WO1999046547A1 - Apparatus for packaging contaminant-sensitive articles and resulting package - Google Patents

Apparatus for packaging contaminant-sensitive articles and resulting package Download PDF

Info

Publication number
WO1999046547A1
WO1999046547A1 PCT/US1998/004545 US9804545W WO9946547A1 WO 1999046547 A1 WO1999046547 A1 WO 1999046547A1 US 9804545 W US9804545 W US 9804545W WO 9946547 A1 WO9946547 A1 WO 9946547A1
Authority
WO
WIPO (PCT)
Prior art keywords
enclosure
package
bag
sections
interior
Prior art date
Application number
PCT/US1998/004545
Other languages
French (fr)
Inventor
Ray G. Brooks
Timothy W. Brooks
Stephen L. Fowler
Original Assignee
Convey Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US08/685,697 priority Critical patent/US5724748A/en
Application filed by Convey Incorporated filed Critical Convey Incorporated
Priority to PCT/US1998/004545 priority patent/WO1999046547A1/en
Priority to JP2000535884A priority patent/JP3872646B2/en
Priority to DE69821033T priority patent/DE69821033D1/en
Priority to EP98910246A priority patent/EP1062468B1/en
Publication of WO1999046547A1 publication Critical patent/WO1999046547A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/18Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient
    • B65D81/20Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas

Definitions

  • This invention relates to the elimination of the contamination of contaminant-sensitive articles stored in sealed plastic containers and more particularly to a method, apparatus and package for removing such contaminants as moisture, oxygen, ion contaminants and the like from the container interior and maintaining the interior contaminant-free for an indefinite period of time so as to increase productive yields between manufacturing steps by eliminating environmental variations.
  • ion contaminants from containers formed of polymeric material such as plastic bags, boxes and the like. Such ion contaminants migrate to wafer surfaces and can cause circuit degradation due to caustic and/or corrosive elements such as CL, PO4, NO3, Na and K found in polymeric material. Such polymeric material tends to "outgas" so that these elements become mobile with environmental moisture and are attracted to the surface of the wafers. It is therefore highly desirable to package such articles in sealed plastic enclosures devoid of contaminant activity to the greatest extent possible.
  • One form of protection has been the use of a desiccant prepackaged in a vapor transmission type material which is placed within the plastic enclosure prior to sealing.
  • This desiccant or “getter” acts to absorb the atmospheric contaminants such as moisture and oxygen during packaging and storage.
  • desiccants generally include Silica Gel and molecular sieves used for absorbing moisture and ferrous shavings such as iron bits for absorbing oxygen.
  • the enclosure interior is frequently purged with an inert gas and evacuated prior to sealing.
  • WEC Wafer Environment Control
  • a primary object of the invention is to provide a new and novel method and package for packaging contaminant-sensitive articles such as semiconductor wafers in a contaminant-free environment.
  • Another object of the invention is to provide a new and novel method and package for maintaining packaged contaminant-sensitive articles in a contaminant-free environment for prolonged periods of time.
  • a further object of the invention is to provide a new and novel package for contaminant-sensitive articles such as semiconductor wafers which maintains the package in a sealed condition while permitting the flow of a purging gas and entrained contaminants therefrom.
  • a still further object of the invention is to provide a new and novel apparatus for automatically purging and/or evacuating the interior of a sealed package of contaminant-sensitive articles such as semiconductor wafers while maintaining the package in a sealed condition.
  • Still another object of the invention is to provide a new and novel package for contaminant-sensitive articles is of multi-enclosure construction comprising two or more sealed enclosures the interiors of which may be subjected simultaneously to a purging and/or evacuating process to maintain the interiors in a contaminant-free condition.
  • a still further object of the invention is to provide a new and novel package for contaminant-sensitive articles which permits removal of contaminants anytime
  • Still another object of the invention is to provide a new and novel apparatus and package for contaminant-sensitive articles which maintains the articles free of contaminants during the loading of such articles in the package.
  • a sealed plastic enclosure in the interior of which are packaged one or more contaminant-sensitive articles such as semiconductor wafers which are free of contaminants during the loading of such articles in the package
  • the enclosure comprises a pair of half-sections yieldingly retained in sealing engagement together with means for subjecting the interior to a purging gas and/or a vacuum from an associated apparatus with the interior being maintained in a sealed condition but permitting the release of purging gas with entrained contaminants from the interior during the purging operation, the enclosure being adapted to be contained within one or more concentric surrounding flexible plastic bags having interiors adapted to be subjected to a purging and/or evacuating operation.
  • Fig. 1 is an exploded view of the packaging method of the invention illustrating one of the steps in the novel process of the invention
  • Fig. 2 is a schematic view of the enclosure of the invention in association with purging and evacuating apparatus
  • Fig. 3 is an enlarged sectional view taken substantially along line 3-3 of Fig. 2 in the direction of the arrows;
  • Fig. 4 is an enlarged sectional view taken substantially along line 4-4 of Fig. 2 in the direction of the arrows;
  • Fig. 5 is an enlarged sectional view taken substantially along line 5-5 of fig. 2 in the direction of the arrows;
  • Fig. 6 is a perspective view of a barrier strip detachably attached to the enclosure of Fig. 1;
  • Fig. 7 is a sectional view taken substantially along line 7-7 of Fig. 6 in the direction of the arrows;
  • Fig. 8 is a perspective view of the enclosure of Fig. 1 illustrating the attachment of the barrier strip of Fig. 6;
  • Fig. 9 is a perspective view of the enclosure of Fig. 1 together with the attached barrier strip of Fig. 6;
  • Fig. 10 is a perspective view illustrating the packaging of the enclosure of Fig. 9 within the interior of a second enclosure;
  • Fig. 11 is a perspective view of a package constructed in accordance with the invention utilizing the components of Fig. 10;
  • Fig. 12 is an enlarged plan view of a portion of the package of Fig. 11 ;
  • Fig. 13 is a sectional view taken substantially along line 13-13 of Fig. 12 in the direction of the arrows;
  • Fig. 14 is a perspective view of the package of Fig. 11 in association with the purging and evacuating apparatus of the invention.
  • Fig. 15 is a sectional view taken substantially along line 15-15 of Fig. 14 in the direction of the arrows;
  • Fig. 16 is a view similar to Fig. 15 illustrating a modification of the package of the invention. Description of the Preferred Embodiments
  • the enclosure E is preferably molded of synthetic resinous material such as polypropylene and is adapted for the packaging of contaminant-sensitive articles such as semiconductor wafers W.
  • the enclosure E comprises a pair of half-sections 11, 12 each having a bottom wall 13, 14 and a side wall 16, 17 respectively.
  • the enclosure E is preferably of circular cross-sectional shape with upstanding annular side walls 16, 17.
  • the enclosure E may be of any desired shape.
  • the half-sections 11 , 12 are arranged for overlying, sliding engagement from a spaced-apart, open position as shown in Fig.1 into a stop-position as shown in Fig. 2 with the side walls 16, 17 in telescoping relationship as shown in Fig. 4 to form the enclosure E having an interior 19.
  • the articles W may be introduced between the half-sections 11 , 12 so as to be accommodated within the enclosure interior 19.
  • an ionizer 21 is operatively associated with the enclosure E and produces an ionizing gas which continuously envelops the wafers W and adjacent enclosure parts as indicated by the arrows A. As shown, the ionizer 21 is connected to a source 22 of ionizing gas and a source of electric power 23.
  • Sealing means operatively associated with at least one of the side walls 16, 17 are provided for sealing the enclosure interior 19 in the stop or closed
  • the half-section 12 is provided with a peripheral flange 24 in which is formed an annular groove 26.
  • An O-ring 27 is disposed within the groove 26 adjacent the side wall 17 for sealing engagement with the upper edge 16a of the side wall 16 of the half-section 11 as shown in Fig. 5.
  • Resilient clamping means are provided on the half-sections 11 , 12 for yieldingly urging the half-sections into the stop or sealing position of Fig 5 to seal the enclosure interior 19. More specifically, a plurality of circumferentially spaced latches designated generally by the letter L are provided on the enclosure E each of which includes a pivotally movable latch member 28 preferably formed integrally with the flange 24 in half-section 2. The distal end of each of the members 28 is provided with a slot 29.
  • the half-section 11 is also provided with an upstanding, annular flange 30 and a peripheral flange 31 on which are provided a plurality of catch members 32 preferably formed integrally with the flange 31 and spaced circumferentially for operative association with an adjacent latch member 28.
  • the half-sections 11 , 12 are latched together by upward movement from the dotted line position of Fig. 2 of the latch members 28 for engagement of the catch members 32 with the slots 29 of the associated latch member 28.
  • This latching action yieldingly urges the upper edge 16a of side wall 16 against the O-ring 27 thereby providing a sealed interior 19 for the enclosure E.
  • the outer end of each of the catch members 32 is provided with an upstanding bead 33.
  • Means are provided for introducing a purging gas into the interior 19 of the sealed enclosure E and to move the half-sections 11 , 12 out of the stop position of Fig. 5 against the clamping action of the latches L as shown in Fig. 4 thereby relieving excess gas pressure in the enclosure interior 19 during the purging
  • the bottom wall 13 of the half-section 11 is provided with an inlet port designated generally by the letter I.
  • the inlet port I includes an upstanding, central sleeve 34 preferably formed integrally with the bottom wall 13. Openings 36 are also provided within the area of the wall 13 defined by the sleeve 34.
  • the sleeve 34 includes a central bore 37 in which is positioned a stacked assembly including a filter 38, a filter retainer 39 having a central opening 39a, a patch 41 of self-sealing material such as rubber and a patch retainer 42 having a central opening 42a, as shown in Fig. 5 and as shown in the exploded solid line assembly of Fig. 1.
  • a purging gas as well as a vacuum is introduced selectively within the sealed enclosure from an associated fluid pumping source designated generally by the letter S and including a source of purging gas and a vacuum source.
  • a manually manipulated wand T which includes an elongated body portion 43 having a central bore 44 terminating at one end in a cup portion 46 defining a recess 47.
  • a hollow instrument such as a needle 48 having a sharp outlet end 48a is supported within the wand T with opposite end portions extending within the bore 44 and cup recess 47 respectively.
  • the needle 48 is connected by means of a hose 49 to the fluid pumping source S including a program controller 51 having a timing means 52.
  • the controller 51 is connected to a source of electric power by means of conductors 53 and to a source 54 of purging gas and a vacuum source 56 by means of hoses 57, 58 respectively.
  • the introduction of purging gas within the enclosure interior 19 is accomplished by positioning the wand T as shown in Fig. 2 with the sleeve 34 of the inlet port I snugly accommodated within the wand recess 47 as shown in Fig. 5. In this position, the needle's distal portion extends through the apertures 42a, 39a in the patch retainer 42 and filter retainer 39 respectively piercing the patch 41.
  • the needle outlet 48a is thus disposed within the wand recess 47 so that purging gas from system S can be introduced into the enclosure interior 19 to bathe the contaminant-sensitive articles therein.
  • the enclosure interior 19 may also be subjected to a vacuum as established by the controller 51 in any desired sequence and duration in accordance with a program preset with the controller's timing means 52.
  • the wand T is removed withdrawing the needle 48 following which the patch 41 reseals maintaining the enclosure interior 19 in a sealed condition free of contaminants.
  • the enclosure E may be further protected by means for externally enclosing a side portion of the enclosure E.
  • an elongated pad or barrier strip 61 of rectangular configuration is provided which may be of any suitable airtight material such as plastic or the like.
  • the pad 61 includes a strip 62 having side walls 63, 64 defining one or more inflated, longitudinally extending air chambers.
  • three of such chambers 66, 67, 68 are provided interconnected by webs 71 , 72 as shown best in Fig. 7.
  • the width of pad 61 is slightly in excess of
  • the pad 61 is mounted in encircling relationship with the enclosure E and is retained in the mounted position by means of an adhesive tab 73 having a removable strip 74 of release material.
  • the pad 61 In the mounted position of Fig. 9, the pad 61 not only provides a means of shock protection for the enclosure E but further reduces the water vapor transmission rate (WVTR).
  • WVTR water vapor transmission rate
  • a flexible enclosure or bag of plastic material is provided which is identified generally by the letter B.
  • the bag B includes side walls 76, 77 defining an interior 78.
  • the bag B is sealed at one end 79 and the other end is open to permit the insertion of the enclosure E with pad 61 within the bag interior 78, the open end being subsequently sealed at 80.
  • This combination of the bag B and enclosure E forms a sealed package P.
  • the bag B is provided with an inlet port 81 which includes an upstanding sleeve 82 having a central bore 83 suitably secured by means of a flange 86 within an opening 87 in the side wall 76 of the bag B.
  • the sleeve 82 includes a transversely extending inner wall 88 having an aperture 88a over which is disposed a self-sealing patch 90 of rubber or the like and a disc retainer 91 having a central aperture 91a as shown best in Fig. 13.
  • the inner wall 82a of the sleeve 82 is provided with a plurality of curcumferentially spaced notches 93 for a purpose to be explained hereinafter.
  • the sealed package P of Fig. 11 may now be subjected to a purging and/or evacuating operation in association with the fluid pumping system S.
  • the wand T of the previous embodiment has
  • the inlet port 81 of bag B is centrally located so that in the assembled relationship of bag B and enclosure E, the inlet port I of enclosure E is received within the central bore 83 of sleeve 82 of the bag inlet port 81.
  • the inlet port 81 is received within the wand recess 47.
  • the needle 48 passes through apertures 88a, 91a on the inlet port 81 of bag B and through apertures 42a, 39a on the enclosure E piercing both rubber patches 41 , 90 on the enclosure E and bag B respectively.
  • the needle side port 94 communicates only with the interior 78 of bag B through notches 93 and the needle outlet end 48a communicates only with the enclosure interior 19 through filter 38 and openings 36 in the bottom wall 13 of half-section 11.
  • the gas flow into the bag interior 78 is designated by the arrows X and the gas flow into the enclosure interior 19 is designated by the arrows Y.
  • the excessive gas pressure relief within the enclosure interior 19 is accomplished as in the previous embodiment with the relative movement of the half-sections 11 , 12 as permitted by the yieldable latches L.
  • the package P' includes an enclosure E' having an inlet port I' which includes an upstanding sleeve 34 having a central bore 37 and preferably formed integrally with the bottom wall 13 of half-section 11.
  • a filter 38 and filter retainer 39' having a central opening 39a' are disposed within the central bore 37 of sleeve 34 with the filter 38 overlying the apertures 36 in the
  • the bag B includes an inlet port 81 as shown in Fig. 13 and in the embodiment of Fig. 16, is aligned with the enclosure inlet port I' for accommodating the sleeve 34 of port I' within the central bore 83 of the sleeve 82. It will be noted that the inlet port I' does not include a patch such as the patch 41 of Fig. 5. Therefore, package sealing and resealing is obtained from the patch 90 of the bag B.
  • the wand T is positioned as shown with the bag inlet port 81 accommodated within the wand recess 47.
  • the needle 48 extends through the apertures 88a, 91a on the bag inlet port 81 piercing the patch 90 and through aperture 39a in the retainer 39 of the inlet port I'.
  • the needle port 94 communicates with the interior 19 of the enclosure E' through the filter 38 and the apertures 36 in the enclosure wall 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Packaging Frangible Articles (AREA)
  • Packages (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A package and a packaging contaminant-sensitive articles apparatus, such as semiconductor wafers, in a sealed, rigid plastic enclosure (E) which may be enclosed within a second flexible plastic enclosure wherein the sealed plastic enclosures are each provided with a self-sealing member (41) for penetration by a hollow instrument (48) connected to a source of purging gas (49) and a vacuum source for purging and/or evacuating the enclosures' interiors of various contaminants including moisture vapor and for resealing upon withdrawal of the instrument to maintain the enclosures in a virtually contaminant-free, sealed condition, the rigid enclosure including a pair of interfitting half-sections (11, 12) yieldingly maintained in the sealed condition by a plurality of hinges and adapted to spread apart during a purging operation to permit the purging gas and entrained contaminants to escape the enclosure interior together with a gas-filled, sealed barrier strip (61) detachably mounted on the side wall of the sealed rigid enclosure.

Description

APPARATUS FOR PACKAGING CONTAMINANT-SENSITIVE ARTICLES AND RESULTING PACKAGE
Specification
Field of the Invention
This invention relates to the elimination of the contamination of contaminant-sensitive articles stored in sealed plastic containers and more particularly to a method, apparatus and package for removing such contaminants as moisture, oxygen, ion contaminants and the like from the container interior and maintaining the interior contaminant-free for an indefinite period of time so as to increase productive yields between manufacturing steps by eliminating environmental variations.
Description of the Prior Art
Rapidly developing technology in the manufacturing of contaminant-sensitive articles such as semiconductor wafers has placed ever higher requirements on the elimination of contaminants. The ever increasing sensitivity of such wafers has made the presence of even infinitesimal amounts of contaminants a drawback to quality production and the elimination of rejects.
Myriad sources of such contaminants are always present. One such source is the plastic particles or shavings formed when the sharp edges of the wafers scrape or rub against the plastic wafer supports. Another source is ion contaminants from containers formed of polymeric material such as plastic bags, boxes and the like. Such ion contaminants migrate to wafer surfaces and can cause circuit degradation due to caustic and/or corrosive elements such as CL, PO4, NO3, Na and K found in polymeric material. Such polymeric material tends to "outgas" so that these elements become mobile with environmental moisture and are attracted to the surface of the wafers. It is therefore highly desirable to package such articles in sealed plastic enclosures devoid of contaminant activity to the greatest extent possible.
One form of protection has been the use of a desiccant prepackaged in a vapor transmission type material which is placed within the plastic enclosure prior to sealing. This desiccant or "getter" acts to absorb the atmospheric contaminants such as moisture and oxygen during packaging and storage. Such desiccants generally include Silica Gel and molecular sieves used for absorbing moisture and ferrous shavings such as iron bits for absorbing oxygen. For further enhancing the removal of such contaminants, the enclosure interior is frequently purged with an inert gas and evacuated prior to sealing.
In spite of all such prior art efforts, it has been found that undesirable contamination of the packaged sensitive articles still occurs to some extent for two reasons. First, present-day sealing apparatus depends on a negative pressure for the sealing operation. Consequently, the lack of a positive shut-off arrangement allows atmospheric contaminants to remain in the enclosure after sealing. In addition, all polymeric material from which such bags and boxes are constructed have some Water Vapor Transmission Rate (VWTR) causing penetration of moisture and other contaminants through the enclosure wall which desiccants are intended to remove.
Although removal of such contaminants is generally effective, the shelf-life of all packaged desiccants is limited and when such shelf-life is exceeded, further contaminant elimination is non-existent unless resort is had to the time consuming and expensive practice of repackaging and replacement.
2 Furthermore, when such desiccants are used for packaging articles, improper handling of desiccants by personnel including storage prior to use, can reduce the efficacy of such desiccants.
Another contamination problem is presented even if the wafers are packaged at the production site in a contaminant-free environment. It has been proven that contamination levels over prolonged periods of time vary due to such factors as the materials used, ambient storage conditions such as pressure, temperature, vibration, moisture concentration as well as package sealing techniques.
Such contamination levels are not consistent and since it would be impractical cost-wise to measure contamination on a semi-continuous or continuos basis, the ultimate user must deal with such inconsistencies or variations adding to manufacturing costs. Such increased costs at the point of use arise from the need for cleaning the wafers which may or may not eliminate the contaminants on the wafers. Thus, what might be referred to as "Wafer Environment Control" (WEC) becomes a vital consideration. Such variations are "money" to the user since they impact on subsequent processes and possibly the yields of the final product or semiconductor that is being produced on the wafer.
There is the additional problem of particles which may be either free agents or particles produced by the sharp edges of packaged wafers rubbing against the plastic surfaces on which the wafers are supported in the package such as shock absorbers or the like. Such particles are another factor concerning WEC due to variables from lot to lot.
In summary, myriad sources of contamination are present for contaminant-sensitive articles packaged in enclosures of polymeric material which include the continuous production of ion contaminants by polymeric material whose mobility is primarily dependent on moisture. In addition,
3 penetration of water vapor through the polymeric material into the enclosure interior, improper handling and sealing of the enclosure and the limitation of the effectiveness of desiccants over the long term when extended storage periods are encountered.
Summary of the Invention
Accordingly, a primary object of the invention is to provide a new and novel method and package for packaging contaminant-sensitive articles such as semiconductor wafers in a contaminant-free environment.
Another object of the invention is to provide a new and novel method and package for maintaining packaged contaminant-sensitive articles in a contaminant-free environment for prolonged periods of time.
A further object of the invention is to provide a new and novel package for contaminant-sensitive articles such as semiconductor wafers which maintains the package in a sealed condition while permitting the flow of a purging gas and entrained contaminants therefrom.
A still further object of the invention is to provide a new and novel apparatus for automatically purging and/or evacuating the interior of a sealed package of contaminant-sensitive articles such as semiconductor wafers while maintaining the package in a sealed condition.
Still another object of the invention is to provide a new and novel package for contaminant-sensitive articles is of multi-enclosure construction comprising two or more sealed enclosures the interiors of which may be subjected simultaneously to a purging and/or evacuating process to maintain the interiors in a contaminant-free condition.
A still further object of the invention is to provide a new and novel package for contaminant-sensitive articles which permits removal of contaminants anytime
4 after original packaging while maintaining the package in a sealed moisture-free environment.
Still another object of the invention is to provide a new and novel apparatus and package for contaminant-sensitive articles which maintains the articles free of contaminants during the loading of such articles in the package.
The objects of the invention and other related objects are accomplished by the provision of a sealed plastic enclosure in the interior of which are packaged one or more contaminant-sensitive articles such as semiconductor wafers which are free of contaminants during the loading of such articles in the package wherein the enclosure comprises a pair of half-sections yieldingly retained in sealing engagement together with means for subjecting the interior to a purging gas and/or a vacuum from an associated apparatus with the interior being maintained in a sealed condition but permitting the release of purging gas with entrained contaminants from the interior during the purging operation, the enclosure being adapted to be contained within one or more concentric surrounding flexible plastic bags having interiors adapted to be subjected to a purging and/or evacuating operation.
Brief Description of the Drawings
Fig. 1 is an exploded view of the packaging method of the invention illustrating one of the steps in the novel process of the invention;
Fig. 2 is a schematic view of the enclosure of the invention in association with purging and evacuating apparatus;
Fig. 3 is an enlarged sectional view taken substantially along line 3-3 of Fig. 2 in the direction of the arrows;
Fig. 4 is an enlarged sectional view taken substantially along line 4-4 of Fig. 2 in the direction of the arrows;
5 Fig. 5 is an enlarged sectional view taken substantially along line 5-5 of fig. 2 in the direction of the arrows;
Fig. 6 is a perspective view of a barrier strip detachably attached to the enclosure of Fig. 1;
Fig. 7 is a sectional view taken substantially along line 7-7 of Fig. 6 in the direction of the arrows;
Fig. 8 is a perspective view of the enclosure of Fig. 1 illustrating the attachment of the barrier strip of Fig. 6;
Fig. 9 is a perspective view of the enclosure of Fig. 1 together with the attached barrier strip of Fig. 6;
Fig. 10 is a perspective view illustrating the packaging of the enclosure of Fig. 9 within the interior of a second enclosure;
Fig. 11 is a perspective view of a package constructed in accordance with the invention utilizing the components of Fig. 10;
Fig. 12 is an enlarged plan view of a portion of the package of Fig. 11 ;
Fig. 13 is a sectional view taken substantially along line 13-13 of Fig. 12 in the direction of the arrows;
Fig. 14 is a perspective view of the package of Fig. 11 in association with the purging and evacuating apparatus of the invention; and
Fig. 15 is a sectional view taken substantially along line 15-15 of Fig. 14 in the direction of the arrows; and
Fig. 16 is a view similar to Fig. 15 illustrating a modification of the package of the invention. Description of the Preferred Embodiments
Referring now to the drawings and to Figs. 1 , 2 in particular, there is shown an enclosure or box constructed in accordance with the invention and designated generally by the letter E. The enclosure E is preferably molded of synthetic resinous material such as polypropylene and is adapted for the packaging of contaminant-sensitive articles such as semiconductor wafers W.
More specifically, the enclosure E comprises a pair of half-sections 11, 12 each having a bottom wall 13, 14 and a side wall 16, 17 respectively. In the illustrated embodiment, the enclosure E is preferably of circular cross-sectional shape with upstanding annular side walls 16, 17. However, it should be understood that the enclosure E may be of any desired shape.
The half-sections 11 , 12 are arranged for overlying, sliding engagement from a spaced-apart, open position as shown in Fig.1 into a stop-position as shown in Fig. 2 with the side walls 16, 17 in telescoping relationship as shown in Fig. 4 to form the enclosure E having an interior 19. Thus, in the open position of Fig. 1 , the articles W may be introduced between the half-sections 11 , 12 so as to be accommodated within the enclosure interior 19.
As shown in Fig. 1 , means are provided for bathing the articles W introduced into the enclosure E with an ionizing gas thereby eliminating static charges on the articles which would otherwise serve to attract contaminants such as particles. More specifically, as shown in Fig. 1 , an ionizer 21 is operatively associated with the enclosure E and produces an ionizing gas which continuously envelops the wafers W and adjacent enclosure parts as indicated by the arrows A. As shown, the ionizer 21 is connected to a source 22 of ionizing gas and a source of electric power 23.
Sealing means operatively associated with at least one of the side walls 16, 17 are provided for sealing the enclosure interior 19 in the stop or closed
7 position of Fig. 2. As shown best in Fig. 4, the half-section 12 is provided with a peripheral flange 24 in which is formed an annular groove 26. An O-ring 27 is disposed within the groove 26 adjacent the side wall 17 for sealing engagement with the upper edge 16a of the side wall 16 of the half-section 11 as shown in Fig. 5.
Resilient clamping means are provided on the half-sections 11 , 12 for yieldingly urging the half-sections into the stop or sealing position of Fig 5 to seal the enclosure interior 19. More specifically, a plurality of circumferentially spaced latches designated generally by the letter L are provided on the enclosure E each of which includes a pivotally movable latch member 28 preferably formed integrally with the flange 24 in half-section 2. The distal end of each of the members 28 is provided with a slot 29.
The half-section 11 is also provided with an upstanding, annular flange 30 and a peripheral flange 31 on which are provided a plurality of catch members 32 preferably formed integrally with the flange 31 and spaced circumferentially for operative association with an adjacent latch member 28. Thus, as shown best in Fig. 5, the half-sections 11 , 12 are latched together by upward movement from the dotted line position of Fig. 2 of the latch members 28 for engagement of the catch members 32 with the slots 29 of the associated latch member 28. This latching action yieldingly urges the upper edge 16a of side wall 16 against the O-ring 27 thereby providing a sealed interior 19 for the enclosure E. To releasably retain the latches L in the locked position, the outer end of each of the catch members 32 is provided with an upstanding bead 33.
Means are provided for introducing a purging gas into the interior 19 of the sealed enclosure E and to move the half-sections 11 , 12 out of the stop position of Fig. 5 against the clamping action of the latches L as shown in Fig. 4 thereby relieving excess gas pressure in the enclosure interior 19 during the purging
8 operation. More specifically, as shown in Figs. 1 , 5, the bottom wall 13 of the half-section 11 is provided with an inlet port designated generally by the letter I. The inlet port I includes an upstanding, central sleeve 34 preferably formed integrally with the bottom wall 13. Openings 36 are also provided within the area of the wall 13 defined by the sleeve 34.
The sleeve 34 includes a central bore 37 in which is positioned a stacked assembly including a filter 38, a filter retainer 39 having a central opening 39a, a patch 41 of self-sealing material such as rubber and a patch retainer 42 having a central opening 42a, as shown in Fig. 5 and as shown in the exploded solid line assembly of Fig. 1.
Referring now to Fig. 2, a purging gas as well as a vacuum is introduced selectively within the sealed enclosure from an associated fluid pumping source designated generally by the letter S and including a source of purging gas and a vacuum source.
More specifically, as shown best in Fig. 3, 5, a manually manipulated wand T is provided which includes an elongated body portion 43 having a central bore 44 terminating at one end in a cup portion 46 defining a recess 47. A hollow instrument such as a needle 48 having a sharp outlet end 48a is supported within the wand T with opposite end portions extending within the bore 44 and cup recess 47 respectively.
The needle 48 is connected by means of a hose 49 to the fluid pumping source S including a program controller 51 having a timing means 52. The controller 51 is connected to a source of electric power by means of conductors 53 and to a source 54 of purging gas and a vacuum source 56 by means of hoses 57, 58 respectively. The introduction of purging gas within the enclosure interior 19 is accomplished by positioning the wand T as shown in Fig. 2 with the sleeve 34 of the inlet port I snugly accommodated within the wand recess 47 as shown in Fig. 5. In this position, the needle's distal portion extends through the apertures 42a, 39a in the patch retainer 42 and filter retainer 39 respectively piercing the patch 41. The needle outlet 48a is thus disposed within the wand recess 47 so that purging gas from system S can be introduced into the enclosure interior 19 to bathe the contaminant-sensitive articles therein.
If there is a buildup of excessive purging gas pressure within the enclosure interior 19, the half-sections 11 , 12 move apart to lift the upper edge 16a of side wall 16 from the O-ring 27 providing a path for gas with entrained contaminants to escape from the enclosure E to the exterior around the side wall 16 as indicated by the arrows U in Fig. 4. In addition to a purging operation, the enclosure interior 19 may also be subjected to a vacuum as established by the controller 51 in any desired sequence and duration in accordance with a program preset with the controller's timing means 52.
After termination of the purging and/or vacuum operations, the wand T is removed withdrawing the needle 48 following which the patch 41 reseals maintaining the enclosure interior 19 in a sealed condition free of contaminants.
The enclosure E may be further protected by means for externally enclosing a side portion of the enclosure E. More specifically, as shown best in Figs. 6-9, an elongated pad or barrier strip 61 of rectangular configuration is provided which may be of any suitable airtight material such as plastic or the like. The pad 61 includes a strip 62 having side walls 63, 64 defining one or more inflated, longitudinally extending air chambers. In the illustrated embodiment, three of such chambers 66, 67, 68 are provided interconnected by webs 71 , 72 as shown best in Fig. 7. Preferably, the width of pad 61 is slightly in excess of
10 the height of enclosure E and of a length having overlapping end portions in the mounted position of Fig. 9.
As shown, the pad 61 is mounted in encircling relationship with the enclosure E and is retained in the mounted position by means of an adhesive tab 73 having a removable strip 74 of release material. In the mounted position of Fig. 9, the pad 61 not only provides a means of shock protection for the enclosure E but further reduces the water vapor transmission rate (WVTR).
Referring now to Fig. 10-13, wherein like numerals are used to identify like parts, further enclosure means may be provided for the enclosure E. In the illustrated embodiment, a flexible enclosure or bag of plastic material is provided which is identified generally by the letter B. The bag B includes side walls 76, 77 defining an interior 78. As shown in Fig. 10, the bag B is sealed at one end 79 and the other end is open to permit the insertion of the enclosure E with pad 61 within the bag interior 78, the open end being subsequently sealed at 80. This combination of the bag B and enclosure E forms a sealed package P.
As shown best in Fig. 13, the bag B is provided with an inlet port 81 which includes an upstanding sleeve 82 having a central bore 83 suitably secured by means of a flange 86 within an opening 87 in the side wall 76 of the bag B. The sleeve 82 includes a transversely extending inner wall 88 having an aperture 88a over which is disposed a self-sealing patch 90 of rubber or the like and a disc retainer 91 having a central aperture 91a as shown best in Fig. 13. The inner wall 82a of the sleeve 82 is provided with a plurality of curcumferentially spaced notches 93 for a purpose to be explained hereinafter.
Referring now to Figs. 14, 15 wherein like numerals are used to identify like parts, the sealed package P of Fig. 11 may now be subjected to a purging and/or evacuating operation in association with the fluid pumping system S. In the processing of the package P, the wand T of the previous embodiment has
1 1 been modified and identified as wand T' which includes a side outlet port 94 as shown in Fig. 15.
As shown in Fig. 15, the inlet port 81 of bag B is centrally located so that in the assembled relationship of bag B and enclosure E, the inlet port I of enclosure E is received within the central bore 83 of sleeve 82 of the bag inlet port 81. In the operative position of wand T on the bag inlet port 81 , the inlet port 81 is received within the wand recess 47. The needle 48 passes through apertures 88a, 91a on the inlet port 81 of bag B and through apertures 42a, 39a on the enclosure E piercing both rubber patches 41 , 90 on the enclosure E and bag B respectively.
In the position shown in Fig. 15, the needle side port 94 communicates only with the interior 78 of bag B through notches 93 and the needle outlet end 48a communicates only with the enclosure interior 19 through filter 38 and openings 36 in the bottom wall 13 of half-section 11. In the purging operation performed as shown in Fig. 15, the gas flow into the bag interior 78 is designated by the arrows X and the gas flow into the enclosure interior 19 is designated by the arrows Y. The excessive gas pressure relief within the enclosure interior 19 is accomplished as in the previous embodiment with the relative movement of the half-sections 11 , 12 as permitted by the yieldable latches L.
Referring now to Fig. 16, there is shown a modification of the package P of Fig. 15 designated generally by the letter P' and wherein like numerals are used to identify like parts. The package P' includes an enclosure E' having an inlet port I' which includes an upstanding sleeve 34 having a central bore 37 and preferably formed integrally with the bottom wall 13 of half-section 11. A filter 38 and filter retainer 39' having a central opening 39a' are disposed within the central bore 37 of sleeve 34 with the filter 38 overlying the apertures 36 in the
12 half-section bottom wall 13. The components of the inlet port I' are those shown in broken lines in Fig. 1.
The bag B includes an inlet port 81 as shown in Fig. 13 and in the embodiment of Fig. 16, is aligned with the enclosure inlet port I' for accommodating the sleeve 34 of port I' within the central bore 83 of the sleeve 82. It will be noted that the inlet port I' does not include a patch such as the patch 41 of Fig. 5. Therefore, package sealing and resealing is obtained from the patch 90 of the bag B.
To perform a purging and/or evacuating operation in the embodiment of Fig. 16, the wand T is positioned as shown with the bag inlet port 81 accommodated within the wand recess 47. The needle 48 extends through the apertures 88a, 91a on the bag inlet port 81 piercing the patch 90 and through aperture 39a in the retainer 39 of the inlet port I'. Thus, the needle port 94 communicates with the interior 19 of the enclosure E' through the filter 38 and the apertures 36 in the enclosure wall 13.
13

Claims

1. A package for storing contaminant-sensitive articles in a contaminant-free environment comprising, in combination, a pair of half-sections of polymeric material, each of said half-sections having a bottom wall and a side wall, said half-sections arranged for overlying, sliding engagement from a spaced-apart, open position into a stop position with said side wails in telescoping relationship to form a closed enclosure having an interior for accommodating one or more contaminant-sensitive articles, sealing means operatively associated with at least one of said side walls for sealing said enclosure interior in said stop position, resilient clamping means on said half-sections for yieldingly urging said half-sections into said stop position against said sealing means to seal said enclosure interior and means on said enclosure for introducing a purging gas into said sealed enclosure interior to move said half-sections out of said stop position against said clamping means to thereby relieve excessive gas pressure in said enclosure interior.
2. A package in accordance with Claim 1 including means for bathing said articles with an ionizing gas during the introduction of said articles into said enclosure interior.
3. A package in accordance with Claim 1 wherein said half-sections are of circular cross-sectional shape.
14
4. A package in accordance with Claim 1 wherein said each of said side walls includes an annular upper edge and wherein said sealing means comprise an O-ring mounted on one of said half-sections and wherein said upper edge on said side wall on the other of said half-sections is adapted for sealing engagement with said O-ring in said stop position to maintain said enclosure interior in a sealed condition.
5. A package in accordance with Claim 1 including padding means adapted to be mounted on the outer periphery of said enclosure for cushioning said enclosure and for further reducing the introduction of contaminants within said enclosure interior.
6. A package in accordance with Claim 5 wherein said padding means includes an elongated strip having ends, at least one longitudinally extending air chamber in said strip and means for interconnecting said strip ends to retain said strip in said mounted position on said enclosure.
7. A package in accordance with Claim 1 wherein said resilient clamping means comprise a plurality of pivotally mounted, circumferentially spaced latch members on one of said half-sections, a plurality of circumferentially spaced, catch members on the other of said half-sections each yieldingly engageable with an associated one of said latch members for urging said half-sections into said stop position.
15
8. A package in accordance with Claim 7 wherein each of said latch members comprises a pivotally mounted flap member formed integrally with said one half-section and having a slot for receiving said catch member.
9. A package in accordance with Claim 1 wherein said means for introducing a purging gas into said enclosure comprises an inlet port on one of said half-sections and means for connecting said inlet port to associated fluid pumping apparatus having a source of purging gas.
10. A package in accordance with Claim 9 wherein said fluid pumping apparatus includes a hollow needle connected to said fluid pumping source having an outlet end and wherein said inlet port includes an aperture in said one half-section bottom wall, a filter in overlying relationship with said aperture, a patch of self-sealing material in overlying, spaced-apart relationship with said filter for maintaining said enclosure interior in a sealed condition and wherein said patch is adapted for penetration by said hollow needle to introduce said purging gas in said enclosure interior through said filter and for resealing upon withdrawal of said needle to maintain said enclosure interior in a sealed condition.
11. A package in accordance with Claim 1 including a sealed bag of flexible plastic material having an interior and wherein said enclosure is disposed within said bag interior and means for introducing a purging gas in said bag interior.
16
12. A package in accordance with Claim 11 wherein said means for introducing a purging gas into said interiors of said enclosure and bag comprises an associated fluid pumping apparatus, an inlet port on said bag in operative association with said enclosure inlet port and means for connecting said inlet ports to said associated fluid pumping apparatus having a source of purging gas.
13. A package in accordance with Claim 12 wherein said fluid pumping apparatus includes a vacuum source, a hollow needle connected to said fluid pumping source having an outlet end and an outlet side port and wherein said enclosure inlet port includes an aperture in said one half-section bottom wall, a filter in overlying relationship with said aperture, a patch of self-sealing material in overlying, spaced-spaced relationship with said filter for maintaining said enclosure interior in a sealed condition and wherein said bag includes a side wall and wherein said bag inlet port includes an opening in said bag side wall, a patch of self-sealing material in overlying, spaced-apart relationship with said bag opening to maintain said bag interior in a sealed condition and wherein said patches are adapted for penetration by said hollow needle to introduce one of said purging gas and said vacuum from said needle outlet end into said enclosure interior and into said bag interior through said needle side port and for resealing upon withdrawal of said needle to maintain said interiors in a sealed condition.
17
14. A package in accordance with Claim 12 wherein said fluid pumping apparatus includes a vacuum source, a hollow needle connected to said fluid pumping source having an outlet end and wherein said enclosure inlet port includes an aperture in said one half-section bottom wall, a filter in overlying relationship with said aperture and wherein said bag includes an opening in said bag side wall, a patch of self-sealing material in overlying, spaced-apart relationship with said bag opening to maintain said bag and enclosure interiors in a sealed condition and wherein said patch is adapted for penetration by said hollow needle to introduce one of said purging gas and vacuum from said needle outlet end into said enclosure and bag interiors and for resealing upon withdrawal of said needle to maintain said interiors in a sealed condition.
18
PCT/US1998/004545 1996-07-24 1998-03-09 Apparatus for packaging contaminant-sensitive articles and resulting package WO1999046547A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US08/685,697 US5724748A (en) 1996-07-24 1996-07-24 Apparatus for packaging contaminant-sensitive articles and resulting package
PCT/US1998/004545 WO1999046547A1 (en) 1996-07-24 1998-03-09 Apparatus for packaging contaminant-sensitive articles and resulting package
JP2000535884A JP3872646B2 (en) 1998-03-09 1998-03-09 Packaging apparatus for articles sensitive to pollutants and package obtained therefrom
DE69821033T DE69821033D1 (en) 1998-03-09 1998-03-09 DEVICE FOR STORING POLLUTION SENSITIVE ITEMS
EP98910246A EP1062468B1 (en) 1998-03-09 1998-03-09 A package for storing contaminant-sensitive articles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/685,697 US5724748A (en) 1996-07-24 1996-07-24 Apparatus for packaging contaminant-sensitive articles and resulting package
PCT/US1998/004545 WO1999046547A1 (en) 1996-07-24 1998-03-09 Apparatus for packaging contaminant-sensitive articles and resulting package

Publications (1)

Publication Number Publication Date
WO1999046547A1 true WO1999046547A1 (en) 1999-09-16

Family

ID=26793989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/004545 WO1999046547A1 (en) 1996-07-24 1998-03-09 Apparatus for packaging contaminant-sensitive articles and resulting package

Country Status (2)

Country Link
US (1) US5724748A (en)
WO (1) WO1999046547A1 (en)

Families Citing this family (377)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2733036B1 (en) * 1995-04-14 1997-07-04 Unir CLOSE-UP ANTI-CONTAMINATION PROTECTION DEVICE
US6003674A (en) * 1996-05-13 1999-12-21 Brooks; Ray Gene Method and apparatus for packing contaminant-sensitive articles and resulting package
KR100300030B1 (en) * 1997-12-30 2001-10-19 김영환 Reticle cleaning apparatus
DE69821033D1 (en) * 1998-03-09 2004-02-12 Convey Inc DEVICE FOR STORING POLLUTION SENSITIVE ITEMS
US6193068B1 (en) * 1998-05-07 2001-02-27 Texas Instruments Incorporated Containment device for retaining semiconductor wafers
US6341695B1 (en) * 1998-05-07 2002-01-29 Texas Instruments Incorporated Containment device for retaining semiconductor wafers
JP3046010B2 (en) * 1998-11-12 2000-05-29 沖電気工業株式会社 Storage container and storage method
DE60044028D1 (en) 1999-07-23 2010-04-29 Ray G Brooks SECURING SYSTEM FOR WAFER WITH INTEGRATED CIRCUIT (IC)
US6662950B1 (en) * 1999-10-25 2003-12-16 Brian R. Cleaver Wafer shipping and storage container
US6848579B2 (en) * 1999-10-25 2005-02-01 Brian Cleaver Shock absorbing apparatus and method
US6279249B1 (en) 1999-12-30 2001-08-28 Intel Corporation Reduced particle contamination manufacturing and packaging for reticles
US6550619B2 (en) 2000-05-09 2003-04-22 Entergris, Inc. Shock resistant variable load tolerant wafer shipper
US6543617B2 (en) * 2001-03-09 2003-04-08 International Business Machines Corporation Packaged radiation sensitive coated workpiece process for making and method of storing same
US7040487B2 (en) * 2001-07-14 2006-05-09 Entegris, Inc. Protective shipper
US7578392B2 (en) * 2003-06-06 2009-08-25 Convey Incorporated Integrated circuit wafer packaging system and method
US6988621B2 (en) * 2003-06-17 2006-01-24 Illinois Tool Works Inc. Reduced movement wafer box
US20040262187A1 (en) * 2003-06-26 2004-12-30 Applied Materials, Inc. Clean room transportation package for process chamber kit
GB0322686D0 (en) * 2003-09-27 2003-10-29 Koninkl Philips Electronics Nv Display device arrangement & container
US7350315B2 (en) 2003-12-22 2008-04-01 Lam Research Corporation Edge wheel dry manifold
US7007408B2 (en) * 2004-04-28 2006-03-07 Solid State Measurements, Inc. Method and apparatus for removing and/or preventing surface contamination of a probe
US20060000747A1 (en) * 2004-06-30 2006-01-05 3M Innovative Properties Company Shipping container for integrated circuit wafers
US7089687B2 (en) * 2004-09-30 2006-08-15 Lam Research Corporation Wafer edge wheel with drying function
FR2877643B1 (en) * 2004-11-09 2007-02-09 L C 2 Entpr Unipersonnelle A R DEVICE FOR OPENING AND / OR CLOSING A HERMETIC PACKAGING, PARTICULARLY FOR PRESERVING AGRO-FOOD PRODUCTS
US7350338B1 (en) * 2005-02-25 2008-04-01 Watchowski Mark A Portable storage protection device
US20060283770A1 (en) * 2005-06-03 2006-12-21 Applied Materials, Inc. Transportation fixture and package for substrate rack
BE1018274A3 (en) * 2008-08-29 2010-08-03 Ryckewaert Jan Jozef SYSTEM AND METHOD FOR STERILIZING FOODSTUFFS IN THE FINAL PACK.
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US9312155B2 (en) 2011-06-06 2016-04-12 Asm Japan K.K. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
US9793148B2 (en) 2011-06-22 2017-10-17 Asm Japan K.K. Method for positioning wafers in multiple wafer transport
US10364496B2 (en) 2011-06-27 2019-07-30 Asm Ip Holding B.V. Dual section module having shared and unshared mass flow controllers
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US8946830B2 (en) 2012-04-04 2015-02-03 Asm Ip Holdings B.V. Metal oxide protective layer for a semiconductor device
US9558931B2 (en) 2012-07-27 2017-01-31 Asm Ip Holding B.V. System and method for gas-phase sulfur passivation of a semiconductor surface
US9659799B2 (en) 2012-08-28 2017-05-23 Asm Ip Holding B.V. Systems and methods for dynamic semiconductor process scheduling
US9021985B2 (en) 2012-09-12 2015-05-05 Asm Ip Holdings B.V. Process gas management for an inductively-coupled plasma deposition reactor
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US9640416B2 (en) 2012-12-26 2017-05-02 Asm Ip Holding B.V. Single-and dual-chamber module-attachable wafer-handling chamber
US20160376700A1 (en) 2013-02-01 2016-12-29 Asm Ip Holding B.V. System for treatment of deposition reactor
US9589770B2 (en) 2013-03-08 2017-03-07 Asm Ip Holding B.V. Method and systems for in-situ formation of intermediate reactive species
US9484191B2 (en) 2013-03-08 2016-11-01 Asm Ip Holding B.V. Pulsed remote plasma method and system
CN103234328B (en) * 2013-03-28 2015-04-08 京东方科技集团股份有限公司 Method for baseplate drying under reduced pressure and device thereof
US8993054B2 (en) 2013-07-12 2015-03-31 Asm Ip Holding B.V. Method and system to reduce outgassing in a reaction chamber
US9018111B2 (en) 2013-07-22 2015-04-28 Asm Ip Holding B.V. Semiconductor reaction chamber with plasma capabilities
US9793115B2 (en) 2013-08-14 2017-10-17 Asm Ip Holding B.V. Structures and devices including germanium-tin films and methods of forming same
US9240412B2 (en) 2013-09-27 2016-01-19 Asm Ip Holding B.V. Semiconductor structure and device and methods of forming same using selective epitaxial process
US9556516B2 (en) 2013-10-09 2017-01-31 ASM IP Holding B.V Method for forming Ti-containing film by PEALD using TDMAT or TDEAT
US9605343B2 (en) 2013-11-13 2017-03-28 Asm Ip Holding B.V. Method for forming conformal carbon films, structures conformal carbon film, and system of forming same
US10179947B2 (en) 2013-11-26 2019-01-15 Asm Ip Holding B.V. Method for forming conformal nitrided, oxidized, or carbonized dielectric film by atomic layer deposition
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US9447498B2 (en) 2014-03-18 2016-09-20 Asm Ip Holding B.V. Method for performing uniform processing in gas system-sharing multiple reaction chambers
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US9349620B2 (en) * 2014-07-09 2016-05-24 Asm Ip Holdings B.V. Apparatus and method for pre-baking substrate upstream of process chamber
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9543180B2 (en) 2014-08-01 2017-01-10 Asm Ip Holding B.V. Apparatus and method for transporting wafers between wafer carrier and process tool under vacuum
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
KR102300403B1 (en) 2014-11-19 2021-09-09 에이에스엠 아이피 홀딩 비.브이. Method of depositing thin film
KR102263121B1 (en) 2014-12-22 2021-06-09 에이에스엠 아이피 홀딩 비.브이. Semiconductor device and manufacuring method thereof
US9478415B2 (en) 2015-02-13 2016-10-25 Asm Ip Holding B.V. Method for forming film having low resistance and shallow junction depth
US10529542B2 (en) 2015-03-11 2020-01-07 Asm Ip Holdings B.V. Cross-flow reactor and method
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10600673B2 (en) 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
US9899291B2 (en) 2015-07-13 2018-02-20 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US10043661B2 (en) 2015-07-13 2018-08-07 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US10083836B2 (en) 2015-07-24 2018-09-25 Asm Ip Holding B.V. Formation of boron-doped titanium metal films with high work function
US10087525B2 (en) 2015-08-04 2018-10-02 Asm Ip Holding B.V. Variable gap hard stop design
US9647114B2 (en) 2015-08-14 2017-05-09 Asm Ip Holding B.V. Methods of forming highly p-type doped germanium tin films and structures and devices including the films
US9711345B2 (en) 2015-08-25 2017-07-18 Asm Ip Holding B.V. Method for forming aluminum nitride-based film by PEALD
US9960072B2 (en) 2015-09-29 2018-05-01 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US9909214B2 (en) 2015-10-15 2018-03-06 Asm Ip Holding B.V. Method for depositing dielectric film in trenches by PEALD
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US10322384B2 (en) 2015-11-09 2019-06-18 Asm Ip Holding B.V. Counter flow mixer for process chamber
US9455138B1 (en) 2015-11-10 2016-09-27 Asm Ip Holding B.V. Method for forming dielectric film in trenches by PEALD using H-containing gas
US9905420B2 (en) 2015-12-01 2018-02-27 Asm Ip Holding B.V. Methods of forming silicon germanium tin films and structures and devices including the films
US9607837B1 (en) 2015-12-21 2017-03-28 Asm Ip Holding B.V. Method for forming silicon oxide cap layer for solid state diffusion process
KR20170076179A (en) * 2015-12-24 2017-07-04 삼성전자주식회사 Wafer container
US9627221B1 (en) 2015-12-28 2017-04-18 Asm Ip Holding B.V. Continuous process incorporating atomic layer etching
US9735024B2 (en) 2015-12-28 2017-08-15 Asm Ip Holding B.V. Method of atomic layer etching using functional group-containing fluorocarbon
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US9754779B1 (en) 2016-02-19 2017-09-05 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10468251B2 (en) 2016-02-19 2019-11-05 Asm Ip Holding B.V. Method for forming spacers using silicon nitride film for spacer-defined multiple patterning
US10501866B2 (en) 2016-03-09 2019-12-10 Asm Ip Holding B.V. Gas distribution apparatus for improved film uniformity in an epitaxial system
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US9892913B2 (en) 2016-03-24 2018-02-13 Asm Ip Holding B.V. Radial and thickness control via biased multi-port injection settings
US10087522B2 (en) 2016-04-21 2018-10-02 Asm Ip Holding B.V. Deposition of metal borides
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
KR102592471B1 (en) 2016-05-17 2023-10-20 에이에스엠 아이피 홀딩 비.브이. Method of forming metal interconnection and method of fabricating semiconductor device using the same
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US9793135B1 (en) 2016-07-14 2017-10-17 ASM IP Holding B.V Method of cyclic dry etching using etchant film
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
KR102354490B1 (en) 2016-07-27 2022-01-21 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (en) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and method of operating the same
US10177025B2 (en) 2016-07-28 2019-01-08 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10090316B2 (en) 2016-09-01 2018-10-02 Asm Ip Holding B.V. 3D stacked multilayer semiconductor memory using doped select transistor channel
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10643904B2 (en) 2016-11-01 2020-05-05 Asm Ip Holdings B.V. Methods for forming a semiconductor device and related semiconductor device structures
US10435790B2 (en) 2016-11-01 2019-10-08 Asm Ip Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
KR102546317B1 (en) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Gas supply unit and substrate processing apparatus including the same
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
KR20180068582A (en) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US9916980B1 (en) 2016-12-15 2018-03-13 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
KR102700194B1 (en) 2016-12-19 2024-08-28 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US10283353B2 (en) 2017-03-29 2019-05-07 Asm Ip Holding B.V. Method of reforming insulating film deposited on substrate with recess pattern
US10103040B1 (en) 2017-03-31 2018-10-16 Asm Ip Holding B.V. Apparatus and method for manufacturing a semiconductor device
USD830981S1 (en) 2017-04-07 2018-10-16 Asm Ip Holding B.V. Susceptor for semiconductor substrate processing apparatus
KR102457289B1 (en) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10446393B2 (en) 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10504742B2 (en) 2017-05-31 2019-12-10 Asm Ip Holding B.V. Method of atomic layer etching using hydrogen plasma
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US12040200B2 (en) 2017-06-20 2024-07-16 Asm Ip Holding B.V. Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
KR20190009245A (en) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. Methods for forming a semiconductor device structure and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US10605530B2 (en) 2017-07-26 2020-03-31 Asm Ip Holding B.V. Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10312055B2 (en) 2017-07-26 2019-06-04 Asm Ip Holding B.V. Method of depositing film by PEALD using negative bias
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US10236177B1 (en) 2017-08-22 2019-03-19 ASM IP Holding B.V.. Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
KR102491945B1 (en) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
KR102401446B1 (en) 2017-08-31 2022-05-24 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10607895B2 (en) 2017-09-18 2020-03-31 Asm Ip Holdings B.V. Method for forming a semiconductor device structure comprising a gate fill metal
KR102630301B1 (en) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
KR102443047B1 (en) 2017-11-16 2022-09-14 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
JP7214724B2 (en) 2017-11-27 2023-01-30 エーエスエム アイピー ホールディング ビー.ブイ. Storage device for storing wafer cassettes used in batch furnaces
WO2019103610A1 (en) 2017-11-27 2019-05-31 Asm Ip Holding B.V. Apparatus including a clean mini environment
US10290508B1 (en) 2017-12-05 2019-05-14 Asm Ip Holding B.V. Method for forming vertical spacers for spacer-defined patterning
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
TWI799494B (en) 2018-01-19 2023-04-21 荷蘭商Asm 智慧財產控股公司 Deposition method
CN111630203A (en) 2018-01-19 2020-09-04 Asm Ip私人控股有限公司 Method for depositing gap filling layer by plasma auxiliary deposition
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
US10535516B2 (en) 2018-02-01 2020-01-14 Asm Ip Holdings B.V. Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
JP7124098B2 (en) 2018-02-14 2022-08-23 エーエスエム・アイピー・ホールディング・ベー・フェー Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
KR102636427B1 (en) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. Substrate processing method and apparatus
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (en) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US10510536B2 (en) 2018-03-29 2019-12-17 Asm Ip Holding B.V. Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
KR102501472B1 (en) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. Substrate processing method
US12025484B2 (en) 2018-05-08 2024-07-02 Asm Ip Holding B.V. Thin film forming method
TWI843623B (en) 2018-05-08 2024-05-21 荷蘭商Asm Ip私人控股有限公司 Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
KR20190129718A (en) 2018-05-11 2019-11-20 에이에스엠 아이피 홀딩 비.브이. Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures
KR102596988B1 (en) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
TWI840362B (en) 2018-06-04 2024-05-01 荷蘭商Asm Ip私人控股有限公司 Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (en) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing system
TW202409324A (en) 2018-06-27 2024-03-01 荷蘭商Asm Ip私人控股有限公司 Cyclic deposition processes for forming metal-containing material
WO2020003000A1 (en) 2018-06-27 2020-01-02 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
KR102686758B1 (en) 2018-06-29 2024-07-18 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US10483099B1 (en) 2018-07-26 2019-11-19 Asm Ip Holding B.V. Method for forming thermally stable organosilicon polymer film
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
KR102707956B1 (en) 2018-09-11 2024-09-19 에이에스엠 아이피 홀딩 비.브이. Method for deposition of a thin film
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
TWI844567B (en) 2018-10-01 2024-06-11 荷蘭商Asm Ip私人控股有限公司 Substrate retaining apparatus, system including the apparatus, and method of using same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (en) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
KR102546322B1 (en) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
KR102605121B1 (en) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (en) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and substrate processing apparatus including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film
US12040199B2 (en) 2018-11-28 2024-07-16 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (en) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. A method for cleaning a substrate processing apparatus
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
JP7504584B2 (en) 2018-12-14 2024-06-24 エーエスエム・アイピー・ホールディング・ベー・フェー Method and system for forming device structures using selective deposition of gallium nitride - Patents.com
TWI819180B (en) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
KR20200091543A (en) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. Semiconductor processing device
CN111524788B (en) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 Method for topologically selective film formation of silicon oxide
KR20200102357A (en) 2019-02-20 2020-08-31 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for plug fill deposition in 3-d nand applications
JP2020136678A (en) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー Method for filing concave part formed inside front surface of base material, and device
KR102626263B1 (en) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. Cyclical deposition method including treatment step and apparatus for same
TWI845607B (en) 2019-02-20 2024-06-21 荷蘭商Asm Ip私人控股有限公司 Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
TWI842826B (en) 2019-02-22 2024-05-21 荷蘭商Asm Ip私人控股有限公司 Substrate processing apparatus and method for processing substrate
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
KR20200108242A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer
KR20200108243A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Structure Including SiOC Layer and Method of Forming Same
KR20200116033A (en) 2019-03-28 2020-10-08 에이에스엠 아이피 홀딩 비.브이. Door opener and substrate processing apparatus provided therewith
KR20200116855A (en) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. Method of manufacturing semiconductor device
KR20200123380A (en) 2019-04-19 2020-10-29 에이에스엠 아이피 홀딩 비.브이. Layer forming method and apparatus
KR20200125453A (en) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system and method of using same
KR20200130118A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Method for Reforming Amorphous Carbon Polymer Film
KR20200130121A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Chemical source vessel with dip tube
KR20200130652A (en) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. Method of depositing material onto a surface and structure formed according to the method
JP2020188254A (en) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. Wafer boat handling device, vertical batch furnace, and method
JP2020188255A (en) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. Wafer boat handling device, vertical batch furnace, and method
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141003A (en) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system including a gas detector
KR20200143254A (en) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) * 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (en) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. Temperature control assembly for substrate processing apparatus and method of using same
JP7499079B2 (en) 2019-07-09 2024-06-13 エーエスエム・アイピー・ホールディング・ベー・フェー Plasma device using coaxial waveguide and substrate processing method
CN112216646A (en) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 Substrate supporting assembly and substrate processing device comprising same
KR20210010307A (en) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210010816A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Radical assist ignition plasma system and method
KR20210010820A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Methods of forming silicon germanium structures
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
TWI839544B (en) 2019-07-19 2024-04-21 荷蘭商Asm Ip私人控股有限公司 Method of forming topology-controlled amorphous carbon polymer film
KR20210010817A (en) 2019-07-19 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Method of Forming Topology-Controlled Amorphous Carbon Polymer Film
CN112309843A (en) 2019-07-29 2021-02-02 Asm Ip私人控股有限公司 Selective deposition method for achieving high dopant doping
CN112309900A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112309899A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
CN118422165A (en) 2019-08-05 2024-08-02 Asm Ip私人控股有限公司 Liquid level sensor for chemical source container
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
JP2021031769A (en) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. Production apparatus of mixed gas of film deposition raw material and film deposition apparatus
KR20210024423A (en) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for forming a structure with a hole
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
KR20210024420A (en) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210029090A (en) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. Methods for selective deposition using a sacrificial capping layer
KR20210029663A (en) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (en) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process
KR20210042810A (en) 2019-10-08 2021-04-20 에이에스엠 아이피 홀딩 비.브이. Reactor system including a gas distribution assembly for use with activated species and method of using same
TWI846953B (en) 2019-10-08 2024-07-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing device
KR20210043460A (en) 2019-10-10 2021-04-21 에이에스엠 아이피 홀딩 비.브이. Method of forming a photoresist underlayer and structure including same
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
TWI834919B (en) 2019-10-16 2024-03-11 荷蘭商Asm Ip私人控股有限公司 Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (en) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for selectively etching films
KR20210050453A (en) 2019-10-25 2021-05-07 에이에스엠 아이피 홀딩 비.브이. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (en) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (en) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
KR20210065848A (en) 2019-11-26 2021-06-04 에이에스엠 아이피 홀딩 비.브이. Methods for selectivley forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112951697A (en) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885693A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885692A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
JP7527928B2 (en) 2019-12-02 2024-08-05 エーエスエム・アイピー・ホールディング・ベー・フェー Substrate processing apparatus and substrate processing method
KR20210070898A (en) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
TW202125596A (en) 2019-12-17 2021-07-01 荷蘭商Asm Ip私人控股有限公司 Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
TW202140135A (en) 2020-01-06 2021-11-01 荷蘭商Asm Ip私人控股有限公司 Gas supply assembly and valve plate assembly
KR20210089079A (en) 2020-01-06 2021-07-15 에이에스엠 아이피 홀딩 비.브이. Channeled lift pin
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
KR102675856B1 (en) 2020-01-20 2024-06-17 에이에스엠 아이피 홀딩 비.브이. Method of forming thin film and method of modifying surface of thin film
TW202130846A (en) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 Method of forming structures including a vanadium or indium layer
TW202146882A (en) 2020-02-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method of verifying an article, apparatus for verifying an article, and system for verifying a reaction chamber
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
TW202203344A (en) 2020-02-28 2022-01-16 荷蘭商Asm Ip控股公司 System dedicated for parts cleaning
KR20210116249A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. lockout tagout assembly and system and method of using same
KR20210116240A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. Substrate handling device with adjustable joints
CN113394086A (en) 2020-03-12 2021-09-14 Asm Ip私人控股有限公司 Method for producing a layer structure having a target topological profile
KR20210124042A (en) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. Thin film forming method
TW202146689A (en) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 Method for forming barrier layer and method for manufacturing semiconductor device
TW202145344A (en) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 Apparatus and methods for selectively etching silcon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
KR20210128343A (en) 2020-04-15 2021-10-26 에이에스엠 아이피 홀딩 비.브이. Method of forming chromium nitride layer and structure including the chromium nitride layer
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
JP2021172884A (en) 2020-04-24 2021-11-01 エーエスエム・アイピー・ホールディング・ベー・フェー Method of forming vanadium nitride-containing layer and structure comprising vanadium nitride-containing layer
KR20210132600A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
TW202146831A (en) 2020-04-24 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Vertical batch furnace assembly, and method for cooling vertical batch furnace
KR20210134226A (en) 2020-04-29 2021-11-09 에이에스엠 아이피 홀딩 비.브이. Solid source precursor vessel
KR20210134869A (en) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Fast FOUP swapping with a FOUP handler
TW202147543A (en) 2020-05-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Semiconductor processing system
KR20210141379A (en) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. Laser alignment fixture for a reactor system
TW202146699A (en) 2020-05-15 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method of forming a silicon germanium layer, semiconductor structure, semiconductor device, method of forming a deposition layer, and deposition system
KR20210143653A (en) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210145078A (en) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. Structures including multiple carbon layers and methods of forming and using same
KR102702526B1 (en) 2020-05-22 2024-09-03 에이에스엠 아이피 홀딩 비.브이. Apparatus for depositing thin films using hydrogen peroxide
TW202201602A (en) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing device
TW202212620A (en) 2020-06-02 2022-04-01 荷蘭商Asm Ip私人控股有限公司 Apparatus for processing substrate, method of forming film, and method of controlling apparatus for processing substrate
TW202218133A (en) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method for forming a layer provided with silicon
TW202217953A (en) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing method
KR102707957B1 (en) 2020-07-08 2024-09-19 에이에스엠 아이피 홀딩 비.브이. Method for processing a substrate
TW202219628A (en) 2020-07-17 2022-05-16 荷蘭商Asm Ip私人控股有限公司 Structures and methods for use in photolithography
TW202204662A (en) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 Method and system for depositing molybdenum layers
US12040177B2 (en) 2020-08-18 2024-07-16 Asm Ip Holding B.V. Methods for forming a laminate film by cyclical plasma-enhanced deposition processes
KR20220027026A (en) 2020-08-26 2022-03-07 에이에스엠 아이피 홀딩 비.브이. Method and system for forming metal silicon oxide and metal silicon oxynitride
TW202229601A (en) 2020-08-27 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method of forming patterned structures, method of manipulating mechanical property, device structure, and substrate processing system
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
KR20220045900A (en) 2020-10-06 2022-04-13 에이에스엠 아이피 홀딩 비.브이. Deposition method and an apparatus for depositing a silicon-containing material
CN114293174A (en) 2020-10-07 2022-04-08 Asm Ip私人控股有限公司 Gas supply unit and substrate processing apparatus including the same
TW202229613A (en) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing material on stepped structure
KR20220053482A (en) 2020-10-22 2022-04-29 에이에스엠 아이피 홀딩 비.브이. Method of depositing vanadium metal, structure, device and a deposition assembly
TW202223136A (en) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 Method for forming layer on substrate, and semiconductor processing system
TW202235649A (en) 2020-11-24 2022-09-16 荷蘭商Asm Ip私人控股有限公司 Methods for filling a gap and related systems and devices
TW202235675A (en) 2020-11-30 2022-09-16 荷蘭商Asm Ip私人控股有限公司 Injector, and substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202231903A (en) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5295522A (en) * 1992-09-24 1994-03-22 International Business Machines Corporation Gas purge system for isolation enclosure for contamination sensitive items
US5351415A (en) * 1992-05-18 1994-10-04 Convey, Inc. Method and apparatus for maintaining clean articles
US5472086A (en) * 1994-03-11 1995-12-05 Holliday; James E. Enclosed sealable purgible semiconductor wafer holder

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2510677B2 (en) * 1988-06-24 1996-06-26 三井東圧化学株式会社 Phenolic resin molding material
JP2622046B2 (en) * 1991-11-26 1997-06-18 大日本スクリーン製造株式会社 Substrate transfer device
US5561915A (en) * 1995-07-12 1996-10-08 Vandergriff; Johnie B. Storage container with sealed storage compartment for a purging gas cartridge
US5628121A (en) * 1995-12-01 1997-05-13 Convey, Inc. Method and apparatus for maintaining sensitive articles in a contaminant-free environment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351415A (en) * 1992-05-18 1994-10-04 Convey, Inc. Method and apparatus for maintaining clean articles
US5295522A (en) * 1992-09-24 1994-03-22 International Business Machines Corporation Gas purge system for isolation enclosure for contamination sensitive items
US5472086A (en) * 1994-03-11 1995-12-05 Holliday; James E. Enclosed sealable purgible semiconductor wafer holder

Also Published As

Publication number Publication date
US5724748A (en) 1998-03-10

Similar Documents

Publication Publication Date Title
US5724748A (en) Apparatus for packaging contaminant-sensitive articles and resulting package
US6155027A (en) Method and apparatus for packaging contaminant-sensitive articles and resulting package
US3850296A (en) Device and method for accommodating semiconductor wafers
US7866480B2 (en) Front opening substrate container with bottom plate
US4491225A (en) Shock cushioning package
EP1768905B1 (en) Vacuum package system and method
US5295522A (en) Gas purge system for isolation enclosure for contamination sensitive items
US4640080A (en) Process to form generally rigid cushion packages from loose fill dunnage
US8528738B2 (en) Reusable resilient cushion for wafer container
US5642813A (en) Wafer shipper and package
US4956156A (en) Pressure venting system for lens cases
US5291923A (en) Door opening system and method
JPH08295345A (en) Package method of screw for surgery and its packaging package
EP1062468B1 (en) A package for storing contaminant-sensitive articles
DE69511826D1 (en) Method and device for evacuating a vacuum packaging filled with granular material
US20030213716A1 (en) Wafer shipping and storage container
TWI381478B (en) Front opening substrate container with bottom plate
US20230274960A1 (en) Substrate Storage Container
JP7275871B2 (en) material supply unit
KR100584856B1 (en) Vacuum chamber apparatus provided with a hole for inserting a vacuum-packing bag
JPH0472161A (en) Packagaing of mushroom
GB2198490A (en) Sealing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1998910246

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: KR

WWP Wipo information: published in national office

Ref document number: 1998910246

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998910246

Country of ref document: EP