backward by a desired amount in the X direction.
  • two Y-direction slide rails 10 are fixedly arranged in parallel along a horizontal direction orthogonal to the X direction (this is referred to as a Y direction).
  • a Y-direction slider 11 is slidably mounted in the Y-direction.
  • a bed 30 is mounted and fixed on the Y-direction slider 11, and a ball spline shaft 15 is screwed to a boss 14 fixed to the lower surface of the bed 30. Then, by rotating the ball spline shaft 15 forward and backward by a desired amount by a driving means 16 such as a motor, the bed 30 can be moved forward and backward by a desired amount in the Y direction.
  • the bed 30 is provided with a rotation drive means 31 such as a motor, and the rotation drive shaft 31 a of the rotation drive means 31 is vertically arranged on the bed 30. It is protruding.
  • the rotary drive means 31 and the rotary drive shaft 31a constitute tilting means for the material 4.
  • a lower clamp 13 constituting a clamp device 12 is slidably mounted on the upper surface of the bed 30 and the drive shaft 31 a is fixed to the lower clamp 13.
  • the lower clamp 13 rotates forward / backward in the horizontal plane about the rotation drive shaft 31a.
  • An arc-shaped guide groove 32 centered on the rotary drive shaft 31 a is formed in the bed 30, and protrudes from the lower surface of the lower clamp 13 in the guide groove 32.
  • Guide port 33 is rotatably fitted.
  • the rotation drive shaft 31a is set at a position where the axis of the rotation drive shaft 31a intersects the cylinder axis X4 of the material 4 placed on the lower clamp 13 described later at right angles. ing.
  • the upper surface of the lower clamp 13 has a semicircular clamp surface 13a for supporting the lower half surface of the material 4.
  • the cylindrical shaft X4 of the material 4 will be described later. It is formed so as to be at the same height position as the axis X5 of the rotary shaft 21 of the port drive unit 3.
  • an upper clamp 17 having a clamp surface 17a for pressing and holding the upper semicircle of the material 4 is formed on the lower surface of the lower clamp 13 so as to be able to move up and down. 17 is driven up and down by a driving means 18 such as a hydraulic cylinder, so that the upper clamp 17 and the lower clamp 13 do not rotate the material 4 to the set position due to the lowering of the upper clamp 17.
  • the material 4 can be attached and detached by raising the upper clamp 17.
  • a stopper 19 is provided at a rear portion of the clamp device 12, and by positioning the rear end of the material 4 against the stopper 19, the material 4 can be easily positioned in the axial direction.
  • the stopper 19 is provided, for example, in the lower clamp 13 so as to move in synchronization with the clamp device 12 and to adjust the position of the material 4 in the direction of the cylinder axis X4.
  • a rotating equipment section 20 is installed on the base 1, and a rotating shaft 21 is provided on the section 20 so that the axis of the rotating shaft 21 can be turned in the X direction.
  • the rotary shaft 21 is rotated in one direction via a belt 23 by a motor 22 which is a rotation driving means.
  • a port holder 24 is fixed to the rotating shaft 21 on the side of the material driving section 2.
  • the rotation of the rotating shaft 21 causes the port holder 24 to rotate about the axis X 5 of the rotating shaft 21. It is designed to rotate.
  • the rotary equipment section 20 is provided with trajectory changing means for changing the driving trajectory of the knurl, the means includes a cylinder 25 as a driving means, and a rod 25 a of the cylinder 25.
  • the ring plate 26 is formed in an annular shape coaxial with the rotary shaft 21, and an inner surface of a tip portion thereof is formed on a tapered surface 26 a which spreads outward.
  • a plurality of, in the embodiment shown, three brackets 27 are arranged at equal intervals in the circumferential direction of the roll holder 24 on the roll holder 24. Further, each bracket 27 is provided so as to be movable in a radial direction about the axis X5 of the roll holder 24. Further, a tapered surface 27 a is formed along the taper surface 26 a of the ring plate 26 on the side corresponding to the inner surface of the roll holder 24 of each bracket 27, and the outer end of each bracket 27 is formed. Is provided with a roll 28 which is free to rotate itself.
  • each bracket 27 is provided with a means for constantly urging the bracket 27 to the outer peripheral side of the roll holder 24, for example, a return spring, and a ring plate 26 made of a cylinder 25 is provided.
  • Movement causes both tapered surfaces 26a and 27a to push each bracket 27 in the axial direction, and each roll 28 to move in the axial direction of the rotating shaft 21.
  • the brackets 27 are returned radially outward by both taper surfaces 26a and 27a.
  • Each roll 28 is moved by the same amount radially outward of the roll holder.
  • 4A to 4D show a first embodiment of the manufacturing method according to the present invention.
  • FIG. 4A shows a first step, in which a metal outer cylinder 4B made of metal and having a diameter larger than that of the inner cylinder 4A is arranged concentrically outside a metal inner cylinder 4A, The figure shows a state in which solid inclusions 4D are filled in an annular space 4C having a predetermined width formed between the two cylinders 4A and 4B.
  • the material in this state is referred to as material 4.
  • the solid inclusions 4D for example, a heat-meltable resin is used, and at the time of this filling, the inner and outer cylinders 4A and 4B are formed with a predetermined gap 4C therebetween. In this manner, one end of the gap 4C is closed by an appropriate means, and the resin in a heated and molten state is poured into the gap 4C from the other open end, and cooled and solidified. Then, a solid inclusion 4D is interposed between the inner and outer cylinders 4A and 4B.
  • a heat-meltable resin is used, and at the time of this filling, the inner and outer cylinders 4A and 4B are formed with a predetermined gap 4C therebetween. In this manner, one end of the gap 4C is closed by an appropriate means, and the resin in a heated and molten state is poured into the gap 4C from the other open end, and cooled and solidified. Then, a solid inclusion 4D is interposed between the inner and outer cylinders 4A and 4B.
  • the solid inclusion 4D has a good filling property and a good discharging property, and can be deformed to some extent when filled to a solid state, and has a small compressive force (even a non-compressible one).
  • Is preferable and the above-mentioned heat-fusible resin is preferable, but other resins may be used. It is desirable that the melting point of the heat-meltable resin is higher than the temperature of the raw material 4 raised by spinning.
  • a resin commercially available under the trade name "Seal Peal Hot" can be used as the above-mentioned heat-fusible resin.
  • the process shifts to a second step of clamping the material 4 with the clamping device 12 of the spinning machine and reducing the diameter of the end of the material 4.
  • the ring plate 26 of the spinning machine is located to the right of the position shown in Fig. 1, and each roll 28 retracts outside the outer diameter of the material 4 before processing. Open.
  • the material 4 is fitted and placed on the clamp surface 13 a of the lower clamp 13 while the rear end thereof abuts against the stopper 19 set at a predetermined position, and then the driving means 18 is mounted.
  • the upper clamp 17 is moved downward, and the material 4 is clamped by the upper and lower clamps 13 and 17 so as not to rotate.
  • the driving means 16 sets the position of the clamp device 12 in the Y direction at a position where the extension of the axis of the rotary drive shaft 31 a crosses the extension of the axis X 5 of the rotary shaft 21. .
  • a core metal 51 is inserted into the inner cylinder 4A on the spinning side.
  • the cored bar 51 has a reduced diameter portion 51a corresponding to the reduced diameter of the inner cylinder 4A, a tapered portion 51b extending from the reduced diameter portion and inclined outward in the radial direction, and a tapered portion.
  • the large diameter portion 51 c is continuous and extends parallel to the axial direction, and the large diameter portion 51 c is formed to have an outer diameter substantially equal to the inner diameter of the material 4.
  • each roll 28 is positioned at the starting point A of diameter reduction of the material 4.
  • the motor 22 as a driving means is driven to move the roll holder 24 one side.
  • the drive means 25 is operated to advance the ring plate 26 to move the revolving locus of each roll 28 toward the center of the roll holder 24, and the driving means 9 is moved.
  • the ball spline shaft 8 is driven to rotate in the opposite direction to the previous direction, and the clamp device 12 and the material 4 are retracted to the left in FIG.
  • each of the rolls 28 revolves around the cylinder axis X5 while rotating freely while being pressed against the outer peripheral surface of the outer cylinder 4B of the material 4, and the diameter of the revolving locus gradually decreases, thereby starting the diameter reduction. From A, it is spun as shown in Figure 4B.
  • the outer cylinder 4B is reduced in diameter and the deformation force is transmitted to the inner cylinder 4A via the solid inclusion 4D, and the inner and outer cylinders 4A, 4B and the solid inclusion 4D are formed. Deform at the same time.
  • a taper portion 4b reduced in diameter from the elemental tube portion 4a of the inner and outer cylinders 4A and 4B and a neck portion 4 extending from the tip of the taper portion 4b are connected to the inner and outer cylinders 4A, It is formed in series with the solid inclusion 4D sandwiched between 4B.
  • the spinning process is performed in one pass or a plurality of passes of the roller as necessary.
  • the neck portion 4c is accurately reduced in diameter by the reduced diameter portion 51a of the core bar 51.
  • the spinning roller 28 moves along the tapered portion 51 b of the core bar 51 as shown by the arrow in the figure, and moves from the large-diameter portion 51 c of the core bar 51. Separate outward.
  • the inner and outer cylinders 4A and 4B are cut at the part C shown in Fig. 4B, and the throwaway part 4e is removed.
  • the raw material 4 formed in the second step is removed from the clamping device 12, inverted in the axial direction, clamped again by the clamping device 12, and processed in the second step.
  • the other cylindrical end of the material 4 on the side opposite to the bent side is subjected to spinning to reduce the diameter in the same manner as in the second step.
  • the core metal 51 is used in the same manner as in the second step.
  • the inner and outer cylinders 4A and 4B are cut at the part D shown in Fig. 4C, and the throwaway part 4f is removed.
  • the cutting of the inner and outer cylinders 4A and 4B in the second and third steps is performed after the third step. You can go with me.
  • disposal portions 4 e and 4 f are not always necessary, in order to accurately form the shape of the cylinder end, the disposal portions 4 e and 4 f are provided and cut and removed. It is desirable.
  • both ends of the material 4 are reduced in diameter by the single spinning process.
  • the molded product is removed from the clamp device 12, and the solid inclusion 4 D may be left as it is in the void 3 C as a final product as it is in the third step.
  • the solid inclusion 4D may be removed, and a void 4C formed between the inner and outer cylinders 4A and 4B may be used as a final product.
  • the solid inclusions 4D are a heat-melted resin
  • the solid inclusions 4 can be melted and easily removed and removed.
  • solid inclusion 4D When using a material with excellent heat insulation properties as the solid inclusion 4D, for example, a heat insulating mat, it is desirable to leave it as it is, but in general, it is highly heat-resistant when used as an exhaust system container for automobiles. Solid inclusions 4D are removed because of the required properties.
  • both ends of the inner and outer cylinders 4A and 4B are connected to other connecting pipes and the like so that a gap 4C is maintained between them. Is done.
  • FIG. 5 shows a manufacturing method according to a second embodiment of the present invention.
  • the second embodiment is an embodiment in which the interior is accommodated in the inner cylinder 4A of the first embodiment, and shows an example in which the present invention is applied to a catalyst converter of an exhaust system of an automobile.
  • the catalyst carrier 50 is inserted or press-fitted in the first step of the first embodiment shown in FIG. 4A.
  • FIG. 5B Thereafter, through the same second step (FIG. 5B), third step (FIG. 5C), and fourth step (FIG. 5D) as in the first embodiment, as shown in FIG. A double pipe with 0 inside and a gap 4C between the inner and outer cylinders 4A and 4B is manufactured.
  • the core metal 51 is not always necessary, and may be arbitrarily used as needed.
  • FIG. 6 shows a third embodiment of the manufacturing method according to the present invention.
  • an interior such as the second embodiment, for example, a catalyst carrier 50 is housed, and one end of the inner and outer cylinders 4A and 4B is connected between the inner and outer cylinders 4A and 4B.
  • a resonance type muffler is integrally provided at a rear portion of the catalytic converter 50 of the second embodiment, for example, in a case where the resonance type muffler is extended with a gap 4C.
  • the range indicated by reference numeral 54 is the portion of the resonance type muffler.
  • the manufacturing process of the third embodiment is basically the same as the manufacturing process of the second embodiment.
  • a resonance hole 52 is previously formed in the 1S inner cylinder 4 #, and the second process is performed during spinning.
  • the core metal 51 described in the example a core metal whose extension is extended is used, and the resonance hole 52 is closed from the inside of the inner cylinder 4A by the extension.
  • One end of the inner and outer cylinders 4A and 4B molded according to the third embodiment, for example, the left end in FIG. 6 is fixed to another connecting pipe, while the other end, for example, the right end in FIG.
  • a wire net ring 53 for holding the outer cylinder 4A and the outer cylinder 4B so as to be movable with each other is sandwiched, so that the inner cylinder 4A and the outer cylinder 4B can follow the mutual movement caused by the difference in thermal expansion between the outer cylinder 4A and the outer cylinder 4B.
  • the thickness (gap distance between the inner and outer cylinders) of the gap 4 C on the left side (A side) of the catalyst carrier 50 gradually changes.
  • the diameter of the cylinder 4A and the outer cylinder 4B is reduced in advance to the taper part and the neck as shown in the figure, and the inner cylinder 4A is inserted into the outer cylinder 4B, and the diameter of the inner cylinder 4A is reduced.
  • the solid portion 4D is filled in the gap 4C between the inner cylinder 4A and the outer cylinder 4B on the right side (B side) of the catalyst carrier 50, and the outer cylinder 4B Is subjected to spinning as described above.
  • the exhaust gas is purified by the catalyst carrier 50, and the exhaust noise flows into the cavity 4C of the resonance type muffler part 54 through the resonance hole 52, and 4 C becomes a resonance space and is muted.
  • the voids 4 C also exhibit the original heat insulating effect.
  • the inner and outer cylinders 4A and 4B having the void 4C can be formed as desired by arbitrarily setting the filling range of the solid inclusion 4D and the use range and shape of the core metal 51. Can be.
  • FIG. 7 shows a fourth embodiment of the manufacturing method according to the present invention.
  • the fourth embodiment shows an example of manufacturing a double pipe in which the axes of the inner cylinder 4A and the outer cylinder 4B are mutually eccentric.
  • the inner cylinder 4A and the outer cylinder 4B are mutually eccentrically desired, and solid inclusions are formed in the voids 4C.
  • the same manufacturing process as described in the first and second embodiments is performed.
  • FIG. 8 shows a fifth embodiment of the manufacturing method according to the present invention.
  • the fifth embodiment is an example in which one reduced diameter portion and the other reduced diameter portion of the double cylinder (container) are eccentric.
  • the material 4 has a solid inclusion 4D interposed between the inner cylinder 4A and the outer cylinder 4B, and has an inner material, for example, a catalyst carrier 50 in the inner cylinder 4A. Use something.
  • the ring plate 26 is located to the right of the position shown in FIG. 1, and each roll 28 is retracted to the outside from the outer diameter of the raw material 4 before processing, and is open before the contraction work.
  • the unprocessed material 4 is fitted and placed on the clamp surface 13 a of the lower clamp 13 while the rear end of the raw material 4 is brought into contact with the stopper 19 set at a predetermined position, and then the driving means 18 is operated. Then, lower the upper clamp 17 and clamp the material 4 with the upper and lower clamps 13 and 17 so as not to rotate.
  • the rotation drive means 31 is operated to rotate the clamp device 12 so that the cylindrical axis X 4 of the material 4 sandwiched between the clamp device 12 and the axis X 5 of the rotary shaft 21 is parallel. Further, the driving means 16 is actuated, and the clamping device 12 is moved by the predetermined amount OF 1 (see FIG.
  • the motor 22 as the driving means is driven to rotate the roll holder 24 in one direction, and the driving means 25 is operated to move the ring plate 26 forward.
  • the driving means 9 is driven in the reverse direction to move the ball spline shaft 8 in the opposite direction to the above.
  • each of the rolls 28 revolves around the cylinder axis X5 while rotating freely while being pressed against the outer peripheral surface of the outer cylinder 4B of the material 4, and the diameter of the revolving locus gradually decreases, thereby starting the diameter reduction.
  • A is spunjungka.
  • the revolution axis X5 of the roll 28 is eccentric by OF1 from the cylinder axis X4 of the material 4, the spinned cylinder end becomes the material 4 as shown in FIG. 9B.
  • the cylindrical part (body part) of 4a is plastically deformed into a frusto-conical taper part 4b centered on a revolution axis X5 eccentric by OF1 from the axis X4.
  • the roll 4 is kept closed and the material 4 is continuously retracted, so that the tip of the taper portion 4b is attached to the cylindrical shaft X of the material 4.
  • a cylindrical neck portion 4c parallel to 4 and having the axis of revolution X5 as an axis is formed by plastic deformation. Then, the material 4 and the roll 28 are moved backward by the movement reverse to the forward movement of the diameter reduction movement, and the first reciprocating movement ends the first spinning process.
  • each port 28 is returned to the open position, and the driving means 9 is operated to rotate the ball spline shaft 8 in one direction to thereby provide a clamping device.
  • the material 4 is further advanced along with the cylinder axis by a predetermined amount together with 1 2, and each portal 28 is positioned at the point B in FIG. 9C.
  • the drive means 16 is operated to rotate the ball spline shaft 15 in one direction, and the material 4 is further moved in the Y direction by a predetermined amount together with the clamping device 12 as shown in FIG. 9C.
  • the eccentricity OF2 between the cylinder axis X4 of the material 4 and the rotation shaft 21 of the rotary shaft 21, that is, the revolving axis X5 of the roll 28 is set to be larger than the eccentricity OF1.
  • the tapered portion 4b has a frusto-conical shape centered on an axis X5 that is eccentric by an OF2 amount from the cylindrical axis X4 of the raw material 4 (body portion) 4a. It is plastically deformed into a tapered portion 4b with a large corner. Also, after forming the tapered portion 4b, the roll 4 is held at the closed position and the material 4 is continuously retracted, so that the tip of the taper portion 4b becomes A small diameter neck 4c is formed. Through the steps described above, the reduced diameter portion 4d in which the eccentric taper portion 4b and the eccentric neck portion 4c are integrally formed at the end (the right portion in FIG. 8) is formed.
  • the outer cylinder 4B is reduced in diameter and the deformation force is transmitted to the inner cylinder 4A via the solid inclusion 4D, and the inner and outer cylinders 4A and 4B and the solid inclusion 4D are deformed. Are simultaneously deformed.
  • the taper portion 4b which is reduced in diameter from the elemental tube portion 4a of the inner and outer cylinders 4A, 4B, and the neck portion 4c extending from the tip of the taper portion 4b, are formed by the inner and outer cylinders 4A, 4B It is formed in a series with solid inclusions 4D sandwiched between B.
  • the material 4 formed in the above step is removed from the clamping device 12, inverted in the axial direction, and clamped again by the clamping device 12, and the material 4 on the side opposite to the side processed in the above step is removed.
  • the other end of the cylinder is spinned in the same manner as described above to reduce the diameter.
  • the cylindrical shaft X 4 of the raw material 4 and the axis X 5 of the rotary shaft 21 are positioned coaxially and spinning is performed, so that the element shown in the left side of FIG. A tapered portion 4b and a neck 4c concentric with the cylindrical portion 4a are formed.
  • the molded product is removed from the clamp device 12 and the solid inclusion 4D may be left as it is in the void 4C as the final product as it is in the third step.
  • the solid inclusion 4D was removed, and a void 4C was formed between the inner and outer cylinders 4A and 4B.
  • FIG. 10 shows a sixth embodiment according to the present invention.
  • the sixth embodiment shows an example in which a reduced diameter portion and a neck portion at both ends are bent and spinned. The manufacturing process in this embodiment will be described.
  • each roll 28 has an outer diameter of the material 4 as shown in FIG. 11A. Yori also retreats outward in the radial direction.
  • a material 4 similar to that of FIG. 4A is fitted onto the clamp surface 13 a of the lower clamp 13 while the rear end of the material 4 is being stuck to a horn 19 ° set at a predetermined position.
  • the driving means 18 is operated to move the upper clamp 17 downward, and the material 4 is clamped by the upper and lower clamps 13 and 17 so as not to rotate.
  • the rotational drive shaft 3 1 Set the position where the extension of the axis of a crosses the extension of the axis X5 of the rotary shaft 21.
  • the rotation driving means 31 is actuated, and as shown in FIG. 11A, the cylindrical axis X 4 of the material 4 is horizontally moved by a predetermined angle ⁇ 1 with respect to the axis X 5 of the rotating shaft 21. Tilt the clamp device 12 horizontally so that it tilts to the right.
  • each roll 28 is positioned at the starting point A of diameter reduction of the material 4.
  • each port 28 presses against the outer peripheral surface of the material 4 and revolves around the cylinder axis X5 while rotating freely, and the diameter of the revolving locus gradually decreases. It is spun as shown in Figure 11B.
  • the spun cylinder end is as shown in Fig. 11B.
  • the material 4 is plastically deformed into a frusto-conical taper portion 4b having an axis of revolution X5 inclined by ⁇ 1 from the cylinder axis X4 of the material cylinder 4 (body portion) 4a.
  • the roll 4 After forming the tapered portion 4b, the roll 4 is held in the closed position, and the material 4 is continuously retracted in the X direction. And a cylindrical neck 4c having an axis of revolution X5 inclined by ⁇ 1 is formed by plastic deformation.
  • the material 4 and the roll 28 are moved backward by the movement reverse to the forward movement of the diameter reduction movement, and the first reciprocating movement completes the first spinning step.
  • each roll 28 is returned to the open position, the driving means 9 is operated to rotate the ball spline shaft 8 in one direction, and the clamping device 1 is rotated. 2 and the material 4 is further advanced in the X direction by a predetermined amount, and each roll 28 is positioned at the point B in FIG. 11C, and the rotary drive shaft 31 is operated to further move the material 4 together with the clamping device 12.
  • the angle 0 2 between the cylindrical axis X 4 of the material 4 and the axis of the rotating shaft 21, that is, the revolving axis X 5 of the roll 28 is set in the first step. The angle is larger than ⁇ 1.
  • the taper portion 4b formed in the first step is centered on the axis X5 which is inclined by ⁇ ⁇ 2 from the cylinder axis X4 of the raw cylinder portion (body portion) 4a of the material 4. It is plastically deformed into a tapered part 4b with a frusto-conical shape and a large taper angle. After forming the tapered portion 4b, the roll 28 is maintained in the closed position and the material 4 is continuously retracted in the X direction. A neck 4c centering on 5 and having a smaller diameter than the first step is formed.
  • the tapered portion 4b centered on the axis X5 inclined with respect to the axis X4 is attached to the end of the trunk 4a centered on the axis X4.
  • a reduced diameter portion 4d integrally formed with the neck 4c is formed.
  • the material 4 reduced in diameter by the above-described process is turned upside down, and is again sandwiched by the clamping device 12.
  • the material 4 is bent to both ends as shown in FIG. 13.
  • the spinned tapered portion 4d, 4 £ 1 and neck 44c can be formed.
  • the product is taken out from the clamp device 12, and the solid inclusion 4D may be left as it is in the void 3C to obtain a final product as it is, or as shown in FIG.
  • the solid product 4D may be removed and a void 4C formed between the inner and outer cylinders 4A and 4B may be used as the final product.
  • the solid inclusions 4D in the above embodiment may use a thermoplastic resin. Further, a heat insulating member may be used instead of this resin. When this heat insulating member is used, it is preferable to press-fit the heat insulating member around the inner cylinder 4A of the raw material 4 into the outer cylinder 4B in a state of being fixedly wound. Furthermore, since a heat insulating material is originally required in a muffler or a catalytic converter, it is not necessary to remove the solid inclusions 4D even after the shaping. In such a case, the step of removing the solid inclusions 4D can be omitted.
  • solid inclusions 4D ice that has been frozen after water has been injected into the voids 4C may be used, and further, metal particles (shots) may be used.
  • shots metal particles
  • those which change into a solid or liquid by heat such as molten salts such as nitrates and nitrites, and low melting point metals and compounds thereof may be used.
  • the core is inserted into the inner cylinder 4A, but the core may be inserted into the outer cylinder 4B.
  • the material 4 may be moved in the cylinder axis direction during the spinning process, the material 4 may be fixed and the spinning roller 28 moved in the cylinder axis direction, or both sides may be moved. You may move it. Further, a means for continuously controlling the driving locus of the roller, that is, the roller in the deformation direction is optional.
  • the material 4 is fixed and the spinning roller 28 is revolved.
  • the axis X5 of the roll driving unit 3 and the axis X4 of the material driving unit 2 are parallel and the same. If they are set on one line, the material 4 is rotated about its axis and the core metal 51 is also rotated, and the spinning roller 28 is freely rotated without revolving, and in the radial direction. And it may be moved in the cylinder axis direction.
  • each of the above embodiments is an example of application to a container of an exhaust system part of an automobile.
  • the present invention is also applicable to a general-purpose container and a daily necessity such as a pot. Is not limited.
  • the material inner cylinder 4A is inserted into the outer cylinder 4B. Thereafter, as shown in FIG. 14B, the solid inclusion 4D is filled in a state where a gap 4C is provided between the inner and outer cylinders to form the material 4 shown in FIG. 14C.
  • this material 4 is clamped by the clamping device 12 of the above-mentioned spinning machine, and one end of the material 4 is contracted. Perform the second step of diameter reduction.
  • the outer cylinder 4B is reduced in diameter and the deformation force is transmitted to the inner cylinder 4A via the solid inclusion 4D, and the inner and outer cylinders 4A, 4B and the solid inclusion 4D are deformed. Are simultaneously deformed.
  • a tapered portion 4b that reduces in diameter from the elemental tube portion 4a of the inner and outer cylinders 4A and 4B, and a neck portion 4c that extends from the tip of the taper portion 4b between the inner and outer cylinders 4A and 4B. It is formed in a series with the solid inclusion 4D sandwiched.
  • the inner and outer cylinders 4A and 4B are cut at the part C shown in Fig. 14D, and the throwaway part 4e is removed.
  • the above-mentioned spying process is performed in one pass or a plurality of passes of the roller as necessary.
  • the neck portion 4c is accurately reduced in diameter by the reduced diameter portion 51a of the core metal 51.
  • the spinning roller 28 moves along the taper portion 51b of the core bar 51 as shown by the arrow in the figure, and the large diameter portion of the core bar 51. 5 Separate outward from 1 c.
  • one end of the material 4 is reduced in diameter by spinning.
  • the molded product is removed from the clamp device 12, and the solid inclusion 4 D may be left as it is in the void 3 C as a final product as it is in the third step.
  • the solid inclusion 4D may be removed, and a void 4C formed between the inner and outer cylinders 4A and 4B may be used as a final product. In this way, a closed container at one end is formed.
  • a double-structured container having a gap between the inner and outer cylinders is simultaneously transformed into a desired cross section by simultaneously spinning the inner and outer tubes. Since it is possible to perform molding in a simple manner, processing can be facilitated and processing time can be shortened compared to the conventional method, and processing costs can be significantly reduced.
  • the inner cylinder is disposed inside the outer cylinder while maintaining a gap, and the inner cylinder is disposed in the gap.
  • the spinning roller revolves while the solid inclusion is sandwiched in at least one section in the cylinder axis direction to spin the outer cylinder, and the cross section of the inner cylinder and the outer cylinder is changed to the cylinder axis of the material of the inner and outer cylinders.
  • the inner and outer cylinders eccentrically changed with respect to the cylinder axis of the material can be manufactured with the above-described effects.
  • the inner cylinder is disposed inside the outer cylinder while maintaining a gap, and a solid inclusion is sandwiched in at least one section in the cylinder axis direction in the gap, and the material of the inner and outer cylinders is formed.
  • the cylinder axis is inclined with respect to the axis of the spinning roller, and the spinning roller revolves around the outer cylinder to perform the spinning process, and the cross section of the inner cylinder and the outer cylinder is adjusted to the cylinder axis of the material of the inner and outer cylinders.
  • the core metal can prevent the inner and outer cylinders from being over-deformed, and the desired cross-sectional shape can be reliably obtained. Furthermore, by selecting the arrangement of the core metal, it is possible to change the deformation amount of the inner and outer cylinders to form different cross-sectional shapes, and it is also possible to make the cross-sectional shapes of the inner and outer cylinders different by performing the spinning process on the inner and outer tubes simultaneously.
  • the work of filling and removing solid inclusions can be performed easily and promptly, thereby improving work efficiency. Can be planned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Silencers (AREA)

Abstract

A production method for a double-structure container having a clearance between an inner tube and an outer tube thereof, wherein, in order to facilitate production thereof and reduce production costs, an inner tube (4A) is disposed inside an outer tube (4B) with a clearance (4C) therebetween, solid inclusion (4D) is held in at least one tube-axis-direction segment in the clearance (4C), and the outer tube (4B) is subjected to spinning in that condition to concurrently change the sections of the inner and outer tubes (4A, 4B).

Description

明 細 書 二重構造容器の製造方法 技術分野  Description Manufacturing method of double-structured container Technical field
本発明は二重構造容器の製造方法に関するもので、 より詳しくは、 内筒と外筒 の横断面形状を同時に変化させて二重構造容器を得る製造方法に関する。  The present invention relates to a method for manufacturing a double-structured container, and more particularly, to a method for manufacturing a double-structured container by simultaneously changing the cross-sectional shapes of an inner cylinder and an outer cylinder.
背景技術  Background art
自動車の排気系部品、 例えばマフラや触媒コンバータにおいては、 横断面形状 が軸方向に連続的に変化する一体の内筒と、 両端がテ一パ状に縮径する一体の外 筒とを、 これらの間で空隙を保つて同心状に配した断熱管構造がよく利用される。 特に触媒コンバータにおいては、 図 1 5に示すように、 触媒単体 1 0 1を内嵌 するとともに両端にテ一パ状縮径部 1 0 2, 1 0 3を有する金属製内筒 1 0 4と、 両端にテ一パ状縮径部 1 0 5, 1 0 6を有する金属製外筒 1 0 7とを組み合わせ て、 内筒 1 0 4と外筒 1 0 7の間に空隙 1 0 8を設けることがよく行われている。 この構成は、 例えば特開平 6— 1 0 1 4 6 5号公報に開示されている。  For exhaust system components of automobiles, such as mufflers and catalytic converters, an integrated inner cylinder whose cross-sectional shape changes continuously in the axial direction, and an integrated outer cylinder whose both ends are tapered in shape Insulated pipe structures that are arranged concentrically while maintaining a gap between them are often used. In particular, in a catalytic converter, as shown in FIG. 15, a metal inner cylinder 104 having a catalyst simple substance 101 fitted therein and having tapered diameter reduced portions 102, 103 at both ends is provided. By combining a metal outer cylinder 107 having tapered diameter portions 105, 106 at both ends, a gap 108 is formed between the inner cylinder 104 and the outer cylinder 107. Provision is often made. This configuration is disclosed in, for example, Japanese Patent Application Laid-Open No. 6-110465.
この図 1 5に示す触媒コンバータを製造する方法として、 予め縮径加工された 内筒 1 0 4の外側に所定の空隙 1 0 8を保持して配置された外筒 1 0 7を縮径加 ェするものがある。 しカゝし、 その方法では、 製造が困難であるとともに製造コス トも高くなる。  As a method of manufacturing the catalytic converter shown in FIG. 15, the outer cylinder 107, which is provided with a predetermined gap 108 outside the inner cylinder 104, which has been previously reduced in diameter, is reduced in diameter. There is something to do. However, the method is difficult and costly to manufacture.
特に問題となるのは外筒 1 0 7の成形である。 即ち、 内筒 1 0 4の軸線方向の 断面変化にある程度沿いかつ所望の空隙 1 0 8を保った断面形状の外筒 1 0 7の 形成において、 軸方向の全長に亘つて所望の空隙 1 0 8を形成するように一体の 外筒 1 0 7を成形加工することは著しく困難であった。  Particularly problematic is the molding of the outer cylinder 107. That is, in the formation of the outer cylinder 107 having a cross-sectional shape which somewhat follows the cross-sectional change in the axial direction of the inner cylinder 104 and maintains the desired air gap 108, the desired air gap 100 is formed over the entire length in the axial direction. Forming the integral outer cylinder 107 so as to form 8 was extremely difficult.
そこで、 便宜的な製造法として、 軸方向に半割形成された外筒を、 予め成形さ れた内筒の外に空隙を確保して配し両半割体を溶接等で接合するという技術が一 般的である。 しかしこの方法では、 プレス金型や溶接装置等のコストが嵩む装備 が必要であるとともに、 プレス工程と溶接工程には多大な手間と時間も要する。 そこで、 前記のような製造方法の代りとして、 図 1 6に示すように、 内筒 2 0 1の基部に拡径部 2 0 2を成形し、 外筒 2 0 3の基部に縮径部 2 0 4を成形し、 これら両筒 2 0 1, 2 0 3を図 1 6に示すように嵌挿して、 所定の空隙 2 0 5を 有する二重管構造の触媒コンバータを製造する技術が提案されている。 これは例 えば特開平 9一 1 0 8 5 7 6号公報に開示されている。 Therefore, as a convenient manufacturing method, a technology is adopted in which an outer cylinder formed in half in the axial direction is secured with a gap outside the preformed inner cylinder, and both halves are joined by welding or the like. Is common. However, this method requires costly equipment such as press dies and welding equipment, and also requires a lot of labor and time in the pressing and welding processes. Therefore, instead of the above-described manufacturing method, as shown in FIG. A large-diameter portion 202 is formed at the base of 1 and a reduced-diameter portion 204 is formed at the base of the outer cylinder 203. These two cylinders 201 and 203 are formed as shown in FIG. A technique has been proposed in which a double-walled catalytic converter having a predetermined gap 205 is inserted into the catalytic converter. This is disclosed, for example, in Japanese Patent Application Laid-Open No. Hei 9-1108567.
しカゝし、 この図 1 6の製造方法においては、 内筒 2 0 1の拡径部 2 0 2と外筒 2 0 3との接触及び外筒 2 0 3の縮径部 2 0 4と内筒 2 0 1との接触は避けられ ず、 該接触部から熱伝達が生じるため、 空隙部 2 0 5を設けて断熱構造としても その断熱効果が減少するという問題がある。  However, in the manufacturing method shown in FIG. 16, the contact between the enlarged diameter portion 202 of the inner cylinder 201 and the outer cylinder 203 and the reduced diameter portion 204 of the outer cylinder 203 are formed. Since contact with the inner cylinder 201 is inevitable, and heat transfer occurs from the contact portion, there is a problem that the heat insulating effect is reduced even if the air gap portion 205 is provided and the heat insulating structure is used.
また、 魔法瓶を製造する方法として、 片側のみ開口する内筒と、 片端のみ開口 する外筒をそれぞれ別個にスピユング加工で任意の断面に形成しておき、 これら を重合させるようにしたものがある。 これは、 例えば特開平 1 0— 1 5 6 3 1号 公報ゃ特開平 7 _ 2 8 4 4 5 2号公報に開示されている。  Further, as a method for manufacturing a thermos, there is a method in which an inner cylinder having only one side opening and an outer cylinder having only one end opening are separately formed in an arbitrary cross section by a spying process, and these are polymerized. This is disclosed, for example, in Japanese Patent Application Laid-Open No. 10-15631 and Japanese Patent Application Laid-Open No. 7-284454.
しかし、 この製造方法においては、 内筒と外筒のそれぞれのスピユング加工が 必要で工程が複雑化するとともに、 内筒挿入後に外筒の口を縮径させる工程が別 途必要であるため、 加工容易化と加工コスト低減はこの工法によっても達成でき なレ、。  However, in this manufacturing method, it is necessary to separately spun the inner cylinder and the outer cylinder, which complicates the process and requires a separate step of reducing the diameter of the outer cylinder after the insertion of the inner cylinder. The simplification and reduction of processing costs cannot be achieved by this method.
以上のことから、 内筒と外筒との間に所定の空隙を有し、 かつ内筒と外筒が、 それぞれ一体で軸方向に断面変形した二重構造容器を容易かつ低コストに製造で きる方法が要望されていた。  From the above, it is possible to easily and inexpensively manufacture a double-structured container having a predetermined gap between the inner cylinder and the outer cylinder, and in which the inner cylinder and the outer cylinder are integrally and axially deformed in cross section. There was a demand for a way to cut it.
発明の開示  Disclosure of the invention
本発明は前記の要望に応える二重構造容器の製造方法を提供することを目的と する。  An object of the present invention is to provide a method for manufacturing a double-structured container that meets the above demand.
そのため、 本発明の製造方法の第 1の面では、 外筒内に内筒を空隙を保って配 し、 該空隙における筒軸方向の少なくとも一区間に固形介在物を挟持し、 その状 態で外筒へスピユング加工を施して、 内筒と外筒の断面を同時に変化させること を特徴とするものである。  Therefore, in the first aspect of the production method of the present invention, the inner cylinder is disposed inside the outer cylinder while maintaining a gap, and solid inclusions are sandwiched in at least one section of the gap in the cylinder axis direction. It is characterized in that the outer cylinder is subjected to spying processing to change the cross-sections of the inner cylinder and the outer cylinder at the same time.
従って、 この第 1の面の製造方法においては、 固形介在物を挟持した内外筒を その筒軸まわりに回転させ、 外筒へスピニングロ一ラを押し付けてスピニングカロ ェすることにより、 その押し付け力によって外筒の断面が変化し、 更に外筒から 空隙内に挟持された変形可能な固形介在物を介して内筒へ押し付け力が伝達され、 内筒の断面が同時に変化する。 これにより、 内外筒の各端部を 1回のスピニング 加工工程で同時に所望の断面形状に成形できる。 Therefore, in the manufacturing method of the first aspect, the inner and outer cylinders holding the solid inclusions are rotated around the axis of the cylinder, and the spinning roller is pressed against the outer cylinder to carry out spinning calorie, whereby the pressing force is increased. The cross section of the outer cylinder changes due to The pressing force is transmitted to the inner cylinder via the deformable solid inclusion sandwiched in the gap, and the cross section of the inner cylinder changes simultaneously. Thus, each end of the inner and outer cylinders can be simultaneously formed into a desired cross-sectional shape in one spinning process.
また逆に内外筒を静止させスピユングローラを公転させることにより外筒にス ピユングローラを押し付けてスピユング加工を行うことも可能である。  Conversely, it is also possible to perform the spying process by pressing the spun roller against the outer tube by stopping the inner and outer cylinders and revolving the spun roller.
この時にも、 上記の内外筒を回転させる場合と同じく、 公転されるスピニング ローラを静止した外筒へ押し付けてスピ-ング加工することにより、 その押し付 け力により外筒の断面が変化し、 更に外筒から空隙内に挟持された変形可能な固 形介在物を介して内筒へ押し付け力が伝達されて、 内筒の断面も同時に変化させ ることが可能である。  At this time, as in the case of rotating the inner and outer cylinders described above, the revolving spinning roller is pressed against the stationary outer cylinder to perform the spinning process, whereby the cross section of the outer cylinder changes due to the pressing force. Further, the pressing force is transmitted from the outer cylinder to the inner cylinder via a deformable solid inclusion sandwiched in the gap, so that the cross section of the inner cylinder can be simultaneously changed.
従って上記と同様に、 内外筒の各端部を 1回のスピユングカ卩ェ工程で同時に所 望の断面形状に成形できる。  Therefore, in the same manner as described above, each end of the inner and outer cylinders can be simultaneously formed into a desired cross-sectional shape in a single spying process.
また本発明の製造方法の第 2の面では、 外筒内に内筒を空隙を保って配し、 該 空隙における筒軸方向の少なくとも一区間に固形介在物を挟持させ、 その状態で スピニングロ一ラを公転させて外筒へスピニング加工を施し、 内筒と外筒の断面 を、 内外筒の素材の筒軸に対して偏芯的に同時に変化させるようにしたことを特 徴とするものである。  In a second aspect of the production method of the present invention, the inner cylinder is disposed inside the outer cylinder while maintaining a gap, and at least one section of the gap in the cylinder axis direction is sandwiched by solid inclusions. The outer cylinder is revolved and spinning is applied to the outer cylinder, and the cross section of the inner cylinder and the outer cylinder is simultaneously changed eccentrically to the cylinder axis of the material of the inner and outer cylinders. It is.
この第 2の面の製造方法においては、 前記第 1の面のスピニングローラを公転 させる製造方法と同様の作用により、 素材の筒軸に対して偏芯的に変化した内外 筒の各端部を 1回のスピニング加工工程により同時に成形できる。  In the manufacturing method of the second surface, the respective ends of the inner and outer cylinders which are eccentrically changed with respect to the cylinder axis of the material are formed by the same operation as the manufacturing method of revolving the spinning roller of the first surface. Can be formed simultaneously by one spinning process.
また本発明の製造方法の第 3の面では、 外筒内に内筒を空隙を保って配し、 該 空隙における筒軸方向の少なくとも一区間に固形介在物を挟持させ、 その状態で 内外筒の素材の筒軸をスピニングローラの軸芯に対し傾斜させ、 更にスピニング 口一ラを公転させて外筒へスピニング加工を施し、 内筒と外筒の断面を、 内外筒 の素材の筒軸に対して同時に曲げ変化させるようにしたことを特徴とするもので ある。  According to a third aspect of the production method of the present invention, the inner cylinder is disposed inside the outer cylinder while maintaining a gap, and solid inclusions are sandwiched in at least one section of the gap in the cylinder axis direction. The cylinder axis of the material is tilted with respect to the axis of the spinning roller, and the spinning port is revolved to spin the outer cylinder.The cross section of the inner cylinder and the outer cylinder is changed to the cylinder axis of the inner and outer cylinder material. On the other hand, it is characterized in that the bending is simultaneously changed.
第 3の面の製造方法においては、 前記第 1の面のスピニングローラを公転させ る製造方法と同様の作用により、 素材の筒軸に対して曲げ変化した内外筒の各端 部を 1回のスピニング加工工程により同時に成形できる。 またさらに本発明の製造方法では、 スピユング加工前に、 内筒と外筒の少なく とも一方に、 少なくとも一区間において芯金を挿入してもよい。 In the manufacturing method of the third surface, each end of the inner and outer cylinders bent and changed with respect to the cylinder axis of the material by one operation by the same operation as the manufacturing method of revolving the spinning roller of the first surface. It can be formed simultaneously by the spinning process. Further, in the manufacturing method of the present invention, a cored bar may be inserted into at least one section of at least one of the inner cylinder and the outer cylinder before the spying process.
このため、 スピニング加ェ時において、 内筒と外筒の間又は内筒内に芯金を揷 入することにより、 内筒と外筒の過変形を防止できる。  For this reason, at the time of spinning, excessive deformation of the inner cylinder and the outer cylinder can be prevented by inserting a metal core between the inner cylinder and the outer cylinder or into the inner cylinder.
また本発明の製造方法では、 その固形介在物が加熱溶融性樹脂又は熱可塑性樹 脂或いは溶融塩の固化状態であってもよい。  Further, in the production method of the present invention, the solid inclusion may be a solidified state of a heat-meltable resin, a thermoplastic resin, or a molten salt.
この固形介在物を加熱して軟化、 溶融することにより、 内外筒の成形加工前に おける固形介在物の空隙内への充填と成形加ェ後における固形介在物の空隙外へ の除去が容易に行える。  By heating and softening and melting the solid inclusions, it is easy to fill the solid inclusions into the gap before forming the inner and outer cylinders and to remove the solid inclusions from the gap after the forming process. I can do it.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の製造方法に使用するスピニング加工機の例を示す縦断面図。 図 2は図 1におけるスピエング加工機の一部破断した平面図。  FIG. 1 is a longitudinal sectional view showing an example of a spinning machine used in the manufacturing method of the present invention. FIG. 2 is a partially cutaway plan view of the spying machine in FIG.
図 3 Aと図 3 Bは図 1におけるスピニング加工機の素材のクランプ部とロール 部の各略斜視図。  FIGS. 3A and 3B are schematic perspective views of a clamp portion and a roll portion of the material of the spinning machine in FIG.
図 4 Aから図 4 Dは本発明による製造方法における第 1実施例を示す工程図。 図 5 Aから図 5 Dは本発明による製造方法における第 2実施例を示す工程図。 図 6は本発明による製造方法における第 3実施例を示す縦断面図。  4A to 4D are process diagrams showing a first embodiment of the manufacturing method according to the present invention. 5A to 5D are process diagrams showing a second embodiment of the manufacturing method according to the present invention. FIG. 6 is a longitudinal sectional view showing a third embodiment of the manufacturing method according to the present invention.
図 7は本発明による製造方法における第 4実施例を示す横断面図。  FIG. 7 is a cross-sectional view showing a fourth embodiment of the manufacturing method according to the present invention.
図 8は本発明による製造方法における第 5実施例を示す縦断面図。  FIG. 8 is a longitudinal sectional view showing a fifth embodiment of the manufacturing method according to the present invention.
図 9 Aから図 9 Cは図 8の第 5実施例における工程図。  9A to 9C are process diagrams in the fifth embodiment of FIG.
図 1 0は本発明による製造方法における第 6実施例を示す縦断面図。  FIG. 10 is a longitudinal sectional view showing a sixth embodiment of the manufacturing method according to the present invention.
図 1 1は図 1 0の第 6実施例における工程図。  FIG. 11 is a process chart of the sixth embodiment of FIG.
図 1 2は図 1 0の第 6実施例の製造方法により成形された素材の斜視図。  FIG. 12 is a perspective view of a material formed by the manufacturing method of the sixth embodiment shown in FIG.
図 1 3は図 1 1の縮管工程を素筒の両側に施して図 1 0の実施例の製品とした 図。  FIG. 13 is a view showing the product of the embodiment shown in FIG. 10 obtained by performing the contraction process of FIG. 11 on both sides of the blank.
図 1 4は本発明による製造方法における第 7実施例を示す工程図。  FIG. 14 is a process chart showing a seventh embodiment of the manufacturing method according to the present invention.
図 1 5は第 1の従来の製造方法を示す縦断面図。  FIG. 15 is a longitudinal sectional view showing a first conventional manufacturing method.
図 1 6は第 2の従来の製造方法を示す縦断面図。  FIG. 16 is a longitudinal sectional view showing a second conventional manufacturing method.
発明を実施するための最良の形態 図 1乃至図 1 4に示す実施例に基づいて本発明の実施の形態について説明する。 先ず、 本発明の製造方法を実施するスピニング加工機について図 1乃至図 3に より説明する。 BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described based on the embodiment shown in FIGS. First, a spinning machine for carrying out the manufacturing method of the present invention will be described with reference to FIGS.
図 1はスピニング加ェ機の一部破断した側面図、 図 2は図 1のスピニング加工 機の一部破断した平面図で、 固定されたベース 1上の一方の側部には素材 (ヮ一 ク) 駆動部 2が設けられ、 他方の側部には口一ル駆動部 3が設けられている。 素材駆動部 2側のベース 1上には、 後述するロール 2 8の公転軸 X 5と平行の 方向 (これを X方向とする) に沿って X方向スライ ドレール 5が2条並列的に固 設されている。 該 X方向スライ ドレール 5上には X方向スライダ 6が X方向に摺 動可能に載置されているとともに、 該 X方向スライダ 6に設けたボス 7にボール スプライン軸 8が螺合されている。 そして、 モータ等の駆動手段 9によってボ一 ルスプライン軸 8を所望量正逆回転することにより、 X方向スライダ 6を X方向 に所望量進退移動させることができるようになっている。 Fig. 1 is a partially cutaway side view of the spinning machine, and Fig. 2 is a partially cutaway plan view of the spinning machine of Fig. 1. One side of the fixed base 1 has a material (ヮ 1 H) A drive unit 2 is provided, and a mouth drive unit 3 is provided on the other side. On the base 1 of the material drive unit 2 side, which will be described later roll 2 8 revolution axis X 5 parallel direction X-direction slide rails 5 Article 2 parallel fixedly provided along (referred to as X direction) of Have been. An X-direction slider 6 is mounted on the X-direction slide rail 5 so as to be slidable in the X-direction, and a ball spline shaft 8 is screwed to a boss 7 provided on the X-direction slider 6. By rotating the ball spline shaft 8 forward and backward by a desired amount by a driving means 9 such as a motor, the X-direction slider 6 can be moved forward and backward by a desired amount in the X direction.
上記 X方向スライダ 6上には、 上記 X方向と直交する水平方向 (これを Y方向 とする) に沿って Y方向スライドレール 1 0が 2条並列的に固設されている。 該 Y方向スライドレール 1 0上には Y方向スライダ 1 1が Y方向に摺動可能に載置 されている。 更に、 該 Y方向スライダ 1 1上にはベッド 3 0が載置固定されてい るとともに該べッド 3 0の下面に固設したボス 1 4にボールスプライン軸 1 5が 螺合されている。 そして、 モータ等の駆動手段 1 6によってボールスプライン軸 1 5を所望量正逆回転することによりべッド 3 0を Y方向に所望量進退移動させ ることができるようになっている。  On the X-direction slider 6, two Y-direction slide rails 10 are fixedly arranged in parallel along a horizontal direction orthogonal to the X direction (this is referred to as a Y direction). On the Y-direction slide rail 10, a Y-direction slider 11 is slidably mounted in the Y-direction. Further, a bed 30 is mounted and fixed on the Y-direction slider 11, and a ball spline shaft 15 is screwed to a boss 14 fixed to the lower surface of the bed 30. Then, by rotating the ball spline shaft 15 forward and backward by a desired amount by a driving means 16 such as a motor, the bed 30 can be moved forward and backward by a desired amount in the Y direction.
上記べッド 3 0にはモータ等の回動駆動手段 3 1が設けられているとともにそ の回動駆動手段 3 1の回動駆動軸 3 1 aがべッド 3 0上に垂直状に突出している。 該回動駆動手段 3 1と回動駆動軸 3 1 aにより、 素材 4の傾動手段を構成してい る。  The bed 30 is provided with a rotation drive means 31 such as a motor, and the rotation drive shaft 31 a of the rotation drive means 31 is vertically arranged on the bed 30. It is protruding. The rotary drive means 31 and the rotary drive shaft 31a constitute tilting means for the material 4.
上記ベッド 3 0の上面にはクランプ装置 1 2を構成する下クランプ 1 3が摺動 可能に載置されているとともに該下クランプ 1 3に上記駆動軸 3 1 aが固着され ており、 回動駆動軸 3 1 aの正逆回転により、 該回動駆動軸 3 1 aを中心として 下クランプ 1 3が水平面内において正逆回動するようになっている。 上記べッド 3 0には、 上記回動駆動軸 3 1 aを中心とする円弧状の案内溝 3 2 が形成され、 該案内溝 3 2内に、 上記下クランプ 1 3の下面に突設した案内口一 ラ 3 3が回転可能に嵌合されている。 また、 上記回動駆動軸 3 1 aは、 その軸芯 が図 2に示すように、 後述する下クランプ 1 3に載置される素材 4の筒軸 X 4と 直角に交差する位置に設定されている。 A lower clamp 13 constituting a clamp device 12 is slidably mounted on the upper surface of the bed 30 and the drive shaft 31 a is fixed to the lower clamp 13. By the forward / reverse rotation of the drive shaft 31a, the lower clamp 13 rotates forward / backward in the horizontal plane about the rotation drive shaft 31a. An arc-shaped guide groove 32 centered on the rotary drive shaft 31 a is formed in the bed 30, and protrudes from the lower surface of the lower clamp 13 in the guide groove 32. Guide port 33 is rotatably fitted. As shown in FIG. 2, the rotation drive shaft 31a is set at a position where the axis of the rotation drive shaft 31a intersects the cylinder axis X4 of the material 4 placed on the lower clamp 13 described later at right angles. ing.
上記下クランプ 1 3の上面には素材 4の下半面を支承する半円状のクランプ面 1 3 aが、 これに素材 4を載置した場合に、 その素材 4の筒軸 X 4が後述する口 —ル駆動部 3の回転シャフト 2 1の軸芯 X 5と同一高さ位置になるように形成さ れている。 更に、 該下クランプ 1 3の上部には、 下面に素材 4の上半円を押圧保 持するクランプ面 1 7 aを形成した上クランプ 1 7が昇降可能に配置されている とともに、 該上クランプ 1 7が油圧シリンダ等の駆動手段 1 8により昇降駆動さ れるようになっており、 上クランプ 1 7の下降により該上クランプ 1 7と下クラ ンプ 1 3が素材 4を設定位置に回転しないように挟持し、 上クランプ 1 7の上昇 により素材 4の装着及び取り外しができるようになつている。  The upper surface of the lower clamp 13 has a semicircular clamp surface 13a for supporting the lower half surface of the material 4.When the material 4 is placed on the clamp surface, the cylindrical shaft X4 of the material 4 will be described later. It is formed so as to be at the same height position as the axis X5 of the rotary shaft 21 of the port drive unit 3. Further, an upper clamp 17 having a clamp surface 17a for pressing and holding the upper semicircle of the material 4 is formed on the lower surface of the lower clamp 13 so as to be able to move up and down. 17 is driven up and down by a driving means 18 such as a hydraulic cylinder, so that the upper clamp 17 and the lower clamp 13 do not rotate the material 4 to the set position due to the lowering of the upper clamp 17. The material 4 can be attached and detached by raising the upper clamp 17.
上記クランプ装置 1 2の後部にはストッパ 1 9が配備されており、 該ストッパ 1 9に素材 4の後端をつき当てることにより素材 4の軸方向の位置決めが容易に 行えるようになつている。 該ストツバ 1 9は例えば上記下クランプ 1 3に具備し てクランプ装置 1 2と同調して移動させ、 また、 素材 4の筒軸 X 4方向に位置調 節可能に構成されている。  A stopper 19 is provided at a rear portion of the clamp device 12, and by positioning the rear end of the material 4 against the stopper 19, the material 4 can be easily positioned in the axial direction. The stopper 19 is provided, for example, in the lower clamp 13 so as to move in synchronization with the clamp device 12 and to adjust the position of the material 4 in the direction of the cylinder axis X4.
次にベース 1上の口一ル駆動部 3について説明する。  Next, the mouth drive unit 3 on the base 1 will be described.
上記ベース 1上には回転設備部 2 0が設置され、 該部 2 0に回転シャフト 2 1 力 その軸芯を上記 X方向に向けられて回転可能に備えられている。 該回転シャ フト 2 1は、 回転駆動手段であるモータ 2 2により、 ベルト 2 3を介して一方向 に回転されるようになっている。 該回転シャフト 2 1における上記素材駆動部 2 の側には口一ルホルダ 2 4が固着され、 回転シャフト 2 1の回転により口一ルホ ルダ 2 4が回転シャフト 2 1の軸芯 X 5を中心として回転するようになっている。 上記回転設備部 2 0には、 口ールの駆動軌跡を変更する軌跡変更手段が設けら れており、 該手段は、 駆動手段であるシリンダ 2 5と、 該シリンダ 2 5のロッド 2 5 aの先端にロールホルダ 2 4の回転に支障とならないようにロールホルダ 2 4内に位置させて設けたリングプレート 2 6とからなる。 該リングプレ一ト 2 6 は、 上記回転シャフト 2 1と同軸芯の環状に形成され、 その先部内面が外広がり のテ一パ面 2 6 aに形成されている。 A rotating equipment section 20 is installed on the base 1, and a rotating shaft 21 is provided on the section 20 so that the axis of the rotating shaft 21 can be turned in the X direction. The rotary shaft 21 is rotated in one direction via a belt 23 by a motor 22 which is a rotation driving means. A port holder 24 is fixed to the rotating shaft 21 on the side of the material driving section 2. The rotation of the rotating shaft 21 causes the port holder 24 to rotate about the axis X 5 of the rotating shaft 21. It is designed to rotate. The rotary equipment section 20 is provided with trajectory changing means for changing the driving trajectory of the knurl, the means includes a cylinder 25 as a driving means, and a rod 25 a of the cylinder 25. At the end of the roll holder 2 so that it does not hinder the rotation of the roll holder 2. 4 and a ring plate 26 provided inside. The ring plate 26 is formed in an annular shape coaxial with the rotary shaft 21, and an inner surface of a tip portion thereof is formed on a tapered surface 26 a which spreads outward.
上記ロールホルダ 2 4には複数本の、 図の実施例では 3本のブラケット 2 7が、 それらの軸芯を X方向としかつロールホルダ 2 4の周方向に等間隔で配設されて いる。 更に、 各ブラケット 2 7はロールホルダ 2 4の軸芯 X 5を中心とする放射 方向に移動可能に備えられている。 更に、 各ブラケット 2 7のロールホルダ 2 4 内面に対応する側には上記リングプレート 2 6のテ一パ面 2 6 aに沿うテーパ面 2 7 aが形成され、 また各ブラケット 2 7の外端にはロール 2 8がそれ自体自由 に回転するように備えられている。  A plurality of, in the embodiment shown, three brackets 27 are arranged at equal intervals in the circumferential direction of the roll holder 24 on the roll holder 24. Further, each bracket 27 is provided so as to be movable in a radial direction about the axis X5 of the roll holder 24. Further, a tapered surface 27 a is formed along the taper surface 26 a of the ring plate 26 on the side corresponding to the inner surface of the roll holder 24 of each bracket 27, and the outer end of each bracket 27 is formed. Is provided with a roll 28 which is free to rotate itself.
なお、 図示しないが、 上記各ブラケット 2 7には、 これをロールホルダ 2 4の 外周側へ常時付勢する手段、 例えばリタ一ンスプリングが設けられており、 シリ ンダ 2 5によるリングプレート 2 6の前進 (図 1の左方) 移動により、 両テーパ 面 2 6 a, 2 7 aによって各ブラケット 2 7が軸芯方向へ押されて、 各ロール 2 8が回転シャフト 2 1の軸芯方向へ同一量移動し、 また、 リングプレート 2 6の 後退 (図 1の右方) 移動により、 両テ一パ面 2 6 a, 2 7 aによって各ブラケッ ト 2 7が半径方向外方へ戻されて、 各ロール 2 8がロールホルダの半径方向外方 へ同一量移動するようになっている。  Although not shown, each bracket 27 is provided with a means for constantly urging the bracket 27 to the outer peripheral side of the roll holder 24, for example, a return spring, and a ring plate 26 made of a cylinder 25 is provided. Movement (left side in Fig. 1) Movement causes both tapered surfaces 26a and 27a to push each bracket 27 in the axial direction, and each roll 28 to move in the axial direction of the rotating shaft 21. By moving the same amount, and moving the ring plate 26 backward (to the right in Fig. 1), the brackets 27 are returned radially outward by both taper surfaces 26a and 27a. Each roll 28 is moved by the same amount radially outward of the roll holder.
次に、 前記のスピニング加工機を使用して、 内筒と外筒を、 同時に断面変形さ せて二重構造容器を製造する方法について説明する。  Next, a method for manufacturing a double-structure container by simultaneously deforming the inner cylinder and the outer cylinder in cross section using the above-mentioned spinning machine will be described.
図 4 A—図 4 Dは本発明による製造方法の第 1実施例を示す。  4A to 4D show a first embodiment of the manufacturing method according to the present invention.
図 4 Aは第 1工程を示し、 金属製で円筒状の内筒 4 Aの外側に金属製で前記内 筒 4 Aより大径の円筒状の外筒 4 Bを同芯状に配置し、 これら両筒 4 A, 4 B間 に形成された所定幅の環状の空隙 4 C内に固形介在物 4 Dを充填した状態を示す。 この状態のものを素材 4とする。  FIG. 4A shows a first step, in which a metal outer cylinder 4B made of metal and having a diameter larger than that of the inner cylinder 4A is arranged concentrically outside a metal inner cylinder 4A, The figure shows a state in which solid inclusions 4D are filled in an annular space 4C having a predetermined width formed between the two cylinders 4A and 4B. The material in this state is referred to as material 4.
前記固形介在物 4 Dとしては、 例えば加熱溶融性樹脂を使用し、 この充填に際 しては、 前記内外筒 4 A, 4 Bを、 これらの間に所定の空隙 4 Cが形成されるよ うにして適宜手段により保持し、 その空隙 4 Cの一端を適宜手段により閉塞し、 他方の開口端より加熱溶融状態の樹脂を空隙 4 C内へ流し込み、 これを冷却固化 して固形介在物 4 Dとして内外筒 4 A, 4 B間に介在させる。 As the solid inclusions 4D, for example, a heat-meltable resin is used, and at the time of this filling, the inner and outer cylinders 4A and 4B are formed with a predetermined gap 4C therebetween. In this manner, one end of the gap 4C is closed by an appropriate means, and the resin in a heated and molten state is poured into the gap 4C from the other open end, and cooled and solidified. Then, a solid inclusion 4D is interposed between the inner and outer cylinders 4A and 4B.
前記固形介在物 4 Dは、 充填性及び排出性が良く、 かつ、 充填されて固形状態 となった場合に、 ある程度の変形が可能で、 力つ圧縮性の小さいもの (非圧縮性 のものでもよい) が望ましく、 前記加熱溶融性樹脂が望ましいが、 この樹脂以外 のものでもよい。 なお、 加熱溶融性樹脂の融点は、 スピニング加工による素材 4 の上昇温度よりも高いことが望ましい。 前記の加熱溶融性樹脂としては例えば商 品名 " S e a l P e a l H o t " として市販されているものを使用すること ができる。  The solid inclusion 4D has a good filling property and a good discharging property, and can be deformed to some extent when filled to a solid state, and has a small compressive force (even a non-compressible one). Is preferable, and the above-mentioned heat-fusible resin is preferable, but other resins may be used. It is desirable that the melting point of the heat-meltable resin is higher than the temperature of the raw material 4 raised by spinning. As the above-mentioned heat-fusible resin, for example, a resin commercially available under the trade name "Seal Peal Hot" can be used.
次に、 図 4 Bに示すように、 前記の素材 4を前記スピユング加工機のクランプ 装置 1 2で挟持してその素材 4の端部を縮径する第 2工程に移る。  Next, as shown in FIG. 4B, the process shifts to a second step of clamping the material 4 with the clamping device 12 of the spinning machine and reducing the diameter of the end of the material 4.
縮径作業前においては、 スピニング加工機のリングプレート 2 6は、 図 1に示 す位置より右方に位置し、 各ロール 2 8は素材 4の加工前の外径よりも外側に退 避して開いている。  Before diameter reduction, the ring plate 26 of the spinning machine is located to the right of the position shown in Fig. 1, and each roll 28 retracts outside the outer diameter of the material 4 before processing. Open.
そして、 前記の素材 4を、 その後端を所定位置にセットされたストツバ 1 9に つき当てながら下クランプ 1 3のクランプ面 1 3 a上に嵌合載置し、 その後、 駆 動手段 1 8を作動して上クランプ 1 7を下動し、 素材 4を上下のクランプ 1 3, 1 7で回転しないように挟持する。 また、 駆動手段 1 6によりクランプ装置 1 2 の Y方向位置を、 回動駆動軸 3 1 aの軸芯の延長線が回転シャフト 2 1の軸芯 X 5の延長線と交差する位置に設定する。  Then, the material 4 is fitted and placed on the clamp surface 13 a of the lower clamp 13 while the rear end thereof abuts against the stopper 19 set at a predetermined position, and then the driving means 18 is mounted. When activated, the upper clamp 17 is moved downward, and the material 4 is clamped by the upper and lower clamps 13 and 17 so as not to rotate. The driving means 16 sets the position of the clamp device 12 in the Y direction at a position where the extension of the axis of the rotary drive shaft 31 a crosses the extension of the axis X 5 of the rotary shaft 21. .
また、 必要により、 図 4 Bに示すように、 スピユング加工側における内筒 4 A 内に芯金 5 1を挿入する。 該芯金 5 1は、 内筒 4 Aの縮径に合わせた縮径部 5 1 aと、 該縮径部から延びて径方向外方に傾斜したテーパ部 5 1 bと、 そのテーパ 部から連続し軸線方向と平行に延びる大径部 5 1 cとからなり、 大径部 5 1 cは 素材 4の内径と略同等の外径に形成されている。  If necessary, as shown in FIG. 4B, a core metal 51 is inserted into the inner cylinder 4A on the spinning side. The cored bar 51 has a reduced diameter portion 51a corresponding to the reduced diameter of the inner cylinder 4A, a tapered portion 51b extending from the reduced diameter portion and inclined outward in the radial direction, and a tapered portion. The large diameter portion 51 c is continuous and extends parallel to the axial direction, and the large diameter portion 51 c is formed to have an outer diameter substantially equal to the inner diameter of the material 4.
次で、 駆動手段 9により、 ボールスプライン軸 8を一方向に回転してクランプ 装置 1 2を回転シャフト 2 1の軸芯 X 5に平行する X方向に沿って図 1の右側に 移動し、 図 4 Bに示すように、 素材 4の縮径開始点 Aに各ロール 2 8を位置させ る。  Next, the ball spline shaft 8 is rotated in one direction by the driving means 9 to move the clamping device 12 to the right side in FIG. 1 along the X direction parallel to the axis X 5 of the rotating shaft 21, and FIG. As shown in 4B, each roll 28 is positioned at the starting point A of diameter reduction of the material 4.
この状態から、 駆動手段であるモータ 2 2を駆動してロールホルダ 2 4を一方 向へ回転するとともに駆動手段 2 5を作動してリングプレ一ト 2 6を前進させて 各ロール 2 8の公転軌跡をロールホルダ 2 4の中心方向へ閉移動させ、 かつ、 駆 動手段 9を駆動してボールスプライン軸 8を先程とは逆方向へ回転しクランプ装 置 1 2を素材 4とともに X方向に沿って図 1の左方へ後退させる。 From this state, the motor 22 as a driving means is driven to move the roll holder 24 one side. And the drive means 25 is operated to advance the ring plate 26 to move the revolving locus of each roll 28 toward the center of the roll holder 24, and the driving means 9 is moved. The ball spline shaft 8 is driven to rotate in the opposite direction to the previous direction, and the clamp device 12 and the material 4 are retracted to the left in FIG.
これにより、 各ロール 2 8は素材 4における外筒 4 Bの外周面に圧接して自由 に回転しながら筒軸 X 5を中心として公転するとともにその公転軌跡径が漸小し、 縮径開始点 Aから図 4 Bに示すようにスピエング加工される。  As a result, each of the rolls 28 revolves around the cylinder axis X5 while rotating freely while being pressed against the outer peripheral surface of the outer cylinder 4B of the material 4, and the diameter of the revolving locus gradually decreases, thereby starting the diameter reduction. From A, it is spun as shown in Figure 4B.
このスピニング加工によって外筒 4 Bが縮径変形するとともにその変形力が固 形介在物 4 Dを介して内筒 4 Aにも伝達し、 内外筒 4 A, 4 B及び固形介在物 4 Dが同時に変形する。  Due to this spinning, the outer cylinder 4B is reduced in diameter and the deformation force is transmitted to the inner cylinder 4A via the solid inclusion 4D, and the inner and outer cylinders 4A, 4B and the solid inclusion 4D are formed. Deform at the same time.
すなわち、 内外筒 4 A, 4 Bの素筒部 4 aから縮径するテ一パ部 4 bと該テ一 パ部 4 bの先端から延出する首部 4 じが、 その内外筒 4 A, 4 B間に固形介在物 4 Dを挟持した状態で一連に形成される。  That is, a taper portion 4b reduced in diameter from the elemental tube portion 4a of the inner and outer cylinders 4A and 4B and a neck portion 4 extending from the tip of the taper portion 4b are connected to the inner and outer cylinders 4A, It is formed in series with the solid inclusion 4D sandwiched between 4B.
尚、 上記スピニング加ェの工程は、 必要により前記ローラの 1パス又は複数回 のパスで行うものである。  The spinning process is performed in one pass or a plurality of passes of the roller as necessary.
また、 このスピエング加工時において、 芯金 5 1を挿入した場合には、 芯金 5 1の縮径部 5 1 aにより首部 4 cの縮径加工が正確に行われる。 更に、 スピニン グローラ 2 8は図 4 Bに示すように、 芯金 5 1のテーパ部 5 1 bに沿って図の矢 印のように移動し、 芯金 5 1の大径部 5 1 cから外方へ離間する。  In addition, when the core bar 51 is inserted during the spinning process, the neck portion 4c is accurately reduced in diameter by the reduced diameter portion 51a of the core bar 51. Further, as shown in FIG. 4B, the spinning roller 28 moves along the tapered portion 51 b of the core bar 51 as shown by the arrow in the figure, and moves from the large-diameter portion 51 c of the core bar 51. Separate outward.
次で、 図 4 Bに示す C部で内外筒 4 A, 4 Bを切断し、 捨て代部分 4 eを除去 する。  Next, the inner and outer cylinders 4A and 4B are cut at the part C shown in Fig. 4B, and the throwaway part 4e is removed.
次に、 第 3工程として、 前記第 2工程で成形された素材 4をクランプ装置 1 2 より外し、 その軸方向に反転させて、 再度クランプ装置 1 2より挟持し、 前記第 2工程で加工された側と反対側の素材 4の他方の筒端部を、 図 4 Cに示すように 前記第 2工程と同様にスピニング加工して縮径する。 このとき、 必要により、 前 記第 2工程と同様に芯金 5 1を使用する。  Next, as a third step, the raw material 4 formed in the second step is removed from the clamping device 12, inverted in the axial direction, clamped again by the clamping device 12, and processed in the second step. As shown in FIG. 4C, the other cylindrical end of the material 4 on the side opposite to the bent side is subjected to spinning to reduce the diameter in the same manner as in the second step. At this time, if necessary, the core metal 51 is used in the same manner as in the second step.
次で、 図 4 Cに示す D部で内外筒 4 A, 4 Bを切断し、 捨て代部 4 f を除去す る。  Next, the inner and outer cylinders 4A and 4B are cut at the part D shown in Fig. 4C, and the throwaway part 4f is removed.
なお、 前記第 2工程と第 3工程時の内外筒 4 A, 4 Bの切断は、 第 3工程後に 一緒に行ってもよレ、。 The cutting of the inner and outer cylinders 4A and 4B in the second and third steps is performed after the third step. You can go with me.
また、 前記の捨て代部 4 e, 4 f は必ずしも必要ではないが、 筒端部の形状を 正確に形成するためには、 この捨て代部 4 e, 4 f を設けてこれを切断除去する ことが望ましい。  Although the above-mentioned disposal portions 4 e and 4 f are not always necessary, in order to accurately form the shape of the cylinder end, the disposal portions 4 e and 4 f are provided and cut and removed. It is desirable.
以上により、 素材 4の両端部が各 1回のスピニング加工の工程により縮径され たことになる。  As described above, both ends of the material 4 are reduced in diameter by the single spinning process.
そして、 前記の成形加工後、 その成形品をクランプ装置 1 2から取り外し、 前 記第 3工程のまま固形介在物 4 Dを空隙 3 C内に残したままで最終製品としても 良いし、 また、 図 4 Dに示すように、 第 4工程として、 固形介在物 4 Dを除去し、 内外筒 4 A, 4 B間に空隙 4 Cが形成されたものを最終製品としてもよい。  Then, after the molding process, the molded product is removed from the clamp device 12, and the solid inclusion 4 D may be left as it is in the void 3 C as a final product as it is in the third step. As shown in FIG. 4D, as a fourth step, the solid inclusion 4D may be removed, and a void 4C formed between the inner and outer cylinders 4A and 4B may be used as a final product.
固形介在物 4 Dが加熱溶融樹脂である場合には、 第 4工程で製品を加熱するこ とにより、 固形介在物 4が溶融して容易に流出除去することができる。  When the solid inclusions 4D are a heat-melted resin, by heating the product in the fourth step, the solid inclusions 4 can be melted and easily removed and removed.
前記の固形介在物 4 Dとして断熱性に優れた部材、 例えば断熱マットを使用す る場合は、 そのまま残しておくのが望ましいが、 一般に自動車の排気系の容器と して使用する場合は高耐熱性が要求されるので固形介在物 4 Dは除去する。  When using a material with excellent heat insulation properties as the solid inclusion 4D, for example, a heat insulating mat, it is desirable to leave it as it is, but in general, it is highly heat-resistant when used as an exhaust system container for automobiles. Solid inclusions 4D are removed because of the required properties.
なお、 前記のように成形された図 4 Dの製品においては、 その内外筒 4 A, 4 Bの両端は、 これらの間に空隙 4 Cが保持されるようにして他の接続管等に連結 される。  In the product of FIG. 4D formed as described above, both ends of the inner and outer cylinders 4A and 4B are connected to other connecting pipes and the like so that a gap 4C is maintained between them. Is done.
図 5は本発明による第 2実施例の製造方法を示す。  FIG. 5 shows a manufacturing method according to a second embodiment of the present invention.
本第 2実施例は、 前記第 1実施例の内筒 4 A内に内装物を収納する場合の実施 例で、 自動車の排気系の触媒コンバ一タに適用した例を示す。  The second embodiment is an embodiment in which the interior is accommodated in the inner cylinder 4A of the first embodiment, and shows an example in which the present invention is applied to a catalyst converter of an exhaust system of an automobile.
図 5 Aの第 1工程として、 前記図 4 Aに示す第 1実施例の第 1工程で触媒担体 5 0を挿入もしくは圧入する。  As the first step of FIG. 5A, the catalyst carrier 50 is inserted or press-fitted in the first step of the first embodiment shown in FIG. 4A.
その後、 前記第 1実施例と同様の第 2工程 (図 5 B ) 、 第 3工程 (図 5 C) 、 第 4工程 (図 5 D) を経て、 図 5 Dに示すように、 触媒担体 5 0を内装し、 かつ 内外筒 4 A, 4 B間に空隙 4 Cを有する二重管を製造する。  Thereafter, through the same second step (FIG. 5B), third step (FIG. 5C), and fourth step (FIG. 5D) as in the first embodiment, as shown in FIG. A double pipe with 0 inside and a gap 4C between the inner and outer cylinders 4A and 4B is manufactured.
なお、 本実施例においても前記芯金 5 1は必ずしも必要ではなく、 必要に応じ て任意に使用する。  Note that, also in the present embodiment, the core metal 51 is not always necessary, and may be arbitrarily used as needed.
図 6は本発明による製造方法における第 3実施例を示す。 本第 3実施例は、 前記第 2実施例のような内装物、 例えば触媒担体 5 0を収納 し、 かつその内外筒 4 A, 4 Bの一端部を、 内外筒 4 A, 4 Bの間に空隙 4 Cを 有して長く延出する場合の実施例で、 例えば、 前記第 2実施例の触媒コンバータ 5 0の後部に共鳴型マフラーを一体的に設ける場合の例である。 図 6において、 符号 5 4の範囲が共鳴型マフラーの部分である。 FIG. 6 shows a third embodiment of the manufacturing method according to the present invention. In the third embodiment, an interior such as the second embodiment, for example, a catalyst carrier 50 is housed, and one end of the inner and outer cylinders 4A and 4B is connected between the inner and outer cylinders 4A and 4B. This is an example of a case where a resonance type muffler is integrally provided at a rear portion of the catalytic converter 50 of the second embodiment, for example, in a case where the resonance type muffler is extended with a gap 4C. In FIG. 6, the range indicated by reference numeral 54 is the portion of the resonance type muffler.
本第 3実施例の製造工程は前記第 2実施例の製造工程と基本的には同様である 1S 内筒 4 Αには予め共鳴孔 5 2を形成しておき、 スピニング加工時に前記第 2 実施例で説明した芯金 5 1として、 その揷入部を延長した芯金を用い、 その延長 部で共鳴孔 5 2を内筒 4 Aを内から塞ぐようにする。  The manufacturing process of the third embodiment is basically the same as the manufacturing process of the second embodiment.A resonance hole 52 is previously formed in the 1S inner cylinder 4 #, and the second process is performed during spinning. As the core metal 51 described in the example, a core metal whose extension is extended is used, and the resonance hole 52 is closed from the inside of the inner cylinder 4A by the extension.
本第 3実施例により成形された内外筒 4 A, 4 Bの一端、 例えば図 6の左端部 は、 他の連結管に固定されるが、 他端、 例えば図 6の右端部は、 内筒 4 Aと外筒 4 Bを相互に移動可能に保持するためのワイヤネットリング 5 3が挟持され、 内 筒 4 Aと外筒 4 Bの熱膨脹差に起因する相互移動に追従できるようになつている。 なお、 図 6の実施例において、 触媒担体 5 0より左側 (A側) の空隙 4 C部の 厚さ (内外筒隙間距離) は徐変しているが、 この左側の部分の成形は、 内筒 4 A 及び外筒 4 Bを予め図のようなテ一パ部と首部に縮径しておき、 この内筒 4 Aを 外筒 4 Bに揷入し、 その内筒 4 Aの縮径部を図示しない保持手段で保持し、 触媒 担体 5 0の右側 (B側) において、 内筒 4 Aと外筒 4 B間の空隙 4 Cに固形介在 物 4 Dを充填し、 外筒 4 Bに前記のようなスピニング加ェを施す。  One end of the inner and outer cylinders 4A and 4B molded according to the third embodiment, for example, the left end in FIG. 6 is fixed to another connecting pipe, while the other end, for example, the right end in FIG. A wire net ring 53 for holding the outer cylinder 4A and the outer cylinder 4B so as to be movable with each other is sandwiched, so that the inner cylinder 4A and the outer cylinder 4B can follow the mutual movement caused by the difference in thermal expansion between the outer cylinder 4A and the outer cylinder 4B. I have. In the embodiment shown in FIG. 6, the thickness (gap distance between the inner and outer cylinders) of the gap 4 C on the left side (A side) of the catalyst carrier 50 gradually changes. The diameter of the cylinder 4A and the outer cylinder 4B is reduced in advance to the taper part and the neck as shown in the figure, and the inner cylinder 4A is inserted into the outer cylinder 4B, and the diameter of the inner cylinder 4A is reduced. The solid portion 4D is filled in the gap 4C between the inner cylinder 4A and the outer cylinder 4B on the right side (B side) of the catalyst carrier 50, and the outer cylinder 4B Is subjected to spinning as described above.
本第 3実施例で製造された製品では、 排気ガスが触媒担体 5 0で浄化され、 力 つ排気音が共鳴孔 5 2を通じて共鳴型マフラ一部分 5 4における空隙 4 C内に流 入し、 空隙 4 Cが共鳴スペースとなって消音される。 また、 この空隙 4 Cは本来 の断熱効果も発揮する。  In the product manufactured in the third embodiment, the exhaust gas is purified by the catalyst carrier 50, and the exhaust noise flows into the cavity 4C of the resonance type muffler part 54 through the resonance hole 52, and 4 C becomes a resonance space and is muted. In addition, the voids 4 C also exhibit the original heat insulating effect.
以上のことから、 固形介在物 4 Dの充填範囲や芯金 5 1の使用範囲と形状を任 意に設定することにより、 空隙 4 Cを有する内外筒 4 A, 4 Bを所望に形成する ことができる。  From the above, the inner and outer cylinders 4A and 4B having the void 4C can be formed as desired by arbitrarily setting the filling range of the solid inclusion 4D and the use range and shape of the core metal 51. Can be.
図 7は本発明による製造方法における第 4実施例を示す。  FIG. 7 shows a fourth embodiment of the manufacturing method according to the present invention.
本第 4実施例は、 前記内筒 4 Aと外筒 4 Bの軸芯を相互に偏芯させた二重管を 製造する例を示す。 本実施例の製造方法としては、 前記第 1及び第 2実施例の第 1工程において、 内筒 4 Aと外筒 4 Bを相互に所望に偏芯させ、 その空隙 4 C内に固形介在物 4 D を充填し、 その後、 第 1及び第 2実施例で説明したのと同様の工程で製造する。 図 8は本発明による製造方法における第 5実施例を示す。 The fourth embodiment shows an example of manufacturing a double pipe in which the axes of the inner cylinder 4A and the outer cylinder 4B are mutually eccentric. As a manufacturing method of this embodiment, in the first step of the first and second embodiments, the inner cylinder 4A and the outer cylinder 4B are mutually eccentrically desired, and solid inclusions are formed in the voids 4C. After filling with 4D, the same manufacturing process as described in the first and second embodiments is performed. FIG. 8 shows a fifth embodiment of the manufacturing method according to the present invention.
本第 5実施例は、 前記二重筒 (容器) の一方の縮径部と他方の縮径部を偏芯さ せる場合の例である。  The fifth embodiment is an example in which one reduced diameter portion and the other reduced diameter portion of the double cylinder (container) are eccentric.
この製造工程を説明する。  This manufacturing process will be described.
先ず、 素材 4は前記図 5 Aに示すように、 内筒 4 Aと外筒 4 B間に固形介在物 4 Dが介在され、 内筒 4 A内に内装物、 例えば触媒担体 5 0を有するものを使用 する。  First, as shown in FIG. 5A, the material 4 has a solid inclusion 4D interposed between the inner cylinder 4A and the outer cylinder 4B, and has an inner material, for example, a catalyst carrier 50 in the inner cylinder 4A. Use something.
図 1において、 縮管作業前では、 リングプレート 2 6は図 1に示す位置より右 方に位置し、 各ロール 2 8は素材 4の加工前の外径より外側に退避して開いてい る。  In FIG. 1, the ring plate 26 is located to the right of the position shown in FIG. 1, and each roll 28 is retracted to the outside from the outer diameter of the raw material 4 before processing, and is open before the contraction work.
そして、 未加工の素材 4を、 その後端を所定位置にセットされたストッパ 1 9 にっき当てながら下クランプ 1 3のクランプ面 1 3 a上に嵌合载置し、 その後、 駆動手段 1 8を作動して上クランプ 1 7を下動し、 素材 4を上下のクランプ 1 3, 1 7で回転しないように挟持する。 また回動駆動手段 3 1を作動してクランプ装 置 1 2を、 これに挟持した素材 4の筒軸 X 4が回転シャフト 2 1の軸芯 X 5と平 行になるように回動する。 更に、 駆動手段 1 6を作動してクランプ装置 1 2を、 上記の素材 4の筒軸 X 4が回転シャフト 2 1の軸芯 X 5に平行となりかつ所定量 O F 1 (図 9 A参照) だけ偏芯 (オフセッ ト) するように Y方向へ移動調節する。 次で、 駆動手段 9により、 ボールスプライン軸 8を一方向に回転してクランプ 装置 1 2を X方向に沿って図 1の右側に移動し、 素材 4を、 その筒軸と平行して ロールホルダ 2 4側へ所定量前進 (図 1の右方) 移動させてその素材 4の縮径開 始点 A (図 9 A参照) に各ロール 2 8を位置させる。  Then, the unprocessed material 4 is fitted and placed on the clamp surface 13 a of the lower clamp 13 while the rear end of the raw material 4 is brought into contact with the stopper 19 set at a predetermined position, and then the driving means 18 is operated. Then, lower the upper clamp 17 and clamp the material 4 with the upper and lower clamps 13 and 17 so as not to rotate. In addition, the rotation drive means 31 is operated to rotate the clamp device 12 so that the cylindrical axis X 4 of the material 4 sandwiched between the clamp device 12 and the axis X 5 of the rotary shaft 21 is parallel. Further, the driving means 16 is actuated, and the clamping device 12 is moved by the predetermined amount OF 1 (see FIG. 9A) so that the cylinder axis X 4 of the material 4 is parallel to the axis X 5 of the rotating shaft 21. Move and adjust in the Y direction so that it is eccentric (offset). Next, the ball spline shaft 8 is rotated in one direction by the driving means 9 to move the clamping device 12 to the right side in FIG. 1 along the X direction, and the material 4 is rolled in parallel with the cylinder shaft. 2 Advance the specified amount to the 4 side (to the right in Fig. 1) and move each roll 28 to the starting point A (see Fig. 9A) for reducing the diameter of the material 4.
この図 9 Aの状態から、 駆動手段であるモータ 2 2を駆動してロールホルダ 2 4を一方向へ回転するとともに駆動手段 2 5を作動してリングプレ一ト 2 6を前 進させて各ロール 2 8の公転軌跡をロールホルダ 2 4の中心方向へ閉移動させな がら、 かつ、 駆動手段 9を逆に駆動してボ一ルスプライン軸 8を先程とは逆方向 へ回転してクランプ装置 1 2を素材 4とともに X方向に沿って図 1の左方へ後退 させる。 From the state shown in FIG. 9A, the motor 22 as the driving means is driven to rotate the roll holder 24 in one direction, and the driving means 25 is operated to move the ring plate 26 forward. While closing the revolving locus of the roll 28 toward the center of the roll holder 24, the driving means 9 is driven in the reverse direction to move the ball spline shaft 8 in the opposite direction to the above. To retract the clamping device 12 together with the material 4 to the left in FIG. 1 along the X direction.
これにより、 各ロール 2 8は素材 4における外筒 4 Bの外周面に圧接して自由 に回転しながら筒軸 X 5を中心として公転するとともにその公転軌跡径が漸小し、 縮径開始点 Aから図 9 Bに示すようにスピユングカ卩ェされる。 このとき、 ロール 2 8の公転軸 X 5が素材 4の筒軸 X 4より O F 1だけ偏芯しているため、 スピ- ング加工された筒端は、 図 9 Bに示すように、 素材 4の素管部 (胴部) 4 aの筒 軸 X 4より O F 1だけ偏芯した公転軸 X 5を軸とする裁頭円錐状のテ一パ部 4 b に塑性変形される。  As a result, each of the rolls 28 revolves around the cylinder axis X5 while rotating freely while being pressed against the outer peripheral surface of the outer cylinder 4B of the material 4, and the diameter of the revolving locus gradually decreases, thereby starting the diameter reduction. As shown in Fig. 9B, A is spunjungka. At this time, since the revolution axis X5 of the roll 28 is eccentric by OF1 from the cylinder axis X4 of the material 4, the spinned cylinder end becomes the material 4 as shown in FIG. 9B. The cylindrical part (body part) of 4a is plastically deformed into a frusto-conical taper part 4b centered on a revolution axis X5 eccentric by OF1 from the axis X4.
また、 上記テ一パ部 4 bの成形後、 そのロール 2 8の閉位置を保持して素材 4 を引き続き後退させることにより、 テ一パ部 4 bの先部に、 素材 4の筒軸 X 4と 平行でかつ公転軸 X 5を軸とする円筒状の首部 4 cが塑性変形して形成される。 そして、 素材 4とロール 2 8を、 上記縮径移動の往動と逆の移動によって復動 させ、 この 1往復移動により第 1のスピニング加工工程が終了する。  After the taper portion 4b is formed, the roll 4 is kept closed and the material 4 is continuously retracted, so that the tip of the taper portion 4b is attached to the cylindrical shaft X of the material 4. A cylindrical neck portion 4c parallel to 4 and having the axis of revolution X5 as an axis is formed by plastic deformation. Then, the material 4 and the roll 28 are moved backward by the movement reverse to the forward movement of the diameter reduction movement, and the first reciprocating movement ends the first spinning process.
上記の第 1のスピニング加工工程の終了後、 各口一ル 2 8を開位置へ復帰させ るとともに、 駆動手段 9を作動してボ一ルスプライン軸 8を一方向に回転してク ランプ装置 1 2とともに素材 4をその筒軸と平行して更に所定量前進させ、 各口 —ル 2 8を図 9 Cの B点に位置させる。 また、 駆動手段 1 6を作動してボ一ルス プライン軸 1 5を一方向に回転し、 クランプ装置 1 2とともに素材 4を更に Y方 向へ所定量移動して、 図 9 Cに示すように、 素材 4の筒軸 X 4と回転シャフト 2 1の軸芯、 すなわちロール 2 8の公転軸 X 5との偏芯量 O F 2を上記偏芯量 O F 1より大さくする。  After the above-mentioned first spinning process is completed, each port 28 is returned to the open position, and the driving means 9 is operated to rotate the ball spline shaft 8 in one direction to thereby provide a clamping device. The material 4 is further advanced along with the cylinder axis by a predetermined amount together with 1 2, and each portal 28 is positioned at the point B in FIG. 9C. Further, the drive means 16 is operated to rotate the ball spline shaft 15 in one direction, and the material 4 is further moved in the Y direction by a predetermined amount together with the clamping device 12 as shown in FIG. 9C. The eccentricity OF2 between the cylinder axis X4 of the material 4 and the rotation shaft 21 of the rotary shaft 21, that is, the revolving axis X5 of the roll 28 is set to be larger than the eccentricity OF1.
そして、 この状態より、 ロール 2 8の閉移動量を上記第 1工程時よりも大きく して上記と同様なスピニンダカ卩ェを施す。 これにより、 テーパ部 4 bは、 素材 4 の素筒部 (胴部) 4 aの筒軸 X 4より O F 2量だけ偏芯した軸 X 5を中心とする 裁頭円錐形状で、 力つテーパ角が大きいテ一パ部 4 bに塑性変形される。 また、 上記テーパ部 4 bの成形後、 そのロール 2 8の閉位置を保持して素材 4を引き続 き後退させることにより、 テ一パ部 4 bの先部に、 上記図 9 Bよりも小径の首部 4 cが成形される。 以上の工程により、 端部 (図 8の右側部) に偏芯テ一パ部 4 bと偏芯首部 4 c を一体形成した縮径部 4 dが成形される。 Then, in this state, the amount of closing movement of the roll 28 is set to be larger than that in the first step, and the same spinning is performed. As a result, the tapered portion 4b has a frusto-conical shape centered on an axis X5 that is eccentric by an OF2 amount from the cylindrical axis X4 of the raw material 4 (body portion) 4a. It is plastically deformed into a tapered portion 4b with a large corner. Also, after forming the tapered portion 4b, the roll 4 is held at the closed position and the material 4 is continuously retracted, so that the tip of the taper portion 4b becomes A small diameter neck 4c is formed. Through the steps described above, the reduced diameter portion 4d in which the eccentric taper portion 4b and the eccentric neck portion 4c are integrally formed at the end (the right portion in FIG. 8) is formed.
前記スピニング加工においては、 外筒 4 Bが縮径変形するとともにその変形力 が固形介在物 4 Dを介して内筒 4 Aにも伝達し、 内外筒 4 A, 4 B及び固形介在 物 4 Dが同時変形する。  In the spinning process, the outer cylinder 4B is reduced in diameter and the deformation force is transmitted to the inner cylinder 4A via the solid inclusion 4D, and the inner and outer cylinders 4A and 4B and the solid inclusion 4D are deformed. Are simultaneously deformed.
すなわち、 内外筒 4 A, 4 Bの素筒部 4 aから縮径するテ一パ部 4 bと該テー パ部 4 bの先端から延出する首部 4 cが、 その内外筒 4 A, 4 B間に固形介在物 4 Dを挟持した状態で一連に形成される。  That is, the taper portion 4b, which is reduced in diameter from the elemental tube portion 4a of the inner and outer cylinders 4A, 4B, and the neck portion 4c extending from the tip of the taper portion 4b, are formed by the inner and outer cylinders 4A, 4B It is formed in a series with solid inclusions 4D sandwiched between B.
次に、 前記工程で成形された素材 4をクランプ装置 1 2より外し、 その軸方向 に反転させて、 再度クランプ装置 1 2により挟持し、 前記工程で加工された側と 反対側の素材 4の他方の筒端部を前記と同様にスピニング加工して縮径する。 なお、 このとき、 図 1において、 素材 4の筒軸 X 4と回転シャフト 2 1の軸芯 X 5を同芯上に位置してスピニング加工することにより、 図 8の左側部のような、 素筒部 4 aと同芯のテーパ部 4 bと首部 4 cが成形される。  Next, the material 4 formed in the above step is removed from the clamping device 12, inverted in the axial direction, and clamped again by the clamping device 12, and the material 4 on the side opposite to the side processed in the above step is removed. The other end of the cylinder is spinned in the same manner as described above to reduce the diameter. At this time, in FIG. 1, the cylindrical shaft X 4 of the raw material 4 and the axis X 5 of the rotary shaft 21 are positioned coaxially and spinning is performed, so that the element shown in the left side of FIG. A tapered portion 4b and a neck 4c concentric with the cylindrical portion 4a are formed.
そして、 前記の成形後、 その成形品をクランプ装置 1 2から取り外し、 前記第 3工程のまま固形介在物 4 Dを空隙 4 C内に残したままで最終製品としても良い し、 また、 図 8に示すように固形介在物 4 Dを除去し、 内外筒 4 A, 4 B間に空 隙 4 Cが形成されたものを最終製品としてもよレ、。  Then, after the molding, the molded product is removed from the clamp device 12 and the solid inclusion 4D may be left as it is in the void 4C as the final product as it is in the third step. As shown in the figure, the solid inclusion 4D was removed, and a void 4C was formed between the inner and outer cylinders 4A and 4B.
図 1 0は本発明による第 6実施例を示す。  FIG. 10 shows a sixth embodiment according to the present invention.
本第 6実施例は、 両端部の縮径部と首部を曲げスピニング加工する例を示す。 本実施例における製造工程について説明する。  The sixth embodiment shows an example in which a reduced diameter portion and a neck portion at both ends are bent and spinned. The manufacturing process in this embodiment will be described.
図 1及び図 2において、 縮径作業前においては、 リングプレート 2 6は、 図 1 に示す位置より右方に位置し、 各ロール 2 8は図 1 1 Aに示すように素材 4の外 径ょりも径方向で外側に退避している。  In FIG. 1 and FIG. 2, before the diameter reduction work, the ring plate 26 is located to the right of the position shown in FIG. 1, and each roll 28 has an outer diameter of the material 4 as shown in FIG. 11A. Yori also retreats outward in the radial direction.
そして、 前記図 4 Aと同様の素材 4をその素材 4の後端を所定位置にセットさ れたストツノ、 ° 1 9にっき当てながら、 下クランプ 1 3のクランプ面 1 3 a上に嵌 合載置し、 その後、 駆動手段 1 8を作動して上クランプ 1 7を下動し、 素材 4を 上下のクランプ 1 3, 1 7で回転しないように挟持する。 また、 駆動手段 1 6に よりクランプ装置 1 2の Y方向位置を、 図 1 1 Aに示すように、 回動駆動軸 3 1 aの軸芯の延長線が回転シャフト 2 1の軸芯 X 5の延長線と交差する位置に設定 する。 更に、 回動駆動手段 3 1を作動して図 1 1 Aに示すように、 素材 4の筒軸 X 4が回転シャフト 2 1の軸芯 X 5に対して所定量の角度 θ 1だけ水平方向に傾 くようにクランプ装置 1 2を水平に傾動する。 Then, a material 4 similar to that of FIG. 4A is fitted onto the clamp surface 13 a of the lower clamp 13 while the rear end of the material 4 is being stuck to a horn 19 ° set at a predetermined position. Then, the driving means 18 is operated to move the upper clamp 17 downward, and the material 4 is clamped by the upper and lower clamps 13 and 17 so as not to rotate. Further, as shown in FIG. 11A, the rotational drive shaft 3 1 Set the position where the extension of the axis of a crosses the extension of the axis X5 of the rotary shaft 21. Further, the rotation driving means 31 is actuated, and as shown in FIG. 11A, the cylindrical axis X 4 of the material 4 is horizontally moved by a predetermined angle θ 1 with respect to the axis X 5 of the rotating shaft 21. Tilt the clamp device 12 horizontally so that it tilts to the right.
次で、 駆動手段 9によりボールスプライン軸 8を一方向に回転して、 クランプ 装置 1 2を回転シャフト 2 1の軸芯 X 5と平行に X方向に沿って図 1の右側に移 動し、 図 1 1 Aに示すように、 素材 4の縮径開始点 Aに各ロール 2 8を位置させ る。  Next, the ball spline shaft 8 is rotated in one direction by the driving means 9, and the clamping device 12 is moved to the right side in FIG. 1 along the X direction in parallel with the axis X5 of the rotating shaft 21. As shown in FIG. 11A, each roll 28 is positioned at the starting point A of diameter reduction of the material 4.
この状態 (図 1 1 Aの状態) から、 駆動手段であるモータ 2 2を駆動してロー ルホルダ 2 4を一方向へ回転するとともに駆動手段 2 5を作動してリングプレー ト 2 6を前進させて各ロール 2 8の公転軌跡をロールホルダ 2 4の中心方向へ閉 移動させ、 かつ、 駆動手段 9を駆動してボールスプライン軸 8を先程とは逆方向 へ回転し、 クランプ装置 1 2を素材 4とともに X方向に沿って図 1の左方へ後退 させる。  From this state (the state shown in Fig. 11A), the motor 22 as the driving means is driven to rotate the roll holder 24 in one direction, and the driving means 25 is operated to advance the ring plate 26. To close the revolving locus of each roll 28 toward the center of the roll holder 24, and drive the driving means 9 to rotate the ball spline shaft 8 in the opposite direction to the previous one, and to clamp the material 12 With 4 move back to the left in Fig. 1 along X direction.
これにより、 各口一ル 2 8は素材 4の外周面に圧接して自由に回転しながら筒 軸 X 5を中心として公転するとともにその公転軌跡径が漸小し、 縮径開始点 Aか ら図 1 1 Bに示すようにスピエング加工される。 このとき、 素材 4の筒軸 X 4が ロール 2 8の公転軸 X 5に対して 0 1だけ傾斜しているため、 スピ -ング加工さ れた筒端は、 図 1 1 Bに示すように、 素材 4の素筒部 (胴部) 4 aの筒軸 X 4よ り Θ 1だけ傾斜した公転軸 X 5を軸とする裁頭円錐状のテ一パ部 4 bに塑性変形 される。  As a result, each port 28 presses against the outer peripheral surface of the material 4 and revolves around the cylinder axis X5 while rotating freely, and the diameter of the revolving locus gradually decreases. It is spun as shown in Figure 11B. At this time, since the cylinder axis X4 of the material 4 is inclined by 01 with respect to the revolving axis X5 of the roll 28, the spun cylinder end is as shown in Fig. 11B. The material 4 is plastically deformed into a frusto-conical taper portion 4b having an axis of revolution X5 inclined by Θ1 from the cylinder axis X4 of the material cylinder 4 (body portion) 4a.
また、 上記テーパ部 4 bの成形後、 そのロール 2 8の閉位置を保持して素材 4 を引き続き X方向に後退させることにより、 テーパ部 4 bの先部に、 ワーク 4の 筒軸 X 4と θ 1だけ傾斜した公転軸 X 5を軸とする円筒状の首部 4 cが塑性変形 して形成される。  After forming the tapered portion 4b, the roll 4 is held in the closed position, and the material 4 is continuously retracted in the X direction. And a cylindrical neck 4c having an axis of revolution X5 inclined by θ1 is formed by plastic deformation.
そして、 素材 4とロール 2 8を、 上記縮径移動の往動と逆の移動によって復動 させ、 この 1往復移動により第 1のスピニンダカ卩ェ工程が終了する。  Then, the material 4 and the roll 28 are moved backward by the movement reverse to the forward movement of the diameter reduction movement, and the first reciprocating movement completes the first spinning step.
上記の第 1のスピユング加工工程の終了後、 各ロール 2 8を開位置へ復帰させ、 駆動手段 9を作動してボールスプライン軸 8を一方向に回転してクランプ装置 1 2とともに素材 4を X方向に更に所定量前進させ、 各ロール 2 8を図 1 1 Cの B 点に位置させるとともに、 回転駆動軸 3 1を作動してクランプ装置 1 2とともに 素材 4を更に所定量傾動して、 図 1 1 Cに示すように、 素材 4の筒軸 X 4と回転 シャフト 2 1の軸芯、 すなわちロール 2 8の公転軸 X 5との角度 0 2を上記第 1 工程の角度 θ 1より大きくする。 After the above-described first spinning process, each roll 28 is returned to the open position, the driving means 9 is operated to rotate the ball spline shaft 8 in one direction, and the clamping device 1 is rotated. 2 and the material 4 is further advanced in the X direction by a predetermined amount, and each roll 28 is positioned at the point B in FIG. 11C, and the rotary drive shaft 31 is operated to further move the material 4 together with the clamping device 12. After tilting by a fixed amount, as shown in FIG. 11C, the angle 0 2 between the cylindrical axis X 4 of the material 4 and the axis of the rotating shaft 21, that is, the revolving axis X 5 of the roll 28, is set in the first step. The angle is larger than θ1.
そして、 この状態より、 ロール 2 8の閉移動量を上記第 1工程時よりも大きく して上記と同様なスピニング加工を施す。 これにより、 上記第 1工程で成形され たテ一パ部 4 bは、 素材 4の素筒部 (胴部) 4 aの筒軸 X 4より Θ 2だけ傾斜し た軸 X 5を中心とする裁頭円錐形状で、 かつテーパ角が大きいテ一パ部 4 bに塑 性変形される。 また、 上記テーパ部 4 bの成形後、 そのロール 2 8の閉位置を保 持して素材 4を引き続き X方向に後退させることにより、 テ一パ部 4 bの先部に、 上記の軸 X 5を中心とし、 かつ上記第 1工程よりも小径の首部 4 cが成形される。 以上の工程により、 図 1 2に示すような、 X 4を軸とする胴部 4 aの端部に、 軸 X 4に対して傾斜した軸 X 5を中心とするテ一パ部 4 bと首部 4 cを一体形成 した縮径部 4 dが成形される。 なお、 必ずしも回転駆動軸 3 1だけを基準に傾動 させる必要はなく、 回転駆動軸 3 1まわりの傾動と Xあるいはノおよび Y方向の 移動も組合せると、 一層成形の自由が増す。  Then, in this state, the amount of closing movement of the roll 28 is made larger than that in the first step, and the same spinning processing as described above is performed. As a result, the taper portion 4b formed in the first step is centered on the axis X5 which is inclined by よ り 2 from the cylinder axis X4 of the raw cylinder portion (body portion) 4a of the material 4. It is plastically deformed into a tapered part 4b with a frusto-conical shape and a large taper angle. After forming the tapered portion 4b, the roll 28 is maintained in the closed position and the material 4 is continuously retracted in the X direction. A neck 4c centering on 5 and having a smaller diameter than the first step is formed. By the above process, as shown in FIG. 12, the tapered portion 4b centered on the axis X5 inclined with respect to the axis X4 is attached to the end of the trunk 4a centered on the axis X4. A reduced diameter portion 4d integrally formed with the neck 4c is formed. In addition, it is not always necessary to tilt the rotary drive shaft 31 only as a reference. If the tilt around the rotary drive shaft 31 and the movement in the X, Y, and Y directions are combined, the freedom of molding is further increased.
次に、 上記の工程により、 縮径した素材 4を前後逆にして再度クランプ装置 1 2で挟持し、 上記と同様のスピニング加ェを行うことにより、 図 1 3に示すよう に、 両端に曲げスピニング加ェされたテーパ部 4 d, 4 £1及び首部4 4 cを 成形できる。 Next, the material 4 reduced in diameter by the above-described process is turned upside down, and is again sandwiched by the clamping device 12. By performing the same spinning process as above, the material 4 is bent to both ends as shown in FIG. 13. The spinned tapered portion 4d, 4 £ 1 and neck 44c can be formed.
そして、 前記の成形後に、 その製品をクランプ装置 1 2から取り出し、 そのま ま固形介在物 4 Dを空隙 3 C内に残したままで最終製品としても良いし、 また、 図 1 0に示すように固形介在物 4 Dを除去し、 内外筒 4 A, 4 B間に空隙 4 Cが 形成されたものを最終製品としても良い。  Then, after the above-mentioned molding, the product is taken out from the clamp device 12, and the solid inclusion 4D may be left as it is in the void 3C to obtain a final product as it is, or as shown in FIG. The solid product 4D may be removed and a void 4C formed between the inner and outer cylinders 4A and 4B may be used as the final product.
なお、 前記実施例における固形介在物 4 Dは、 熱可塑性樹脂を使用してもよい。 また、 この樹脂の代わりに断熱部材を用いてもよい。 この断熱部材を使用する場 合は、 前記素材 4における内筒 4 Aの外周に断熱部材を卷装固定した状態で外筒 4 Bに圧入することが好ましい。 更に、 消音器や触媒コンバータにおいては本来、 断熱材が必要であるので、 成 形加工後も前記の固形介在物 4 Dを除去する必要はない。 このような場合には固 形介在物 4 Dの除去の工程が省略できる。 The solid inclusions 4D in the above embodiment may use a thermoplastic resin. Further, a heat insulating member may be used instead of this resin. When this heat insulating member is used, it is preferable to press-fit the heat insulating member around the inner cylinder 4A of the raw material 4 into the outer cylinder 4B in a state of being fixedly wound. Furthermore, since a heat insulating material is originally required in a muffler or a catalytic converter, it is not necessary to remove the solid inclusions 4D even after the shaping. In such a case, the step of removing the solid inclusions 4D can be omitted.
更に、 固形介在物 4 Dとして、 空隙 4 C内に水を注入した後に氷結させた氷で も良く、 更に、 金属粒 (ショット) を用いても良い。 その他熱によって固体、 液 体に変化するもの、 例えば硝酸塩、 亜硝酸塩などの溶融塩他のものでも低融点の 金属およびその化合物でもよい。  Further, as the solid inclusions 4D, ice that has been frozen after water has been injected into the voids 4C may be used, and further, metal particles (shots) may be used. In addition, those which change into a solid or liquid by heat, such as molten salts such as nitrates and nitrites, and low melting point metals and compounds thereof may be used.
また、 前記実施例では芯金を内筒 4 A内に挿入したが、 外筒 4 B内に芯金を揷 入しても良い。  In the above embodiment, the core is inserted into the inner cylinder 4A, but the core may be inserted into the outer cylinder 4B.
また、 前記各実施例では、 スピニング加工時に素材 4側を筒軸方向へ移動した 、 素材 4を固定してスピニングロ一ラ 2 8を筒軸方向へ移動させるようにして もよいし、 両側とも移動させてもよい。 さらに、 ローラの駆動軌跡、 すなわち口 —ラを変形方向に連続的に制御する手段も任意である。  In each of the above embodiments, the material 4 may be moved in the cylinder axis direction during the spinning process, the material 4 may be fixed and the spinning roller 28 moved in the cylinder axis direction, or both sides may be moved. You may move it. Further, a means for continuously controlling the driving locus of the roller, that is, the roller in the deformation direction is optional.
また、 前記各実施例においては、 素材 4を固定してスピニングローラ 2 8を公 転させたが、 ロール駆動部 3の軸芯 X 5と素材駆動部 2の軸芯 X 4とが平行で同 一線上に設定されている場合には、 素材 4をその軸芯を中心として回転させると ともに芯金 5 1も同回転させ、 スピニングローラ 2 8を公転させることなく自由 に回転させ、 かつ径方向及び筒軸方向に移動させることにしてもよレ、。  In each of the above embodiments, the material 4 is fixed and the spinning roller 28 is revolved. However, the axis X5 of the roll driving unit 3 and the axis X4 of the material driving unit 2 are parallel and the same. If they are set on one line, the material 4 is rotated about its axis and the core metal 51 is also rotated, and the spinning roller 28 is freely rotated without revolving, and in the radial direction. And it may be moved in the cylinder axis direction.
また前記各実施例は自動車の排気系部品の容器への適用例であるが、 本発明は この他、 汎用容器やポット等日用品への適用などにも適用できるもので、 上記実 施例に用途を限定するものではない。  Each of the above embodiments is an example of application to a container of an exhaust system part of an automobile. However, the present invention is also applicable to a general-purpose container and a daily necessity such as a pot. Is not limited.
その一例として、 以下に図 1 4八 -図1 4 Eを参照して本発明の第 8実施例を 説明する。  As an example, an eighth embodiment of the present invention will be described below with reference to FIGS.
これは、 前記第 1実施例でその一端が閉じられた素材 4に本発明を適用する場 合の実施例で、 ポット、 ボンべ、 アキュムレータ等のあらゆる容器に適用可能で ある。  This is an embodiment in which the present invention is applied to the material 4 having one end closed in the first embodiment, and is applicable to all containers such as pots, cylinders, and accumulators.
図 1 4 Aの第 1工程として、 素材内筒 4 Aを外筒 4 B内に挿入する。 その後、 図 1 4 Bに示すように、 内外筒の間に空隙 4 Cを設けた状態で固形介在物 4 Dを 充填し、 図 1 4 Cに示す素材 4を形成する。 次に、 図 1 4 Dに示すように、 第 1実施例の図 4 Bと同様に、 この素材 4を前 記スピユング加工機のクランプ装置 1 2で挟持してその素材 4の一端部を縮径す る第 2工程を行う。 As the first step in FIG. 14A, the material inner cylinder 4A is inserted into the outer cylinder 4B. Thereafter, as shown in FIG. 14B, the solid inclusion 4D is filled in a state where a gap 4C is provided between the inner and outer cylinders to form the material 4 shown in FIG. 14C. Next, as shown in FIG. 14D, similarly to FIG. 4B of the first embodiment, this material 4 is clamped by the clamping device 12 of the above-mentioned spinning machine, and one end of the material 4 is contracted. Perform the second step of diameter reduction.
このスピユング加工によって、 外筒 4 Bが縮径変形すると共にその変形力が固 形介在物 4 Dを介して内筒 4 Aにも伝達し、 内外筒 4 A, 4 B及び固形介在物 4 Dが同時に変形する。  Due to this spying process, the outer cylinder 4B is reduced in diameter and the deformation force is transmitted to the inner cylinder 4A via the solid inclusion 4D, and the inner and outer cylinders 4A, 4B and the solid inclusion 4D are deformed. Are simultaneously deformed.
すなわち、 内外筒 4 A, 4 Bの素筒部 4 aから縮径するテーパ部 4 bと該テー パ部 4 bの先端から延出する首部 4 c力 その内外筒 4 A, 4 B間に固形介在物 4 Dを挟持した状態で一連に形成される。  That is, a tapered portion 4b that reduces in diameter from the elemental tube portion 4a of the inner and outer cylinders 4A and 4B, and a neck portion 4c that extends from the tip of the taper portion 4b between the inner and outer cylinders 4A and 4B. It is formed in a series with the solid inclusion 4D sandwiched.
次で、 図 1 4 Dに示す C部で内外筒 4 A, 4 Bを切断し、 捨て代部分 4 eを除 去する。  Next, the inner and outer cylinders 4A and 4B are cut at the part C shown in Fig. 14D, and the throwaway part 4e is removed.
上記スピユング加工の工程は、 必要により前記ローラの 1パス又は複数回のパ スで行うものである。  The above-mentioned spying process is performed in one pass or a plurality of passes of the roller as necessary.
また、 このスピニング加工時に芯金 5 1を挿入した場合には、 芯金 5 1の縮径 部 5 1 aにより首部 4 cの縮径加工が正確に行われる。 更に、 スピニングロ一ラ 2 8は図 1 4 Dに示すように、 芯金 5 1のテ一パ部 5 1 bに沿つて図の矢印のよ うに移動し、 芯金 5 1の大径部 5 1 cから外方へ離間する。  Further, when the core metal 51 is inserted during the spinning process, the neck portion 4c is accurately reduced in diameter by the reduced diameter portion 51a of the core metal 51. Further, as shown in FIG. 14D, the spinning roller 28 moves along the taper portion 51b of the core bar 51 as shown by the arrow in the figure, and the large diameter portion of the core bar 51. 5 Separate outward from 1 c.
以上により、 素材 4の一端部がスピニング加工により縮径される。  As described above, one end of the material 4 is reduced in diameter by spinning.
そして、 前記の成形加工後、 その成形品をクランプ装置 1 2から取り外し、 前 記第 3工程のまま固形介在物 4 Dを空隙 3 C内に残したままで最終製品としても 良いし、 また、 図 1 4 Eに示すように、 第 4工程として、 固形介在物 4 Dを除去 し、 内外筒 4 A, 4 B間に空隙 4 Cが形成されたものを最終製品としてもよい。 このようにして、 一端部の閉鎖された容器が形成される。  Then, after the molding process, the molded product is removed from the clamp device 12, and the solid inclusion 4 D may be left as it is in the void 3 C as a final product as it is in the third step. As shown in 14E, as a fourth step, the solid inclusion 4D may be removed, and a void 4C formed between the inner and outer cylinders 4A and 4B may be used as a final product. In this way, a closed container at one end is formed.
産業上の利用効果  Industrial utilization effects
以上のようであるから、 本発明の第 1の面によれば、 内外筒の間に空隙を有す る二重構造容器を、 内外管同時のスピニング加工で内外筒を同時に所望断面に変 形して成形できるため、 従来に比べて加工の容易化及び加工時間の短縮が可能に なり、 加工コストも大幅に低減できる。  As described above, according to the first aspect of the present invention, a double-structured container having a gap between the inner and outer cylinders is simultaneously transformed into a desired cross section by simultaneously spinning the inner and outer tubes. Since it is possible to perform molding in a simple manner, processing can be facilitated and processing time can be shortened compared to the conventional method, and processing costs can be significantly reduced.
本発明の第 2の面によれば、 外筒内に内筒を空隙を保って配し、 該空隙におけ る筒軸方向の少なくとも一区間に固形介在物を挟持した状態でスピニングロ—ラ を公転させて外筒へスピニング加工を施し、 内筒と外筒の断面を、 内外筒の素材 の筒軸に対して偏芯的に同時に変化させるようにしたことによって、 素材の筒軸 に対して偏芯的に変化した内外筒を、 前記の効果を有して製造できる。 According to the second aspect of the present invention, the inner cylinder is disposed inside the outer cylinder while maintaining a gap, and the inner cylinder is disposed in the gap. The spinning roller revolves while the solid inclusion is sandwiched in at least one section in the cylinder axis direction to spin the outer cylinder, and the cross section of the inner cylinder and the outer cylinder is changed to the cylinder axis of the material of the inner and outer cylinders. On the other hand, by changing the eccentricity at the same time, the inner and outer cylinders eccentrically changed with respect to the cylinder axis of the material can be manufactured with the above-described effects.
本発明の第 3の面によれば、 外筒内に内筒を空隙を保って配し、 該空隙におけ る筒軸方向の少なくとも一区間に固形介在物を挟持させ、 内外筒の素材の筒軸を スピニングロ一ラの軸芯に対し傾斜させかつスピニングロ一ラを公転させて外筒 ヘスピニング加工を施し、 内筒と外筒の断面を、 内外筒の素材の筒軸に対して傾 斜的に曲げ変化させるようにしたことによって、 素材の筒軸に対して曲げ変化し た内外筒を、 前記の効果を有して製造できる。  According to the third aspect of the present invention, the inner cylinder is disposed inside the outer cylinder while maintaining a gap, and a solid inclusion is sandwiched in at least one section in the cylinder axis direction in the gap, and the material of the inner and outer cylinders is formed. The cylinder axis is inclined with respect to the axis of the spinning roller, and the spinning roller revolves around the outer cylinder to perform the spinning process, and the cross section of the inner cylinder and the outer cylinder is adjusted to the cylinder axis of the material of the inner and outer cylinders. By making the bending change obliquely, the inner and outer cylinders bent and changed with respect to the cylinder axis of the material can be manufactured with the above-mentioned effects.
本発明によれば、 更に、 芯金によって内外筒の過変形を防止でき、 所望の断面 形状が確実に得られる。 更に芯金の配置を選択することによって、 内外筒の変形 量を変えて違う断面形状に成形することができ、 内外管同時のスピニング加工で 内外筒の断面形状を異ならせることも可能となる。  According to the present invention, furthermore, the core metal can prevent the inner and outer cylinders from being over-deformed, and the desired cross-sectional shape can be reliably obtained. Furthermore, by selecting the arrangement of the core metal, it is possible to change the deformation amount of the inner and outer cylinders to form different cross-sectional shapes, and it is also possible to make the cross-sectional shapes of the inner and outer cylinders different by performing the spinning process on the inner and outer tubes simultaneously.
本発明において、 更に内筒と外筒の少なくとも一方に、 少なくとも一区間にお いて芯金を挿入することによって、 固形介在物の充填及び除去作業が容易かつ迅 速に行え、 作業能率の向上を図ることができる。  In the present invention, furthermore, by inserting a core metal into at least one section of at least one of the inner cylinder and the outer cylinder, the work of filling and removing solid inclusions can be performed easily and promptly, thereby improving work efficiency. Can be planned.

Claims

請求の範囲 The scope of the claims
1 . 外筒内に内筒を空隙を保って配し、 該空隙における筒軸方向の少なぐとも 一区間に固形介在物を挟持させ、 その状態で外筒へスピユング加工を施して、 内 筒と外筒の横断面を同時に変化させることを特徴とする二重構造容器の製造方法。 1. The inner cylinder is arranged inside the outer cylinder while maintaining a gap, and a solid inclusion is sandwiched in at least one section of the gap in the cylinder axis direction. In this state, the outer cylinder is subjected to a spying process to form an inner cylinder. And simultaneously changing the cross section of the outer cylinder.
2 . 前記スピユング加工の前に、 内筒と外筒の少なくとも一方に、 少なくとも 一区間において芯金を挿入することを特徴とする請求項 1に記載の二重構造容器 の製造方法。  2. The method according to claim 1, wherein a cored bar is inserted into at least one section of at least one of the inner cylinder and the outer cylinder before the spinning process.
3 . 前記固形介在物が加熱溶融性樹脂又は熱可塑性樹脂或いは溶融塩の固化状 態であることを特徴とする請求項 2に記載の二重構造容器の製造方法。  3. The method according to claim 2, wherein the solid inclusion is a solidified state of a heat-meltable resin, a thermoplastic resin, or a molten salt.
4 . 固形介在物が加熱溶融性樹脂又は熱可塑性樹脂或いは溶融塩の固化状態で あることを特徴とする請求項 1に記載の二重構造容器の製造方法。  4. The method for producing a double-structure container according to claim 1, wherein the solid inclusion is in a solidified state of a heat-meltable resin, a thermoplastic resin, or a molten salt.
5 . 外筒内に内筒を空隙を保って配し、 該空隙における筒軸方向の少なくとも 一区間に固形介在物を挟持させ、 その状態でスピニングロ一ラを公転させて外筒 ヘスピニング加工を施し、 内筒と外筒の断面を、 内外筒の素材の筒軸に対して偏 芯的に同時に変化させるようにしたことを特徴とする二重構造容器の製造方法。  5. The inner cylinder is arranged inside the outer cylinder with a gap, and solid inclusions are sandwiched in at least one section of the gap in the direction of the cylinder axis. In this state, the spinning roller revolves to spin the outer cylinder. Wherein the cross section of the inner cylinder and the outer cylinder is simultaneously changed eccentrically with respect to the cylinder axis of the material of the inner and outer cylinders.
6 . 前記スピニング加工の前に、 内筒と外筒の少なくとも一方に、 少なくとも 一区間において芯金を挿入することを特徴とする請求項 5に記載の二重構造容器 の製造方法。  6. The method according to claim 5, wherein a cored bar is inserted into at least one section of at least one of the inner cylinder and the outer cylinder before the spinning process.
7 . 固形介在物が加熱溶融性樹脂又は熱可塑性樹脂或いは溶融塩の固化状態で あることを特徴とする請求項 6に記載の二重構造容器の製造方法。  7. The method for producing a double-structure container according to claim 6, wherein the solid inclusion is in a solidified state of a heat-meltable resin, a thermoplastic resin, or a molten salt.
8 . 固形介在物が加熱溶融性樹脂又は熱可塑性樹脂或いは溶融塩の固化状態で あることを特徴とする請求項 5に記載の二重構造容器の製造方法。  8. The method for producing a double structure container according to claim 5, wherein the solid inclusion is in a solidified state of a heat-meltable resin, a thermoplastic resin, or a molten salt.
9 . 外筒内に内筒を空隙を保って配し、 該空隙における筒軸方向の少なくとも 一区間に固形介在物を挟持させ、 内外筒の素材の筒軸をスピニングローラの軸芯 に対し傾斜させかつスピニングロ一ラを公転させて外筒ヘスピニング加工を施し、 内筒と外筒の断面を、 内外筒の素材の筒軸に対して傾斜的に曲げ変化させるよう にしたことを特徴とする二重構造容器の製造方法。  9. The inner cylinder is disposed inside the outer cylinder with a gap kept therebetween, and solid inclusions are sandwiched in at least one section of the gap in the cylinder axis direction, and the cylinder axis of the material of the inner and outer cylinders is inclined with respect to the axis of the spinning roller. The outer cylinder is revolved and the outer cylinder is revolved to spin the outer cylinder, and the cross section of the inner cylinder and the outer cylinder is bent and inclined with respect to the cylinder axis of the material of the inner and outer cylinders. Method for manufacturing a double-structured container.
1 0 . 前記スピユング加工の前に、 内筒と外筒の少なくとも一方に、 少なくと も一区間において芯金を揷入することを特徴とする請求項 9に記載の二重構造容 器の製造方法。 10. At least one of the inner cylinder and the outer cylinder should be at least 10. The method for producing a double-structured container according to claim 9, wherein a core is introduced in one section.
1 1 . 固形介在物が加熱溶融性樹脂又は熱可塑性樹脂或いは溶融塩の固化状態 であることを特徴とする請求項 1 0に記載の二重構造容器の製造方法。  11. The method for producing a double-structured container according to claim 10, wherein the solid inclusion is in a solidified state of a heat-meltable resin, a thermoplastic resin, or a molten salt.
1 2 . 固形介在物が加熱溶融性樹脂又は熱可塑性樹脂或いは溶融塩の固化状態 であることを特徴とする請求項 9に記載の二重構造容器の製造方法。  12. The method for producing a double structure container according to claim 9, wherein the solid inclusion is in a solidified state of a heat-meltable resin, a thermoplastic resin, or a molten salt.
PCT/JP1999/005184 1998-09-24 1999-09-22 Production method for double-structure container WO2000016924A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP99944778A EP1025923A1 (en) 1998-09-24 1999-09-22 Production method for double-structure container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10269447A JP2957176B1 (en) 1998-09-24 1998-09-24 Manufacturing method of double structure container
JP10/269447 1998-09-24

Publications (1)

Publication Number Publication Date
WO2000016924A1 true WO2000016924A1 (en) 2000-03-30

Family

ID=17472565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005184 WO2000016924A1 (en) 1998-09-24 1999-09-22 Production method for double-structure container

Country Status (3)

Country Link
EP (1) EP1025923A1 (en)
JP (1) JP2957176B1 (en)
WO (1) WO2000016924A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092696A3 (en) * 2000-06-02 2002-03-14 Toyota Motor Co Ltd Hollow product, fluid processing system and joining method of hollow members
CN101745577B (en) * 2008-12-17 2012-06-20 北京有色金属研究总院 Spinning processing method of carbon steel lining stainless steel composite pipe
CN112570803A (en) * 2020-12-28 2021-03-30 杭州加分贸易有限公司 Circular cutting structure for vacuum cup production
CN114260384A (en) * 2021-12-16 2022-04-01 浙江保康电器有限公司 Manufacturing process of waste-free chamfering vacuum cup for online detection of vacuum degree
CN114433702A (en) * 2021-12-27 2022-05-06 西安泰金工业电化学技术有限公司 Silver-plated spinning titanium cylinder with good conductivity
RU2799823C1 (en) * 2022-09-20 2023-07-12 Акционерное общество "Научно-производственное объединение "СПЛАВ" им. А.Н. Ганичева Method for manufacturing steel complex-shaped shells

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3738828B2 (en) 2001-01-19 2006-01-25 トヨタ自動車株式会社 Double tube structure hollow member, method for producing the same, and fluid treatment system using double tube structure hollow member
JP2002227640A (en) * 2001-02-02 2002-08-14 Sankei Kogyo Kk Exhaust emission control device
JP4396803B2 (en) 2001-05-15 2010-01-13 トヨタ自動車株式会社 Hollow product manufacturing method and manufacturing apparatus thereof
FR2826301B1 (en) * 2001-06-20 2003-10-24 Faurecia Sys Echappement METHOD FOR MANUFACTURING A STAGE ELEMENT OF AN EXHAUST LINE AND STAGE ELEMENT OBTAINED
JP4003056B2 (en) 2001-10-09 2007-11-07 トヨタ自動車株式会社 Spinning molding method and spinning molding apparatus
US6983632B2 (en) * 2002-11-20 2006-01-10 Hess Engineering, Inc. Method and apparatus for spinning to a constant length
JP2006346695A (en) * 2005-06-14 2006-12-28 National Institute Of Advanced Industrial & Technology Spinning method
JP5281900B2 (en) * 2006-02-22 2013-09-04 ヘス エンジニアリング,インコーポレーテッド. Spinning device
EP2077132A1 (en) 2008-01-02 2009-07-08 Boehringer Ingelheim Pharma GmbH & Co. KG Dispensing device, storage device and method for dispensing a formulation
JP5339513B2 (en) * 2009-01-23 2013-11-13 日新製鋼株式会社 Spinning method
EP2236224B1 (en) 2009-03-30 2013-03-06 Boehringer Ingelheim International GmbH Forming tool with a rotatable basis body for forming an inhalator cartridge and use of such a tool
EP2236227B1 (en) * 2009-03-30 2013-12-18 Boehringer Ingelheim International GmbH Forming tool with a rotatable base body
JP5670421B2 (en) 2009-03-31 2015-02-18 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Component surface coating method
EP2432531B1 (en) 2009-05-18 2019-03-06 Boehringer Ingelheim International GmbH Adapter, inhalation device and nebulizer
JP5658268B2 (en) 2009-11-25 2015-01-21 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Nebulizer
US10016568B2 (en) 2009-11-25 2018-07-10 Boehringer Ingelheim International Gmbh Nebulizer
WO2011064164A1 (en) 2009-11-25 2011-06-03 Boehringer Ingelheim International Gmbh Nebulizer
WO2011160932A1 (en) 2010-06-24 2011-12-29 Boehringer Ingelheim International Gmbh Nebulizer
CN102000729A (en) * 2010-10-18 2011-04-06 哈尔滨工业大学 Heavy mandrel support device for horizontal spinning machine
US8609030B2 (en) 2011-03-04 2013-12-17 Tenneco Automotive Operating Company Inc. Exhaust aftertreatment device with integrated shell and baffle
US8776509B2 (en) * 2011-03-09 2014-07-15 Tenneco Automotive Operating Company Inc. Tri-flow exhaust treatment device with reductant mixing tube
CN102172702B (en) * 2011-03-09 2012-08-22 上海普丽盛包装股份有限公司 Manufacturing method of spinning seal head and seal ring
EP2694220B1 (en) 2011-04-01 2020-05-06 Boehringer Ingelheim International GmbH Medical device comprising a container
US9827384B2 (en) 2011-05-23 2017-11-28 Boehringer Ingelheim International Gmbh Nebulizer
CN102430659A (en) * 2011-10-21 2012-05-02 中山市奥美森工业技术有限公司 Sealing machine
WO2013152894A1 (en) 2012-04-13 2013-10-17 Boehringer Ingelheim International Gmbh Atomiser with coding means
CN103252398B (en) * 2013-05-27 2015-04-08 洛阳大智实业有限公司 Appearance processing device for large-caliber overlong thin-wall tubing and application method thereof
CN103252650B (en) * 2013-05-27 2015-07-29 洛阳大智实业有限公司 A kind of large-caliber thin-walled non-ferrous metal tube processing unit (plant) and application process thereof
CN103316950B (en) * 2013-05-27 2015-02-11 洛阳大智实业有限公司 Spinning forming device for large-diameter thin-walled pipes and application method thereof
CN103252397B (en) * 2013-05-27 2015-02-11 洛阳大智实业有限公司 Spinning device for large-caliber overlong thin-wall tubing and application method thereof
ES2836977T3 (en) 2013-08-09 2021-06-28 Boehringer Ingelheim Int Nebulizer
US9744313B2 (en) 2013-08-09 2017-08-29 Boehringer Ingelheim International Gmbh Nebulizer
CN103600002B (en) * 2013-11-21 2016-08-24 沧州市螺旋钢管集团有限公司 A kind of large-diameter steel pipe general rotary extrusion type spinning pipe end expander
WO2015169430A1 (en) 2014-05-07 2015-11-12 Boehringer Ingelheim International Gmbh Nebulizer
EA032850B1 (en) 2014-05-07 2019-07-31 Бёрингер Ингельхайм Интернациональ Гмбх Container, nebulizer and method of making a container
PT3139979T (en) 2014-05-07 2023-09-28 Boehringer Ingelheim Int Container, nebulizer and use
CN104998963A (en) * 2015-07-09 2015-10-28 阜阳三环管桩有限公司 Sheet iron pipe package structure
DE102019109183A1 (en) * 2019-04-08 2020-10-08 Winkelmann Powertrain Components GmbH & Co. KG. Method for manufacturing a hollow shaft
DE102021127200B3 (en) 2021-10-20 2022-12-08 Thyssenkrupp Steel Europe Ag Method and flow-forming machine for producing a flow-formed hollow shaft
CN114178370A (en) * 2021-11-08 2022-03-15 苏州华源中鲈包装有限公司 Rib carving structure for tank body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101465A (en) * 1992-09-22 1994-04-12 Nissan Motor Co Ltd Double pipe catalyst converter
JPH09108576A (en) * 1995-10-16 1997-04-28 Calsonic Corp Metal carrier of catalyst converter
EP0916428A2 (en) * 1997-11-18 1999-05-19 Sango Co., Ltd. Method and apparatus for forming an end portion of a cylindrical member
EP0916426A1 (en) * 1997-11-11 1999-05-19 Sango Co., Ltd. Method and apparatus for forming an end portion of a cylindrical member
JPH11336537A (en) * 1998-05-28 1999-12-07 Sango Co Ltd Exhaust system parts and manufacture therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101465A (en) * 1992-09-22 1994-04-12 Nissan Motor Co Ltd Double pipe catalyst converter
JPH09108576A (en) * 1995-10-16 1997-04-28 Calsonic Corp Metal carrier of catalyst converter
EP0916426A1 (en) * 1997-11-11 1999-05-19 Sango Co., Ltd. Method and apparatus for forming an end portion of a cylindrical member
EP0916428A2 (en) * 1997-11-18 1999-05-19 Sango Co., Ltd. Method and apparatus for forming an end portion of a cylindrical member
JPH11336537A (en) * 1998-05-28 1999-12-07 Sango Co Ltd Exhaust system parts and manufacture therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092696A3 (en) * 2000-06-02 2002-03-14 Toyota Motor Co Ltd Hollow product, fluid processing system and joining method of hollow members
US7219933B2 (en) 2000-06-02 2007-05-22 Toyota Jidosha Kabushiki Kaisha Hollow product, fluid processing system and joining method of hollow members
CN101745577B (en) * 2008-12-17 2012-06-20 北京有色金属研究总院 Spinning processing method of carbon steel lining stainless steel composite pipe
CN112570803A (en) * 2020-12-28 2021-03-30 杭州加分贸易有限公司 Circular cutting structure for vacuum cup production
CN112570803B (en) * 2020-12-28 2022-08-02 杭州加分贸易有限公司 Circular cutting structure for vacuum cup production
CN114260384A (en) * 2021-12-16 2022-04-01 浙江保康电器有限公司 Manufacturing process of waste-free chamfering vacuum cup for online detection of vacuum degree
CN114260384B (en) * 2021-12-16 2024-06-07 浙江保康电器有限公司 Manufacturing process of waste-free chamfering vacuum cup capable of detecting vacuum degree on line
CN114433702A (en) * 2021-12-27 2022-05-06 西安泰金工业电化学技术有限公司 Silver-plated spinning titanium cylinder with good conductivity
RU2799823C1 (en) * 2022-09-20 2023-07-12 Акционерное общество "Научно-производственное объединение "СПЛАВ" им. А.Н. Ганичева Method for manufacturing steel complex-shaped shells

Also Published As

Publication number Publication date
JP2000094050A (en) 2000-04-04
EP1025923A1 (en) 2000-08-09
JP2957176B1 (en) 1999-10-04

Similar Documents

Publication Publication Date Title
WO2000016924A1 (en) Production method for double-structure container
JP2957154B2 (en) Pipe end forming method and apparatus
CN103402664B (en) The method and apparatus be out of shape for making pipeline section
KR100492486B1 (en) Method and apparatus for forming end of pipe material
JP2957153B2 (en) Pipe end forming method and apparatus
JP4899227B2 (en) Pipe processing apparatus and method
JP5192038B2 (en) Apparatus and method for axially forming elongated hollow body
JPS6240181B2 (en)
JP4647056B2 (en) Tube forming method and forming apparatus
US6591498B2 (en) Method of producing a catalytic converter
CN1907641A (en) Manufacturing process of steeliness wheel rim without welding line and with inner tube
JP4086394B2 (en) End material forming method and apparatus for tube material
JP3367939B2 (en) Manufacturing method of catalytic converter
US5412869A (en) Making a cell for a motor-vehicle latent-heat storage unit
JP4116723B2 (en) End forming method for tube material
JP3679376B2 (en) Method for manufacturing exhaust treatment apparatus for holding columnar body through buffer member in cylindrical member
EP0575112B1 (en) Method for forming an annular member
JPH0811261B2 (en) Method and apparatus for bottoming a bottle-shaped metal container
US4243401A (en) Apparatus for producing double-walled heat insulating containers
CN210996335U (en) Special steel pipe integrated into one piece mould of support
JPH01206026A (en) Manufacture of electrofusion coupling
JP2000317533A (en) Catalyst converter container, and its manufacture
JP2002292432A (en) Manufacturing method for stepped pipe
JP2003010935A (en) Hollow member, manufacturing method therefor, and fluid circulation system using the hollow member
JP3863714B2 (en) Method for manufacturing metal catalytic converter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999944778

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09554926

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999944778

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999944778

Country of ref document: EP