WO2000003317A1 - Definition haute resolution de la largeur d'impulsion a partir de signaux de synchronisation a frequence relativement basse - Google Patents

Definition haute resolution de la largeur d'impulsion a partir de signaux de synchronisation a frequence relativement basse Download PDF

Info

Publication number
WO2000003317A1
WO2000003317A1 PCT/GB1999/002235 GB9902235W WO0003317A1 WO 2000003317 A1 WO2000003317 A1 WO 2000003317A1 GB 9902235 W GB9902235 W GB 9902235W WO 0003317 A1 WO0003317 A1 WO 0003317A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
transition edges
difference
clock
clocks
Prior art date
Application number
PCT/GB1999/002235
Other languages
English (en)
Inventor
John R. Pickering
Original Assignee
Metron Designs Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metron Designs Ltd. filed Critical Metron Designs Ltd.
Publication of WO2000003317A1 publication Critical patent/WO2000003317A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/02Digital function generators
    • G06F1/025Digital function generators for functions having two-valued amplitude, e.g. Walsh functions

Definitions

  • This invention provides for digitally derived, high resolution pulse width or time period control using relatively low frequency digital timing clocks
  • D to A converters known as Pulse Width Modulated or PWM DACs
  • charge balance analogue to digital converter
  • the A to D converter utilises a form of the D to A converter within its circuitry and so it is necessary to consider the D to A only Basically, in such a D to A converter, logic circuits are used to convert an incoming digital code to a regularly repeating pulse such that the pulse width has a known relationship to the digital code Integrating or filtering the resulting stream of pulses then generates a voltage level that is directly related to the pulse width and hence to the digital code
  • the problem with this scheme is that in order to achieve high output voltage resolution, that is discernible output increments in response to small changes in input digital code, it is necessary to have very fine pulse width adjustment in relation to a maximum (Full Scale) pulse width For example, in order to achieve fast response of analogue output in relation to changes in digital input it may be required to operate with a full scale (maximum output) pulse width of 1 millisecond or less and to achieve 1 part per million of output resolution, say 1 microvolt in 1 volt, it is then necessary to achieve timing resolution of 1 nanosecond or less To achieve
  • a typical PWM DAC is shown in figure 1 for reference
  • An incoming digitally coded word, 2, representing the desired Analogue signal output causes counting circuits, 3, together with a coincidence detector, 4, to generate a pulse stream, 6, from a latch/switch, 5, whose mark space ratio is directly related to the digital word
  • This pulse stream is used to precisely switch a voltage or current, 9, which is then filtered by the filtering means, 7, such that the resulting steady value, 8, is proportional to the pulse stream's mark/space ratio and hence to the incoming digitally coded word.
  • the best achievable resolution with this simple method is clearly 1/N where N is the maximum possible value of the counting circuits. For higher resolution N clearly has to be increased which then means, for a given clock frequency, a longer cycle time and consequent analogue output value settling time.
  • Kawashima et al, US4209775 uses a system to insert additional pulses at a lower frequency, each additional pulse representing an increment in resolution but the total requiring longer to achieve the said resolution.
  • Gideon US 4590457 uses a system to break the basic period into a series of shorter periods such that a plurality of pulses of slightly differing duration can be averaged to gain the same or higher resolution at somewhat faster settling times.
  • Howe et al, US 4165490 arranges to adjust the pulse width to finer increments than the clock resolution by introducing delay increments dependent on the analog performance of delay elements and thus a source of additional error.
  • Fig. 1 Is a diagram illustrating a known arrangement
  • Figs 2a and 2b are timing diagrams illustrating the principle of the invention
  • Fig 3 is a block diagram illustrating one embodiment of an apparatus according to the invention.
  • An arrangement in accordance with one embodiment of the invention very finely controls pulse widths from digital counters and or shift registers (which are well known to those well versed in the art) by clocking (incrementing) different sections of the digital circuitry at different clock rates and determining the required pulse width according to a digital code input by detecting appropriate transition edges from each of the said sections of circuitry and determining the requiredmodule width as the difference between said transition edges.
  • a preferred embodiment, shown in figure2a utilizes two clocks, of frequencies f1 and f2 respectively (f1 >f2) and thus of clock periods p1 and p2 (p1 ⁇ p2).
  • N is an integer determining the overall resolution.
  • the difference in pulse width is the Nth fraction of one pulse of clock f1. Since the basic resolution available according to the prior art from clockl is 1 part in N then it follows that the minimum difference increment and hence resolution from our invention is 1/N part in N or 1 in N 2 .
  • Figure2a shows the two clocks clockl , 10, and clock2, 11 , where, for ease of understanding N is chosen to be 10. It should be realized that N can be any number and will often be a base 2 (binary) number for ease of counting with digital logic. For high resolution DACs, N may be greater than 1000 to give a resolution of 1 part in a million or better.
  • the edges of each of the clocks are shown coincident at each N+1 periods, 12, of clockl but this is not a necessary condition for successful operation.
  • Figure 3 is a schematic that depicts one embodiment of apparatus according to the invention.
  • a binary coded input word, 24, of 2n bits long representing the required output value to be converted to a pulse width and hence to an analog output magnitude is input to the system at Figure 3, 24.
  • This is converted in the Logic Code Converter, 25, to two n bit words, 26, 27. such that the first of these is compared in a coincidence detector, 31 , with counterl , 19, and the second in a second coincidence detector, 32, with counter2, 22.
  • Counterl , 19 has a full scale count of at least 2N+2 and an output at count N+1 , 20, and is clocked (incremented) by clockl , 18, whereas counter2, 22, has a full scale count of at least 2N, and an output at count N, 23, and is clocked by clock2, 21.
  • Clock2 is phase locked to clockl by additional circuitry, not shown, but well known to those versed in the art of phase locked loops, utilizing the divide by (N+1 ) and divide by N signals forcing N+1 times the clock frequency of clock2 to be equal to N times the frequency of clockl .
  • the input binary coded signal has a Full Scale of 2 2n such notation being well known to those versed in the art.
  • the pulse stream 30 of Fig 3 may be fed to a filter such as the filter 7 of Fig 1 , to provide a corresponding analogue signal output.
  • two pulse streams may be generated by providing two latch switches 28 such that each may switch a different polarity of reference signal and that the average output voltage or current from each of two corresponding filters equivalent to the filter 7 may be selected to provide either polarity or may be combined such that when zero output is demanded in response to the input digitally coded value, offset pulses substantially equal in positive and negative polarity may be summed or averaged to give substantially zero output whilst operating both pulse generator means and each of said offset pulses to always have a non zero minimum width whatever the width of the other at other digitally coded input values.
  • the fundamental principle of the invention provides a means of determining time differences or time periods by selecting transition edges of clock signals of different frequency, and this might equally apply to the generation of two pulses or steps that are required to have a given timed relationship.
  • An apparatus in accordance with the invention may form part of a charge balance analogue to digital converter wherein the time difference or pulses generated thereby is used to modulate a known voltage or current to be fed into an integrating comparator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

On définit une durée ou un intervalle de temps en utilisant deux générateurs (18, 21) de signaux de synchronisation numériques dont les fréquences sont différentes mais dont le rapport de synchronisation entre les bords de transition se répète à intervalles réguliers en fonction de leur différence de fréquence. Puis, on sélectionne, en fonction de la période ou de l'intervalle de temps désiré, des bords de transition de signaux appropriés à partir de chacun des signaux de synchronisation. Des compteurs (19, 22) disposés aux sorties des signaux de synchronisation (18, 21) permettent de sélectionner les bords de transition au moyen de détecteurs (31, 32) de coïncidence sous la commande d'un transcodeur (25) logique conçu pour recevoir un mot d'entrée codé définissant la période ou l'intervalle de temps désiré.
PCT/GB1999/002235 1998-07-13 1999-07-12 Definition haute resolution de la largeur d'impulsion a partir de signaux de synchronisation a frequence relativement basse WO2000003317A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB9815157.4A GB9815157D0 (en) 1998-07-13 1998-07-13 High resolution pulse width setting from relatively low frequency clocks
GB9815157.4 1998-07-13

Publications (1)

Publication Number Publication Date
WO2000003317A1 true WO2000003317A1 (fr) 2000-01-20

Family

ID=10835414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1999/002235 WO2000003317A1 (fr) 1998-07-13 1999-07-12 Definition haute resolution de la largeur d'impulsion a partir de signaux de synchronisation a frequence relativement basse

Country Status (2)

Country Link
GB (1) GB9815157D0 (fr)
WO (1) WO2000003317A1 (fr)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2053062A1 (fr) 2004-03-24 2009-04-29 Xencor, Inc. Variantes d'immunoglobine en dehors de la région Fc
WO2010144508A1 (fr) 2009-06-08 2010-12-16 Amunix Operating Inc. Polypeptides de régulation du glucose et leurs procédés de production et d'utilisation
EP2325206A2 (fr) 2004-11-12 2011-05-25 Xencor, Inc. Variants de FC avec une liaison altérée à FCRN
EP2444423A1 (fr) 2007-10-31 2012-04-25 Xencor Inc. Variants de Fc dont la liaison à FcRn est altérée
EP2471813A1 (fr) 2004-07-15 2012-07-04 Xencor Inc. Variantes optimisées de Fc
US8278988B2 (en) 2008-06-27 2012-10-02 Freescale Semiconductor, Inc. Method and apparatus for generating a modulated waveform signal
WO2013184216A1 (fr) 2012-06-05 2013-12-12 Amunix Operating Inc. Protéine de fusion hgh-xten et son utilisation dans le traitement du déficit en hormone de croissance
EP2808343A1 (fr) 2007-12-26 2014-12-03 Xencor Inc. Variantes Fc avec liaison altérée en FcRn
WO2016054603A2 (fr) 2014-10-02 2016-04-07 City Of Hope Méditopes multivalents, anticorps de liaison aux méditopes, et leurs utilisations
US9371369B2 (en) 2009-02-03 2016-06-21 Amunix Operating Inc. Extended recombinant polypeptides and compositions comprising same
US9376672B2 (en) 2009-08-24 2016-06-28 Amunix Operating Inc. Coagulation factor IX compositions and methods of making and using same
US9416171B2 (en) 2011-12-23 2016-08-16 Nicholas B. Lydon Immunoglobulins and variants directed against pathogenic microbes
EP3278813A1 (fr) 2009-06-08 2018-02-07 Amunix Operating Inc. Polypeptides de l'hormone de croissance et leurs procédés de fabrication et d'utilisation
US9938331B2 (en) 2005-09-27 2018-04-10 Amunix Operating Inc. Biologically active proteins having increased in vivo and/or in vitro stability
US9988439B2 (en) 2011-12-23 2018-06-05 Nicholas B. Lydon Immunoglobulins and variants directed against pathogenic microbes
EP3372617A2 (fr) 2010-04-02 2018-09-12 Amunix Operating Inc. Protéines de fusion liantes, conjugués protéines de fusion liantes-médicaments, conjugués xten-médicaments et procédés pour les préparer et les utiliser
US10246501B2 (en) 2014-01-08 2019-04-02 Prosit Sole Biotechnology (Beijing) Co, Ltd Fusion polypeptides and methods of use
US10370430B2 (en) 2012-02-15 2019-08-06 Bioverativ Therapeutics Inc. Recombinant factor VIII proteins
US10421798B2 (en) 2012-02-15 2019-09-24 Bioverativ Therapeutics Inc. Factor VIII compositions and methods of making and using same
US10548953B2 (en) 2013-08-14 2020-02-04 Bioverativ Therapeutics Inc. Factor VIII-XTEN fusions and uses thereof
US10745680B2 (en) 2015-08-03 2020-08-18 Bioverativ Therapeutics Inc. Factor IX fusion proteins and methods of making and using same
US10953073B2 (en) 2012-02-27 2021-03-23 Amunix Pharmaceuticals, Inc. XTEN conjugate compositions and methods of making same
WO2021097186A1 (fr) 2019-11-13 2021-05-20 Amunix Pharmaceuticals, Inc. Polypeptides xten à code à barres, compositions associées et leurs procédés de production et d'utilisation
US11020454B2 (en) 2015-07-15 2021-06-01 Prosit Sole Biotechnology (Beijing) Co. Ltd Fusion polypeptides and methods of use
US12030925B2 (en) 2019-05-17 2024-07-09 Bioverativ Therapeutics Inc. Methods of treating hemophilia A

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111217A (en) * 1989-12-18 1992-05-05 Eastman Kodak Company Dot printer and method for grey level recording
US5231363A (en) * 1990-11-26 1993-07-27 Texas Instruments Incorporated Pulse width modulating producing signals centered in each cycle interval

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111217A (en) * 1989-12-18 1992-05-05 Eastman Kodak Company Dot printer and method for grey level recording
US5231363A (en) * 1990-11-26 1993-07-27 Texas Instruments Incorporated Pulse width modulating producing signals centered in each cycle interval

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2053062A1 (fr) 2004-03-24 2009-04-29 Xencor, Inc. Variantes d'immunoglobine en dehors de la région Fc
EP3342782A1 (fr) 2004-07-15 2018-07-04 Xencor, Inc. Variantes optimisées de fc
EP2471813A1 (fr) 2004-07-15 2012-07-04 Xencor Inc. Variantes optimisées de Fc
EP2845865A1 (fr) 2004-11-12 2015-03-11 Xencor Inc. Variantes Fc avec liaison altérée en FcRn
EP2325206A2 (fr) 2004-11-12 2011-05-25 Xencor, Inc. Variants de FC avec une liaison altérée à FCRN
EP2325207A2 (fr) 2004-11-12 2011-05-25 Xencor, Inc. Variants de FC avec une liaison altérée à FCRN
US9938331B2 (en) 2005-09-27 2018-04-10 Amunix Operating Inc. Biologically active proteins having increased in vivo and/or in vitro stability
EP2937361A2 (fr) 2007-10-31 2015-10-28 Xencor Inc. Fc variants ayant une liaison altérée à FcRn
EP2444423A1 (fr) 2007-10-31 2012-04-25 Xencor Inc. Variants de Fc dont la liaison à FcRn est altérée
EP3138853A1 (fr) 2007-10-31 2017-03-08 Xencor, Inc. Variants fc avec liaison alteree a fcrn
EP2808343A1 (fr) 2007-12-26 2014-12-03 Xencor Inc. Variantes Fc avec liaison altérée en FcRn
EP4269443A2 (fr) 2007-12-26 2023-11-01 Xencor, Inc. Variants fc avec liaison altérée à fcrn
EP3825329A1 (fr) 2007-12-26 2021-05-26 Xencor, Inc. Variants fc avec liaison altérée à fcrn
EP4098661A1 (fr) 2007-12-26 2022-12-07 Xencor, Inc. Variantes fc avec liaison altérée en fcrn
US8278988B2 (en) 2008-06-27 2012-10-02 Freescale Semiconductor, Inc. Method and apparatus for generating a modulated waveform signal
US9371369B2 (en) 2009-02-03 2016-06-21 Amunix Operating Inc. Extended recombinant polypeptides and compositions comprising same
US10961287B2 (en) 2009-02-03 2021-03-30 Amunix Pharmaceuticals, Inc Extended recombinant polypeptides and compositions comprising same
US9926351B2 (en) 2009-02-03 2018-03-27 Amunix Operating Inc. Extended recombinant polypeptides and compositions comprising same
WO2010144508A1 (fr) 2009-06-08 2010-12-16 Amunix Operating Inc. Polypeptides de régulation du glucose et leurs procédés de production et d'utilisation
EP3278813A1 (fr) 2009-06-08 2018-02-07 Amunix Operating Inc. Polypeptides de l'hormone de croissance et leurs procédés de fabrication et d'utilisation
US9758776B2 (en) 2009-08-24 2017-09-12 Amunix Operating Inc. Coagulation factor IX compositions and methods of making and using same
US9376672B2 (en) 2009-08-24 2016-06-28 Amunix Operating Inc. Coagulation factor IX compositions and methods of making and using same
EP3222287A1 (fr) 2009-08-24 2017-09-27 Amunix Operating Inc. Compositions de facteur ix de coagulation et procédés de fabrication et d'utilisation
EP3372617A2 (fr) 2010-04-02 2018-09-12 Amunix Operating Inc. Protéines de fusion liantes, conjugués protéines de fusion liantes-médicaments, conjugués xten-médicaments et procédés pour les préparer et les utiliser
US10457723B2 (en) 2011-12-23 2019-10-29 Nicholas B. Lydon Immunoglobulins and variants directed against pathogenic microbes
US9988439B2 (en) 2011-12-23 2018-06-05 Nicholas B. Lydon Immunoglobulins and variants directed against pathogenic microbes
US9416171B2 (en) 2011-12-23 2016-08-16 Nicholas B. Lydon Immunoglobulins and variants directed against pathogenic microbes
US10913791B2 (en) 2011-12-23 2021-02-09 Nicholas B. Lydon Immunoglobulins and variants directed against pathogenic microbes
US10941193B2 (en) 2011-12-23 2021-03-09 Nicholas B. Lydon Immunoglobulins and variants directed against pathogenic microbes
US10370430B2 (en) 2012-02-15 2019-08-06 Bioverativ Therapeutics Inc. Recombinant factor VIII proteins
US10421798B2 (en) 2012-02-15 2019-09-24 Bioverativ Therapeutics Inc. Factor VIII compositions and methods of making and using same
EP3564260A1 (fr) 2012-02-15 2019-11-06 Bioverativ Therapeutics Inc. Compositions de facteur viii et leurs procédés de fabrication et d'utilisation
EP4194465A1 (fr) 2012-02-15 2023-06-14 Bioverativ Therapeutics Inc. Compositions de facteur viii et leurs procédés de fabrication et d'utilisation
US11685771B2 (en) 2012-02-15 2023-06-27 Bioverativ Therapeutics Inc. Recombinant factor VIII proteins
US10953073B2 (en) 2012-02-27 2021-03-23 Amunix Pharmaceuticals, Inc. XTEN conjugate compositions and methods of making same
WO2013184216A1 (fr) 2012-06-05 2013-12-12 Amunix Operating Inc. Protéine de fusion hgh-xten et son utilisation dans le traitement du déficit en hormone de croissance
US10548953B2 (en) 2013-08-14 2020-02-04 Bioverativ Therapeutics Inc. Factor VIII-XTEN fusions and uses thereof
US11242371B2 (en) 2014-01-08 2022-02-08 Prosit Sole Biotechnology (Beijing) Co, Ltd Fusion polypeptides and methods of use
EP3954714A1 (fr) 2014-01-08 2022-02-16 Prosit Sole Biotechnology (Beijing) Co. Ltd Polypeptides de fusion et leurs méthodes d'utilisation
US10246501B2 (en) 2014-01-08 2019-04-02 Prosit Sole Biotechnology (Beijing) Co, Ltd Fusion polypeptides and methods of use
WO2016054603A2 (fr) 2014-10-02 2016-04-07 City Of Hope Méditopes multivalents, anticorps de liaison aux méditopes, et leurs utilisations
EP4218810A2 (fr) 2014-10-02 2023-08-02 City of Hope Méditopes multivalents, anticorps de liaison aux méditopes et leurs utilisations
US11020454B2 (en) 2015-07-15 2021-06-01 Prosit Sole Biotechnology (Beijing) Co. Ltd Fusion polypeptides and methods of use
EP3957654A1 (fr) 2015-07-15 2022-02-23 Prosit Sole Biotechnology (Beijing) Co., Ltd Polypeptides de fusion et leurs procédés d'utilisation
US10745680B2 (en) 2015-08-03 2020-08-18 Bioverativ Therapeutics Inc. Factor IX fusion proteins and methods of making and using same
US12030925B2 (en) 2019-05-17 2024-07-09 Bioverativ Therapeutics Inc. Methods of treating hemophilia A
WO2021097186A1 (fr) 2019-11-13 2021-05-20 Amunix Pharmaceuticals, Inc. Polypeptides xten à code à barres, compositions associées et leurs procédés de production et d'utilisation

Also Published As

Publication number Publication date
GB9815157D0 (en) 1998-09-09

Similar Documents

Publication Publication Date Title
WO2000003317A1 (fr) Definition haute resolution de la largeur d'impulsion a partir de signaux de synchronisation a frequence relativement basse
CN109964404B (zh) 高线性度相位内插器
US8120401B2 (en) Methods and systems for digital pulse width modulator
US6771202B2 (en) Analog-to-digital conversion method and device
US5774084A (en) Method and apparatus for translating digital data into an analog signal
US6396313B1 (en) Noise-shaped digital frequency synthesis
WO2003032494A2 (fr) Boucle analogique verrouillee en frequence avec commande de reaction a surechantillonnage numerique et filtre
EP3772182A1 (fr) Convertisseur analogique-numérique basé sur un oscillateur commandé en tension comprenant un générateur de séquence de longueur maximum
CA2087516C (fr) Comparateur de phases numerique de grande precision
US4974234A (en) Method of and circuit for the measurement of jitter modulation of zero-related digital signals
US3636458A (en) Periodic averaging circuit
JPH10502506A (ja) Σ−δfm復調器の改良
US20040114469A1 (en) Multi-phase clock time stamping
JP2000221248A (ja) 半導体試験装置
US6107890A (en) Digital phase comparator and frequency synthesizer
US6661862B1 (en) Digital delay line-based phase detector
US5353025A (en) Methods and apparatus for digitally encoding repetitive analog waveforms
KR0158633B1 (ko) 동작 주파수의 변화가 가능한 전압, 주파수 측정 회로
Stork New fractional phase-locked loop frequency synthesizer using a sigma-delta modulator
US20020184274A1 (en) Sinusoid synthesis
KR101168339B1 (ko) Ad 변환기
RU2145149C1 (ru) Сигма-дельта-аналого-цифровой преобразователь
RU2171011C1 (ru) Широтно-импульсный модулятор
SU1525880A1 (ru) Устройство формировани сигналов
SU1354144A1 (ru) Синтезатор дискретных фаз

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase