WO1999046497A1 - Procede de calcul de la pression moyenne indiquee d'un moteur a combustion interne - Google Patents

Procede de calcul de la pression moyenne indiquee d'un moteur a combustion interne Download PDF

Info

Publication number
WO1999046497A1
WO1999046497A1 PCT/FR1999/000554 FR9900554W WO9946497A1 WO 1999046497 A1 WO1999046497 A1 WO 1999046497A1 FR 9900554 W FR9900554 W FR 9900554W WO 9946497 A1 WO9946497 A1 WO 9946497A1
Authority
WO
WIPO (PCT)
Prior art keywords
pmi
advance
richness
engine
pressure
Prior art date
Application number
PCT/FR1999/000554
Other languages
English (en)
Inventor
Thierry Prunier
Vincent Rauch
Luis Rodrigues
Jean-Marie Taupin
Edouard Valenciennes
Original Assignee
Renault
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault filed Critical Renault
Priority to EP99907695A priority Critical patent/EP1062416B1/fr
Priority to DE69901547T priority patent/DE69901547T2/de
Priority to JP2000535839A priority patent/JP4299460B2/ja
Publication of WO1999046497A1 publication Critical patent/WO1999046497A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque

Definitions

  • the present invention relates to the field of internal combustion engines in which the increase in performance requirements associated with the development of command and control means requires increasingly precise control of the overall operation of these engines.
  • the engine control and regulation means can include richness sensors, a motorized intake throttle, an integral electronic ignition, etc.
  • knowing the gross engine torque as a function of the applied operating parameters such as richness, speed, air charge and ignition advance, can make it possible to anticipate the command or commands to be used in order to to correctly regulate the operation of the engine taking into account the accessories with which the vehicle is equipped and which must be supplied with energy, directly or indirectly, by the engine such as air conditioning, power steering, an automatic gearbox, a system anti-skid and trajectory control, etc.
  • the efficient engine torque at optimal advance is defined as a map depending on the speed and pressure of the manifold. This torque is then increased torque friction through a table according to the regime for the couple said gas which is then corrected by a single advance performance. This gas torque is again reduced by friction losses to finally obtain the effective torque corresponding to the adopted advance setting.
  • the object of the present invention is to remedy the drawbacks of the methods proposed above by using a feed efficiency defined in a particularly precise manner.
  • the method for estimating the torque of a spark-ignition engine according to the invention is carried out by calculating the average pressure indicated by the positive loop of the pressure cycle in the cylinder as a function of the volume of said cylinder, the positive loop being the part of the curve representative of the operation of the engine when the valves of said engine are closed. This estimate is made as a function of the air flow entering the engine, the pressure in the engine manifold, the operating speed N, the ignition advance AN, and the apparent richness of combustion Ri.
  • the indicated average pressure of the positive loop PMI + is equal to the product of the indicated average pressure of the positive loop for a richness equal to 1 and at the optimal advance PMI + t Ri _ 1 , by the richness coefficient ⁇ Ri and by the advance yield ⁇ A ⁇ .
  • the richness coefficient ⁇ Ri is equal to 1 if the richness Ri is equal to 1, the richness coefficient ⁇ Ri being a variable dependent on the richness Ri.
  • the evolution of PMI + as a function of the advance is modeled by a second degree curve approaching the points actually measured.
  • the points actually measured are weighted, a greater weight A being accorded to the measurement points closest to the value of the optimal advance, according to the following equation:
  • a (i) A min + ( PMI + (i) - PMI + min ) x (A ma ⁇ - A min ) / (PMI + ma ⁇ - PMI + _ mi in n), 'A mi • _n, being the minimum weight associated with the minimum measured pressure value mean indicated PMI +, A ma ⁇ being the maximum weight associated with the maximum measured value of the mean pressure indicated PMI +, using a minimization criterion: Min [ ⁇ j A (i) 2 x (PMI + (i) mes - PMI-t - (i) calc) 2 ]; i being the number of measurements for a curve, PMI + (i) mes being the average pressure indicated PMI + measured at point i, and PMI + (i) calc being the average pressure indicated PMI-f- calculated at point i according to the modeling
  • FIG. 1 shows the pressure curve as a function of the volume of cylinder
  • FIG. 2 is a curve showing the evolution of the indicated average pressure of the positive loop as a function of the advance
  • FIG. 3 is a similar curve showing the curve obtained without weighting and the curve obtained with weighting
  • FIG. 4 is a diagram showing the development of the torque value as a function of the engine speed, the air flow, the manifold pressure, and the ignition advance
  • FIG. 5 is an operating diagram of the torque box illustrated in FIG. 4
  • Figure 6 is a diagram illustrating the development of the advance yield.
  • the evolution of the pressure prevailing in a cylinder of an internal combustion engine with spark ignition as a function of volume is established according to two main loops, a so-called positive loop corresponding to the operation of the engine when the intake and exhaust valves are closed, and a negative loop corresponding to the operation of the engine during the exhaust phase followed by the intake phase, the intake or exhaust valves being open.
  • the work which can be recovered in the form of mechanical energy is therefore equal to the indicated average pressure of the positive loop PMI + from which we subtract the indicated average pressure of the negative loop PMI- and the average pressure of PMF friction.
  • the richness coefficient ⁇ Ri 1 when the richness Ri is equal to 1.
  • the coefficient K is a representative map of the combustion efficiency of the engine at unit richness.
  • the advance efficiency ⁇ AV characterizes the change in the indicated average pressure of the positive PMI + loop as a function of the ignition advance.
  • This evolution obeys a polynomial regression of the second degree function of the difference between the optimal advance of the operating point and the applied advance and whose curvature is a function of the value of the optimal advance and the richness of operation:
  • ⁇ AV 1 - f (ANopt) xh (Ri) x (AV- ANopt) 2 .
  • the term AN t is a coefficient established according to a map of optimal advances as a function of the manifold pressure and the operating regime.
  • the formulation used to estimate the indicated average pressure of the positive loop PMI + involves the optimal advances ANopt from the various operating points of the engine. All these optimal advances should be able to be precisely characterized. Their determination is mainly carried out in the flattest area of the curve called the advance hat due to its shape. A second degree curve is used to model the evolution of the indicated average pressure of the positive PMI + loop as a function of the advance, its equation being obtained by minimizing the difference between the measured points and the mathematical curve. This type of minimization generates an imprecision of the estimation of the optimal point of advance whereas the value of the optimal PMI + calculated will keep a value close to the measurement. In the example in FIG.
  • CRIT (curve) min [b x ⁇ abs (1 - curvature (k) wedge / curvature (k) mes)); k being the number of bending caps.
  • CRIT (curve) min [b x ⁇ abs (1 - curvature (k) wedge / curvature (k) mes)); k being the number of bending caps.
  • CRIT (ANopt) min [c x ⁇ abs (ANopt (k) mes - AVopt (k) calc)].
  • the resulting overall minimization criterion is the algebraic sum of the sub-criteria defined above.
  • a multiplicative weight of the precision objective that is desired is assigned (the coefficients a, b and c).
  • the torque value is developed from the average pressure exerted PME in the engine; the value of the average pressure exerted being obtained from the exhaust pressure and from the outputs of a torque box whose operation is illustrated in FIG. 5, and from the engine speed N.
  • the exhaust pressure is calculated from the amount of air entering the engine Q r expressed in kilograms / second.
  • the torque box makes it possible to obtain the values of the manifold pressure P j , of the indicated average pressure of the positive loop PMI +, of the advance efficiency ⁇ AV , of the richness coefficient ⁇ Ri and the mean PMF operating pressure of the engine.
  • the value of the PMI + is obtained as explained above by a weighting taking into account the values of the quantity of air entering the engine Q r in grams per revolution, from a mapping of the coefficient K as a function of the manifold pressure P co] and of the operating regime N with unit richness, of the advance efficiency ⁇ A and of the richness coefficient ⁇ Rj .
  • Obtaining the value of the advance yield ⁇ AV is illustrated in FIG. 6.
  • the representative richness coefficient ⁇ Ri curve is obtained from the value of the richness Ri.
  • the average operating pressure PMF is calculated from the operating speed N.
  • the quantity of air Q r in grams per revolution is calculated from the quantity of air in kg / s and the operating speed N.
  • the yield of advance ⁇ AV is worked out starting from the influence of the richness on the curvatures of the caps modeled h (Ri), of the advance AV, of the table of curvatures hats modeled f (AVopt) and optimal advances AVopt (Ri).
  • the function h (Ri) is developed from the value of the richness Ri.
  • the calculation of the table of curvatures of the caps modeled f (AVopt) and of the optimal advances AVopt (Ri) is carried out from the maps established for a unit richness and for a richness less than 1, for example equal to 0.68, in function of the operating regime N and of the manifold pressure P col , and of the variable P depending on the richness Ri.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Procédé d'estimation du couple de la boucle positive d'un moteur à allumage commandé par calcul de la pression moyenne indiquée par la boucle positive du cycle de pression dans le cylindre en fonction du volume du dit cylindre, la boucle positive étant la partie de la courbe représentative du fonctionnement du moteur lorsque les soupapes sont fermées, en fonction du débit d'air entrant dans le moteur, de la pression dans le collecteur du moteur, du régime de fonctionnement N, de l'avance à l'allumage, et de la richesse de fonctionnement. La pression moyenne indiquée de la boucle positive PMI+ est égale au produit de la pression moyenne indiquée de la boucle positive pour une richesse égale à 1 et à l'avance optimale PMI+¿opt,Ri=1?, par le coefficient de richesse πRi et par le rendement d'avance πav. La pression moyenne indiquée de la boucle positive pour une richesse égale à 1 et à l'avance optimale est égale au produit de la quantité d'air entrant dans le moteur par un coefficient K dépendant de la pression collecteur et du régime de fonctionnement N.

Description

Procédé de calcul de la pression moyenne indiquée d'un moteur à combustion interne
La présente invention concerne le domaine des moteurs à combustion interne dans lesquels l'augmentation des exigences de qualité de fonctionnement associé au développement des moyens de commande et de régulation nécessite un contrôle de plus en plus précis du fonction- nement global de ces moteurs.
Les moyens de commande et de régulation du moteur peuvent comprendre des sondes de richesse, un papillon d'admission motorisé, un allumage électronique intégral, etc. En particulier, la connaissance du couple moteur brut en fonction des paramètres de fonctionnement appliqués tels que la richesse, le régime, la charge d'air et l'avance à l'allumage, peut permettre d'anticiper la ou les commandes à utiliser afin de réguler correctement le fonctionnement du moteur compte tenu des accessoires dont le véhicule est équipé et qui doivent être alimentés en énergie, directement ou indirectement, par le moteur tels que l'air conditionné, la direction assistée, une boîte de vitesses automatique, un système anti-patinage et de contrôle de trajectoire, etc.
On a proposé d'effectuer une mesure directe du couple par un capteur spécifique lorsque le moteur est en fonctionnement. Par exemple on peut mesurer la variation de période de défilement des dents d'une couronne de mesure solidaire du volant d'inertie du moteur au moyen d'un capteur fixe.
On a également proposé de calculer le couple moteur en utilisant les divers capteurs existant sur le moteur tels que le débitmètre d'air, des sondes de richesse, le capteur d'allumage et de régime, le capteur de pression et de température du collecteur, etc. D'après le document français n°91 11 919, le couple moteur efficace à l'avance optimale est défini comme une cartographie fonction du régime et de la pression du collecteur. Ce couple est ensuite augmenté du couple des frottements grâce à une table en fonction du régime pour obtenir le couple gaz indiqué et qui sera ensuite corrigé par'un rendement d'avance unique. Ce couple gaz est à nouveau diminué des pertes par frottement pour finalement obtenir le couple effectif correspondant au réglage d'avance adopté.
On connaît également le document WO-96 35 874 dans lequel le couple moteur est défini comme une cartographie du couple à richesse unitaire et à l'avance optimale, corrigé par un rendement d'avance selon une loi unique de dégradation du couple en fonction de la dégradation de l'avance par rapport à l'avance optimale.
Toutefois, ces documents ne permettent pas une estimation suffisamment fine de la valeur du couple et, de ce fait, ne permettent pas une régulation optimale du moteur permettant un rendement maximal soit pour une réduction de la consommation de carburant, soit pour une réduction des émissions d'effluents de combustion.
La présente invention a pour but de remédier aux inconvénients des procédés proposés ci-dessus en utilisant une rendement d'avance défini de façon particulièrement précise.
Le procédé d'estimation du couple d'un moteur à allumage commandé selon l'invention, s'effectue par calcul de la pression moyenne indiquée par la boucle positive du cycle de pression dans le cylindre en fonction du volume dudit cylindre, la boucle positive étant la partie de la courbe représentative du fonctionnement du moteur lorsque les soupapes dudit moteur sont fermées. Cette estimation est effectuée en fonction du débit d'air entrant dans le moteur, de la pression dans le collecteur du moteur, du régime de fonctionnement N, de l'avance à l'allumage AN, et de la richesse apparente de combustion Ri. La pression moyenne indiquée de la boucle positive PMI+ est égale au produit de la pression moyenne indiquée de la boucle positive pour une richesse égale à 1 et à l'avance optimale PMI+ t Ri _ 1 , par le coefficient de richesse πRi et par le rendement d'avance πAγ. la pression moyenne indiquée de la boucle positive pour une richesse égale à 1 et l'avance optimale étant égale au produit de la quantité d'air entrant dans le moteur par coup (1/2 tour de vilebrequin pour un 4 cylindres) par un coefficient K dépendant de la pression dans le collecteur et du régime de fonctionnement N. On utilise ainsi une formulation suffisamment simple pour en permettre l'utilisation en temps réel par le calculateur de contrôle du moteur. Dans un mode de réalisation, le coefficient de richesse πRi est égal à 1 si la richesse Ri est égale à 1, le coefficient de richesse πRi étant une variable dépendant de la richesse Ri.
Avantageusement, le rendement d'avance πAV dépend d'une variable P qui obéit à une régression polynomiale du second degré fonction de l'écart entre l'avance optimale du point de fonctionnement et l'avance appliquée et dont la courbure est fonction de la valeur de l'avance optimale AN et de la richesse Ri, avec πAV égal = 1-P x (AV-AV )2. L'évolution de PMI+ en fonction de l'avance est modélisée par une courbe du second degré approchant les points réellement mesurés. De préférence, on effectue une pondération des points réellement mesurés, un poids A plus important étant accordé aux points de mesure les plus proches de la valeur de l'avance optimale, selon l'équation suivante : A(i) = Amin + (PMI+(i) - PMI+min) x (Amaχ - Amin) / (PMI+maχ - PMI+_ miinn),' A mi •_n, étant le p "oids minimum associé à la valeur minimum mesurée de la pression moyenne indiquée PMI+, Amaχ étant le poids maximum associé à la valeur maximum mesurée de la pression moyenne indiquée PMI+, en utilisant un critère de minimisation : Min [∑j A(i)2 x (PMI+(i)mes - PMI-t-(i)calc)2] ; i étant le nombre de mesure pour une courbe, PMI+ (i)mes étant la pression moyenne indiquée PMI+ mesurée au point i, et PMI+(i)calc étant la pression moyenne indiquée PMI-f- calculée au point i selon la courbe de modélisation.
En effet, pour caractériser le niveau de performance d'un moteur à allumage commandé, on utilise l'estimation de la pression moyenne indiquée par la boucle positive du cycle de pression en fonction du volume de cylindre. Cette estimation permet de ne considérer que le travail potentiellement récupérable lors de la combustion dans le cylindre et de se dégager de certaines contraintes propres à chaque moteur tels que les frottements de l'équipage mobile et de la distribution caractérisés par la pression moyenne des frottements PMF, ainsi que de la boucle négative du cycle pression = f(volume) correspondant au fonctionnement du moteur lorsque les soupapes d'admission ou d'échappement sont ouvertes.
La présente invention sera mieux comprise à la lecture de la description détaillée d'un mode de réalisation pris à titre d'exemple nullement limitatif et illustré par les dessins annexés, sur lesquels : la figure 1 montre la courbe de pression en fonction du volume de cylindre ; la figure 2 est une courbe montrant l'évolution de la pression moyenne indiquée de la boucle positive en fonction de l'avance ; la figure 3 est une courbe similaire montrant la courbe obtenue sans pondération et la courbe obtenue avec pondération ; la figure 4 est un schéma montrant l'élaboration de la valeur de couple en fonction du régime du moteur, du débit d'air, de la pression du collecteur, et de l'avance à l'allumage ; la figure 5 est un schéma de fonctionnement de la boîte couple illustrée sur la figure 4 ; et la figure 6 est un schéma illustrant l'élaboration du rendement d'avance.
Comme on peut le voir sur la figure 1, l'évolution de la pression régnant dans un cylindre d'un moteur à combustion interne à allumage commandé en fonction du volume s'établit selon deux boucles principales, une boucle dite positive correspondant au fonctionnement du moteur lorsque les soupapes d'admission et d'échappement sont fermées, et une boucle négative correspondant au fonctionnement du moteur pendant la phase d'échappement suivie de la phase d'admission, les soupapes d'admission ou d'échappement étant ouvertes.
Le travail que l'on peut récupérer sous forme d'énergie mécanique est donc égal à la pression moyenne indiquée de la boucle positive PMI+ de laquelle on retranche la pression moyenne indiquée de la boucle négative PMI- et la pression moyenne des frottements PMF. La pression moyenne indiquée de la boucle positive PMI+ est estimée en fonction du produit de la pression moyenne indiquée de la boucle positive à avance optimale et coefficient de richesse unitaire par le coefficient de richesse et par le rendement d'avance : PMI+ = PMI+ t Ri _ j x πRi x 7tAy. Le coefficient de richesse πRi = 1 lorsque la richesse Ri est égale à 1. La pression moyenne indiquée de la boucle positive du moteur considérée à richesse unitaire et à l'avance optimale est égale au produit du débit d'air Qr entrant dans le moteur par coup (1/2 tour vilebrequin pour un 4 cylindres) par un coefficient K dépendant à la fois de la pression dans le collecteur Pco] et du régime de fonctionnement N : PMI+ t Ri_ j = K(Pcol N) x Qr.
Le coefficient K est une cartographie représentative du rendement de combustion du moteur à la richesse unitaire. Le rendement d'avance πAV caractérise l'évolution de la pression moyenne indiquée de la boucle positive PMI+ en fonction de l'avance à l'allumage. Cette évolution obéit à une régression polynomiale du second degré fonction de l'écart entre l'avance optimale du point de fonctionnement et l'avance appliquée et dont la courbure est fonction de la valeur de l'avance optimale et de la richesse de fonctionnement : πAV = 1 - f (ANopt) x h (Ri) x (AV- ANopt)2. Le terme AN t est un coefficient établi selon une cartographie des avances optimales fonction de la pression du collecteur et du régime de fonctionnement. Cette cartographie résulte de l'interpolation non linéaire, fonction de la richesse de fonctionnement, entre deux carto graphies de référence des avances optimales en fonction de la pression du collecteur et du régime de fonctionnement, l'une étant établie à richesse Ri égale 1 et l'autre à une richesse Ri inférieure à 1 , avec ANopt (Pcol, Ν, Ri) = int erp (ANopt (Ri = 1), AVopt (Ri < 1), Ri).
Comme on peut le voir sur les figures 2 et 3, la formulation utilisée pour l'estimation de la pression moyenne indiquée de la boucle positive PMI+ fait intervenir les avances optimales ANopt des divers points de fonctionnement du moteur. Il convient de pouvoir caractériser de façon précise toutes ces avances optimales. Leur détermination s'effectue principalement dans la zone la plus plate de la courbe appelée chapeau d'avance en raison de sa forme. On utilise une courbe du second degré pour modéliser l'évolution de la pression moyenne indiquée de la boucle positive PMI+ en fonction de l'avance, son équation étant obtenue par minimisation de l'écart entre les points mesurés et la courbe mathématique. Ce type de minimisation engendre une imprécision de l'estimation du point d'avance optimal alors que la valeur de la PMI+ optimale calculée gardera une valeur proche de la mesure. Sur l'exemple de la figure 2, la différence entre les points de mesure et la courbe est flagrante et on ne peut utiliser la valeur de l'avance optimale trouvée d'après la courbe. La précision requise sur la mesure de l'avance optimale ANopt nécessite d'effectuer une pondération accordant plus d'importance aux points de fonctionnement qui se rapprochent de l'avance optimale expérimentale plutôt qu'à ceux qui en sont éloignés.
On effectue donc une approximation sur les mesures avec une pondération variable suivant l'eloignement du point d'avance par rapport au point le plus proche de l'avance optimale. La courbe ainsi trouvée (figure 3) est celle qui passe au plus près de l'ensemble des points de mesure d'un chapeau d'avance en obéissant à un critère de minimisation pondéré. Le critère de pondération retenu est présenté ci-dessous : on définit Amin comme étant le poids minimum associé à la valeur minimum mesurée de la pression moyenne indiquée de la boucle positive PMI+ min et Amax comme étant le poids maximum associé à la valeur maximum mesurée de la pression moyenne indiquée de la boucle positive PMI+ max. Entre ces deux extremums, le poids évoluera linéairement en fonction des valeurs de la PMI+ mesurée, soit : A(i) = Amin + (PMI+ (i) - PMI+ min ) x (Amax - Amin) / (PMI + max - PMI + min). On cherchera à minimiser l'écart pondéré des mesures par rapport à l'approximation mathématique de type : PMI+ = PMI+ t x [ 1 - C x (AN- ANopt)2] , C étant la courbure de la courbe du second degré.
Le critère de minimisation associé s'écrira ainsi : min [∑A(i)2 x (PMI+(i)mes - PMI+(i)calc)2 ] . Avec i étant le nombre de mesure pour un chapeau d'avance, PMI+(i) mes étant la PMI+ mesurée au point i et
PMI+(i)calc étant la PMI+ calculée par l'approximation mathématique au point i.
Pour chaque chapeau d'avance ainsi calculé, on peut ainsi faire passer une courbe unique répondant au critère de minimisation. Cette courbe est mise pour chaque point de fonctionnement (richesse, régime, pression du collecteur) sous la forme PMI+ = K x Qr x [l - C x (AN - AVopt)2] ; avec PMI+opt = K x Qr
Comme on peut le voir sur la figure 3, l'utilisation de la méthode avec pondération permet une meilleure approximation des points de mesure. La calibration des paramètres globaux du modèle sur les résultats d'essais sur banc du moteur est effectuée par minimisation de l'écart entre le modèle et les mesures. Les calibrations à optimiser sont les suivantes : - g (Ri) : table des rendements de richesse ;
- f (ANopt) : table des courbures des chapeaux modélisés et fonction de l'avance optimale ;
- h (Ri) : influence de la richesse sur les courbures des chapeaux modélisés. Le critère global de minimisation retenu fait intervenir des sous- critères s'appliquant à la fois aux écarts de courbure, d'avance optimale et de valeur de la pression moyenne indiquée de la boucle positive PMI+. Pour chaque sous-critère de minimisation, on se fixe un poids et un objectif de précision entrant dans la détermination globale de l'écart du modèle par rapport aux mesures. Le critère de minimisation des valeurs absolues du modèle par rapport aux mesures s'écrit : CRIT(PMI+) = min [a x ∑ abs (PMI+(i)mes - PMI--(i)calc) ] .
On peut par exemple prendre un objectif de précision 0,3 bars.
Le critère de minimisation des courbures du modèle par rapport aux mesures s'écrit : CRIT (courbe) = min [b x ∑ abs ( 1 - courbure (k) cale / courbure (k) mes)] ; k étant le nombre de chapeaux de courbure. On peut par exemple prendre un objectif de précision de 20% d'erreur sur les courbures.
Le critère de minimisation des avances optimales du modèle par rapport aux mesures s'écrit : CRIT( ANopt) = min [c x ∑ abs (ANopt(k) mes - AVopt(k)calc)] . On peut par exemple prendre un objectif de précision de 1° d'erreur sur l'estimation des avances optimales. Le critère global des minimisation résultant est la somme algébrique des sous- critères définis ci-dessus. Pour chaque critère, on affecte un poids multiplicatif d'objectif de précision que l'on désire (les coefficients a, b et c). En considérant les objectifs de précision donnés dans les exemples, la proportionnalité des critères de convergence impose : a x 0,3 = b x 0,2 = c x 1.
Comme on peut le voir sur la figure 4, la valeur de couple est élaborée à partir de la pression moyenne exercée PME dans le moteur ; la valeur de la pression moyenne exercée étant obtenue à partir de la pression d'échappement et des sorties d'une boîte couple dont le fonctionnement est illustré dans la figure 5, et du régime N du moteur. La pression à l'échappement est calculée à partir de la quantité d'air entrant dans le moteur Qr exprimé en kilogramme / seconde.
Comme on peut le voir sur la figure 5, la boîte couple permet d'obtenir les valeurs de la pression collecteur P j, de la pression moyenne indiquée de la boucle positive PMI+, du rendement d'avance πAV, du coefficient de richesse πRi et de la pression moyenne de fonctionnement PMF du moteur. La valeur de la PMI+ est obtenue comme expliquée précédemment par une pondération tenant compte des valeurs de la quantité d'air entrant dans le moteur Qr en gramme par tour, d'une cartographie du coefficient K en fonction de la pression collecteur Pco] et du régime de fonctionnement N à richesse unitaire, du rendement d'avance πA et du coefficient de richesse πRj. L'obtention de la valeur du rendement d'avance πAV est illustrée sur la figure 6. La courbe représentative coefficient de richesse πRi est obtenue à partir de la valeur de la richesse Ri. La pression moyenne de fonctionnement PMF est calculée à partir du régime de fonctionnement N. La quantité d'air Qr en gramme par tour est calculée à partir de la quantité d'air en kg/s et du régime de fonctionnement N.
Comme on peut le voir sur la figure 6, le rendement d'avance πAV est élaboré à partir de l'influence de la richesse sur les courbures des chapeaux modélisés h(Ri), de l'avance AV, de la table des courbures des chapeaux modélisés f(AVopt) et des avances optimales AVopt (Ri). La fonction h(Ri) est élaborée à partir de la valeur de la richesse Ri. Le calcul de la table des courbures des chapeaux modélisés f( AVopt) et des avances optimales AVopt(Ri) est réalisé à partir des cartographies établies pour une richesse unitaire et pour une richesse inférieure à 1 , par exemple égale à 0,68, en fonction du régime de fonctionnement N et de la pression collecteur Pcol, et de la variable P dépendant de la richesse Ri.
Grâce à l'invention, on dispose d'un procédé d'estimation du couple d'un moteur, de grande précision permettant une commande améliorée du moteur ce qui se traduit par une amélioration du rendement et une diminution de la consommation énergétique, en utilisant un

Claims

REVENDICATIONS
1. Procédé d'estimation du couple d'un moteur à allumage commandé par calcul de la pression moyenne indiquée par la boucle positive du cycle de pression dans le cylindre en fonction du volume du dit cylindre, la boucle positive étant la partie de la courbe représentative du fonctionnement du moteur lorsque les soupapes sont fermées, en fonction du débit d'air entrant dans le moteur, de la pression dans le collecteur du moteur, du régime de fonctionnement N, de l'avance à l'allumage, et de la richesse de fonctionnement, la pression moyenne indiquée de la boucle positive PMI+ étant égale au produit de la pression moyenne indiquée de la boucle positive pour une richesse égale à 1 et à l'avance optimale
PMI+ t Ri = 1, par le coefficient de richesse πRi et par le rendement d'avance πav, la pression moyenne indiquée de la boucle positive pour une richesse égale à 1 et à l'avance optimale étant égale au produit de la quantité d'air entrant dans le moteur par un coefficient K dépendant de la pression col- lecteur et du régime de fonctionnement N.
2. Procédé selon la revendication 1, caractérisé par le fait que le coefficient de richesse πRi est égal à 1 si la richesse Ri est égale à 1, le coefficient de richesse πRi étant une variable dépendant de la richesse Ri.
3. Procédé selon la revendication 1 ou 2, caractérisé par le fait que le rendement d'avance πav dépend d'une variable P qui obéit à une régression polynomiale du second degré fonction de l'écart entre l'avance optimale du point de fonctionnement et l'avance appliquée et dont la courbure est fonction de la valeur de l'avance optimale et de la richesse Ri, avec πav = l-P*(AN-AVopt)2.
4. Procédé selon la revendication 3, caractérisé par le fait que l'évolution de l'avance optimale de la boucle positive en fonction de l'avance est modélisée par une courbe du second degré approchant les points réellement mesurés.
5. Procédé selon la revendication 4, caractérisé par le fait qu'on effectue une pondération des points réellement mesurés, un poids A plus important étant accordé aux points de mesure les plus proches de l'avance optimale expérimentale, selon l'équation suivante : 10
A(i) = Amin + (PMI+(i) - PMI+min) * (Amaχ - A^) I (PMI+maχ - PMI+ιnjn), Amjn étant le poids minimum associé à la valeur minimum mesurée de la PMI+, Amaχ étant le poids maximum associé à la valeur maximum mesurée de la PMI+, en utilisant un critère de minimisation : Min [∑jA(i)2 * (PMI+(i)mes - PMI+(i)calc)2] ; i étant le nombre de mesures pour une courbe, PMI+(i)mes étant la PMI+ mesurée au point i, et PMI+(i)calc étant la PMI+ calculée au point i selon la courbe de modélisation.
PCT/FR1999/000554 1998-03-12 1999-03-12 Procede de calcul de la pression moyenne indiquee d'un moteur a combustion interne WO1999046497A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP99907695A EP1062416B1 (fr) 1998-03-12 1999-03-12 Procede de calcul de la pression moyenne indiquee d'un moteur a combustion interne
DE69901547T DE69901547T2 (de) 1998-03-12 1999-03-12 Verfahren für die berechnung des angezeigten mitteldrucks einer brennkraftmaschine
JP2000535839A JP4299460B2 (ja) 1998-03-12 1999-03-12 内燃エンジンの図示平均圧力計算方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR98/03068 1998-03-12
FR9803068A FR2776066B1 (fr) 1998-03-12 1998-03-12 Procede de calcul de la pression moyenne indiquee d'un moteur a combustion interne

Publications (1)

Publication Number Publication Date
WO1999046497A1 true WO1999046497A1 (fr) 1999-09-16

Family

ID=9523987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/000554 WO1999046497A1 (fr) 1998-03-12 1999-03-12 Procede de calcul de la pression moyenne indiquee d'un moteur a combustion interne

Country Status (5)

Country Link
EP (1) EP1062416B1 (fr)
JP (1) JP4299460B2 (fr)
DE (1) DE69901547T2 (fr)
FR (1) FR2776066B1 (fr)
WO (1) WO1999046497A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2837528B1 (fr) * 2002-03-21 2004-06-04 Renault Procede d'estimation du couple de pompage d'un moteur thermique pour vehicule automobile
US7127346B1 (en) * 2005-06-23 2006-10-24 Gm Global Technology Operations, Inc. Dynamic engine pumping work estimation algorithm
DE102013005655B9 (de) * 2013-04-04 2014-07-31 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zur Bestimmung des indizierten Mitteldruckes in der Hochdruckphase beim Betrieb einer Brennkraftmaschine
FR3053118B1 (fr) * 2016-06-23 2018-06-22 Renault S.A.S Procede de determination de l'avance a l'allumage d'un moteur a combustion interne et procede de controle d'un moteur utilisant un tel procede

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4984546A (en) * 1988-06-08 1991-01-15 Mitsubishi Denki Kabushiki Kaisha Engine control apparatus
FR2681908A1 (fr) * 1991-09-27 1993-04-02 Peugeot Procede de correction des parametres de controle d'un moteur a combustion interne et dispositif de mise en óoeuvre du procede.
FR2688546A1 (fr) * 1992-03-10 1993-09-17 Siemens Automotive Sa Procede et dispositif de commande d'un moteur a combustion interne.
EP0742359A2 (fr) * 1995-05-12 1996-11-13 Yamaha Hatsudoki Kabushiki Kaisha Méthode et dispositif pour commander le fonctionnement d'un moteur à combustion interne
WO1996035874A1 (fr) * 1995-05-13 1996-11-14 Robert Bosch Gmbh Procede et dispositif de regulation du couple d'un moteur a combustion interne
US5623412A (en) * 1993-10-12 1997-04-22 Institut Francais Du Petrole Instantaneous data acquisition and processing system for internal-combustion engine control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4984546A (en) * 1988-06-08 1991-01-15 Mitsubishi Denki Kabushiki Kaisha Engine control apparatus
FR2681908A1 (fr) * 1991-09-27 1993-04-02 Peugeot Procede de correction des parametres de controle d'un moteur a combustion interne et dispositif de mise en óoeuvre du procede.
FR2688546A1 (fr) * 1992-03-10 1993-09-17 Siemens Automotive Sa Procede et dispositif de commande d'un moteur a combustion interne.
US5623412A (en) * 1993-10-12 1997-04-22 Institut Francais Du Petrole Instantaneous data acquisition and processing system for internal-combustion engine control
EP0742359A2 (fr) * 1995-05-12 1996-11-13 Yamaha Hatsudoki Kabushiki Kaisha Méthode et dispositif pour commander le fonctionnement d'un moteur à combustion interne
WO1996035874A1 (fr) * 1995-05-13 1996-11-14 Robert Bosch Gmbh Procede et dispositif de regulation du couple d'un moteur a combustion interne

Also Published As

Publication number Publication date
JP4299460B2 (ja) 2009-07-22
FR2776066B1 (fr) 2000-06-30
JP2002506169A (ja) 2002-02-26
EP1062416B1 (fr) 2002-05-22
DE69901547D1 (de) 2002-06-27
DE69901547T2 (de) 2002-11-28
EP1062416A1 (fr) 2000-12-27
FR2776066A1 (fr) 1999-09-17

Similar Documents

Publication Publication Date Title
EP1994390B1 (fr) Methode d&#39;estimation en temps reel de parametres de combustion d&#39;un moteur a partir de signaux vibratoires
CN102135045B (zh) 柴油发动机中的适应性进气氧气估计
EP3619412B1 (fr) Procede de filtrage d&#39;un signal de richesse issu d&#39;une sonde à l&#39;échappement d&#39;un moteur
FR2787511A1 (fr) Procede et dispositif d&#39;egalisation des couples de chaque cylindre d&#39;un moteur
WO2018202977A2 (fr) Procede de reactualisation d&#39;une dynamique d&#39;adaptation d&#39;une valeur de richesse à une consigne dans un moteur
FR2830276A1 (fr) Procede de determination de la teneur en oxyde d&#39;azote dans les gaz d&#39;echappement de moteur a combustion interne
FR2885175A1 (fr) Procede de commande d&#39;un moteur de vehicule mettant en oeuvre un reseau de neurones
EP2148979B1 (fr) Procede de controle de combustion d&#39;un moteur diesel
EP1062416B1 (fr) Procede de calcul de la pression moyenne indiquee d&#39;un moteur a combustion interne
FR2930597A1 (fr) Procede de commande d&#39;un moteur
EP2195519B1 (fr) Estimation de parametres d&#39;etat d&#39;un moteur par mesure de la pression interne d&#39;un cylindre
EP2157301B1 (fr) Procédé de contrôle de combustion d&#39;un moteur à allumage par compression au moyen d&#39;un contrôle du phasage de la combustion
FR2835281A1 (fr) Procede d&#39;estimation de la masse d&#39;air admise dans une chambre de combustion d&#39;un moteur, et vehicule de mise en oeuvre
WO2007060349A1 (fr) Procede d&#39;estimation de la masse des gaz enfermee pendant chaque cycle de fonctionnement dans la chambre de combustion d&#39;un cylindre d&#39;un moteur a combustion interne
EP2430298A1 (fr) Estimation de la concentration en oxydes d &#39; azote d &#39; un moteur a combustion interne
EP2751416B1 (fr) Système et procédé de commande d&#39;un moteur a combustion interne d&#39;un véhicule automobile avec des circuits de recirculation de gaz d&#39;échappement haute et basse pression en fonctionnement transitoire
EP2256322B1 (fr) Influence de la régulation des nox sur le contrôle du bruit moteur dans un moteur à combustion interne
FR2935750A1 (fr) Procede et systeme de correction de la quantite cartographiee de carburant de l&#39;injection tardive participant au couple d&#39;un moteur a combustion interne
FR2936015A1 (fr) Estimation de variables d&#39;etat d&#39;un moteur a combustion interne.
WO2018202976A2 (fr) Procede de reglage de la consigne de richesse d&#39;une sonde lors d&#39;un balayage d&#39;air
EP3067539A1 (fr) Procédé de détermination de la vitesse de rotation du turbocompresseur d&#39;un moteur à combustion interne de véhicule automobile
WO2022090026A1 (fr) Procede de determination d&#39;un indicateur de stabilite d&#39;une combustion dans un cylindre d&#39;un moteur a combustion interne
EP4222363A1 (fr) Procede de determination de la masse de gaz aspire dans un cylindre avec prise en compte des conditions reelles d&#39;utilisation
FR2898156A1 (fr) Procede de gestion d&#39;un moteur a combustion interne, programme d&#39;ordinateur-produit et installation de commande et de regulation pour la gestion d&#39;un moteur a combustion interne
FR2934642A1 (fr) Procede et systeme de correction du temps mort d&#39;injecteurs pour un moteur a combustion interne

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999907695

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: KR

WWP Wipo information: published in national office

Ref document number: 1999907695

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999907695

Country of ref document: EP