WO2000012608A1 - Compositions resineuses de polycetone ignifugeantes - Google Patents
Compositions resineuses de polycetone ignifugeantes Download PDFInfo
- Publication number
- WO2000012608A1 WO2000012608A1 PCT/US1999/017224 US9917224W WO0012608A1 WO 2000012608 A1 WO2000012608 A1 WO 2000012608A1 US 9917224 W US9917224 W US 9917224W WO 0012608 A1 WO0012608 A1 WO 0012608A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- weight
- parts
- flame retardant
- phosphorous
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/5399—Phosphorus bound to nitrogen
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/0373—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
Definitions
- Polymer compositions comprising polymers of carbon monoxide and at least one olefin are generally known in the art. Of particular interest in such compositions are polymer components comprising linear alternating polymers of carbon monoxide and one or more olefins, hereafter referred to as polyketones.
- Polymer compositions comprising a polyketone polymers and flame retardant additives are also known in the art and have been described, for example, in U.S. Patents U.S. 4,761,449; U.S. 4,885,318; U.S. 4,885,328; U.S. 4,921,897; U.S. 5,030,674 and U.S. 5,633,301.
- U.S. Patent 5,030,674 discloses the use of a combination of a cyclic phosphonate ester and a polytetrafluoroethylene resin as flame retardant additives in polyketone polymer compositions.
- U.S. Patents U.S. 4,761,449; U.S. 4,885,318; U.S. 4,885,328; U.S. 4,921,897; U.S. 5,030,674 and U.S. 5,633,301.
- U.S. Patent 5,030,674 discloses the use of a combination of a cyclic
- Patent 5,633,301 discloses the use of a combination of a bicyclic phosphorous compound, e.g., bis(pentaerythritol phosphate alcohol) carbonate and an intumescent flame retardant compound containing nitrogen and phosphorous, e.g., melamine phosphate, as flame retardant additives in polyketone polymer compositions.
- the composition may also optionally include an aryl group-containing monophosphate ester compound, e.g., triphenyl phosphate, which is said to enhance the processability of the composition.
- Polyketone polymer compositions can also be made flame retardant by the inclusion of halogenated organic flame retardants and/or by inclusion of inorganic metal oxides, hydroxides and carbonates in the polymer composition.
- Halogenated organic compounds generate toxic halogen gases 5 when subjected to burning and it is thus environmentally desirable to avoid the use of these materials, particularly at the higher levels of addition needed to achieve flame retardant properties.
- Inorganic metal compounds tend to increase the density of the polyketone polymer composition and their use at higher levels tends to markedly affect the physical, mechanical and melt l o stability of the polymer composition.
- the present invention provides new compositions having flame retardant properties which are more friendly to the environment and which possess good physical and mechanical properties.
- This invention relates to flame retardant polyketone polymer
- At least one phosphorous-containing flame retardant 20 parts by weight of at least one phosphorous-containing flame retardant; c) 0 to 30 parts by weight of at least one supplemental flame retardant selected from the group consisting of metal borates, metal hydroxides, metal oxides and metal carbonates; d) 0 to 40 parts by weight of at least one reinforcing filler; and e) 0 to 5 parts by weight of at least one anti-dripping agent which
- compositions in accordance with this invention exhibit good flame retardant properties while maintaining a good balance in mechanical
- polymers used in the polymer compositions of the invention are meant to include all polymers containing units derived from carbon monoxide and units derived from one or more olefins.
- This definition includes both random polymers produced by radical polymerization and linear alternating polymers, hereafter all referred to as polyketones. Suitable polyketones and processes for their preparation have been described in European Patent Applications 121,965; 181,044; 222,454 and 257,663, as well as U.S. Patents 4,885,318 and 4,921,897.
- Suitable olefm units are those derived from C2 to C12 alpha-olefins and substituted derivatives thereof or styrene or alkyl substituted derivatives of styrene. It is preferred that such olefins are selected from C2 to C6 normal alpha-olefins and it is particularly preferred that the olefm units are derived from ethylene and most preferably from a mixture of ethylene and one or more C3 to C6 normal alpha-olef ⁇ n(s), especially propylene. In these most preferable materials it is further preferred that the molar ratio of ethylene units to C3 to C6 normal alpha-olefm units is greater than or equal to 1 , most preferably between 2 to 30.
- the polyketones described above are suitably prepared by the processes described in EP 121965 or modifications thereof.
- this comprises reacting carbon monoxide and the chosen olef ⁇ n(s) at elevated temperature and pressure with a catalyst which is preferably comprised of palladium, a bidentate phosphine, such as bis(diphenylphosphino)propane, and an anion which either does not coordinate to the palladium or coordinates only weakly.
- a catalyst which is preferably comprised of palladium, a bidentate phosphine, such as bis(diphenylphosphino)propane, and an anion which either does not coordinate to the palladium or coordinates only weakly.
- a catalyst which is preferably comprised of palladium, a bidentate phosphine, such as bis(diphenylphosphino)propane, and an anion which either does not coordinate to the palladium or coordinates only weakly.
- examples of such anions include
- polyketones with a molecular weight (average by number) from about 1,000 to 200,000, particularly of about 10,000 to 150,000, and containing substantially equimolar quantities of carbon monoxide and olefinic units derived from one or more olefins.
- the polymer compositions of the invention may further be mixed with other polymers such as polycarbonates and polyesters such as polyethylene terephthalates or polybutyleneterephthalates. It is also possible to add polymers to improve to the impact strength (impact modifiers).
- Impact modifiers usually comprise a rubbery part and some other comonomers. Examples are the vinylaromatic-rubbery diblock and triblock copolymers and so-called graft copolymers comprising a rubbery backbone upon which one or more monomers have been grafted.
- compositions of this invention will generally contain from about 40 to 90 parts by weight, more preferably from about 50 to 85 parts by weight of the polyketone polymer, per 100 parts by weight of the total polymer composition.
- Suitable such compounds include dicarboxylic acid imides including phthalimide, succinimide and salts thereof; urea and urea derivatives such as urea peroxide and urea phosphoric acid; uric acid; glycoluril; cyanuric acid and tautomer analogs thereof such as ammeline and ammelide; melamine cyanurate; allophanate; barbituric acid; allantoin; theophylline; and like nitrogen containing compounds. Most preferred compounds are those were the carboxy carbon and nitrogen atoms form part of a heterocyclic ring structure. Preferred 00/12608
- compounds include cyanuric acid, melamine cyanurate, uric acid and glycoluril.
- the nitrogen-containing compounds are preferably used in combination with one or more phosphorous-containing compounds as described below, since the combination appears to impart better flame retardant properties than where either component is used alone. However improved flame retardant properties can be achieved where the phosphorous-containing component is not present in the composition.
- the nitrogen-containing compounds are included in the composition at a level of about 1 to 50 parts by weight, more preferably from about 10 to 30 parts by weight, per 100 parts by weight of the total polymer composition.
- the polyketone polymer compositions also preferably contain one or a mixture of phosphorous- containing compounds which tend to reduce the burning behavior (burning time) properties of the polymer and also may decrease the amount of combustible volatiles generated when the polymer is subjected to burning conditions.
- Suitable phosphorous-containing materials include inorganic phosphorous compounds such as red phosphorous and ammonium phosphate.
- the phosphoramides useful in the invention include at least one phosphoramide of the formula:
- R 1 is an amine residue
- R 2 and R 3 are independently an alkoxy residue, aryloxy residue, aryloxy residue containing at least one alkyl or one halogen substitution or mixture thereof, or amine residue.
- the phosphoramide have a glass transition point of at least about 0°C, preferably of at least about 10°C, and most preferably of at least about 20°C.
- Another phosphoramide comprises a phosphoramide having a glass transition temperature of at least about 0°C, preferably of at least about 10°C, and most preferably of at least about 20°C, of the formula:
- each A is independently phenyl, 2,6-dimethylphenyl, or 2,4,6- trimethylphenyl.
- phosphorous containing compounds which may be used include bicyclic (pentaerythritol phosphate alcohol) carbonates and alkyl diaryl phosphates of the type disclosed in U.S. Patent 5,633,301 , the complete disclosure of which is incorporated herein by reference.
- Preferred phosphorous - containing compounds are phosphine oxides, phosphonate esters, phosphinate esters, phosphoramides and (di)phosphates.
- a phosphorous-containing compound is present in the composition, it may be included at a flame retarding level, preferably the range of about 0.5 to 25 parts by weight, more preferably from about 1 to 15 parts by weight, per 100 parts by weight of the total polymer composition.
- composition of this invention may also contain other supplemental flame retardant additives which may serve as fillers and which at higher levels supplement the flame retardant properties of the nitrogen and phosphorous-containing flame retardants.
- supplemental flame retardant additives include borates such as zinc or barium borate; metal hydroxides; metal oxides; metal carbonates; and mixtures thereof.
- Suitable metal hydroxides and carbonates include alkaline earth metal hydroxides such as beryllium, magnesium, calcium, strontium and barium hydroxides, most preferably magnesium hydroxide. Pseudo-boehmite (an aluminum-oxide-hydroxide mineral) is also preferred since it functions as both a melt stabilizer for the polymer and at higher levels as a flame retardant.
- Suitable metal carbonates include alkaline earth metal carbonates such as calcium carbonate and partially hydrated magnesium-calcium carbonate.
- Suitable metal oxides which may be used include alumina (aluminum oxide), antimony oxide and zinc oxide When used in the composition, these supplemental additives are present at a level of from about 0.5 to 30 parts by weight, more preferably from 5 to 25 parts by weight, per 100 parts by weight of the total polymer composition.
- compositions of this invention may also contain one or a mixture of reinforcing filler.
- Suitable fillers include silica; silicates such as talc or mica; carbon black; and reinforcing fibers, such as carbon fiber, aramide fiber or glass fiber.
- Glass fibers may be composed of E-glass or alkali metal silicate glass and may comprise short, chopped glass fibers with a circular cross section ranging in diameter from about 2x10 "4 to 8x10 " inch and about 0.2 to 2 cm in length. Such glass fibers are normally supplied by the manufacturers with a surface treatment compatible with the polymer component of the composition, such as a siloxane or polyurethane sizing.
- the reinforcing filler is normally included at a level of from about 1 to 40 parts by weight, more preferably from about 5 to 35 parts by weight, per 100 parts by weight of the total polymer composition.
- composition of this invention may also include one or more anti- dripping agents which have the properties of preventing or retarding resin from dripping while the resin is subjected to burning conditions.
- anti- dripping agents include silicone oils, silica (which also serves as a reinforcing filler), asbestos and fluorine-containing polymers.
- fluorine-containing polymers include fluorinated polyolefms such as polytetrafluoroethylene, tetrafluoroethylene/ hexafluoropropylene copolymers, tetrafluoroethylene/ ethylene copolymers, polyvinylidene fluoride and polychlorotrifluoroethyl ' ene.
- Preferred such fluorine-containing polymers have a melt viscosity at 350°C of about 1.0 x 10 4 to 1.0 x 10 14 poises.
- the anti-dripping agent is added to the composition at a level of about 0.05 to 5 parts by weight, more preferably from about 0.1 to 4 parts by weight, based on the weight of the total polymer composition.
- the compositions of this invention may also contain other conventional additives used in polyketone polymer compositions such as stabilizers, mold release agents, plasticizers and processing aids.
- the nitrogen-containing compound at high levels within the 1-50 parts by weight range, e.g., at least about 20 parts by weight, and also use it in combination with one or more of the supplemental flame retardants described above, e.g., zinc borate, metal oxide, metal hydroxide, metal carbonate and the like.
- the polymer compositions of the invention are produced by mixing the flame retardants and other additives in liquid or finely divided form through the polymer.
- the method of producing the composition is not critical so long as the method results in a relatively uniform mixture.
- the compositions are produced by heating the polymer until molten and by mixing the flame retardant and other ingredients with the polymer by use of a high-shear mixers or extruders.
- compositions may be processed by injection molding or other conventional thermoforming processes to produce articles useful in a variety of applications, particularly where exposure to elevated temperatures or electrical discharge is likely to be encountered.
- the compositions are useful in the production of parts for the automotive, electrical and electronics industries, e.g., electrical connectors, circuit boards, wire insulation, conduits, printer wheels and the like.
- the polymer compositions were prepared by dryblending the ingredients, followed by meltblending at 240°C on a PRISMTM 16MM corotating twin screw extruder with an rpm set at 300. After mixing, the melt is extruded, cooled, pelletized and dried. After drying, the pellets are molded into UL test bars with a thickness of either 0.8 mm or 1.6 mm by injection molding.
- Lowest Oxygen Index (LOI) values were obtained on various compositions set forth in the Tables using test procedure ISO 4589. The LOI values reflect the percentage of oxygen required in an oxygen - nitrogen atmosphere to initiate and support a flame. Thus, the higher the LOI value, the more flame resistant is the sample tested.
- Flammability of test specimens is evaluated according to the standard UL-94 test protocol, vertical burning. Ratings of V-0 indicate test samples with the best resistance to burning, whereas V-1 and V-2 ratings in that order indicate a lessening degree of resistance to burning.
- PK polyketone polymer containing about 50 mol % carbon monoxide units, 45 mol % ethylene derived units and about 5 mol % propylene derived units, melting point of 220°C and a number average molecular weight in the range of 60,000 to 120,000.
- AmgardTMP-45 a cyclic phosphonate ester of the type described in US Patent 5,030,674, available from Albright and Wilson in the form of a Masterbatch containing 70% by weight polyethylene terephthlate resin.
- AmgardTMCU a mixture of cyclic phosphonate esters of the type described in US Patent 5,030,674, available for • Albright and Wilson.
- CyagardTMRF-67 tris-cyanoethyl -phosphine oxide, available from Cytec corporation.
- Note -NC rating means that the sample could not be classified according to UL 94VB for flammability testing.
- the LOI is increased to 27% by the inclusion of melamine cyanurate, comparable to the ratings achieved using the phosphorous-containing compounds without melamine cyanurate.
- Examples 5-8 show that the addition of small amounts of phosphorous-containing compounds to compositions also containing smaller amounts of melamine cyanurate result in good UL94 test ratings with also a strong improvement in LOI values.
- test data in Table 2 demonstrates that very good LOI and UL 94 ratings are achieved using a combination of phosphorous-containing compound and melamine cyanurate.
- Table 4 shows the variations in flame retardant properties as a function of the identity of the various P-containing compounds used. Also, the addition of a filler such as psuedo-boehmite further improves flame retardant properties.
- Table 5 shows good burning properties for compositions containing both P and N-containing compounds.
- Example 36 demonstrates that a combination of high levels of N-compound plus a metal-hydroxide (here pseudo-boehmite) yields good UL-classification even where the P-compound is not present in the composition.
- a metal-hydroxide here pseudo-boehmite
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
L'invention concerne des composition ignifugeantes comprenant un polymère de polycétone et une quantité ignifugeante d'au moins un composé contenant de l'azote, comprenant la structure -C=O-NH-C=O, -NH-C=O-NH- et des tautomères de celle-ci. Ladite composition peut éventuellement contenir un ou plusieurs additifs choisis parmi des ignifugeants contenant du phosphore, des oxydes de métal ou des hydroxydes, des charges renforçantes et des agents anti-bavure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU52419/99A AU5241999A (en) | 1998-08-31 | 1999-07-30 | Flame resistant polyketone resin compositions |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/144,687 | 1998-08-31 | ||
US09/144,687 US5973041A (en) | 1998-08-31 | 1998-08-31 | Resinous compositions containing aromatic bisphosphoramidates as flame retardants |
US23486399A | 1999-01-22 | 1999-01-22 | |
US09/234,863 | 1999-01-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000012608A1 true WO2000012608A1 (fr) | 2000-03-09 |
Family
ID=26842250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1999/017224 WO2000012608A1 (fr) | 1998-08-31 | 1999-07-30 | Compositions resineuses de polycetone ignifugeantes |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU5241999A (fr) |
ID (1) | ID23725A (fr) |
WO (1) | WO2000012608A1 (fr) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011106177A1 (fr) * | 2010-02-24 | 2011-09-01 | Icl-Ip America Inc. | Composition de polyoléfine retardatrice de flamme |
US8022122B2 (en) | 2006-05-02 | 2011-09-20 | Basf Se | Derivatives of pyrimidines as flame retardants |
US8889773B2 (en) | 2010-06-24 | 2014-11-18 | Icl-Ip America Inc. | Metal phosphonate flame retardant and method producing thereof |
EP3168253A1 (fr) * | 2015-11-13 | 2017-05-17 | Ems-Patent Ag | Masses de polycetone aliphatiques, ignifuges, corps de formage fabrique a partir desdites masses et leur procede de fabrication |
EP3168252A1 (fr) * | 2015-11-13 | 2017-05-17 | Ems-Patent Ag | Masses de formage de polycetone presentant des proprietes ameliorees, corps de moulage ainsi fabrique et son procede de fabrication |
CN108070239A (zh) * | 2016-11-17 | 2018-05-25 | 现代自动车株式会社 | 聚酮复合树脂组合物 |
WO2021133295A1 (fr) * | 2019-12-28 | 2021-07-01 | İzmi̇r Eği̇ti̇m Sağlik Sanayi̇ Yatirim A.Ş. | Matériaux composites à base de polycétone dotés de propriétés ignifuges sans halogène |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0326223A2 (fr) * | 1988-01-29 | 1989-08-02 | Shell Internationale Researchmaatschappij B.V. | Composition de copolymére |
EP0584567A2 (fr) * | 1992-08-01 | 1994-03-02 | Hoechst Aktiengesellschaft | Compositions polymères iqnifuges à stabilité améliorée |
EP0921159A1 (fr) * | 1997-12-05 | 1999-06-09 | General Electric Company | Composition ignifuge de polyketone |
-
1999
- 1999-07-30 AU AU52419/99A patent/AU5241999A/en not_active Abandoned
- 1999-07-30 WO PCT/US1999/017224 patent/WO2000012608A1/fr active Application Filing
- 1999-08-30 ID IDP990815D patent/ID23725A/id unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0326223A2 (fr) * | 1988-01-29 | 1989-08-02 | Shell Internationale Researchmaatschappij B.V. | Composition de copolymére |
EP0584567A2 (fr) * | 1992-08-01 | 1994-03-02 | Hoechst Aktiengesellschaft | Compositions polymères iqnifuges à stabilité améliorée |
EP0921159A1 (fr) * | 1997-12-05 | 1999-06-09 | General Electric Company | Composition ignifuge de polyketone |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8022122B2 (en) | 2006-05-02 | 2011-09-20 | Basf Se | Derivatives of pyrimidines as flame retardants |
WO2011106177A1 (fr) * | 2010-02-24 | 2011-09-01 | Icl-Ip America Inc. | Composition de polyoléfine retardatrice de flamme |
CN102834444A (zh) * | 2010-02-24 | 2012-12-19 | Icl-Ip美国公司 | 阻燃剂聚烯烃组合物 |
US8889773B2 (en) | 2010-06-24 | 2014-11-18 | Icl-Ip America Inc. | Metal phosphonate flame retardant and method producing thereof |
EP3168253A1 (fr) * | 2015-11-13 | 2017-05-17 | Ems-Patent Ag | Masses de polycetone aliphatiques, ignifuges, corps de formage fabrique a partir desdites masses et leur procede de fabrication |
EP3168252A1 (fr) * | 2015-11-13 | 2017-05-17 | Ems-Patent Ag | Masses de formage de polycetone presentant des proprietes ameliorees, corps de moulage ainsi fabrique et son procede de fabrication |
JP2017105989A (ja) * | 2015-11-13 | 2017-06-15 | エーエムエス−パテント アクチェンゲゼルシャフト | 改善された特性を有するポリケトン成形材料、それから製造された成形品、及びその製造方法 |
US10882975B2 (en) | 2015-11-13 | 2021-01-05 | Ems-Patent Ag | Flameproof, aliphatic polyketone materials, moulded articles produced therefrom and also method for the production thereof |
CN108070239A (zh) * | 2016-11-17 | 2018-05-25 | 现代自动车株式会社 | 聚酮复合树脂组合物 |
WO2021133295A1 (fr) * | 2019-12-28 | 2021-07-01 | İzmi̇r Eği̇ti̇m Sağlik Sanayi̇ Yatirim A.Ş. | Matériaux composites à base de polycétone dotés de propriétés ignifuges sans halogène |
Also Published As
Publication number | Publication date |
---|---|
ID23725A (id) | 2000-05-11 |
AU5241999A (en) | 2000-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101416843B1 (ko) | 올리고머형 비스-포스페이트 난연제들 및 이를 포함하는 조성물들 | |
US20120322923A1 (en) | Flame retardant composition for thermoplastic molding compounds | |
US9884961B2 (en) | Phosphazene flame retardant polycarbonate compounds | |
JP6089043B2 (ja) | ジホスフィン酸とジアルキルホスフィン酸との混合物、その製造方法、およびその使用 | |
KR20160037128A (ko) | 인 함유 난연제 | |
KR20010072918A (ko) | 분말상 난연제 | |
JP5203921B2 (ja) | 電離放射線照射用難燃ポリアルキレンテレフタレート樹脂組成物 | |
CN115023467B (zh) | 热塑性聚酯树脂组合物及成型品 | |
JP2015505845A (ja) | ジホスフィン酸とアルキルホスホン酸の混和物、その製造方法、およびその使用 | |
CN110520474A (zh) | 阻燃的含有苯乙烯的制剂 | |
US6689825B1 (en) | Additive for thermoplastic resins and flame retardant resin compositions | |
KR100624629B1 (ko) | 난연성 방향족 폴리아미드 수지 조성물 및 성형체 | |
KR101578604B1 (ko) | 내변색성과 내열성이 우수한 비할로겐 난연제 및 비할로겐 난연조제를 함유하는 폴리시클로헥실렌디메틸렌테레프탈레이트 수지 조성물 | |
TW201402797A (zh) | 具有非常高限制氧氣指數的無鹵素阻燃性熱塑性聚胺基甲酸酯 | |
US6005033A (en) | Polyketone flame retardant composition | |
WO2000012608A1 (fr) | Compositions resineuses de polycetone ignifugeantes | |
US7094819B2 (en) | Flame-retardant polytrimethylene terephthalate resin composition | |
US20120157632A1 (en) | Flame retardant, production method therefor, and flame retardant thermoplastic resin composition comprising the same | |
KR102687495B1 (ko) | 난연제 및 이의 제조 공정 | |
CN110520467B (zh) | 阻燃的含苯乙烯的聚合物组合物 | |
JPH11106646A (ja) | ポリアミド樹脂組成物 | |
KR20110072828A (ko) | 난연성 폴리부틸렌테레프탈레이트 수지 조성물 | |
US5633301A (en) | Flame retardant polyketone composition | |
JP2000119515A (ja) | ポリアミド樹脂組成物 | |
US6391967B1 (en) | Flame retarding thermoplastic resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU BR CA CN JP KR MX RU SG |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |