WO1999061725A1 - Method for repairing and reinforcing existing concrete structure and resin - Google Patents

Method for repairing and reinforcing existing concrete structure and resin Download PDF

Info

Publication number
WO1999061725A1
WO1999061725A1 PCT/JP1999/002756 JP9902756W WO9961725A1 WO 1999061725 A1 WO1999061725 A1 WO 1999061725A1 JP 9902756 W JP9902756 W JP 9902756W WO 9961725 A1 WO9961725 A1 WO 9961725A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
reinforcing
sheet material
fiber sheet
concrete structure
Prior art date
Application number
PCT/JP1999/002756
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Sugimori
Tomoo Sano
Yasushi Suzumura
Takuya Furukawa
Mikio Takasu
Shigetsugu Hayashi
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Priority to EP99922484A priority Critical patent/EP1083274A4/en
Priority to CA002333419A priority patent/CA2333419A1/en
Publication of WO1999061725A1 publication Critical patent/WO1999061725A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G2023/0251Increasing or restoring the load-bearing capacity of building construction elements by using fiber reinforced plastic elements

Definitions

  • the present invention relates to a method for repairing and reinforcing an existing concrete structure such as a pier, a bridge, or a pillar of a building, and a resin used for the method.
  • the epoxy resin mainly used for impregnating the reinforced fiber sheet material generally requires several days or more even at room temperature to cure and develop sufficient strength, and when the temperature is further lowered to 5 ° C or less. Unless a special heating means is used, there is a problem that the curing hardly progresses and the period of the curing becomes extremely long.
  • a method of using a radical polymerizable resin that cures at a low curing temperature of 5 ° C and at a very low temperature of about 10 ° C as an impregnating resin is used.
  • a radical polymerizable resin that cures at a low curing temperature of 5 ° C and at a very low temperature of about 10 ° C as an impregnating resin is used.
  • Japanese Unexamined Patent Publication (A) Hei 9-184304, Hei 9-184405, Hei 10-775 Japanese Unexamined Patent Publication (A) Hei 9-184304, Hei 9-184405, Hei 10-775.
  • the means of using such a radical polymerization type resin as the impregnating resin is to combine with a reinforcing fiber sheet material in a form suitable for a radical polymerization type resin system in the first place.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by using an additional impregnating resin having a specific range of viscosity and curing time, the resin content developed as an impregnating resin with epoxy resin is 1%.
  • the present inventors have found that a sufficient reinforcing effect can be exhibited even when a reinforcing fiber sheet material of 5% by weight or less is used, and the present invention has been achieved.
  • the present invention relates to a reinforcing fiber sheet material having a resin content of 15% by weight or less, while impregnating a resin having a viscosity of 2.5 to 300 voids and a curing time of 1 to 24 hours with an existing resin.
  • the first point is to repair and reinforce existing concrete structures that are attached to the surface of concrete structures and hardened with resin.
  • the viscosity is 2.5 to 300 voise and the curing time is 1 to 24.
  • the second point is the method of repairing and reinforcing existing concrete structures that impregnate the resin for a certain amount of time and cure the resin.
  • the resin to be impregnated later into the reinforced fiber sheet material that is, a resin having a viscosity of 2.5 to 300 voids and a curing time of 1 to 24 hours
  • resin a resin having a viscosity of 2.5 to 300 voids and a curing time of 1 to 24 hours
  • the additional impregnated resin has a viscosity of 100 to 100 voids and a curing time of 2
  • a radically polymerizable resin of up to 12 hours is particularly desirable, and this is the third aspect.
  • a reinforcing fiber sheet material composed of reinforcing fibers and a resin having a limit of 15% by weight is preferably used in a repairing and reinforcing method using an epoxy resin as an impregnating resin. Is used.
  • the resin (matrix resin) constituting the reinforcing fiber sheet material is impregnated with the reinforcing fiber, or the reinforcing fiber aligned with the bow I or the woven reinforcing fiber is, for example, a release paper or a support. It may be an adhesive layer that adheres to the sheet.
  • the resin constituting the reinforcing fiber sheet material may be an uncured thermosetting resin or a polymerized thermoplastic resin, and is not particularly limited. Resins are commonly used. Of course, there is no problem even if the reinforcing fiber sheet material is specially manufactured according to the resin to be impregnated later (additional impregnating resin).
  • the resin constituting the reinforcing fiber sheet material has a solubility parameter (SP) value of 17 to 2 as described later. It is preferable to use a resin having 8 (MPa) 1/2 .
  • the amount of the matrix resin constituting the reinforcing fiber sheet material is 15% by weight or less.
  • the amount of the resin exceeds 15% by weight, it is not preferable because curing failure of the additional impregnated resin and deterioration of physical properties of the cured product are caused.
  • Reinforced fiber When the amount of the resin constituting the sheet material is 7% by weight or less, when the type of the resin constituting the reinforcing fiber sheet material is different from the type of the resin to be impregnated later, for example, the reinforcing fiber
  • the resin constituting the sheet material is an epoxy resin, which is particularly preferable even when the reinforced fiber sheet material is later impregnated with a radical polymerizable resin, since sufficient curability and strength of the cured product can be obtained.
  • the amount of resin constituting the reinforced fiber sheet material greatly affects the handleability of the reinforced fiber sheet material
  • the amount of the resin is preferably 1% by weight or more.
  • the reinforced fiber sheet material has a sufficiently low rigidity so that the resin that composes it can be attached to the existing concrete structure with a curvature, so that the resin constituting the material is uncured or along the attached place with the curvature.
  • the resin be cured in a suitable form.
  • the pot life (shelf life) at room temperature is long.
  • reinforcing fibers constituting the reinforcing fiber sheet material in the present invention fibers usually used as reinforcing fibers such as carbon fiber, aramide fiber and glass fiber are preferably mentioned. Among them, carbon fiber is preferable.
  • a high-strength carbon fiber having a tensile strength of 400 OMPa or more is particularly preferable when utilizing the strength, and a high elasticity having an elastic modulus of 250 GPa or more when using the elastic modulus. Carbon fibers are more preferred.
  • a compound having a radical polymerizable functional group at at least one end is used as a sizing agent. It is particularly preferable to use the carbon fiber used as the material in view of the strength development of the cured product.
  • the reinforcing form in the reinforcing fiber sheet material is not limited at all, and examples include a method in which reinforcing fibers are aligned in one direction or formed into a woven sheet.
  • the basis weight of the reinforcing fiber is preferably 150 g Zm 2 or more.
  • Examples of the form more preferably used as the reinforcing fiber sheet material used in the present invention include Japanese Patent Application Laid-Open Publications (A) Hei 3-2224901, Hei 3-222 734, Hei 5 As described in No. 3 804, No. 7-364 777, and No. 7-2 287 14, the following forms (1) to (3) are preferable .
  • the support sheet a nonwoven fabric of fibers of various polymers such as glass fiber woven fabric, glass scrim cloth, glass fiber paper, glass fiber nonwoven fabric, polyamide, and polyphenylene sulfide is used.
  • the adhesive may be any as long as it can at least temporarily adhere the reinforcing fibers to the support, and is preferably a resin having good compatibility with the matrix resin of the reinforcing fiber sheet material.
  • the matrix resin is an epoxy resin
  • an epoxy adhesive is preferred.
  • the reinforcing fiber sheet material used in the present invention is not limited to the above-described reinforcing fiber sheet material.
  • the reinforcing fiber sheet is used after reinforcing fibers are aligned in one direction, or after manufacturing.
  • a resin in which the resin constituting the material is applied in a linear or dot shape to maintain the form, and a resin in which the above-mentioned support sheet is further bonded thereto can be applied.
  • the reinforcing fiber sheet material is impregnated with a curable resin at the same time as or after attaching the reinforcing fiber sheet material to the surface of the existing structure.
  • the additional impregnated resin may be a resin having a viscosity of 2.5 to 300 vois and a curing time of 1 to 24 hours, which may be repaired and reinforced using the above-mentioned reinforcing fiber sheet material. It is necessary to enhance the effect.
  • the viscosity of the resin to be impregnated here is the viscosity measured at the construction temperature using a B-type viscometer.
  • the resin to be impregnated is a radical polymerization type resin
  • the viscosity is before addition of an organic peroxide or the like serving as a polymerization initiator.
  • the viscosity of this resin exceeds 300 voids, it becomes difficult to impregnate the reinforcing fiber sheet material with the resin.On the contrary, when the viscosity is less than 2.5 voids, the combination with the above-mentioned reinforcing fiber sheet material becomes difficult.
  • the reinforcing fibers tend to move, causing a reduction in the reinforcing effect. More preferably, the lower limit of the viscosity is 100 voids and the upper limit is 100 voids.
  • the curing time in the present invention is a time from the start of curing of the resin to a time when the tackiness is eliminated by touch with a finger, and when a resin having a curing time of less than 1 hour is used, the development of strength is poor. Conversely, a resin having a curing time exceeding 24 hours is too long for the purpose of the present invention because the curing time is too long.
  • the lower limit of the curing time is more preferably 2 hours or more, and the upper limit is more preferably within 12 hours, most preferably within 8 hours.
  • a resin that satisfies the requirements of the viscosity and the curing time described above is preferable, and among them, a thermosetting resin is preferable, and a room temperature curable resin is particularly preferable.
  • a radical polymerizable resin is particularly preferable, and a radical polymerizable resin composed of a radical polymerizable monomer or oligomer having a methacryl group or an acryloyl group as a terminal reactive group is cured. It is particularly preferable from the viewpoint of the balance between the properties and the properties of the cured product.
  • the terminal reactive group may be a composition containing a monomer other than a methyl group or an acryloyl group, for example, styrene.
  • Radical polymerizable monomers include acrylates such as methyl acrylate and ethyl acrylate, methyl methacrylate, 2-ethylhexyl methacrylate, hydroxyethyl methacrylate, and tetrahydrofurfuryl methacrylate.
  • acrylates and methacrylates are particularly preferred in terms of curability and strength.
  • the radical polymerizable monomer in the present invention is preferably a monomer that is compatible with the resin adhering to the reinforcing fiber sheet to some extent, the solubility parameter of the radical polymerizable monomer has an SP value of 17 to 2 Those having a range of 2 (MP a) 2 are particularly preferred.
  • polymerizable oligomers include acrylic acid, methacrylic acid, etc. at the ends of oligomers obtained by the reaction of polybasic acids such as fluoric acid and adipic acid with polyhydric alcohols such as ethylene dalicol and butanediol.
  • acrylic acid-containing polyester poly (meth) acrylates obtained by reaction with acrylic acid, polybasic acids and polyhydric alcohols
  • An aryl group-containing polyester obtained by a reaction with an aryl ether group-containing alcohol, an epoxy poly (meth) acrylate obtained by a reaction of an epoxy resin with (meth) acrylic acid, a polyol and a polyisocyanate, and a hydroxyl group-containing (meth)
  • examples thereof include, but are not limited to, urethane poly (meth) acrylate obtained by a reaction with acrylate.
  • the molecular weight of the radically polymerizable oligomer used in the present invention is not particularly limited, but it is more preferably 1000 or less in terms of number average molecular weight from the viewpoint of curability at low temperatures.
  • an elastomer component having a reactive functional group at the terminal is added to the cured product.
  • the mixing ratio of the monomer and the oligomer in the resin for impregnation used in the present invention is not particularly limited as long as the viscosity and curing time of the composition are satisfied.
  • initiators for initiating the polymerization of these radically polymerizable monomers and oligomers commonly used curing agent systems, for example, peroxides and metal accelerators and curing accelerators such as tertiary amines are used. Examples thereof include redox catalysts and the like.
  • the combination is selected and used such that the curing time is 1 hour or more, 24 hours or less, preferably 12 hours or less.
  • the polymer added instead of or in addition to the oligomer of the resin for impregnation is added for the purpose of adjusting the viscosity of the composition and improving the toughness and durability of the cured product.
  • Preferred polymers include elastomeric polymers such as acrylic polymers, acrylonitrile rubber rubbers, acrylic rubbers, styrene block polymers, and urethane elastomers. However, it is not limited to this.
  • the amount of the polymer to be added is not particularly limited as long as it satisfies the restrictions on the viscosity and curing time of the composition, but is preferably 50% by weight or less in many cases.
  • radical polymerizable monomer and the non-reactive polymer be the main components, since the resin viscosity can be appropriately controlled.
  • a radical polymerizable monomer and a radical polymerizable oligomer having a number average molecular weight of 1,000 or less and a non-reactive polymer are the main components, the reactivity of the resin and the resin viscosity can be appropriately controlled. preferable.
  • the radically polymerizable resin in the present invention includes, in addition to the above-mentioned monomers, oligomers, polymers, and curing agent components, a thixotropic agent, an air-curing agent, a coupling agent, a polymerization inhibitor, and a coloring agent according to the purpose.
  • a thixotropy-imparting agent examples include finely divided silica such as "Varodil 200" manufactured by Nippon Aerosil Co., Ltd. and “Nibusir LP” manufactured by Nippon Silica Industry Co., Ltd .; Organic powders such as finely divided calcium carbonate such as "Shirarenka CC" manufactured by Maruo Calcium Co., Ltd.
  • the amount used is less than 10% by weight, usually less than 5% by weight.
  • the air curing agent include paraffin wax represented by n-paraffin, higher fatty acids such as polyethylene wax and stearic acid, and glycidyl methacrylate, aryl glycidyl ether and the like.
  • the addition amount of these air-curing agents is suitably from 0.1 to 10% by weight based on the resin to be impregnated, and if it is less than 0.1% by weight, sufficient air-curing properties cannot be obtained. If the content exceeds 10% by weight, the physical properties of the cured product tend to decrease.
  • the range is particularly preferably 0.1 to 5% by weight based on the resin to be impregnated.
  • the resin used in the present invention may be, if necessary, a silane coupling agent typified by acryloxypropyltrimethoxysilane, a titanate coupling agent, a zirconate coupling agent, an organic aluminum coupling.
  • a power coupling agent such as an agent can be used alone or as a mixture.
  • An appropriate amount of addition is 0.5 to 5 parts by weight based on 100 parts by weight of the resin to be impregnated.
  • the resin used in the present invention contains an appropriate amount of a polymerization inhibitor in order to secure stability at the distribution stage. Further, a coloring agent, a pigment, an antifoaming agent, and the like can be added as needed.
  • the amount of the additional impregnating resin impregnated into the reinforcing fiber sheet material is not particularly limited as long as the reinforcing fiber sheet and the additional impregnating resin become an integrated composite material after impregnation.
  • the reinforced fiber sheet material is impregnated with a resin and is attached to the surface of an existing concrete structure to cure the resin, or the reinforced fiber sheet material is coated on the surface of the existing concrete structure. Can be carried out by impregnating with a resin and curing the resin. At this time, before attaching the reinforcing fiber sheet material The resin to be impregnated later may be preliminarily applied to the sticking place.
  • the surface of the existing concrete structure to which the reinforcing fiber sheet material is to be attached must be smoothed using a grinder or the like to remove irregularities, steps, defects, cracks, etc. It is preferable to correct by filling in from the viewpoint of improving the bonding strength.
  • the primer resin On the surface of the existing concrete structure to which the reinforcing fiber sheet material is to be attached, apply the appropriate amount of primer resin to the surface of the concrete by known means, such as brushing with a roller or spraying, if necessary, after removing the above irregularities. It is preferable to use a resin of the same type as the impregnating resin used later for attaching the reinforcing fiber sheet material. It is preferable that the primer resin has a low viscosity from the viewpoint of adhesiveness to concrete and workability, and the primer resin is a composition that hardens more quickly, for example, a composition that cures in about one hour. Such a primer resin is used by mixing a curing agent and a curing accelerator immediately before use.
  • acrylic primer resin examples include, but are not limited to, “Acrycillap DR-80” manufactured by Mitsubishi Rayon Co., Ltd.
  • the resin to be impregnated is used by mixing a curing agent and a curing accelerator immediately before use so that a predetermined curing time can be obtained.
  • the additional impregnated resin is applied to the surface of an existing concrete structure to which the primer resin has been applied, and the reinforced fiber sheet material is adhered thereon, and then The additional impregnated resin is applied to the reinforcing fiber sheet material while extruding the air contained in the sheet by, for example, applying a defoaming hole to the air through a defoaming port.
  • the required number of reinforcing fiber sheet materials can be attached while changing the fiber direction, thereby forming a repair reinforcing layer using a reinforcing fiber sheet.
  • bisphenol A type epoxy resin ("Epico 1004" manufactured by Yuka Shell Epoxy Co., Ltd.) 1943 parts by weight, 86 parts by weight of methacrylic acid, 40 parts by weight of dimethylaminoethyl methacrylate, 2 parts by weight of hydroquinone monomethyl ether And 1227 parts by weight of methyl methacrylate, and the reaction temperature was raised to 9 O. The reaction was continued until the acid value became 8 (mgKOH / g) or less, to obtain an oligomer 1 containing 50% by weight of methyl methacrylate. Was. The number-average molecular weight of the composition obtained by removing the monomer component of the obtained oligomer 1 was 2,000.
  • Epoxy ester (“3002M” manufactured by Kyoei Yushi Kagaku Kogyo Co., Ltd.) whose main component is bisphenol A derivative with methacrylic group at the end 1 wt% the deposited carbon fiber (manufactured by Mitsubishi Rayon Co., Ltd. "TR50") (tensile strength of 490 OMP a) a aligned in one direction so that the weight of the carbon fibers per 1 m 2 is 300 g, the curing agent 15 g per lm 2 of an epoxy resin composition containing no resin ("Base resin for # 350" manufactured by Mitsubishi Rayon Co., Ltd., SP value: 23), and then impregnated with a thickness of 25 ⁇ m as a support. Was bonded to obtain a reinforced fiber sheet material 1.
  • the reinforcing fiber sheet material 1 was impregnated with the above impregnated resin so that the amount of resin per lm 2 was approximately 400 g, and was left to cure at 25 ° C. After 2 hours, the resin disappeared from the surface and hardened.
  • a sample for a tensile test was prepared from the cured reinforcing fiber sheet material, and the tensile strength in the carbon fiber direction was measured.
  • the average tensile strength of this composite was 410 OMPa in terms of 100% of carbon fiber.
  • an acrylic primer resin ("Acrylic Wrap DR-80" manufactured by Mitsubishi Rayon Co., Ltd.) was applied to the surface of a concrete sample conforming to JIS (Japanese Industrial Standards) A-1132 at 25 ° C with a brush. after coating at a rate of lm 2 per 200 g, it was adhered reinforcing fiber sheet material 1 in the same manner as described above in concrete surfaces. After curing for one day, a tensile test was performed in accordance with JIS-A-6909. The strength was 2.4 MPa and the failure mode was material failure inside the concrete.
  • oligomer 1 The above-mentioned oligomer 1 and an epoxy-based oligomer ("Epoxyester 3000M” manufactured by Kyoeisha Chemical Co., Ltd .; hereinafter, referred to as oligomer 2) were used in combination as the oligomer, and the ratio was changed as shown in Table 1 except that the ratio of each component was changed as shown in Table 1. The procedure was the same as in Example 1. Table 1 shows the evaluation results.
  • Example 4 The operation was performed in the same manner as in Example 2 except that the amount of the curing accelerator used was halved. Table 1 shows the evaluation results. (Example 4)
  • bisphenol A type epoxy resin (Epicoat 1004" manufactured by Yuka Shell Epoxy Co., Ltd.) 58 3 parts by weight, acrylic acid 43 parts by weight, dimethylaminoethyl methyl
  • Add 6.2 parts by weight of acrylate, 0.62 parts by weight of hydroquinone monomethyl ether, and 633 parts by weight of methyl methacrylate raise the reaction temperature to 90 ° C, and reduce the acid value to 5 (mg KOH / g) or less.
  • the reaction was continued until the reaction was completed to obtain an oligomer 3 containing 50% by weight of methyl methacrylate.
  • the number average molecular weight of the composition obtained by removing the monomer component of the obtained oligomer 3 was 2,300.
  • Example 1 The same operation as in Example 1 was carried out except that oligomer 3 was used instead of oligomer 1 as an oligomer component and the ratio of each component was changed as shown in Table 1. Table 1 shows the evaluation results.
  • Example 1 was repeated except that an acrylic resin ("Dianal BR-83" manufactured by Mitsubishi Renyon Co., Ltd.) was used instead of Oligomer 1 and the ratio of each component was changed as shown in Table 1. The same operation was performed. Table 1 shows the evaluation results.
  • Example 5 The same operation as in Example 5 was carried out except that the amount of the curing accelerator used was halved. Table 1 shows the evaluation results.
  • the monomer component and the oligomer component were mixed at the ratios shown in Table 1 to prepare a resin composition having a viscosity of 2 voids at 25 ° C. before mixing the initiator, and the same operation as in Example 1 was performed. It is shown in Table 1.
  • the curability of the impregnated resin was extremely good, and the adhesion to the concrete was good, but the tensile strength of the composite was insufficient at 3720 MPa.
  • Example 7 Using the same impregnating resin as in Comparative Example 1, the test was performed by changing the sample preparation temperature to 5 ° C. and ⁇ 10 ° C., respectively.
  • the amount of the curing accelerator was changed as shown in Table 1 so that the curing time was 5 hours.
  • the viscosity of the composition at 5 ° C. was 15 boise, and the viscosity at —10: was 45 boise.
  • the curing agent of the resin composition used in Comparative Example 1 was changed so that the curing time was 30 minutes.
  • the evaluation results are shown in Table 1, but the tensile strength of the composite was further reduced.
  • the monomer component and the polymer component were mixed in the ratio shown in Table 1 to prepare a resin composition having a viscosity of 400 vise at 25 ° C, and the same test was carried out. The subsequent evaluation could not be carried out due to the difficulty of impregnating the resin with the resin.
  • Bisphenol ⁇ type epoxy resin (“Epicoat 828” manufactured by Yuka Shell Epoxy Co., Ltd.) 60 parts by weight, trimethylolpropane triglycidyl ether
  • the epoxy resin composition was impregnated into the reinforcing fiber sheet used in Example 1 to prepare a composite tensile test piece. When the resin was left for 12 hours, it did not stick, but required 7 days to develop sufficient strength and elasticity. The tensile strength evaluated after 7 days was 420 OMPa.
  • vinyl ester resin (“Lipoxy R — 840” manufactured by Showa Polymer Co., Ltd., viscosity at 25 ° C. 25 Boys, SP value: 19) 100 parts by weight, curing catalyst (CH Showa Polymer Co., Ltd.) 1), Naphthene as a curing accelerator
  • curing catalyst CH Showa Polymer Co., Ltd.
  • Naphthene as a curing accelerator
  • Curing time at 25 ° C was 3 hours. Six hours after the resin was impregnated with the reinforcing fiber sheet material, the surface tack had completely disappeared, and the tensile strength of the composite was 402 OMPa.
  • Example 9 The same operation as in Example 9 was carried out except that 2 parts by weight of methyl ethyl peroxide as a curing agent and 1 part by weight of cobalt naphthenate as a curing accelerator were used per 100 parts by weight of the resin.
  • the curing time at 25 ° C. was 1 hour, and the tensile strength of the obtained composite after 6 hours was 300 OMPa.
  • the test was performed in the same manner as in Example 7 except that an n-butyl acrylate oligomer having a methacryl group at one end and a number average molecular weight of 6000 was used instead of phenoxyethylene glycol acrylate. .
  • the viscosity of the resin at 5 ° C. was 5 boys.
  • the surface of the prepared sample had no tackiness after 6 hours, and the composition had good low-temperature curability.
  • the tensile strength of the composite was 4100 MPa, and the failure mode in the adhesion test was material failure of concrete.
  • reinforced fiber was used in the same manner as in Example 1 except that "Conwood Net ON 5050" (basis weight Y gZm 2 ) manufactured by Nisseki Palette System Co., Ltd. was used instead of "Scrim Cloth” manufactured by Nitto Boseki Co., Ltd. Sheet 2 was created.
  • the same operation as in Example 3 was performed by combining this reinforcing fiber sheet material with the resin used in Example 3.
  • the tensile strength of the obtained composite was 4,300 MPa, a value indicating sufficient strength development.
  • Example 3 As the carbon fiber, a high elasticity carbon fiber having an elastic modulus of 392 GPa ("HR40" manufactured by Mitsubishi Rayon Co., Ltd., tensile strength 4610MPa) is used. Except for using the resin composition used in Example 3, the same as in Example 1
  • the tensile strength of the bird was evaluated.
  • the obtained tensile strength was 4.50 MPa, a value indicating sufficient strength development.
  • repair and reinforcement of existing concrete structures for example, piers and buildings, etc.
  • existing reinforcing fiber sheet materials can be effectively used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

A method of repairing and reinforcing an existing concrete structure, such as a bridge pier and a building, comprising: pasting on the surface of such a concrete structure a reinforcing fiber sheet material of a resin content of not more than 15 wt.% while impregnating the same sheet material with a resin having a viscosity of 2.5-300 poise and curing time of 1-24 hr.; and curing the resin; the method enabling an existing concrete structure to be repaired and reinforced to have a high strength in a short period of time with ease substantially without being influenced by a temperature condition during the repairing and reinforcing work.

Description

明 細 書  Specification
既存コンクリ一ト構造物の補修補強方法及び樹脂 技術分野  Repair and reinforcement method for existing concrete structures and resin
本発明は、 橋脚、 橋梁、 建造物の柱等の既存コンクリート構造物の補修補強 方法、 及びこれに用いる樹脂に関する。  The present invention relates to a method for repairing and reinforcing an existing concrete structure such as a pier, a bridge, or a pillar of a building, and a resin used for the method.
本出願は日本国への特許出願 (特願平 1 0— 1 4 4 2 4 9号) に基づくもの であり、 当該日本出願の記載内容は本明細書の一部として取り込まれるものと する。 背景技術  This application is based on a patent application to Japan (Japanese Patent Application No. 10-144429), the contents of which are incorporated herein as a part of the present specification. Background art
橋脚等の既存コンクリート構造物の補修補強方法としては鋼板をアンカ一ボ ルト等で取り付け、 鋼板とコンクリートとの間隙にエポキシ樹脂を注入し、 硬 化させて接着する方法が知られている。 また、 最近ではエポキシ榭脂等を強化 繊維シート材料に含浸し、 既存コンクリート構造物の表面に貼り付ける方法が 脚光を浴びており、 徐々に実績も増えている。 この方法は鋼板を使用する方法 に比較して、 鋼板等の重量物の運搬、 組立作業、 溶接作業が不要であるという メリットを有している。  As a method of repairing and reinforcing existing concrete structures such as bridge piers, a method is known in which a steel plate is attached with an anchor bolt or the like, an epoxy resin is injected into a gap between the steel plate and the concrete, and the resin is hardened and bonded. Recently, a method of impregnating epoxy resin or the like into a reinforced fiber sheet material and attaching it to the surface of an existing concrete structure has been spotlighted, and the results are gradually increasing. This method has the advantage that, compared to the method using steel plates, there is no need to transport, assemble, or weld heavy objects such as steel plates.
しかしながら、 強化繊維シート材料への含浸に主に用いられるエポキシ樹脂 は一般に硬化して十分な強度を発現するためには常温でも数日以上の日数を要 し、 更に 5 °C以下の低温になると特別な加熱手段を用いない場合、 硬化がほと んど進行せず、 ェ期が著しく長くなるという課題を有していた。  However, the epoxy resin mainly used for impregnating the reinforced fiber sheet material generally requires several days or more even at room temperature to cure and develop sufficient strength, and when the temperature is further lowered to 5 ° C or less. Unless a special heating means is used, there is a problem that the curing hardly progresses and the period of the curing becomes extremely long.
このようなエポキシ樹脂の課題を解決するために、 硬化速度が速く、 5 °Cと いった低温、 更に一 1 0 °C程度の極低温でも硬化するラジカル重合系樹脂を含 浸樹脂として用いる方法が提案されている (例えば、 日本国公開特許公報 (A ) 平 9— 1 8 4 3 0 4号、 平 9— 1 8 4 3 0 5号、 平 1 0— 7 7 5 0号) 。 しかし、 そのようなラジカル重合系樹脂を含浸樹脂として用いる手段は、 そ もそもラジカル重合系の樹脂系に適した形態の強化繊維シート材料と組み合わ せて用いた場合には、 優れた補強効果を発揮するものの、 現在広く使用されて いるエポキシ樹脂を含浸樹脂として開発された強化繊維シート材料、 例えば接 着剤層を介して支持体シート上に強化繊維を一方向に引き揃えた強化繊維シ一 ト材料 (日本国公開特許公報 (A) 平 3— 2 2 4 9 0 1号、 平 3 - 2 2 2 7 3 4号、 平 5— 3 2 8 0 4号) や、 樹脂含有率が 1 5重量%以下の少量の樹脂 を強化繊維に含浸した強化繊維シート材料 (日本国公開特許公報 (A) 平 7 — 3 4 6 7 7号、 平 7— 2 2 8 7 1 4号) と組み合わせた場合には、 その樹脂 の反応方法の違いから、 強化繊維付近の硬化が十分に進行せず、 結果として補 強補修効果に劣るという課題を有している。 発明の開示 In order to solve the problems of such epoxy resins, a method of using a radical polymerizable resin that cures at a low curing temperature of 5 ° C and at a very low temperature of about 10 ° C as an impregnating resin is used. (Eg, Japanese Unexamined Patent Publication (A) Hei 9-184304, Hei 9-184405, Hei 10-775). However, the means of using such a radical polymerization type resin as the impregnating resin is to combine with a reinforcing fiber sheet material in a form suitable for a radical polymerization type resin system in the first place. When used in combination, an excellent reinforcing effect can be achieved, but a reinforcing fiber sheet material developed as an impregnating resin using an epoxy resin that is widely used today, for example, on a support sheet via an adhesive layer Reinforced fiber sheet material in which reinforcing fibers are aligned in one direction (Japanese Patent Laid-Open Publication (A) Hei 3-2224901, Hei 3-2 222 734, Hei 5-3 284) and a reinforced fiber sheet material in which reinforced fibers are impregnated with a small amount of resin having a resin content of 15% by weight or less (Japanese Patent Laid-Open Publication (A) Hei 7 — 346777, When combined with No. 7-2 287 14), there is a problem that the hardening near the reinforcing fiber does not proceed sufficiently due to the difference in the reaction method of the resin, and as a result the reinforcing effect is inferior. Have. Disclosure of the invention
本発明者らは上記課題を解決するために鋭意研究した結果、 特定の範囲の粘 度と硬化時間を有する追加含浸樹脂を用いることにより、 エポキシ樹脂を含浸 樹脂として開発された樹脂含有率が 1 5重量%以下の強化繊維シート材料を用 いた場合であっても、 十分な補強効果を発現しうることを見出し本発明に至つ た。  The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by using an additional impregnating resin having a specific range of viscosity and curing time, the resin content developed as an impregnating resin with epoxy resin is 1%. The present inventors have found that a sufficient reinforcing effect can be exhibited even when a reinforcing fiber sheet material of 5% by weight or less is used, and the present invention has been achieved.
即ち、 本発明は、 樹脂含有率が 1 5重量%以下の強化繊維シート材料に、 粘 度が 2 . 5〜 3 0 0ボイズ、 且つ硬化時間が 1〜 2 4時間の樹脂を含浸しながら 既存のコンクリ一ト構造物表面に貼り付け、 樹脂を硬化する既存コンクリート 構造物の補修補強方法を第 1の要旨とする。  That is, the present invention relates to a reinforcing fiber sheet material having a resin content of 15% by weight or less, while impregnating a resin having a viscosity of 2.5 to 300 voids and a curing time of 1 to 24 hours with an existing resin. The first point is to repair and reinforce existing concrete structures that are attached to the surface of concrete structures and hardened with resin.
また、 樹脂含有率が 1 5重量%以下の強化繊維シート材料を既存のコンクリ —ト構造物表面に貼り付けた後、 粘度が 2 . 5〜3 0 0ボイズで且つ硬化時間が 1〜 2 4時間の樹脂を含浸し、 樹脂を硬化する既存コンクリ一ト構造物の補修 補強方法を第 2の要旨とする。  Further, after affixing a reinforcing fiber sheet material having a resin content of 15% by weight or less to the surface of the existing concrete structure, the viscosity is 2.5 to 300 voise and the curing time is 1 to 24. The second point is the method of repairing and reinforcing existing concrete structures that impregnate the resin for a certain amount of time and cure the resin.
尚、 本発明においては、 この強化繊維シート材料に後から含浸させる樹脂 ( 即ち、 粘度が 2 . 5〜3 0 0ボイズ、 且つ硬化時間が 1〜2 4時間の樹脂) のこ とを追加含浸樹脂と称する。  In the present invention, the resin to be impregnated later into the reinforced fiber sheet material (that is, a resin having a viscosity of 2.5 to 300 voids and a curing time of 1 to 24 hours) is additionally impregnated. It is called resin.
この追加含浸樹脂としては、 粘度が 1 0〜1 0 0ボイズ、 且つ硬化時間が 2 〜1 2時間のラジカル重合性の樹脂が特に望ましく、 これを第 3の要旨とする The additional impregnated resin has a viscosity of 100 to 100 voids and a curing time of 2 A radically polymerizable resin of up to 12 hours is particularly desirable, and this is the third aspect.
本発明によれば、 既存コンクリート構造物の補修補強に現在比較的広く使用 されているエポキシ樹脂を含浸樹脂として開発された樹脂含有率が 1 5重量% 以下の強化繊維シート材料を用いた場合でも、 温度条件に依存することなく、 1日以内の比較的短時間で硬化でき、 極めて容易に実施することができ、 また 、 低温下においても施工することができ、 かつ、 優れた補強効果を発揮する。 発明を実施するための最良の形態 According to the present invention, even when a reinforcing fiber sheet material having a resin content of 15% by weight or less, which has been developed as an impregnating resin using an epoxy resin which is relatively widely used for repair and reinforcement of existing concrete structures, is used. Independent of temperature conditions, it can be cured in a relatively short time within one day, can be carried out extremely easily, can be applied even at low temperatures, and has an excellent reinforcing effect I do. BEST MODE FOR CARRYING OUT THE INVENTION
(強化繊維シート材料一樹脂)  (Reinforced fiber sheet material-resin)
本発明の既存コンクリート構造物の補修補強方法では、 エポキシ樹脂を含浸 樹脂として用いる補修補強方法に好適に用いられる、 強化繊維と 1 5重量%を 限度とする樹脂とで構成される強化繊維シート材料を用いる。  In the method for repairing and reinforcing an existing concrete structure according to the present invention, a reinforcing fiber sheet material composed of reinforcing fibers and a resin having a limit of 15% by weight is preferably used in a repairing and reinforcing method using an epoxy resin as an impregnating resin. Is used.
ここで、 強化繊維シート材料を構成する樹脂 (マトリクス樹脂) は、 強化繊 維に含浸されていても、 または、 弓 Iき揃えられた強化繊維又は製織された強化 繊維を例えば離型紙や支持体シートと接着する接着剤層となっていてもよい。 本発明においてこの強化繊維シ一ト材料を構成する樹脂は、 未硬化の熱硬化 性樹脂であっても、 重合した熱可塑性樹脂であってもよく、 特に限定しないが 、 硬化剤を含有しないエポキシ樹脂が一般的に使用されている。 もちろん、 後 から含浸する樹脂 (追加含浸樹脂) に合わせて、 特別に製造された強化繊維シ ート材料であっても問題はない。 追加含浸樹脂がラジカル重合性モノマーとし て、 アクリル酸エステル、 メタクリル酸エステルを用いる場合は、 強化繊維シ ート材料を構成する樹脂として後述する溶解性パラメ一夕 (S P ) 値が 1 7〜 2 8 (M P a ) 1 / 2である樹脂を用いることが好ましい。 Here, the resin (matrix resin) constituting the reinforcing fiber sheet material is impregnated with the reinforcing fiber, or the reinforcing fiber aligned with the bow I or the woven reinforcing fiber is, for example, a release paper or a support. It may be an adhesive layer that adheres to the sheet. In the present invention, the resin constituting the reinforcing fiber sheet material may be an uncured thermosetting resin or a polymerized thermoplastic resin, and is not particularly limited. Resins are commonly used. Of course, there is no problem even if the reinforcing fiber sheet material is specially manufactured according to the resin to be impregnated later (additional impregnating resin). When the additional impregnating resin uses an acrylate ester or a methacrylate ester as the radical polymerizable monomer, the resin constituting the reinforcing fiber sheet material has a solubility parameter (SP) value of 17 to 2 as described later. It is preferable to use a resin having 8 (MPa) 1/2 .
強化繊維シ一ト材料を構成するマトリクス樹脂の量としては 1 5重量%以下 であることが必要である。 樹脂の量が 1 5重量%を越える場合には、 追加含浸 樹脂の硬化不良や硬化物の物性低下を引き起こすので好ましくない。 強化繊維 シート材料を構成する樹脂の量が 7重量%以下の場合には、 強化繊維シ一ト材 料を構成する樹脂のタイプと後から含浸する榭脂のタイプが違っている場合、 例えば、 強化繊維シート材料を構成する樹脂がエポキシ樹脂であり、 後からそ の強化繊維シート材料にラジカル重合系樹脂を含浸する場合でも十分な硬化性 と硬化物の強度が得られるので特に好ましい。 強化繊維シート材料を構成する 樹脂の量は、 強化繊維シート材料の取扱性を大きく左右するので、 樹脂量とし ては 1重量%以上が好ましい。 又、 強化繊維シート材料は曲率を持った既存コ ンクリート構造物にも貼り付けることができるように、 それを構成する樹脂が 未硬化又は曲率を持った添付場所に沿うように十分に低い剛性、 あるいは適し た形態を持って硬化した樹脂であることが好ましい。 もちろん未硬化の樹脂を 用いる場合は、 常温における可使時間 (シェルフライフ) が長いことが好まし い。 It is necessary that the amount of the matrix resin constituting the reinforcing fiber sheet material is 15% by weight or less. When the amount of the resin exceeds 15% by weight, it is not preferable because curing failure of the additional impregnated resin and deterioration of physical properties of the cured product are caused. Reinforced fiber When the amount of the resin constituting the sheet material is 7% by weight or less, when the type of the resin constituting the reinforcing fiber sheet material is different from the type of the resin to be impregnated later, for example, the reinforcing fiber The resin constituting the sheet material is an epoxy resin, which is particularly preferable even when the reinforced fiber sheet material is later impregnated with a radical polymerizable resin, since sufficient curability and strength of the cured product can be obtained. Since the amount of resin constituting the reinforced fiber sheet material greatly affects the handleability of the reinforced fiber sheet material, the amount of the resin is preferably 1% by weight or more. In addition, the reinforced fiber sheet material has a sufficiently low rigidity so that the resin that composes it can be attached to the existing concrete structure with a curvature, so that the resin constituting the material is uncured or along the attached place with the curvature. Alternatively, it is preferable that the resin be cured in a suitable form. Of course, when using an uncured resin, it is preferable that the pot life (shelf life) at room temperature is long.
(強化繊維シ一ト材料一強化繊維)  (Reinforcing fiber sheet material-Reinforcing fiber)
本発明における強化繊維シート材料を構成する強化繊維としては、 炭素繊維 、 ァラミド繊維、 ガラス繊維等の強化繊維として通常用いられている繊維が好 適なものとして挙げられる。 中でも、 炭素繊維が望ましい。  As the reinforcing fibers constituting the reinforcing fiber sheet material in the present invention, fibers usually used as reinforcing fibers such as carbon fiber, aramide fiber and glass fiber are preferably mentioned. Among them, carbon fiber is preferable.
強化繊維としては、 強度を利用する場合には特に引張強度が 4 0 0 O M P a 以上の高強度炭素繊維が好ましく、 弾性率を利用する場合には弾性率が 2 5 0 G P a以上の高弾性炭素繊維がより好ましい。  As the reinforcing fiber, a high-strength carbon fiber having a tensile strength of 400 OMPa or more is particularly preferable when utilizing the strength, and a high elasticity having an elastic modulus of 250 GPa or more when using the elastic modulus. Carbon fibers are more preferred.
強化繊維シ一ト材料の強化繊維として炭素繊維を使用し、 後で含浸する樹脂 にラジカル重合系の樹脂を用いる場合には、 少なくとも一方の末端にラジカル 重合性の官能基を有する化合物をサイズ剤として用いた炭素繊維を用いること が、 硬化物の強度発現性の点から特に好ましい。  When carbon fiber is used as the reinforcing fiber of the reinforcing fiber sheet material and a radical polymerizable resin is used as the resin to be impregnated later, a compound having a radical polymerizable functional group at at least one end is used as a sizing agent. It is particularly preferable to use the carbon fiber used as the material in view of the strength development of the cured product.
(強化繊維シート材料一補強形態)  (Reinforced fiber sheet material-reinforced form)
本発明において、 強化繊維シート材料中の補強形態も何ら限定されるもので はないが、 強化繊維を一方向に引き揃え、 あるいは織物状にしてシート化する ことが挙げられる。 補修補強の効果の点で強化繊維の目付は 1 5 0 g Zm2以上 であることが好ましい。 本発明に用いる強化繊維シート材料としてより好適に用いられる形態として 、 日本国公開特許公報 (A) 平 3— 2 2 4 9 0 1号、 平 3— 2 2 2 7 3 4号 、 平 5— 3 2 8 0 4号、 平 7— 3 4 6 7 7号、 及び 平 7— 2 2 8 7 1 4号に 記載されているように、 下記 (1 ) 〜 (3 ) の形態が好適である。 (1 ) 一方 向に引き揃えて又は製織して強化繊維織布とし、 強化繊維目付を 1 5 0 g /m2 以上のシート状とし、 前記範囲内の樹脂を含浸した強化繊維シート材料。 (2 ) 前記 (1 ) の強化繊維シート材料の少なくとも一方の面にガラス繊維布帛を 貼り合わせてなる強化繊維シート材料。 (3 ) 接着剤層を介して支持体シート 上に強化繊維を一方向に引き揃えた強化繊維シート材料。 In the present invention, the reinforcing form in the reinforcing fiber sheet material is not limited at all, and examples include a method in which reinforcing fibers are aligned in one direction or formed into a woven sheet. From the viewpoint of the effect of repair and reinforcement, the basis weight of the reinforcing fiber is preferably 150 g Zm 2 or more. Examples of the form more preferably used as the reinforcing fiber sheet material used in the present invention include Japanese Patent Application Laid-Open Publications (A) Hei 3-2224901, Hei 3-222 734, Hei 5 As described in No. 3 804, No. 7-364 777, and No. 7-2 287 14, the following forms (1) to (3) are preferable . (1) A reinforced fiber sheet material in which a reinforcing fiber woven fabric is formed by lining up or weaving in one direction to form a reinforced fiber woven fabric, having a reinforcing fiber weight of 150 g / m 2 or more, and impregnating a resin within the above range. (2) A reinforced fiber sheet material obtained by laminating a glass fiber cloth on at least one surface of the reinforced fiber sheet material according to (1). (3) A reinforced fiber sheet material in which reinforcing fibers are unidirectionally arranged on a support sheet via an adhesive layer.
ここで支持体シートとしては、 ガラス繊維織布、 ガラススクリムクロス、 ガ ラス繊維紙、 ガラス繊維不織布、 ポリアミド、 ポリフエ二レンサルファイドな どの各種ポリマーの繊維の不織布等が用いられる。  Here, as the support sheet, a nonwoven fabric of fibers of various polymers such as glass fiber woven fabric, glass scrim cloth, glass fiber paper, glass fiber nonwoven fabric, polyamide, and polyphenylene sulfide is used.
接着剤としては、 支持体上に強化繊維を少なくとも一時的に接着できるもの であればよく、 強化繊維シ一ト材料のマトリクス樹脂との相溶性の良い樹脂が 好ましい。 例えば、 マトリクス樹脂がエポキシ樹脂であれば、 エポキシ系接着 剤が良い。  The adhesive may be any as long as it can at least temporarily adhere the reinforcing fibers to the support, and is preferably a resin having good compatibility with the matrix resin of the reinforcing fiber sheet material. For example, if the matrix resin is an epoxy resin, an epoxy adhesive is preferred.
もちろん、 本発明で用いる強化繊維シート材料は、 上記の強化繊維シート材 料に限定されることはなく、 例えば、 強化繊維を一方向に引き揃えて、 又は、 製職した後、 強化繊維シー卜材料を構成する樹脂を線状又は点状に付与し形態 を保持させたもの、 これに更に上記の支持体シートを貼り合わせたもの等が適 用できる。  Of course, the reinforcing fiber sheet material used in the present invention is not limited to the above-described reinforcing fiber sheet material. For example, after reinforcing fibers are aligned in one direction, or after manufacturing, the reinforcing fiber sheet is used. A resin in which the resin constituting the material is applied in a linear or dot shape to maintain the form, and a resin in which the above-mentioned support sheet is further bonded thereto can be applied.
(追加含浸樹脂)  (Additional impregnation resin)
本発明においては、 上述した強化繊維シ一ト材料を既存の構造物の表面に貼 り付けると同時に、 または、 貼り付けた後に、 その強化繊維シート材料に硬化 性の樹脂を含浸させる。 本発明においては、 この追加含浸樹脂に、 粘度が 2 . 5 〜3 0 0ボイズで、 且つ硬化時間が 1〜2 4時間の樹脂を用いることが、 上述 の強化繊維シート材料を用いて補修補強効果を高める上で必要である。  In the present invention, the reinforcing fiber sheet material is impregnated with a curable resin at the same time as or after attaching the reinforcing fiber sheet material to the surface of the existing structure. In the present invention, the additional impregnated resin may be a resin having a viscosity of 2.5 to 300 vois and a curing time of 1 to 24 hours, which may be repaired and reinforced using the above-mentioned reinforcing fiber sheet material. It is necessary to enhance the effect.
ここで含浸する樹脂の粘度は、 B型粘度計を用いて施工温度で測定した粘度 であり、 含浸する樹脂がラジカル重合系の榭脂の場合には重合開始剤となる有 機過酸化物等を添加する以前の粘度である。 この樹脂の粘度が 3 0 0ボイズを 越える場合は、 強化繊維シート材料への樹脂含浸が困難になり、 逆に 2 . 5ボイ ズ未満の場合は、 上記の強化繊維シート材料との組み合わせにおいては樹脂の 含浸及び硬化の工程で強化繊維が移動し、 補強効果の低下を起こす傾向にある 。 より好ましい粘度の下限は 1 0ボイズ、 上限は 1 0 0ボイズである。 The viscosity of the resin to be impregnated here is the viscosity measured at the construction temperature using a B-type viscometer. When the resin to be impregnated is a radical polymerization type resin, the viscosity is before addition of an organic peroxide or the like serving as a polymerization initiator. When the viscosity of this resin exceeds 300 voids, it becomes difficult to impregnate the reinforcing fiber sheet material with the resin.On the contrary, when the viscosity is less than 2.5 voids, the combination with the above-mentioned reinforcing fiber sheet material becomes difficult. During the resin impregnation and curing steps, the reinforcing fibers tend to move, causing a reduction in the reinforcing effect. More preferably, the lower limit of the viscosity is 100 voids and the upper limit is 100 voids.
また、 本発明における硬化時間とは樹脂の硬化開始から指触でタック感が無 くなるまでの時間であり、 硬化時間が 1時間未満の榭脂を用いた場合は、 強度 の発現性に劣り、 逆に 2 4時間を越える硬化時間の樹脂では硬化時間が長すぎ て本発明の趣旨に適さない。  Further, the curing time in the present invention is a time from the start of curing of the resin to a time when the tackiness is eliminated by touch with a finger, and when a resin having a curing time of less than 1 hour is used, the development of strength is poor. Conversely, a resin having a curing time exceeding 24 hours is too long for the purpose of the present invention because the curing time is too long.
硬化時間の下限としては 2時間以上がより好ましく、 上限としては 1 2時間 以内がより好ましく、 8時間以内が最も好ましい。  The lower limit of the curing time is more preferably 2 hours or more, and the upper limit is more preferably within 12 hours, most preferably within 8 hours.
樹脂の種類としては上記の粘度と硬化時間の要件を満足する樹脂であればよ レ^ 中でも、 熱硬化性樹脂が好ましく、 とりわけ、 常温硬化性樹脂が好ましい 。 低温硬化性の観点からはラジカル重合性の樹脂が特に好ましく、 末端の反応 基としてメタクロィル基、 又はァクリロイル基を含有するラジカル重合性のモ ノマ一、 オリゴマーから構成されるラジカル重合性の樹脂が硬化性と硬化物の 物性発現性のバランスの観点から特に好ましい。  As the kind of the resin, a resin that satisfies the requirements of the viscosity and the curing time described above is preferable, and among them, a thermosetting resin is preferable, and a room temperature curable resin is particularly preferable. From the viewpoint of low-temperature curability, a radical polymerizable resin is particularly preferable, and a radical polymerizable resin composed of a radical polymerizable monomer or oligomer having a methacryl group or an acryloyl group as a terminal reactive group is cured. It is particularly preferable from the viewpoint of the balance between the properties and the properties of the cured product.
粘度と硬化時間の要件を満足する組成物であれば、 末端の反応基がメ夕クロ ィル基、 ァクリロイル基以外のモノマー、 例えばスチレンを含有する組成物で あってももちろん差し支えない。  As long as the composition satisfies the requirements of the viscosity and the curing time, the terminal reactive group may be a composition containing a monomer other than a methyl group or an acryloyl group, for example, styrene.
ラジカル重合性のモノマーとしては、 メチルァクリレート、 ェチルァクリレ —トなどのァクリレート、 メチルメ夕クリレー卜、 2—ェチルへキシルメ夕ク リレート、 ヒドロキシェチルメタクリレー卜、 テトラヒドロフルフリルメ夕ク リレートなどのメタクリレート、 スチレン、 ビニルトルエン、 ジビニルペンゼ ン、 アクリロニトリルなどが例示され、 目的に応じて、 単独又は混合して使用 することが可能である。 この中でアクリル酸エステル、 メ夕クリル酸エステル が硬化性、 強度発現性の点で特に好ましい。 また、 本発明におけるラジカル重合性のモノマ一は、 強化繊維シートに付着 している樹脂とある程度相溶するモノマーが好ましいので、 ラジカル重合性の モノマーの溶解性パラメ一夕 S P値が 1 7〜 2 2 (M P a ) 2の範囲のものが 特に好ましい。 Radical polymerizable monomers include acrylates such as methyl acrylate and ethyl acrylate, methyl methacrylate, 2-ethylhexyl methacrylate, hydroxyethyl methacrylate, and tetrahydrofurfuryl methacrylate. Examples thereof include methacrylate, styrene, vinyltoluene, divinylpentene, and acrylonitrile, which can be used alone or in combination according to the purpose. Among them, acrylates and methacrylates are particularly preferred in terms of curability and strength. In addition, since the radical polymerizable monomer in the present invention is preferably a monomer that is compatible with the resin adhering to the reinforcing fiber sheet to some extent, the solubility parameter of the radical polymerizable monomer has an SP value of 17 to 2 Those having a range of 2 (MP a) 2 are particularly preferred.
尚、 ラジカル重合性のモノマ一の S P値は S P =∑ (Wn / 1 0 0 S P n ) [Wn : nモノマーの重量分率、 S P n : nモノマ一の S P値] で計算できる 一方、 ラジカル重合性のオリゴマーの例としては、 フ夕ル酸、 アジピン酸等 の多塩基酸とエチレンダリコール、 ブタンジオール等の多価アルコールとの反 応で得られるォリゴマーの末端にァクリル酸、 メタクリル酸等との反応でァク リロイル基、 メタクロィル基を導入したポリエステルポリ (メタ) ァクリレー ト、 多塩基酸と多価アルコールとペンタエリスリトールトリアリルエーテル、 トリメチロールプロパンジァリルエーテル等のァリルエーテル基含有アルコー ル及び (メタ) アクリル酸との反応で得られるァリル基含有ポリエステルポリ (メタ) ァクリレート、 多塩基酸と多価アルコールとァリルエーテル基含有ァ ルコールとの反応で得られるァリル基含有ポリエステル、 エポキシ樹脂と (メ 夕) アクリル酸との反応で得られるエポキシポリ (メタ) ァクリレート、 ポリ オールとポリイソシァネートと水酸基含有 (メタ) ァクリレートとの反応で得 られるウレタンポリ (メタ) ァクリレートなどを例示できるが、 これらに限定 されるものではない。  The SP value of a radically polymerizable monomer can be calculated from SP = ∑ (Wn / 100 SPn) [Wn: weight fraction of n monomers, SPn: SP value of n monomers] Examples of polymerizable oligomers include acrylic acid, methacrylic acid, etc. at the ends of oligomers obtained by the reaction of polybasic acids such as fluoric acid and adipic acid with polyhydric alcohols such as ethylene dalicol and butanediol. Poly (meth) acrylate containing acryloyl group and methacryl group introduced by the reaction with alcohol, alcohol containing allylic ether group such as polybasic acid and polyhydric alcohol, pentaerythritol triallyl ether, and trimethylolpropanediaryl ether And (meth) acrylic acid-containing polyester poly (meth) acrylates obtained by reaction with acrylic acid, polybasic acids and polyhydric alcohols An aryl group-containing polyester obtained by a reaction with an aryl ether group-containing alcohol, an epoxy poly (meth) acrylate obtained by a reaction of an epoxy resin with (meth) acrylic acid, a polyol and a polyisocyanate, and a hydroxyl group-containing (meth) Examples thereof include, but are not limited to, urethane poly (meth) acrylate obtained by a reaction with acrylate.
本発明に用いる、 ラジカル重合性のオリゴマーの分子量は特は制限はないが 、 特に低温での硬化性の点から数平均分子量で 1 0 0 0 0以下のものがより好 ましい。  The molecular weight of the radically polymerizable oligomer used in the present invention is not particularly limited, but it is more preferably 1000 or less in terms of number average molecular weight from the viewpoint of curability at low temperatures.
硬化物に強靱性、 耐久性を賦与するため、 末端に反応性官能基を有するエラ ストマ一成分を反応性ォリゴマーとして添加することももちろん可能である。 本発明に用いる含浸用の樹脂中のモノマーとオリゴマーの混合比率に関して は、 組成物としての粘度、 硬化時間の制限を満足する限りにおいて特に制限は しない。 これらのラジカル重合性のモノマー、 オリゴマーの重合を開始するための開 始剤としては通常使用されている硬化剤系、 例えば、 過酸化物と金属石験や第 3級アミン等の硬化促進剤とを組み合わせたレドックス触媒等が例示でき、 硬 化時間が 1時間以上、 2 4時間以内、 好ましくは 1 2時間以内になるように組 合せを選択して使用される。 In order to impart toughness and durability to the cured product, it is of course possible to add an elastomer component having a reactive functional group at the terminal as a reactive oligomer. The mixing ratio of the monomer and the oligomer in the resin for impregnation used in the present invention is not particularly limited as long as the viscosity and curing time of the composition are satisfied. As initiators for initiating the polymerization of these radically polymerizable monomers and oligomers, commonly used curing agent systems, for example, peroxides and metal accelerators and curing accelerators such as tertiary amines are used. Examples thereof include redox catalysts and the like. The combination is selected and used such that the curing time is 1 hour or more, 24 hours or less, preferably 12 hours or less.
含浸用の樹脂のオリゴマーに代えて、 又はオリゴマーに加えて添加するポリ マーは、 組成物の粘度調整、 硬化物の強靱性 ·耐久性向上を目的として添加さ れる。 好ましいポリマーとしてはアクリル系重合体、 アクリロニトリルーブ夕 ジェン系ゴム、 アクリル系ゴム、 スチレン系ブロックポリマ一、 ウレ夕ン系ェ ラストマ一などのエラストマ一系重合体を例示することができるが、 これらに 限定されるものではない。 このポリマーの添加量は組成物の粘度及び硬化時間 の制限を満足すればよく、 特に制限はないが、 多くの場合、 5 0重量%以下が 好ましい。  The polymer added instead of or in addition to the oligomer of the resin for impregnation is added for the purpose of adjusting the viscosity of the composition and improving the toughness and durability of the cured product. Preferred polymers include elastomeric polymers such as acrylic polymers, acrylonitrile rubber rubbers, acrylic rubbers, styrene block polymers, and urethane elastomers. However, it is not limited to this. The amount of the polymer to be added is not particularly limited as long as it satisfies the restrictions on the viscosity and curing time of the composition, but is preferably 50% by weight or less in many cases.
又、 ラジカル重合性モノマーと非反応性ポリマ一を主成分とすると、 樹脂粘 度を適切に制御することができ、 好ましい。  It is preferable that the radical polymerizable monomer and the non-reactive polymer be the main components, since the resin viscosity can be appropriately controlled.
更にラジカル重合性モノマ一と数平均分子量 1 0 0 0 0以下のラジカル重合 性オリゴマー及び非反応性ポリマ一を主成分とすると、 樹脂の反応性及び樹脂 粘度を適切に制御することができ、 更に好ましい。  Further, when a radical polymerizable monomer and a radical polymerizable oligomer having a number average molecular weight of 1,000 or less and a non-reactive polymer are the main components, the reactivity of the resin and the resin viscosity can be appropriately controlled. preferable.
本発明におけるラジカル重合性の樹脂は、 上記モノマー、 オリゴマー、 ポリ マー、 硬化剤成分に加えて、 目的に応じてチクソトロピー性付与剤、 空気硬化 性付与剤、 カップリング剤、 重合禁止剤、 着色剤等を含有させることができる チクソトロピー性付与剤としては例えば、 日本エアロジル株式会社製の" ェ ァロジル 2 0 0 " 、 日本シリカ工業株式会社製の" 二ブシール L P " 等の微粉 シリカ、 白石カルシウム株式会社製の" 白鉛華 C C " 、 丸尾カルシウム株式会 社製の" ナノックス 2 5 " 等の微粉炭酸カルシウム或いは楠本化成株式会社製 の" ディスパロン 3 0 5 " 等の有機物粉体を例示できるが、 これらに限定され ない。 使用量は 1 0重量%以下、 通常は 5重量%以下である。 空気硬化性付与剤としては、 n—パラフィンに代表されるパラフィンヮック ス、 ポリエチレンワックス、 ステアリン酸等の高級脂肪酸が代表的なものとし て例示できる他、 グリシジルメ夕クリレート、 ァリルグリシジルェ一テル等の モノエポキシ化合物、 ジシクロペン夕ジェンのアクリル酸誘導体、 昭和高分子 株式会社製の" リポキシ A C— 2 0 1 " 等の空気乾燥機能を有する市販の化合 物も単独又は混合して使用することができる。 これらの空気硬化性付与剤の添 加量は含浸する樹脂に対して 0 . 1〜 1 0重量%が適当であり、 0 . 1重量% 未満では十分な空気硬化性が得られないし、 1 0重量%を越えると硬化物物性 が低下する傾向にある。 パラフィンワックス等の高級脂肪酸を用いる場合は含 浸する樹脂に対して 0 . 1〜 5重量%の範囲が特に好ましい。 The radically polymerizable resin in the present invention includes, in addition to the above-mentioned monomers, oligomers, polymers, and curing agent components, a thixotropic agent, an air-curing agent, a coupling agent, a polymerization inhibitor, and a coloring agent according to the purpose. Examples of the thixotropy-imparting agent that can be contained therein include finely divided silica such as "Varodil 200" manufactured by Nippon Aerosil Co., Ltd. and "Nibusir LP" manufactured by Nippon Silica Industry Co., Ltd .; Organic powders such as finely divided calcium carbonate such as "Shirarenka CC" manufactured by Maruo Calcium Co., Ltd. and "Nanox 25" manufactured by Maruo Calcium Co., Ltd. or "Disparon 3005" manufactured by Kusumoto Kasei Co., Ltd. It is not limited to. The amount used is less than 10% by weight, usually less than 5% by weight. Examples of the air curing agent include paraffin wax represented by n-paraffin, higher fatty acids such as polyethylene wax and stearic acid, and glycidyl methacrylate, aryl glycidyl ether and the like. Monoepoxy compounds, acrylic acid derivatives of dicyclopentene, and commercially available compounds having an air drying function, such as "Ripoxy AC-201" manufactured by Showa Polymer Co., Ltd., can be used alone or in combination. The addition amount of these air-curing agents is suitably from 0.1 to 10% by weight based on the resin to be impregnated, and if it is less than 0.1% by weight, sufficient air-curing properties cannot be obtained. If the content exceeds 10% by weight, the physical properties of the cured product tend to decrease. When a higher fatty acid such as paraffin wax is used, the range is particularly preferably 0.1 to 5% by weight based on the resin to be impregnated.
本発明に使用される樹脂は必要に応じて、 ァーメ夕クリロキシプロピルトリ メトキシシランに代表されるシラン系カップリング剤、 チタネート系カツプリ ング剤、 ジルコネ一ト系カップリング剤、 有機アルミニウム系カップリング剤 等の力ップリング剤を単独又は混合して使用することができる。 添加量として は含浸する樹脂 1 0 0重量部に対して 0 . 5〜 5重量部が適当である。  The resin used in the present invention may be, if necessary, a silane coupling agent typified by acryloxypropyltrimethoxysilane, a titanate coupling agent, a zirconate coupling agent, an organic aluminum coupling. A power coupling agent such as an agent can be used alone or as a mixture. An appropriate amount of addition is 0.5 to 5 parts by weight based on 100 parts by weight of the resin to be impregnated.
本発明に使用される樹脂は流通段階での安定性を確保するために適量の重合 禁止剤を含有することが好ましい。 また、 必要に応じて、 着色剤、 顔料、 消泡 剤等を添加することが可能である。  It is preferable that the resin used in the present invention contains an appropriate amount of a polymerization inhibitor in order to secure stability at the distribution stage. Further, a coloring agent, a pigment, an antifoaming agent, and the like can be added as needed.
本発明では、 強化繊維シート材料への追加含浸樹脂の含浸量は、 含浸後に強 化繊維シートと追加含浸樹脂が一体の複合材料となる量であればよく、 特に制 限されるものではない。  In the present invention, the amount of the additional impregnating resin impregnated into the reinforcing fiber sheet material is not particularly limited as long as the reinforcing fiber sheet and the additional impregnating resin become an integrated composite material after impregnation.
(補修補強の施工手順)  (Procedure for repair and reinforcement)
本発明における既存コンクリート構造物の補修補強の施工手順について説明 する。  The procedure for repairing and reinforcing existing concrete structures according to the present invention will be described.
本発明では、 上記の強化繊維シート材料に樹脂を含浸しながら既存のコンク リート構造物表面に貼り付け、 樹脂を硬化するか、 又は、 上記の強化繊維シ一 ト材料を既存のコンクリート構造物表面に貼り付けた後、 樹脂を含浸し、 樹脂 を硬化することにより実施できる。 この時、 強化繊維シート材料の貼り付け前 に貼り付け場所に後で含浸する榭脂を予め塗布しておいてもよい。 In the present invention, the reinforced fiber sheet material is impregnated with a resin and is attached to the surface of an existing concrete structure to cure the resin, or the reinforced fiber sheet material is coated on the surface of the existing concrete structure. Can be carried out by impregnating with a resin and curing the resin. At this time, before attaching the reinforcing fiber sheet material The resin to be impregnated later may be preliminarily applied to the sticking place.
既存コンクリート構造物の強化繊維シ一ト材料を貼り付ける表面は、 前もつ てその部分の凹凸、 段差、 欠損部、 クラック等をグラインダー等を用いて平滑 に削ったり、 パテや注入剤を用いて埋めたりして修正することが、 貼り付け強 度の向上の点から、 好ましい。  The surface of the existing concrete structure to which the reinforcing fiber sheet material is to be attached must be smoothed using a grinder or the like to remove irregularities, steps, defects, cracks, etc. It is preferable to correct by filling in from the viewpoint of improving the bonding strength.
既存コンクリート構造物の強化繊維シート材料を貼り付ける表面は、 上記の 凹凸等の除去に次いで、 必要に応じてプライマー樹脂をローラ一刷毛、 スプレ 一等既知の手段により、 コンクリ一ト表面に適量塗布し硬化することが好まし レ^ プライマ一樹脂のタイプは、 後から強化繊維シート材料の貼り付けに使用 する含浸樹脂と同じタイプの樹脂が好ましい。 プライマ一樹脂は低粘度の方が コンクリートとの接着性、 作業性の点から好ましく、 プライマー樹脂はより硬 化の速い、 例えば 1時間程度で硬化する組成物が好ましい。 このようなプライ マ一樹脂は使用直前に硬化剤及び硬化促進剤を混合して使用する。  On the surface of the existing concrete structure to which the reinforcing fiber sheet material is to be attached, apply the appropriate amount of primer resin to the surface of the concrete by known means, such as brushing with a roller or spraying, if necessary, after removing the above irregularities. It is preferable to use a resin of the same type as the impregnating resin used later for attaching the reinforcing fiber sheet material. It is preferable that the primer resin has a low viscosity from the viewpoint of adhesiveness to concrete and workability, and the primer resin is a composition that hardens more quickly, for example, a composition that cures in about one hour. Such a primer resin is used by mixing a curing agent and a curing accelerator immediately before use.
本発明に使用できるアクリル系のプライマー樹脂としては、 三菱レイヨン株 式会社製" ァクリシラップ D R— 8 0 " を例示できるが、 もちろんこれらに限 定されない。  Examples of the acrylic primer resin that can be used in the present invention include, but are not limited to, “Acrycillap DR-80” manufactured by Mitsubishi Rayon Co., Ltd.
本発明の方法では、 含浸する樹脂は使用直前に硬化剤及び硬化促進剤を所定 の硬化時間が得られるように混合して使用する。  In the method of the present invention, the resin to be impregnated is used by mixing a curing agent and a curing accelerator immediately before use so that a predetermined curing time can be obtained.
本発明のより好ましい補修補強方法としては、 プライマ一樹脂を塗布した既 存コンクリート構造物の表面に、 上記追加含浸樹脂を塗布し、 その上に強化繊 維シート材料を貼り付けた後、 その上から更に追加含浸樹脂を塗布し、 脱泡口 ーラ一を掛ける等の方法でシート内部に含有する空気を押し出しながら追加含 浸樹脂を強化繊維シ一ト材料に含浸し、 放置して硬化させる方法が挙げられる 強化繊維シート材料を目的に応じて、 その繊維方向を変えながら必要枚数貼 り付けることにより、 強化繊維シー卜による補修補強層を形成させることもで さる。  As a more preferable repair / reinforcement method of the present invention, the additional impregnated resin is applied to the surface of an existing concrete structure to which the primer resin has been applied, and the reinforced fiber sheet material is adhered thereon, and then The additional impregnated resin is applied to the reinforcing fiber sheet material while extruding the air contained in the sheet by, for example, applying a defoaming hole to the air through a defoaming port. According to the purpose, the required number of reinforcing fiber sheet materials can be attached while changing the fiber direction, thereby forming a repair reinforcing layer using a reinforcing fiber sheet.
最後に必要に応じて塗装又はモルタル被覆を行うことはもちろん可能である 実施例 Finally, it is of course possible to apply painting or mortar coating as required Example
以下、 本発明を実施例を用いて更に具体的に説明する。  Hereinafter, the present invention will be described more specifically with reference to examples.
(実施例 1 )  (Example 1)
(オリゴマー 1の合成)  (Synthesis of oligomer 1)
攪拌機、 温度制御装置、 コンデンサ一を備えた容器に、 無水フ夕ル酸 148 重量部、 メチルメタクリレート 1227重量部、 ペン夕エリスリトールトリア リルエーテル (ダイソ一株式会社製" P— 30M" ) 230重量部、 ジメチル アミノエチルメタクリレート 3. 8重量部、 ハイドロキノンモノメチルェ一テ ル 0. 38重量部を加え、 反応温度 85 °Cで 3時間反応し、 ァリル基含有カル ボン酸を含有する樹脂溶液を得た。 さらにビスフエノール A型エポキシ樹脂 ( 油化シェルエポキシ株式会社製" ェピコ一ト 1004" ) 1943重量部、 メ タクリル酸 86重量部、 ジメチルアミノエチルメタクリレート 40重量部、 ノ \ ィドロキノンモノメチルエーテル 2重量部、 メチルメタクリレート 1227重 量部を加え、 反応温度を 9 O に昇温して、 酸価が 8 (mgKOH/g) 以下 になるまで反応させ、 メチルメタクリレートを 50重量%含有するオリゴマー 1を得た。 得られたオリゴマー 1のモノマー成分を除いた組成物の数平均分子 量は 2000であった。  In a vessel equipped with a stirrer, temperature controller, and condenser, 148 parts by weight of hydrofluoric anhydride, 1227 parts by weight of methyl methacrylate, 230 parts by weight of pen erythritol triaryl ether ("P-30M" manufactured by Daiso Corporation), 3.8 parts by weight of dimethylaminoethyl methacrylate and 0.38 parts by weight of hydroquinone monomethyl ether were added and reacted at a reaction temperature of 85 ° C. for 3 hours to obtain a resin solution containing an aryl group-containing carboxylic acid. Furthermore, bisphenol A type epoxy resin ("Epico 1004" manufactured by Yuka Shell Epoxy Co., Ltd.) 1943 parts by weight, 86 parts by weight of methacrylic acid, 40 parts by weight of dimethylaminoethyl methacrylate, 2 parts by weight of hydroquinone monomethyl ether And 1227 parts by weight of methyl methacrylate, and the reaction temperature was raised to 9 O. The reaction was continued until the acid value became 8 (mgKOH / g) or less, to obtain an oligomer 1 containing 50% by weight of methyl methacrylate. Was. The number-average molecular weight of the composition obtained by removing the monomer component of the obtained oligomer 1 was 2,000.
(含浸樹脂の調製)  (Preparation of impregnated resin)
メチルメタクリレート (SP値: 18) とオリゴマ一 1の 1対 1 (重量比) 混合物 (25°Cの粘度が 10ボイズ) 100重量部に、 空気硬化性付与成分と して n—パラフィン 1重量部、 シランカップリング剤として、 ァ一メタクリロ キシプロピルトリメトキシシラン 1重量部、 開始剤としてクメンハイドロパー ォキサイド 1重量部、 硬化促進剤としてナフテン酸コバルト 1重量部を添加し た。  100 parts by weight of a mixture of methyl methacrylate (SP value: 18) and oligomer 1 (weight ratio of 10 at 25 ° C), 100 parts by weight of n-paraffin as an air-curing component 1 part by weight Also, 1 part by weight of methacryloxypropyltrimethoxysilane as a silane coupling agent, 1 part by weight of cumene hydroperoxide as an initiator, and 1 part by weight of cobalt naphthenate as a curing accelerator were added.
(強化繊維シート材料の製作)  (Production of reinforced fiber sheet material)
末端にメタクリル基を有するビスフエノール A誘導体を主成分とするェポキ シエステル (共栄油脂化学工業株式会社製" 3002M" ) をサイズ剤として 1重量%付着させた炭素繊維 (三菱レイヨン株式会社" TR50" ) (引張強 度 490 OMP a) を 1 m2当たりの炭素繊維の重量が 300 gになるように一 方向に引き揃え、 硬化剤を含まないエポキシ樹脂組成物 (三菱レイヨン株式会 社製" # 350用べ一ス榭脂" 、 SP値: 23) を lm2当たり 15 g付着含浸 させた後、 支持体として厚さ 25 ^mのスクリムクロス (日東紡績株式会社製 ) を貼り合わせ、 強化繊維シート材料 1を得た。 Epoxy ester ("3002M" manufactured by Kyoei Yushi Kagaku Kogyo Co., Ltd.) whose main component is bisphenol A derivative with methacrylic group at the end 1 wt% the deposited carbon fiber (manufactured by Mitsubishi Rayon Co., Ltd. "TR50") (tensile strength of 490 OMP a) a aligned in one direction so that the weight of the carbon fibers per 1 m 2 is 300 g, the curing agent 15 g per lm 2 of an epoxy resin composition containing no resin ("Base resin for # 350" manufactured by Mitsubishi Rayon Co., Ltd., SP value: 23), and then impregnated with a thickness of 25 ^ m as a support. Was bonded to obtain a reinforced fiber sheet material 1.
(樹脂含浸 ·硬化)  (Resin impregnation and curing)
上記強化繊維シート材料 1に lm2当たりの樹脂量がおおよそ 400 gになる ように上記含浸樹脂を含浸し、 25°Cの雰囲気下に放置して硬化させた。 樹脂 は 2時間後には表面の夕ックは消失し硬化した。 The reinforcing fiber sheet material 1 was impregnated with the above impregnated resin so that the amount of resin per lm 2 was approximately 400 g, and was left to cure at 25 ° C. After 2 hours, the resin disappeared from the surface and hardened.
この硬化した強化繊維シ一ト材料から引張試験用のサンプルを作成し、 炭素 繊維方向の引張強度を測定した。 このコンポジットの平均の引張強度は炭素繊 維 100 %換算値で 410 OMP aであった。  A sample for a tensile test was prepared from the cured reinforcing fiber sheet material, and the tensile strength in the carbon fiber direction was measured. The average tensile strength of this composite was 410 OMPa in terms of 100% of carbon fiber.
また、 J I S (Japanese Industrial Standards) — A— 1 132に準拠した コンクリートサンプルの表面に、 アクリル系プライマ一樹脂 (三菱レイヨン株 式会社製" ァクリシラップ DR—80" ) を 25°Cで刷毛を用いて lm2当たり 200 gの割合で塗布した後、 上記と同様にして強化繊維シート材料 1をコン クリート表面に貼り付けた。 1日養生した後、 J I S— A— 6909に準拠し て引張試験を実施したところ、 強度は 2. 4MP a、 破壊モードはコンクリ一 ト内部の材料破壊であった。 In addition, an acrylic primer resin ("Acrylic Wrap DR-80" manufactured by Mitsubishi Rayon Co., Ltd.) was applied to the surface of a concrete sample conforming to JIS (Japanese Industrial Standards) A-1132 at 25 ° C with a brush. after coating at a rate of lm 2 per 200 g, it was adhered reinforcing fiber sheet material 1 in the same manner as described above in concrete surfaces. After curing for one day, a tensile test was performed in accordance with JIS-A-6909. The strength was 2.4 MPa and the failure mode was material failure inside the concrete.
(実施例 2)  (Example 2)
オリゴマーとして、 上記オリゴマー 1、 及びエポキシ系オリゴマー (共栄社 化学株式会社製" エポキシエステル 3000M" 、 以下オリゴマー 2という。 ) を併用し、 各成分の比率を表 1に示した様に変更する以外は実施例 1と同様 に操作した。 評価結果を表 1に示した。  The above-mentioned oligomer 1 and an epoxy-based oligomer ("Epoxyester 3000M" manufactured by Kyoeisha Chemical Co., Ltd .; hereinafter, referred to as oligomer 2) were used in combination as the oligomer, and the ratio was changed as shown in Table 1 except that the ratio of each component was changed as shown in Table 1. The procedure was the same as in Example 1. Table 1 shows the evaluation results.
(実施例 3)  (Example 3)
使用する硬化促進剤の量を半分にする以外は実施例 2と同様に操作した。 評 価結果を表 1に示した。 (実施例 4) The operation was performed in the same manner as in Example 2 except that the amount of the curing accelerator used was halved. Table 1 shows the evaluation results. (Example 4)
(オリゴマー 3の合成)  (Synthesis of oligomer 3)
攪拌機、 温度制御装置、 コンデンサ一を備えた容器に、 ビスフエノール A型 エポキシ樹脂 (油化シェルエポキシ株式会社製" ェピコート 1 004" ) 58 3重量部、 アクリル酸 43重量部、 ジメチルアミノエチルメ夕クリレート 6. 2重量部、 ハイドロキノンモノメチルエーテル 0. 62重量部、 メチルメ夕ク リレート 633重量部を加え、 反応温度を 90°Cに昇温して、 酸価が 5 (mg KOH/g) 以下になるまで反応させ、 メチルメタクリレートを 50重量%含 有するオリゴマー 3を得た。 得られたオリゴマー 3のモノマー成分を除いた組 成物の数平均分子量は 2300であった。  In a container equipped with a stirrer, temperature controller and condenser, bisphenol A type epoxy resin ("Epicoat 1004" manufactured by Yuka Shell Epoxy Co., Ltd.) 58 3 parts by weight, acrylic acid 43 parts by weight, dimethylaminoethyl methyl Add 6.2 parts by weight of acrylate, 0.62 parts by weight of hydroquinone monomethyl ether, and 633 parts by weight of methyl methacrylate, raise the reaction temperature to 90 ° C, and reduce the acid value to 5 (mg KOH / g) or less. The reaction was continued until the reaction was completed to obtain an oligomer 3 containing 50% by weight of methyl methacrylate. The number average molecular weight of the composition obtained by removing the monomer component of the obtained oligomer 3 was 2,300.
(含浸樹脂の調製)  (Preparation of impregnated resin)
オリゴマー成分として、 オリゴマ一 1に代えてオリゴマー 3を使用し、 各成 分の比率を表 1に示した様に変更する以外は、 実施例 1と同様に操作した。 評 価結果を表 1に示した。  The same operation as in Example 1 was carried out except that oligomer 3 was used instead of oligomer 1 as an oligomer component and the ratio of each component was changed as shown in Table 1. Table 1 shows the evaluation results.
(実施例 5)  (Example 5)
オリゴマー 1の代わりにアクリル系樹脂 (三菱レンヨン株式会社製" ダイヤ ナ一ル BR— 83" ) を使用し、 各成分の比率を表 1に示した様に変更する以 外は、 実施例 1と同様に操作した。 評価結果を表 1に示した。  Example 1 was repeated except that an acrylic resin ("Dianal BR-83" manufactured by Mitsubishi Renyon Co., Ltd.) was used instead of Oligomer 1 and the ratio of each component was changed as shown in Table 1. The same operation was performed. Table 1 shows the evaluation results.
(実施例 6 )  (Example 6)
使用する硬化促進剤の量を半分にする以外は実施例 5と同様に操作した。 評 価結果を表 1に示した。  The same operation as in Example 5 was carried out except that the amount of the curing accelerator used was halved. Table 1 shows the evaluation results.
(比較例 1 )  (Comparative Example 1)
モノマー成分、 オリゴマー成分を表 1に示した比率で混合し、 開始剤混合前 の 25°Cでの粘度が 2ボイズの樹脂組成物を調製し、 実施例 1と同様に操作し 、 評価結果を表 1に示した。 この含浸樹脂の硬化性は極めて良好であり、 コン クリートとの接着性も良好であつたが、 コンポジットの引張強度が 3720 M P aと不十分であった。  The monomer component and the oligomer component were mixed at the ratios shown in Table 1 to prepare a resin composition having a viscosity of 2 voids at 25 ° C. before mixing the initiator, and the same operation as in Example 1 was performed. It is shown in Table 1. The curability of the impregnated resin was extremely good, and the adhesion to the concrete was good, but the tensile strength of the composite was insufficient at 3720 MPa.
(実施例 7、 8) 比較例 1と同じ含浸樹脂を用いて、 サンプル作成温度をそれぞれ 5 °C、 — 1 0 °Cと変えて試験した。 (Examples 7, 8) Using the same impregnating resin as in Comparative Example 1, the test was performed by changing the sample preparation temperature to 5 ° C. and −10 ° C., respectively.
この際、 硬化促進剤の量は硬化時間が 5時間となるように表 1に示したよう に変更した。 この組成物の 5 °Cでの粘度は 1 5ボイズ、 — l O :での粘度は 4 5ボイズであった。  At this time, the amount of the curing accelerator was changed as shown in Table 1 so that the curing time was 5 hours. The viscosity of the composition at 5 ° C. was 15 boise, and the viscosity at —10: was 45 boise.
結果は表 1に示したが、 試験片作成の温度を下げたことに伴い、 樹脂の粘度 が上昇し、 十分な引張強度を発現した。  The results are shown in Table 1. As the temperature for preparing test specimens was lowered, the viscosity of the resin increased, and sufficient tensile strength was developed.
(比較例 2 )  (Comparative Example 2)
比較例 1で用いた樹脂組成物の硬化剤を変更し、 硬化時間が 3 0分になるよ うに調製した。 評価結果は表 1に示したがコンポジットの引張強度が更に低下 していた。  The curing agent of the resin composition used in Comparative Example 1 was changed so that the curing time was 30 minutes. The evaluation results are shown in Table 1, but the tensile strength of the composite was further reduced.
(比較例 3 )  (Comparative Example 3)
モノマー成分、 ポリマー成分を表 1に示した比率で混合し、 2 5 °Cの粘度が 4 0 0ボイズの樹脂組成物を調製し、 同様の試験を実施しょうとしたが、 強化 繊維シ一トへの樹脂の含浸作業が困難であったため、 それ以降の評価は実施で きなかった。 The monomer component and the polymer component were mixed in the ratio shown in Table 1 to prepare a resin composition having a viscosity of 400 vise at 25 ° C, and the same test was carried out. The subsequent evaluation could not be carried out due to the difficulty of impregnating the resin with the resin.
表 1 table 1
Figure imgf000017_0001
Figure imgf000017_0001
上記表 1中での略号はそれぞれ以下の物質を示す。 The abbreviations in Table 1 above indicate the following substances, respectively.
MM A: メタクリル酸メチル  MM A: Methyl methacrylate
2 -EHA 2一ェチルへキシルァクリレート  2-EHA 2-ethylhexyl acrylate
P EGA フエノキシエチレンダリコールァクリレート CHPO クメン八ィドロパーォキサイド B PO :ベンゾィルパ一ォキサイド P EGA phenoxyethylene dalicol acrylate CHPO cumene B PO: Benzoyl peroxide
NC :ナフテン酸コバルト  NC: Cobalt naphthenate
DMPT : N, N—ジメチル— p—トルイジン  DMPT: N, N-dimethyl-p-toluidine
n -P : n—パラフィン  n-P: n—paraffin
rMX : ァーメタクリロキシプロビルトリメトキシシラン  rMX: methacryloxypropyl trimethoxysilane
01 :オリゴマー 1  01: Oligomer 1
02 :オリゴマー 2 エポキシ系オリゴマー (共栄社化学株式会社製" ェポ キシエステル 3000Μ" )  02: Oligomer 2 Epoxy oligomer ("Epoxy ester 3000 株式会社" manufactured by Kyoeisha Chemical Co., Ltd.)
03 :オリゴマー 3  03: Oligomer 3
Ρ 1 :アクリル系樹脂 (三菱レンヨン株式会社製" ダイヤナ一ル BR— 83 " )  Ρ1: Acrylic resin ("Dianal BR-83" manufactured by Mitsubishi Rayon Co., Ltd.)
(比較例 4) (Comparative Example 4)
ビスフエノール Α型エポキシ樹脂 (油化シェルエポキシ株式会社製" ェピコ ート 828" ) 60重量部、 トリメチロールプロパントリグリシジルェ一テル Bisphenol Α type epoxy resin ("Epicoat 828" manufactured by Yuka Shell Epoxy Co., Ltd.) 60 parts by weight, trimethylolpropane triglycidyl ether
(旭電化工業株式会社製" アデカグリシロール ED— 505" ) 40重量部、 脂肪族ポリアミン系硬化剤 (AC I J a p a n社製" アンカミン 2021" ) 45重量部を混合して常温硬化型エポキシ樹脂組成物を調製した。 この組成 物の粘度は 25°Cで 50ボイズであった。 (Adeka Glycrolle ED-505 "manufactured by Asahi Denka Kogyo Co., Ltd.) 40 parts by weight of an aliphatic polyamine-based curing agent (AC IJ apan, Inc." Ancamine 2021 ") 45 parts by weight mixed with a room temperature curable epoxy resin composition Was prepared. The viscosity of the composition was 50 boise at 25 ° C.
このエポキシ樹脂組成物を実施例 1で使用した強化繊維シートに含浸し、 コ ンポジットの引張試験片の作成を行った。 樹脂は 12時間放置した時点でベと つきは無くなつたが、 十分な強度と弾性を発現する為には 7日間必要であった 。 7日後に評価した引張強度は 420 OMP aであった。  The epoxy resin composition was impregnated into the reinforcing fiber sheet used in Example 1 to prepare a composite tensile test piece. When the resin was left for 12 hours, it did not stick, but required 7 days to develop sufficient strength and elasticity. The tensile strength evaluated after 7 days was 420 OMPa.
また、 同様の試験を 5°Cで実施しょうとしたが、 樹脂が硬化せず断念した。 (実施例 9)  The same test was performed at 5 ° C, but the resin did not cure and was abandoned. (Example 9)
含浸樹脂として、 ビニルエステル樹脂 (昭和高分子株式会社製" リポキシ R — 840" 、 25°Cの粘度 25ボイズ、 SP値: 19) 100重量部、 硬化触 媒 (昭和高分子株式会社製" CH" ) を 1重量部、 硬化促進剤としてナフテン 酸コバルトを 0. 3重量部を用いる以外は実施例 1と同様に操作した。 25°C における硬化時間は 3時間であった。 強化繊維シ一ト材料に樹脂を含浸してか ら 6時間後には全く表面タックは消失しており、 コンポジッ卜の引張強度は 4 02 OMP aであった。 As the impregnating resin, vinyl ester resin (“Lipoxy R — 840” manufactured by Showa Polymer Co., Ltd., viscosity at 25 ° C. 25 Boys, SP value: 19) 100 parts by weight, curing catalyst (CH Showa Polymer Co., Ltd.) 1), Naphthene as a curing accelerator The same operation as in Example 1 was carried out except that 0.3 part by weight of cobalt acid was used. Curing time at 25 ° C was 3 hours. Six hours after the resin was impregnated with the reinforcing fiber sheet material, the surface tack had completely disappeared, and the tensile strength of the composite was 402 OMPa.
(実施例 10)  (Example 10)
硬化剤としてメチルェチルパーォキサイド 2重量部、 硬化促進剤としてナフ テン酸コバルトを 1重量部を樹脂 100重量部に対して使用する以外は実施例 9と同様に操作した。 25°Cにおける硬化時間は 1時間であり、 6時間後の得 られたコンポジットの引張強度は 300 OMP aであった。  The same operation as in Example 9 was carried out except that 2 parts by weight of methyl ethyl peroxide as a curing agent and 1 part by weight of cobalt naphthenate as a curing accelerator were used per 100 parts by weight of the resin. The curing time at 25 ° C. was 1 hour, and the tensile strength of the obtained composite after 6 hours was 300 OMPa.
(実施例 1 1 )  (Example 11)
フエノキシエチレングリコールァクリレートの代わりに、 片末端にメタクリ ル基を有する数平均分子量が 6000の n—ブチルァクリレートオリゴマ一を 使用する以外は実施例 7と同様にして試験を行った。 この樹脂の 5°Cの粘度は 5ボイズであった。  The test was performed in the same manner as in Example 7 except that an n-butyl acrylate oligomer having a methacryl group at one end and a number average molecular weight of 6000 was used instead of phenoxyethylene glycol acrylate. . The viscosity of the resin at 5 ° C. was 5 boys.
作成したサンプルの表面は 6時間後にはべたつきが無くなつており、 この組 成物の低温硬化性も良好であった。 またコンポジットの引張強度は 4100M P aであり、 接着性試験における破壊モードはコンクリートの材料破壊であつ た。  The surface of the prepared sample had no tackiness after 6 hours, and the composition had good low-temperature curability. The tensile strength of the composite was 4100 MPa, and the failure mode in the adhesion test was material failure of concrete.
(実施例 12 )  (Example 12)
支持体として、 日東紡績株式会社製" スクリムクロス" に代えて日石パレツ トシステム株式会社製" コンウッドネット ON 5050" (目付 Y gZm2) を 用いる他は実施例 1と同様にして強化繊維シート 2を作成した。 この強化繊維 シ一ト材料と実施例 3で用いた樹脂と組み合わせて実施例 3と同様に操作した 。 得られたコンポジットの引張強度は 4300 MP aと十分な強度発現性を示 す値であった。 As in Example 1, reinforced fiber was used in the same manner as in Example 1 except that "Conwood Net ON 5050" (basis weight Y gZm 2 ) manufactured by Nisseki Palette System Co., Ltd. was used instead of "Scrim Cloth" manufactured by Nitto Boseki Co., Ltd. Sheet 2 was created. The same operation as in Example 3 was performed by combining this reinforcing fiber sheet material with the resin used in Example 3. The tensile strength of the obtained composite was 4,300 MPa, a value indicating sufficient strength development.
(実施例 13)  (Example 13)
炭素繊維として弾性率が 392 G P aの高弾性炭素繊維 (三菱レイョン株式 会社製" HR40" 、 引張強度 4610MP a) を用い、 樹脂組成物としては 実施例 3で使用した樹脂組成物を用いる他は実施例 1と同様に As the carbon fiber, a high elasticity carbon fiber having an elastic modulus of 392 GPa ("HR40" manufactured by Mitsubishi Rayon Co., Ltd., tensile strength 4610MPa) is used. Except for using the resin composition used in Example 3, the same as in Example 1
卜の引張強度を評価した。 得られた引張強度は 4 0 5 0 M P aと十分な強度発 現性を示す値であった。 The tensile strength of the bird was evaluated. The obtained tensile strength was 4.50 MPa, a value indicating sufficient strength development.
(実施例 1 4 )  (Example 14)
強化繊維シート材料として、 接着剤層を介して支持体シ一ト上に強化繊維を 一方向に引き揃えた形態の東燃株式会社製" フォルカシート F T S— C 1— 3 0 " (使用榭脂の S P値: 2 3 ) を使用し、 含浸樹脂として実施例 3で使用し た樹脂組成物を使用する以外は実施例 1と同様にして、 コンポジットの引張強 度を評価した。 得られた引張強度は 4 3 0 O M P aと十分な強度発現性を示す 値であった。 産業上の利用可能性  As a reinforcing fiber sheet material, Tonen Co., Ltd.'s "Forcasheet FTS-C1-30" (a type of resin used) in which reinforcing fibers are aligned in one direction on a support sheet via an adhesive layer The tensile strength of the composite was evaluated in the same manner as in Example 1 except that the SP value: 23) was used and the resin composition used in Example 3 was used as the impregnated resin. The obtained tensile strength was 430 OMPa, a value indicating sufficient strength development. Industrial applicability
本発明によれば、 その施工時の温度条件等の影響を殆ど受けることなく、 短 時間で容易に、 既存コンクリート構造物、 例えば、 橋脚やビル等の補修補強を 高い強度で行うことができる。 特に現存する強化繊維シ一ト材料を有効に利用 することができる。  According to the present invention, repair and reinforcement of existing concrete structures, for example, piers and buildings, etc., can be performed with high strength in a short period of time without being substantially affected by temperature conditions or the like during the construction. In particular, existing reinforcing fiber sheet materials can be effectively used.

Claims

請 求 の 範 囲 The scope of the claims
1 . 樹脂含有率が 1 5重量%以下の強化繊維シート材料に、 粘度が 2 . 5〜 3 0 0ボイズ、 且つ硬化時間が 1〜2 4時間の樹脂を含浸しながら、 該 強化繊維シート材料を既存のコンクリート構造物の表面に貼り付け、 樹 脂を硬化する既存コンクリート構造物の補修補強方法。 1. A reinforced fiber sheet material having a resin content of 15% by weight or less is impregnated with a resin having a viscosity of 2.5 to 300 voids and a curing time of 1 to 24 hours. Is a method of repairing and reinforcing existing concrete structures where resin is hardened by sticking it to the surface of existing concrete structures.
2 . 樹脂含有率が 1 5重量%以下の強化繊維シート材料を既存のコンクリ —ト構造物の表面に貼り付けた後、 粘度が 2 . 5〜3 0 0ボイズで且つ硬 化時間が 1〜 2 4時間の樹脂を前記強化繊維シ一ト材料に含浸し、 樹脂 を硬化する既存コンクリ一ト構造物の補修補強方法。  2. After affixing the reinforcing fiber sheet material with resin content of 15% by weight or less to the surface of the existing concrete structure, the viscosity is 2.5-300 voise and the curing time is 1- A method for repairing and reinforcing an existing concrete structure in which the reinforcing fiber sheet material is impregnated with the resin for 24 hours to cure the resin.
3 . 前記強化繊維シ一ト材料の強化繊維目付が 1 5 0 g Zm2以上である請 求項 1又は 2記載の既存コンクリート構造物の補修補強方法。 3. The method for repairing and reinforcing an existing concrete structure according to claim 1, wherein the reinforcing fiber weight of the reinforcing fiber sheet material is 150 g Zm 2 or more.
4. 前記強化繊維シート材料が、 引き揃えた強化繊維又は強化繊維織布に 樹脂が含浸されている強化繊維シート材料である請求項 1または 2記載 の既存コンクリー卜構造物の補修補強方法。  4. The method for repairing and reinforcing an existing concrete structure according to claim 1, wherein the reinforcing fiber sheet material is a reinforcing fiber sheet material in which a resin is impregnated into aligned reinforcing fibers or a reinforcing fiber woven fabric.
5 . 前記強化繊維シート材料が、 引き揃えた強化繊維又は強化繊維織布に 樹脂が含浸されており、 ガラス繊維布帛を少なくとも一方の面に貼り合 わせてなる強化繊維シート材料である請求項 1または 2記載の既存コン クリート構造物の補修補強方法。  5. The reinforced fiber sheet material is a reinforced fiber sheet material obtained by impregnating a reinforced fiber or a reinforced fiber woven fabric with a resin, and bonding a glass fiber cloth to at least one surface. Or the repair method for existing concrete structures described in 2.
6 . 前記強化繊維シート材料が、 接着剤層を介して支持体シート上に強化 繊維を一方向に引き揃えた強化繊維シート材料である請求項 1または 2 記載の既存コンクリート構造物の補修補強方法。  6. The method for repairing and reinforcing an existing concrete structure according to claim 1 or 2, wherein the reinforcing fiber sheet material is a reinforcing fiber sheet material in which reinforcing fibers are aligned in one direction on a support sheet via an adhesive layer. .
7 . 強化繊維シート材料の樹脂含有率が 7重量%以下である請求項 1また は 2記載の既存コンクリート構造物の補修補強方法。  7. The method for repairing and reinforcing an existing concrete structure according to claim 1, wherein the resin content of the reinforcing fiber sheet material is 7% by weight or less.
8 . 強化繊維シ一ト材料を構成する強化繊維が、 引張強度が 4 0 0 0 M P a以上の高強度炭素繊維である請求項 1または 2記載の既存コンクリ一 ト構造物の補修補強方法。  8. The method for repairing and reinforcing an existing concrete structure according to claim 1, wherein the reinforcing fibers constituting the reinforcing fiber sheet material are high-strength carbon fibers having a tensile strength of 400 MPa or more.
9 . 強化繊維シート材料を構成する強化繊維が、 弾性率が 2 5 0 G P a以 上の高弾性炭素繊維である請求項 1または 2記載の既存コンクリート構 造物の補修補強方法。 9. Reinforcing fibers constituting the reinforcing fiber sheet material have an elastic modulus of 250 GPa or less. 3. The method for repairing and reinforcing an existing concrete structure according to claim 1 or 2, wherein the high elastic carbon fiber is used.
10. 強化繊維シート材料を構成する炭素繊維が、 少なくとも一方の末端基 がラジカル重合性の官能基である化合物が付着した炭素繊維である請求 項 1または 2記載の既存コンクリ一ト構造物の補修補強方法。  10. The repair of an existing concrete structure according to claim 1 or 2, wherein the carbon fiber constituting the reinforcing fiber sheet material is a carbon fiber to which a compound in which at least one terminal group is a radical polymerizable functional group is attached. Reinforcement method.
1 1. 強化繊維シート材料を構成する樹脂の溶解性パラメータ(SP)値が 1  1 1. The solubility parameter (SP) value of the resin constituting the reinforced fiber sheet material is 1
7〜28 (MP a) 1/2である請求項 1または 2記載の既存コンクリート 構造物の補修補強方法。 3. The method for repairing and reinforcing an existing concrete structure according to claim 1, wherein the pressure is 7 to 28 (MPa) 1/2 .
12. 粘度が 10〜 100ボイズ、 且つ、 硬化時間が 2〜 1 2時間のラジカ ル重合性の樹脂。  12. Radical polymerizable resin with a viscosity of 10-100 boise and a curing time of 2-12 hours.
13. 末端にメタクロィル基又はァクリロイル基を有する成分を含有する、 粘度が 10〜100ボイズ、 且つ硬化時間が 1〜8時間のラジカル重合 性の榭脂。  13. A radically polymerizable resin containing a component having a methacryl group or an acryloyl group at a terminal, having a viscosity of 10 to 100 boise and a curing time of 1 to 8 hours.
14. ラジカル重合性モノマーと数平均分子量 10000以下のラジカル重 合性オリゴマーをその主成分とする、 請求項 12又は 1 3記載の樹脂。  14. The resin according to claim 12, wherein a radical polymerizable monomer and a radical polymerizable oligomer having a number average molecular weight of 10,000 or less are the main components.
1 5. ラジカル重合性モノマーと非反応性ポリマーを主成分とする請求項 1 2又は 13項記載の樹脂。  14. The resin according to claim 12, comprising a radical polymerizable monomer and a non-reactive polymer as main components.
16. ラジカル重合性モノマーと数平均分子量 10000以下のラジカル重 合性オリゴマー及び非反応性のポリマーを主成分とする請求項 1 2又は 1 3項記載の樹脂。  16. The resin according to claim 12, comprising a radical polymerizable monomer, a radical polymerizable oligomer having a number average molecular weight of 10,000 or less, and a non-reactive polymer as main components.
17. ラジカル重合性モノマ一成分の溶解性パラメ一夕 (S P) 値が 17〜 22 (MP a) 1/2である請求項 12または 13記載の樹脂。 17. The resin according to claim 12, wherein the radical polymerizable monomer component has a solubility parameter overnight (SP) value of 17 to 22 (MPa) 1/2 .
18. 空気硬化性付与成分を 0. 1〜 5重量%含有する請求項 1 2または 1  18. Claim 12 or 1 containing 0.1 to 5% by weight of an air-curing component.
3記載の樹脂。  The resin described in 3.
19. 請求項 1記載の既存コンクリート構造物の補修補強方法において、 強 化繊維シート材料をコンクリート構造物の表面に貼り付けつつ含浸させ る追加含浸樹脂が、 請求項 12または 13記載の樹脂である。  19. In the method for repairing and reinforcing an existing concrete structure according to claim 1, the additional impregnating resin for impregnating the reinforcing fiber sheet material while attaching the material to the surface of the concrete structure is the resin according to claim 12 or 13. .
20. 請求項 2記載の既存コンクリート構造物の補修補強方法において、 コ ンクリート構造物の表面に貼り付けた強化繊維シー卜材料に含浸させる 追加含浸樹脂が、 請求項 1 2または 1 3記載の樹脂である。 20. The method for repairing and reinforcing an existing concrete structure according to claim 2, The resin according to claim 12 or 13, wherein the additional impregnating resin for impregnating the reinforcing fiber sheet material stuck on the surface of the concrete structure.
PCT/JP1999/002756 1998-05-26 1999-05-26 Method for repairing and reinforcing existing concrete structure and resin WO1999061725A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP99922484A EP1083274A4 (en) 1998-05-26 1999-05-26 Method for repairing and reinforcing existing concrete structure and resin
CA002333419A CA2333419A1 (en) 1998-05-26 1999-05-26 Method for repairing and reinforcing existing concrete structure and resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/144249 1998-05-26
JP14424998 1998-05-26

Publications (1)

Publication Number Publication Date
WO1999061725A1 true WO1999061725A1 (en) 1999-12-02

Family

ID=15357715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002756 WO1999061725A1 (en) 1998-05-26 1999-05-26 Method for repairing and reinforcing existing concrete structure and resin

Country Status (5)

Country Link
EP (1) EP1083274A4 (en)
KR (1) KR100429959B1 (en)
CA (1) CA2333419A1 (en)
TW (1) TW508401B (en)
WO (1) WO1999061725A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322433A (en) * 2001-04-24 2002-11-08 Denki Kagaku Kogyo Kk Slow curing acrylic adhesive composition
KR20030023901A (en) * 2001-09-14 2003-03-26 주식회사 제트화이버코리아 Method for Repairing and Reinforcing Concrete Structure
JP2004107944A (en) * 2002-09-17 2004-04-08 Konishi Co Ltd Reinforcement method for steel structure
JP2018188557A (en) * 2017-05-08 2018-11-29 ショーボンド建設株式会社 Adhesive injection method and adhesive

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100894677B1 (en) * 2007-01-19 2009-04-24 세종대학교산학협력단 Repair method for bridge
US9321686B2 (en) 2013-03-15 2016-04-26 Forta Corporation Reinforcement fiber coating compositions, methods of making and treating, and uses for improved adhesion to asphalt and portland cement concrete
KR101426032B1 (en) 2013-07-16 2014-08-05 (주)진성테크 Fibre composite panel and earthquake-resistant construct method of structure using of that
CN108753223A (en) * 2018-04-26 2018-11-06 阜南县慧宏柳木工艺品有限公司 A kind of method of wicker products set cloth
KR102046397B1 (en) * 2019-04-08 2019-11-19 김창수 Reinforcing method using bi-directional arrangement Carbon fiber fabric
KR102167528B1 (en) * 2020-03-26 2020-10-19 두정산업 주식회사 Crack sealing composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532804A (en) * 1991-07-30 1993-02-09 Tonen Corp Unidirectionally arranged reinforcing fiber sheet
JPH0734677A (en) * 1993-07-16 1995-02-03 Mitsubishi Chem Corp Prepreg for structure reinforcement and reinforcement method using the same
JPH08158665A (en) * 1994-12-02 1996-06-18 Sho Bond Constr Co Ltd Reinforcing method for reinforced concrete structure
JPH09184305A (en) * 1995-11-01 1997-07-15 Mitsubishi Rayon Co Ltd Repairing and reinforcing method of existent construction
JPH09221919A (en) * 1996-02-20 1997-08-26 Mitsubishi Rayon Co Ltd Repairing and reinforcing method for existing structure
JPH107750A (en) * 1996-04-26 1998-01-13 Nippon N S C Kk Method for reinforcing concrete structure, radical-polymerizable primer for use in the method, and composition forming radical-polymerized cured resin
JPH1088820A (en) * 1996-09-13 1998-04-07 Mitsubishi Chem Corp Method of reinforcing concrete structure

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532804Y2 (en) * 1986-06-06 1993-08-23
JP2851680B2 (en) * 1990-04-10 1999-01-27 東燃株式会社 How to reinforce structures
EP0598591A3 (en) * 1992-11-17 1994-08-10 Tonen Corp Fibre-reinforced sheet for reinforcement.
JPH08128211A (en) * 1994-10-28 1996-05-21 Tonen Corp Reinforcement of concrete floor plate
JPH08253604A (en) * 1995-03-15 1996-10-01 Mitsubishi Chem Corp Prepreg, fiber-reinforced resin composite material and reinforcement of structure using prepreg
DE69634488T2 (en) * 1995-11-01 2006-01-05 Mitsubishi Rayon Co., Ltd. METHOD FOR REPAIRING OR REINFORCING EXISTING STRUCTURES AND ANISOTROPIC FABRIC THEREFOR
ATE296851T1 (en) * 1996-02-21 2005-06-15 Toray Industries COMPOSITE THREAD AND FIBER REINFORCED COMPOSITE MATERIALS MADE THEREFROM
FR2754556B1 (en) * 1996-10-16 1998-12-18 Freyssinet Int Stup METHOD FOR REINFORCING A CONSTRUCTION STRUCTURE, AND STRUCTURE THEREFORE
CA2230151A1 (en) * 1997-02-28 1998-08-28 Mitsuhiro Yada Method for reinforcing structures

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532804A (en) * 1991-07-30 1993-02-09 Tonen Corp Unidirectionally arranged reinforcing fiber sheet
JPH0734677A (en) * 1993-07-16 1995-02-03 Mitsubishi Chem Corp Prepreg for structure reinforcement and reinforcement method using the same
JPH08158665A (en) * 1994-12-02 1996-06-18 Sho Bond Constr Co Ltd Reinforcing method for reinforced concrete structure
JPH09184305A (en) * 1995-11-01 1997-07-15 Mitsubishi Rayon Co Ltd Repairing and reinforcing method of existent construction
JPH09221919A (en) * 1996-02-20 1997-08-26 Mitsubishi Rayon Co Ltd Repairing and reinforcing method for existing structure
JPH107750A (en) * 1996-04-26 1998-01-13 Nippon N S C Kk Method for reinforcing concrete structure, radical-polymerizable primer for use in the method, and composition forming radical-polymerized cured resin
JPH1088820A (en) * 1996-09-13 1998-04-07 Mitsubishi Chem Corp Method of reinforcing concrete structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1083274A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322433A (en) * 2001-04-24 2002-11-08 Denki Kagaku Kogyo Kk Slow curing acrylic adhesive composition
JP4694029B2 (en) * 2001-04-24 2011-06-01 電気化学工業株式会社 Slow-curing acrylic adhesive composition
KR20030023901A (en) * 2001-09-14 2003-03-26 주식회사 제트화이버코리아 Method for Repairing and Reinforcing Concrete Structure
JP2004107944A (en) * 2002-09-17 2004-04-08 Konishi Co Ltd Reinforcement method for steel structure
JP2018188557A (en) * 2017-05-08 2018-11-29 ショーボンド建設株式会社 Adhesive injection method and adhesive

Also Published As

Publication number Publication date
TW508401B (en) 2002-11-01
KR20010071320A (en) 2001-07-28
EP1083274A1 (en) 2001-03-14
KR100429959B1 (en) 2004-05-03
CA2333419A1 (en) 1999-12-02
EP1083274A4 (en) 2005-03-02

Similar Documents

Publication Publication Date Title
ES2557896T5 (en) Adhesives for bonding composite materials
US6017588A (en) Method for reinforcing structures
WO1999061725A1 (en) Method for repairing and reinforcing existing concrete structure and resin
JP5336730B2 (en) Adhesive structure bonded using radical polymerizable adhesive for fiber reinforced plastic and method for producing the same
JP2008266509A (en) Curable resin composition, repairing method and reinforcing method using the same
JP4285848B2 (en) Coating material, method for curing the same, and coating material for reinforcing concrete
JPH08206029A (en) Lined article for hygiene product and its manufacturing process
JPH107750A (en) Method for reinforcing concrete structure, radical-polymerizable primer for use in the method, and composition forming radical-polymerized cured resin
WO2020066363A1 (en) Structure repairing method
JP2002029867A (en) Method for reinforcing concrete structure and radical- polymerizable primer and radical-polymerized hardened resin-forming composition, for use in the same
JP5371562B2 (en) Low odor acrylic syrup composition and method for producing the same
JP3984340B2 (en) Syrup composition, primer for reinforcement method, reinforcing material for structure, and resin mortar or resin concrete
JP2002234921A (en) Odor-less acrylic syrup composition
JP2003342314A (en) Acrylic curable composition with blended short fiber
JP4314838B2 (en) Curable adhesive and bonding method using the same
JP2015229682A (en) Resin blend, laminate and production method thereof
JP4128675B2 (en) Resin composition
JPH09177333A (en) Reinforced fiber sheet and method for repairing-reinforcing structure using the same sheet
JPH11181361A (en) Curable pressure-sensitive adhesive sheet and laminate
JP3779764B2 (en) How to repair and reinforce structures
JP7060663B2 (en) How to reinforce or repair structures
JP3602713B2 (en) Reinforcement method for concrete structures
JP4088716B2 (en) Method of pouring and reinforcing curable liquid
WO1992020753A1 (en) One-part primerless structural adhesive
JPH107936A (en) Metal coating composition and its use

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2333419

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 09700706

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020007013275

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1999922484

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999922484

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007013275

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007013275

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999922484

Country of ref document: EP