WO1999066575A1 - Method for producing solid polymer electrolyte-catalyst composite electrode and fuel cell - Google Patents

Method for producing solid polymer electrolyte-catalyst composite electrode and fuel cell Download PDF

Info

Publication number
WO1999066575A1
WO1999066575A1 PCT/JP1999/003226 JP9903226W WO9966575A1 WO 1999066575 A1 WO1999066575 A1 WO 1999066575A1 JP 9903226 W JP9903226 W JP 9903226W WO 9966575 A1 WO9966575 A1 WO 9966575A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
polymer electrolyte
solid polymer
compound
raw material
Prior art date
Application number
PCT/JP1999/003226
Other languages
French (fr)
Japanese (ja)
Inventor
Shuji Hitomi
Original Assignee
Japan Storage Battery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co., Ltd. filed Critical Japan Storage Battery Co., Ltd.
Publication of WO1999066575A1 publication Critical patent/WO1999066575A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9091Unsupported catalytic particles; loose particulate catalytic materials, e.g. in fluidised state
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method for producing a solid polymer electrolyte-catalyst composite electrode used for a fuel cell, a hydroelectric battery, and the like, and a fuel cell using the electrode produced by the method.
  • Solid polymer electrolyte fuel cells and solid polymer electrolyte water electrolyzers use, for example, an ion exchange membrane such as a perfluorosulfonate membrane as an electrolyte, and have an anode and a cathode on both sides of the ion exchange membrane.
  • the electrodes are joined together, and a solid polymer electrolyte-catalyst composite electrode is used as these electrodes.
  • a solid polymer electrolyte-catalyst composite electrode refers to an electrode composed of a solid polymer electrolyte and a catalyst substance.
  • the solid polymer electrolyte-catalyst composite electrode used above is composed of a solid polymer electrolyte and catalyst particles.
  • a paste composed of a dissolved solid polymer electrolyte solution and catalyst particles is formed on a polymer film (generally a thickness of 3 to 30 ⁇ m), and then heated and dried. You.
  • a PTFE (polytetrafluoroethylene) particle dispersion may be added to the paste as needed.
  • the catalyst particles function as an electron conduction channel
  • the solid polymer electrolyte functions as a proton conduction channel
  • the pores formed in the electrode function as supply and discharge channels for the active material and the product.
  • the output voltage of a fuel cell is expressed as follows.
  • the catalyst material supported on the electrode should be as high as possible suitable for each reaction. Must be active. However, the higher the activity of the catalyst particles, the more dangerous the manufacturing process of the solid polymer electrolyte-catalyst composite electrode.
  • the solid polymer electrolyte is actuated by the action of the catalyst particles. The alcohol in the electrolyte solution reacts with the oxygen in the air to generate heat, which can cause ignition.
  • a method for ensuring safety for example, a method of preparing a paste in a nitrogen atmosphere, or a method in which the catalyst particles are wetted in advance with water so that the catalyst particles do not come into direct contact with air.
  • a method is used in which a paste is prepared using catalyst particles pre-moistened with water, which can use a simpler manufacturing apparatus than the former method.
  • the present invention relates to a method for producing a solid polymer electrolyte-catalyst composite electrode capable of supporting a catalyst substance in a solid polymer electrolyte-catalyst composite electrode with simple equipment, safely, and having as large an activity as possible.
  • the purpose is to provide.
  • the method of the present invention focuses on the fact that a catalytic substance such as a metal having a high catalytic activity also has a low catalytic activity in a compound thereof, and furthermore, a mixture of a solid polymer electrolyte and the above compound. It has been found that by reduction, the compound can be reduced to produce a catalytic substance.
  • the solid polymer electrolyte is quickly adsorbed on the catalytic substance obtained by the reduction, and the protective effect is obtained.
  • the discovery that the catalytic substances generated by the reduction are prevented from coming into direct contact with each other to prevent aggregation of the generated catalytic substances.
  • a mixture of a catalyst raw material compound and a solid polymer electrolyte is prepared, and the catalyst raw material compound in the mixture is chemically reduced.
  • the method for producing a solid polymer electrolyte-catalyst composite electrode of the present invention is a method for producing a solid polymer electrolyte-catalyst composite electrode comprising a solid polymer electrolyte and a catalyst substance.
  • a mixture of a catalyst raw material compound to be produced and a solid polymer electrolyte is prepared, and the catalyst raw material compound in the mixture is chemically reduced.
  • FIG. 1 is a diagram showing current-voltage characteristics of cells A and B
  • FIG. 2 is a diagram showing current-voltage characteristics of cells C and D
  • FIG. 3 is a diagram showing current-voltage characteristics of cells E and F.
  • the solid polymer electrolyte-catalyst composite electrode to which the production method of the present invention is applied is an electrode composed of a solid polymer electrolyte and a catalyst substance, for example, a solid polymer electrolyte and a catalyst.
  • This electrode is used as a fuel cell or a water electrolyzer, for example, by being joined to both surfaces of an ion exchange membrane and further providing a power feeder thereon.
  • the catalyst raw material compound used in the production method of the present invention is a compound that can be a catalyst substance when the compound is reduced. If the catalyst substance functions as a catalyst, its shape, etc. Although the form of the catalyst substance is not particularly limited, for example, a substance that generates catalytic metal particles by reduction is used. The function as a catalyst is selected according to its use.For example, for fuel cells, those with high oxygen reduction capacity and hydrogen oxidation capacity, and for water electrolysis tanks, water oxidation capacity Those with high proton reduction ability are selected.
  • platinum group metals such as platinum, rhodium, ruthenium, iridium, palladium, and osmium are suitable as catalyst materials, and a solid polymer electrolyte-catalyst composite comprising these catalyst materials and a solid polymer electrolyte is manufactured.
  • a platinum group metal compound such as platinum, rhodium, ruthenium, iridium, palladium, or osmium
  • the compound has a metal salt form.
  • chlorides of platinum group metals are preferred.
  • a metal compound When a metal compound is used, a mixture of several compounds may be used, or a complex or a double salt may be used. For example, by using a mixture of a platinum compound and a ruthenium compound, a platinum-ruthenium alloy can be formed by a reduction step.
  • the mixture of the catalyst raw material compound and the solid polymer electrolyte may be in a liquid, solid or misaligned form as long as the catalyst raw material compound and the solid polymer electrolyte are mixed. It is preferable to use a porous body prepared by dispersing a catalyst raw material compound in a base made of a solid polymer electrolyte having a shape or the like, and to use such a porous body.
  • a paste consisting of a catalyst raw material compound and a PTFE particle dispersion solution is formed into a film (preferably fliff 3 to 3 ⁇ ) on a polymer film, heated and dried, and then a solid polymer electrolyte solution is applied and impregnated. , Let it dry,
  • a paste comprising a catalyst raw material compound, a solid polymer electrolyte solution, and, if necessary, a PTFE particle dispersion solution is applied onto a conductive porous carbon electrode substrate, and heated and dried.
  • a paste consisting of a catalyst raw material compound and a PTFE particle dispersion is applied to a conductive porous electrode substrate, heated and dried, and then a solid polymer electrolyte solution is applied, impregnated, and dried. It is preferable that it is produced by
  • carbon particles may be added to the above-mentioned paste, in which case the carbon particles play a role in forming the above-mentioned electron conduction channel.
  • a mixture of the catalyst raw material compound and the solid polymer electrolyte may be bonded to both sides or one side of the ion exchange membrane.
  • the solid polymer electrolyte is preferably made of an ion exchange resin, and is preferably a sulfonic acid type polymer solid electrolyte of perfluorosulfonic acid or styrene-divinylbenzene.
  • the catalyst raw material compound and the solid polymer electrolyte must be mixed before the reduction treatment. It is preferable to sufficiently evaporate the solvent of the solid polymer electrolyte such as alcohol in the mixture.
  • a chemical reduction method using a reducing agent suitable for mass production, borohydride compound such as NaBH 4, alkyl borane or ⁇ 2 ⁇ 4 ⁇ ⁇ 2 0 such as dimethyl Chiruaminboran, N 2 H 6 Reduction in the liquid phase using a reducing solution consisting of a reducing agent such as hydrazine hydrate or hydrazine compound such as Cl2 and a solvent such as water or alcohol, or reduction in the gas phase using hydrogen gas, Alternatively, reduction in the gas phase using an inert gas containing hydrazine can be used. Particularly, when manufacturing an electrode for a fuel cell, hydrogen gas or water is used.
  • K 2 PtCl 6 or K 2 IrCl 6 is used as a catalyst raw material compound.
  • a method of reducing the catalyst raw material compound using a reducing solution containing a boron compound using an alcohol having extremely low solubility of the catalyst raw material compound is preferable.
  • the present invention will be described in further detail by describing a method for producing an electrode for a solid polymer electrolyte fuel cell including a catalyst material composed of two or more metal elements and a solid polymer electrolyte.
  • Solid polymer electrolyte fuel cells operate at relatively low temperatures and have high energy-efficiency, so they are expected to be used, for example, as power sources for electric vehicles.
  • Oxidant such as oxygen is supplied to fuel and cathode to generate electricity by electrochemical reaction.
  • DMFC direct methanol fuel cell
  • platinum catalysts commonly used in PEFCs usually have low activity for electrochemical oxidation of methanol, so alloy catalysts containing platinum group metals, such as Pt-Ru alloy Particles of Pt and Sn alloys are used as catalyst materials.
  • methanol is used as the primary fuel
  • a reformer utilizing the chemical reaction between methanol and water is used to supply hydrogen, which is obtained by reforming methanol as needed.
  • the fuel cell used in such a method is called a fuel cell reformed fuel cell.
  • Hydrogen sent to a methanol reformed fuel cell often contains about 10 Oppm of CO, so in this fuel cell, the platinum catalyst commonly used for PEFC is greatly affected by CO poisoning. Since no output can be obtained, an alloy catalyst containing a platinum group metal with high resistance to CO poisoning, for example, particles of a Pt—: Ru alloy is used as the catalyst material.
  • a catalyst substance composed of two or more elements such as an alloy.
  • the catalyst particles and the solid polymer electrolyte described above are combined.
  • the production method of the present invention particularly exhibits its usefulness, and when a catalyst substance comprising two or more elements such as an alloy catalyst is used, simple and safe, and small catalyst particles are uniformly dispersed. It enables the production of a solid polymer electrolyte-catalyst composite electrode. That is, when producing a solid polymer electrolyte-catalyst composite electrode composed of a catalyst material composed of two or more elements and a solid polymer electrolyte, a mixture of two or more catalyst raw material compounds and a solid polymer electrolyte is used. Prepare and chemically reduce these two or more catalyst raw material compounds.
  • the catalyst particles include alloy catalyst particles composed of two or more elements and a solid polymer electrolyte, and the catalyst particles are three-dimensionally distributed in the solid polymer electrolyte and internally.
  • a porous electrode with multiple pores, an electron conduction channel formed by highly active catalyst particles, a proton conduction channel formed by a solid electrolyte, and an active material formed by a large number of pores is manufactured.
  • the catalyst substance composed of two or more metal elements refers to alloy particles or mixture particles of a solid solution or an intermetallic compound composed of two or more metal elements.
  • the two or more catalyst raw material compounds used in this case are compounds that can be converted into a catalyst substance composed of two or more metal elements by reducing these compounds.
  • catalytic substance a substance having high oxygen reducing ability, hydrogen or CO or methanol oxidizing ability is selected, and such catalytic substances include platinum (Pt), rhodium.
  • Platinum group metals such as (Ru), ruthenium (Ru), iridium (Ir), palladium (Pd), and osmium are suitable.
  • the catalyst raw material compound it is preferable to use a platinum group metal compound such as platinum, rhodium, ruthenium, iridium, palladium, and osmium, and among these, a compound having a metal salt form as a compound is preferable.
  • a platinum group metal compound such as platinum, rhodium, ruthenium, iridium, palladium, and osmium
  • a compound having a metal salt form is preferable.
  • Preferred are, for example, chlorides of platinum group metals.
  • At least one of the two or more catalyst raw material compounds when preparing an electrode, when preparing an electrode with improved electrochemical oxidation reaction performance of methanol, such as an electrode for DMFC, at least one of the two or more catalyst raw material compounds must be a platinum group element. It is preferable to include More preferably, at least one of the two or more catalyst raw material compounds contains an element selected from the group consisting of Pt, Ru, Rh, Pd, and Ir. In these cases, in particular, it is preferable that at least two compounds of the catalyst raw material contain at least a compound of platinum and ruthenium, or that two or more catalyst raw materials are used. It is preferable that the compound contains at least a compound of iridium and a compound of ruthenium.
  • the mixture of two or more catalyst raw material compounds and the solid polymer electrolyte has a liquid / solid state when the two or more catalyst raw material compounds and the solid polymer electrolyte are mixed.
  • a mixture in which a catalyst raw material compound is dispersed in a matrix composed of a solid polymer electrolyte is made up of a paste comprising two or more catalyst raw material compounds, a solid polymer electrolyte solution, and, if necessary, a PTFE particle dispersion solution. It is formed on a film (preferably ⁇ 30 ⁇ m) and dried by heating.
  • a paste comprising two or more catalyst raw material compounds and a PTFE particle dispersion solution is formed on a polymer film (preferably, J3Iff 3 to 30 m), dried by heating, and then the solid polymer electrolyte solution is dried. After applying, impregnating and drying,
  • a paste consisting of two or more catalyst raw material compounds, a solid polymer electrolyte solution, and, if necessary, a PTFE particle dispersion solution is applied to a conductive porous carbon substrate and heated. Dry,
  • a paste consisting of two or more catalyst raw material compounds and a PTFE particle dispersion solution is applied to a conductive porous carbon electrode, heated and dried, and then a solid polymer electrolyte solution is applied and impregnated. After that, it is preferable to produce it by drying.
  • carbon particles may be added to each of the above-described pastes, if necessary. In such a case, carbon particles serve to form the above-described electron conduction channel. Furthermore, a form in which a mixture of two or more catalyst raw material compounds and a solid polymer electrolyte is bonded to both sides or one side of the ion exchange membrane may be used.
  • the solid polymer electrolyte is preferably made of an ion exchange resin, and is preferably a sulfonic acid type polymer solid electrolyte of perfluorosulfonic acid or styrene-divinylbenzene.
  • the catalyst raw material compound and the solid It is preferable to carry out the reaction after sufficiently evaporating the solvent of the solid polymer electrolyte such as alcohol in the mixture with the polymer electrolyte. It is preferable to use a chemical reduction method using a reducing agent suitable for mass production, such as a borohydride such as NaBH 4 , an alkylamine borane such as dimethylamine borane, or N 2 H 4 ′ H 20.
  • a reducing agent suitable for mass production such as a borohydride such as NaBH 4 , an alkylamine borane such as dimethylamine borane, or N 2 H 4 ′ H 20.
  • N 2 reducing agent such as H 6 C1 2 hydrazine hydrate or hydrazine compounds such as water or alcohol - reduction with liquid phase with a reducing solution comprising a solvent such as Le, or hydrogen gas or hydrogen Reduction in the gas phase using a gas containing gas or reduction in the gas phase using an inert gas containing hydrazine
  • a reducing solution comprising a solvent such as Le, or hydrogen gas or hydrogen Reduction in the gas phase using a gas containing gas or reduction in the gas phase using an inert gas containing hydrazine
  • a reduction method in a gas phase in which reduction is performed with an inert gas containing hydrazine is preferable because the obtained catalyst substance has higher dispersion and fine particles than a catalyst substance obtained by a reduction method in a liquid phase.
  • reduction conditions such as reduction temperature and pressure are selected so that two or more catalyst raw material compounds are reduced simultaneously. Is preferred.
  • the reduction temperature and pressure should be changed over time so that two or more catalyst raw material compounds are sequentially reduced. Is preferred.
  • a reformed fuel cell or a direct fuel cell can be a very efficient fuel cell.
  • K 2 PtCl 6 chloroplatinic acid power rim
  • solid polymer electrolyte solution Aldrich Co., Nafion 5 wt./. Solution
  • PTFE particles Mitsubishi Fluorochemical Co., Ltd., Teflon 30 J, average particle size 0.23 ⁇ (01) was applied on a conductive porous electrode substrate (0.5 mm) of water-repellent conductive porous material, and dried at 120 ° C for 1 hour in a nitrogen atmosphere.
  • Example electrode A the platinum amount of the electrode A was about 4 mg / cm 2 .
  • the amount of platinum black was adjusted so that the amount of platinum of the comparative example electrode B was about 4 mg / cm 2 .
  • Example electrode A and comparative example electrode B were bonded to both surfaces of an ion exchange membrane (made by DuPont, trade name: Naphion, film thickness: about 50 m) by hot pressing (140 ° C), respectively.
  • Fig. 1 shows the current-voltage characteristics when cells A and B are assembled into a single fuel cell and hydrogen and oxygen (2 atm, 80 ° C) are supplied to these cells. From the figure, it can be seen that the cell A according to the present invention shows a higher output voltage than the conventional cell B, although it is easily manufactured.
  • the electrode of the present invention is made by reducing a mixture of a solid polymer electrolyte and a catalyst raw material compound that is reduced to generate a catalyst substance, and thus the catalyst obtained by reduction of the solid polymer electrolyte is used. This is because they exhibit a protective effect by adsorbing on the particles, prevent the catalyst particles from directly contacting each other, and prevent the particles from aggregating, thereby maintaining high activity.
  • Pt black was agglomerated into particles of 10 to 20 / m in Comparative Example Electrode B, whereas aggregated catalyst particles were observed in Example Electrode A. Absent.
  • K 2 IrCl 6 (potassium iridium dichloride), K 2 PtCl 6 and solid polymer electrolyte solution (Aldrich, Naphion 5 wt% solution) at a weight ratio of 2.0 / 1.0 / 2.77, and mix at 70 ° C After heating and concentrating to obtain a paste having an appropriate viscosity, a film was formed on a FEP (tetrafluoroethylene-hexafluoropropylene copolymer) film and air-dried for 24 hours.
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • the Irijiumu and mixtures of salt and polymer solid electrolyte platinum respect, the implementation of 70 ° C E evening Roh Ichiru solution for water electrolyzer perform reduction treatment of 2 hours in containing NaBH 4 in 0.4 wt% Example electrode C was obtained. Analysis was performed separately, it was confirmed that the amount of supported Irijiu arm and platinum electrode C is about 2 mg / cm 2 and lmg / cm 2, respectively.
  • Iridium powder (Tanaka precious metal, average particle diameter 10 zm) pre-moistened with water, platinum black (Nichi-Chemcat, average particle diameter 1.5 ⁇ ⁇ m) and solid polymer electrolyte solution 0.8 / 0.4 / Mix at a weight ratio of 2.77, heat and concentrate at 70 ° C to obtain a paste with an appropriate viscosity, and then form a film on FEP (tetrafluoroethylene-hexylene hexafluoropropylene copolymer) film for 24 hours. Was dried naturally to obtain Comparative Example Electrode D.
  • Irijiumu powder and platinum black amount as the amount of iridium and platinum is about 2 mg / cm 2 and lmg / cm 2 each of the comparative example electrodes D.
  • Electrode C of Example and Electrode D of Comparative Example were bonded to both sides of an ion exchange membrane (DuPont, Nafion, Mi-approximately 50 m) by hot pressing (140 ° C) and assembled into a single cell of hydroelectric power. C and D were obtained.
  • Figure 2 shows the current-voltage characteristics of these cells at 80 ° C. From the figure, it can be seen that the cell according to the present invention has a lower electrolysis voltage than the conventional cell.
  • the electrode of the present invention is made by reducing a mixture of a solid polymer electrolyte and a compound of a metal exhibiting catalytic activity, so that the solid polymer electrolyte is adsorbed on the catalyst particles obtained by the reduction. Shows a protective effect, and the catalyst particles come into direct contact with each other This is because they prevent aggregation and maintain high activity.
  • Example Electrode C In addition, as a result of microscopic observation, it was observed that the catalyst particles were agglomerated into particles of 30 to 50 m in Comparative Example Electrode D, but no agglomerated catalyst particles were observed in Example Electrode C.
  • Water-repellent conductive porous paste made of a mixture of potassium chloroplatinate (K 2 PtCl 6 ), ruthenium chloride (RuCl 3 ), and a solid polymer electrolyte solution (Aldrich, Naphion 5 wt% solution) It was applied on a porous carbon substrate (0.5 mm) and dried at 120 ° C for 1 hour in a nitrogen atmosphere.
  • Example electrode E a mixture of the above K 2 Pt Cl 6 , ruthenium chloride (RuCl 3 ) and a solid polymer electrolyte solution was reduced in a hydrogen atmosphere at 200 ° C. and 1 atm for 4 hours to obtain Example electrode E.
  • the amount of platinum and the amount of ruthenium of the electrode E were about 3 mg / cm 2 respectively.
  • a conductive porous material with water repellency obtained by mixing a paste in which Pt_Ru0X fine powder pre-wetted with water and a solid polymer electrolyte solution (Aldrich Co., Ltd., Naphion 5 wt% solution) are mixed.
  • a paste in which Pt_Ru0X fine powder pre-wetted with water and a solid polymer electrolyte solution (Aldrich Co., Ltd., Naphion 5 wt% solution) were mixed.
  • a carbon electrode substrate 0.5 mm
  • Comparative Example Electrode F Comparative Example Electrode F.
  • the amount of platinum black was adjusted so that the amount of platinum and the amount of ruthenium of the comparative electrode F were about 3 mg / cm 2 respectively.
  • the electrode E of Example and the electrode F of Comparative Example were hot-pressed (140 ° C) on both sides of an ion-exchange membrane (made by DuPont, trade name: Naphion, film thickness: approx.
  • the cells were joined and assembled into a single cell of a fuel cell to obtain cells E and F.
  • Figure 3 shows the current-voltage characteristics when hydrogen containing 10 Oppm of CO was supplied as fuel to these cells and oxygen (2 atm, 80 ° C) was supplied as oxidant. From the figure, it can be seen that the cell E according to the present invention has good resistance to CO poisoning and shows a higher output voltage than the conventional cell F, although it is easily manufactured.
  • the electrode of the present invention is a catalyst raw material compound which is reduced to produce a catalyst substance and a solid.
  • the solid polymer electrolyte is adsorbed on the catalyst particles obtained by the reduction, and the catalyst particles come into direct contact with each other to aggregate the particles. This is because the catalyst particles maintain high activity.
  • a solid polymer composed of a solid polymer electrolyte and a catalyst substance is safely and easily exhibited by a simple device without hindering the catalytic activity of the catalyst substance.
  • An electrolyte-catalyst composite electrode can be manufactured.
  • the electrode comprising a catalyst material comprising two or more metal elements and a solid polymer electrolyte produced by the present invention is a modified methanol fuel cell or DMFC which requires an alloy catalyst for the oxidation reaction of fuel at the electrode. Is particularly preferable as the anode electrode.

Abstract

A method for producing a solid polymer electrolyte-catalyst composite electrode used for a solid polymer electrolyte fuel cell, containing a solid polymer electrolyte and catalyst particles, and having a porous structure in which the catalyst particles are three-dimensionally distributed and pores are formed, whereby the catalyst material is supported in the solid polymer electrolyte-catalyst electrode safely in as high an active state as possible by means of a simple facility. A mixture of a catalyst material compound which is a compound of a metal in the platinum group capable of producing a catalyst material when reduced and a solid polymer electrolyte is prepared, and then the catalyst material compound in the mixture is chemically reduced using an inert gas containing hydrogen gas and hydrazine. An electrode produced using two catalyst material compounds, for example, a platinum compound and a ruthenium compound, or an iridium compound and a ruthenium compound is preferably used as an anode of a methanol-modification fuel cell or a direct-methanol fuel cell.

Description

明細書 固体高分子電解質一触媒複合電極の製造方法および燃料電池 ぐ技術分野 >  Description Method for producing solid polymer electrolyte-catalyst composite electrode and fuel cell technical field>
本発明は, 燃料電池ゃ水電 i等に用いられる固体高分子電解質一触媒複合電 極の製造方法およびこの製造方法により製造された電極を用いた燃料電池に関す るものである。  The present invention relates to a method for producing a solid polymer electrolyte-catalyst composite electrode used for a fuel cell, a hydroelectric battery, and the like, and a fuel cell using the electrode produced by the method.
<背景技術 > <Background technology>
固体高分子電解質型燃料電池および固体高分子電解質型水電解槽は、 例えば、 パーフルォロスルフォン酸膜等のイオン交換膜を電解質とし、 このイオン交換膜 の両面にァノ一ドとカソードの各電極が接合されて構成されており、 これら電極 として、 固体高分子電解質—触媒複合電極が用いられている。  Solid polymer electrolyte fuel cells and solid polymer electrolyte water electrolyzers use, for example, an ion exchange membrane such as a perfluorosulfonate membrane as an electrolyte, and have an anode and a cathode on both sides of the ion exchange membrane. The electrodes are joined together, and a solid polymer electrolyte-catalyst composite electrode is used as these electrodes.
固体高分子電解質一触媒複合電極は、 固体高分子電解質と触媒物質とからなる 電極を言うが、 通常、 上記用いられている固体高分子電解質—触媒複合電極は、 固体高分子電解質と触媒粒子とを含んでなり、 触媒粒子が三次元に分布するとと もに内部に複数の細孔が形成された多孔性の電極であって、 例えば、 上記イオン 交換膜と同じ組成からなる高分子がアルコールに溶解されたものである固体高分 子電解質溶液と触媒粒子よりなるペース卜が高分子フィルム上に製膜 (一般に膜 厚 3 ~ 3 0〃m) され、 この後加熱乾燥されることによって作製される。 また、 必要に応じて PTFE (ポリテトラフルォロエチレン)粒子分散溶液がペーストに 加えられることもある。そして、 この電極では、触媒粒子が電子伝導チャンネル、 固体高分子電解質がプロトン伝導チャンネル、 そして、 電極中に形成される細孔 が活物質および生成物の供給、 排出チヤンネルとして機能する。  A solid polymer electrolyte-catalyst composite electrode refers to an electrode composed of a solid polymer electrolyte and a catalyst substance. Usually, the solid polymer electrolyte-catalyst composite electrode used above is composed of a solid polymer electrolyte and catalyst particles. A porous electrode having catalyst particles distributed three-dimensionally and having a plurality of pores formed therein.For example, a polymer having the same composition as the ion exchange membrane is converted into alcohol. A paste composed of a dissolved solid polymer electrolyte solution and catalyst particles is formed on a polymer film (generally a thickness of 3 to 30 μm), and then heated and dried. You. In addition, a PTFE (polytetrafluoroethylene) particle dispersion may be added to the paste as needed. In this electrode, the catalyst particles function as an electron conduction channel, the solid polymer electrolyte functions as a proton conduction channel, and the pores formed in the electrode function as supply and discharge channels for the active material and the product.
ところで、 一般に、 燃料電池の出力電圧は次のようにあらわされる。  By the way, generally, the output voltage of a fuel cell is expressed as follows.
E F = E r K - 7? F -iRF ( 1 ) E F = E r K -7? F -iR F (1)
Ε κ:出力電圧 (V) Ε κ : Output voltage (V)
ErF:可逆電位 (1.23V) V F:酸素還元過電圧と水素酸化過電圧の合計 (V) Er F : Reversible potential (1.23V) V F : Sum of oxygen reduction overvoltage and hydrogen oxidation overvoltage (V)
iRF:セル構造などに起因するオーム損 iR F : Ohm loss due to cell structure etc.
つまり、 燃料電池の出力電圧を大きくして発電効率を向上させるには、 高活性 な触媒物質を用いて過電圧を小さくすることが必要であることがわかる。  In other words, it can be seen that in order to increase the output voltage of the fuel cell and improve the power generation efficiency, it is necessary to reduce the overvoltage by using a highly active catalyst substance.
一方, 水電 の電解電圧は次のようにあらわされる。  On the other hand, the electrolysis voltage of hydroelectric power is expressed as follows.
Ew= E rw+ 77 w+ i Rw ( 2 ) E w = E r w + 77 w + i R w (2)
Ew :電解電圧 (V) E w: Electrolysis voltage (V)
Erw:理論分解電圧 (1.23V) Er w : Theoretical decomposition voltage (1.23V)
77 w :酸素発生過電圧と水素発生過電圧の合計 (V) 77 w : Total oxygen overvoltage and hydrogen overvoltage (V)
iRw:セル構造などに起因するオーム損 iR w : Ohm loss due to cell structure, etc.
つまり、 水電解槽の電解電圧を低くして電解効率を向上させるには、 燃料電池 の場合と同様に、 高活性な触媒物質を用いて過電圧を小さくすることが必要であ ることがわかる。  In other words, it can be seen that in order to lower the electrolysis voltage of the water electrolysis tank and improve the electrolysis efficiency, it is necessary to use a highly active catalyst substance to reduce the overvoltage as in the case of the fuel cell.
すなわち、 固体高分子電解質一触媒複合電極においては、 これを利用する燃料 電池、 水電解槽をできるだけ効率の良いものにするために、 電極に担持させる触 媒物質をそれぞれの反応に適したできるだけ高活性なものとする必要がある。 しかしながら、 触媒粒子の活性を上げれば上げるほど、 固体高分子電解質一触 媒複合電極の製造工程において危険を伴うようになる。 例えば、 上記触媒粒子と 固体高分子電解質溶液とを混鰊して作製したペーストを用いる方法では、 触媒粒 子と固体高分子電解質溶液との混鰊の際に、 触媒粒子の作用により固体高分子電 解質溶液中のアルコールと空気中の酸素とが反応して発熱し、 発火する可能性が 生じる。  In other words, in a solid polymer electrolyte-catalyst composite electrode, in order to make the fuel cell and water electrolysis tank utilizing this as efficient as possible, the catalyst material supported on the electrode should be as high as possible suitable for each reaction. Must be active. However, the higher the activity of the catalyst particles, the more dangerous the manufacturing process of the solid polymer electrolyte-catalyst composite electrode. For example, in the method using a paste prepared by mixing the catalyst particles and the solid polymer electrolyte solution, when the catalyst particles are mixed with the solid polymer electrolyte solution, the solid polymer electrolyte is actuated by the action of the catalyst particles. The alcohol in the electrolyte solution reacts with the oxygen in the air to generate heat, which can cause ignition.
そこで、 このような場合に安全性を確保するための方法として、 例えば、 窒素 雰囲気中でペーストを作製する方法や、 触媒粒子を予め水で湿らせて触媒粒子が 空気に直接触れない状態とする方法が考えられた。 そして、 現在では、 前者の方 法に比べて簡単な製造装置を用いることが可能な、 触媒粒子を予め水で湿らせた ものを用いてペーストを作製する方法が用いられている。  Therefore, in such a case, as a method for ensuring safety, for example, a method of preparing a paste in a nitrogen atmosphere, or a method in which the catalyst particles are wetted in advance with water so that the catalyst particles do not come into direct contact with air. A way was conceived. At present, a method is used in which a paste is prepared using catalyst particles pre-moistened with water, which can use a simpler manufacturing apparatus than the former method.
ところが、 この方法には、 触媒粒子を予め水で湿らせる際に触媒粒子同士が接 触して凝集し、 この結果たとえ高活性な触媒粒子を用いてもできあがった電極の 活性が低くなるという問題があつた。 <発明の開示 > However, in this method, when the catalyst particles are wetted in advance with water, the catalyst particles come into contact with each other and agglomerate. As a result, even if highly active catalyst particles are used, the electrode is formed. There was a problem that the activity was low. <Disclosure of Invention>
本発明は、 簡単な設備で、 安全に、 かつ、 できるだけ大きな活性を有する状態 で固体高分子電解質一触媒複合電極中に触媒物質を担持させることのできる固体 高分子電解質一触媒複合電極の製造方法を提供することを目的とするものである。 そして、 本発明の方法は、 高い触媒活性を示す金属等の触媒物質も、 その化合 物では触媒活性が低くなることに着目したこと、 さらに固体高分子電解質と上記 化合物とを混鍊した混合物を還元することにより、 該化合物を還元して触媒物質 を生成することが可能であることを見出したこと、 この際、 固体高分子電解質が 還元により得られた触媒物質に速やかに吸着して保護作用を示し、 還元により生 じた触媒物質相互が直接接触するのを防いで生成した触媒物質の凝集が防止され ることを見出すこと等により成されたものであって、 還元されて触媒物質を生成 する触媒原料化合物と固体高分子電解質との混合物を用意し、 該混合物中の触媒 原料化合物を化学的に還元することを特徴とするものである。  The present invention relates to a method for producing a solid polymer electrolyte-catalyst composite electrode capable of supporting a catalyst substance in a solid polymer electrolyte-catalyst composite electrode with simple equipment, safely, and having as large an activity as possible. The purpose is to provide. In addition, the method of the present invention focuses on the fact that a catalytic substance such as a metal having a high catalytic activity also has a low catalytic activity in a compound thereof, and furthermore, a mixture of a solid polymer electrolyte and the above compound. It has been found that by reduction, the compound can be reduced to produce a catalytic substance. In this case, the solid polymer electrolyte is quickly adsorbed on the catalytic substance obtained by the reduction, and the protective effect is obtained. And the discovery that the catalytic substances generated by the reduction are prevented from coming into direct contact with each other to prevent aggregation of the generated catalytic substances. A mixture of a catalyst raw material compound and a solid polymer electrolyte is prepared, and the catalyst raw material compound in the mixture is chemically reduced.
すなわち、 本発明の固体高分子電解質—触媒複合電極の製造方法は、 固体高分 子電解質と触媒物質とからなる固体高分子電解質—触媒複合電極の製造方法であ つて、 還元されて触媒物質を生成する触媒原料化合物と固体高分子電解質との混 合物を用意し、 該混合物中の触媒原料化合物を化学的に還元することを特徴とす るものである。  That is, the method for producing a solid polymer electrolyte-catalyst composite electrode of the present invention is a method for producing a solid polymer electrolyte-catalyst composite electrode comprising a solid polymer electrolyte and a catalyst substance. A mixture of a catalyst raw material compound to be produced and a solid polymer electrolyte is prepared, and the catalyst raw material compound in the mixture is chemically reduced.
<図面の簡単な説明 > <Brief description of drawings>
第 1図は、 セル Aおよび Bの電流一電圧特性を示す図であり、 第 2図は、 セル Cおよび Dの電流一電圧特性を示す図である。 また、 第 3図は、 セル Eおよび F の電流一電圧特性を示す図である。  FIG. 1 is a diagram showing current-voltage characteristics of cells A and B, and FIG. 2 is a diagram showing current-voltage characteristics of cells C and D. FIG. 3 is a diagram showing current-voltage characteristics of cells E and F.
<発明を実施するための形態 > <Mode for Carrying Out the Invention>
本発明の製造方法の適用される固体高分子電解質一触媒複合電極は、 固体高分 子電解質と触媒物質とからなる電極であって、 例えば、 固体高分子電解質と触媒 粒子とを含んでなり、 触媒粒子が固体高分子電解質中に三次元に分布するととも に、 内部に複数の細孔が形成された多孔性の電極であって、 触媒粒子により形成 された電子伝導チャンネル、 固体電解質により形成されたプロトン伝導チャンネ ル、 多数の細孔により形成された活物質および生成物の供給、 排出チャンネルを 有するものである。 そして、 この電極は、 例えば、 イオン交換膜の両面に接合さ れ、 さらにこれらの上に給電体が設けられることによって、 燃料電池用または水 電解槽用の «sとして用いられる。 The solid polymer electrolyte-catalyst composite electrode to which the production method of the present invention is applied is an electrode composed of a solid polymer electrolyte and a catalyst substance, for example, a solid polymer electrolyte and a catalyst. A porous electrode in which the catalyst particles are three-dimensionally distributed in the solid polymer electrolyte and a plurality of pores are formed inside, and the electron conduction formed by the catalyst particles It has a channel, a proton conducting channel formed by a solid electrolyte, and a supply and discharge channel for an active material and products formed by a large number of pores. This electrode is used as a fuel cell or a water electrolyzer, for example, by being joined to both surfaces of an ion exchange membrane and further providing a power feeder thereon.
本発明の製造方法において用いられる触媒原料化合物は、 該化合物が還元され ることで触媒物質となることが可能な化合物であって、 その触媒物質は、 触媒と して機能すればその形状等、 触媒物質の形態は特に問わないが、 例えば還元によ り触媒金属粒子が生成されるものを用いる。 触媒としての機能は、 その用途に応 じて選択されるが、 例えば燃料電池用の場合には、 酸素還元能力、 水素酸化能力 の高いもの、 水電解槽用の場合には、 水の酸化能力、 プロトン還元能力の高いも のが選択される。 これらの場合、 白金, ロジウム, ルテニウム, イリジウム, パ ラジウム, ォスニゥムなどの白金族金属が触媒物質として適しており、 これらの 触媒物質と固体高分子電解質とからなる固体高分子電解質—触媒複合 を製造 する場合には、 触媒原料化合物として、 白金, ロジウム, ルテニウム, イリジゥ ム, パラジウム, ォスニゥムなどの白金族金属化合物を用いるのが良く、 特にこ れらの中でも化合物の形態として金属塩の形態を有するものが好ましく、 例えば 白金族金属の塩化物が好ましい。  The catalyst raw material compound used in the production method of the present invention is a compound that can be a catalyst substance when the compound is reduced. If the catalyst substance functions as a catalyst, its shape, etc. Although the form of the catalyst substance is not particularly limited, for example, a substance that generates catalytic metal particles by reduction is used. The function as a catalyst is selected according to its use.For example, for fuel cells, those with high oxygen reduction capacity and hydrogen oxidation capacity, and for water electrolysis tanks, water oxidation capacity Those with high proton reduction ability are selected. In these cases, platinum group metals such as platinum, rhodium, ruthenium, iridium, palladium, and osmium are suitable as catalyst materials, and a solid polymer electrolyte-catalyst composite comprising these catalyst materials and a solid polymer electrolyte is manufactured. In this case, it is preferable to use a platinum group metal compound such as platinum, rhodium, ruthenium, iridium, palladium, or osmium as a catalyst raw material compound. Particularly, among these, the compound has a metal salt form. Preferably, for example, chlorides of platinum group metals are preferred.
また、金属化合物を用いる場合、 いくつかの化合物の混合物を用いても良いし、 錯体または複塩を用いても良い。例えば、 白金ィ匕合物とルテニウム化合物を混ぜ て用いることで、 還元工程により、 白金一ルテニウム合金の形成が可能である。 触媒原料化合物と固体高分子電解質との混合物は、 触媒原料化合物と固体高分 子電解質とが混合されたものであれば液体状、 固体状 、ずれの形態を有するもの でも良いが、 例えば、 膜形状等を有する固体高分子電解質からなる母体中に触媒 原料化合物が分散されてなる多孔体として用意され、 このような多孔体を用いる ことは好ましい。  When a metal compound is used, a mixture of several compounds may be used, or a complex or a double salt may be used. For example, by using a mixture of a platinum compound and a ruthenium compound, a platinum-ruthenium alloy can be formed by a reduction step. The mixture of the catalyst raw material compound and the solid polymer electrolyte may be in a liquid, solid or misaligned form as long as the catalyst raw material compound and the solid polymer electrolyte are mixed. It is preferable to use a porous body prepared by dispersing a catalyst raw material compound in a base made of a solid polymer electrolyte having a shape or the like, and to use such a porous body.
固体高分子電解質からなる母体中に触媒原料化合物が分散されてなる混合物は、 触媒原料化合物と、 固体高分子電解質溶液、 さらに必要に応じて PTFE粒子分散 溶液よりなるペーストを高分子フィルム上に製膜 (好ましくは膜厚 3〜 3 0〃m) して加熱乾燥して、 A mixture in which a catalyst raw material compound is dispersed in a matrix composed of a solid polymer electrolyte, A paste comprising a catalyst raw material compound, a solid polymer electrolyte solution, and, if necessary, a PTFE particle dispersion solution is formed on a polymer film (preferably 3 to 30 μm), and heated and dried.
または、 触媒原料化合物と PTFE粒子分散溶液よりなるペーストを高分子フィ ルム上に製膜(好ましくは fliff 3〜3 θ Λίπι) して加熱乾燥したのち、 固体高分 子電解質溶液を塗布、 含浸後、 乾燥させて、  Alternatively, a paste consisting of a catalyst raw material compound and a PTFE particle dispersion solution is formed into a film (preferably fliff 3 to 3θΛίπι) on a polymer film, heated and dried, and then a solid polymer electrolyte solution is applied and impregnated. , Let it dry,
または、触媒原料化合物と、固体高分子電解質溶液、さらに必要に応じて PTFE 粒子分散溶液よりなるペーストを導電性多孔質体の力一ボン電極基材上に塗布し て、 加熱乾燥して、  Alternatively, a paste comprising a catalyst raw material compound, a solid polymer electrolyte solution, and, if necessary, a PTFE particle dispersion solution is applied onto a conductive porous carbon electrode substrate, and heated and dried.
または、 触媒原料化合物と PTFE粒子分散溶液よりなるペーストを導電性多孔 質体の力一ボン電極基材上に塗布して、 加熱乾燥した後、 固体高分子電解質溶液 を塗布、 含浸後、 乾燥させて作製されるのが好ましい。  Alternatively, a paste consisting of a catalyst raw material compound and a PTFE particle dispersion is applied to a conductive porous electrode substrate, heated and dried, and then a solid polymer electrolyte solution is applied, impregnated, and dried. It is preferable that it is produced by
また、 上述のペーストには、 必要に応じてカーボン粒子が加えられても良く、 その場合、 力一ボン粒子が先述の電子伝導チャンネルを形成する役目を担う。 さらに、触媒原料化合物と固体高分子電解質との混合物をイオン交換膜の両面、 または片面に接合した形態としても良い。  If necessary, carbon particles may be added to the above-mentioned paste, in which case the carbon particles play a role in forming the above-mentioned electron conduction channel. Further, a mixture of the catalyst raw material compound and the solid polymer electrolyte may be bonded to both sides or one side of the ion exchange membrane.
なお、 固体高分子電解質としては、 イオン交換樹脂からなるものが好ましく、 パ一フルォロスルフォン酸またはスチレン一ジビニルベンゼン系のスルフォン酸 型高分子固体電解質が好ましい。  The solid polymer electrolyte is preferably made of an ion exchange resin, and is preferably a sulfonic acid type polymer solid electrolyte of perfluorosulfonic acid or styrene-divinylbenzene.
用意された触媒原料化合物と固体高分子電解質との混合物中の触媒原料化合物 を還元するには、 先に述べた安全性の面から、 還元処理の前に触媒原料化合物と 固体高分子電解質との混合物中のアルコール等の固体高分子電解質の溶媒を十分 揮発させてから行うことが好ましい。 そして、 量産に適した還元剤を用いる化学 的な還元方法を用いることが好ましく、 NaBH4などの水素化ホウ素化合物、ジメ チルァミンボランなどのアルキルアミンボランや Ν2Η4·Η20, N2H6Cl2などのヒ ドラジン水和物またはヒドラジン化合物などの還元剤と水またはアルコ一ルなど の溶媒よりなる還元溶液を用いた液相での還元、 または水素ガスを用いた気相で の還元、 またはヒドラジンを含んだ不活性ガスを用いた気相での還元を用いるこ とができるが、 特に、 燃料電池用の電極を製造する場合には、 水素ガスまたは水 素含有ガスによって還元する方法またはヒドラジンを含む不活性ガスによって還 元する方法が好ましく、 水電解槽用の電極を製造する場合には、 触媒原料化合物 として K2PtCl6または K2IrCl6を用い、 該触媒原料化合物を触媒原料化合物がそ の混合物より溶出しないように、 触媒原料化合物の溶解度の極めて低いアルコ一 ル類を溶媒としたホウ素化合物を含む還元溶液を用いて還元する方法が好ましい。 以下、 2種以上の金属元素からなる触媒物質と固体高分子電解質とを含む固体 高分子電解質型燃料電池用電極の製造方法を説明することにより、 本発明につい てさらに詳しく説明する。 In order to reduce the catalyst raw material compound in the prepared mixture of the catalyst raw material compound and the solid polymer electrolyte, from the viewpoint of safety described above, the catalyst raw material compound and the solid polymer electrolyte must be mixed before the reduction treatment. It is preferable to sufficiently evaporate the solvent of the solid polymer electrolyte such as alcohol in the mixture. Then, it is preferable to use a chemical reduction method using a reducing agent suitable for mass production, borohydride compound such as NaBH 4, alkyl borane or Ν 2 Η 4 · Η 2 0 such as dimethyl Chiruaminboran, N 2 H 6 Reduction in the liquid phase using a reducing solution consisting of a reducing agent such as hydrazine hydrate or hydrazine compound such as Cl2 and a solvent such as water or alcohol, or reduction in the gas phase using hydrogen gas, Alternatively, reduction in the gas phase using an inert gas containing hydrazine can be used. Particularly, when manufacturing an electrode for a fuel cell, hydrogen gas or water is used. Preference is given to a method of reducing with an oxygen-containing gas or a method of reducing with an inert gas containing hydrazine.In the case of producing an electrode for a water electrolysis tank, K 2 PtCl 6 or K 2 IrCl 6 is used as a catalyst raw material compound. In order to prevent the catalyst raw material compound from being eluted from the mixture, a method of reducing the catalyst raw material compound using a reducing solution containing a boron compound using an alcohol having extremely low solubility of the catalyst raw material compound is preferable. Hereinafter, the present invention will be described in further detail by describing a method for producing an electrode for a solid polymer electrolyte fuel cell including a catalyst material composed of two or more metal elements and a solid polymer electrolyte.
固体高分子電解質型燃料電池 (PEFC) は、 比較的低温で作動し、 エネルギ —効率が高いために例えば電気自動車用電源としての期待が高いものであり、 ァ ノードに水素ゃメ夕ノール等の燃料、 カソ一ドに酸素等の酸化剤が供給されて電 気化学反応により発電する装置である。  Solid polymer electrolyte fuel cells (PEFCs) operate at relatively low temperatures and have high energy-efficiency, so they are expected to be used, for example, as power sources for electric vehicles. Oxidant such as oxygen is supplied to fuel and cathode to generate electricity by electrochemical reaction.
中でも、 PEFCメ夕ノ一ルを直接PEFCに供給してPEFC内でメ夕ノ一 ルを直接電気化学的に酸化するものは、直接メ夕ノ一ル燃料電池 (DMFC: Direct Methanol Fuel Cell)と呼ばれるものであるが、 この DMFCでは、 通常 P EFC に良く用いられる白金触媒はメ夕ノールの電気化学的酸化に対する活性が低いた め、 白金族金属を含む合金触媒、 たとえば P t— Ru合金や Pt— Sn合金の粒 子が触媒物質として用いられる。  Among them, those that directly supply PEFC methanol to PEFC and directly electrochemically oxidize the methanol in PEFC use direct methanol fuel cell (DMFC). In this DMFC, platinum catalysts commonly used in PEFCs usually have low activity for electrochemical oxidation of methanol, so alloy catalysts containing platinum group metals, such as Pt-Ru alloy Particles of Pt and Sn alloys are used as catalyst materials.
また、 水素を燃料とする場合にも、 メタノールを一次燃料とし、 メタノールと 水との化学反応を利用した改質器を用い、 必要に応じてメタノールを改質した水 素を供給することで燃料とする場合が有り、 このような方法で用いられるものは メ夕ノ一ル改質燃料電池と呼ばれるている。 メタノ一ル改質燃料電池に送られる 水素には、 10 Oppm程度の COが含まれることが多いため、 この燃料電池で は、 通常 PEFCによく用いられる白金触媒では CO被毒の影響を受け大きな出 力が得られないために、 耐 CO被毒性能の高い白金族金属を含む合金触媒、 たと えば Pt—: Ru合金の粒子が触媒物質として用いられる。  In addition, when hydrogen is used as fuel, methanol is used as the primary fuel, and a reformer utilizing the chemical reaction between methanol and water is used to supply hydrogen, which is obtained by reforming methanol as needed. The fuel cell used in such a method is called a fuel cell reformed fuel cell. Hydrogen sent to a methanol reformed fuel cell often contains about 10 Oppm of CO, so in this fuel cell, the platinum catalyst commonly used for PEFC is greatly affected by CO poisoning. Since no output can be obtained, an alloy catalyst containing a platinum group metal with high resistance to CO poisoning, for example, particles of a Pt—: Ru alloy is used as the catalyst material.
このように、 PEFCでは用いられる燃料等によっては、 合金等の 2種類以上 の元素からなる触媒物質を用いるのが好ましいのであるが、 この場合、 先に述べ た触媒粒子と固体高分子電解質とを混練する際の安全性の問題に加え、 さらに、 単一の元素からなる触媒物質を用いる場合に比べ固体高分子電解質—触媒複合電 極中に均一に小さな触媒粒子を分散させるのが難しくなる。 As described above, in PEFC, depending on the fuel or the like used, it is preferable to use a catalyst substance composed of two or more elements such as an alloy.In this case, the catalyst particles and the solid polymer electrolyte described above are combined. In addition to the safety issues during kneading, It is more difficult to uniformly disperse small catalyst particles in a solid polymer electrolyte-catalyst composite electrode than when using a catalyst element composed of a single element.
このような場合に本発明の製造方法は特にその有用性を発揮し、 合金触媒等 2 種類以上の元素からなる触媒物質を用いる場合に、 簡便で安全に、 かつ小さな触 媒粒子を均一に分散させた固体高分子電解質—触媒複合電極の製造を可能にする。 すなわち、 2種以上の元素からなる触媒物質と固体高分子電解質とからなる固 体高分子電解質一触媒複合電極を製造する場合には、 2種以上の触媒原料化合物 と固体高分子電解質との混合物を用意し、 この 2種以上の触媒原料化合物を化学 的に還元するようにする。  In such a case, the production method of the present invention particularly exhibits its usefulness, and when a catalyst substance comprising two or more elements such as an alloy catalyst is used, simple and safe, and small catalyst particles are uniformly dispersed. It enables the production of a solid polymer electrolyte-catalyst composite electrode. That is, when producing a solid polymer electrolyte-catalyst composite electrode composed of a catalyst material composed of two or more elements and a solid polymer electrolyte, a mixture of two or more catalyst raw material compounds and a solid polymer electrolyte is used. Prepare and chemically reduce these two or more catalyst raw material compounds.
そして、 このような方法を用いることによって、 例えば、 2種類以上の元素から なる合金触媒粒子と固体高分子電解質とを含み、 触媒粒子が固体高分子電解質中 に三次元に分布するとともに、 内部に複数の細孔が形成された多孔性の電極であ つて、 活性の高い触媒粒子により形成された電子伝導チャンネル、 固体電解質に より形成されたプロトン伝導チャンネル、 多数の細孔により形成された活物質お よび生成物の供給、 排出チャンネルを有する固体高分子電解質一触媒複合電極が 製造される。 なお、 2種以上の金属元素からなる触媒物質とは、 2種以上の金属 元素からなる固溶体や金属間化合物などの合金粒子や混合物粒子を t、う。 Then, by using such a method, for example, the catalyst particles include alloy catalyst particles composed of two or more elements and a solid polymer electrolyte, and the catalyst particles are three-dimensionally distributed in the solid polymer electrolyte and internally. A porous electrode with multiple pores, an electron conduction channel formed by highly active catalyst particles, a proton conduction channel formed by a solid electrolyte, and an active material formed by a large number of pores Then, a solid polymer electrolyte-catalyst composite electrode having supply and discharge channels for the product is manufactured. Note that the catalyst substance composed of two or more metal elements refers to alloy particles or mixture particles of a solid solution or an intermetallic compound composed of two or more metal elements.
この場合に用いられる 2種以上の触媒原料化合物は、 それらの化合物が還元さ れることで 2種以上の金属元素からなる触媒物質になることが可能な化合物であ る。  The two or more catalyst raw material compounds used in this case are compounds that can be converted into a catalyst substance composed of two or more metal elements by reducing these compounds.
触媒物質としては、 酸素還元能力、 水素または C Oまたはメタノール酸化能力 の高いものが選択され、 そのような触媒物質としては、 白金 (P t ) , ロジウム As the catalytic substance, a substance having high oxygen reducing ability, hydrogen or CO or methanol oxidizing ability is selected, and such catalytic substances include platinum (Pt), rhodium.
(R u) , ルテニウム (R u) , イリジウム (I r ) , パラジウム (P d ) , ォ スニゥムなどの白金族金属の合金が適している。 Alloys of platinum group metals such as (Ru), ruthenium (Ru), iridium (Ir), palladium (Pd), and osmium are suitable.
触媒原料化合物としては、 白金, ロジウム, ルテニウム, イリジウム, パラジ ゥム, ォスニゥムなどの白金族金属化合物を用いるのが良く、 特にこれらの中で も化合物の形態として金属塩の形態を有するものが好ましく、 例えば白金族金属 の塩化物が好ましい。  As the catalyst raw material compound, it is preferable to use a platinum group metal compound such as platinum, rhodium, ruthenium, iridium, palladium, and osmium, and among these, a compound having a metal salt form as a compound is preferable. Preferred are, for example, chlorides of platinum group metals.
さらに、 メタノール改質燃料電池用の電極等、 耐 C O被毒特性を向上させた電 極を作成する場合、 D M F C用の電極等、 メタノールの電気化学的酸化反応性能 を向上させた電極を作製する場合には、 2つ以上の触媒原料化合物のうち少なく ともひとつのものが白金族元素を含むことが好ましい。 さらには 2つ以上の触媒 原料化合物のうち少なくともひとつのものが P t、 R u、 R h、 P d、 I rより なる群から選ばれた元素を含むことがより好ましい。そして、これらの場合の内、 特に、 2つ以上の触媒原料ィ匕合物中に少なくとも白金の化合物とルテニウムの化 合物が含まれているようにすること、 または、 2つ以上の触媒原料化合物中に少 なくともィリジゥムの化合物とルテニウムの化合物が含まれているようにするこ とが好ましい。 In addition, electrodes with improved CO poisoning resistance, such as electrodes for methanol reformed fuel cells, etc. When preparing an electrode, when preparing an electrode with improved electrochemical oxidation reaction performance of methanol, such as an electrode for DMFC, at least one of the two or more catalyst raw material compounds must be a platinum group element. It is preferable to include More preferably, at least one of the two or more catalyst raw material compounds contains an element selected from the group consisting of Pt, Ru, Rh, Pd, and Ir. In these cases, in particular, it is preferable that at least two compounds of the catalyst raw material contain at least a compound of platinum and ruthenium, or that two or more catalyst raw materials are used. It is preferable that the compound contains at least a compound of iridium and a compound of ruthenium.
2つ以上の触媒原料化合物と固体高分子電解質との混合物は、 2つ以上の触媒 原料化合物と固体高分子電解質とが混合されたものであれば液 、 固体状レヽず れの形態を有するものでも良いが、 例えば、 膜形状等を有する固体高分子電解質 からなる母体中に 2つ以上の触媒原料化合物が均一に分散した多孑し体の形態を用 いることが好ましく、 これは上記で述べたのと同様である。  The mixture of two or more catalyst raw material compounds and the solid polymer electrolyte has a liquid / solid state when the two or more catalyst raw material compounds and the solid polymer electrolyte are mixed. However, for example, it is preferable to use a polymorph in which two or more catalyst raw material compounds are uniformly dispersed in a matrix composed of a solid polymer electrolyte having a membrane shape or the like. It is the same as that.
固体高分子電解質からなる母体中に触媒原料化合物が分散した混合物は、 2つ 以上の触媒原料化合物と、 固体高分子電解質溶液、 さらに必要に応じて PTFE粒 子分散溶液とよりなるペーストを高分子フィルム上に製膜 (好ましくは 〜 3 0〃m) して加熱乾燥して、  A mixture in which a catalyst raw material compound is dispersed in a matrix composed of a solid polymer electrolyte is made up of a paste comprising two or more catalyst raw material compounds, a solid polymer electrolyte solution, and, if necessary, a PTFE particle dispersion solution. It is formed on a film (preferably ~ 30〃m) and dried by heating.
または、 2つ以上の触媒原料化合物と PTFE粒子分散溶液とよりなるペースト を高分子フィルム上に製膜 (好ましくは J3Iff 3〜3 0 m) して加熱乾燥したの ち、 固体高分子電解質溶液を塗布、 含浸後、 乾燥させて、  Alternatively, a paste comprising two or more catalyst raw material compounds and a PTFE particle dispersion solution is formed on a polymer film (preferably, J3Iff 3 to 30 m), dried by heating, and then the solid polymer electrolyte solution is dried. After applying, impregnating and drying,
または、 2つ以上の触媒原料化合物と、 固体高分子電解質溶液、 さらに必要に 応じて PTFE粒子分散溶液とよりなるペーストを導電性多孔質体の力一ボン電極 基材上に塗布して、 加熱乾燥して、  Alternatively, a paste consisting of two or more catalyst raw material compounds, a solid polymer electrolyte solution, and, if necessary, a PTFE particle dispersion solution is applied to a conductive porous carbon substrate and heated. Dry,
または、 2つ以上の触媒原料化合物と PTFE粒子分散溶液とよりなるペースト を導電性多孔質体の力一ボン電極 上に塗布して、 加熱乾燥した後、 固体高分 子電解質溶液を塗布、 含浸後、 乾燥させて作製されるのが好ましい。  Alternatively, a paste consisting of two or more catalyst raw material compounds and a PTFE particle dispersion solution is applied to a conductive porous carbon electrode, heated and dried, and then a solid polymer electrolyte solution is applied and impregnated. After that, it is preferable to produce it by drying.
また、上述の各べ一ストには、必要に応じてカーボン粒子が加えられても良く、 その場合、 力一ボン粒子が先述の電子伝導チャンネルを形成する役目を担う。 さらに、 2つ以上の触媒原料化合物と固体高分子電解質との混合物をイオン交 換膜の両面、 または片面に接合した形態としても良い。 In addition, carbon particles may be added to each of the above-described pastes, if necessary. In such a case, carbon particles serve to form the above-described electron conduction channel. Furthermore, a form in which a mixture of two or more catalyst raw material compounds and a solid polymer electrolyte is bonded to both sides or one side of the ion exchange membrane may be used.
なお、 固体高分子電解質としては、 イオン交換樹脂からなるものが好ましく、 パ一フルォロスルフォン酸またはスチレン一ジビニルベンゼン系のスルフォン酸 型高分子固体電解質が好ましい。  The solid polymer electrolyte is preferably made of an ion exchange resin, and is preferably a sulfonic acid type polymer solid electrolyte of perfluorosulfonic acid or styrene-divinylbenzene.
用意された 2つ以上の触媒原料化合物と固体高分子電解質との混合物中の触媒 原料化合物を還元するには、 先に述べた安全性の面から、 還元処理の前に触媒原 料化合物と固体高分子電解質との混合物中のアルコール等の固体高分子電解質の 溶媒を十分揮発させてから行うことが好ましい。 そして、 量産に適した還元剤を 用いる化学的な還元方法を用いることが好ましく、 NaBH4などの水素化ホウ素化 合物、ジメチルァミンボランなどのアルキルアミンボランや N2H4'H20,N2H6C12 などのヒドラジン水和物またはヒドラジン化合物などの還元剤と水またはアルコ —ルなどの溶媒とを含む還元溶液を用いた液相中での還元、 または水素ガスまた は水素含有ガスを用いた気相中での還元、 またはヒドラジンを含んだ不活性ガス を用いた気相中での還元を用いることができるが、 とくに、 水素ガスまたは水素 含有ガスによつて還元する方法またはヒドラジンを含む不活性ガスによって還元 する気相中での還元方法は、 得られる触媒物質が液相中での還元方法で得られる 触媒物質に比べてより高分散で微粒子のため好ましい。 To reduce the catalyst raw material compound in the mixture of two or more prepared catalyst raw material compounds and the solid polymer electrolyte, from the viewpoint of safety described above, the catalyst raw material compound and the solid It is preferable to carry out the reaction after sufficiently evaporating the solvent of the solid polymer electrolyte such as alcohol in the mixture with the polymer electrolyte. It is preferable to use a chemical reduction method using a reducing agent suitable for mass production, such as a borohydride such as NaBH 4 , an alkylamine borane such as dimethylamine borane, or N 2 H 4 ′ H 20. , N 2 reducing agent such as H 6 C1 2 hydrazine hydrate or hydrazine compounds such as water or alcohol - reduction with liquid phase with a reducing solution comprising a solvent such as Le, or hydrogen gas or hydrogen Reduction in the gas phase using a gas containing gas or reduction in the gas phase using an inert gas containing hydrazine can be used.However, in particular, a method of reducing with hydrogen gas or a hydrogen-containing gas Alternatively, a reduction method in a gas phase in which reduction is performed with an inert gas containing hydrazine is preferable because the obtained catalyst substance has higher dispersion and fine particles than a catalyst substance obtained by a reduction method in a liquid phase.
ここで、 還元により得られる触媒物質を 2つ以上の金属元素からなる合金とす るためには、 2つ以上の触媒原料化合物が同時に還元されるように還元温度や圧 力など還元条件を選定することが好ましい。 また、 還元により得られる触媒物質 を 2つ以上の金属元素からなる混合物とするためには、 2つ以上の触媒原料化合 物が順次還元されるように、 還元温度や圧力を経時的に変えることが好ましい。 以上のようにして、 2種以上の元素からなる触媒物質と固体高分子電解質とか らなる固体高分子電解質一触媒複合電極を製造することが出来るのであるが、 こ のようにして製造される電極は、 メ夕ノ一ル改質燃料電池または直接メ夕ノ一ル 燃料電池のァノ一ドとして特に優れたものとなり、 以上のような方法により製造 される電極をァノ一ドとして用いたメ夕ノ一ル改質燃料電池または直接メ夕ノー ル燃料電池は、 非常に効率の良い燃料電池となる。 以下、 実施例を用いて本発明についてさらに説明する。 Here, in order to make the catalyst substance obtained by reduction into an alloy composed of two or more metal elements, reduction conditions such as reduction temperature and pressure are selected so that two or more catalyst raw material compounds are reduced simultaneously. Is preferred. Also, in order to make the catalyst substance obtained by reduction a mixture composed of two or more metal elements, the reduction temperature and pressure should be changed over time so that two or more catalyst raw material compounds are sequentially reduced. Is preferred. As described above, it is possible to produce a solid polymer electrolyte-catalyst composite electrode composed of a catalyst material composed of two or more elements and a solid polymer electrolyte. Is particularly excellent as an anode of a fuel cell reformed fuel cell or a direct fuel cell, and the electrode manufactured by the above-described method was used as the anode. A reformed fuel cell or a direct fuel cell can be a very efficient fuel cell. Hereinafter, the present invention will be further described with reference to Examples.
[実施例 1 ]  [Example 1]
K2PtCl6 (塩化白金酸力リゥム) と固体高分子電解質溶液(アルドリツチ社製, ナフイオン 5wt。/。溶液) および PTFE粒子 (三井デュポンフロロケミカル社製, テフロン 3 0 J、 平均粒径 0.23^ 01) を混鰊したペーストを、撥水性を付与した 導電性多孔質体の力一ボン電極基材 (0.5mm)上に塗布して、 窒素雰囲気中で 120°C、 1時間乾燥した. K 2 PtCl 6 (chloroplatinic acid power rim), solid polymer electrolyte solution (Aldrich Co., Nafion 5 wt./. Solution) and PTFE particles (Mitsui DuPont Fluorochemical Co., Ltd., Teflon 30 J, average particle size 0.23 ^ (01) was applied on a conductive porous electrode substrate (0.5 mm) of water-repellent conductive porous material, and dried at 120 ° C for 1 hour in a nitrogen atmosphere.
ひきつづき、 上記 K2PtCl6と固体高分子電解質との分散物を 50°C、 1気圧の水 素雰囲気中で 4時間還元し、 実施例電極 Aを得た。 別途行った分析により、 電極 Aの白金量は約 4mg/cm2であった。 Subsequently, the dispersion of K 2 PtCl 6 and the solid polymer electrolyte was reduced in a hydrogen atmosphere at 50 ° C. and 1 atm for 4 hours to obtain Example electrode A. According to a separate analysis, the platinum amount of the electrode A was about 4 mg / cm 2 .
[比較例 1 ]  [Comparative Example 1]
水であらかじめ湿らせた白金黒 (ェヌ 'ィ一 'ケムキャット製、 平均粒径 1.5 μ- m) と固体高分子電解質溶液 (アルドリッチ社製, ナフイオン 5wt%溶液) お よび PTFE粒子(三井デュポンフロロケミカル社製, テフロン 3 0 J ) を混鍊し たペーストを、 撥水性を付与した導電性多孔質体の力一ボン電極基材 (0.5mm)上 に塗布して、 窒素雰囲気中で 120°C、 1時間乾燥して比較例電極 Bを得た。  Platinum black (N-I-Chemcat, average particle size 1.5 μ-m) pre-moistened with water, solid polymer electrolyte solution (Aldrich, Naphion 5 wt% solution) and PTFE particles (Mitsui DuPont Fluoro) A paste mixed with Teflon 30 J) (Chemical Co., Ltd.) is applied to a conductive porous material (0.5 mm) made of a water-repellent conductive porous material, and then heated to 120 ° C in a nitrogen atmosphere. C and dried for 1 hour to obtain Comparative Example Electrode B.
ここで、 先のペースト作製の際、 比較例電極 Bの白金量が約 4mg/cm2となるよ うに白金黒の量を調整した。 Here, at the time of preparing the paste, the amount of platinum black was adjusted so that the amount of platinum of the comparative example electrode B was about 4 mg / cm 2 .
実施例電極 Aおよび比較例電極 Bをホットプレス(140°C)にてパーフルォロス ルフォン酸膜からなるイオン交換膜(デュポン社製, 商品名ナフイオン, 膜厚約 50 m) の両面にそれぞれ接合し、 燃料電池の単セルに組んでセル Aおよび Bを これらのセルの水素および酸素 (2気圧, 80°C) 供給時の電流一電圧特性を第 1図に示す。図より、本発明によるセル Aは、簡便に作製されたにもかかわらず、 従来型のセル Bに比べて高い出力電圧を示すことがわかる。  Example electrode A and comparative example electrode B were bonded to both surfaces of an ion exchange membrane (made by DuPont, trade name: Naphion, film thickness: about 50 m) by hot pressing (140 ° C), respectively. Fig. 1 shows the current-voltage characteristics when cells A and B are assembled into a single fuel cell and hydrogen and oxygen (2 atm, 80 ° C) are supplied to these cells. From the figure, it can be seen that the cell A according to the present invention shows a higher output voltage than the conventional cell B, although it is easily manufactured.
これは、 本発明の電極は固体高分子電解質と還元されて触媒物質を生成する触 媒原料化合物との混合物を還元して作製されているために、 固体高分子電解質が 還元により得られた触媒粒子に吸着して保護作用を示し、 触媒粒子相互が直接接 触して粒子が凝集するのを防止して高活性を保っているためである。 なお、 顕微鏡観察の結果、 比較例電極 Bでは、 P t黒が 1 0〜20 /mの粒子に 凝集しているのが観察されたが、 実施例電極 Aでは凝集した触媒粒子は観察され ていない。 This is because the electrode of the present invention is made by reducing a mixture of a solid polymer electrolyte and a catalyst raw material compound that is reduced to generate a catalyst substance, and thus the catalyst obtained by reduction of the solid polymer electrolyte is used. This is because they exhibit a protective effect by adsorbing on the particles, prevent the catalyst particles from directly contacting each other, and prevent the particles from aggregating, thereby maintaining high activity. As a result of microscopic observation, it was observed that Pt black was agglomerated into particles of 10 to 20 / m in Comparative Example Electrode B, whereas aggregated catalyst particles were observed in Example Electrode A. Absent.
[実施例 2 ]  [Example 2]
K2IrCl6 (塩化ィリジゥム酸力リウム)と K2PtCl6と固体高分子電解質溶液 (アル ドリツチ社製, ナフイオン 5wt%溶液) を 2.0/1.0/2.77の重量比で混鍊し、 70°C で加熱濃縮して適当な粘度のペーストとした後、 FEP (四弗化工チレン—六弗 化プロピレン共重合) フィルム上に製膜し、 24時間の自然乾燥を行った。 Mix K 2 IrCl 6 (potassium iridium dichloride), K 2 PtCl 6 and solid polymer electrolyte solution (Aldrich, Naphion 5 wt% solution) at a weight ratio of 2.0 / 1.0 / 2.77, and mix at 70 ° C After heating and concentrating to obtain a paste having an appropriate viscosity, a film was formed on a FEP (tetrafluoroethylene-hexafluoropropylene copolymer) film and air-dried for 24 hours.
さらに、 上記ィリジゥムおよび白金の塩と高分子固体電解質の混合物に対し、 0.4wt%の NaBH4を含む 70°Cェ夕ノ一ル溶液中で 2時間の還元処理をおこない水 電解槽用の実施例電極 Cを得た。 別途おこなった分析により、 電極 Cのイリジゥ ムおよび白金の担持量はそれぞれ約 2mg/cm2と lmg/cm2であることを確認した。 Furthermore, the Irijiumu and mixtures of salt and polymer solid electrolyte platinum respect, the implementation of 70 ° C E evening Roh Ichiru solution for water electrolyzer perform reduction treatment of 2 hours in containing NaBH 4 in 0.4 wt% Example electrode C was obtained. Analysis was performed separately, it was confirmed that the amount of supported Irijiu arm and platinum electrode C is about 2 mg / cm 2 and lmg / cm 2, respectively.
[比較例 2 ]  [Comparative Example 2]
水であらかじめ湿らせたイリジウム粉末 (田中貴金属、 平均粒子径 1 0 zm) と白金黒 (ェヌ ·ィ一 ·ケムキャット製、 平均粒径 1.5〃m ) および固体高分子 電解質溶液を 0.8/0.4/2.77の重量比で混鍊し、 70°Cで加熱濃縮して適当な粘度の ペーストとした後、 FEP (四弗化工チレン一六弗化プロピレン共重合) フィル ム上に製膜し、 24時間の自然乾燥を行い比較例電極 Dを得た。  Iridium powder (Tanaka precious metal, average particle diameter 10 zm) pre-moistened with water, platinum black (Nichi-Chemcat, average particle diameter 1.5 キ ャ m) and solid polymer electrolyte solution 0.8 / 0.4 / Mix at a weight ratio of 2.77, heat and concentrate at 70 ° C to obtain a paste with an appropriate viscosity, and then form a film on FEP (tetrafluoroethylene-hexylene hexafluoropropylene copolymer) film for 24 hours. Was dried naturally to obtain Comparative Example Electrode D.
ここで、 先のペースト作製の際に、 比較例電極 Dのイリジウムおよび白金の量 がそれぞれ約 2mg/cm2および lmg/cm2となるようにイリジゥム粉末および白金 黒量を調整した。 Here, when making the previous paste was adjusted Irijiumu powder and platinum black amount as the amount of iridium and platinum is about 2 mg / cm 2 and lmg / cm 2 each of the comparative example electrodes D.
実施例電極 Cおよび比較例電極 Dをホットプレス( 140°C )にてイオン交換膜 (デ ュポン社製, ナフイオン, Mi?約 50 m) の両面に接合し、水電 の単セルに 組んでセル Cおよび Dを得た。  Electrode C of Example and Electrode D of Comparative Example were bonded to both sides of an ion exchange membrane (DuPont, Nafion, Mi-approximately 50 m) by hot pressing (140 ° C) and assembled into a single cell of hydroelectric power. C and D were obtained.
これらのセルの 80°Cにおける電流一電圧特性を第 2図に示す。図より、本発明 によるセルは、 従来のものに比べて電解電圧が低いことがわかる。  Figure 2 shows the current-voltage characteristics of these cells at 80 ° C. From the figure, it can be seen that the cell according to the present invention has a lower electrolysis voltage than the conventional cell.
これは、 本発明の電極は固体高分子電解質と触媒活性を示す金属の化合物を混 鍊した混合物を還元して作製されているために、 固体高分子電解質が還元により 得られた触媒粒子に吸着して保護作用を示し、 触媒粒子相互が直接接触して粒子 が凝集するのを防止して高活性を保っているためである。 This is because the electrode of the present invention is made by reducing a mixture of a solid polymer electrolyte and a compound of a metal exhibiting catalytic activity, so that the solid polymer electrolyte is adsorbed on the catalyst particles obtained by the reduction. Shows a protective effect, and the catalyst particles come into direct contact with each other This is because they prevent aggregation and maintain high activity.
尚、 顕微鏡観察の結果、 比較例電極 Dでは、 触媒粒子が 30〜50 mの粒子 に凝集しているのが観察されたが、 実施例電極 Cでは凝集した触媒粒子は観察さ れていない。  In addition, as a result of microscopic observation, it was observed that the catalyst particles were agglomerated into particles of 30 to 50 m in Comparative Example Electrode D, but no agglomerated catalyst particles were observed in Example Electrode C.
[実施例 3]  [Example 3]
塩化白金酸カリウム ( K2PtCl6 ) と塩化ルテニウム (RuCl3) さら に固体高分子電解質溶液 (アルドリヅチ社製, ナフイオン 5wt%溶液) を混鰊し たペーストを、 撥水性を付与した導電性多孔質体の力一ボン電極基材 (0.5mm)上 に塗布して、 窒素雰囲気中で 120°C、 1時間乾燥した. Water-repellent conductive porous paste made of a mixture of potassium chloroplatinate (K 2 PtCl 6 ), ruthenium chloride (RuCl 3 ), and a solid polymer electrolyte solution (Aldrich, Naphion 5 wt% solution) It was applied on a porous carbon substrate (0.5 mm) and dried at 120 ° C for 1 hour in a nitrogen atmosphere.
ひきつづき、 上記 K2Pt Cl6 と塩化ルテニウム (RuCl3)さらに固体高 分子電解質溶液との混合物を 200°C、 1気圧の水素雰囲気中で 4時間還元し、 実施例電極 Eを得た。 別途行った分析により、 電極 Eの白金量およびルテニウム 量は, それぞれ約 3mg/cm2であった。 Subsequently, a mixture of the above K 2 Pt Cl 6 , ruthenium chloride (RuCl 3 ) and a solid polymer electrolyte solution was reduced in a hydrogen atmosphere at 200 ° C. and 1 atm for 4 hours to obtain Example electrode E. According to the analysis performed separately, the amount of platinum and the amount of ruthenium of the electrode E were about 3 mg / cm 2 respectively.
[比較例 3]  [Comparative Example 3]
水であらかじめ湿らせた P t _ R u 0 X微粉末と固体高分子電解質溶液 (アル ドリツチ社製, ナフイオン 5wt%溶液) とを混鍊したペーストを、 撥水性を付与 した導電性多孔質体のカーボン電極基材 (0.5mm)上に塗布して、 窒素雰囲気中で 120°C、 1時間乾燥して比較例電極 Fを得た。 ここで、先のペースト作製の際、比 較例電極 Fの白金量およびルテニウム量は, それぞれ約 3mg/cm2となるように 白金黒の量を調整した。 A conductive porous material with water repellency, obtained by mixing a paste in which Pt_Ru0X fine powder pre-wetted with water and a solid polymer electrolyte solution (Aldrich Co., Ltd., Naphion 5 wt% solution) are mixed. Was applied on a carbon electrode substrate (0.5 mm) of Example 1 and dried at 120 ° C. for 1 hour in a nitrogen atmosphere to obtain Comparative Example Electrode F. Here, when preparing the paste, the amount of platinum black was adjusted so that the amount of platinum and the amount of ruthenium of the comparative electrode F were about 3 mg / cm 2 respectively.
実施例電極 Eおよび比較例電極 Fをホットプレス (140°C) にてパ一フルォロ スルフォン酸膜からなるイオン交換膜 (デュポン社製, 商品名ナフイオン, 膜厚 約 50〃m)の両面にそれぞれ接合し、燃料電池の単セルに組んでセル Eおよび F を得た。  The electrode E of Example and the electrode F of Comparative Example were hot-pressed (140 ° C) on both sides of an ion-exchange membrane (made by DuPont, trade name: Naphion, film thickness: approx. The cells were joined and assembled into a single cell of a fuel cell to obtain cells E and F.
これらのセルに燃料として 10 Oppmの COを含む水素を、 酸化剤として酸 素 (2気圧, 80°C) を供給した際の電流一電圧特性を第 3図に示す。 図より、 本 発明によるセル Eは、 簡便に作製されたにもかかわらず、 耐 CO被毒性能が良好 で、 従来型のセル Fに比べて高い出力電圧を示すことがわかる。  Figure 3 shows the current-voltage characteristics when hydrogen containing 10 Oppm of CO was supplied as fuel to these cells and oxygen (2 atm, 80 ° C) was supplied as oxidant. From the figure, it can be seen that the cell E according to the present invention has good resistance to CO poisoning and shows a higher output voltage than the conventional cell F, although it is easily manufactured.
これは、 本発明の電極は還元されて触媒物質を生成する触媒原料化合物と固体 高分子電解質との混合物を還元して作製されていることに起因しており、 還元に より得られた触媒粒子に固体高分子電解質が吸着して、 触媒粒子相互が直接接触 して粒子が凝集するのを防止し、 そのために触媒粒子が高活性を保っているため である。 This is because the electrode of the present invention is a catalyst raw material compound which is reduced to produce a catalyst substance and a solid. The solid polymer electrolyte is adsorbed on the catalyst particles obtained by the reduction, and the catalyst particles come into direct contact with each other to aggregate the particles. This is because the catalyst particles maintain high activity.
<産業上の利用可能性〉 <Industrial applicability>
本発明の製造方法によれば、 簡便な装置により安全に、 かつ触媒物質の触媒活 性が阻害されることなく十分に発揮された状態で、 固体高分子電解質と触媒物質 とからなる固体高分子電解質一触媒複合電極を製造できる。  According to the production method of the present invention, a solid polymer composed of a solid polymer electrolyte and a catalyst substance is safely and easily exhibited by a simple device without hindering the catalytic activity of the catalyst substance. An electrolyte-catalyst composite electrode can be manufactured.
また、 本発明により製造される 2種以上の金属元素からなる触媒物質と固体高 分子電解質とを含む電極は、 電極での燃料の酸化反応に合金触媒を必要とする改 質メタノール燃料電池または D M F Cのアノード電極として特に好ましい。  Further, the electrode comprising a catalyst material comprising two or more metal elements and a solid polymer electrolyte produced by the present invention is a modified methanol fuel cell or DMFC which requires an alloy catalyst for the oxidation reaction of fuel at the electrode. Is particularly preferable as the anode electrode.

Claims

請求の範囲 The scope of the claims
1 . 固体高分子電解質と触媒物質とを含んでなる固体高分子電解質—触媒複合電 極の製造方法であって、 還元されて触媒物質を生成する触媒原料化合物と固体高 分子電解質との混合物を用意し、 該混合物中の触媒原料化合物を化学的に還元す ることを特徴とする固体高分子電解質—触媒複合電極の製造方法。 1. A method for producing a solid polymer electrolyte-catalyst composite electrode comprising a solid polymer electrolyte and a catalyst substance, wherein a mixture of a catalyst raw material compound that is reduced to generate a catalyst substance and a solid polymer electrolyte is used. A method for producing a solid polymer electrolyte-catalyst composite electrode, comprising preparing and chemically reducing a catalyst raw material compound in the mixture.
2 . 触媒原料化合物が白金族金属の化合物であることを特徴とする請求の範囲 1 記載の固体高分子電解質-触媒複合電極の製造方法。  2. The method for producing a solid polymer electrolyte-catalyst composite electrode according to claim 1, wherein the catalyst raw material compound is a compound of a platinum group metal.
3 . 触媒物質が 2種以上の金属元素からなるものであり、 触媒原料化合物として 2種以上の触媒原料化合物を用いることを特徴とする請求の範囲 1記載の固体高 分子電解質—触媒複合電極の製造方法。  3. The solid polymer electrolyte-catalyst composite electrode according to claim 1, wherein the catalyst substance is composed of two or more metal elements, and two or more catalyst raw material compounds are used as the catalyst raw material compound. Production method.
4 . 2種以上の触媒原料化合物のうち少なくとも 1つが白金族金属の化合物であ ることを特徴とする請求項 3記載の固体高分子電解質一触媒複合電極の製造方法。 5 . 2種以上の触媒原料ィ匕合物が少なくとも白金の化合物とルテニウムの化合物 とを含んでいることを特徴とする請求の範囲 4記載の固体高分子電解質一触媒複 合電極の製造方法。  4. The method for producing a solid polymer electrolyte-catalyst composite electrode according to claim 3, wherein at least one of the two or more catalyst raw material compounds is a platinum group metal compound. 5. The method for producing a solid polymer electrolyte-catalyst composite electrode according to claim 4, wherein the two or more catalyst raw material conjugates contain at least a platinum compound and a ruthenium compound.
6 . 2種以上の触媒原料化合物が少なくともイリジゥムの化合物とルテニウムの 化合物とを含んでいることを特徴とする請求の範囲 4記載の固体高分子電解質一 触媒複合電極の製造方法。  6. The method for producing a solid polymer electrolyte-catalyst composite electrode according to claim 4, wherein the two or more catalyst raw material compounds include at least an iridium compound and a ruthenium compound.
7 . 触媒原料ィ匕合物を水素ガスまたは水素含有ガスによって還元することを特徴 とする請求の範囲 1、 2、 3、 4、 5または 6記載の固体高分子電解質—触媒複 合電極の製造方法。  7. The method for producing a solid polymer electrolyte-catalyst composite electrode according to any one of claims 1, 2, 3, 4, 5, and 6, wherein the catalyst raw material is reduced with hydrogen gas or hydrogen-containing gas. Method.
8 . 触媒原料化合物をヒドラジンを含む不活性ガスによって還元することを特徴 とする請求の範囲 1、 2、 3、 4、 5または 6記載の固体高分子電解質一触媒複 合電極の製造方法。  8. The method for producing a solid polymer electrolyte-catalyst composite electrode according to any one of claims 1, 2, 3, 4, 5, and 6, wherein the catalyst raw material compound is reduced with an inert gas containing hydrazine.
9 . 触媒原料ィ匕合物として K2PtCl6または/および K2IrCl6を用い、 該触媒原料 化合物をアルコール類を溶媒としたホウ素化合物を含む還元溶液を用いて還元す ることを特徴とする請求の範囲 1または 2記載の固体高分子電解質—触媒複合電 極の製造方法。 9. Using K 2 PtCl 6 or / and K 2 IrCl 6 as a catalyst raw material conjugate, reducing the catalyst raw material compound using a reducing solution containing a boron compound using alcohols as a solvent. 3. The method for producing a solid polymer electrolyte-catalyst composite electrode according to claim 1 or 2.
1 0 . 請求の範囲 3、 4、 5または 6記載の製造方法により製造された固体高分 子電解質一触媒複合電極をァノードとして用いたことを特徴とするメタノール改 質型の燃料電池または直接メタノール型の燃料電池。 10. A methanol-modified fuel cell or direct methanol, wherein a solid polymer electrolyte-catalyst composite electrode produced by the production method according to claim 3, 4, 5, or 6 is used as an anode. Type fuel cell.
捕正書の請求の範囲 Claims on the certificate
[ 1 9 9 9年 1 1月 1 6日 (1 6 . 1 1 . 9 9 ) 国際事務局受理:出願当初の請求の 範囲 1— 1 0は請求の範囲 1一 1 4に番号が付け替えられた。 (2頁)] 請求の範囲 [199.1 January 1st January 16th (16.1.1.99) Accepted by the International Bureau: Claims originally filed 1–10 are renumbered to claims 1–1 4 Was. (2 pages)] Claims
1 . 固体高分子電解質と触媒物質とを含んでなる固体高分子電解質一触媒複合電 極の製造方法であって、 還元されて触媒物質を生成する触媒原料化合物と固体高 分子電解質との混合物を用意し、 該混合物中の触媒原料化合物を化学的に還元す ることを特徴とする固体高分子電解質一触媒複合電極の製造方法。 1. A method for producing a solid polymer electrolyte-catalyst composite electrode comprising a solid polymer electrolyte and a catalyst substance, wherein a mixture of a catalyst raw material compound which is reduced to produce a catalyst substance and a solid polymer electrolyte is used. A method for producing a solid polymer electrolyte-catalyst composite electrode, comprising preparing and chemically reducing a catalyst raw material compound in the mixture.
2 . (追加)請求の範囲 1記載の混合物が固体であることを特徴とする固体高分 子電解質—触媒複合電極の製造方法。  2. (Addition) A method for producing a solid polymer electrolyte-catalyst composite electrode, wherein the mixture according to claim 1 is a solid.
3 . (追加) 請求の範囲 1記載の混合物が多孔性の固体であることを特徴とする 固体高分子電解質一触媒複合電極の製造方法。  3. (Addition) A method for producing a solid polymer electrolyte-catalyst composite electrode, wherein the mixture according to claim 1 is a porous solid.
4 . (追加)請求の範囲 1、 2または 3記載の混合物がカーボン粒子または P T F E粒子を含むことを特徴とする固体高分子電解質一触媒複合 m@の il方法。 4. (Addition) A solid polymer electrolyte-catalyst composite m @ il method, wherein the mixture according to claim 1, 2 or 3 contains carbon particles or PTFE particles.
5 . (追加)請求の範囲 1、 2、 3または 4記載の混合物が、 髙分子フィルム上 または導電性多孔質体のカーボン上に Ml漠または塗布したことを特徴とする固体 高分子電解質一触媒複合電極の製造方法。 5. (Addition) A solid polymer electrolyte monocatalyst characterized in that the mixture according to Claims 1, 2, 3 or 4 is coated on a molecular film or carbon of a conductive porous material by Ml coating or coating. A method for manufacturing a composite electrode.
6 . (補正後) 触媒原料化合物が白金族金属の化合物であることを特徴とする請 求の範囲 1、 2、 3、 4または 5記載の固体高分子電解質一触媒複合電極の製造 方法。  6. (After correction) The method for producing a solid polymer electrolyte-catalyst composite electrode according to claim 1, 2, 3, 4 or 5, wherein the catalyst raw material compound is a compound of a platinum group metal.
7 . (補正後)触媒物質が 2種以上の金属元素からなるものであり、 触媒原料ィ匕 合物として 2種以上の触媒原料化合物を用いることを特徴とする請求の範囲 1、 2、 3、 4または 5記載の固体高分子電解質一触媒複合電極の製造方法。  7. The method according to claim 1, 2, or 3, wherein the (after amendment) catalyst substance is composed of two or more metal elements, and two or more catalyst raw material compounds are used as the catalyst raw material. 6. The method for producing a solid polymer electrolyte-catalyst composite electrode according to item 4, 4 or 5.
8 . (補正後) 2種以上の触媒原料化合物のうち少なくとも 1つが白金族金属の 化合物であることを特徴とする請求の範囲 7記載の固体高分子電解質一触媒複合 電極の製造方法。  8. The method for producing a solid polymer electrolyte-catalyst composite electrode according to claim 7, wherein at least one of the two or more catalyst raw material compounds is a platinum group metal compound.
9 . (補正後) 2種以上の触媒原料化合物が少なくとも白金の化合物とルテニゥ ムの化合物とを含んでいることを特徴とする請求の範囲 8記載の固体高分子電解 質一触媒複合電極の製造方法。  9. (after correction) The production of a solid polymer electrolyte-catalyst composite electrode according to claim 8, wherein the two or more catalyst raw material compounds contain at least a platinum compound and a ruthenium compound. Method.
1 0 . (補正後) 2種以上の触媒原料化合物が少なくともイリジゥムの化合物と ルテニウムの化合物とを含んでいることを特徴とする請求の範囲 8記載の固体高  10. The solid height according to claim 8, wherein (after correction) the two or more catalyst raw material compounds contain at least an iridium compound and a ruthenium compound.
1 6 捕正された用紙 (条約第 19条) 分子電解質一触媒複合電極の製造方法。 1 6 Captured paper (Article 19 of the Convention) A method for producing a molecular electrolyte-catalyst composite electrode.
1 1 . (補正後) 触媒原料ィ匕合物を水素ガスまたは水素含有ガスによって還元す ることを特徴とする請求の範囲 1、 2、 3、 4、 5、 6、 7、 8、 9または 1 0 記載の固体高分子電解質一触媒複合電極の製造方法。  (After amendment) Claims 1, 2, 3, 4, 5, 6, 7, 8, 9 or 9 characterized in that the catalyst raw material is reduced by hydrogen gas or hydrogen-containing gas. 10. The method for producing a solid polymer electrolyte-catalyst composite electrode according to 10 above.
1 2 . (補正後) 触媒原料化合物をヒドラジンを含む不活性ガスによって還元す ることを特徴とする請求の範囲 1、 2、 3、 4、 5、 6、 7、 8、 9または 1 0 記載の固体高分子電解質一触媒複合電極の製造方法。  12. (After Correction) Claims 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 characterized in that the catalyst raw material compound is reduced by an inert gas containing hydrazine. Method for producing a solid polymer electrolyte-catalyst composite electrode.
1 3 . (補正後) 触媒原料化合物として K2PtCl6または/および Κ2Μ¾を用い、 該触媒原料ィ匕合物をアルコール類を溶媒としたホウ素化合物を含む還元溶液を用 いて還元することを特徴とする請求の範囲 1、 2、 3、 4、 5または 6記載の固 体高分子電解質一触媒複合電極の製造方法。 1 3. With K 2 PtCl6 or / and Κ 2 Μ¾ as (corrected) catalyst starting compound, that the catalyst material I匕合thereof to reduction have use a reducing solution containing a boron compound was an alcohol as a solvent 7. The method for producing a solid polymer electrolyte-catalyst composite electrode according to claim 1, 2, 3, 4, 5, or 6.
1 4 . (補正後) 請求の範囲 7、 8、 9または 1 0記載の製造方法により製造さ れた固体高分子電解質一触媒複合 m¾をァノ一ドとして用いたことを特徴とする メ夕ノ一ル改質型の燃料電池または直接メ夕ノール型の燃料電池。  14. (After amendment) A solid polymer electrolyte-catalyst composite m¾ produced by the production method according to claims 7, 8, 9 or 10 is used as an anode. Either a reformed fuel cell or a direct methanol fuel cell.
1 7 補正された用紙 (条約第 19条) 1 7 Amended paper (Article 19 of the Convention)
PCT/JP1999/003226 1998-06-18 1999-06-17 Method for producing solid polymer electrolyte-catalyst composite electrode and fuel cell WO1999066575A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/189805 1998-06-18
JP18980598 1998-06-18

Publications (1)

Publication Number Publication Date
WO1999066575A1 true WO1999066575A1 (en) 1999-12-23

Family

ID=16247513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003226 WO1999066575A1 (en) 1998-06-18 1999-06-17 Method for producing solid polymer electrolyte-catalyst composite electrode and fuel cell

Country Status (1)

Country Link
WO (1) WO1999066575A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083605A (en) * 2000-07-29 2002-03-22 Dmc 2 Degussa Metals Catalysts Cerdec Ag Ink for manufacturing membrane-electrode unit for pem- fuel cell and its use
JP2010055870A (en) * 2008-08-27 2010-03-11 Nec Corp Method of manufacturing catalyst paste

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204188A (en) * 1982-05-24 1983-11-28 Agency Of Ind Science & Technol Method for producing joined body of ion exchange membrane and catalytic electrode
JPS61295387A (en) * 1985-06-21 1986-12-26 Japan Storage Battery Co Ltd Production of ion exchange resin membrane-electrode joined body
JPH05258755A (en) * 1991-12-31 1993-10-08 Stonehard Assoc Inc Manufacture of solid polyelectrolyte fuel cell
JPH08162122A (en) * 1994-12-06 1996-06-21 Agency Of Ind Science & Technol Manufacture of gas diffusion electrode for fuel cell
JPH0935723A (en) * 1995-07-20 1997-02-07 Toyota Motor Corp Alloy catalyst for electrode and fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204188A (en) * 1982-05-24 1983-11-28 Agency Of Ind Science & Technol Method for producing joined body of ion exchange membrane and catalytic electrode
JPS61295387A (en) * 1985-06-21 1986-12-26 Japan Storage Battery Co Ltd Production of ion exchange resin membrane-electrode joined body
JPH05258755A (en) * 1991-12-31 1993-10-08 Stonehard Assoc Inc Manufacture of solid polyelectrolyte fuel cell
JPH08162122A (en) * 1994-12-06 1996-06-21 Agency Of Ind Science & Technol Manufacture of gas diffusion electrode for fuel cell
JPH0935723A (en) * 1995-07-20 1997-02-07 Toyota Motor Corp Alloy catalyst for electrode and fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083605A (en) * 2000-07-29 2002-03-22 Dmc 2 Degussa Metals Catalysts Cerdec Ag Ink for manufacturing membrane-electrode unit for pem- fuel cell and its use
JP2010055870A (en) * 2008-08-27 2010-03-11 Nec Corp Method of manufacturing catalyst paste

Similar Documents

Publication Publication Date Title
US6344291B1 (en) Solid polymer electrolyte-catalyst composite electrode, electrode for fuel cell, and process for producing these electrodes
JP5425771B2 (en) catalyst
US7994088B2 (en) Supported catalyst, method of preparing the same, and fuel cell using the same
JP3649009B2 (en) Fuel cell electrode and method of manufacturing the same
US20020068213A1 (en) Multiple layer electrode for improved performance
EP2990109A1 (en) Electrode and fuel cell electrode catalyst layer containing same
JP5425765B2 (en) Catalyst layer
JP2002110180A (en) Film-electrode unit for polyelectrolyte fuel cell, method for making the same, and ink for making the same
JP2000173626A5 (en)
JP3649061B2 (en) Fuel cell electrode and manufacturing method thereof
AU2003253438A1 (en) Conductive carbon, electrode catalyst for fuel cell using the same and fuel cell
JP2007501496A (en) Hybrid membrane / electrode assembly with reduced interfacial resistance and method for producing the same
CN115136364A (en) Catalyst and process for preparing same
CN117652042A (en) Oxygen evolution reaction catalyst
JP2001126738A (en) Method for preparing electrode for fuel cell and direct methanol fuel cell using the same
WO1999066575A1 (en) Method for producing solid polymer electrolyte-catalyst composite electrode and fuel cell
JP2006040633A (en) Electrode for fuel cell, its manufacturing method, and fuel cell using it
WO2023002183A1 (en) Oxygen evolution reaction catalyst
JP2000215899A (en) Manufacture of fuel cell electrode
KR20230034949A (en) catalyst manufacturing
JP2005222812A (en) Manufacturing method of electrode for fuel cell
JP2000012040A (en) Fuel cell electrode and its manufacture
JP2003100306A (en) Method of manufacturing electrode for solid polymer fuel cell and electrode for solid polymer fuel cell
JP2006344424A (en) Manufacturing method of catalyst mixture for solid polymer fuel cell
JP2007141776A (en) Method of manufacturing electrode for fuel direct type fuel cell, electrode for fuel direct type fuel cell obtained by method, fuel direct type fuel cell, and electronic equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase