WO1999058960A1 - Materiau luminescent de refroidissement sensible a l'oxygene et a forte sensibilite - Google Patents

Materiau luminescent de refroidissement sensible a l'oxygene et a forte sensibilite Download PDF

Info

Publication number
WO1999058960A1
WO1999058960A1 PCT/CN1999/000067 CN9900067W WO9958960A1 WO 1999058960 A1 WO1999058960 A1 WO 1999058960A1 CN 9900067 W CN9900067 W CN 9900067W WO 9958960 A1 WO9958960 A1 WO 9958960A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
metal
materials
complex
inorganic
Prior art date
Application number
PCT/CN1999/000067
Other languages
English (en)
French (fr)
Inventor
Mingfat Choi
Dan Xiao
Kemin Wang
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Publication of WO1999058960A1 publication Critical patent/WO1999058960A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence

Definitions

  • the present invention relates to a high-sensitivity fluorescence-extinguishing oxygen-sensitive material, and more particularly to a high-sensitivity oxygen-sensitive material for a fluorescence-extinguishing oxygen sensor.
  • Oxygen is the main component of many chemical reactions and chemical shields, and is the basic substance on which living beings depend.
  • the research and application of oxygen sensors are important in scientific research and industrial fields such as biology, clinical medicine, light industry, chemical engineering, and environmental science.
  • Oxygen sensors generally detect three types of Clark-type polarographic oxygen sensors, oxide ceramic sensors, and photochemical oxygen sensors for detecting oxygen content and changes.
  • the photochemical oxygen sensor is a sensing technology gradually developed in the mid-1970s. This type of sensor can work normally at normal temperature and pressure, and can also work at very low or high temperature according to the characteristics of different light-emitting materials.
  • Oxygen is used to measure oxygen based on the principle of fluorescence extinction. It does not involve the mass consumption of oxygen, so it is easy to reach equilibrium with the sample being measured.
  • oxygen-sensitive materials are prepared by extinguishing fluorescent materials with oxygen, as described in reference 1 (A. Mil ls and M. Thomas; Analyst, 122 (1997) 63-68).
  • Organic materials such as PMMA and plasticizer are dissolved in In the solvent, the fluorescent substance is also dissolved therein, and then the solvent is volatilized to form a PMMA film.
  • the fluorescent substance in this mixed-last-molded material is often dispersed or dissolved in the polymer and its plasticizer, and is easy to be lost in contact with water; and the fluorescent substance may form a solvate with the plasticizer therein, and is surrounded by plasticizer. Surrounded by molecules, which affects the interaction of oxygen molecules.
  • the sensitivity of the prior art oxygen-sensitive materials to oxygen determination has been low so far.
  • the ratio of the luminous intensity signal in the oxygen-free gas and pure oxygen (I ⁇ / I is generally only about 10 times, and in a better case only 25-40 times, if it is The signal ratio measured in aqueous medium at atmospheric pressure does not exceed 5 times. Therefore, its application is limited.
  • the purpose of the present invention is to develop a high-sensitivity oxygen-sensitive light-emitting material, which has a high multiple of the luminous intensity signal ratio. Therefore, the oxygen sensor made by it has extremely high sensitivity, and its application range is therefore significantly expanded.
  • the present invention fixes the oxygen-extinguishing fluorescent substance on the surface or porous structure of the formed inorganic or organic material through physical or chemical bonding technology, thereby improving the dispersion and binding state of the fluorescent substance in the material and increasing its interaction with oxygen molecules. Effectiveness, thus greatly increasing its sensitivity to oxygen determination.
  • the present invention provides a high-sensitivity fluorescence-extinguishing oxygen-sensitive material, which is prepared by the following method: contacting a dispersion system of an oxygen-extinguishing fluorescent substance with a formed inorganic or organic solid material through physical or chemical bonding, The oxygen-extinguishing fluorescent substance is fixed on the solid material.
  • the oxygen-extinguishing fluorescent material used in the present invention includes: a metal ruthenium complex (such as a trichlorin phenanthroline complex ruthenium (II) dichloride, Ru (ph) 3 cl 2 ; a terpyridine complex ruthenium (II) dichloride) Ru (bpY) 3 cl 2 ; Dichloride of tri-4, 7-diphenylpyridinium phenanthroline ruthenium (II), Ru (dpp) Cl 2 ), metal rhenium complex, metal lead complex Compounds, metal platinum and palladium complexes, metal gold complexes, metal osmium complexes, and other transition metal complexes (such as metalporphyrin complexes).
  • a metal ruthenium complex such as a trichlorin phenanthroline complex ruthenium (II) dichloride, Ru (ph) 3 cl 2 ; a terpyridine complex rut
  • the physical or chemical bonding methods used in the present invention include: fixing the oxygen-quenching fluorescent substance on the surface of a solid material or in a porous or network structure of the material through adsorption, ion exchange, chemical bonding, and other fixing methods.
  • the inorganic or organic solid materials used in the present invention include: silica gel, molecular sieves, refractory metal oxides, clay minerals, ceramic materials, porous glass, porous silicon and other inorganic materials that can be combined with oxygen-extinguishing fluorescent materials, and ion exchange resins, polymers Organic materials such as acetamidine, polyvinyl chloride, polyamide, etc., which can be combined with oxygen-extinguishing fluorescent substances.
  • the inorganic solid material is preferably a silicone gel, and the organic solid material is preferably an ion exchange resin.
  • the formed solid material can take the form of powder, granule, film, block or fiber.
  • a high-sensitivity fluorescent quenching oxygen sensor can be manufactured.
  • silica gel is used to adsorb ruthenium complex, namely tri-4,7 dibenzyline phenanthroline complex.
  • High-sensitivity light-emitting materials made of ruthenium's four pairs of chlorobenzylboron associations [Ru (dpp) 3 [(p- clph) 4 B] 2 ] emit pink fluorescence in the absence of oxygen, and at low concentrations of oxygen ( If the oxygen concentration is as low as 0.5% v / v), the fluorescence intensity will be significantly weakened due to the extinguishing effect, and it will turn pale yellow.
  • the sensor made of this light-emitting material has not only high sensitivity, but also good stability and reproducibility.
  • the oxygen sensors made of light-emitting materials such as PVC film, Sol-gel film, silicone rubber film, Gelatin film, and cellulose film have been used in the prior art to neutralize pure Ar gas or pure N 2 gas.
  • the signal ratios measured in 02 are between 4 and 10; the signal ratio of Sol-gel sensitive materials using porphyrin compounds as luminescent substances is also only 40 times.
  • the dissolved oxygen sensor prepared by using the oxygen-sensitive material prepared by the present invention has a signal ratio I / I ⁇ greater than 30 times measured in oxygen-free water and oxygen-saturated water under one atmosphere and room temperature conditions.
  • the signal ratio of the oxygen sensor prepared by using the fluorescence quenching reagent in the oxygen-free water and oxygen-saturated water is about 5 times of I / I. It is more than 6 times lower than the 30 times obtained by the present invention. This shows that the oxygen sensor made of the highly sensitive luminescent material of the present invention has extremely high sensitivity.
  • the lower detection limit of the oxygen sensor made of the highly sensitive luminescent material of the present invention is lower than lp P m (v / v) in the gas phase and lower than 10 ppb in the water phase. And it can be used to determine the oxygen content in organic solvents.
  • FIG. 1 and 2 are basic structural diagrams of two embodiments of an isolated fluorescent extinction oxygen sensor made by applying the material of the present invention
  • FIG. 3 and FIG. 4 are respectively a flow-through fluorescent extinction oxygen sensor made by applying the present invention.
  • Basic structure diagram of two embodiments Figure 5 is a simple high-sensitivity oxygen meter structure principle diagram.
  • Figures 1 and 2 show the basic structure of an isolated oxygen sensor.
  • the incident light A can be incident at different directions or angles.
  • the emitted light B can be collected in different orientations or angles.
  • oxygen passes through the breathable membrane and contacts the highly sensitive luminescent material, so that the emitted fluorescence is extinguished and weakened.
  • Figures 3 and 4 show the basic structure of a flow-through oxygen sensor.
  • the incident light A and the emitted light B can be incident or emitted through different azimuths and angles, and a gas or liquid flows directly through the high-sensitivity luminescent material.
  • Fig. 5 is a structural principle diagram of a simple and portable high-sensitivity oxygen measuring instrument made of a high-sensitivity light-emitting material of the present invention through a simple light-emitting and light-sensitive element.
  • an oxygen sensor of the present invention is a light-emitting material can be determined oxygen in the atmosphere, the indoor air, thin air, oxygen special environment and special gases (e.g., C0 2, N 2, Ar, H 2 gas, etc.) oxygen content.
  • the oxygen sensor made by the present invention can measure oxygen in nitrogen and Ar gas at less than 1 ppm (v / v).
  • the oxygen sensor made by the present invention can also measure dissolved oxygen in water, and its lower detection limit is lower than 10 ppb.
  • the incident light and the emitted light can be transmitted through the optical fiber, so as to complete the long-distance detection, or be prepared as a miniature probe (for example, it can be used for real-time measurement in clinical human body, etc.).

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

高灵敏度荧光熄灭氧敏感材料 技术领域
本发明涉及高灵敏度荧光熄灭氧敏感材料, 更具体地涉及用于荧 光熄灭氧传感器的高灵敏度氧敏感材料。
背景技术
氧是许多化学反应和化学物盾的主要成份, 是生命体赖以存在的 的基础物质。 氧传感器的研究和应用于氧含量及其变化的测定在生 物、 临床医学、 轻工、 化工、 环境科学等科学研究与工业领域具有重 要意义。
氧传感器检测氧的含量和变化通常有克拉克 (Clark ) 型极谱氧 传感器、 氧化物陶瓷传感器、 光化学氧传感器三种类型。 其中光化学 氧传感器是七十年代中期逐渐发展起来的传感技术, 这类传感器在常 温常压下可正常工作, 根据不同发光材料的特性也可以在极低或较高 温度下工作; 由于是采用氧作用荧光熄灭的原理来测定氧, 不涉及氧 的质量消耗, 因此与被测样品极易达到平衡。
通常, 利用氧熄灭荧光物质制备氧敏感材料, 如文献 l (A. Mil ls and M. Thomas ; Analyst, 122 (1997) 63-68)所述, 是将有机材料如 PMMA和增塑剂溶于溶剂中, 同时荧光物质也溶解其中, 然后使溶剂挥 发制成 PMMA膜。 这种先混合 -后成型的材料中荧光物质往往分散或溶 解于聚合物及其增塑剂中, 遇水易流失; 而且荧光物质可能与其中的 增塑剂形成溶剂化物, 四周被增塑剂分子所包围, 因而影响氧分子与 之作用。
另 有 文 献 2 (0. S. Wolfbeis, M. J. P. Loiner and H. E. Posch; Mikrochim. Acta, III (1986) 359-366)报导, 将钌的络合 物吸附在硅胶上, 再将其掺入聚硅烷中成型以制备氧敏感材料。 这也 是先混合于硅胶上, 再制成聚硅烷成品, 因而荧光物质对氧的利用率 同样受到阻碍和影响。
因此, 到目前为止现有技术的氧敏感材料对氧测定的灵敏度均较 低。 在一个大气压下, 在无氧气体和纯氧中的发光强度信号比( I ^ /I —般仅 10倍左右, 较好的情况也只有 25 - 40倍, 如果是在一 个大气压下的水相介质中测量此信号比均不超过 5倍。 因而使其应用 受到了限制。
本发明的目的是, 研制出高灵敏度氧敏感发光材料, 它有高倍数 的发光强度信号比, 因而采用它做成的氧传感器具有极高的灵敏度, 其应用范围因此得到显著拓展。
发明概述
本发明是通过物理或化学结合技术使氧熄灭荧光物质固定在已 成型的无机或有机材料的表面或多孔结构中, 从而改善荧光物质在材 料中的分散和结合状态, 提高其与氧分子作用的有效性, 因而大大增 加其对氧测定的灵敏度。
本发明提供一种高灵敏度荧光熄灭氧敏感材料, 该材料是用下述 方法制备的: 将氧熄灭荧光物质的分散体系与已成型的无机或有机固 体材料接触, 通过物理或化学的结合方式, 使氧熄灭荧光物质固定在 固体材料上。
发明详迷
本发明所用的氧熄灭荧光材料包括; 金属钌络合物(如三呤菲罗 啉络钌 ( II ) 的二氯化物, Ru (ph) 3cl2; 三联吡啶络钌 ( II ) 的二氯 化物 Ru (bpY) 3cl2; 和三 - 4, 7二苯基呤菲罗啉络钌 ( II ) 的二氯化 物, Ru (dpp) Cl2 ) 、 金属锇络合物、 金属铅络合物、 金属铂和钯络合 物、 金属金络合物、 金属铼络合物、 以及其它过渡金属络合物(如渡 金属卟啉络合物) 等。
本发明所用的物理或化学的结合方式包括: 通过吸附、 离子交 换、 化学键合以及其它固定方式, 使氧熄灭荧光物质固定在固体材料 表面或材料的多孔或网状结构中。
本发明所用的无机或有机固体材料包括: 硅胶、 分子筛、 难熔金 属氧化物、 粘土矿物、 陶瓷材料、 多孔玻璃、 多孔硅等可与氧熄灭荧 光物质结合的无机材料, 和离子交换树脂、 聚乙埽、 聚氯乙烯、 聚酰 胺等可以与氧熄灭荧光物质结合的有机材料。 无机固体材料优选为硅 胶, 和有机固体材料优选离子交换树脂。 已成型的固体材料可以取粉 状、 顆粒状、 膜状、 块状或纤维状等形式。
采用本发明所述的高灵敏度发光材料可制造高灵敏度荧光熄灭 氧传感器。 例如, 以硅胶吸附钌络合物即三- 4, 7二笨基呤菲罗啉络 钌的四对氯笨硼締合物 [Ru (dpp) 3 [ (p- clph) 4B] 2]所制成的高灵敏度 发光材料在无氧状态下发射粉红色荧光, 在低浓度氧(如氧气浓度低 至 0. 5%v/v )存在时也会因熄灭作用而使荧光强度显著减弱, 变成淡 黄色。 这一变化可用肉眼观察到。 用该发光材料制成的传感器不仅灵 敏度高, 还具有良好的稳定性和重现性。 在一个大气压和室温条件下 在纯 Ar中所测得的信号和在纯 02中所测得的信号比 I /I! ^为 160 倍。作为比较,现有技术至今所采用过的发光材料如 PVC膜、 Sol-gel 膜、 硅橡胶膜、 Gelatin膜、 纤维素膜所制成的氧传感器在纯 Ar气或 纯 N2气中和纯 02中所测得的信号比均在 4 - 10之间;采用卟啉化合物 作发光物质的 Sol-gel敏感材料的信号比也仅为 40倍。 采用本发明 制备的氧敏感材料制备的溶解氧传感器, 在一个大气压和室温条件 下, 在无氧水和氧气饱合水中测得的信号比 I /I ιυ^ 大于 30倍, 作为比较, 至今为止, 采用荧光熄灭试剂制备的氧气传感器在无氧水 和氧气饱合水中测得的信号比均在 I /I 约为 5倍左右。比本发 明所得的 30倍低了 6倍以上。 由此表明本发明的高灵敏发光材料制 成的氧气传感器具有极高的灵敏度。 在 1个大气压下, 用本发明的高 灵敏发光材料制成的氧气传感器的检测下限在气相中低于 lpPm ( v/v ) , 在水相中低于 10ppb。 并且可以用于有机溶剂中的氧含量测 定。
附图说明
由附图可知本发明的工作原理及实际应用。
图 1和图 2分别是应用本发明材料制成的隔离型荧光熄灭氧传感 器的两种实施方案的基本结构图, 图 3和图 4分别是应用本发明制成 的流通型荧光熄灭氧传感器的两种实施方案的基本结构图, 图 5是简 便高灵敏氧测量仪结构原理图.
在图中: 1-高灵敏度氧敏感发光材料
2-光源
3-光检测器
4 -透光材料或透气透光材料
5-固体材料或固体透气材料
6-光敏检测电路
7-透光材料
8-气体进口
9-气体出口
10-高灵敏度氧传感器
A -入射光
B-发射光
图 1和图 2表示了隔离型氧传感器的基本结构, 入射光 A可以不 同的方位或角度射入。 发射光 B可以通过不同方位或角度收集。 气体 或液体流经透气膜后, 氧气透过透气膜接触高灵敏发光材料后使得发 射的荧光熄灭而減弱。
图 3和图 4表示了流通型氧传感器的基本结构, 入射光 A和发射 光 B可以通过不同的方位和角度射入或发射, 气体或液体直接流经高 灵敏度发光材料。
图 5是采用本发明的高灵敏度发光材料, 通过简易的发光和光敏 元件制成的简便的便携式高灵敏氧测量仪的结构原理图。
采用本发明所述发光材料制成的氧传感器可以测定大气中的 氧, 室内空气、 稀薄空气, 特殊环境中氧和特殊气体(如 C02、 N2、 Ar、 H2等气体) 中的氧含量。 例如, 利用本发明做成的氧传感器可以测定 氮气、 Ar气中低于 lppm ( v/v ) 的氧气。 利用本发明做成的氧传感器 还可以测量水中的溶解氧, 其检测下限低于 10ppb。
采用本发明所述的发光材料, 可以通过光导纤维传输入射光和发 射光, 从而完成远距离检测, 或制备成微型探头(例如可用于临床人 体内实时测量等) 。
实施例:
实例 1
取 0. 1 Ru (dpp) 3cl2溶于 20ml丙嗣中, 放入 5g硅胶 60, 硅胶粒 度为 100 目左右 [购自 Merck公司]。 室温下在搅拌器上搅动 1小时, 然后过滤, 弃去丙嗣溶液。 用新鲜丙酮清洗至无色, 烘干得成品。 这 样制备的氧敏感材料, 放入图 3或 4所示的流通型测量池中, 在兰色 光激发下, 测得的 I m/I ^信号比为 120倍。
实例 2
取 0. lg Ru (bpY) 3cl2溶于 20ml 90 %乙醇中, 加入 5g中性离子 交换树脂, 室温下搅拌 1小时。 然后过滤, 弃去乙醇溶液, 用乙醇清 洗, 烘干得成品。 这样制备的氧敏材料放入如图 3或 4所示的流通型 测量池中, 在兰色光激发下, 测得的 I /Ι 信号比为 60倍。
实施例 3
取 0. lg Ru (dpp) 3 [ (p-clph) 4B] 2溶入 20ml丙酮中, 放入 5g同实 施例 1所述的硅胶 60。 在搅拌器上搅动约 1小时, 然后放置过滤。 采 用倾斜法, 倒掉丙酮溶液, 同时倒掉有少量小颗粒的硅胶。 最后用丙 酮清洗。 清洗后放入烘箱在 100 下烘干(6 小时) 。 即得成品。 这 样制备的氧敏感材料, 放入图 3所示的流通型测量池中, 在 468nm的 兰光激发下, 测定其红色荧光, 在高纯 Ar气和纯氧条件下, 测得 I 无 l M为 160倍。

Claims

权 利 要 求
1.一种高灵敏度荧光熄灭氧敏感材料, 其特征是该材料是用下述 方法制备的: 将氧熄灭荧光物质的分散体系与已成型的无机或有机固 体材料接触, 通过物理或化学的结合方式使氧熄灭荧光物质固定在固 体材料上.
2.根据权利要求 1的材料, 其特征是氧熄灭荧光物质包括: 金属 钌络合物, 金属锇络合物、 金属金络合物、 金属铅络合物、 金属铂络 合物、 金属钯络合物、 金属铼络合物以及其它过渡金属络合物.
3.根据权利要求 1或 2的材料, 其特征是所述物理或化学的结合 方式包括吸酎、 离子交换或化学键合, 从而使氧熄灭荧光物质固定在 材料表面或材料的多孔或网状结构中.
4.根据权利要求 1 - 3的任一材料, 其特征是所述的无机或有机 固体材料包括: 硅胶、 分子筛、 难熔金属氧化物、 _ 土矿物、 陶瓷材 料、 多孔玻璃、 多孔硅等可与氧熄灭荧光物盾结合的无机材料, 和离 子交换树脂、 聚乙烯、 聚氯乙烯、 聚酕胺等可以与氧熄灭荧光物质结 合的有机材料.
5.根据权利要求 4的材料, 其特征是无机固体材料是硅胶.
6.根据权利要求 1或 4的材料, 其特征是所述已成型的固体材料 包括粉状、 顆粒状、 膜状、 块状或纤维状.
6
替换页 (细则第 26条)
PCT/CN1999/000067 1998-05-12 1999-05-11 Materiau luminescent de refroidissement sensible a l'oxygene et a forte sensibilite WO1999058960A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 98112477 CN1235185A (zh) 1998-05-12 1998-05-12 用于荧光熄灭氧传感器的高灵敏度氧敏感发光材料
CN98112477.1 1998-05-12

Publications (1)

Publication Number Publication Date
WO1999058960A1 true WO1999058960A1 (fr) 1999-11-18

Family

ID=5222326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN1999/000067 WO1999058960A1 (fr) 1998-05-12 1999-05-11 Materiau luminescent de refroidissement sensible a l'oxygene et a forte sensibilite

Country Status (2)

Country Link
CN (1) CN1235185A (zh)
WO (1) WO1999058960A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2470757A (en) * 2009-06-04 2010-12-08 Haemair Ltd A sensing device for measuring the presence of gas in a substance.

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040062683A1 (en) * 2002-09-30 2004-04-01 The University Of Hong Kong Sensitive single-layer sensing device of covalently attached luminescent indicator on glass surface for measuring the concentration of analytes
JP2013528816A (ja) * 2010-06-16 2013-07-11 エンパイア テクノロジー ディベロップメント エルエルシー 金属ポルフィリンを用いた酸素検出
CN102888217A (zh) * 2011-07-21 2013-01-23 陈文通 一种卟啉铁荧光材料
CN102516836B (zh) * 2011-12-03 2014-04-16 东南大学 噻吩-共-噁二唑作为氧猝灭物质的应用
CN112656399A (zh) * 2021-01-10 2021-04-16 复旦大学 一种用于呼吸实时监控的传感膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2132348A (en) * 1982-12-23 1984-07-04 Univ Virginia Method and apparatus for determining the presence of oxygen
WO1988000339A1 (en) * 1986-07-03 1988-01-14 Rikagaku Kenkyusho Oxygen concentration probe
JPH01280242A (ja) * 1988-05-06 1989-11-10 Rikagaku Kenkyusho 酸素濃度測定装置及び酸素濃度測定法
EP0605355A1 (en) * 1992-12-30 1994-07-06 Universidad De Oviedo Oxygen-quenchable phosphorescent materials and their applications in oxygen sensing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2132348A (en) * 1982-12-23 1984-07-04 Univ Virginia Method and apparatus for determining the presence of oxygen
WO1988000339A1 (en) * 1986-07-03 1988-01-14 Rikagaku Kenkyusho Oxygen concentration probe
JPH01280242A (ja) * 1988-05-06 1989-11-10 Rikagaku Kenkyusho 酸素濃度測定装置及び酸素濃度測定法
EP0605355A1 (en) * 1992-12-30 1994-07-06 Universidad De Oviedo Oxygen-quenchable phosphorescent materials and their applications in oxygen sensing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2470757A (en) * 2009-06-04 2010-12-08 Haemair Ltd A sensing device for measuring the presence of gas in a substance.
GB2470757B (en) * 2009-06-04 2013-11-06 Haemaflow Ltd Non invasive gas analysis

Also Published As

Publication number Publication date
CN1235185A (zh) 1999-11-17

Similar Documents

Publication Publication Date Title
US5315673A (en) Optical waveguide vapor sensor
Lobnik et al. pH optical sensors based on sol–gels: chemical doping versus covalent immobilization
Mills et al. Equilibrium studies on colorimetric plastic film sensors for carbon dioxide
Ishiji et al. Photoluminescence of pyrenebutyric acid incorporated into silicone film as a technique in luminescent oxygen sensing
CA1261717A (en) Method and apparatus for oxygen determination
Chu et al. Highly sensitive and linear optical fiber carbon dioxide sensor based on sol–gel matrix doped with silica particles and HPTS
Ge et al. High-stability non-invasive autoclavable naked optical CO2 sensor
Amao et al. Optical CO2 sensor with the combination of colorimetric change of α-naphtholphthalein and internal reference fluorescent porphyrin dye
Koncki et al. Enzyme biosensor for urea based on a novel pH bulk optode membrane
EP0313655B1 (en) Oxygen concentration probe
US20060263257A1 (en) Optical gas sensor based on dyed high surface area substrates
CN107121402A (zh) 一种基于金属有机骨架化合物模拟酶催化特性的水体中氯霉素检测方法
Trinkel et al. Study of the performance of an optochemical sensor for ammonia
JPS62217146A (ja) 気体検知用オプトロ−ド
Fernández-Ramos et al. Optical humidity sensor using methylene blue immobilized on a hydrophilic polymer
Grant et al. Development of sol–gel-based fiber optic nitrogen dioxide gas sensors
Higgins et al. Novel hybrid optical sensor materials for in-breath O 2 analysis
US5952237A (en) Method for detecting harmful gases which is applicable to broad gas concentration range
WO1999058960A1 (fr) Materiau luminescent de refroidissement sensible a l'oxygene et a forte sensibilite
Zare-Dorabei et al. Design of a novel optical sensor for determination of trace gadolinium
Waich et al. Dual lifetime referenced trace ammonia sensors
Amao et al. Novel optical oxygen sensing device: a thin film of a palladium porphyrin with a long alkyl chain on an alumina plate
Duong et al. An optical pH sensor with extended detection range based on fluoresceinamine covalently bound to sol–gel support
Sanchez-Barragan et al. Tailoring the pH response range of fluorescent-based pH sensing phases by sol–gel surfactants co-immobilization
Nakamura et al. An optical sensor for CO2 using thymol blue and europium (III) complex composite film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase