WO1999057802A2 - Device for regulating rotational speed - Google Patents

Device for regulating rotational speed Download PDF

Info

Publication number
WO1999057802A2
WO1999057802A2 PCT/DE1999/001340 DE9901340W WO9957802A2 WO 1999057802 A2 WO1999057802 A2 WO 1999057802A2 DE 9901340 W DE9901340 W DE 9901340W WO 9957802 A2 WO9957802 A2 WO 9957802A2
Authority
WO
WIPO (PCT)
Prior art keywords
control
adder
circuit
designed
pll circuit
Prior art date
Application number
PCT/DE1999/001340
Other languages
German (de)
French (fr)
Other versions
WO1999057802A3 (en
Inventor
Thomas Köhler
Jörg Fischer
Original Assignee
Heidelberger Druckmaschinen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heidelberger Druckmaschinen Ag filed Critical Heidelberger Druckmaschinen Ag
Priority to JP2000547690A priority Critical patent/JP2002514040A/en
Priority to EP99931012A priority patent/EP1076926A1/en
Publication of WO1999057802A2 publication Critical patent/WO1999057802A2/en
Publication of WO1999057802A3 publication Critical patent/WO1999057802A3/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/18Controlling the angular speed together with angular position or phase
    • H02P23/186Controlling the angular speed together with angular position or phase of one shaft by controlling the prime mover

Definitions

  • the invention relates to a device for controlling the speed of a motor, in which an actual speed value is detected by a speed sensor and fed to a control element and in which an output signal of the control element is supplied to the motor as a control signal via a delay element.
  • Such devices for speed control have, for example, phase locked loop control loops (PLL control loops) or frequency locked loop control loops (FLL control loops) as control loops.
  • PLL control loops phase locked loop control loops
  • FLL control loops frequency locked loop control loops
  • FLL control loops it is usually necessary to insert a PI element (proportional / integral element) in the control loop in order to ensure a minimal control deviation.
  • a digital tachometer signal is often used as the actual speed value.
  • a disadvantage of such control loops is a remaining small control deviation, which results from an offset of the PI element, which is usually of analog design.
  • a high-precision setting of the speed according to a predetermined target frequency is therefore not possible, or only via corrected default values.
  • phase difference between a reference signal and an engine speed is detected by a phase comparator.
  • the phase comparator generates an output signal that is proportional to the fixed phase difference.
  • the output signal is fed to a controller and the controller controls the motor via a control circuit.
  • the phase comparator is connected to a sample / hold G ed.
  • the object of the present invention is to improve a device for speed control of an engine in such a way that the control deviations are reduced as much as possible and an optimal damping behavior is achieved.
  • Fig. 1 is a basic block diagram of the device for speed control
  • Fig. 2 is a block diagram in which electronic components are given for further illustration.
  • FIG. 1 shows a basic block diagram of the device for speed control of an engine, which essentially has a PLL circuit (1) and an FLL circuit (2).
  • the output (3) of the PLL circuit (1) and the output (4) of the FLL circuits (2) are each connected to delay elements of the first order (5, 6), hereinafter referred to as PT1 elements.
  • the outputs of the PT1 elements (5, 6) are connected to an adder (7).
  • the adder (7) is connected to a motor (9) to be controlled via a correction element (8) in order to optimally design the damping behavior of the control loop.
  • the correction element (8) can be designed as an analog proportional element (P element) or as an analog proportional / integral element (PI element).
  • the actual speed value (n) of the motor (9) is converted in a tachogenerator (10) into an actual clock sequence (T ⁇ , st ) representing the actual frequency value ( ⁇
  • the PLL circuit (1) and the FLL circuit (2) are supplied with a set clock sequence (T ⁇ SoN ) representing the frequency setpoint ( ⁇ So ) on a line (11).
  • the PLL circuit (1) has a pulse length modulator (12), the output of which corresponds to the output (3) of the PLL circuit (1).
  • the input of the pulse length modulator (12) is connected to the output of an adder (13) which represents a comparison circuit.
  • the Isttakteck (T ⁇ [st) is in an integrator (14) in a corresponding Phasenistwert ( ⁇ is) representing Signalistwert (S ⁇
  • the set clock sequence (T ⁇ So n) on the line (11) is divided in the programmable divider (15) and converted in a downstream integrator (16) into a signal set value (S ⁇ SoN ) representing the corresponding phase setpoint ( ⁇ SoN ).
  • the signal setpoint (S ⁇ So n) is fed to the second input of the adder (13).
  • In the adder (13) by comparing the actual signal value (S ⁇
  • Signal setpoint (S ⁇ s 0 n) determined the phase difference ( ⁇ ).
  • the pulse length modulator (12) generates as the first controlled variable at the output (3) one of the fixed set phase difference ( ⁇ ) length-modulated phase difference output pulse (l ⁇ ), which is converted digital / analog in the PT1 element (5).
  • the FLL circuit (2) also has a pulse length modulator (17), the output of which forms the output (4) of the FLL circuit (2).
  • the pulse length modulator (17) is connected to the output of an adder (18) forming a comparison circuit, the input of which is supplied with the actual clock sequence (T ⁇ SoN ).
  • the set clock sequence (T ⁇ SoN ) on the line (11) is counted in a programmable counter (9) and the count result is given as a signal setpoint (S ⁇ SoN ) to the other input of the adder (18).
  • the frequency difference ( ⁇ ) is determined in the adder (18) by comparing the period of the actual clock sequence (T ⁇ , st ) with the signal setpoint (S ⁇ So ⁇ ).
  • the pulse length modulator (17) generates as a second controlled variable at the output (4) a frequency difference output pulse (l ⁇ ) which is length-modulated by the determined frequency difference ( ⁇ ) and is converted digitally / analogously in the PT1 element (6).
  • the programmable counter (19) can be clocked by an edge of the pulse-shaped tachometer signal (S ⁇ ).
  • the digital / analog converted output pulses (l ⁇ ; l ⁇ ) are combined in the adder (7) to form an overall controlled variable and fed to the correction element (8).
  • the parallel connection of the PLL circuit and the FLL circuit advantageously represents a control which has a PI component both to avoid control deviations and which also makes it possible to shift the required differentiation out of the analog part. The differentiation can thus be carried out in the digital domain.
  • the PLL circuit works as a digital integrator without a disturbing frequency offset.
  • Fig. 2 shows the device for speed control of an engine as a detailed block diagram.
  • the programmable counter (19) is designed as a 16-bit counter and is supplied by a shift register (20) with a data width of 24 bits, the data being transmitted with a word width of 16 bits.
  • the output of the shift register (20) is connected to a control logic (21).
  • the data transmission to the control logic (21) takes place with a word length of 8 bits.
  • the programmable counter (19) is clocked by the target clock sequence (T ⁇ So ,
  • the programmable divider (15) of the PLL circuit (1) is designed with a word length of 16 bits and is fed by a shift register (25).
  • the shift register (25) has a word width of 24 bits and transmits data with a word width of 16 bits to the divider (15).
  • the shift register (25) is also clocked by the clock sequence (T.,).
  • the output of the shift register (25) is connected to a control logic (26) with a word length of 8 bits.
  • the set clock sequence (T ⁇ So n) on line (11) is also applied to the programmable divider (15).
  • the PT1 elements (5, 6) are designed as operational amplifiers.
  • the PT1 element (6) which is arranged in the branch of the FLL circuit (2), is followed by a further operational amplifier (27) which is designed as a P element.
  • the correction element (8) which is designed, for example, as a PI element, likewise consists of an operational amplifier.
  • the motor (9) is controlled via a power amplifier (28).
  • the tachometer generator (10) can be designed such that a pulse of the tachometer signal (S ⁇ ) is generated per revolution of the motor (9).
  • the divider (15) and the counter (19) are programmed in such a way that different setpoints for the PLL circuit (1) and the FLL circuit (2) are present. This can compensate for nonlinearities in the gain, which result from the fact that both the PLL circuit (1) and the FLL circuit (2) have finite cutoff frequencies. The non-linearities would have an effect in particular in the case of narrow output pulses which are generated when there are small differences between the target values and the actual values.
  • the PLL circuit (1) is programmed with a divider factor corresponding to the real target speed.
  • the counter reading for the FLL circuit (2) deviates slightly from the setpoint.
  • the error of the FLL circuit (2) generates a differential pulse of a width which is compensated for by a phase deviation due to the integration of the PLL circuit (1).
  • the PLL circuit (1) operates independently of the analog offset and the motor load with a constant phase difference in accordance with the differential programming of the FLL circuit (2).
  • the essential features of the invention are the parallel connection of a programmable digital PLL circuit (1) and a programmable digital FLL circuit (2), the circuits (1, 2) being differential programmed in such a way that a digital offset for linearizing the gain is achieved becomes.
  • the speed control device is used in particular in electronic reproduction technology for driving rotating light deflectors in imagesetters or recorders.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

The invention relates to a device for regulating the rotational speed of a motor (9). The inventive device comprises a tachogenerator (10) for measuring the rotational speed and a regulating element which is configured as a parallel connection of a phase-locked loop (1) and of a frequency-locked loop (2). A time delay element (5, 6) is connected in outgoing circuit to the phase-locked loop (1) and to the frequency-locked loop (2). An adder (7) is situated between the time delay elements (5, 6) and the motor (9) in order to combine the output signals of the time delay elements (5, 6).

Description

Vorrichtung zur Drehzahlregelung Device for speed control
Die Erfindung betrifft eine Vorrichtung zur Drehzahlregelung eines Motors, bei der ein Drehzahlistwert von einem Drehzahlsensor erfaßt und einem Regelelement zu- geführt wird und bei der ein Ausgangssignal des Regelelementes über ein Verzögerungsglied als Stellsignal dem Motor zugeführt wird.The invention relates to a device for controlling the speed of a motor, in which an actual speed value is detected by a speed sensor and fed to a control element and in which an output signal of the control element is supplied to the motor as a control signal via a delay element.
Derartige Vorrichtungen zur Drehzahlregelung weisen als Regelkreise beispielsweise Phase Locked Loop-Regelkreise (PLL-Regelkreise) oder Frequency Locked Loop-Regelkreise (FLL-Regelkreise) auf. Bei FLL-Regelkreisen ist es meistens erforderlich, in den Regelkreis ein Pl-Glied (Proportional/Integral-Glied) einzufügen, um eine minimalen Regelabweichung zu gewährleisten. Als Drehzahlistwert wird häufig ein digitales Tachometersignal verwendet.Such devices for speed control have, for example, phase locked loop control loops (PLL control loops) or frequency locked loop control loops (FLL control loops) as control loops. With FLL control loops, it is usually necessary to insert a PI element (proportional / integral element) in the control loop in order to ensure a minimal control deviation. A digital tachometer signal is often used as the actual speed value.
Nachteilig bei derartigen Regelkreisen ist eine verbleibende geringe Regelabweichung, die aus einem Offset des meistens analog ausgebildeten Pl-Gliedes resultiert. Eine hochpräzise Einstellung der Drehzahl entsprechend einer vorgegebenen Sollfrequenz ist deshalb nicht, beziehungsweise nur über korrigierte Vorgabewerte, möglich.A disadvantage of such control loops is a remaining small control deviation, which results from an offset of the PI element, which is usually of analog design. A high-precision setting of the speed according to a predetermined target frequency is therefore not possible, or only via corrected default values.
Zur Vermeidung einer derartigen Restregelabweichung ist es bekannt, die bereits erwähnten PLL-Regelkreise einzusetzen. Derartige Regelkreise werden durch Einfügen eines Proportional/Differential-Gliedes, kurz PD-Glied genannt, oder eines Proportional/Integral/Differential-Gliedes, kurz PID-Glied genannt, derart ergänzt, daß eine systemtechnische Stabilität und ein ausreichendes Abklingen einer Regelabweichung erreicht wird. Die Realisierung des erforderlichen D-Anteiles ist auf-grund der Ansteuergrenzen der üblicherweise eingesetzten Operationsverstärker jedoch problematisch. Insbesondere gilt dies bei niedrigen Abtastraten und bei einer hohen im analogen Schaltungsteil auftretenden Verstärkung. Eine dämp- fungsoptimierte Gestaltung des Drehzahlregelkreises ist damit bei Berücksichtigung praktischer Randbedingungen nicht möglich. Eine Vorrichtung zur Drehzahlregelung eines Motors wird beispielsweise in der DE 42 21 619 A1 beschrieben. Von einem Phasenvergleicher wird die Phasendifferenz zwischen einem Referenzsignal und einer Motordrehzahl erfaßt. Der Pha- senvergleicher erzeugt ein der fest eingestellten Phasendifferenz proportionales Ausgangssignal. Das Ausgangssignal wird einem Regler zugeführt und der Regler steuert über eine Steuerschaltung den Motor an. Der Phasenvergleicher ist mit einem Abtast/Halte-G ed verbunden.To avoid such a residual control deviation, it is known to use the PLL control loops already mentioned. Control loops of this type are supplemented by inserting a proportional / differential element, abbreviated to PD, or a proportional / integral / differential element, abbreviated to PID, in such a way that system-technical stability and sufficient decay of a control deviation is achieved. However, the implementation of the required D component is problematic due to the control limits of the operational amplifiers normally used. This applies in particular to low sampling rates and a high amplification occurring in the analog circuit part. A damping-optimized design of the speed control loop is therefore not possible if practical boundary conditions are taken into account. A device for speed control of an engine is described for example in DE 42 21 619 A1. The phase difference between a reference signal and an engine speed is detected by a phase comparator. The phase comparator generates an output signal that is proportional to the fixed phase difference. The output signal is fed to a controller and the controller controls the motor via a control circuit. The phase comparator is connected to a sample / hold G ed.
Aufgabe der vorliegenden Erfindung ist es, eine Vorrichtung zur Drehzahlregelung eines Motors derart zu verbessern, daß die Regelabweichungen möglichst reduziert werden und ein optimales Dämpfungsverhalten erreicht wird.The object of the present invention is to improve a device for speed control of an engine in such a way that the control deviations are reduced as much as possible and an optimal damping behavior is achieved.
Diese Aufgabe wird erfiπdungsgemäß dadurch die Merkmale des Anspruchs 1 gelöst.According to the invention, this object is achieved by the features of claim 1.
Vorteilhafte Weiterbildungen und Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.Advantageous further developments and refinements of the invention are specified in the subclaims.
Die Erfindung wird nachfolgend anhand der Fig. 1 und 2 näher erläutert.The invention is explained in more detail below with reference to FIGS. 1 and 2.
Es zeigen:Show it:
Fig. 1 ein prinzipielles Blockschaltbild der Vorrichtung zur Drehzahlregelung undFig. 1 is a basic block diagram of the device for speed control and
Fig. 2 ein Blockschaltbild, bei dem zur weiteren Veranschaulichung elektronische Komponenten angegeben sind.Fig. 2 is a block diagram in which electronic components are given for further illustration.
Fig 1 zeigt ein prinzipielles Blockschaltbild der Vorrichtung zur Drehzahlregelung eines Motors, die im wesentlichen eine PLL-Schaltung (1 ) und eine FLL-Schaltung (2) aufweist. Der Ausgang (3) der PLL-Schaltung (1 ) und der Ausgang (4) der FLL-Schaltung (2) sind jeweils mit Verzögerungsgliedern erster Ordnung (5, 6), nachfolgend mit PT1 -Gliedern bezeichnet, verbunden. Die Ausgänge der PT1- Glieder (5, 6) stehen mit einem Addierer (7) in Verbindung. Der Addierer (7) ist zur optimalen Gestaltung des Dämpfungsverhaltens des Regelkreises über ein Korrekturglied (8) an einen zu regelnden Motor (9) angeschlossen. Das Korrekturglied (8) kann als analoges Proportional-Glied (P-Glied) oder als analoges Proportional/ Integral-Glied (Pl-Glied) ausgebildet sein.1 shows a basic block diagram of the device for speed control of an engine, which essentially has a PLL circuit (1) and an FLL circuit (2). The output (3) of the PLL circuit (1) and the output (4) of the FLL circuits (2) are each connected to delay elements of the first order (5, 6), hereinafter referred to as PT1 elements. The outputs of the PT1 elements (5, 6) are connected to an adder (7). The adder (7) is connected to a motor (9) to be controlled via a correction element (8) in order to optimally design the damping behavior of the control loop. The correction element (8) can be designed as an analog proportional element (P element) or as an analog proportional / integral element (PI element).
Der Drehzahlistwert (n) des Motors (9) wird in einem Tachogenerator (10) in eine den Frequenzistwert (Ω |St) repräsentierende Isttaktfolge (TΩ,st) umgesetzt, welche sowohl der PLL-Schaltung (1 ) als auch der FLL-Schaltung (2) zugeführt wird. Zusätzlich wird die PLL-Schaltung (1 ) und die FLL-Schaltung (2) mit einer den Frequenzsollwert (ΩSo ) darstellende Solltaktfolge (TΩSoN) auf einer Leitung (11 ) be- aufschlagt.The actual speed value (n) of the motor (9) is converted in a tachogenerator (10) into an actual clock sequence (T Ω , st ) representing the actual frequency value (Ω | St ), which both the PLL circuit (1) and the FLL Circuit (2) is supplied. In addition, the PLL circuit (1) and the FLL circuit (2) are supplied with a set clock sequence (T ΩSoN ) representing the frequency setpoint (Ω So ) on a line (11).
Die PLL-Schaltung (1 ) weist einen Impulslängenmodulator (12) auf, dessen Ausgang dem Ausgang (3) der PLL-Schaltung (1 ) entspricht. Der Eingang des Impulslängenmodulators (12) ist mit dem Ausgang eines eine Vergleichsschaltung darstellenden Addierers (13) verbunden. Die Isttaktfolge (TΩ[st) wird in einem Integrator (14) in einen den entsprechenden Phasenistwert (Φist) repräsentierenden Signalistwert (Sφ|St) umgesetzt und dem einen Eingang des Addierers (13) zugeführt. Die Solltaktfolge (TΩSon) auf der Leitung (11 ) wird in dem programmierbaren Teiler (15) geteilt und in einem nachgeschalteten Integrator (16) in einen den ent- sprechenden Phasensollwert (ΦSoN) repräsentierenden Signalsollwert (SΦSoN) umgesetzt. Der Signalsollwert (SΦSon) wird dem zweiten Eingang des Addierers (13) zugeführt. In dem Addierer (13) wird durch Vergleich von Signalistwert (Sφ|St) undThe PLL circuit (1) has a pulse length modulator (12), the output of which corresponds to the output (3) of the PLL circuit (1). The input of the pulse length modulator (12) is connected to the output of an adder (13) which represents a comparison circuit. The Isttaktfolge (T Ω [st) is in an integrator (14) in a corresponding Phasenistwert (Φ is) representing Signalistwert (S φ | St) implemented and applied to one input of the adder (13). The set clock sequence (T ΩSo n) on the line (11) is divided in the programmable divider (15) and converted in a downstream integrator (16) into a signal set value (S ΦSoN ) representing the corresponding phase setpoint (Φ SoN ). The signal setpoint (S ΦSo n) is fed to the second input of the adder (13). In the adder (13) by comparing the actual signal value (S φ | St ) and
Signalsollwert (SΦs0n) die Phasendifferenz (ΔΦ) festgestellt. Der Impulslängenmodulator (12) erzeugt als erste Regelgröße am Ausgang (3) einen von der festge stellten Phasendifferenz (ΔΦ) längenmodulierten Phasendifferenz-Ausgangsimpuls (lφ), der in dem PT1 -Glied (5) digital/analog gewandelt wird.Signal setpoint (S Φ s 0 n) determined the phase difference (ΔΦ). The pulse length modulator (12) generates as the first controlled variable at the output (3) one of the fixed set phase difference (ΔΦ) length-modulated phase difference output pulse (l φ ), which is converted digital / analog in the PT1 element (5).
Die FLL-Schaltung (2) weist ebenfalls einen Impulslängenmodulator (17) auf, dessen Ausgang den Ausgang (4) der FLL-Schaltung (2) bildet. Der Impulslängenmodulator (17) ist mit dem Ausgang eines eine Vergleichsschaltung bildenden Addierers (18) verbunden, dessen einem Eingang die Isttaktfolge (TΩSoN) zugeführt wird.The FLL circuit (2) also has a pulse length modulator (17), the output of which forms the output (4) of the FLL circuit (2). The pulse length modulator (17) is connected to the output of an adder (18) forming a comparison circuit, the input of which is supplied with the actual clock sequence (T ΩSoN ).
Der Solltaktfolge (TΩSoN) auf der Leitung (11 ) wird in einen programmierbaren Zähler ( 9) gezählt und das Zählergebnis als Signalsollwert (SΩSoN) auf den anderen Eingang des Addierers (18) gegeben. In dem Addierer (18) wird durch Vergleich der Periode der Isttaktfolge (TΩ,st) mit dem Signalsollwert (SΩSoπ) die Frequenzdifferenz (ΔΩ) festgestellt. Der Impulslängenmodulator (17) erzeugt als zweite Regelgröße am Ausgang (4) einen von der festgestellten Frequenzdifferenz (ΔΩ) längenmodulierten Frequenzdifferenz-Ausgangsimpuls (lΩ), der in dem PT1 - Glied (6) digital/analog gewandelt wird. Der programmierbare Zähler (19) kann jeweils durch eine Flanke des impulsförmige Tachometersignals (SΩ) getaktet werden.The set clock sequence (T ΩSoN ) on the line (11) is counted in a programmable counter (9) and the count result is given as a signal setpoint (S ΩSoN ) to the other input of the adder (18). The frequency difference (ΔΩ) is determined in the adder (18) by comparing the period of the actual clock sequence (T Ω , st ) with the signal setpoint (S ΩSoπ ). The pulse length modulator (17) generates as a second controlled variable at the output (4) a frequency difference output pulse (l Ω ) which is length-modulated by the determined frequency difference (ΔΩ) and is converted digitally / analogously in the PT1 element (6). The programmable counter (19) can be clocked by an edge of the pulse-shaped tachometer signal (S Ω ).
Die digital/analog gewandelten Ausgangsimpulse (lΩ; lφ) werden in dem Addierer (7) zu einer Gesamtregelgröße zusammengefaßt und dem Korrekturglied (8) zugeführt.The digital / analog converted output pulses (l Ω ; l φ ) are combined in the adder (7) to form an overall controlled variable and fed to the correction element (8).
Die Parallelschaltung der PLL-Schaltung und der FLL-Schaltung stellt in vorteil- hafter Weise eine Regelung dar, die sowohl zur Vermeidung von Regelabweichungen einen Pl-Anteil aufweist und die es darüber hinaus ermöglicht, die erforderliche Differentiation aus dem analogen Teil heraus zu verlagern. Die Differentiation kann hierdurch im digitalen Bereich durchgeführt werden. Die PLL-Schaltung arbeitet hierbei quasi als digitaler Integrator ohne störenden Frequenz-Offset. Fig. 2 zeigt die Vorrichtung zur Drehzahlregelung eines Motors als detailliertes Blockschaltbild. In der FLL-Schaltung (2) ist der programmierbare Zähler (19) als ein 16-Bit-Zähler ausgebildet und wird von einem Schieberegister (20) mit einer Datenbreite von 24 Bit versorgt, wobei die Datenübertragung mit einer Wortbreite von 16 Bit erfolgt. Der Ausgang des Schieberegisters (20) ist an eine Steuerlogik (21 ) angeschlossen. Die Datenübertragung zur Steuerlogik (21 ) erfolgt mit einer Wortbreite von 8 Bit. Der programmierbare Zähler (19) wird von der Solltaktfolge (TΩSo,|) auf der Leitung (11 ) getaktet. Eine Taktfolge (T.,) auf einer Leitung (23) getaktet das Schieberegister (20).The parallel connection of the PLL circuit and the FLL circuit advantageously represents a control which has a PI component both to avoid control deviations and which also makes it possible to shift the required differentiation out of the analog part. The differentiation can thus be carried out in the digital domain. The PLL circuit works as a digital integrator without a disturbing frequency offset. Fig. 2 shows the device for speed control of an engine as a detailed block diagram. In the FLL circuit (2), the programmable counter (19) is designed as a 16-bit counter and is supplied by a shift register (20) with a data width of 24 bits, the data being transmitted with a word width of 16 bits. The output of the shift register (20) is connected to a control logic (21). The data transmission to the control logic (21) takes place with a word length of 8 bits. The programmable counter (19) is clocked by the target clock sequence (T ΩSo , | ) on line (11). A clock sequence (T.,) on a line (23) clocks the shift register (20).
Der programmierbare Teiler (15) der PLL-Schaltung (1 ) ist mit einer Wortbreite von 16 Bit ausgebildet und wird von einem Schieberegister (25) gespeist. Das Schieberegister (25) weist eine Wortbreite von 24 Bit auf und übermittelt Daten ei- ner Wortbreite von 16 Bit an den Teiler (15). Das Schieberegister (25) wird ebenfalls von der Taktfolge (T.,) getaktet. Der Ausgang des Schieberegisters (25) ist mit einer Wortbreite von 8 Bit an eine Steuerlogik (26) angeschlossen. Die Solltaktfolge (TΩSon) auf der Leitung (11 ) liegt ebenfalls am programmierbaren Teiler (15) an.The programmable divider (15) of the PLL circuit (1) is designed with a word length of 16 bits and is fed by a shift register (25). The shift register (25) has a word width of 24 bits and transmits data with a word width of 16 bits to the divider (15). The shift register (25) is also clocked by the clock sequence (T.,). The output of the shift register (25) is connected to a control logic (26) with a word length of 8 bits. The set clock sequence (T ΩSo n) on line (11) is also applied to the programmable divider (15).
Die PT1 -Glieder (5, 6) sind als Operationsverstärker ausgebildet. Dem PT1 -Glied (6), das im Zweig der FLL-Schaltung (2) angeordnet ist, ist ein weiterer Operationsverstärker (27) nachgeschaltet, der als P-Glied ausgebildet ist. Das beispielsweise als Pl-Glied ausgebildete Korrekturglied (8) besteht ebenfalls aus einem Operationsverstärker. Die Ansteuerung des Motors (9) erfolgt über einen Lei- stungsverstärker (28). Der Tachogenerator (10) kann so ausgebildet sein, daß je Umdrehung des Motors (9) ein Impuls des Tachometersignals (SΩ) generiert wird.The PT1 elements (5, 6) are designed as operational amplifiers. The PT1 element (6), which is arranged in the branch of the FLL circuit (2), is followed by a further operational amplifier (27) which is designed as a P element. The correction element (8), which is designed, for example, as a PI element, likewise consists of an operational amplifier. The motor (9) is controlled via a power amplifier (28). The tachometer generator (10) can be designed such that a pulse of the tachometer signal (S Ω ) is generated per revolution of the motor (9).
Der Teiler (15) und der Zähler (19) werden derart programmiert, daß unterschiedliche Sollwerte für die PLL-Schaltung (1 ) und die FLL-Schaltung (2) vorliegen. Hierdurch können Nichtlinea täten in der Verstärkung kompensiert werden, die daraus resultieren, daß sowohl die PLL-Schaltung (1 ) als auch die FLL-Schaltung (2) endliche Grenzfrequenzen aufweisen. Die Nichtlinearitäten würden sich insbesondere bei schmalen Ausgangsimpulsen auswirken, die bei geringen Differenzen zwischen den Sollwerten und den Istwerten generiert werden. Die PLL-Schaltung (1 ) wird hierzu mit einem der realen Soll-Drehzahl entsprechenden Teilerfaktor programmiert. Der Zählerstand für die FLL-Schaltung (2) weicht geringfügig vom Sollwert ab. Der Fehler der FLL-Schaltung (2) generiert einen Differenzimpuls einer Breite, die durch eine Phasenabweichung durch die Integration der PLL- Schaltung (1 ) kompensiert wird.The divider (15) and the counter (19) are programmed in such a way that different setpoints for the PLL circuit (1) and the FLL circuit (2) are present. This can compensate for nonlinearities in the gain, which result from the fact that both the PLL circuit (1) and the FLL circuit (2) have finite cutoff frequencies. The non-linearities would have an effect in particular in the case of narrow output pulses which are generated when there are small differences between the target values and the actual values. For this purpose, the PLL circuit (1) is programmed with a divider factor corresponding to the real target speed. The counter reading for the FLL circuit (2) deviates slightly from the setpoint. The error of the FLL circuit (2) generates a differential pulse of a width which is compensated for by a phase deviation due to the integration of the PLL circuit (1).
Bei einer Realisierung des Korrekturgliedes (8) als Pl-Glied arbeitet die PLL- Schaltung (1 ) unabhängig vom analogen Offset und der Motorbelastung mit konstanter Phasendifferenz entsprechend der Differenzprogrammierung der FLL- Schaltung (2).When the correction element (8) is implemented as a PI element, the PLL circuit (1) operates independently of the analog offset and the motor load with a constant phase difference in accordance with the differential programming of the FLL circuit (2).
Die wesentlichen Merkmale der Erfindung sind die Parallelschaltung einer programmierbaren digitalen PLL-Schaltung (1 ) und einer programmierbaren digitalen FLL-Schaltung (2) vorliegt, wobei die Schaltungen (1 ,2) derart differenzprogrammiert werden, daß ein digitaler Offset zur Linearisierung der Verstärkung erreicht wird.The essential features of the invention are the parallel connection of a programmable digital PLL circuit (1) and a programmable digital FLL circuit (2), the circuits (1, 2) being differential programmed in such a way that a digital offset for linearizing the gain is achieved becomes.
Die Vorrichtung zur Drehzahlregelung findet insbesondere in der elektronischen Reproduktionstechnik zum Antrieb von rotierenden Lichtablenkern in Belichtern oder Recordern Anwendung. The speed control device is used in particular in electronic reproduction technology for driving rotating light deflectors in imagesetters or recorders.

Claims

Patentansprüche claims
1. Vorrichtung zur Drehzahlregelung eines Motors, bei der ein Drehzah listwert von einem Drehzahlsensor erfaßt und einem Regelelement zugeführt wird und bei der ein Ausgangssignal des Regelelementes über ein Verzögerungselement als Stellsignal dem Motor zugeführt wird, dadurch gekennzeichnet, daß1. Device for speed control of an engine, in which a speed list value is detected by a speed sensor and fed to a control element and in which an output signal of the control element is fed to the engine as a control signal as a control signal, characterized in that
- der Drehzahlsensor als Tachogenerator (10) ausgebildet ist,- The speed sensor is designed as a tachometer generator (10),
- das Regelelement als Parallelschaltung einer PLL-Schaltung (1 ) und einer FLL-Schaltung (2) ausgebildet ist,- The control element is designed as a parallel connection of a PLL circuit (1) and an FLL circuit (2),
- das sowohl der PLL-Schaltung (1 ) als auch der FLL-Schaltung (2) ein Verzögerungselement (5, 6) nachgeschaltet ist und- That both the PLL circuit (1) and the FLL circuit (2) is followed by a delay element (5, 6) and
- zur Zusammenfassung der Ausgangssignale der Verzögerungselemente (5, 6) zwischen den Vezögerungselemente (5, 6) und dem Motor (9) ein Addierer (7) geschaltet ist.- To summarize the output signals of the delay elements (5, 6) between the delay elements (5, 6) and the motor (9) an adder (7) is connected.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, daß zwischen dem Addierer (7) und dem Motor (9) ein Korrekturglied (8) angeordnet ist.2. Device according to claim 1, characterized in that a correction element (8) is arranged between the adder (7) and the motor (9).
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß das Korrekturglied (8) als Proportionalglied ausgebildet ist.3. Device according to claim 2, characterized in that the correction element (8) is designed as a proportional element.
4. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß das Korrekturglied (8) als Proportional/Integral-Glied ausgebildet ist.4. The device according to claim 2, characterized in that the correction element (8) is designed as a proportional / integral element.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die PLL-Schaltung (1 ) in Reihenschaltung einen programmierbaren Teiler (15), einen Integrator (16) einen Addierer (13) und einen Impulslängenmodulator (12) aufweist. 5. Device according to one of claims 1 to 4, characterized in that the PLL circuit (1) has a programmable divider (15), an integrator (16), an adder (13) and a pulse length modulator (12) in series.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß zwischen den Tachogenerator (10) und den Addierer (13) ein weiterer Integrator (14) geschaltet ist.6. The device according to claim 5, characterized in that a further integrator (14) is connected between the tachometer generator (10) and the adder (13).
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die FLL-Schaltung (2) in Reihenschaltung einen programmierbaren Zähler (19), einen Addierer (18) und einen Impulslängenmodulator (17) aufweist. 7. Device according to one of claims 1 to 6, characterized in that the FLL circuit (2) has a programmable counter (19), an adder (18) and a pulse length modulator (17) in series.
PCT/DE1999/001340 1998-05-05 1999-05-04 Device for regulating rotational speed WO1999057802A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000547690A JP2002514040A (en) 1998-05-05 1999-05-04 Speed controller
EP99931012A EP1076926A1 (en) 1998-05-05 1999-05-04 Device for regulating rotational speed

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19819956.2 1998-05-05
DE19819956A DE19819956A1 (en) 1998-05-05 1998-05-05 Device for speed control

Publications (2)

Publication Number Publication Date
WO1999057802A2 true WO1999057802A2 (en) 1999-11-11
WO1999057802A3 WO1999057802A3 (en) 2000-01-13

Family

ID=7866679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/001340 WO1999057802A2 (en) 1998-05-05 1999-05-04 Device for regulating rotational speed

Country Status (4)

Country Link
EP (1) EP1076926A1 (en)
JP (1) JP2002514040A (en)
DE (1) DE19819956A1 (en)
WO (1) WO1999057802A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002087066A1 (en) * 2001-04-20 2002-10-31 Seiko Epson Corporation Drive control

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5211002B2 (en) * 2009-09-15 2013-06-12 日立オートモティブシステムズ株式会社 Drive control device
JP6392509B2 (en) * 2013-10-03 2018-09-19 ローム株式会社 Motor control circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0249465A1 (en) * 1986-06-10 1987-12-16 Sony Corporation Motor rotation control apparatus
EP0251763A1 (en) * 1986-06-30 1988-01-07 Matsushita Electric Industrial Co., Ltd. Phase controller for motor
US4816723A (en) * 1988-04-04 1989-03-28 Sony Corporation Variable speed motor control method and apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1049594A (en) * 1964-04-29 1966-11-30 Rank Bush Murphy Ltd Movement control servomechanism
JPS5914997B2 (en) * 1978-06-27 1984-04-06 松下電器産業株式会社 Electric motor speed control device
JPS5967884A (en) * 1982-10-08 1984-04-17 Matsushita Electric Ind Co Ltd Control system for rotor
JPS61189179A (en) * 1985-02-18 1986-08-22 Hitachi Ltd Servo circuit of motor
DE4304960C3 (en) * 1993-02-18 2000-06-15 Bosch Gmbh Robert Motor speed control method
KR950012192B1 (en) * 1993-06-29 1995-10-14 엘지전자 주식회사 Rotation control device of comb filter
DE19610573C1 (en) * 1996-03-18 1997-07-03 Siemens Ag Torsion optimisation system for regulated electrical drive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0249465A1 (en) * 1986-06-10 1987-12-16 Sony Corporation Motor rotation control apparatus
EP0251763A1 (en) * 1986-06-30 1988-01-07 Matsushita Electric Industrial Co., Ltd. Phase controller for motor
US4816723A (en) * 1988-04-04 1989-03-28 Sony Corporation Variable speed motor control method and apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 11, no. 17 (E-471) [2464], 17. Januar 1987 (1987-01-17) & JP 61 189179 A (HITACHI), 22. Juni 1986 (1986-06-22) *
PATENT ABSTRACTS OF JAPAN vol. 8, no. 173 (E-259) [1610], 9. August 1984 (1984-08-09) & JP 59 067884 A (MATSUSHITA DENKI SANGYO KK), 17. April 1984 (1984-04-17) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002087066A1 (en) * 2001-04-20 2002-10-31 Seiko Epson Corporation Drive control
US6885160B2 (en) 2001-04-20 2005-04-26 Seiko Epson Corporation Drive control

Also Published As

Publication number Publication date
JP2002514040A (en) 2002-05-14
EP1076926A1 (en) 2001-02-21
DE19819956A1 (en) 1999-11-11
WO1999057802A3 (en) 2000-01-13

Similar Documents

Publication Publication Date Title
DE4018614C2 (en) Circuit arrangement for generating two phase-shifted output signals
DE69734271T2 (en) CIRCUIT ARRANGEMENT WITH CARTESIAN AMPLIFIER
DE2905583C2 (en)
DE19713668A1 (en) Device and method for measuring and regulating the flow of a fluid
EP0273103B1 (en) Sensor circuit arrangement
DE2064391C3 (en) Device for the compensation of interference signal strength changes
EP1409965A1 (en) Method and device for the correction of the dynamic error of a sensor
EP1733196A1 (en) Arrangement for measuring the torque of rotating machine parts
EP1076926A1 (en) Device for regulating rotational speed
EP0204183B1 (en) Method for calibrating a hot wire air mass flow meter and hot wire air mass flow meter
EP1156299B1 (en) Measuring transducer for potentiometric position sensors and method for adjusting the parameters
DE2619964A1 (en) ARRANGEMENT FOR PULSE TIMING CORRECTION
EP0590323A1 (en) Filter for adjusting the band width of a control loop
EP1886099B1 (en) Coriolis mass flowmeter and method for compensating for transmission errors in its input circuit
DE69535211T2 (en) DEVICE FOR CONTINUOUS PHASE MODULATION WITH FREQUENCY SYNTHETIZER WITH LASER REPLACEMENT
WO2004020948A1 (en) Vibrating gyroscope
DE2646737C3 (en) AUXILIARY REGENERATION CIRCUIT FOR A COLOR TV RECEIVER
DE2515385A1 (en) SELF-ADAPTIVE DEVICE FOR PHASE RECOVERY
DE3216631A1 (en) OSCILLATOR CIRCUIT
DE3218363C2 (en)
EP1094328B1 (en) Magnetic field sensor with recurrent filter
DE2747438C3 (en) Circuit arrangement for phase-locked tracking of an output signal as a function of an input signal
EP0076981A1 (en) Pilot signal demodulator for stereo television reception
DE3004074C2 (en) Device for reconstructing analog signals from sample values (sample-and-hold element 1st order)
DE102009024548B4 (en) Method and device for monitoring an electronic circuit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999931012

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09707010

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999931012

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999931012

Country of ref document: EP