WO2000008188A1 - Cellule vegetale transformee avec au moins la partie codante du gene codant pour la fibrilline - Google Patents

Cellule vegetale transformee avec au moins la partie codante du gene codant pour la fibrilline Download PDF

Info

Publication number
WO2000008188A1
WO2000008188A1 PCT/FR1999/001882 FR9901882W WO0008188A1 WO 2000008188 A1 WO2000008188 A1 WO 2000008188A1 FR 9901882 W FR9901882 W FR 9901882W WO 0008188 A1 WO0008188 A1 WO 0008188A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
fibrillin
plant
coding
plants
Prior art date
Application number
PCT/FR1999/001882
Other languages
English (en)
Inventor
Marcel Kuntz
Pascal Rey
Benjamin Gillet
Gilles Peltier
Original Assignee
Universite Joseph Fourier
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Joseph Fourier, Commissariat A L'energie Atomique filed Critical Universite Joseph Fourier
Publication of WO2000008188A1 publication Critical patent/WO2000008188A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance

Definitions

  • the present invention relates to a transformed plant cell, the regeneration of which produces a plant having resistance to various stress conditions which may be imposed on it during its growth, the plant thus produced, as well as a process for obtaining this cell and this plant.
  • a plant In its natural environment, a plant often experiences a water deficit, at least during certain times of the year, as well as exposure to excessive light and heat, or conditions of high salinity. Such events disrupt the photosynthesis process, inhibit enzyme activity, and can then lead to plant death.
  • a solution is provided to the lack of resistance of the plants, by a transgenic plant capable of withstanding at least the abovementioned attacks, over a longer period than the corresponding wild plant can tolerate.
  • the solution provided by the invention consists in transforming a plant cell with all or part of the gene coding for fibrillin to allow expression in the plant.
  • Fibrillin is a structural protein essential for the structuring of fibril-type chromoplasts, and more precisely of the fibrils that they contain.
  • the gene coding for this protein is induced during the fruit ripening phase, during which fibrillin is found in maximum concentrations.
  • the fibrils consist of a hydrophobic core composed essentially of carotenoids, a lipid layer covering the core and a protein layer of fibrillin surrounding the lipid layer, and the organization of which results from a self-assembly mechanism during the bringing together of carotenoids, galactolipids, phospholipids and fibrillin.
  • Fibrillin is synthesized in the cell cytoplasm, it is imported into the plastid and then matured, when crossing the plastid envelope, into a soluble protein stored in the stroma, while waiting to be used for the formation of fibrils.
  • a plant cell is a cell from a plant.
  • a plant is a multicellular organism of which chlorophyll is one of the constituents, flowering or fruiting.
  • cDNA complementary DNA
  • the cDNA can comprise the transcription of the non-spliced introns, as in particular for the sequence SEQ ID No. 2.
  • photooxidative stress includes any development condition liable to cause damage caused by reactive oxygen, in the form of superoxide or in the singlet state, for example.
  • reactive oxygen in the form of superoxide or in the singlet state, for example.
  • a first object of the invention is a transformed plant cell, comprising at least the coding part of the gene coding for fibrillin and the means necessary for its expression.
  • said gene comes from Capsicum annuum; its sequence is deduced, after splicing of introns 1 and 2 of the sequence SEQ ID No. 2.
  • a second object of the invention is a transgenic plant which exhibits resistance to stresses as defined above, in particular to stresses photooxidatives, and which is capable of being obtained by regeneration of a cell as previously described.
  • the invention also relates to a transformation vector which can be used to obtain a transformed cell of the invention.
  • It comprises at least the coding part of the gene coding for fibrillin and the means necessary for its expression.
  • it comprises the gene coding for fibrillin from Capsicum annuu.
  • it further comprises:
  • - a transcription promoter or fragment of transcription promoter of a gene expressing itself naturally in plants, - a transcription terminator.
  • transcription promoter of a gene expressing itself naturally in plants is meant a promoter chosen from promoters expressed constitutively, that is to say in all organs and tissues and in a relatively equivalent manner of an organ or tissue to another, or from differentially regulated promoters.
  • the cauliflower mosaic virus (CaMV) 35S promoter is a frequently used example of a promoter considered to be relatively constitutive.
  • Differentially regulated promoters may function more strongly in one tissue or organ than another, or differently depending on the stage of development of the organ or tissue, or may be induced following a change in environmental conditions, stress or following the attack of a pathogen.
  • a particularly suitable vector comprises a complementary DNA corresponding to said gene, comprising for better expression at least one of the two introns 1 and 2 of said gene, and better still, the two introns 1 and 2.
  • the 5 'end of the cDNA is preferably determined between position 1 and position 23 of said gene, and / or the 3' end of cDNA is determined between position 1901 and position 2218 of said gene (sequence SEQ ID No. 2).
  • the invention also relates to a process for obtaining transgenic plants exhibiting resistance to stresses and in particular to photooxidative stresses, according to which a plant cell is transformed with a gene coding for fibrillin, or a gene homologous to fibrillin, or alternatively a gene having an activity homologous to that of fibrillin, and in that the transformed cells are subjected to regeneration.
  • gene homologous to fibrillin is meant a gene homologous to fibrillin derived from Capsicum annuum, isolated from another organism.
  • gene having an activity homologous to that of fibrillin is meant a gene coding for a protein homologous to fibrillin and conferring on the plant resistance to various stress conditions.
  • a protein whose identical function was proposed in the case of the structuring of the fibrils of the chromoplasts of cucumber flower (Vishnevetski et al., 1996 Plant Journal 10, 1111-1118), and the protein cdsp34 cloned by the inventors of the present application, in the case of chloroplasts from stressed potato leaves (Pruvot et al., Planta, 1996, 198: 471-479).
  • Figures 1 to 3 show the behavior of a transgenic plant (right) and a wild plant (left) under conditions of water deficit as described in Example 4 (2).
  • Figure 1 shows the plants on day 0, Figure 2 on day 9 and Figure 3 on day 21.
  • Figure 4 shows the growth of a transgenic plant (right) and a wild plant (left) in normal condition (with watering and under a brightness of 300 micromoles.m-. s ⁇ )
  • the vector pBI121 (marketed by Clontech laboratories, Inc) is a vector suitable for this construction.
  • This T-DNA region comprises, among other things, a constitutive promoter (the promoter named 35S of the CaMV virus), the GUS gene followed by the NOS terminator (of the nopaline synthase gene).
  • the GUS gene which is of no interest in the invention is replaced by a cDNA coding for fibrillin. This cDNA will therefore be placed under the control of the 35S promoter and of the NOS terminator.
  • any other promoter constitutive or not in the latter case, it must be specific to the organ whose properties one wishes to modify
  • any other terminator can also be used.
  • mRNAl and mRNA2 Two cDNAs encoding fibrillin were used, corresponding respectively to the mRNAs named mRNAl and mRNA2 in the article by J. Deruère et al. (1994, Biochem. Biophys. Res. Commun. 199, 1144-1150) the content of which is incorporated by reference.
  • mRNAl and mRNA2 differ in the presence or absence of intron 1, respectively, of the fibrillin gene.
  • These 2 cDNAs were originally subcloned into the NotI restriction site of the bacterial plasmid pBluescriptKS: they are thus flanked by BamHl 5 ′ and Sacl 3 ′ cut sites.
  • cDNAs have their 5 ′ end in position 1 (sequence SEQ ID No. 2), but any other position between positions 1 and 23 may also be suitable because the gene initiation codon is in position 24.
  • cDNAs have their 3 ′ end at position 2218 but any other position between position 1901 (that is to say after the gene termination codon) and position 2218 may also be suitable.
  • the derivatives of the vector pBI121 are selected in which one or the other of the cDNAs coding for fibrillin (that is to say with or without intron) has replaced the GUS gene.
  • Example 2 Transformation of a plant cell to obtain a transformed cell of the invention.
  • the plant transformation vector derived from pBI121 obtained in Example 1 is introduced into the Agrobacterium LBA4404 strain by electroporation.
  • the recombinant strain is selected in the presence of 50 ⁇ g / l of kanamycin.
  • This transformed Agrobacterium strain is used for the transformation of plant cells, for example tobacco.
  • the technique used for this purpose and which can be replaced by any other processing technique is that of the infection of leaf discs of tobacco seedlings cultivated in vitro.
  • Transformed plant cells are selected in the presence of kanamycin.
  • Agrobacterium is eliminated by the antibiotic cefotaxime.
  • the leaf discs are cultivated on plant culture medium in the presence of plant hormones (auxin and cytokinins) promoting callus growth.
  • Calluses from the growth of transformed cells are used for the regeneration of whole plants by conventional techniques. For example, calluses are transferred to plant culture medium in the presence of cytokinin to induce the formation of shoots.
  • the transformed plants are sterile cultured in the presence of kanamycin and cefotaxime then are transferred to the soil and cultivated in a greenhouse until the seeds are harvested.
  • the presence of the transgene was confirmed by hybridization of the genomic DNA of these plants with a specific probe derived from the transformation vector used.
  • Example 3 Selection of transgenic plants A batch of seeds from a transgenic line is put to germinate on culture medium, then the seedlings are transplanted on soil. The presence of the fibrillin protein is tested by immunodetection in extracts of total proteins from the leaves of these plants, thanks to anti-pepper fibrillin antibodies. Lines are then created by in vitro multiplication of seedlings containing fibrillin (transgenic lines) or not containing it (so-called wild control lines). The latter plants are in proportion of approximately 27% which indicates a normal segregation of the transgene which is therefore stably inherited in the descendants.
  • the transgenic plants After approximately 3 weeks of growth in a culture chamber (light conditions: 300 micromoles.m " 2. S -1 ) on potting soil, the transgenic plants have longer and thicker internodes than wild plants.
  • Table I collates the results obtained concerning the average size, respectively, of wild plants and transgenic plants, after growth of culture in two representative experiments 1 and 2. TABLE I Cultivation conditions: watered plants Light: 300 micromoles.m -2 . s -1
  • Table II presents the results obtained concerning the size, respectively, of wild plants and transgenic plants maintained in low light and watered, and therefore a similar size at the start of the experiments.
  • EXPERIMENT 1 50 micromoles.m-. s " 1 ; after 5 weeks Wild plant: - average size: 15.5
  • EXPERIMENT 2 100 micromoles.m -2 . s -1 ; after 5 weeks Wild plant: - average size: 55.7
  • EXPERIMENT 3 150 micromoles. -2 . s -1 Wild plant:
  • Table III presents the results obtained concerning the size, respectively, of wild plants and transgenic plants, maintained for 2 weeks in low light (150 micromoles.m -2 . S -1 ) and then transferred in high light (1200 micromoles.m - 2. S -1 ). Watering is maintained.
  • transgenic plants After 9 days, the lower leaves are necrotic and the upper leaves are wilted and not very turgid. There are clear differences between wild plants and transgenic plants.
  • the transgenic plants are larger and have a more straight port of the main stem. Transgenic plants show more advanced floral development.
  • Chlorophyll content For wild plants and transgenic plants, the amount of chlorophyll was determined for leaves at a height on the plant and at an equivalent stage of development.
  • Table IV presents the results obtained concerning the chlorophyll content during two representative experiments after growth in a culture chamber under control condition (watering maintained) and under water deficit condition (watering interrupted).
  • the chlorophyll content is expressed in ⁇ g of chlorophyll / ⁇ g of dry weight.
  • EXPERIMENT 1 the plants were about 3.5 weeks old at the start of the experiment; the measurements were made after an additional 9 days.
  • EXPERIMENT 2 the plants were about 3.5 weeks old at the start of the experiment; the measurements were made after an additional 12 days.
  • Table V presents the results obtained concerning the chlorophyll content after growth in control condition (low light) and in excess light condition.
  • the chlorophyll content is expressed in ⁇ g of chlorophyll / ⁇ g of dry weight.
  • Example 4 demonstrate that the constitutive presence of fibrillin confer on transgenic plants a higher tolerance vis-à-vis stress and in particular water stress and photooxidative stress.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Cellule végétale transformée comprenant au moins la partie codante du gène codant pour la fibrilline et les moyens nécessaires à son expression. Vecteur de transformation, plante transgénique et procédé pour l'obtention de plantes transgéniques présentant une résistance au stress.

Description

Cellule végétale transformée avec au moins la partie codante du gène codant pour la fibrilline
La présente invention concerne une cellule végétale transformée, dont la régénération produit une plante présentant une résistance à différentes conditions de stress qui peuvent lui être imposées au cours de sa croissance, la plante ainsi produite, ainsi qu'un procédé pour obtenir cette cellule et cette plante. Dans son environnement naturel, une plante subit souvent un déficit hydrique, au moins au cours de certaines périodes de l'année, ainsi qu'une exposition à une luminosité et une chaleur excessives, ou des conditions de forte salinité. De tels événements perturbent le processus de photosynthèse, inhibent l'activité enzymatique, et peuvent entraîner alors la mort de la plante.
Selon l'invention, on apporte une solution au défaut de résistance des plantes, par une plante transgénique capable de supporter au moins les agressions précitées, sur une période plus longue que ne peut le tolérer la plante sauvage correspondante.
Les auteurs ont en outre observé que, dans des conditions normales de développement (arrosage, lumière, pH, ...)» c'est-à-dire en l'absence de stress marqué, la plante transgénique se développe plus rapidement, et que de manière paradoxale, ce développement précoce concerne aussi bien la taille de la tige et des feuilles, que la floraison. Cet effet est inattendu car chez la plante sauvage, la tige et les feuilles poussent au détriment de la formation de la fleur, et vice-versa.
La solution apportée par l'invention consiste en la transformation d'une cellule végétale par tout ou partie du gène codant pour la fibrilline pour en permettre l'expression dans la plante. La fibrilline est une protéine structurelle indispensable à la structuration des chromoplastes de type fibrillaires, et plus précisément des fibrilles qu'ils contiennent. Le gène codant pour cette protéine est induit pendant la phase de mûrissement des fruits au cours de laquelle la fibrilline se trouve en concentrations maximales.
Les fibrilles sont constitués d'un noyau hydrophobe composé essentiellement de caroténoïdes, d'une couche lipidique recouvrant le noyau et d'une couche protéique de fibrilline entourant la couche lipidique, et dont l'organisation résulte d'un mécanisme d • autoassemblage lors de la mise en présence de caroténoïdes, galactolipides, phospholipides et fibrilline.
La fibrilline est synthétisée dans le cytoplasme cellulaire, elle est importée dans le plaste puis maturée, lors du franchissement de l'enveloppe plastidiale, en une protéine soluble stockée dans le stroma, en attendant d'être utilisée pour la formation des fibrilles.
L'article de J. Deruère et al., Biochemical and Biophysical Research Communications, Vol. 199, N°3 (1994) , p 1144-1150, concerne une étude de la régulation de l'expression du gène de la fibrilline. Dans ce but, les auteurs ont clone la séquence genomique codant pour la fibrilline. Au cours de cette étude, les auteurs ont observé 1 'existence de deux transcrits, 1 'un mRNAl et l'autre mRNA2 de taille plus petite correspondant au cDNA isolé. Le séquençage du cDNA correspondant à mRNAl a révélé la présence d'un intron (intron 1) dans la séquence genomique.
Connaissant le rôle de la fibrilline dans le mécanisme de la transformation des chloroplastes en chromoplastes, c'est-à-dire dans le sens d'une perte de la chlorophylle, les résultats observés sur le développement des plantes transgéniques de 1 ' invention sont surprenants. En effet, on pouvait s'attendre à un effet toxique de la surexpression du gène codant pour la fibrilline, par diminution de l'activité photosynthétique.
Avant d'exposer plus en détails l'invention, certains termes employés dans la présente description sont définis.
Une cellule végétale est une cellule issue de plante.
Une plante est un organisme multicellulaire dont la chlorophylle est un des constituants, à fleurs ou à fruits.
Par « ADN complémentaire » ou « ADNc » , on entend la copie de l'ARN sous sa forme d'ADN grâce à l'action d'une transcription inverse. Dans la présente invention, l'ADNc peut comprendre la transcription des introns non épissés, comme notamment pour la séquence SEQ ID N°2.
Par stress, on comprend notamment un déficit hydrique, une blessure ou un stress photooxydatif. L'expression « stress photooxydatif » inclut toute condition de développement susceptible d'entraîner un dommage causé par de 1 ' oxygène réactif, sous forme de superoxyde ou à l'état singulet, par exemple. Ainsi, on entend des stress liés aux expositions à des herbicides, à la salinité, aux variations de températures, aux attaques d'agents pathogènes, à la lumière.
Un premier objet de l'invention est une cellule végétale transformée, comprenant au moins la partie codante du gène codant pour la fibrilline et les moyens nécessaires à son expression. En particulier, ledit gène est issu de Capsicum annuum ; sa séquence est déduite, après épissage des introns 1 et 2 de la séquence SEQ ID N°2.
Un second objet de l'invention est une plante transgénique qui présente une résistance aux stress tels que définis ci-dessus, notamment aux stress photooxydatifs, et qui est susceptible d'être obtenue par régénération d'une cellule telle que précédemment décrite.
L'invention concerne aussi un vecteur de transformation qui peut être utilisé pour obtenir une cellule transformée de l'invention.
Il comprend au moins la partie codante du gène codant pour la fibrilline et les moyens nécessaires à son expression. De préférence, il comprend le gène codant pour la fibrilline issu de Capsicum annuu . Dans une application à la transformation d'une cellule végétale, il comprend en outre :
- un promoteur de transcription ou fragment de promoteur de transcription d'un gène s 'exprimant naturellement dans les plantes, - un terminateur de transcription.
Par promoteur de transcription d'un gène s 'exprimant naturellement dans les plantes, on entend un promoteur choisi parmi des promoteurs exprimés de manière constitutive, c'est à dire dans tous les organes et tissus et de manière relativement équivalente d'un organe ou tissu à l'autre, ou parmi des promoteurs régulés différentiellement. Le promoteur 35S du virus de la Mosaique du Choux-Fleur (CaMV) est un exemple souvent utilisé d'un promoteur considéré comme relativement constitutif. Les promoteurs régulés différentiellement peuvent fonctionner plus fortement dans un tissu ou organe qu'un autre, ou différemment suivant le stade de développement de l'organe ou tissu, ou encore être induit à la suite d'un changement dans les conditions environnementales, d'un stress ou à la suite de l'attaque d'un pathogène.
Un vecteur particulièrement adapté comprend un ADN complémentaire correspondant audit gène, comportant pour une meilleure expression au moins un des deux introns 1 et 2 dudit gène, et mieux encore, les deux introns 1 et 2. L'extrémité 5' de l'ADNc est de préférence déterminée entre la position 1 et la position 23 dudit gène, et/ou l'extrémité 3' de l'ADNc est déterminée entre la position 1901 et la position 2218 dudit gène (séquence SEQ ID N°2) .
L'invention concerne aussi un procédé pour l'obtention de plantes transgéniques présentant une résistance aux stress et notamment aux stress photooxydatifs, selon lequel on transforme une cellule végétale avec un gène codant pour la fibrilline, ou un gène homologue à la fibrilline, ou encore un gène ayant une activité homologue à celle de la fibrilline, et en ce qu'on soumet les cellules transformées à une régénération.
Par gène homologue à la fibrilline, on entend un gène homologue de la fibrilline issu de Capsicum annuum , isolé à partir d'un autre organisme.
Par gène ayant une activité homologue à celle de la fibrilline, on entend un gène codant pour une protéine homologue à la fibrilline et conférant à la plante une résistance à différentes conditions de stress. On peut citer par exemple une protéine dont une fonction identique a été proposée dans le cas de la structuration des fibrilles des chromoplastes de fleur de concombre (Vishnevetski et coll., 1996 Plant Journal 10, 1111-1118), et la protéine cdsp34 clonée par les inventeurs de la présente demande, dans le cas des chloroplastes de feuilles stressées de pomme de terre (Pruvot et coll., Planta, 1996, 198: 471-479).
Les figures 1 à 3 montrent le comportement d'une plante transgénique (à droite) et d'une plante sauvage (à gauche) en conditions de déficit hydrique comme décrit dans l'exemple 4(2). La figure 1 représente les plantes au jour 0, la figure 2 au jour 9 et la figure 3 au jour 21.
La figure 4 montre la croissance d'une plante transgénique (à droite) et d'une plante sauvage (à gauche) en condition normale (avec arrosage et sous une luminosité de 300 micromoles.m- . s~ )
Les caractéristiques et avantages des objets de 1 ' invention sont ci-après mis en évidence dans les exemples 1 à 4 suivants.
Exemple 1 : Construction d'un vecteur de 1' invention par introduction de cDNA codant pour la fibrilline de poivron dans un vecteur d'expression de plantes
Le vecteur pBI121 (commercialisé par Clontech laboratories, Inc) est un vecteur adapté à cette construction.
Il comporte une région T-DNA que la bactérie Agrobacterium tumefaciens peut transférer dans le génome des plantes.
Cette région T-DNA comporte entre autre un promoteur constitutif (le promoteur nommé 35S du virus CaMV) , le gène GUS suivi du terminateur NOS (du gène nopaline synthase) . Le gène GUS ne présentant aucun intérêt dans 1 • invention est remplacé par un cDNA codant pour la fibrilline. Ce cDNA sera donc placé sous le contrôle du promoteur 35S et du terminateur NOS.
Tout autre promoteur constitutif ou non (dans ce dernier cas, il devra être spécifique de l'organe dont on souhaite modifier les propriétés) et tout autre terminateur sont également utilisables.
Deux cDNA codant pour la fibrilline ont été utilisés, correspondant respectivement aux mRNA nommés mRNAl et mRNA2 dans l'article de J. Deruère et coll. (1994, Biochem. Biophys. Res. Commun. 199, 1144-1150) dont le contenu est incorporé par référence. mRNAl et mRNA2 diffèrent par la présence ou l'absence de l' intron 1, respectivement, du gène de la fibrilline. Ces 2 cDNA avaient été sous-clonés originellement dans le site de restriction Notl du plasmide bactérien pBluescriptKS : ils sont ainsi flanqués de sites de coupures BamHl en 5 ' et Sacl en 3 • .
Ces cDNA ont leur extrémité 5' en position 1 (Séquence SEQ ID N°2) , mais toute autre position entre les positions 1 et 23 peut également convenir car le codon d'initiation du gène est en position 24.
Ces cDNA ont leur extrémité 3' en position 2218 mais toute autre position entre la position 1901 (c'est-à- dire après le codon de terminaison du gène) et la position 2218 peut également convenir.
Ces 2 cDNA sont excisés du plasmide pBluescriptKS par les enzymes de restriction BamHl et Sacl. Ce fragment BamHI-Sacl est inséré dans le vecteur pBI121 lui-même coupé par ces enzymes : le site BamHl se trouve en 3 • du promoteur 35S et en 5' du gène GUS, le site Sacl se trouve en 3 ' du gène GUS et en 5 ' du terminateur NOS .
Après ligation, sont sélectionnés les dérivés du vecteur pBI121 dans lequel l'un ou l'autre des cDNA codant pour la fibrilline (c'est-à-dire avec ou sans intron) a remplacé le gène GUS.
Exemple 2 : Transformation d'une cellule de plante pour obtenir une cellule transformée de l'invention.
Le vecteur de transformation de plante dérivé de pBI121 obtenu à l'exemple 1 est introduit dans la souche d'Agrobacterium LBA4404 par électroporation. La souche recombinante est sélectionnée en présence de 50 μg/ l de kanamycine.
Cette souche transformée d'Agrobacterium est utilisée pour la transformation de cellules de plantes, par exemple de tabac.
La technique utilisée à cet effet et qui peut être remplacée par toute autre technique de transformation, est celle de l'infection de disques foliaires de plantules de tabac cultivées in vitro. Les cellules transformées de plantes sont sélectionnées en présence de kanamycine. Agrobacterium est éliminé par l'antibiotique céfotaxime. Les disques foliaires sont cultivés sur milieu de culture végétale en présence d'hormones végétales (auxine et cytokinines) favorisant la croissance de cal. Les cals issus de la croissance des cellules transformées sont utilisés pour la régénération de plantes entières par les techniques classiques. Par exemple, les cals sont transférés sur milieu de culture végétale en présence de cytokinine pour induire la formation de pousses. Celles-ci sont ensuite coupées et transférées sur milieu de culture végétale sans hormone afin de régénérer des racines, les antibiotiques kanamycine (afin de sélectionner la croissance de tissus transformés) et céfotaxime (afin d'éliminer complètement Agrobacterium) sont maintenus pendant toutes ces phases de culture.
Les plantes transformées sont mises en culture stérilement en présence de kanamycine et céfotaxime puis sont transférées en terre et cultivées en serre jusqu'à la récolte des graines. La présence du transgène a été confirmée par hybridation de l'ADN genomique de ces plantes avec une sonde spécifique issue du vecteur de transformation utilisé.
Différentes lignées transgéniques ont été testées quant à la présence d'un ARNm correspondant aux transgènes. Les lignées ayant incorporées le cDNA du mRNAl (ayant conservé l' intron 1) ont montré les niveaux de mRNA du transgène les plus élevés et ont donc été utilisées pour 1 ' étude des caractères nouveaux apportés par la présence constitutive de niveaux plus élevés en fibrilline.
Exemple 3 : Sélection des plantes transgéniques Un lot de graines issues d'une lignée transgénique est mis à germer sur milieu de culture, puis les plantules sont repiquées sur terreau. La présence de la protéine fibrilline est testée par immunodétection dans des extraits de protéines totales des feuilles de ces plantes, grâce à des anticorps anti-fibrilline de poivron. Des lignées sont alors créées par multiplication in vitro de plantules contenant la fibrilline (lignées transgéniques) ou ne la contenant pas (lignées contrôles dites sauvages) . Ces dernières plantes sont en proportion de 27 % environ ce qui indique une ségrégation normale du transgène qui est donc stablement hérité dans la descendance.
Exemple 4 : Caractéristiques des plantes transgéniques de l'invention
Ces caractéristiques sont mises en évidence par mise en culture en parallèle des lignées transgéniques et sauvages, et comparaison de la taille (1) , de la résistance au stress hydrique (2) , et de la teneur en chlorophylle des feuilles (3) dans différentes conditions de stress.
(1) Développement des plantes bien arrosées
Après environ 3 semaines de croissance en chambre de culture (conditions lumineuses : 300 micromoles.m"2. s-1) sur terreau, les plantes transgéniques présentent des entre-noeuds plus longs et plus épais que les plantes sauvages .
De plus, des boutons floraux plus développés sont observés chez les plantes transgéniques.
Ces différences de croissance et de développement floral n'apparaissent pas en conditions de faible luminosité (50, 100 et 150 micromoles.m"2. s-1) (cf Tableau II ci-après) et sont plus marquées en condition de forte luminosité (1200 micromoles,m-2. s-1) (cf Tableau III ci- après) .
Le tableau I rassemble les résultats obtenus concernant la taille moyenne, respectivement, des plantes sauvages et des plantes transgéniques, après croissance de culture lors de deux expériences représentatives 1 et 2. TABLEAU I Conditions de cultures: plantes arrosées Lumière: 300 micromoles.m-2. s-1
Figure imgf000012_0001
(a) : après 3,5 semaines
: après 2 , 5 semaines
Le tableau II ci-après présente les résultats obtenus concernant la taille, respectivement, des plantes sauvages et des plantes transgéniques maintenues en faible luminosité et arrosées, et partant d'une taille similaire au début des expériences.
TABLEAU II
EXPÉRIENCE 1: 50 micromoles.m- . s"1 ; après 5 semaines Plante sauvage: - taille moyenne : 15,5
- écart-type : 3,4 (n=4) Plante transgénique:
- taille moyenne : 14,2 - écart-type : 2,8 (n=4)
EXPÉRIENCE 2: 100 micromoles.m-2. s-1 ; après 5 semaines Plante sauvage: - taille moyenne : 55,7
- écart-type : 18,6 (n=3)
Plante transgénique:
- taille moyenne : 58,7 - écart-type : 15,0 (n=3)
EXPÉRIENCE 3: 150 micromoles. -2. s-1 Plante sauvage:
- taille après environ 2 semaines, soit la taille de départ : 8 cm
- taille après 14 jours supplémentaires : 26,5 cm Plante transgénique:
- taille après environ 2 semaines, soit la taille de départ : 8 cm - taille après 14 jours supplémentaires : 28,5 cm
Le tableau III présente les résultats obtenus concernant la taille, respectivement, de plantes sauvages et de plantes transgéniques, maintenues 2 semaines en faible luminosité (150 micromoles.m-2. s-1) puis transférées en luminosité forte (1200 micromoles.m-2. s-1) . L'arrosage est maintenu.
TABLEAU III
Plante sauvage:
- taille après environ 2 semaines, soit la taille de départ : 6 cm
- taille après 14 jours supplémentaires : 46,5 cm Plante transgénique: - taille de départ : 6 cm
- taille après 14 jours supplémentaires : 60 cm (2) Comportement des plantes en conditions de déficit hydrique
Pour ces essais, des plantes jeunes régulièrement arrosées et de taille homogène sont utilisées.
Après saturation en eau des pots, l'arrosage est interrompu. La contrainte hydrique s'installe.
Au bout de 9 jours, les feuilles inférieures sont nécrosées et les feuilles supérieures sont flétries et peu turgescentes. Il apparaît des différentes nettes entre les plantes sauvages et les plantes transgéniques. Les plantes transgéniques sont plus grandes et présentent un port plus rectiligne de la tige principale. Les plantes transgéniques montrent un développement floral plus avancé.
Ces différences entre plantes sauvages et transgéniques sont encore amplifiées après 21 jours.
(3) Teneur en chlorophylle Pour des plantes sauvages et des plantes transgéniques, on a déterminé la quantité de chlorophylle pour des feuilles à une hauteur sur la plante et à un stade de développement équivalents.
Les comparaisons ont été effectuées dans deux types de conditions de stress, entre plante sauvage et plante transgénique :
- conditions normales de développement puis arrêt de l'arrosage (tableau IV) ;
- conditions de forte illumination (tableau V) , et par rapport à une plante sauvage et transgénique témoins non soumises à un stress.
Le tableau IV présente les résultats obtenus concernant la teneur en chlorophylle lors de deux expériences représentatives après croissance en chambre de culture en condition témoin (arrosage maintenu) et en condition de déficit hydrique (arrosage interrompu) . La teneur en chlorophylle y est exprimée en μg de chlorophylle/μg de poids sec.
TABLEAU IV
EXPÉRIENCE 1: les plantes étaient âgées de 3,5 semaines environ au début de l'expérience ; les mesures ont été effectuées après 9 jours supplémentaires. Témoin (arrosé) : Plante sauvage :
- teneur : 16189
- écart-type : 544 (n=2) Plante transgénique :
- teneur : 17250 - écart-type : 1665 (n=3)
Arrêt de l'arrosage :
Plante sauvage :
- teneur : 15813 - écart-type : 544 (n=2)
Plante transgénique :
- teneur : 16760
- écart-type : 868 (n=4)
EXPÉRIENCE 2: les plantes étaient âgées de 3,5 semaines environ au début de l'expérience ; les mesures ont été effectuées après 12 jours supplémentaires.
Témoin (arrosé) : Plante sauvage :
- teneur : 17707
- écart-type : 327 (n=2) Plante transgénique :
- teneur : 21384 - écart-type : 36(n=2) Arrêt de l'arrosage
Plante sauvage :
- teneur : 11274
- écart-type : 998 (n=6) Plante transgénique
- teneur : 12595
- écart-type : 1403 (n=8)
Le tableau V présente les résultats obtenus concernant la teneur en chlorophylle après croissance en condition témoin (basse lumière) et en condition d'excès de luminosité.
La teneur en chlorophylle y est exprimée en μg de chlorophylle/μg de poids sec.
TABLEAU V
Témoins (maintenu sous basse lumière 14 jours supplémentaires) : Plante sauvage :
- teneur : 20907
- écart-type : 693 (n=2) Plante transgénique :
- teneur : 22228 - écart-type : 587 (n=2)
Plantes transférées sous forte luminosité 14 jours)
Plante sauvage : - teneur : 14324
- écart-type : 1242 (n=2) Plante transgénique :
- teneur : 16441
- écart-type : 892 (n=4)
Les résultats obtenus à 1 ' exemple 4 démontrent que la présence constitutive de la fibrilline confèrent aux plantes transgéniques une tolérance supérieure vis-à-vis des stress et en particulier stress hydrique et stress photooxydatifs.

Claims

REVENDICATIONS
1. Cellule végétale transformée, comprenant au moins la partie codante du gène codant pour la fibrilline et les moyens nécessaires à son expression.
2. Cellule selon la revendication 1, caractérisée en ce qu'elle comprend le gène codant pour la fibrilline issu de Capsicum annuum .
3. Plante transgénique présentant une résistance au stress, notamment aux stress photooxydatif, susceptible d'être obtenue par régénération d'une cellule selon la revendication 1 ou 2.
4. Vecteur de transformation, comprenant au moins la partie codante du gène codant pour la fibrilline et les moyens nécessaires à son expression.
5. Vecteur selon la revendication 4, caractérisé en ce qu'il comprend le gène codant pour la fibrilline issu de Capsicum annuum.
6. Vecteur selon la revendication 4 ou 5, pour la transformation d'une cellule végétale, comprenant en outre un promoteur de transcription ou fragment de promoteur de transcription d'un gène s 'exprimant naturellement dans les plantes.
7. Vecteur selon la revendication 6, caractérisé en ce que le promoteur est choisi parmi des promoteurs exprimés de manière constitutive, ou parmi des promoteurs régulés différentiellement.
8. Vecteur selon l'une quelconque des revendications 4 à 7, caractérisé en ce qu'il comprend en outre un terminateur de transcription.
9. Vecteur selon l'une quelconque des revendications 4 à 8, caractérisé en ce qu'il comprend un ADN complémentaire correspondant audit gène.
10. Vecteur selon la revendication 9, caractérisé en ce que l'ADNc comprend en outre au moins un des deux introns -1 et -2 dudit gène.
11. Vecteur selon la revendication 10, caractérisé en ce que l'ADNc comprend les deux introns -1 et -2 dudit gène.
12. Vecteur selon l'une quelconque des revendications 10 et 11, caractérisé en ce que l'extrémité
5' de l'ADNc est déterminée entre la position 1 et la position 23 dudit gène.
13. Vecteur selon l'une quelconque des revendications 10 à 12, caractérisé en ce que l'extrémité 3 • de l'ADNc est déterminée entre la position 1901 et la position 2218 dudit gène.
14. Procédé pour 1 ' obtention de plantes transgéniques présentant une résistance aux stress et notamment aux stress photooxydatifs, caractérisé en ce qu'on transforme une cellule végétale avec un gène codant pour la fibrilline, ou un gène homologue à la fibrilline, ou encore un gène ayant une activité homologue à celle de la fibrilline, et en ce qu'on soumet les cellules transformées à une régénération.
15. Procédé selon la revendication 14, caractérisé en ce que la cellule végétale est transformée en utilisant un vecteur selon l'une quelconque des revendications 5 à 12.
PCT/FR1999/001882 1998-08-06 1999-07-29 Cellule vegetale transformee avec au moins la partie codante du gene codant pour la fibrilline WO2000008188A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9810267A FR2782095A1 (fr) 1998-08-06 1998-08-06 Cellule vegetale transformee avec au moins la partie codante du gene codant pour la fibrilline
FR98/10267 1998-08-06

Publications (1)

Publication Number Publication Date
WO2000008188A1 true WO2000008188A1 (fr) 2000-02-17

Family

ID=9529581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/001882 WO2000008188A1 (fr) 1998-08-06 1999-07-29 Cellule vegetale transformee avec au moins la partie codante du gene codant pour la fibrilline

Country Status (2)

Country Link
FR (1) FR2782095A1 (fr)
WO (1) WO2000008188A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125531A2 (fr) * 2006-04-27 2007-11-08 Yissum Research Development Company Of The Hebrew University Of Jerusalem Plantes transgéniques faisant preuve d'une tolérance accrue au stress et procédés pour les générer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995023863A1 (fr) * 1994-03-01 1995-09-08 Centre National De La Recherche Scientifique (Cnrs) Produits de recombinaison d'adn, cellules et plantes derivees de ceux-ci
WO1997017447A2 (fr) * 1995-11-07 1997-05-15 Calgene, Inc. Genes de violaxanthine deepoxydase des vegetaux et procedes ayant trait a ces genes
WO1998024300A1 (fr) * 1996-12-05 1998-06-11 Yissum Research Development Company Of The Hebrew University Of Jerusalem Proteines associees au carotenoide s'utilisant pour une grande accumulation et une grande production de carotenoide dans des plantes et d'autres organismes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995023863A1 (fr) * 1994-03-01 1995-09-08 Centre National De La Recherche Scientifique (Cnrs) Produits de recombinaison d'adn, cellules et plantes derivees de ceux-ci
WO1997017447A2 (fr) * 1995-11-07 1997-05-15 Calgene, Inc. Genes de violaxanthine deepoxydase des vegetaux et procedes ayant trait a ces genes
WO1998024300A1 (fr) * 1996-12-05 1998-06-11 Yissum Research Development Company Of The Hebrew University Of Jerusalem Proteines associees au carotenoide s'utilisant pour une grande accumulation et une grande production de carotenoide dans des plantes et d'autres organismes

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ALLEN R D: "DISSECTION OF OXIDATIVE STRESS TOLERANCE USING TRANSGENIC PLANTS", PLANT PHYSIOLOGY, vol. 107, 1995, pages 1049 - 1054, XP002072721 *
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 201, no. 1, 30 May 1994 (1994-05-30), pages 486, XP002099871 *
CHEN, H.-C., ET AL.: "Drought-and wound-induced expression in leaves of a gene encoding a chromoplast carotenoid-associated protein", THE PLANT JOURNAL, vol. 14, no. 3, May 1998 (1998-05-01), pages 317 - 326, XP002099820 *
DERUÈRE, J., ET AL.: "Fibril assembly and carotenoid overaccumulation in chromoplasts: amodel for supramolecular lipoprotein structures", THE PLANT CELL, vol. 6, no. 1, January 1994 (1994-01-01), pages 119 - 133, XP002099819 *
DERUÈRE, J., ET AL.: "Straucture and expression of two plant genes encoding chromoplast-specific proteins: occurence of partially spliced transcripts", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 199, no. 3, 1994, pages 1144 - 1150, XP002099818 *
GILLET, B., ET AL.: "Solanum tuberosum mRNA for CDSP34 protein", EMBL ACCESSION NO:Y15269, 4 November 1997 (1997-11-04), XP002124841 *
KUNTZ M ET AL: "Upregulation of two ripening-related genes from a non-climacteric plant (pepper) in a transgenic climacteric plant (tomato)", PLANT JOURNAL,GB,BLACKWELL SCIENTIFIC PUBLICATIONS, OXFORD, vol. 13, no. 3, pages 351-361, XP002088099, ISSN: 0960-7412 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125531A2 (fr) * 2006-04-27 2007-11-08 Yissum Research Development Company Of The Hebrew University Of Jerusalem Plantes transgéniques faisant preuve d'une tolérance accrue au stress et procédés pour les générer
WO2007125531A3 (fr) * 2006-04-27 2008-02-28 Yissum Res Dev Co Plantes transgéniques faisant preuve d'une tolérance accrue au stress et procédés pour les générer
US8173868B2 (en) 2006-04-27 2012-05-08 Yissum Research Development Company Of The Hebrew University Of Jerusalem Transgenic plants exhibiting increased tolerance to stress and methods of generating same

Also Published As

Publication number Publication date
FR2782095A1 (fr) 2000-02-11

Similar Documents

Publication Publication Date Title
EP0633317B1 (fr) Séquence d'ADN isolée pouvant servir de zone terminatrice dans un gène chimère utilisable pour la transformation des plantes
JP2759135B2 (ja) 除草剤抵抗性植物のアセトラクテートシンターゼを暗号化する核酸断片
FR2673643A1 (fr) Peptide de transit pour l'insertion d'un gene etranger dans un gene vegetal et plantes transformees en utilisant ce peptide.
EP0412912B1 (fr) Plantes transgéniques appartenant à l'espèce Cucumis melo
EP1498027B1 (fr) Plante presentant une organogenese amelioree et procede de creation de cette plante
FR2674538A1 (fr) Adn recombinant codant pour une nouvelle proteine a activite beta 1,3-glucanase bacteries contenant cet adn, cellules vegetales et plantes transformees.
EP0672124B1 (fr) Utilisation d'une sequence d'adn codant pour une proteine susceptible de degrader l'acide oxalique a titre de gene de selection
EP0972061B1 (fr) Utilisations de la sterilite male chez les plantes
WO2000008188A1 (fr) Cellule vegetale transformee avec au moins la partie codante du gene codant pour la fibrilline
FR2687284A1 (fr) Plante portant des genes codant pour des enzymes de la voie de biosynthese des phytosterols, et procede d'obtention.
WO2006057306A1 (fr) Plante de la famille poaceae possedant une tolerance accrue au stress et/ou une productivite accrue et procede de fabrication de celle-ci
CN109182359B (zh) 一种梨抗寒基因PbrBAM3及其表达载体、应用和编码的蛋白质及应用
FR2794772A1 (fr) Promoteur permettant l'expression de transgenes dans toute la plante hormis dans la graine
FR2775001A1 (fr) Acide nucleique comprenant la sequence d'un promoteur inductible par un stress et une sequence d'un gene codant pour une stilbene synthase, cellule et plante transformees par cet acide nucleique
EP1121451B1 (fr) Procede d'obtention de plantes transgeniques exprimant une proteine a activite productrice de peroxyde d'hydrogene par transformation par agrobacterium rhizogenes
EP2627772B1 (fr) Obtention de plantes ayant une tolérance améliorée à un déficit hydrique
KR20230062281A (ko) 왜성이 유도된 DgGA20 oxidase 1 유전자 과발현 국화 식물체 및 이의 제조방법
AU2007237226B2 (en) Plants with improved morphogenesis and method of constructing the same
WO2005063989A1 (fr) Sequences nucleotidiques promotrices inductibles par infection par les pathogenes.
EP1299554A1 (fr) Sequences d'adn codant pour un transporteur de polyols et leur utilisation, notamment pour la preparation de plantes transgeniques
FR2815971A1 (fr) Promoteur de plante dirigeant fortement l'expression des genes dans les fruits
CA2324944A1 (fr) Semences et plantes dont le pouvoir germinatif est detruit par l'absence totale ou partielle d'au moins une reserve energetique indispensable a la germination
EP1044272A2 (fr) Procede de controle de la division et/ou de l'elongation de cellules eucaryotes
FR2805825A1 (fr) Procede de transformation in planta par agrobacterium
WO2006061521A2 (fr) Sequences polynucleotidiques a activite promotrice specifique des cellules des racines des plantes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA IL JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase