JP2007141776A - Method of manufacturing electrode for fuel direct type fuel cell, electrode for fuel direct type fuel cell obtained by method, fuel direct type fuel cell, and electronic equipment - Google Patents

Method of manufacturing electrode for fuel direct type fuel cell, electrode for fuel direct type fuel cell obtained by method, fuel direct type fuel cell, and electronic equipment Download PDF

Info

Publication number
JP2007141776A
JP2007141776A JP2005337334A JP2005337334A JP2007141776A JP 2007141776 A JP2007141776 A JP 2007141776A JP 2005337334 A JP2005337334 A JP 2005337334A JP 2005337334 A JP2005337334 A JP 2005337334A JP 2007141776 A JP2007141776 A JP 2007141776A
Authority
JP
Japan
Prior art keywords
fuel cell
electrode
precursor
catalyst
direct fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005337334A
Other languages
Japanese (ja)
Inventor
Shinobu Takenaka
忍 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005337334A priority Critical patent/JP2007141776A/en
Publication of JP2007141776A publication Critical patent/JP2007141776A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for a fuel direct type fuel cell, which can obtain a high catalyst utilization factor and therefore can obtain the characteristics of higher output power using a smaller amount of catalyst, and to provide a method of manufacturing the electrode for the fuel direct type fuel cell. <P>SOLUTION: The method of manufacturing the electrode for the fuel direct type fuel cell comprises: a first process for producing a catalyst layer precursor by mixing a proton conducting material and an electron conducting material; a second process for making the catalyst layer precursor adsorb a solution of a catalyst active material precursor; and a third process for electrochemically reducing the catalyst active material precursor adsorbed in the catalyst layer precursor, which is obtained in the second process, in order to electrolytically deposit the catalyst active material on the electron conducting material in the catalyst layer precursor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、メタノール、エタノール、ジメチルエーテルなどを燃料とする燃料直接形燃料電池用電極の製造方法および該製造方法により得ることができる燃料直接形燃料電池用電極に関するものである。   The present invention relates to a direct fuel cell electrode manufacturing method using methanol, ethanol, dimethyl ether or the like as a fuel, and a direct fuel cell electrode obtainable by the manufacturing method.

近年、メタノール、エタノール、ジメチルエーテルなどを燃料とした燃料直接形燃料電池に注目が集められるようになった。これは、これらの液体燃料のエネルギー密度が高く、長時間電源を構築する上で有効であることが主な理由である。   In recent years, attention has been focused on direct fuel cells using methanol, ethanol, dimethyl ether or the like as fuel. This is mainly because the energy density of these liquid fuels is high and effective in constructing a power supply for a long time.

これらの燃料直接形燃料電池のうち、例えば高分子電解質型燃料電池は、高分子固体電解質膜の一方の面に燃料極(アノード極)を設け、他方の面に空気極(カソード極)を設けた膜−電極接合体を基本構造とする。この電極は、通常、触媒層とガス拡散層とからなり、触媒層が電解質膜に接する構成とされている。このような構成の燃料電池において、その反応メカニズムは、燃料極に燃料(メタノールなど)が供給され、空気極に酸化剤(空気など)が供給されると、燃料極で発生した水素イオンが電解質を介して空気極へ移動し、空気極で水となるという電気化学的反応を利用して電気エネルギーが取り出されるというものである。   Among these direct fuel cells, for example, a polymer electrolyte fuel cell is provided with a fuel electrode (anode electrode) on one surface of a polymer solid electrolyte membrane and an air electrode (cathode electrode) on the other surface. The membrane-electrode assembly is a basic structure. This electrode is usually composed of a catalyst layer and a gas diffusion layer, and the catalyst layer is in contact with the electrolyte membrane. In the fuel cell having such a structure, the reaction mechanism is that when fuel (such as methanol) is supplied to the fuel electrode and oxidant (such as air) is supplied to the air electrode, hydrogen ions generated at the fuel electrode are converted into electrolytes. The electric energy is taken out using an electrochemical reaction that moves to the air electrode through the air and becomes water at the air electrode.

このような燃料電池の電極反応は、電極触媒上で進行する。例えば、メタノール−酸素燃料電池の場合の電極反応は、以下のとおりである。
正極) 3/2O2 + 6H+ + 6e- → 3H2
負極) CH3OH + H2O → CO2 + 6H+ + 6e-
これらの式から明らかなように、各電極の反応は、反応物質であるメタノールや酸素と接触できかつ電子およびプロトンの授受を行うことができる三相界面でのみ進行することができる。したがって、触媒活性物質が反応の場として機能するためには、触媒活性物質が電子伝導性物質とプロトン伝導性物質の両方に接することが必要である。
Such an electrode reaction of the fuel cell proceeds on the electrode catalyst. For example, the electrode reaction in the case of a methanol-oxygen fuel cell is as follows.
Positive electrode) 3 / 2O 2 + 6H + + 6e → 3H 2 O
Negative electrode) CH 3 OH + H 2 O → CO 2 + 6H + + 6e
As is apparent from these equations, the reaction of each electrode can proceed only at a three-phase interface that can contact with reactants such as methanol and oxygen and can exchange electrons and protons. Therefore, in order for the catalytically active material to function as a reaction field, it is necessary for the catalytically active material to contact both the electron conductive material and the proton conductive material.

このような機能を有する燃料電池用電極の従来の製造方法としては、通常、カーボンブラックのような電子伝導性物質の担体上に白金(Pt)のような触媒活性物質を担持させ、その触媒担持担体と高分子固体電解質のようなプロトン伝導性物質とを混合し、ガス拡散層と電解質膜の表面に該混合物の層を形成し、電解質膜/触媒層/ガス拡散層という層構造になるように接合するという手順が一般的である。すなわち、電子伝導性物質上に触媒活性物質をまず担持させ、次に、プロトン伝導性物質と混合するという手順で製造工程は進められる。   As a conventional method for producing a fuel cell electrode having such a function, a catalytically active material such as platinum (Pt) is usually supported on a carrier of an electron conductive material such as carbon black, and the catalyst is supported. A carrier and a proton conductive material such as a polymer solid electrolyte are mixed to form a layer of the mixture on the surface of the gas diffusion layer and the electrolyte membrane so that a layer structure of electrolyte membrane / catalyst layer / gas diffusion layer is obtained. The procedure of joining to is common. That is, the manufacturing process proceeds by a procedure in which a catalytically active substance is first supported on an electron conductive substance and then mixed with a proton conductive substance.

上述のような燃料電池用電極の製造方法によって形成された触媒層は、触媒担持担体とプロトン伝導性物質が密に充填されるのではなく、反応物質であるメタノールや酸素などの通り道となる気孔が必要である。このような気孔を形成するために、触媒担持担体とプロトン伝導性物質の混合比率には好適な範囲があり、この好適な混合比率の範囲内では、全ての触媒担持担体表面をプロトン伝導性物質で覆うことは困難である。   The catalyst layer formed by the method for manufacturing a fuel cell electrode as described above is not packed closely with a catalyst-supporting carrier and a proton-conducting substance, but is a pore that becomes a passage for reactants such as methanol and oxygen. is required. In order to form such pores, there is a suitable range for the mixing ratio of the catalyst-supporting support and the proton-conducting substance, and within this preferable mixing ratio range, all the catalyst-supporting support surfaces are placed on the proton-conducting substance. It is difficult to cover with.

しかし、触媒活性物質は担体の表面に均一に担持されているので、プロトン伝導性物質に接しない触媒活性物質が存在する場合がある。また、触媒活性物質がプロトン伝導性物質に接していても、これらの触媒活性物質およびプロトン伝導性物質が反応物質に接触できない状態にある場合や、触媒担持担体自体が電極から端子へ至る電子伝導のネットワークから孤立している場合もある。これらのいずれの場合においても、このような触媒活性物質は電極触媒として有効に機能することができない。   However, since the catalytically active substance is uniformly supported on the surface of the support, there may be a catalytically active substance that does not come into contact with the proton conductive substance. In addition, even when the catalytically active substance is in contact with the proton conductive substance, the catalytically active substance and the proton conductive substance are not in contact with the reactant, or the catalyst support carrier itself conducts electrons from the electrode to the terminal. May be isolated from other networks. In any of these cases, such a catalytically active substance cannot function effectively as an electrode catalyst.

また、電子伝導性物質として主に用いられるカーボン粒子の粒子径は30nmと小さく、プロトン伝導性物質と混合されたカーボン粒子の状態は、緻密な凹凸が形成されたカーボン集合体を形成した状態となる。そのため、メタノールやエタノールなどの液体燃料がカーボン粒子集合体の深部に位置する触媒活性物質まで浸透することができず、深部に位置する触媒活性物質は電極反応に関与することができない。   In addition, the particle diameter of carbon particles mainly used as an electron conductive material is as small as 30 nm, and the state of the carbon particles mixed with the proton conductive material is a state in which a carbon aggregate in which dense irregularities are formed is formed. Become. Therefore, liquid fuel such as methanol or ethanol cannot penetrate into the catalytically active material located in the deep part of the carbon particle aggregate, and the catalytically active substance located in the deep part cannot participate in the electrode reaction.

これらの要因により、従来の燃料電池用電極の実際の触媒利用率は20〜60%程度にとどまっており、触媒活性物質の実際の使用量に見合った発電能力を得ることができていなかった。   Due to these factors, the actual catalyst utilization rate of the conventional fuel cell electrode is limited to about 20 to 60%, and the power generation capacity commensurate with the actual usage amount of the catalytically active substance cannot be obtained.

このような従来の燃料電池用電極の触媒層の断面構造を図2に示す。この図において、触媒活性物質である触媒粒子を担持した電子伝導性物質であるカーボン粒子が集合してカーボン粒子の集合体が形成されている。カーボン粒子と固体高分子電解質との接触面に存在しかつメタノールやエタノールなどの液体燃料と接触することができる触媒粒子は、電極反応に効率よく寄与することができる。しかし、プロトン伝導性物質である固体高分子電解質がカーボン粒子集合体の凹部の深部に浸透しにくいことから、この深部に存在する触媒粒子は固体高分子電解質と接触できず、電極反応に有効に機能することが困難である。また、カーボン粒子集合体の中には液体燃料が浸透しにくい部位があり、この部位に位置する触媒粒子は液体燃料と接触しにくいことから、電極反応に有効に機能することが困難である。   FIG. 2 shows a cross-sectional structure of the catalyst layer of such a conventional fuel cell electrode. In this figure, carbon particles, which are electron conductive materials carrying catalyst particles, which are catalytically active materials, aggregate to form an aggregate of carbon particles. The catalyst particles that are present on the contact surface between the carbon particles and the solid polymer electrolyte and that can come into contact with a liquid fuel such as methanol or ethanol can efficiently contribute to the electrode reaction. However, since the solid polymer electrolyte, which is a proton conductive substance, does not easily penetrate into the deep part of the concave portion of the carbon particle aggregate, the catalyst particles existing in this deep part cannot contact the solid polymer electrolyte and are effective for electrode reaction. Difficult to function. In addition, the carbon particle aggregate has a portion where the liquid fuel is difficult to permeate, and the catalyst particles located in this portion are difficult to contact the liquid fuel, so that it is difficult to function effectively for the electrode reaction.

このような問題を解決する為に、特許文献1では、触媒活性物質の前駆体とプロトン伝導性物質とを混合した後に電子伝導性物質と混合した触媒層前駆体を含む電極前駆体を陰分極することによる燃料電池用電極の製造方法が開示されている。   In order to solve such a problem, Patent Document 1 discloses that an electrode precursor including a catalyst layer precursor mixed with an electron conductive material after mixing a precursor of a catalytically active material and a proton conductive material is negatively polarized. A method of manufacturing a fuel cell electrode is disclosed.

図3に、特許文献1で開示される燃料電池用電極の触媒層の断面構造を概念的に示す。この電極触媒層では、Ptなどの触媒活性物質がプロトン伝導性物質のプロトン伝導経路と電子伝導性物質との接触面に集中的に存在し、接触面以外、例えば電子伝導性物質が触媒層の気孔に面した部分などには存在しない。特許文献1に開示される製造方法の場合、触媒粒子を担持した電子伝導性物質であるカーボン粒子が集合してカーボン粒子集合体が形成される。カーボン粒子と固体高分子電解質との接触面に位置しかつメタノールやエタノールなどの液体燃料と接触することができる触媒粒子は、電極反応に有効に寄与できる。しかしながら、該液体燃料がカーボン粒子集合体の深部に浸透しにくいことから、カーボンと固体高分子電解質の接触面に位置しているが、液体燃料と接触しにくい触媒粒子は電極反応に有効に働くことが困難である。そのため、液体燃料と接触することができかつプロトン伝導性物質と電子電導性物質の両方に接することができる反応場として機能する触媒活性物質の量は限られたものとなり、触媒利用率は最適化されていない。
特開2001‐118583号公報
FIG. 3 conceptually shows the cross-sectional structure of the catalyst layer of the fuel cell electrode disclosed in Patent Document 1. As shown in FIG. In this electrode catalyst layer, a catalytically active material such as Pt is concentrated on the contact surface between the proton conductive path of the proton conductive material and the electron conductive material, and other than the contact surface, for example, the electron conductive material is in the catalyst layer. It does not exist in the part facing the pores. In the case of the production method disclosed in Patent Document 1, carbon particles, which are electron conductive materials carrying catalyst particles, aggregate to form a carbon particle aggregate. The catalyst particles that are located on the contact surface between the carbon particles and the solid polymer electrolyte and that can come into contact with a liquid fuel such as methanol or ethanol can effectively contribute to the electrode reaction. However, since the liquid fuel is difficult to penetrate into the deep part of the carbon particle aggregate, the catalyst particles that are located on the contact surface between the carbon and the solid polymer electrolyte, but do not easily come into contact with the liquid fuel, work effectively for the electrode reaction. Is difficult. Therefore, the amount of catalytically active material that can be in contact with liquid fuel and can function as a reaction field that can be in contact with both proton conductive material and electron conductive material is limited, and the catalyst utilization rate is optimized. It has not been.
JP 2001-118583 A

そこで本発明は、上記の問題点を解決することができる新規で有用な燃料直接形燃料電池用電極の製造方法および燃料直接形燃料電池用電極を提供することを課題とする。本発明の他の課題は、かかる燃料直接形燃料電池用電極を使った電源システムおよび電子機器を提供することである。   Therefore, an object of the present invention is to provide a novel and useful method for manufacturing a direct fuel cell electrode and a direct fuel cell electrode that can solve the above problems. Another object of the present invention is to provide a power supply system and an electronic device using such a direct fuel cell electrode.

本発明の燃料直接形燃料電池電極の製造方法は、プロトン伝導性物質と電子伝導性物質とを混合して触媒層前駆体を作製する第1の工程と、前記触媒層前駆体に、触媒活性物質の前駆体の溶液を吸着させる第2の工程と、第2の工程で得られた触媒層前駆体に吸着させた触媒活性物質の前駆体を電気化学的に還元し、触媒層前駆体中の電子伝導性物質上に触媒活性物質を電解析出させる第3の工程とを含む。
本発明は、上記の製造方法により得ることができる燃料直接形燃料電池用電極でもある。
The method for producing a direct fuel cell electrode of the present invention includes a first step of preparing a catalyst layer precursor by mixing a proton conductive material and an electron conductive material, and a catalyst activity in the catalyst layer precursor. A second step of adsorbing a precursor solution of the substance, and a catalytically active material precursor adsorbed on the catalyst layer precursor obtained in the second step is electrochemically reduced, And a third step of electrolytically depositing a catalytically active material on the electron conductive material.
The present invention is also an electrode for a direct fuel cell that can be obtained by the above production method.

さらに本発明は、上記の製造方法を用いて得られる燃料直接形燃料電池用電極を備えてなる膜−電極接合体である。
さらに本発明は、上記の膜−電極接合体を備えてなる燃料直接形燃料電池ならびに該燃料電池を搭載してなる電子機器でもある。
Furthermore, this invention is a membrane-electrode assembly provided with the electrode for fuel direct fuel cells obtained using said manufacturing method.
Furthermore, the present invention is also a direct fuel fuel cell comprising the membrane-electrode assembly and an electronic device on which the fuel cell is mounted.

本発明の燃料直接形燃料電池用電極の製造方法によれば、プロトン伝導性物質と電子伝導性物質とを混合して得られる触媒層前駆体に、触媒活性物質の前駆体の溶液を吸着させ、触媒層前駆体に吸着させた触媒活性物質の前駆体を電気化学的に析出させるので、触媒活性物質は必ずプロトン伝導性物質のプロトン伝導経路と電子伝導性物質との接触面に形成されることとなる。一方、液体燃料が供給され難い電子伝導性物質の粒子の集合体の深部には触媒活性物質が形成されない。これらのことにより、触媒利用率が高く、より少ない触媒量でより高い出力特性を得ることができる燃料直接形料電池用電極を、効率よく簡便に実現することが可能になる。   According to the method for producing an electrode for a direct fuel cell of the present invention, a solution of a precursor of a catalytically active material is adsorbed on a catalyst layer precursor obtained by mixing a proton conductive material and an electron conductive material. Since the precursor of the catalytically active substance adsorbed on the catalyst layer precursor is electrochemically deposited, the catalytically active substance is always formed on the contact surface between the proton conducting path of the proton conducting substance and the electron conducting substance. It will be. On the other hand, no catalytically active material is formed in the deep part of the aggregate of particles of the electron conductive material to which liquid fuel is difficult to be supplied. By these things, it becomes possible to implement | achieve efficiently and simply the electrode for fuel direct shape | mold batteries which can obtain a higher output characteristic with a small catalyst amount with a high catalyst utilization factor.

また、本発明の燃料直接形燃料電池用電極の製造方法によれば、触媒活性物質がプロトン伝導性物質のプロトン伝導経路と電子伝導性物質との接触面に主に担持されているため、該燃料電池用電極に用いた実質的に全ての触媒活性物質が電子とプロトンの供給・伝達に関与することが可能となり、燃料電池の反応場として機能することができる。これにより、触媒利用率が高く、より少ない触媒量でより高い出力を取り出すことができる燃料直接形燃料電池用電極を実現することが可能になる。   Further, according to the method for manufacturing an electrode for a direct fuel cell of the present invention, the catalytically active substance is mainly supported on the contact surface between the proton conducting path of the proton conducting substance and the electron conducting substance. Substantially all catalytically active substances used in the fuel cell electrode can participate in the supply and transmission of electrons and protons, and can function as a reaction field of the fuel cell. This makes it possible to realize an electrode for a direct fuel cell that has a high catalyst utilization rate and can extract a higher output with a smaller amount of catalyst.

まず、燃料電池の構造について述べる。図1は、一般的な燃料電池の単一構成要素である単セル構造を示す概念図である。本発明の製造方法により得ることができる燃料直接形燃料電池用電極は、このような構造の燃料電池において好適に用いることができる。すなわち図1は、本発明の燃料直接形燃料電池用電極の製造方法により得ることができる燃料直接形燃料電池用電極を用いてなる燃料直接形燃料電池の好ましい実施形態を示す。   First, the structure of the fuel cell will be described. FIG. 1 is a conceptual diagram showing a single cell structure which is a single component of a general fuel cell. The direct fuel cell electrode obtained by the production method of the present invention can be suitably used in a fuel cell having such a structure. That is, FIG. 1 shows a preferred embodiment of a direct fuel cell using a direct fuel cell electrode obtainable by the direct fuel cell electrode manufacturing method of the present invention.

図1を参照するに、燃料直接形燃料電池セルにおいては、イオン交換膜2を挟んで一方の面に燃料極3が設けられ、他方の面に空気極4が設けられる。そして燃料極3、および空気極4にはそれぞれ集電体(セパレータ)1aおよび1bが配設され、燃料極3側にはメタノールなどの液体燃料が貫流する液体燃料流路5が形成されるとともに、空気極4側には空気などの酸化剤が貫流する酸化剤流路6が形成される。この燃料直接形燃料電池セルは、2つ以上を積層状に組み立てて積層型燃料電池として使用することができる。   Referring to FIG. 1, in a direct fuel cell, a fuel electrode 3 is provided on one surface with an ion exchange membrane 2 interposed, and an air electrode 4 is provided on the other surface. Current collectors (separators) 1a and 1b are disposed on the fuel electrode 3 and the air electrode 4, respectively, and a liquid fuel passage 5 through which liquid fuel such as methanol flows is formed on the fuel electrode 3 side. An oxidant flow path 6 through which an oxidant such as air flows is formed on the air electrode 4 side. This direct fuel cell can be used as a stacked fuel cell by assembling two or more fuel cells into a stack.

上記のイオン交換膜としては、アニオン伝導およびカチオン伝導タイプのいずれのイオン伝導型のものでも使用でき、プロトン伝導タイプのものが好適に使用される。イオン交換膜としては、パーフルオロアルキルスルホン酸ポリマーを代表とするイオン交換樹脂をはじめとする公知の材料すべてが使用できる。膜厚は、40〜200μmが好適である。   As the above-mentioned ion exchange membrane, any one of anion conduction type and cation conduction type can be used, and a proton conduction type is preferably used. As the ion exchange membrane, all known materials including ion exchange resins represented by perfluoroalkylsulfonic acid polymers can be used. The film thickness is preferably 40 to 200 μm.

燃料極3および空気極4としては、以下に説明する本発明の製造方法により得ることができる燃料直接形燃料電池用電極を好適に用いることができる。これらの電極は、通常、所定の触媒層を備えてなる電極基材からなるものである。該電極基材の材料としては、電子伝導性の多孔質材料が用いられる。該多孔質材料としては電子伝導性を有し、液体燃料や酸化剤の拡散を阻害しないものであれば特に限定されず、例えばカーボンペーパー、カーボンクロス、あるいはカーボン粉末をポリテトラフルオロエチレンなどの高分子バインダーと共にシート状に成形したものなどの多孔質炭素系材料が好ましい。このような炭素系材料は、通気性を有しかつ均一な気孔径分布を有する。なかでも多孔質カーボンペーパーが特に好ましい。   As the fuel electrode 3 and the air electrode 4, an electrode for a direct fuel cell that can be obtained by the production method of the present invention described below can be suitably used. These electrodes are usually composed of an electrode base material provided with a predetermined catalyst layer. As the material for the electrode substrate, an electron conductive porous material is used. The porous material is not particularly limited as long as it has electronic conductivity and does not hinder the diffusion of liquid fuel or oxidant. For example, carbon paper, carbon cloth, or carbon powder is made of a high material such as polytetrafluoroethylene. A porous carbon-based material such as a sheet formed with a molecular binder is preferred. Such a carbon-based material has air permeability and a uniform pore size distribution. Among these, porous carbon paper is particularly preferable.

集電体としては、集電性能が高く、酸性雰囲気下でも安定な緻密質のグラファイトを用いるのが好ましい。   As the current collector, it is preferable to use dense graphite that has high current collecting performance and is stable even in an acidic atmosphere.

本発明の燃料電池は、イオン交換膜2を介在させて燃料極3および空気極4の触媒層を形成するか、あるいはホットプレスによって燃料極3と空気極4とイオン交換膜2とを接合して得られる膜−電極構造体(MEA: Membrane Electrode Assembly)で構成することができる。   In the fuel cell of the present invention, the catalyst layer of the fuel electrode 3 and the air electrode 4 is formed with the ion exchange membrane 2 interposed, or the fuel electrode 3, the air electrode 4 and the ion exchange membrane 2 are joined by hot pressing. The membrane-electrode structure (MEA: Membrane Electrode Assembly) obtained in this way can be used.

本発明の燃料直接形燃料電池の液体燃料としては、メタノール、エタノール、ヒドラジン、ジメチルエーテルなどを好適に用いることができる。なかでも、メタノールを燃料として用いるものが好ましく、この場合、該燃料直接形燃料電池はDMFC(Direct Methanol Fuel Cell)とよばれる。
本発明の燃料直接形燃料電池の酸化剤としては、空気または酸素である気体が通常用いられる。
As the liquid fuel of the direct fuel cell of the present invention, methanol, ethanol, hydrazine, dimethyl ether and the like can be suitably used. Among these, those using methanol as a fuel are preferable. In this case, the direct fuel cell is called DMFC (Direct Methanol Fuel Cell).
As the oxidant of the direct fuel cell of the present invention, air or oxygen gas is usually used.

本発明の燃料直接形燃料電池用電極の製造方法における第1の工程は、プロトン伝導性物質と電子伝導性物質とを混合して触媒層前駆体を作製する工程である。
上記のプロトン伝導性物質としては、燃料電池において通常用いられる固体高分子電解質が好ましく、例えばトリフルオロエチレン誘導体の共重合体、リン酸含有ポリベンゾイミダゾール樹脂、スルホン酸基、ホスホン酸基、フェノール系水酸基または含フッ素カーボンスルホン酸基をイオン交換基として有する樹脂、PSSA−PVA(ポリスチレンスルホン酸ポリビニルアルコール共重合体)や、PSSA−EVOH(ポリスチレンスルホン酸エチレンビニルアルコール共重合体)などが挙げられる。なかでも、パーフルオロアルキルスルホン酸ポリマーなどのイオン交換樹脂が好ましい。
The first step in the method for producing an electrode for a direct fuel cell of the present invention is a step of preparing a catalyst layer precursor by mixing a proton conductive material and an electron conductive material.
The proton conductive material is preferably a solid polymer electrolyte usually used in a fuel cell. For example, a copolymer of a trifluoroethylene derivative, a phosphoric acid-containing polybenzimidazole resin, a sulfonic acid group, a phosphonic acid group, a phenol-based material. Examples thereof include resins having a hydroxyl group or a fluorine-containing carbon sulfonic acid group as an ion exchange group, PSSA-PVA (polystyrene sulfonate polyvinyl alcohol copolymer), PSSA-EVOH (polystyrene sulfonate ethylene vinyl alcohol copolymer), and the like. Of these, ion exchange resins such as perfluoroalkylsulfonic acid polymers are preferred.

上記の電子伝導性物質としては、燃料電池用電極に通常用いられ、所定の物性が得られるものであれば特にその種類は問わない。電子伝導性物質としては、天然ガス、炭化水素ガスの気相熱分解や不完全燃焼によって生成する微粉の球状または鎖状の炭素材料が好ましい。このような炭素材料としては、ファーネスブラック、サーマルブラック、アセチレンブラック、ケッチェンブラックなどを含むいずれのカーボンブラックでも使用可能である。また、同様の構造を持つ炭素材料として、活性炭、活性炭素繊維、多層カーボンナノチューブ、ナノカーボンなどのカーボン粒子を用いることもできる。また、上記の電子伝導性物質としては、金、銀、白金、チタン、ニオブなどの金属粒子、n型、p型またはドープ型のシリコンなどの半導体粒子なども使用することができる。
上記の電子伝導性物質は、平均粒径が10〜100nmが好ましく、より好ましくは20〜30nmである。
The above-mentioned electron conductive substance is not particularly limited as long as it is generally used for fuel cell electrodes and can obtain predetermined physical properties. The electron conductive substance is preferably a fine spherical or chain carbon material produced by gas phase pyrolysis or incomplete combustion of natural gas or hydrocarbon gas. As such a carbon material, any carbon black including furnace black, thermal black, acetylene black, ketjen black and the like can be used. Moreover, carbon particles such as activated carbon, activated carbon fiber, multi-walled carbon nanotube, and nanocarbon can be used as the carbon material having the same structure. In addition, as the electron conductive material, metal particles such as gold, silver, platinum, titanium, and niobium, and semiconductor particles such as n-type, p-type, or doped silicon can be used.
The electron conductive material preferably has an average particle size of 10 to 100 nm, more preferably 20 to 30 nm.

プロトン伝導性物質を電子伝導性物質と混合する場合、混合のしやすさの観点から、上記のようなプロトン伝導性物質を適当な溶媒に溶解または懸濁するのが好ましい。用い得る溶媒としては、プロトン伝導性物質に対して不活性な物質であれば特に限定されず、例えば水、メタノール、エタノールなどの低級アルコール、N−Nジメチルアセトアミドなどが挙げられる。   When mixing the proton conductive material with the electron conductive material, it is preferable to dissolve or suspend the proton conductive material as described above in an appropriate solvent from the viewpoint of ease of mixing. The solvent that can be used is not particularly limited as long as it is inactive to the proton conductive material, and examples thereof include water, lower alcohols such as methanol and ethanol, and NN dimethylacetamide.

電子伝導性物質は、上記のプロトン伝導性物質が溶媒に溶解または懸濁されてなるものである場合、例えば乾燥粒子の形態でプロトン伝導性物質と混合することができる。   When the proton conductive material is dissolved or suspended in a solvent, the electron conductive material can be mixed with the proton conductive material, for example, in the form of dry particles.

上記の第1の工程後、プロトン伝導性物質と電子伝導性物質とを混合して得られる触媒層前駆体を上記の燃料電池のイオン交換膜に塗布し、乾燥させて膜−電極前駆体接合体を予め形成しておくこともできる。上記の触媒層前駆体は、電解質膜上の触媒層前駆体の乾燥後の厚みが10〜100μm、好ましくは30〜60μmとなるように塗布することが好ましい。
乾燥の時間および温度としては、40〜80℃で10〜60分程度が好ましい。
After the first step, a catalyst layer precursor obtained by mixing a proton conductive material and an electron conductive material is applied to the ion exchange membrane of the fuel cell and dried to form a membrane-electrode precursor junction. The body can also be pre-formed. The catalyst layer precursor is preferably applied so that the thickness of the catalyst layer precursor on the electrolyte membrane after drying is 10 to 100 μm, preferably 30 to 60 μm.
The drying time and temperature are preferably 40 to 80 ° C. and about 10 to 60 minutes.

本発明の製造方法における第2の工程は、上記の触媒層前駆体に、触媒活性物質の前駆体の溶液を吸着させる工程である。
触媒活性物質の前駆体は、還元されることで触媒活性物質となることが可能な化合物である。このような化合物は、触媒として機能すればその形状や性質は特に限定されないが、還元により触媒金属粒子が生成されるものが好適に用いられる。触媒活性物質として白金、ルテニウム、ロジウム、イリジウム、パラジウム、オスミウムなどの貴金属を用いる場合、触媒活性物質の前駆体としてはこれらの貴金属の塩や錯体が好ましく、例えば[Pt(NH34]Cl2、H2PtCl6、RuCl3などが挙げられる。
The second step in the production method of the present invention is a step of adsorbing a solution of a precursor of a catalytically active substance on the catalyst layer precursor.
A precursor of a catalytically active substance is a compound that can be reduced to become a catalytically active substance. The shape and properties of such a compound are not particularly limited as long as it functions as a catalyst, but those in which catalytic metal particles are generated by reduction are preferably used. When a noble metal such as platinum, ruthenium, rhodium, iridium, palladium, or osmium is used as the catalytically active substance, the precursor of the catalytically active substance is preferably a salt or complex of these noble metals. For example, [Pt (NH 3 ) 4 ] Cl 2 , H 2 PtCl 6 , RuCl 3 and the like.

また、触媒活性物質の前駆体として金属化合物を用いる場合、金属を含む化合物の2種以上の混合物を用いてもよいし、複塩を用いてもよい。例えば、白金化合物とルテニウム化合物を混ぜて用いることで、以下の第3の工程における電解還元により、触媒活性物質として白金−ルテニウム合金が形成される。   Moreover, when using a metal compound as a precursor of a catalytically active substance, the mixture of 2 or more types of the compound containing a metal may be used, and double salt may be used. For example, by using a mixture of a platinum compound and a ruthenium compound, a platinum-ruthenium alloy is formed as a catalytically active substance by electrolytic reduction in the following third step.

上記の触媒活性物質の前駆体の溶液は、該触媒活性物質の前駆体に対して不活性な溶媒を用いることができ、燃料電池の発電のために使用する液体燃料を溶媒とすることが好ましい。該液体燃料としては、メタノール、エタノール、ヒドラジン、ジメチルエーテルなどを好適に用いることができる。なかでも、メタノールが好ましい。   In the catalyst active substance precursor solution, a solvent inert to the catalyst active substance precursor can be used, and a liquid fuel used for power generation of the fuel cell is preferably used as a solvent. . As the liquid fuel, methanol, ethanol, hydrazine, dimethyl ether and the like can be suitably used. Of these, methanol is preferable.

上記の触媒層前駆体に上記の触媒活性物質の前駆体を吸着させる方法としては、該触媒層前駆体を該触媒活性物質の前駆体の溶液に浸漬させる方法が挙げられる。浸漬条件としては、20〜60℃で6〜24時間程度が好ましく、より好ましくは25〜40℃で10〜12時間程度である。
上記の吸着は、プロトン伝導性物質のイオン交換による吸着が好ましい。例えばプロトン伝導性物質としてパーフルオロスルホン酸ポリマーのイオン交換樹脂を用い、触媒活性物質の前駆体として[Pt(NH34]Cl2を用いる場合、[Pt(NH34]2-がイオン交換により触媒層前駆体に吸着することとなる。このような吸着により、触媒活性物質の前駆体は、プロトン伝導性物質のプロトン伝導経路と前記電子伝導性物質との接触面に存在することができる。
Examples of the method for adsorbing the catalyst active material precursor to the catalyst layer precursor include a method in which the catalyst layer precursor is immersed in a solution of the catalyst active material precursor. The soaking conditions are preferably 20 to 60 ° C. for about 6 to 24 hours, more preferably 25 to 40 ° C. for about 10 to 12 hours.
The adsorption is preferably performed by ion exchange of a proton conductive substance. For example, when an ion exchange resin of perfluorosulfonic acid polymer is used as the proton conductive material and [Pt (NH 3 ) 4 ] Cl 2 is used as the precursor of the catalytically active material, [Pt (NH 3 ) 4 ] 2− It will be adsorbed to the catalyst layer precursor by ion exchange. Due to such adsorption, the precursor of the catalytically active substance can exist on the contact surface between the proton conducting path of the proton conducting substance and the electron conducting substance.

上記のような浸漬の後に、該触媒活性物質の前駆体を吸着させた触媒層前駆体を洗浄して余分な触媒活性物質の前駆体の溶液を除去することが好ましい。洗浄としては特に限定されず、精製水を用いて室温で行うことができる。   After the immersion as described above, it is preferable that the catalyst layer precursor on which the precursor of the catalytically active substance is adsorbed is washed to remove an excessive solution of the precursor of the catalytically active substance. The washing is not particularly limited and can be performed at room temperature using purified water.

上記の第1の工程の後に膜−電極前駆体接合体を形成しなかった場合、上記の洗浄の後に、触媒活性物質の前駆体を吸着した触媒層前駆体を上記の燃料電池のイオン交換膜上に塗布し、乾燥させて膜−電極前駆体接合体とすることもできる。   When the membrane-electrode precursor assembly is not formed after the first step, the catalyst layer precursor that has adsorbed the precursor of the catalytically active material is used as the ion exchange membrane of the fuel cell after the cleaning. The membrane-electrode precursor assembly can also be formed by applying it on the substrate and drying it.

本発明の製造方法における第3の工程は、第2の工程で得られた触媒層前駆体に吸着させた触媒活性物質の前駆体を電気化学的に還元し、触媒層前駆体中の電子伝導性物質上に触媒活性物質を電解析出させる工程である。   In the third step of the production method of the present invention, the precursor of the catalytically active material adsorbed on the catalyst layer precursor obtained in the second step is electrochemically reduced, and electron conduction in the catalyst layer precursor is performed. In this step, the catalytically active substance is electrolytically deposited on the active substance.

触媒活性物質の電解析出の条件としては、電極電位を十分卑な電位に保持するもので、少なくとも析出させようとする触媒成分金属(0価)の酸化電位より卑であることが必要である。好ましくは触媒成分金属(0価)の酸化電位より500mV以上卑の電位に保持することである。   The conditions for electrolytic deposition of the catalytically active substance are to maintain the electrode potential at a sufficiently low potential, and at least lower than the oxidation potential of the catalyst component metal (zero valent) to be deposited. . Preferably, it is maintained at a base potential of 500 mV or more from the oxidation potential of the catalyst component metal (zero valence).

上記の電解析出工程は、上記の触媒活性物質の前駆体を含む触媒層前駆体を、上記の燃料電池のイオン交換膜と接合した膜−電極前駆体接合体の形態とした後に行うのが好ましい。   The electrolytic deposition step is performed after the catalyst layer precursor containing the precursor of the catalytically active substance is in the form of a membrane-electrode precursor assembly joined to the ion exchange membrane of the fuel cell. preferable.

本発明の製造方法の好ましい実施形態を、以下に説明する。
プロトン伝導性物質である固体高分子電解質および電子伝導性物質であるカーボン粒子からなる混合物から形成された触媒層前駆体を含んでなる膜−電極前駆体接合体を、使用する燃料電池の液体燃料に溶解させたPtなどの触媒活性物質の前駆体の溶液中に浸漬し、プロトン伝導性物質のイオン交換による吸着によって、触媒活性物質の前駆体を、膜−電極前駆体接合体を形成してなる触媒層前駆体中の固体高分子電解質中に含ませる。そして、この触媒層前駆体を含んでなる膜−電極前駆体接合体を電解還元することにより、プロトン伝導性物質中に含まれる触媒活性物質前駆体から、触媒活性物質(Ptなど)が析出される。この析出される触媒活性物質(Ptなど)は、プロトン伝導性物質のプロトン伝導経路と電子伝導性物質との接触面に電解析出されることとなる。これらの触媒活性物質は、カーボン粒子集合体の深部の液体燃料が供給され難い部位には電解析出されない。これは、使用する液体燃料を触媒活性物質の前駆体溶液の溶媒として用いることによって、液体燃料が供給され難い部位のプロトン伝導性物質中には触媒活性物質前駆体が吸着しないからである。
A preferred embodiment of the production method of the present invention will be described below.
Liquid fuel for a fuel cell using a membrane-electrode precursor assembly comprising a catalyst layer precursor formed from a mixture of a solid polymer electrolyte as a proton conductive material and carbon particles as an electron conductive material The precursor of the catalytically active substance such as Pt dissolved in the solution is immersed in the precursor and the precursor of the catalytically active substance is formed by adsorption by ion exchange of the proton conductive substance to form a membrane-electrode precursor assembly. And contained in the solid polymer electrolyte in the catalyst layer precursor. Then, the membrane-electrode precursor assembly including the catalyst layer precursor is electrolytically reduced, so that a catalytically active substance (such as Pt) is precipitated from the catalytically active substance precursor contained in the proton conductive substance. The The deposited catalytically active substance (Pt or the like) is electrolytically deposited on the contact surface between the proton conducting path of the proton conducting substance and the electron conducting substance. These catalytically active substances are not electrolytically deposited at a site where the liquid fuel in the deep part of the carbon particle aggregate is difficult to be supplied. This is because by using the liquid fuel to be used as a solvent for the precursor solution of the catalytically active material, the catalytically active material precursor is not adsorbed in the proton conductive material at the site where the liquid fuel is difficult to be supplied.

本発明の製造方法により得ることができる燃料直接形燃料電池用電極は、触媒活性物質がプロトン伝導性物質のプロトン伝導経路と前記電子伝導性物質との接触面に主に介在するものであるので、優れた触媒利用率を有する電極とすることができる。したがって、上記の製造方法により得ることができる燃料直接形燃料電池用電極も本発明の一つである。   In the direct fuel cell electrode that can be obtained by the production method of the present invention, the catalytically active substance is mainly interposed in the contact surface between the proton conducting path of the proton conducting substance and the electron conducting substance. Thus, an electrode having an excellent catalyst utilization rate can be obtained. Therefore, the direct fuel cell electrode obtained by the above manufacturing method is also one aspect of the present invention.

上記の製造方法により得ることができる本発明の燃料直接形燃料電池用電極は、プロトン伝導性物質と電子伝導性物質と触媒活性物質とを含んでなるものである。
本発明の燃料直接形燃料電池用電極において用いられる触媒活性物質としては、燃料酸化能力および酸素還元能力の高い金属を用いることが好ましく、白金、ルテニウム、ロジウム、イリジウム、パラジウム、オスミウムなどの貴金属およびこれらの2種以上の合金がより好ましい。
The direct fuel cell electrode of the present invention that can be obtained by the above production method comprises a proton conductive material, an electron conductive material, and a catalytically active material.
As the catalytically active substance used in the direct fuel cell electrode of the present invention, a metal having high fuel oxidation ability and oxygen reduction ability is preferably used, and noble metals such as platinum, ruthenium, rhodium, iridium, palladium, osmium and the like Two or more of these alloys are more preferred.

本発明の燃料直接形燃料電池用電極の好ましい実施形態について、該電極の触媒層の断面図の一例を図4に示す。この電極触媒層では、Ptなどの触媒活性物質がプロトン伝導性物質のプロトン伝導経路と電子伝導性物質との接触面に集中的に存在し、例えば該触媒層の気孔に面した部分などには実質的に存在しない。さらに、メタノールやエタノールなどの液体燃料が供給され難い電子伝導性物質の粒子集合体の深部にも存在しない。そのため、本発明の燃料電池用電極触媒層中の触媒活性物質は、100%反応場として機能することができる。   FIG. 4 shows an example of a cross-sectional view of the catalyst layer of a preferred embodiment of the electrode for a direct fuel cell of the present invention. In this electrode catalyst layer, a catalytically active substance such as Pt is concentrated on the contact surface between the proton conducting path of the proton conducting substance and the electron conducting substance. For example, in the part of the catalyst layer facing the pores, etc. Virtually nonexistent. Furthermore, it does not exist in the deep part of the particle aggregate of the electron conductive material to which liquid fuel such as methanol or ethanol is difficult to be supplied. Therefore, the catalytically active substance in the fuel cell electrode catalyst layer of the present invention can function as a 100% reaction field.

上記の製造方法により得られる燃料直接形燃料電池用電極を、燃料電池のイオン交換膜と接合させることにより膜−電極接合体を得ることができる。このような膜−電極接合体も本発明の一つである。
本発明の燃料直接形燃料電池用電極とイオン交換膜との接合には、通常の燃料電池の電極と膜との接合に用いられる方法を用いることができる。
A membrane-electrode assembly can be obtained by joining the direct fuel cell electrode obtained by the above production method to the ion exchange membrane of the fuel cell. Such a membrane-electrode assembly is also one aspect of the present invention.
For joining the electrode for a direct fuel cell of the present invention and the ion exchange membrane, a method used for joining an electrode and a membrane of a normal fuel cell can be used.

上記の膜−電極接合体を、上記のように、集電体、液体燃料およびガスなどとともに燃料電池容器に収容して、燃料直接形燃料電池を得ることができる。
上記の燃料電池容器の大きさは、通常、縦40〜200mm、横40〜200mm、高さ5〜50mm程度である。
As described above, the membrane-electrode assembly can be accommodated in a fuel cell container together with a current collector, liquid fuel, gas, and the like to obtain a direct fuel cell.
The size of the fuel cell container is usually about 40 to 200 mm in length, 40 to 200 mm in width, and about 5 to 50 mm in height.

さらに、上記の燃料直接形燃料電池は、小型電子機器、例えば携帯電話、電子手帳、ノートパソコンなどの携帯機器に好適に用いることができる。   Furthermore, the fuel direct fuel cell can be suitably used for small electronic devices such as mobile devices such as mobile phones, electronic notebooks, and notebook computers.

次の実施例により本発明をさらに詳細に説明するが、これらの実施例は本発明を詳しく説明するためのものであり、本発明はこれらの実施例によって何ら限定されるものではない。
実施例1
プロトン伝導性物質としてのパーフルオロスルホン酸ポリマーのイオン交換樹脂であるナフィオン(登録商標、デュポン社製)のアルコール溶液(ナフィオン含量20wt%、アルドリッチ社製)をポリマー重量300mgとして計り取り、電子伝導性物質としての乾燥させたカーボンブラック(平均粒径30nm、Cabot社製)250mgとよく混合してペースト状にした。このペーストを2.25cm×2.25cmサイズの電極基材としてのカーボンペーパー(またはカーボンクロス)拡散層表面に、スクリーン印刷にて均一に塗布し、乾燥機にて60℃、15分乾燥させた。
The present invention will be described in more detail with reference to the following examples. However, these examples are for explaining the present invention in detail, and the present invention is not limited to these examples.
Example 1
An alcohol solution of Nafion (registered trademark, manufactured by DuPont), which is an ion exchange resin of a perfluorosulfonic acid polymer as a proton conductive substance, was measured as a polymer weight of 300 mg, and the electronic conductivity was measured. The material was mixed well with 250 mg of dried carbon black (average particle size 30 nm, manufactured by Cabot) to form a paste. This paste was uniformly applied to the surface of a carbon paper (or carbon cloth) diffusion layer as an electrode substrate having a size of 2.25 cm × 2.25 cm by screen printing, and dried at 60 ° C. for 15 minutes with a dryer. .

次いで、上記カーボンブラックとイオン交換樹脂の混合物が塗布されたカーボンペーパー2枚を、燃料電池のイオン交換膜としてのナフィオン(登録商標)117膜(デュポン社製)の両面にホットプレスにて接合し、膜−電極前駆体接合体を作製した。作製した膜−電極前駆体接合体を、触媒活性物質前駆体である[Pt(NH34]Cl2を液体燃料としてのメタノールに溶解した溶液中(Pt含量20mg相当)に1晩浸漬し、イオン交換によりプロトン伝導性物質のプロトン伝導経路に[Pt(NH34]2+を吸着させた後、精製水で十分に洗浄した。このようにして作製した膜−電極前駆体接合体を燃料電池容器(サイズ:縦50mm、横100mm、高さ100mm)に収容して、燃料電池単セルを形成した。 Next, two pieces of carbon paper coated with the mixture of carbon black and ion exchange resin are bonded to both sides of a Nafion (registered trademark) 117 membrane (manufactured by DuPont) as an ion exchange membrane of a fuel cell by hot pressing. A membrane-electrode precursor assembly was prepared. The prepared membrane-electrode precursor assembly was immersed overnight in a solution of [Pt (NH 3 ) 4 ] Cl 2 , which is a catalytically active substance precursor, dissolved in methanol as a liquid fuel (equivalent to a Pt content of 20 mg). Then, [Pt (NH 3 ) 4 ] 2+ was adsorbed on the proton conduction path of the proton conducting substance by ion exchange, and then thoroughly washed with purified water. The membrane-electrode precursor assembly thus prepared was accommodated in a fuel cell container (size: 50 mm long, 100 mm wide, 100 mm high) to form a fuel cell single cell.

この燃料電池単セルの両極ガス流路にN2ガスを流しながら、両極間双方に−0.5V(vs Ag/AgCl)、250mSecで10回通電し、両極触媒層中に含まれているPt塩を電気化学的に還元してプロトン導電性物質のプロトン伝導経路とカーボンブラックとの接触面に析出させて燃料電池を得た。
この後、正極に空気、負極にメタノール(1M)を供給して発電させ、電流と電圧との関係を調べた。
While flowing N 2 gas through the bipolar gas flow path of this fuel cell single cell, energization was performed 10 times at −0.5 V (vs Ag / AgCl), 250 mSec between both electrodes, and Pt contained in the bipolar catalyst layer. The fuel was obtained by electrochemically reducing the salt and depositing it on the contact surface between the proton conducting path of the proton conducting substance and the carbon black.
Thereafter, air was supplied to the positive electrode and methanol (1M) was supplied to the negative electrode to generate power, and the relationship between current and voltage was examined.

比較例1
実施例1で用いたのと同様のナフィオン(登録商標)のアルコール溶液をポリマー重量300mgで計り取り、カーボンブラックに重量比で20%となるようにPtを担持したPt担持炭素微粒子(平均粒径30nm、田中貴金属社製)250mg(カーボン当量)とよく混合してペースト状にした。このペーストを2.25cm×2.25cmサイズのカーボンペーパー(またはカーボンクロス)拡散層表面に、スクリーン印刷にて均一に塗布し、乾燥機にて60℃、15分乾燥させた。
この方法で2枚の電極を作製し、ナフィオン(登録商標)117膜の両面にホットプレスにて接合し、膜−電極接合体を作製した。該膜−電極接合体を実施例1と同様にして用いて燃料電池単セルを得て、正極に空気、負極にメタノール(1M)を供給して発電させ、電流と電圧との関係を調べた。
Comparative Example 1
The same alcohol solution of Nafion (registered trademark) as used in Example 1 was weighed with a polymer weight of 300 mg, and Pt-supported carbon fine particles (average particle diameter) supporting Pt on carbon black so that the weight ratio was 20%. 30 mg (manufactured by Tanaka Kikinzoku Co., Ltd.) 250 mg (carbon equivalent) was mixed well to make a paste. This paste was uniformly applied to the surface of a carbon paper (or carbon cloth) diffusion layer having a size of 2.25 cm × 2.25 cm by screen printing, and dried by a dryer at 60 ° C. for 15 minutes.
Two electrodes were produced by this method, and bonded to both surfaces of the Nafion (registered trademark) 117 film by hot pressing to produce a membrane-electrode assembly. The membrane-electrode assembly was used in the same manner as in Example 1 to obtain a single fuel cell, and air was supplied to the positive electrode and methanol (1M) was supplied to the negative electrode to generate power, and the relationship between current and voltage was examined. .

実施例2
実施例1で用いたのと同様のナフィオン(登録商標)のアルコール溶液をポリマー重量300mgで計り取り、実施例1で用いたのと同様のカーボンブラック250mgとよく混合してペースト状にした。このペーストを2.25cm×2.25cmサイズのカーボンペーパー(またはカーボンクロス)拡散層表面に、スクリーン印刷にて均一に塗布し、乾燥機にて60℃、15分乾燥させた。
次いで、上記のカーボンブラックとイオン交換樹脂の混合物が塗布されたカーボンペーパー2枚をナフィオン117膜の両面にホットプレスにて接合し、膜−電極前駆体接合体を作製した。作製した膜−電極前駆体接合体を、H2PtCl6(Pt含量13.5mg相当)とRuCl3(Ru含量6.5mg相当)のメタノール溶液に1晩浸漬し、精製水で十分洗浄した。このようにして作製した膜−電極前駆体接合体を実施例1と同様の燃料電池容器に収容して、燃料電池単セルを形成した。
Example 2
A Nafion (registered trademark) alcohol solution similar to that used in Example 1 was weighed out at a polymer weight of 300 mg and mixed well with 250 mg of carbon black used in Example 1 to obtain a paste. This paste was uniformly applied to the surface of a carbon paper (or carbon cloth) diffusion layer having a size of 2.25 cm × 2.25 cm by screen printing, and dried by a dryer at 60 ° C. for 15 minutes.
Next, two pieces of carbon paper coated with the above-described mixture of carbon black and ion exchange resin were bonded to both surfaces of the Nafion 117 film by hot pressing to prepare a membrane-electrode precursor assembly. The prepared membrane-electrode precursor assembly was immersed in a methanol solution of H 2 PtCl 6 (corresponding to Pt content of 13.5 mg) and RuCl 3 (corresponding to Ru content of 6.5 mg) overnight, and washed thoroughly with purified water. Thus, the produced membrane-electrode precursor assembly was accommodated in the fuel cell container similar to Example 1, and the fuel cell single cell was formed.

この燃料電池単セルの両極ガス流路にN2ガスを流しながら、負極に−1.0V(vs Ag/AgCl)、250mSec、10回通電し、正極に−0.5V(vs Ag/AgCl)、250mSec、10回通電し、両極触媒層中に含まれているPt塩およびRuイオンを電気化学的に還元してプロトン伝導性物質のプロトン伝導経路とカーボンブラックとの接触面に析出させて燃料電池を得た(正極、負極それぞれの印加電圧を変えることで、正極側にはPtが、負極にはPtRuが選択的に析出する)。 While flowing N 2 gas through the bipolar gas flow path of this single cell of the fuel cell, -1.0 V (vs Ag / AgCl), 250 mSec, energized 10 times to the negative electrode, -0.5 V (vs Ag / AgCl) to the positive electrode , 250 mSec, energized 10 times, electrochemically reduced Pt salt and Ru ions contained in the bipolar catalyst layer and deposited on the contact surface between the proton conducting path of the proton conducting material and the carbon black. A battery was obtained (by changing the applied voltage of each of the positive electrode and the negative electrode, Pt was selectively deposited on the positive electrode side and PtRu was selectively deposited on the negative electrode).

この後、正極に空気、負極にメタノール(1M)を供給して発電させ、電流と電圧との関係を調べた。   Thereafter, air was supplied to the positive electrode and methanol (1M) was supplied to the negative electrode to generate power, and the relationship between current and voltage was examined.

比較例2
ポリマー重量300mgの実施例1で用いたのと同様のナフィオン(登録商標)のアルコール溶液と、H2PtCl6(Pt含量13.5mg相当)とRuCl3(Ru含量6.5mg相当)とを計り取り、実施例1で用いたのと同様のカーボンブラック250mgとよく混合しペースト状にした。このペーストを2.25cm×2.25cmサイズのカーボンペーパー(またはカーボンクロス)拡散層表面に、スクリーン印刷にて均一に塗布し、乾燥機にて60℃、15分乾燥させた。
Comparative Example 2
A Nafion (registered trademark) alcohol solution similar to that used in Example 1 having a polymer weight of 300 mg, H 2 PtCl 6 (corresponding to a Pt content of 13.5 mg) and RuCl 3 (corresponding to a Ru content of 6.5 mg) were measured. The mixture was mixed well with 250 mg of carbon black similar to that used in Example 1 to obtain a paste. This paste was uniformly applied to the surface of a carbon paper (or carbon cloth) diffusion layer having a size of 2.25 cm × 2.25 cm by screen printing, and dried by a dryer at 60 ° C. for 15 minutes.

この電極を負極とし、実施例1と同じ方法で作製した電極を正極として、ナフィオン117膜の両面にホットプレスにて接合し、膜−電極前駆体接合体を作製した。このようにして作製した膜−電極前駆体接合体を燃料電池容器に収容して、燃料電池単セルを形成した。
この燃料電池単セルの両極ガス流路にN2ガスを流しながら、両極間双方に10A、5分ずつ交互10回通電し、両極触媒層中に含まれているPt塩および/またはRu塩を電気化学的に還元して析出させた。この後、正極に空気、負極にメタノール(1M)を供給し、電流と電圧との関係を調べた。
This electrode was used as the negative electrode, and the electrode produced by the same method as in Example 1 was used as the positive electrode, and was bonded to both surfaces of the Nafion 117 film by hot pressing to prepare a membrane-electrode precursor assembly. The membrane-electrode precursor assembly thus produced was accommodated in a fuel cell container to form a fuel cell single cell.
While flowing N 2 gas through the bipolar gas flow path of this single cell of the fuel cell, both of the electrodes are energized 10 times alternately at 10A for 5 minutes, and the Pt salt and / or Ru salt contained in the bipolar electrode catalyst layer is supplied. Electrochemically reduced and precipitated. Thereafter, air was supplied to the positive electrode and methanol (1M) was supplied to the negative electrode, and the relationship between current and voltage was examined.

実施例1と比較例1とは、いずれも負極側の電極触媒層および正極側の電極触媒層にPt触媒を用いた燃料電池である。実施例1では、負極、正極ともに電極触媒層が、電子伝導性物質であるカーボンブラックとプロトン伝導性物質であるナフィオンの接触面にPt触媒が析出したものであって、図4に示したように、Ptなどの触媒活性物質がプロトン伝導性物質のプロトン伝導経路と電子伝導性物質との接触面に集中的に存在し、接触面以外、例えば電子伝導性物質の気孔に面した部分などには存在しておらず、メタノールやエタノールなどの液体燃料が供給され難いカーボン粒子集合体の深部にも存在していない状態のものである。これに対して比較例1では、負極、正極の電極触媒層が、カーボンブラックに予めPt触媒を担持させ、これをプロトン伝導性物質と混合して得られたものであるから、図2に示したように、Pt触媒がプロトン伝導性物質のプロトン伝導経路と電子伝導性物質との接触面のみならず、電子伝導性物質の気孔に面した部分などにも存在するものである。   Example 1 and Comparative Example 1 are both fuel cells using a Pt catalyst for the negative electrode catalyst layer and the positive electrode catalyst layer. In Example 1, the electrode catalyst layer of both the negative electrode and the positive electrode was obtained by depositing a Pt catalyst on the contact surface between carbon black as an electron conductive material and Nafion as a proton conductive material, as shown in FIG. In addition, a catalytically active substance such as Pt is concentrated on the contact surface between the proton conducting path of the proton conducting substance and the electron conducting substance, and other than the contacting face, for example, on the part facing the pores of the electron conducting substance. Is not present, and is not present in the deep part of the carbon particle aggregate to which liquid fuel such as methanol or ethanol is difficult to be supplied. On the other hand, in Comparative Example 1, the electrode catalyst layers of the negative electrode and the positive electrode were obtained by previously supporting Pt catalyst on carbon black and mixing it with a proton conductive material. As described above, the Pt catalyst is present not only on the contact surface between the proton conducting path of the proton conducting material and the electron conducting material, but also on the portion facing the pores of the electron conducting material.

また、実施例2と比較例2とは、いずれも負極側の電極触媒層にはPtRuの混合触媒を用い、正極側の電極触媒層にはPt触媒を用いたものである。実施例2および比較例2は、実施例1と同様に、Ptなどの触媒活性物質がプロトン伝導性物質のプロトン伝導経路と電子伝導性物質との接触面に集中的に存在し、接触面以外、例えば電子伝導性物質の気孔に面した部分などには存在していない状態にある。実施例2と比較例2との違いは、比較例2の負極の電極触媒層においては、図3に示したように、カーボン粒子と固体高分子電解質の接触面に位置しているが、液体燃料が浸透しにくいカーボン粒子集合体の深部に存在するので電極反応に有効に働かない触媒粒子が存在することである。   In both Example 2 and Comparative Example 2, a mixed catalyst of PtRu was used for the negative electrode catalyst layer, and a Pt catalyst was used for the positive electrode catalyst layer. In Example 2 and Comparative Example 2, similar to Example 1, catalytically active materials such as Pt are concentrated on the contact surface between the proton conductive path of the proton conductive material and the electron conductive material, and other than the contact surface For example, it exists in the state which does not exist in the part which faced the pores of the electron conductive substance. The difference between Example 2 and Comparative Example 2 is that the electrode catalyst layer of the negative electrode of Comparative Example 2 is located on the contact surface between the carbon particles and the solid polymer electrolyte as shown in FIG. This is because there are catalyst particles that do not work effectively in the electrode reaction because they exist in the deep part of the carbon particle aggregate that is difficult for fuel to penetrate.

図5は、実施例1および2ならびに比較例1および2の電極を用いた燃料直接形燃料電池について発電試験を行った結果を示したものである。図5から明らかなように、実施例1の燃料電池を用いた場合、比較例1の燃料電池よりも高い出力が得られ、また、実施例2の燃料電池の方が比較例2の燃料電池よりも高い出力が得られることがわかる。
これらの結果より、本発明の燃料直接形燃料電池用電極を用いた燃料電池は、従来の燃料直接形燃料電池用電極を用いた燃料電池より触媒利用率が高い状態にあり、この触媒利用率の向上が電池特性の向上につながったと考察される。
FIG. 5 shows the results of a power generation test performed on the direct fuel cell using the electrodes of Examples 1 and 2 and Comparative Examples 1 and 2. As is apparent from FIG. 5, when the fuel cell of Example 1 is used, a higher output is obtained than the fuel cell of Comparative Example 1, and the fuel cell of Example 2 is the fuel cell of Comparative Example 2. It can be seen that a higher output can be obtained.
From these results, the fuel cell using the direct fuel cell electrode of the present invention has a higher catalyst utilization rate than the conventional fuel cell using the direct fuel cell electrode. It is considered that the improvement of the battery led to the improvement of the battery characteristics.

本発明によれば、触媒利用率が良好な燃料直接形燃料電池用の電極を得ることができる。このような電極を用い、取り扱いが容易で燃料容器の材質、形状が容易に選択できるメタノール、エタノール、ジメチルエーテルなどを燃料として用いることで、様々な電気機械、電子機器、精密機器に搭載することができる燃料直接形燃料電池を得ることができる。このような燃料電池を用いることにより、高い出力が持続的に発揮されることはもとより、高価な触媒量を低減させることにより電池コストの低減も図ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrode for direct fuel cell of a fuel with a favorable catalyst utilization factor can be obtained. Using such an electrode, methanol, ethanol, dimethyl ether, etc., which can be easily handled and the material and shape of the fuel container can be easily selected, can be mounted on various electric machines, electronic devices and precision devices. A direct fuel cell can be obtained. By using such a fuel cell, not only high output can be continuously exhibited, but also the cost of the battery can be reduced by reducing the amount of expensive catalyst.

本発明の燃料直接形燃料電池の好ましい実施形態の構成を示す図である。It is a figure which shows the structure of preferable embodiment of the fuel direct fuel cell of this invention. 従来の燃料電池の電極触媒層の断面構造を概念的に示した図である。It is the figure which showed notionally the cross-section of the electrode catalyst layer of the conventional fuel cell. 特開2001‐118583号で開示される燃料電池の電極触媒層の断面構造を概念的に示した図である。It is the figure which showed notionally the cross-sectional structure of the electrode catalyst layer of the fuel cell disclosed by Unexamined-Japanese-Patent No. 2001-118583. 本発明の燃料直接形燃料電池用電極の触媒層の断面構造を概念的に示した図である。It is the figure which showed notionally the cross-section of the catalyst layer of the electrode for fuel direct fuel cells of this invention. 実施例1および2ならびに比較例1および2の電極触媒を用いた燃料電池の電流−電圧特性を示した図である。It is the figure which showed the current-voltage characteristic of the fuel cell using the electrode catalyst of Example 1 and 2 and Comparative Example 1 and 2.

符号の説明Explanation of symbols

1a 集電体(セパレータ)
1b 集電体(セパレータ)
2 電解質膜
3 燃料極
4 空気極
5 液体燃料流路
6 酸化剤ガス流路
1a Current collector (separator)
1b Current collector (separator)
2 Electrolyte membrane 3 Fuel electrode 4 Air electrode 5 Liquid fuel flow path 6 Oxidant gas flow path

Claims (9)

プロトン伝導性物質と電子伝導性物質とを混合して触媒層前駆体を作製する第1の工程と、
前記触媒層前駆体に、触媒活性物質の前駆体の溶液を吸着させる第2の工程と、
第2の工程で得られた触媒層前駆体に吸着させた触媒活性物質の前駆体を電気化学的に還元し、触媒層前駆体中の電子伝導性物質上に触媒活性物質を電解析出させる第3の工程と
を含むことを特徴とする燃料直接形燃料電池電極の製造方法。
A first step of preparing a catalyst layer precursor by mixing a proton conductive material and an electron conductive material;
A second step of adsorbing a catalyst active material precursor solution onto the catalyst layer precursor;
The catalyst active material precursor adsorbed on the catalyst layer precursor obtained in the second step is electrochemically reduced, and the catalyst active material is electrolytically deposited on the electron conductive material in the catalyst layer precursor. And a third step of manufacturing a direct fuel cell electrode for a fuel cell.
前記触媒活性物質の前駆体の溶液が、燃料電池の発電のために使用する液体燃料を溶媒とする請求項1に記載の燃料直接形燃料電池電極の製造方法。   The method for producing a direct fuel cell electrode according to claim 1, wherein the catalyst active substance precursor solution uses a liquid fuel used for power generation of the fuel cell as a solvent. 前記触媒活性物質の前駆体が、少なくとも1種類の貴金属を含む金属塩の混合物であることを特徴とする請求項1または2に記載の燃料直接形燃料電池用電極の製造方法。   3. The method for producing an electrode for a direct fuel cell according to claim 1, wherein the precursor of the catalytically active material is a mixture of metal salts containing at least one kind of noble metal. 前記第2の工程の吸着が、プロトン伝導性物質のイオン交換による吸着であることを特徴とする請求項1〜3のいずれか1項に記載の燃料直接形燃料電池用電極の製造方法。   The method of manufacturing an electrode for a direct fuel cell according to any one of claims 1 to 3, wherein the adsorption in the second step is adsorption by ion exchange of a proton conductive material. 請求項1〜4のいずれか1項に記載の製造方法により得ることができ、触媒活性物質がプロトン伝導性物質のプロトン伝導経路と前記電子伝導性物質との接触面に主に介在することを特徴とする燃料直接形燃料電池用電極。   It can obtain by the manufacturing method of any one of Claims 1-4, and a catalytically active substance is mainly interposed in the contact surface of the proton conduction path | route of a proton conductive substance, and the said electronic conductive substance. A fuel direct fuel cell electrode. 前記触媒活性物質が、貴金属またはその合金であることを特徴とする請求項5に記載の燃料直接形燃料電池用電極。   6. The direct fuel cell electrode according to claim 5, wherein the catalytically active substance is a noble metal or an alloy thereof. 請求項1〜4のいずれか1項に記載の燃料直接形燃料電池用電極の製造方法により得ることができる燃料直接形燃料電池用電極または請求項5または6に記載の燃料直接形燃料電池用電極を備えてなる膜−電極接合体。   The direct fuel cell electrode or the direct fuel cell electrode according to claim 5 or 6, which can be obtained by the method for manufacturing the direct fuel cell electrode according to any one of claims 1 to 4. A membrane-electrode assembly comprising an electrode. 請求項7に記載の膜−電極接合体を備えてなる燃料直接形燃料電池。   A direct fuel cell comprising the membrane-electrode assembly according to claim 7. 請求項8に記載の燃料直接形燃料電池を搭載してなることを特徴とする電子機器。   An electronic apparatus comprising the direct fuel cell according to claim 8.
JP2005337334A 2005-11-22 2005-11-22 Method of manufacturing electrode for fuel direct type fuel cell, electrode for fuel direct type fuel cell obtained by method, fuel direct type fuel cell, and electronic equipment Pending JP2007141776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005337334A JP2007141776A (en) 2005-11-22 2005-11-22 Method of manufacturing electrode for fuel direct type fuel cell, electrode for fuel direct type fuel cell obtained by method, fuel direct type fuel cell, and electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005337334A JP2007141776A (en) 2005-11-22 2005-11-22 Method of manufacturing electrode for fuel direct type fuel cell, electrode for fuel direct type fuel cell obtained by method, fuel direct type fuel cell, and electronic equipment

Publications (1)

Publication Number Publication Date
JP2007141776A true JP2007141776A (en) 2007-06-07

Family

ID=38204380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005337334A Pending JP2007141776A (en) 2005-11-22 2005-11-22 Method of manufacturing electrode for fuel direct type fuel cell, electrode for fuel direct type fuel cell obtained by method, fuel direct type fuel cell, and electronic equipment

Country Status (1)

Country Link
JP (1) JP2007141776A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564633A (en) * 2021-07-29 2021-10-29 阳光电源股份有限公司 Water electrolysis membrane electrode, preparation method thereof and electrolytic cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564633A (en) * 2021-07-29 2021-10-29 阳光电源股份有限公司 Water electrolysis membrane electrode, preparation method thereof and electrolytic cell

Similar Documents

Publication Publication Date Title
JP3809038B2 (en) Catalyst layer for polymer electrolyte fuel cell on substrate material, ink for producing the catalyst layer, method for producing catalyst layer, gas diffusion electrode, membrane catalyst assembly, membrane electrode assembly
KR100786869B1 (en) Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell comprising same and fuel cell system comprising same
US8512915B2 (en) Catalyst composite material fuel cell, method for preparing the same, membrane-electrode assembly comprising the same, and fuel cell system comprising the same
JP2005537618A (en) Fuel cell electrode
JP5522423B2 (en) Electrocatalyst for polymer electrolyte fuel cell
KR100728182B1 (en) Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell comprising same, and system for fuel cell comprising same
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
CN103280583B (en) Method for preparing catalytic layer structure of proton exchange membrane fuel cell
JP2006012832A (en) Electrode for fuel cell, membrane for fuel cell-electrode assembly including this, fuel cell, and manufacturing method of electrode for fuel cell
JPWO2004075322A1 (en) ELECTRODE FOR FUEL CELL, FUEL CELL, AND METHOD FOR PRODUCING THEM
KR102141882B1 (en) The mixed catalysts composition for fuel cell electrode, the electrode of fuel cell and manufacturing method of the electrode
JP2022513631A (en) The catalyst, its manufacturing method, the electrodes containing it, the membrane-electrode assembly containing it, and the fuel cell containing it.
JP2007188768A (en) Polymer electrolyte fuel cell
JP4428774B2 (en) Manufacturing method of fuel cell electrode
JP2001118582A (en) Electrode of fuel cell and method for manufacturing the same
JP2007329072A (en) Method of manufacturing electrode for fuel cell
KR20070099120A (en) Anode for fuel cell and, membrane-electrode assembly and fuel cell system comprising same
JP5065289B2 (en) Fuel cell electrode with reduced amount of noble metal and solid polymer fuel cell having the same
US20110024294A1 (en) Method for making membrane fuel cell electrodes by low-voltage electrophoretic deposition of carbon nanomaterial-supported catalysts
JP4649094B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
KR101341956B1 (en) Membrane electrode assembly for fuel cells having improved efficiency and durability and fuel cell comprising the same
KR20090055304A (en) Membrane electrode assembly for fuel cell, method for preparing same, and fuel cell system inclulding same
KR100959117B1 (en) Electrode for fuel cell and fuel cell system including same
Chatterjee et al. Carbon-based electrodes for direct methanol fuel cells
JP6862792B2 (en) Method of manufacturing electrode catalyst