JPS61295387A - Production of ion exchange resin membrane-electrode joined body - Google Patents

Production of ion exchange resin membrane-electrode joined body

Info

Publication number
JPS61295387A
JPS61295387A JP60136491A JP13649185A JPS61295387A JP S61295387 A JPS61295387 A JP S61295387A JP 60136491 A JP60136491 A JP 60136491A JP 13649185 A JP13649185 A JP 13649185A JP S61295387 A JPS61295387 A JP S61295387A
Authority
JP
Japan
Prior art keywords
exchange resin
ion exchange
membrane
electrode
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60136491A
Other languages
Japanese (ja)
Other versions
JPS6261118B2 (en
Inventor
Yuko Fujita
藤田 雄耕
Tamotsu Muto
保 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP60136491A priority Critical patent/JPS61295387A/en
Publication of JPS61295387A publication Critical patent/JPS61295387A/en
Publication of JPS6261118B2 publication Critical patent/JPS6261118B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To produce an ion exchange resin membrane-electrode joined body having a large working area by dissolving a metallic compound in a soln. of an ion exchange resin contg. fluorine in an org. solvent, applying the resulting soln. to a membrane of an ion exchange resin contg. fluorine, and treating the membrane with a reducing agent. CONSTITUTION:A metallic compound such as a salt or ammine complex of a platinum group metal is dissolved in a soln. prepd. by dissolving an ion exchange resin having a polymer contg. fluorine as the skeleton such as perfluorocarbonsulfonic acid resin in an org. solvent or a mixture of the org. solvent with water. The soln. may be mixed with an aqueous soln. of the metallic compound. The resulting soln. is applied to one side or both sides of a membrane of an ion exchange resin having a polymer contg. fluorine as the skeleton. After the solvent is evaporated, the membrane is treated with a reducing agent such as hydrazine to deposit fine metallic particles acting as an electrode from the metallic compound. Thus, an ion exchange resin membrane- electrode joined body having an increased practical working area of the electrode is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はイオン交換樹脂膜−電極接合体の製造法に関す
るものである。ざらに詳しくは、本発明はイオン交換1
+脂膜を固体電解質とする各種電気化学装置に用いられ
るイオン交換樹脂膜−電極接合体の!1IT1法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing an ion exchange resin membrane-electrode assembly. More specifically, the present invention provides ion exchange 1
+ Ion exchange resin membrane-electrode assembly used in various electrochemical devices that use a lipid membrane as a solid electrolyte! 1IT1 method.

従来の技術 イオン交換樹IFrWAを固体電解質とする電気化学装
置には、燃料電池、水電解槽、食塩電解槽、酸素分離装
置、塩酸電解槽あるいは水電解式湿度センサなどがある
。これらの電気化学装置においては、一般にイオン交換
樹脂膜に電極が一体に接合されたものが用いられる。イ
オン交換樹脂膜に電極を接合する方法としては、電極触
媒粉末とフッ素樹脂結着剤との混合物をホットプレスす
る方法(例えば特公昭58−15544号)と、無電解
メッキ法(例えば特開昭55−38934号)とが提案
されている。
Conventional electrochemical devices using the ion exchange tree IFrWA as a solid electrolyte include fuel cells, water electrolyzers, salt electrolyzers, oxygen separation devices, hydrochloric acid electrolyzers, and water electrolysis type humidity sensors. These electrochemical devices generally use an ion exchange resin membrane with an electrode integrally bonded thereto. Methods for bonding electrodes to ion-exchange resin membranes include hot-pressing a mixture of electrode catalyst powder and fluororesin binder (for example, Japanese Patent Publication No. 15544/1983), and electroless plating method (for example, Japanese Patent Publication No. 15544/1989). No. 55-38934) has been proposed.

発明が解決しようとする問題点 従来のイオン交換樹脂膜−電極接合体においては、ホッ
トプレス法にしろ無電解メッキ法にしろ、電極反応サイ
トが電解質であるイオン交換樹脂膜と電極との接合部で
ある二次元的な界面に局限されていたため、実質的な作
用面積が小さかった。
Problems to be Solved by the Invention In conventional ion exchange resin membrane-electrode assemblies, whether using the hot press method or the electroless plating method, the electrode reaction site is the electrolyte at the junction between the ion exchange resin membrane and the electrode. Because it was localized to a two-dimensional interface, the effective area of action was small.

問題点を解決するための手段 本発明は、含フッ素高分子を骨格とするイオン交換樹脂
の有機溶媒溶液もしくは有機溶媒と水との混合溶媒溶液
に触媒金属を含む化合物を直接溶解せしめるか又は触媒
金属を含む化合物の水溶液を混合せしめたものを含フッ
素高分子を骨格とするイオン交換樹脂膜に塗着せしめた
のち、還元剤を用いて!l!l理することにより前記触
媒金属を含む化合物から電極となる触媒金属を析出せし
めることによって、上述の如き問題点を解決せlυとす
るものである。
Means for Solving the Problems The present invention involves directly dissolving a compound containing a catalyst metal in an organic solvent solution or a mixed solvent solution of an organic solvent and water of an ion exchange resin having a fluorine-containing polymer skeleton, or After applying a mixture of aqueous solutions of metal-containing compounds to an ion exchange resin membrane with a fluorine-containing polymer as its backbone, a reducing agent is used! l! The above-mentioned problems can be solved by depositing a catalytic metal to form an electrode from a compound containing the catalytic metal.

作  用 含フッ素高分子を骨格とするイオン交換樹脂には、例え
ばパーフルオロカーボンスルフオン酸樹脂がある。パー
フルオロカーボンスルフオン酸樹脂は、高温高圧下では
低級脂肪族アルコールあるいはジメチルスルフオキシド
などの有機溶媒に溶解することが知られている。このよ
うなパーフルオロカーボンスルフオン酸樹脂の溶液は例
えばアメリカのアルドリッチケミカフ1社からナフィオ
ン溶液(低級脂肪族アルコールと水との混合溶媒溶液)
という商標で発売されている。
Function Examples of ion exchange resins having a skeleton of fluorine-containing polymers include perfluorocarbon sulfonic acid resins. It is known that perfluorocarbon sulfonic acid resins dissolve in lower aliphatic alcohols or organic solvents such as dimethyl sulfoxide under high temperature and high pressure. A solution of such a perfluorocarbon sulfonic acid resin is, for example, a Nafion solution (a mixed solvent solution of lower aliphatic alcohol and water) manufactured by Aldrich Chemikaf 1 in the United States.
It is sold under the trademark.

上記パーフルオロカーボンスルフオン酸樹脂の溶液に触
媒金属を含む化合物を直接溶解させるか又は触媒金属を
含む化合物の水溶液を混合すると、スルフォンI?Mの
水素イオンと触媒金属イオンあるいは触媒金属を含むカ
チオンとの置換が起こり、パーフルオロカーボンスルフ
オン酸樹脂に触媒金属が捕捉されたような形になる。こ
のような混合溶液を含フッ素高分子を骨格とするイオン
交換樹脂膜に塗着し、溶媒を揮散せしめると、イオン交
換樹脂膜と触媒金属イオンもしくは触媒金属を含むカチ
オンを捕捉したイオン交換樹脂層との接合体が形成され
る。なお、!!!着したのち、常温でプレスするか加熱
してプレスすると接合強度が大きくなる。次にヒドラジ
ン、水素化ホウ素ナトリウムあるいは水素等の還元剤で
処理すると、触媒金属が非常に微細に分散された形で析
出する。かくして、イオン交換樹脂膜と触媒金属−イオ
ン交換樹脂混合体との接合体が完成する。触媒全屈−イ
オン交換樹脂混合体は電極として作用する。
When a compound containing a catalytic metal is directly dissolved in the perfluorocarbon sulfonic acid resin solution or an aqueous solution of a compound containing a catalytic metal is mixed, sulfone I? Substitution of the hydrogen ions of M with catalytic metal ions or cations containing the catalytic metal occurs, resulting in a form in which the catalytic metal is captured in the perfluorocarbon sulfonic acid resin. When such a mixed solution is applied to an ion exchange resin membrane with a fluorine-containing polymer skeleton and the solvent is evaporated, the ion exchange resin membrane and the ion exchange resin layer capturing the catalytic metal ions or cations containing the catalytic metal are formed. A zygote is formed. In addition,! ! ! After bonding, pressing at room temperature or heating will increase the bonding strength. Subsequent treatment with a reducing agent such as hydrazine, sodium borohydride or hydrogen results in the precipitation of the catalytic metal in a very finely dispersed form. In this way, a bonded body of the ion exchange resin membrane and the catalyst metal-ion exchange resin mixture is completed. The catalyst-ion exchange resin mixture acts as an electrode.

このようなイオン交換樹lllm−電極接合体において
は、電極の中のイオン交換樹脂も固体電解質としてIa
能するので、反応サイトは従来のようにイオン交換樹脂
膜と電極との二次元的な界面だけでなくて、?!掻の中
の触媒金属とイオン交換tlWtとの接点をも含めた三
次元的な拡がりをもつことになり、実質的な電極作用面
積が増大し、このような接合体を電気化学装置に適用し
たとき、分極特性が向上する。
In such an ion exchange resin-electrode assembly, the ion exchange resin in the electrode also serves as a solid electrolyte.
Therefore, the reaction site is not only the two-dimensional interface between the ion exchange resin membrane and the electrode as in the conventional method. ! It has a three-dimensional extension that includes the contact point between the catalyst metal in the ion exchanger and the ion-exchanged tlWt, and the effective electrode action area increases, making it possible to apply such a bonded body to an electrochemical device. When the polarization characteristics are improved.

触媒金属としては、白金族金属を用いるのが適当である
。また触媒金属を含む化合物としては、触媒金属の塩も
しくはアンミン錯体が適当である。
As the catalyst metal, it is appropriate to use a platinum group metal. Further, as the compound containing the catalytic metal, a salt of the catalytic metal or an ammine complex is suitable.

実施例 次に本発明によるイオン交J5!!樹脂膜−電極接合体
の製造法の一実施例を説明する。
Example Next, ion exchanger J5 according to the present invention! ! An example of a method for manufacturing a resin film-electrode assembly will be described.

直径が120mmのパーフルオロカーボンスルフオン酸
樹脂膜であるデュポン社(アメリカ)製のナフィオン1
17膜を用意した。次にナフィオン117の5%有機溶
媒−水混合溶液(アルドリッチケミカル社製、有機溶媒
は低級脂肪族アルコール)を用意した。このナフィオン
117溶液10cc中にりOロペンタアンモニウム白金
クロライド([Pt(NH3)s CI ICI 2 
)の水溶液(白金として2 mg/ ccを含む)を1
occ加えたものを上)ホのナフィオン117 mmの
両面に吹き付け、80℃、100自/−なる条件で加圧
した。次に水素気流中80℃で還元処理することにより
、白金を析出せしめると同時にナフィオン117溶液の
溶媒を揮散せしめた。
Nafion 1 manufactured by DuPont (USA) is a perfluorocarbon sulfonic acid resin membrane with a diameter of 120 mm.
17 membranes were prepared. Next, a 5% organic solvent-water mixed solution of Nafion 117 (manufactured by Aldrich Chemical Co., organic solvent is lower aliphatic alcohol) was prepared. In 10 cc of this Nafion 117 solution, Olopentammonium platinum chloride ([Pt(NH3)s CI ICI 2
) of an aqueous solution (containing 2 mg/cc of platinum)
The mixture containing occ was sprayed onto both sides of Nafion 117 mm (above) and pressurized at 80°C and 100°C. Next, reduction treatment was performed at 80° C. in a hydrogen stream to precipitate platinum and at the same time volatilize the solvent of the Nafion 117 solution.

かくして、ナフィオン117膜の両面にナフィオンと白
金との混合層からなる電極を接合した。
In this way, electrodes made of a mixed layer of Nafion and platinum were bonded to both sides of the Nafion 117 membrane.

発明の効果 上述の実施例で得られたイオン交換樹脂膜−電極接合体
(A)と従来の方法である無電解メッキ法により白金を
イオン交換樹脂膜に接合して得られたイオン交換樹脂膜
−電極接合体(B)をそれぞれ水電解槽に用いたときの
電流−電圧特性を比較したところ、図に示すような結果
が得られた。
Effects of the Invention The ion exchange resin membrane-electrode assembly (A) obtained in the above-mentioned example and the ion exchange resin membrane obtained by bonding platinum to the ion exchange resin membrane by the conventional electroless plating method. - When the current-voltage characteristics were compared when each electrode assembly (B) was used in a water electrolyzer, the results shown in the figure were obtained.

この図から明らかなように、本発明方法の方がよりすぐ
れた特性を示すことがわかる。これは電極層を電極触媒
とイオン交換樹脂との混合層から形成することによって
、実質的な作用面積が増大したからに他ならない。
As is clear from this figure, it can be seen that the method of the present invention exhibits better characteristics. This is because the substantial active area is increased by forming the electrode layer from a mixed layer of an electrode catalyst and an ion exchange resin.

以上のように本発明方法によれば、従来の無電解メッキ
法、ホットプレス法に比べて、実質的な作用面積の多い
イオン交換樹脂膜−電極接合体を得ることができる。
As described above, according to the method of the present invention, it is possible to obtain an ion exchange resin membrane-electrode assembly having a substantially larger working area than the conventional electroless plating method or hot press method.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明方法および従来の無電解メッキ法によって得
られたイオン交換樹脂膜−電極接合体を水電解槽に用い
た場合の電流−電圧特性を示す図である。 電胤口(A /d?)
The figure shows the current-voltage characteristics when the ion exchange resin membrane-electrode assembly obtained by the method of the present invention and the conventional electroless plating method is used in a water electrolyzer. Dentaneguchi (A/d?)

Claims (1)

【特許請求の範囲】[Claims] 含フッ素高分子を骨格とするイオン交換樹脂の有機溶媒
溶液もしくは有機溶媒と水との混合溶媒溶液に金属を含
む化合物を溶解せしめるか又は金属を含む化合物の水溶
液を混合せしめたものを含フッ素高分子を骨格とするイ
オン交換樹脂膜の片面もしくは両面に塗着せしめたのち
、還元剤により処理することにより前記金属を含む化合
物から電極となる金属を析出せしめることを特徴とする
イオン交換樹脂膜−電極接合体の製造法。
A fluorine-containing polymer is prepared by dissolving a metal-containing compound in an organic solvent solution or a mixed solvent solution of an organic solvent and water, or mixing an aqueous solution of a metal-containing compound with an ion exchange resin having a fluorine-containing polymer skeleton. An ion-exchange resin membrane characterized in that it is coated on one or both sides of an ion-exchange resin membrane having molecules as its skeleton, and then treated with a reducing agent to precipitate a metal to become an electrode from a compound containing the metal. Method for manufacturing electrode assembly.
JP60136491A 1985-06-21 1985-06-21 Production of ion exchange resin membrane-electrode joined body Granted JPS61295387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60136491A JPS61295387A (en) 1985-06-21 1985-06-21 Production of ion exchange resin membrane-electrode joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60136491A JPS61295387A (en) 1985-06-21 1985-06-21 Production of ion exchange resin membrane-electrode joined body

Publications (2)

Publication Number Publication Date
JPS61295387A true JPS61295387A (en) 1986-12-26
JPS6261118B2 JPS6261118B2 (en) 1987-12-19

Family

ID=15176393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60136491A Granted JPS61295387A (en) 1985-06-21 1985-06-21 Production of ion exchange resin membrane-electrode joined body

Country Status (1)

Country Link
JP (1) JPS61295387A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991014021A1 (en) * 1990-03-13 1991-09-19 Japan Gore-Tex Inc. Sheet electrode material containing ion exchange resin, composite material thereof, and production thereof
WO1999066575A1 (en) * 1998-06-18 1999-12-23 Japan Storage Battery Co., Ltd. Method for producing solid polymer electrolyte-catalyst composite electrode and fuel cell
WO2003036655A1 (en) * 2001-10-25 2003-05-01 Ube Industries, Ltd. Polymer electrolyte solution for manufacturing electrode for fuel cell
US6746793B1 (en) 1998-06-16 2004-06-08 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US6916575B2 (en) 2001-03-08 2005-07-12 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte type fuel cell
US7097932B1 (en) 1999-09-21 2006-08-29 Matsushita Electric Industrial Co., Ltd. Polymer electrolytic fuel cell and method for producing the same
US7132187B2 (en) 2001-09-27 2006-11-07 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell and production method thereof
US7201993B2 (en) 2000-08-04 2007-04-10 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7220514B2 (en) 2000-07-03 2007-05-22 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
JP2009523905A (en) * 2006-01-23 2009-06-25 ヒタチ ケミカル リサーチ センター インコーポレイテッド Ionic polymer device and method of manufacturing the same
US7569302B2 (en) 2002-11-05 2009-08-04 Panasonic Corporation Fuel cell for generating electric power

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3712768B2 (en) * 1995-01-26 2005-11-02 松下電器産業株式会社 Production method of polymer electrolyte fuel cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991014021A1 (en) * 1990-03-13 1991-09-19 Japan Gore-Tex Inc. Sheet electrode material containing ion exchange resin, composite material thereof, and production thereof
US6746793B1 (en) 1998-06-16 2004-06-08 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
WO1999066575A1 (en) * 1998-06-18 1999-12-23 Japan Storage Battery Co., Ltd. Method for producing solid polymer electrolyte-catalyst composite electrode and fuel cell
US7097932B1 (en) 1999-09-21 2006-08-29 Matsushita Electric Industrial Co., Ltd. Polymer electrolytic fuel cell and method for producing the same
US7220514B2 (en) 2000-07-03 2007-05-22 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7201993B2 (en) 2000-08-04 2007-04-10 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7455703B2 (en) 2000-08-04 2008-11-25 Panasonic Corporation Method for manufacturing polymer electrolyte fuel cell
US6916575B2 (en) 2001-03-08 2005-07-12 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte type fuel cell
US7132187B2 (en) 2001-09-27 2006-11-07 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell and production method thereof
WO2003036655A1 (en) * 2001-10-25 2003-05-01 Ube Industries, Ltd. Polymer electrolyte solution for manufacturing electrode for fuel cell
US7569302B2 (en) 2002-11-05 2009-08-04 Panasonic Corporation Fuel cell for generating electric power
JP2009523905A (en) * 2006-01-23 2009-06-25 ヒタチ ケミカル リサーチ センター インコーポレイテッド Ionic polymer device and method of manufacturing the same

Also Published As

Publication number Publication date
JPS6261118B2 (en) 1987-12-19

Similar Documents

Publication Publication Date Title
US4959132A (en) Preparing in situ electrocatalytic films in solid polymer electrolyte membranes, composite microelectrode structures produced thereby and chloralkali process utilizing the same
US6391486B1 (en) Fabrication of a membrane having catalyst for a fuel cell
EP0787368B1 (en) Metallized cation exchanger membrane
JP4918046B2 (en) Membrane / electrode assembly for fuel cell, production method thereof and fuel cell including the same
JPH05258755A (en) Manufacture of solid polyelectrolyte fuel cell
JPS61295387A (en) Production of ion exchange resin membrane-electrode joined body
JPS61295388A (en) Production of ion exchange resin membrane-electrode joined body
US20030047459A1 (en) Electrochemical reacting electrode, method of making, and application device
US5853798A (en) Process for formation of an electrode on an anion exchange membrane
JP2001126738A (en) Method for preparing electrode for fuel cell and direct methanol fuel cell using the same
EP2510570B1 (en) Method for producing a catalytic material for electrodes of a fuel cell
JP3108760B2 (en) Gas diffusion electrode and method for manufacturing the same
DE69708347T2 (en) Process for producing electrodes for membrane fuel cells, gas diffusion electrodes for such cells and PEMFC fuel cells containing such electrodes
JP2692736B2 (en) Method for producing gold-ion exchange membrane assembly
JPH06260170A (en) Electrode catalyst composition and highpolymer film type electrode
JP2863831B2 (en) Method for producing gold-ion exchange membrane assembly
JP3409081B2 (en) Method for producing ion-exchange membrane-electrode assembly
JP3603113B2 (en) Platinum-ruthenium electrode catalyst assembly, method for producing the same, and polymer electrolyte fuel cell using platinum-ruthenium electrode catalyst assembly
JPS5942078B2 (en) Method for manufacturing an assembly of an ion exchange membrane and a catalyst electrode
JPS6261117B2 (en)
DE4447126A1 (en) Membrane electrode composite with large interface and high activity useful in fuel cell and electrolyser
JPH0495355A (en) Manufacture of solid-state high-molecular electrolytic type fuel cell
JP2000106200A (en) Gas diffused electrode-electrolyte film joint body and fuel cell
JP2000215899A (en) Manufacture of fuel cell electrode
JP2713360B2 (en) Method for producing gold-ion exchange membrane assembly

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees