WO1999049830A2 - Anti-virale wirkung von propolis durch inhibition viraler nukleinsäure polymerasen - Google Patents

Anti-virale wirkung von propolis durch inhibition viraler nukleinsäure polymerasen Download PDF

Info

Publication number
WO1999049830A2
WO1999049830A2 PCT/DE1999/000902 DE9900902W WO9949830A2 WO 1999049830 A2 WO1999049830 A2 WO 1999049830A2 DE 9900902 W DE9900902 W DE 9900902W WO 9949830 A2 WO9949830 A2 WO 9949830A2
Authority
WO
WIPO (PCT)
Prior art keywords
propolis
effect
hiv
inhibition
use according
Prior art date
Application number
PCT/DE1999/000902
Other languages
English (en)
French (fr)
Other versions
WO1999049830A3 (de
Inventor
Ortwin Faff
Alois Gabriel Hiszem
Original Assignee
Retro-Tech Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Retro-Tech Gmbh filed Critical Retro-Tech Gmbh
Publication of WO1999049830A2 publication Critical patent/WO1999049830A2/de
Publication of WO1999049830A3 publication Critical patent/WO1999049830A3/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients

Definitions

  • Nucleic acid polymerases are specific enzymes that synthesize oligomeric or polymeric nucleic acids from monomers of nucleotide triphosphates and play an important role in the replication of genetic material (RNA, DNA) in all biological systems. There are indications that the enzymatic mechanism of nucleic acid polymerization (DNA, RNA) has a rather universal character in nature (Steitz 1998). However, the polymerases in their three-dimensional protein structure outside the active center correspond to the respective species (mammals, bacteria, viruses ) differentiate more or less.
  • Viral polymerases are of particular importance as target molecules for the development of active substances that inhibit their enzymatic activity and can be used as therapeutic agents for viral diseases (e.g. AIDS, cancer, hepatitis, herpes, flu, etc.).
  • AIDS is currently one of the greatest medical challenges facing scientists, doctors, society and politics.
  • the disease is infectious and, according to the current state of science, is caused by a retrovirus, the HIV virus (Levy 1993, Pantaleo & Fauci 1996, De Vita et al. 1997).
  • Retroviruses have the unpleasant property of irreversibly introducing themselves into the genome of host cells, multiplying with the "cell machinery" of the host and thereby inducing diseases.
  • the HIV virus primarily infects the cells of the immune system (T lymphocytes, macrophages), which gets out of control and as a result is weakened and more susceptible to other diseases that ultimately lead to human death (Pantaleo & Fauci 1996). It is currently not possible to cure AIDS. So far, the science and pharmaceutical industry have been able to find active substances and combination therapies that inhibit the multiplication of the HIV virus, the virus load in the body temporarily below the detection limit (in the Blood) and extend the life of an AIDS patient or improve their quality of life.
  • the active substances currently used are inhibitors of HI-reverse transcriptase and HIV protease, which act either as substrate analogs (competitive) or as allosteric inhibitors (non-competitive, incompetitive) on the retroviral enzymes and inhibit their action in the replication cycle of the virus (De Clercq 1995).
  • So-called nucleoside RT inhibitors (NRTI) and non-nucleoside RT inhibitors (NNRTI) are available for inhibiting reverse transcriptase.
  • NRTI nucleoside RT inhibitors
  • NRTI non-nucleoside RT inhibitors
  • substrate analogs the above-mentioned enzyme inhibitors cannot bring about a total and irreversible inhibition because of their competition with the natural enzyme substrates. This also means that complete inhibition of the virus in its infection cycle is not possible.
  • the following table shows an overview of the inhibitors currently used as therapeutic agents.
  • Active substances and lead structures as well as a broad spectrum of therapeutic agents with different mechanisms of action in order to reduce the viral load again, to delay or even avoid developing resistance and to minimize physiological side effects and toxicity.
  • the active substances to be developed should be administrable orally , e) cause no toxic side effects and f) be of low molecular weight in order to be able to cross the blood-brain barrier.
  • Vaccine development based on recombinant retroviral proteins, cytokines, nucleic acids etc., the therapeutic success of which is still a long way off.
  • Chemokines and their cellular receptors which play an essential role in the entry of the HIV virus into the cell (Premack & Schall 1996), offer a completely new approach to AIDS therapy and the development of vaccines. However, since this therapeutic alternative is in the initial phase, its chances of success cannot yet be realistically assessed.
  • Antiviral natural products A decisive role in the development of new therapeutic agents is played by the large number of biological active ingredients and structures from nature that result from the development of natural defense mechanisms (action principles) in animals
  • Propolis is a mixture of natural plant substances that bees collect from the buds of deciduous trees, coniferous trees or shrubs and are used to seal the honeycomb and to protect it against bacteria, fungi, viruses and other pathogens.
  • Propolis extraction dry substance from propolis was mixed with equal volumes of 150 DMSO, ethanol or PBS and shaken for 3 hours at room temperature. The dark brown solution was then filtered and used as the stock solution in the investigations.
  • results show a complete inhibition of the RT activity at up to approx. 700 ⁇ g / ml propolis extract (dilution 1: 3,500) and a further significant inhibition of the RT activity up to a concentration of 7 ⁇ g / ml propolis extract or one Dilution of 165 1: 35,000 (Fig.la).
  • an IC 50 concentration of approximately 150 ⁇ g / ml propolis extract can be determined (FIG. 1b).
  • the presence of the RT crude extract was tested in various concentrations / dilutions (1/100; 1 / 1,000; 1 / 10,000) and its toxic effect (MTT test) on the above cells was examined (triplicates).
  • the replication of HIV in the cells was measured using p24 antigen in the cell culture supernatant after 4 days of incubation. 175
  • the experimental data show that the propolis extract has a complete inhibition of HIV-1 on both the molecular and the cellular level (Fig. 1-2, Tab. 2).
  • the anti-HIV effect can be measured in both test systems down to low concentrations (high 200 dilutions 1/35000, 1 / 10,000) where solvent or toxic effects can be excluded (Fig. 1-2, Tab. 1).
  • the high anti-retroviral effect was measured in a crude extract that is a mixture of many (thousands) components and is neither optimized in the extraction nor partially cleaned. 205
  • This very strong HIV inhibition with a very poor degree of purity of the propolis extract suggests a high quantitative proportion of the active components and / or a very good dose / effect ratio.
  • the extract active ingredients could possibly also be used for other retro virus-related diseases e.g. 215 leukemia, autoimmune diseases, cancer, hepatitis etc. are used.
  • RNAseH RNAseH, protease, integrase, etc.
  • cellular HIV inhibition by propolis shows that its components can pass through the plasma membrane of the cells, which has a good cellular bio.

Abstract

Die Erfindung betrifft die anti-virale Wirkung von Propolis in Bezug auf die Hemmung der Replikation von Polymerase-haltigen Viren im allgemeinen. Im besonderen wird die Inhibition des HIV Virus und dessen Schlüsselenzyms Reverse Transkriptase mittels Propolis auf molekularer Ebene beschrieben. Dabei wird die vollständige Inhibition der enzymatischen Polymerase-Aktivität von HIV-Reverser Transkriptase in Gegenwart von Propolis-Rohextrakt gezeigt und mit der Wirkung des Referenzinhibitors Azidothymidintriphosphat (AZT-TP) verglichen. Der Inhibitionseffekt auf Reverse Transkriptase kann bis zu einer Verdünnung des Rohextrakts von 1:35.000 beobachtet werden. Weiterhin wird die Inhibition der HIV-Replikation mittels Propolis auf zellulärer Ebene bzw. in Zellkultur beschrieben. Dabei wird die vollständige Inhibition der HIV-Replikation in peripheren Blutlymphozyten mittels Propolis-Rohextrakt bei nichttoxischen Konzentrationen (Verdünnung 1:10.000) gezeigt und mit der Wirkung des Referenzinhibitors Azidothymidin (AZT) verglichen. Auf Grund seiner molekularen und zellulären anti-viralen Wirkung auf Polymerase-haltige Viren kann Propolis als Rohextrakt und/oder Fraktionen, Reinsubstanzen oder synthetische Analoga zur Therapie Virus-bedingter Krankheiten (AIDS, Krebs, Leukämie, Hepatitis etc.) sowie zur Inaktivierung von bio/gen-technologischen Produkten in der Pharma-, Kosmetik- und Nahrungsmittelindustrie verwendet werden.

Description

ANTI-VIRALE WIRKUNG VON PROPOLIS DURCH INHIBITION VIRALER NUKLEINSÄURE POLY- MERASEN
Beschreibung
Stand der Wissenschaft und Technik
Nukleinsäure Polymerasen sind spezifische Enzyme, die aus Monomeren von Nukleotid- triphosphaten oligo- oder polymere Nukleinsäuren synthetisieren und bei der Replikation von genetischem Material (RNA, DNA) in allen biologischen Systemen eine wichtige Rolle spielen. Es gibt Hinweise, daß der enzymatische Mechanismus der Nukleinsäurepolymerisation (DNA, RNA) in der Natur einen eher universellen Charakter hat (Steitz 1998) wobei sich jedoch die Polymerasen in ihrer dreidimensionalen Proteinstruktur außerhalb ders aktiven Zentrums entsprechend den jeweiligen Spezies (Säugetiere, Bakterien, Viren) mehr oder weniger unterscheiden.
Eine besondere Bedeutung finden virale Polymerasen als Zielmoleküle zur Entwicklung von Wirkstoffen, die diese in Ihrer enzymatischen Aktivität hemmen und als Therapeutika bei viralen Erkrankungen (z.B. AIDS, Krebs, Hepatitis, Herpes, Grippe, etc.) eingesetzt werden können. AIDS ist gegenwärtig eine der größten medizinischen Herausforderungen an Wissenschaftler, Ärzte, Gesellschaft und Politik. Die Krankheit ist infektiös und wird nach dem jetzigen Stand der Wissenschaft durch ein Retrovirus, das HIV- Virus, verursacht (Levy 1993, Pantaleo & Fauci 1996, De Vita et al. 1997). Retroviren haben die unangenehme Eigenschaft, sich in das Genom von Wirtszellen irreversibel einzuschleusen, sich mit der „Zellmaschinerie" des Wirts zu vermehren und dadurch Krankheiten zu induzieren.
Das HIV- Virus infiziert vorwiegend die Zellen des Irnmunsystems (T-Lymphozyten, Makro- phagen), welches dadurch außer Kontrolle gerät und in Folge abgeschwächt und anfälliger wird für weitere Krankheiten, die letztendlich zum Tode des Menschen führen (Pantaleo & Fauci 1996). Gegenwärtig ist es nicht möglich die Krankheit AIDS zu heilen. Der Wissenschaft und Pharmaindustrie ist es bislang unter großen und langjährigen Anstrengungen (ca. 15 Jahre) gelungen, Wirkstoffe und Kombinations-Therapien zu finden, die die Vermehrung des HIV- Virus hemmen, die Virus-Belastung im Körper zeitweise bis unter die Nachweisgrenze (im Blut) senken und das Leben eines AIDS-Patienten verlängern bzw. dessen Lebensqualität verbessern. Die z.Z. verwendeten Wirkstoffe sind Inhibitoren der HI -Reversen Transkriptase und HlV-Protease, die entweder als Substrat-Analoga (kompetitiv) oder als allosterische Hemmer (nichkompetitiv, inkompetitiv) auf die retroviralen Enzyme wirken und deren Aktion im Replikationszyklus des Virus hemmen (De Clercq 1995). Für die Inhibition der Reversen Transkriptase gibt es die sogenannten Nukleosid-RT-Inhibitoren (NRTI) und die Non- Nukleosid-RT-Inhibitoren (NNRTI). Als Substrat-Analoga können die o.g. Enzyminhibitoren keine totale und irreversibele Hemmung bewirken, auf Grund ihrer Kompetition mit den natürlichen Enzym-Substraten. Dadurch ist eine vollständige Inhibition des Virus in seinem Infektionszyklus auch nicht möglich. Eine Übersicht der gegenwärtig als Therapeutika eingesetzten Inhibitoren zeigt die folgende Tabelle.
Figure imgf000004_0001
Nach dem bisherigen Stand der Wissenschaft hat sich erwiesen, daß die hohe Mutationsrate, - bedingt durch die fehlerhaften Reaktionen der Reverse Transkriptase und der ineffizienten HIV- Inhibition, zur Entwicklung und Selektion von Wirkstoff-resistenten Virusstämmen führt, welche gegen die eingesetzten Revers Transkriptase oder Protease Inhibitoren unwirksam werden (Richman 1993, Erickson & Burt 1996). Dies hat zur Folge, daß die resistenten HIV- Stämme im Organismus wieder verstärkt replizieren können, die Virusbelastung im Körper ansteigt und es dem AIDS -Patienten gesundheitlich wieder schlechter geht. Weiterhin zeigen die bislang entwickelten Therapeutika physiologische Nebenwirkungen und belasten durch Menge, Dosis und Einnahmevorschriften den normalen Tagesablauf des Patienten (z.B. 18-22 Tabletten pro Tag bei einer sogenannten Triple Therapie, einer Dreier- Kombination von Inhibitoren).
ERSÄTZBLÄTT (REGEL 26) Aus diesen Gründen ergibt sich der Bedarf nach einem weiteren und besseren anti-viralen
Wirkstoffen und Leitstrukturen sowie einem größeren Spektrum von Therapeutika mit unterschiedlichen Wirkungsmechanismen, um die Virusbelastung wieder zu senken, Resistenz- bildung zu verzögern oder sogar zu vermeiden und physiologische Nebenwirkungen und Toxizität zu minimieren.
Die Anforderungen von neuen Wirkstoffen, Leitstrukturen und Therapeutika gegen retrovirale Enzyme (Reverse Transkriptase, Protease, RNAse, Integrase) müssen nach dem heutigen Kenntnisstand folgende Merkmale und Kriterien erfüllen:
a) eine totale und irreversible Hemmung des HIV- Virus in minimalen Konzentrationen (nM Bereich) b) gute Bio- Verfügbarkeit und Pharmakokinetik c) Verzögerung oder sogar Vermeidung von Resistenz-Entwicklung des HIV- Virus d) die zu entwickelnden Wirkstoffe sollten oral applizierbar sein, e) keine toxischen Nebenwirkungen hervorrufen und f) niedermolekular sein um die Blut-Hirn Schranke passieren zu können.
Eine der Haupt-Strategien der Pharmakonzerne war es bislang, große verfügbare Sammlungen von biologischen oder chemischen Stoffen auf antivirale Wirkung zu untersuchen, - ein sehr risiko-reiches, zeitaufwendiges und kostenintensives Vorhaben-, da ein Vor-Screening dieser Stoffe ohne jegliche Anhaltspunkte und mit Ungewissem Ausgang nötig war. Um die Risiken und Kosten zu reduzieren, werden z.Z. weitere eher rationale Strategien weiterverfolgt:
a) molekularbiologische Ansätze zur ABDS-Therapie mit genombasierter Produktentwicklung (z.B. antisense-Moleküle, gentherapeutische Ansätze), deren Einsatz und Therpie- wirkung noch in weiterer Zukunft liegt bzw. ungewiss ist
b) rationales Wirkstoffdesign auf Computerebene auf Grund bekannter Kristall-Strukturen der retroviralen Enzyme (z.B. Protease Inhibitoren) und anderer Wirkstoffe. Letztere Entwicklung hat aber insofern Mängel, daß komplexe Wirkstoffstrukturen nur auf der Basis bekannter Komponenten modifiziert werden können.
c) Vakzine-Entwicklung auf der Basis rekombinanter retroviraler Proteine, Zytokine, Nukleinsäuren etc., deren therapeutische Erfolge auch noch auf sich warten lassen. Chemokine und deren zelluläre Rezeptoren, die eine wesentliche Rolle bei dem Eintritt des HIV- Virus in die Zelle spielen (Premack & Schall 1996) bieten einen völlig neuen Ansatz zur AIDS Therapie bzw. der Entwicklung von Vakzinen. Da diese therapeutische Alternative jedoch in der Anfangsphase ist, können deren Erfolgschancen noch nicht realistisch eingeschätzt werden. d) antivirale Naturstoffe: Eine entscheidende Rolle bei der Entwicklung neuer Therapeutika spielt die Vielzahl biologischer Wirkstoffe und Strukturen aus der Natur, die durch die Entwicklung von natürlichen Abwehrmechanismen (Wirkungs-Prinzipien) bei Tieren
100 und Pflanzen gegen Krankheitserreger (Viren, Bakterien, Parasiten etc.) über Jahrmillionen selektiert und optimiert wurden und zum größten Teil noch unerforscht sind. Nur etwa 5% von ca. 2 Millionen weltweit existierenden Organismenarten sind bislang auf biologisch aktive Wirkstoffe untersucht. Darin liegt noch ein enormes therapeutisches Potential und ein wichtiger Schlüssel für die Medikamente der Zukunft.
105 Die Isolierung und Reindarstellung von natürlichen Wirkstoffen und Leitsubstanzen aus pflanzlichen Drogen (Arzneipflanzen) stellt eine große Herausforderung dar. Da aber viele täglich verwendete Arzneimittel auch heute noch eine natürliche Strukturbasis besitzen, die durch geringfügige chemische Modifikation eine bessere Wirkung (Verträglichkeit, Wirksamkeit, Applizierbarkeit und auch biologische Abbaubarkeit u.v.m.) als der reine
110 pflanzliche Wirkstoff haben, sollte hier in der fast unerschöpflichen Struktur- Vielfalt der jarirmillionenalten Evolution die Grundlage neuer Arzneimittel gesucht werden. Die bisherige Erfahrung hat gezeigt, daß nur aufgrund des Grundlagenwissens der Wirkung von Naturstoffen viele Wirkstoff-Analoga synthetischer Natur optimiert werden konnten, die heute als Arzneimittel im Handel sind.
115 Das Bestreben, Naturstoffe mit anti-retroviraler Wirkung zu finden und in der AIDS Therapie anzuwenden ist am Beispiel des Hypericins und seiner Derivate aus Johanniskraut dokumentiert (Merueln et. al. 1992) sowie durch Berichte auf dem internationalen AIDS Kongreß 1996 in Vancouver von der Firma Arkopharma über ein eigenes Präparat SV30 aus Buchsbaum.
120
Propolis ist ein Gemisch pflanzlicher Naturstoffe, das von den Bienen aus Knospen von Laubbäumen, Nadelbäumen oder Sträuchern gesammelt und zur Abdichtung der Waben und deren Abwehr gegen Befall mit Bakterien, Pilzen, Viren und anderen Krankheitserregern verwendet wird.
125 Die anti-bakterielle Wirkung von Propolis ist in der Naturheilkunde seit langem bekannt sowie die Beobachtung, daß bislang keinerlei bakterielle Resistenzen gegen Propolis aufgetreten sind (Hill 1995, Apimondia 1990). Die antivirale Wirkung in Bezug auf Herpes- EBV bzw. Varicella Zoster Viren wurde gleichwohl beschrieben ohne jedoch Zielmoleküle oder Mechanismus der Wirkung zu untersuchen (WO 91/13626, Apimondia 1990).
130 Die anti-virale Wirkung auf enzymatische Polymerase-Aktivität bei Retroviren und anderen Polymerase haltigen Viren wurde bislang jedoch weder untersucht noch beschrieben. Weiterhin läßt die bisherige Erfahrung, daß bislang keine bakterielle Resistenzen gegen Propolis beobachtet wurden, hoffen, daß auch virale Resistenzen gegen Propolis weniger wahrscheinlich sind bzw. möglicherweise gar nicht auftreten.
135 Problemlösung
Es ist Aufgabe der vorliegenden Erfindung, ein neues Arzneimittel auf natürlicher Basis zur Behandlung von viralen Erkrankungen bereitzustellen. 140 Diese Aufgabe wird erfindungsmäßig dadurch gelöst, daß Propolis in einer pharmazeutisch wirksamen Menge zur Inhibierung der Replikation von Polymerase enthaltenen Viren bereitgestellt wird.
Beispiel
145
Ausgehend vom o.g. Stand der Wissenschaft und Technik wurde Propolis-Rohextrakt biochemisch und zellbiologisch auf die Inhibition von HIV-1 getestet.
a) Propolis Extraktion: Trockensubstanz von Propolis wurde mit gleichen Volumina 150 DMSO, Äthanol oder PBS versetzt und 3 Stunden bei Raumtemperatur geschüttelt. Die dunkelbraune Lösung wurde anschließend filtriert und als Stammlösung bei den Untersuchungen eingesetzt.
b) Die molekulare Wirkung des Propolis-Extrakts auf die HIV Reverse Transkriptase wurde 155 biochemisch mittels der RETRO-KIT/RTA Reversen Transkriptase Technologie getestet (siehe Anlage, Faff et al. in preparation sowie PCT/DE97/00391). Hierfür wurde gereinigtes Enzym der HIV Reversen Transkriptase mit dem Propolis-Extrakt in verschiedenen Konzentrationen bzw. Verdünnungen vorinkubiert und anschließend in enzymatischer Reaktion getestet. Als Referenzinhibitor wurde AZT-TP (Azidothymidin-triphosphat) (Fig.2a-2b) sowie 160 entsprechende Lösungsmittelkontrollen, Blanc etc. eingesetzt.
Die Ergebnisse zeigen eine vollständige Inhibition der RT- Aktivität bei bis zu ca. 700μg/ml Propolis-Extrakt (Verdünnung 1:3.500) sowie eine weiterhin signifikante Inhibition der RT- Aktivität bis zu einer Konzentration von 7μg/ml Propolis-Extrakt bzw. einer Verdünnung von 165 1: 35.000 (Fig.la).
Entsprechend dem Hemmunggrad ausgedrückt in % Inhibition läßt sich eine IC50 Konzentration von ca. 150μg/ml Propolis-Extrakt feststellen (Fig. lb).
c) Die zellbiologische Wirkung des Propolis-Extrakt auf HIV wurde anhand der Infektion 170 von Zellen uzw. PBL Periphären Blutlymphozythen mit HIV-1 (Isolat Illb, m.o.i. 0,001) in
Gegenwart des RT-Rohextrakts in verschiedenen Konzentrationen/ Verdünnungen (1/100; 1/1.000; 1/10.000) getestet sowie dessen toxische Wirkung (MTT-Test) auf die o.g. Zellen untersucht (Triplikate). Die Replikation von HIV in den Zellen wurde mittels p24 Antigen im Zellkulturüberstand nach 4 Tagen Inkubation gemessen. 175
Die Ergebnisse zeigen, daß das Propolis-Extrakt in hohen Konzentrationen (1/100 bzw. 1/1000) toxisch wirkt und nur ca. 4% der Zellen überleben (Tab. 1). In der lOx niedrigeren Konzentration (Verdünnung 1/10.000) überleben ca. 65% der Zellen.
Wird der Überstand dieser Zellen auf p24 Antigen untersucht, kann man eine nahezu totale 180 Abnahme der p24 Menge auf ca. 0,2 pg/ml im Vergleich zur Kontrolle (39,3 ng/ml) messen. Dies entspricht einem Inhibitionsgrad von ca. 99,5 % verglichen mit der Wirkung des Referenzinhibitors Azidothymidin (Tab. 2).
185 Tab. 1 : Toxizitätsuntersuchung von HIV Infizierten Lymphozyten
(PBL's) in Gegenwart des Propolis-Extrakt
(MTT-Test nach T. Mossmann, J. Immunol.Methds. 65, 55-63, 1983)
Verdünnung % lebender Zellen v. Kontrolle
1/100 0 %
1/1.000 4 %
1/10.000 65 %
190
Tab. 2: Inhibition der HIV Infektion & Replikation von Lymphozyten
(PBL's) in Gegenwart des Propolis-Extrakt
(p24 Test nach Müller et al.: Fresenius Z. Anal.Chem. 330, 352-353, 1988)
Inhibitor ng HIV -p24/ml % Inhibition
AZT (ng/ml)
100 0,00 100,0 10 8,70 77,9 1,0 33,50 14,8 0,1 40,60 0,0
Propolis-Extrakt
1/10.000 0,20 99,5
Kontrolle 39,30 0,0 kein Inhibitor
195
Die experimentellen Daten zeigen, daß das Propolis-Extrakt eine komplette Inhibition von HIV- 1 sowohl auf molekularer als auch auf zellulärer Ebene hat (Fig.1-2, Tab-2). Die anti-HIV Wirkung kann in beiden Test-Systemen bis zu niedrigen Konzentrationen (hohen 200 Verdünnungen 1/35000, 1/10.000) gemessen werden wo Lösungsmittel- oder toxische Effekte ausgeschlossen werden können (Fig.1-2, Tab.l).
Der hohe anti-retrovirale Effekt wurde in einem Rohextrakt gemessen, daß ein Gemisch aus vielen (tausenden) Komponenten ist und weder in der Extraktion optimiert noch teilgereinigt ist. 205 Diese sehr starke HIV Inhibition bei einem sehr schlechten Reinheitsgrad des Propolis-Extrakt läßt auf einen hohen quantitativen Anteil der Wirkungskomponenten und/oder eine sehr gutes Dosis/Wirkung Verhältnis schließen.
Die Inhibition der HIV-Reversen Transkriptase und das Wissen um den Wirkungs- 210 mechanismus durch kinetische Studien eröffnen die Möglichkeit prognostische Untersuchungen über Resistenzentwicklungen durchzuführen und auch die Wirkung des Propolis- Extrakt an anderen Spezies von Retro- oder andere Viren zu untersuchen, die das Enzym Reverse Transkriptase oder andere Nukleionsäure Polymerasen besitzen. Somit könnten die Extrakt- Wirkstoffe möglicherweise auch bei anderen retro virus- bedingten Krankheiten z.B. 215 Leukämie, Autoimmunerkrankungen, Krebs, Hepatits etc. eingesetzt werden.
Die Inhibition der HIV Replikation in Zellkulturen von Lymphozythen zeigt, daß die Wirkstoffkomponenten des Propolis-Extrakts das HIV- Virus an einer oder mehreren Stationen des Replikationszyklus hemmen. Daß dies bei der Reversen Transkription der retroviralen RNA
220 erfolgt, liegt auf Grund der molekularen Untersuchungen am Reversen Transkriptase Enzym nahe, schließt jedoch nicht aus, daß die Inhibition auch an anderen viralen Zielmolekülen (RNAseH, Protease, Integrase etc.) erfolgt.
Weiterhin zeigt die zelluläre HIV Inhibition durch Propolis, daß dessen Komponenten die Plasmamembran der Zellen passieren können, was auf eine gute zelluläre B io verfü -
225 barkeit hinweist und eine chemische Derivatisierung der Wirkstoffe zumindest für den Angfang überflüssig macht.
Somit weisen die starke zelluläre HIV-Inhibition (Bio Verfügbarkeit) sowie die Wirkung bei niedrigen Konzentrationen (Dosis/Wirkungsverhältnis) auf gute Voraussetzungen für 230 die erfolgreiche Entwicklung eines potenten anti-viralen Therapeutikums.
Literaturverzeichnis
1. Apimondia (1990): Propolis, I. T. E.A, Apimondia, Bucuresti
235
2. De Clercq E. (1995): Toward improved anti-HIV chemotherapy: therapeutic strategies for Intervention with HIV infections. J. Med. Chem.: 38, 2491-517
3. Erickson J.W. & Burt S.K. (1996): Structural mechanisms of HIV drug resistence. Ann. 240 Rev. Pharmacol. Toxicol.: 36, 545-571
4. Faff O. & G. Hiszem (1996): Verfahren und Test-Kit zum nichr-radioaktiven enzymatischen Nachweis von Reverser Transkriptase (DPA 196 08687.6-41, PCT/DE9700391)
245 5. Hill, R.(1995): Propolis, Kittharz.Verlag Ehrenwirth, M.
6. Hiroaki Mitsuya, M.D., Ph.D.(1997): Anti-HIV nucleosides: past, present and future. Springer-Verlag
250 7. Levy JA. (1993): Pathogenesis of human immunodeficiency virus infection. Microbiol. Rev: 57,183-289.
8. Merueln D., G. Lavie, D. Lavie. (1988): Therapeutie agents with dramtic antiretroviral activity and littel toxicity in effective doses. Proc. Natl. Acad. SCI. USA 85, 5230-5234.
255
9. Müller et al. (1988): Fresenius Z. Anal.Chem. 330, 352-353,
10. Premack, B.A. & T.J. Schall (1996): Chemokine receptors: gateways to inflammation anf infection. Nature medicine: 2, 1174-1178.
260
11. G. Pantaleo and A. S. Fauci (1996): Immunopathogenesis of HIV Infection Annu. Rev. Microbiol.: 50,825-54
12. Richman DD. (1993): HIV drug resistance. Annu. Rev. Pharmacol. Toxicol.:
265 32,149-64
13. Steitz T. A. (1998): A mechanism for all polymerases.Nature: 391, 231-232.
14. Vachy R. et al. (1990): Therapeutic composition containing a phenol compound and 270 propolis useful against lipidic capside viruses, especially the herpes viruses (WO 91/13626)
15. Vincent T. De Vita, Jr., M.D. et al. (1997): AIDS - Etiology, Diagnosis, Treatment and Prevention. Lippincott - Raven Publishers

Claims

275 Patentansprüche
1. Verwendung von Propolis in einer pharmazeutisch wirksamen Menge zur Inhibierung der Replikation von Polymerase-Aktivität aufweisenden Viren.
280
2. Verwendung nach Anspruch 1 , dadurch gekennzeichnet, daß Propolis-Derivate eingesetzt werden.
3. Verwendung nach Anspruch 2, dadurch gekennzeichnet, daß die Derivate Propolis- 285 Rohextrakte, Fraktionen von Propolis, Propolis-Reinsubstanzen oder synthetische
Wirkstoff- Analoga von Propolis, je mit der Wirkung zur Inhibierung von Polymerase- Aktivität aufweisenden Viren, umfassen.
4. Verwendung nach einem oder mehreren der vorhergehenden Ansprüche zur Inhibierung der 290 enzymatischen Aktivität viraler Nukleinsäure Polymerasen.
5. Verwendung nach Anspruch 4, dadurch gekennzeichnet, daß die enzymatische Aktivität von Reversen Transkriptasen, DNA-Polymerasen und/oder RNA-Polymerasen gehemmt wird.
295 6. Verwendung nach Anspruch 5, dadurch gekennzeichnet, daß die Reverse Transkriptase gehemmt wird.
7. Verwendung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Inhibierung der Replikation der Viren in vitro oder in vivo erfolgt.
300
8. Verwendung nach Anspruch 7, dadurch gekennzeichnet, daß die Inhibierung der Replikation der Viren in Zellkulturen erfolgt.
9. Verwendung nach einem oder mehreren der vorhergehenden Ansprüche zur Therapie von 305 Erkrankungen, die durch eine Polymerase-Aktivität aufweisenden Viren verursacht wird.
10. Verwendung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Propolis in einer pharmazeutisch wirksamen Menge in Arzneimitteln, Kosmetika oder Nahrungsmitteln vorliegt, um die Replikation von Polymerase-Aktivität
310 aufweisenden Viren zu inhibieren.
PCT/DE1999/000902 1998-03-27 1999-03-25 Anti-virale wirkung von propolis durch inhibition viraler nukleinsäure polymerasen WO1999049830A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813802.4 1998-03-27
DE1998113802 DE19813802A1 (de) 1998-03-27 1998-03-27 Anti-virale Wirkung von Propolis durch Inhibition viraler Nukleinsäure Polymerasen

Publications (2)

Publication Number Publication Date
WO1999049830A2 true WO1999049830A2 (de) 1999-10-07
WO1999049830A3 WO1999049830A3 (de) 2000-03-09

Family

ID=7862702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/000902 WO1999049830A2 (de) 1998-03-27 1999-03-25 Anti-virale wirkung von propolis durch inhibition viraler nukleinsäure polymerasen

Country Status (2)

Country Link
DE (1) DE19813802A1 (de)
WO (1) WO1999049830A2 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003060071A2 (en) 2001-12-21 2003-07-24 Human Genome Sciences, Inc. Albumin fusion proteins
DE102005031361A1 (de) * 2005-06-30 2007-01-04 Biotronik Vi Patent Ag Verwendung von Propolis als Beschichtungsmaterial für medizinische Implantate
US7722886B2 (en) 2003-05-20 2010-05-25 Wyeth Compositions and methods for treatment of severe acute respiratory syndrome (SARS)
EP2206720A1 (de) 2000-04-12 2010-07-14 Human Genome Sciences, Inc. Albuminfusionsproteine
EP2431054A2 (de) 2000-06-15 2012-03-21 Human Genome Sciences, Inc. Menschlicher Tumornekrosefaktor Delta und Ypsilon
US8242140B2 (en) 2007-08-03 2012-08-14 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
US8476257B2 (en) 2007-12-19 2013-07-02 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
US8623416B2 (en) 2009-11-25 2014-01-07 Michael Zasloff Formulations comprising aminosterols
US8729058B2 (en) 2009-10-27 2014-05-20 Michael Zasloff Methods and compositions for treating and preventing viral infections
EP3037544A1 (de) 2005-10-13 2016-06-29 Human Genome Sciences, Inc. Verfahren und zusammensetzung zur verwendung bei der behandlung von systemisch lupus erythematosus patienten mit autoantikörper-positiven leiden

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7888466B2 (en) 1996-01-11 2011-02-15 Human Genome Sciences, Inc. Human G-protein chemokine receptor HSATU68

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991013626A1 (fr) * 1990-03-12 1991-09-19 Fileco Composition therapeutique contenant un compose phenol et de la propolis utile contre le virus a capside lipidique, notamment les virus de l'herpes
WO1992014458A1 (en) * 1991-02-15 1992-09-03 Fockerman, Jasmine Benzopyran phenol derivates for use as antibacterial, antiviral or immunostimulating agents

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2045681A1 (en) * 1970-09-16 1972-03-23 Schering Ag Aluminium-diene polymers, for prepn of - catalysts for (co) polymerisation
DE1956353A1 (de) * 1969-11-08 1971-05-19 Schering Ag Neue Aluminium-dien-polymere
DE19516200A1 (de) * 1995-05-08 1996-11-14 Merck Patent Gmbh Dendrimere mit flüssigkristallinen Eigenschaften, Verfahren zu ihrer Herstellung, Verwendung
WO1997032918A2 (en) * 1996-03-05 1997-09-12 Massachusetts Institute Of Technology Group 4 metal-containing organosilicon dendrimers and method for synthesizing organosilicon dendrimers
US6313239B1 (en) * 1996-03-05 2001-11-06 Bayer Corporation Olefin polymerization with group 4 metal-containing organosilicon dendrimers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991013626A1 (fr) * 1990-03-12 1991-09-19 Fileco Composition therapeutique contenant un compose phenol et de la propolis utile contre le virus a capside lipidique, notamment les virus de l'herpes
WO1992014458A1 (en) * 1991-02-15 1992-09-03 Fockerman, Jasmine Benzopyran phenol derivates for use as antibacterial, antiviral or immunostimulating agents

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HARISH Z ET AL: "SUPPRESSION OF HIV-1 REPLICATION BY PROPOLIS AND ITS IMMUNOREGULATORY EFFECT" DRUGS UNDER EXPERIMENTAL AND CLINICAL RESEARCH,XX,BIOSCIENCE EDIPRINT INC, Bd. 23, Nr. 2, Seite 89-96 XP000857159 ISSN: 0378-6501 *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2295456A1 (de) 2000-04-12 2011-03-16 Human Genome Sciences, Inc. Albuminfusionsproteine
EP2213743A1 (de) 2000-04-12 2010-08-04 Human Genome Sciences, Inc. Albuminfusionsproteine
EP2357008A1 (de) 2000-04-12 2011-08-17 Human Genome Sciences, Inc. Albuminfusionsproteine
EP2311872A1 (de) 2000-04-12 2011-04-20 Human Genome Sciences, Inc. Albuminfusionsproteine
EP2298355A2 (de) 2000-04-12 2011-03-23 Human Genome Sciences, Inc. Albuminfusionsproteine
EP2206720A1 (de) 2000-04-12 2010-07-14 Human Genome Sciences, Inc. Albuminfusionsproteine
EP2275557A1 (de) 2000-04-12 2011-01-19 Human Genome Sciences, Inc. Albuminfusionsproteine
EP2216409A1 (de) 2000-04-12 2010-08-11 Human Genome Sciences, Inc. Albuminfusionsproteine
EP2236152A1 (de) 2000-04-12 2010-10-06 Human Genome Sciences, Inc. Albuminfusionsproteine
EP2267026A1 (de) 2000-04-12 2010-12-29 Human Genome Sciences, Inc. Albuminfusionsproteine
EP2431054A2 (de) 2000-06-15 2012-03-21 Human Genome Sciences, Inc. Menschlicher Tumornekrosefaktor Delta und Ypsilon
EP2990417A1 (de) 2001-12-21 2016-03-02 Human Genome Sciences, Inc. Albumin-insulin-fusionsprotein
EP2277888A2 (de) 2001-12-21 2011-01-26 Human Genome Sciences, Inc. Fusionsprotein von Albumin und Erythropoietin
EP2277889A2 (de) 2001-12-21 2011-01-26 Human Genome Sciences, Inc. Fusionsproteine von Albumin und Interferon beta
EP2277910A1 (de) 2001-12-21 2011-01-26 Human Genome Sciences, Inc. Albumin Fusionsproteine
EP2261250A1 (de) 2001-12-21 2010-12-15 Human Genome Sciences, Inc. Albumin Fusionsproteine
EP1997829A1 (de) 2001-12-21 2008-12-03 Human Genome Sciences, Inc. Albumin Fusionsproteine
WO2003060071A2 (en) 2001-12-21 2003-07-24 Human Genome Sciences, Inc. Albumin fusion proteins
US7892563B2 (en) 2003-05-20 2011-02-22 Wyeth Holdings Corporation Methods for treatment of severe acute respiratory syndrome (SARS)
US7722886B2 (en) 2003-05-20 2010-05-25 Wyeth Compositions and methods for treatment of severe acute respiratory syndrome (SARS)
EP1738781A3 (de) * 2005-06-30 2007-10-03 BIOTRONIK VI Patent AG Verwendung von Propolis als Beschichtungmaterial für medizinische Implantate
DE102005031361A1 (de) * 2005-06-30 2007-01-04 Biotronik Vi Patent Ag Verwendung von Propolis als Beschichtungsmaterial für medizinische Implantate
EP3037544A1 (de) 2005-10-13 2016-06-29 Human Genome Sciences, Inc. Verfahren und zusammensetzung zur verwendung bei der behandlung von systemisch lupus erythematosus patienten mit autoantikörper-positiven leiden
US8242140B2 (en) 2007-08-03 2012-08-14 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
US8476257B2 (en) 2007-12-19 2013-07-02 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
US8912182B2 (en) 2007-12-19 2014-12-16 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
US8541402B2 (en) 2007-12-19 2013-09-24 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
US8729058B2 (en) 2009-10-27 2014-05-20 Michael Zasloff Methods and compositions for treating and preventing viral infections
US9867835B2 (en) 2009-10-27 2018-01-16 Enterin Laboratories, Inc. Methods and compositions for treating and preventing viral infections
US10478444B2 (en) 2009-10-27 2019-11-19 Enterin, Inc. Methods and compositions for treating and preventing viral infections
US11419879B2 (en) 2009-10-27 2022-08-23 Enterin, Inc. Methods for treating and preventing viral infections
US8623416B2 (en) 2009-11-25 2014-01-07 Michael Zasloff Formulations comprising aminosterols

Also Published As

Publication number Publication date
WO1999049830A3 (de) 2000-03-09
DE19813802A1 (de) 1999-11-11

Similar Documents

Publication Publication Date Title
Coates et al. The separated enantiomers of 2'-deoxy-3'-thiacytidine (BCH 189) both inhibit human immunodeficiency virus replication in vitro
US4952411A (en) Method of inhibiting the transmission of AIDS virus
Bessong et al. Evaluation of selected South African medicinal plants for inhibitory properties against human immunodeficiency virus type 1 reverse transcriptase and integrase
KR100403418B1 (ko) 인간면역결핍성 바이러스 및 그밖의 감염성 질환의 항미생물적 예방 및 치료
AU4074789A (en) Coumarins to inhibit reverse transcriptase in humans
WO1999049830A2 (de) Anti-virale wirkung von propolis durch inhibition viraler nukleinsäure polymerasen
CN111773240A (zh) 海洋生物来源天然硫酸多糖在作为抗冠状病毒及所致疾病药物中的应用
DE69631158T2 (de) Verbindungen und deren verwendung zur behandlung von infektiösen erkrankungen
Bessong et al. In vitro activity of three selected South African medicinal plants against human immunodeficiency virus type 1 reverse transcriptase
US5994400A (en) Extracts of salvia species having antiviral activity
DE60118592T2 (de) Verbindungen aus phyllanthus zur prävention und/oder behandlung von erkrankungen im zusammenhang mit einem retrovirus
Husni et al. The effect of ethanol extract of moringa leaf (moringa oleifera lam) against the activity and capacity of phagocytosis of macrofag cells and the percentage of leukosit cells of white mice
DE69535366T2 (de) Zusammensetzung zur behandlung und vorbeugung von hiv-1 infektionen, welche mindestens zwei verschiedene hiv-1 reverse transcriptase inhibitoren enthalt
EP1651244A1 (de) Verwendung von Extrakten aus Pelargonium sidoides und Pelargonium Reniforme
RU2182828C1 (ru) Композиция, обладающая антивич и антигерпесной активностью
AU760967B2 (en) Herbal composition for the prophylaxis and treatment of AIDS
DE4320597A1 (de) Verwendung von Polyphosphaten zur antiviralen Therapie und als Immunmodulatoren
WO2002087600A1 (de) Verwendung von phyllanthusbestandteilen zur behandlung oder prophylaxe von infekten durch hepatitis b-viren
DE60118175T2 (de) Methode zur herstellung einer immunotropischen antiviralen zusammensetzung
DE60104530T2 (de) Diphenyl Ketoaldehyde-Derivate mit Wirkung gegen HIV
Bhagat et al. Potential Antiviral Herbal Therapeutics for Viral Infections
CN110279752B (zh) 速生桉叶提取物及其制备方法和抗hiv应用
US20220047663A1 (en) Formulation for inhibiting virus replication
DE69722025T2 (de) Verfahren zur unterbrechung der desoxyribonukleotidtriphosphat-biosynthese
DE3724951A1 (de) Arzneimittel, enthaltend modifizierte desoxyribonukleinsaeure und dessen verwendung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WA Withdrawal of international application