WO1999059923A1 - Dispositif et procede d'epuration des eaux usees - Google Patents

Dispositif et procede d'epuration des eaux usees Download PDF

Info

Publication number
WO1999059923A1
WO1999059923A1 PCT/DE1998/001381 DE9801381W WO9959923A1 WO 1999059923 A1 WO1999059923 A1 WO 1999059923A1 DE 9801381 W DE9801381 W DE 9801381W WO 9959923 A1 WO9959923 A1 WO 9959923A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
ion exchange
exchange resin
chamber
container
Prior art date
Application number
PCT/DE1998/001381
Other languages
German (de)
English (en)
Inventor
Manfred Holbach
Original Assignee
Manfred Holbach
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Manfred Holbach filed Critical Manfred Holbach
Priority to PCT/DE1998/001381 priority Critical patent/WO1999059923A1/fr
Publication of WO1999059923A1 publication Critical patent/WO1999059923A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/06Column or bed processes during which the ion-exchange material is subjected to a physical treatment, e.g. heat, electric current, irradiation or vibration
    • B01J47/08Column or bed processes during which the ion-exchange material is subjected to a physical treatment, e.g. heat, electric current, irradiation or vibration subjected to a direct electric current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/10Ion-exchange processes in general; Apparatus therefor with moving ion-exchange material; with ion-exchange material in suspension or in fluidised-bed form
    • B01J47/11Ion-exchange processes in general; Apparatus therefor with moving ion-exchange material; with ion-exchange material in suspension or in fluidised-bed form in rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/30Electrical regeneration

Definitions

  • the invention is based on a method for wastewater purification in a container in which an ion exchange resin according to the preamble of claim 1 or the independent claim 2 is introduced from DE 2544488 AI is already known ion exchanger for deionizing water, in which the to be cleaned Water flows through a tank
  • a first endless belt is arranged in the tank which is permeable to the water and contains an ion exchange resin for the exchange of cations.
  • a second band runs in a direction vertical to the first band through the tank and contains a second ion exchange resin for anions.
  • the bands After the two bands have passed through the tank, the bands are introduced into two separate devices in which the ion exchange resin charged with cations or anions regenerates With this arrangement, it is unfavorable that the tapes have to be regenerated in additional separate facilities after they have passed through the waste water container or waste water tank. This method is cumbersome and not optimal for a homogeneous process, especially since large quantities of environmentally harmful residual water are produced
  • a device for cleaning and treating dirty water by means of electrolysis is also known.
  • two centrally arranged tubes made of iron and / or aluminum are provided, which have a concentric inlet connector.
  • One is a cathode and the other is Anode formed, the annular space between the two tubes being the reaction space for the dirty water flowing through.
  • it is proposed to switch the anode and cathode so that they can be reversed so that after the deposits have been detached, they can be rinsed with the dirty water from the reaction space
  • the method according to the invention or the device for water purification with the characterizing features of the independent claims 1 and 2 has the advantage that only a single device / container is required for the purification of the waste water as well as for the purification and recharging of the ion exchange resin. It is particularly advantageous that both the cleaning of the waste water with the ion exchange resin and the cleaning of the ion exchange resin with the aid of electrolysis can be carried out in the same container. Finally, the ion exchange resin is recharged in the same container before it can be used again for cleaning the waste water
  • partition walls are provided in the container, but which have corresponding openings for the passage of the dirty water or a membrane with a corresponding permeability for the dirty water, in order to ensure the most undisturbed water flow.
  • partition walls form several chambers in the container, in which the ion exchange resin can be fully utilized according to its degree of saturation.
  • the partition walls are made of an electrically non-conductive material, then an insulated chamber advantageously results, in which a positively and negatively charged electrode (anode and cathode) can be introduced. With the help of these electrodes, the electrolysis can then be carried out in a simple manner without the need for an additional container.
  • the shaft can be designed as an anode, while one or more cathodes are arranged in the edge region of the container, on which the metal ions are deposited.
  • platinum as the electrode material advantageously ensures a long service life, since platinum largely does not react with the pollutants in the waste water.
  • the hydrogen and chlorine gas generated during the electrolysis rises, it can be collected at a suitable location above the electrolysis chamber in order to use it to recharge the ion exchange resin.
  • the container is cylindrical and is set up horizontally or vertically with respect to its longitudinal axis.
  • the dirty water can first be passed through part of the chambers of the container in a first cleaning phase, while in a second and third phase the ion exchange resin can be cleaned and recharged.
  • a collecting container for collecting these gases is advantageously arranged at the highest point of the container.
  • FIG. 1 shows a schematic illustration of an exemplary embodiment
  • FIG. 2 shows a detailed view of a chamber
  • FIG. 3 shows a horizontally arranged cascade
  • FIG. 4 shows a vertically arranged cascade.
  • Figure 1 shows a tubular container 1 in cross section, which is arranged lying. In an alternative embodiment of the invention, it is provided to arrange the container upright.
  • the container 1 is shown open on its left cross-sectional area so that the chambers 4 formed by partitions 3 are visible.
  • the container In the normal operating state, the container is closed at its end faces and designed as a pressure container so that the waste water or dirty water to be cleaned can be pumped through the container with a certain pressure.
  • FIG. 1 therefore only shows the schematic structure of the device with the container 1.
  • a shaft 2 is arranged centrally to the longitudinal axis, which is driven by a motor, not shown.
  • Partition walls 3 are attached to the shaft 2, the partition walls 3 each extending radially along the shaft 2 to the outer wall of the cylinder wall 9. Two adjacent partition walls 3 thus form a chamber 4 in connection with part of the associated cylinder wall 9.
  • the partitions 3 are permeable to water. They are designed as a membrane or as a partition 3 with an opening or as a perforated plate which have openings 12a, 12b for the passage of water ( Figure 2).
  • the partitions can be closed with a suitable closing device (FIG. 2: further partition 3b, spring 4a, roller 10, closer 11), so that the water enclosed in the corresponding chamber 4 can practically not flow out.
  • a suitable closing device FIG. 2: further partition 3b, spring 4a, roller 10, closer 11
  • An inlet 5a and an outlet 5b are attached at suitable points of the container 1.
  • a mechanically acting filter 15 for filtering solid components in the dirty water can be connected upstream of the inlet 5a.
  • a collecting device 13 is arranged at the highest point of the container 1, in which the H2 and C12 gas generated during the electrolysis can collect.
  • a storage container 14 is connected to the container 1, from the hydrochloric acid or another suitable cation donor, e.g. B. NaCl can be supplied to the container 1.
  • a suitable amount of hydrochloric acid can thus be filled into the container 1 via a metering valve 16, for example.
  • chambers 4 are formed by the partitions 3, in which both the cleaning of the dirty water and the cleaning of the ion exchange resin and the charging of the resin (regeneration) are carried out.
  • the number of chambers 4 depends on the individual case, at least three chambers should be provided for the 3 cleaning and regeneration phases.
  • a network 6 is provided, in which the resin 7 is filled.
  • this network 6 with the ion exchange resin 7 was only shown schematically in the left chamber (second chamber from above). However, it is intended for all chambers. By removing and replacing the network 6, the ion exchange resin 7 can advantageously be replaced in a simple manner if this is necessary.
  • FIG. 2 shows a schematic representation of a partial section of a chamber.
  • the partitions 3 are formed with a closing device 3b, 4a, 10, 11, 20 so that they close the chamber 4 in question impermeably when necessary, in particular during the electrolysis. Since the partition walls 3 in question are firmly connected to the other partition walls 3b on the one hand to the shaft 2 and on the other hand extend as far as the cylinder wall 9, they seal the chamber 4 in a corresponding position, so that practically no dirty water penetrates into an adjacent chamber 4 can.
  • the further partition 3b has, for example, bores or openings 12a, 12b at the same locations as the partition 3, through which the dirty water can only flow in position 1. This position is fixed by the spring force of the compression spring 4a.
  • a roller 10 is attached, which runs on the closer 11 when the shaft 2 rotates counterclockwise and thereby radially displaces the further partition 3b to such an extent that the openings 12a, 12b are closed against one another (position 2).
  • the roller 10 runs down from the closer 1 1, so that a further function, for example the closing of the flanged secondary chamber 21, can be controlled hereby.
  • This secondary chamber 21 must be closed, among other things, in the event that the cathodes 17 are to be cleaned of the contamination by reversing the polarity of the operating voltage.
  • the openings 12a, 12b are designed so that the partitions remain closed in this position.
  • a flap (not shown in more detail) or a similar mechanism to that used for the partition walls 3, 3b can be used as the closure device for the secondary chamber 21, 21a. The operation of this arrangement is explained in more detail below. With the device, for example, polluted industrial waste water. Sea water, radioactive water or waste water can be cleaned.
  • This wastewater is expediently first freed of solid constituents by means of a mechanical filter 15 before it is introduced via the inlet 5a in the upper left region of the tank 1 (FIG. 1).
  • the cleaning process preferably consists of three phases, which are carried out in the container 1 within a cycle.
  • provision is made, for example, to produce one or more chambers 4 without ion exchange resin 7 in order to produce high-purity water and to purify the waste water by means of electrolysis.
  • a corresponding inlet and / or outlet is then provided for this chamber.
  • the cations are first removed from the dirty water by means of the ion exchange resin 7 (FIGS. 1 to 3 chamber 4, counted counterclockwise from top left).
  • the second phase (4th chamber 4) ions are removed by electrolysis. e.g. metal ions deposit on the cathode or cathodes 17 in the secondary chamber 21, hydrogen and chlorine are formed in gaseous form (at the anode) and preferably rise in the secondary chamber 21 and 21a and are collected in the collecting container 13.
  • the ion exchange resin is recharged by adding hydrochloric acid (HC1) (5th and 6th chamber 4). wherein the hydrogen and chlorine gas previously collected in the collecting container 13 reacts to hydrochloric acid and supports the charging of the ion exchange resin 7.
  • the first phase then begins, in which the charged ion exchange resin 7 is fed to the water inlet 5a.
  • One or more chambers 4 can be used for each phase.
  • three chambers 4 are used for the first phase (1st to 3rd chamber 4).
  • Each of these three chambers 4 has partitions 3 which are permeable to water and have a locking device.
  • the partitions 3 are firmly connected to the shaft 2 and move counterclockwise with the shaft 2.
  • a network 6 is preferably introduced into each of these three chambers 4, in which the ion exchange resin 7 is first used to exchange cations.
  • the dirty water is passed through the first three chambers 4 until the ion exchange resin 7 is largely consumed in its effect.
  • the efficiency of the ion exchange resin 7 is already low, since it has been in contact with the waste water for the longest time.
  • ion exchange resins 7 and the processes for the exchange of cations and anions are known per se and therefore need not be explained in more detail.
  • Suitable ion exchange resins 7 are known for cleaning purposes and are commercially available (for example, the company Purolite Kunststoff GmbH, Harkortstr. 25, 40880 Ratingen).
  • the used ion exchange resin 7 is first cleaned of the cations or anions taken up with the aid of electrolysis.
  • corresponding electrodes 17 are arranged at a suitable location in the secondary chamber 21, 21a.
  • the partition walls 3 are made of an electrically non-conductive material and the surface is partially designed at least as an electrode (anode or cathode).
  • the fourth chamber 4 is closed impermeable to water for the electrolysis.
  • the partitions 3, 3b are now closed with the closing device (4a, 10) and with the help of the closer 11 in such a way that the openings 12a, 12b are covered by the opposite partition (position 2).
  • the precise control of the locking mechanism will be explained in more detail later.
  • the cathode or a plurality of cathodes 17 are preferably made of platinum in order to simplify the cleaning of the electrodes.
  • the electrodes 17, 17a are connected to a corresponding DC voltage source via suitable contacting means such as slip rings or contacts.
  • the secondary chamber 21, 21a is closed and the voltage source is reversed so that the deposits in particular can detach from the cathodes and can be collected in a second collecting container 18, where they can be removed.
  • the network 6 To simplify maintenance or cleaning of the container 1, provision is made for the network 6 to be removable with the ion exchange resin 7. After cleaning or maintenance work, the network can then be reinserted or replaced. It appears advantageous to produce the network with the ion exchange resin 7 as a complete unit for use in cleaning systems.
  • the H2 or CI2 gases that are formed on the cathodes 17, among others, are transferred via the
  • Electrodes can also be used for the electrodes in the electrolysis.
  • suitable materials for the electrodes the physico-chemical law of the voltage series must be taken into account.
  • platinum electrodes have the advantage that they are wear-free, inert towards other materials, and therefore do not cause any undesired material-specific reactions.
  • the ion exchange resin is recharged by adding hydrochloric acid (alternatively NaCl).
  • hydrochloric acid alternatively NaCl
  • the hydrochloric acid formed in the electrolysis is essentially added to the resin again from the collecting container 13.
  • hydrochloric acid can be supplied to the container 1 via a metering valve 16 by means of the storage container 14 in order to charge the ion exchange resin 7.
  • the metering valve 16 is set for a specific inflow. After charging the ion exchange resin 7, it reaches the position of the first chamber 4, where the dirty water flows through it again.
  • 4 additional cleaning methods e.g. to arrange a lamp producing UV light.
  • An empty third chamber 4 can then optionally be provided, in which, for example, electrolysis can be carried out.
  • the water can then be removed after cleaning.
  • Inlets 5a or outlets 5b can also be provided for each individual chamber in order to adapt the cleaning process to the waste water used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

Procédé et dispositif, doté d'une cuve cylindrique, pour l'épuration des eaux usées, ladite cuve comportant plusieurs chambres formées par des parois de séparation. Les parois de séparation sont placées autour d'un arbre central de la cuve qui est entraîné par un moteur et qui fait ainsi tourner les chambres, par exemple dans le sens inverse des aiguilles d'une montre. Dans une première phase, les eaux à épurer sont conduites sur une résine échangeuse d'ions. Dans une deuxième phase, la résine échangeuse d'ions utilisée est nettoyée par électrolyse, l'eau étant elle aussi soumise à une électrolyse si nécessaire. Pour ce cas, les parois de séparation normalement perméables à l'eau sont conçues pour pouvoir être fermées. Dans une troisième phase, la résine échangeuse d'ions est rechargée et à nouveau mise en contact avec des eaux usées. L'avantage essentiel du présent dispositif est la nécessité d'une seule cuve pour l'intégralité du processus. L'autre nouveauté est que de la sélection du produit à traiter que sont des eaux usées jusqu'au produit fini souhaité qu'est l'eau épurée, des résines échangeuses d'ions sont utilisées sans danger pour l'environnement en combinaison avec un procédé d'électrolyse. L'eau à traiter peut être prélevée de la cuve progressivement/par chambre/par phase, dans chacun de ses états appropriés en tant qu'eau épurée et comme produit fini souhaité, par des dispositifs d'évacuation. Ce procédé et ce dispositif permettent enfin l'épuration d'eaux usées industrielles, d'eaux contenant des déchets organiques et d'eaux radioactives, la décalcification, le dessalement, le traitement de l'eau de mer et la production d'eau pure d'une manière continue, économique et sans danger pour l'environnement.
PCT/DE1998/001381 1998-05-19 1998-05-19 Dispositif et procede d'epuration des eaux usees WO1999059923A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/DE1998/001381 WO1999059923A1 (fr) 1998-05-19 1998-05-19 Dispositif et procede d'epuration des eaux usees

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE1998/001381 WO1999059923A1 (fr) 1998-05-19 1998-05-19 Dispositif et procede d'epuration des eaux usees

Publications (1)

Publication Number Publication Date
WO1999059923A1 true WO1999059923A1 (fr) 1999-11-25

Family

ID=6918643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/001381 WO1999059923A1 (fr) 1998-05-19 1998-05-19 Dispositif et procede d'epuration des eaux usees

Country Status (1)

Country Link
WO (1) WO1999059923A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10005681A1 (de) * 2000-02-07 2001-08-16 Atc Dr Mann Verfahren und Vorrichtung zur Dekontamination metallhaltiger und/oder radioaktiv belasteter Wässer
FR3029517A1 (fr) * 2014-12-05 2016-06-10 Veolia Water Solutions & Tech Procede de traitement d'eau comprenant une etape d'adsorption sur resine echangeuse d'ions et une etape de coagulation/floculation lestee et de separation, et installation correspondante.
CN113277667A (zh) * 2021-05-25 2021-08-20 西安理工大学 一种磁场增强的电容去离子连续水净化装置及其方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB506820A (en) * 1936-08-31 1939-06-01 Emile Lavech Improvements in water-softening apparatus
GB517026A (en) * 1937-11-08 1940-01-18 Trailigaz Soc Ind Du Traitemen Improved apparatus for the physical or chemical treatment of liquids
GB517025A (en) * 1937-07-13 1940-01-18 Trailigaz Soc Ind Du Traitemen Improved apparatus for the physical or chemical treatment of liquids
GB2051604A (en) * 1979-05-16 1981-01-21 Anderberg E Gas dryer/dehumidifier
DE4019580A1 (de) * 1989-06-21 1991-01-03 Heinz Zimmermann Vorrichtung zum elektrochemischen absondern und entfernen von kationen und anionen aus fluessigkeiten unter verwendung eines ionentauschers
US5078842A (en) * 1990-08-28 1992-01-07 Electric Power Research Institute Process for removing radioactive burden from spent nuclear reactor decontamination solutions using electrochemical ion exchange
WO1997038772A1 (fr) * 1996-04-12 1997-10-23 Technische Universiteit Delft Appareil permettant de separer un fluide en deux composants ou plus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB506820A (en) * 1936-08-31 1939-06-01 Emile Lavech Improvements in water-softening apparatus
GB517025A (en) * 1937-07-13 1940-01-18 Trailigaz Soc Ind Du Traitemen Improved apparatus for the physical or chemical treatment of liquids
GB517026A (en) * 1937-11-08 1940-01-18 Trailigaz Soc Ind Du Traitemen Improved apparatus for the physical or chemical treatment of liquids
GB2051604A (en) * 1979-05-16 1981-01-21 Anderberg E Gas dryer/dehumidifier
DE4019580A1 (de) * 1989-06-21 1991-01-03 Heinz Zimmermann Vorrichtung zum elektrochemischen absondern und entfernen von kationen und anionen aus fluessigkeiten unter verwendung eines ionentauschers
US5078842A (en) * 1990-08-28 1992-01-07 Electric Power Research Institute Process for removing radioactive burden from spent nuclear reactor decontamination solutions using electrochemical ion exchange
WO1997038772A1 (fr) * 1996-04-12 1997-10-23 Technische Universiteit Delft Appareil permettant de separer un fluide en deux composants ou plus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10005681A1 (de) * 2000-02-07 2001-08-16 Atc Dr Mann Verfahren und Vorrichtung zur Dekontamination metallhaltiger und/oder radioaktiv belasteter Wässer
DE10005681B4 (de) * 2000-02-07 2005-06-16 Atc Dr. Mann E.K. Verfahren und Vorrichtung zur Dekontamination metallhaltiger Wässer
US7070685B2 (en) 2000-02-07 2006-07-04 Fraunhofer-Gesellschaft Method and device for decontaminating water which contains metal and/or is radioactively contaminated
FR3029517A1 (fr) * 2014-12-05 2016-06-10 Veolia Water Solutions & Tech Procede de traitement d'eau comprenant une etape d'adsorption sur resine echangeuse d'ions et une etape de coagulation/floculation lestee et de separation, et installation correspondante.
EP3040312A1 (fr) * 2014-12-05 2016-07-06 Veolia Water Solutions & Technologies Support Procede de traitement d'eau comprenant une etape d'adsorption sur resine echangeuse d'ions et une etape de coagulation/floculation lestee et de separation, et installation correspondante
CN113277667A (zh) * 2021-05-25 2021-08-20 西安理工大学 一种磁场增强的电容去离子连续水净化装置及其方法
CN113277667B (zh) * 2021-05-25 2024-04-23 西安理工大学 一种磁场增强的电容去离子连续水净化装置及其方法

Similar Documents

Publication Publication Date Title
DE10196530B4 (de) System zur Herstellung von ultrareinem Wasser mit Laborqualität
WO1983003984A1 (fr) Procede de traitement d'une phase liquide, en particulier procede de dessalement de solutions aqueuses, ainsi que dispositif permettant sa mise en oeuvre
EP2294016B1 (fr) Procédé et dispositif de traitement de l eau
EP0352779B1 (fr) Installation mobile de production d'eau potable
DE10246540B4 (de) Vorrichtung zur Reinigung von Prozessgas einer Reflowlötanlage
DE19717451C2 (de) Verfahren und Vorrichtung zur Abwasserreinigung
WO1999059923A1 (fr) Dispositif et procede d'epuration des eaux usees
EP0462523B1 (fr) Appareil et procédé pour le traitement de l'eau
DE2756171B1 (de) Verfahren zur Sanierung von bei Dauerbetrieb ueberlasteten Klaeranlagen und Klaeranlage zur Durchfuehrung eines derartigen Verfahrens
EP0675761B1 (fr) Procede et installation permettant de traiter une solution aqueuse par echange d'ions
AT519319B1 (de) Aufbereitung von Abwasser zu Trinkwasser mittels Ozon
EP2457876B1 (fr) Dispositif et procédé de suppression de phosphates dans un liquide et un procédé de surveillance dudit dispositif
DE202011100486U1 (de) Einrichtung zur Abfallbeseitigung
DE2052974C2 (de) Verfahren zum Reinigen von Wasser und Vorrichtung zu seiner Durchführung
EP0063236A1 (fr) Traitement des eaux résiduaires au moyen d'échangeurs d'ions
DE19650191C1 (de) Verfahren zur Wasserreinigung sowie Vorrichtung zur Durchführung des Verfahrens
DE3329813A1 (de) Verfahren und vorrichtung zum behandeln von fluessigkeiten, insbesondere entsalzen waessriger loesungen
DE10352480A1 (de) Wasseraufbereitungsanlage
EP1558527B1 (fr) Dispositif permettant d'empecher l'entartrage dans des systemes de circulation d'eau
DE102010044272B3 (de) Verfahren zur Kontinuierlichen Entfernung von Verunreinigungen aus Wasser
DE4235833C2 (de) Vorrichtung und Verfahren zur Wasserreinigung
DE4137725A1 (de) Verfahren zur beseitung der nitrate aus zum trinken bestimmtem wasser mittels einsatz von membransystemen und aehnlichen verfahren
AT282275B (de) Verfahren und Vorrichtung zur Reinigung bzw. Regenerierung chromsaurer Elektrolyte
DE102011018252B4 (de) Verfahren zur physikalisch-chemischen Aufbereitung von ammoniumhaltigen Wässern
JPH063495A (ja) 廃液処理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase