EP2256322B1 - Influence de la régulation des nox sur le contrôle du bruit moteur dans un moteur à combustion interne - Google Patents

Influence de la régulation des nox sur le contrôle du bruit moteur dans un moteur à combustion interne Download PDF

Info

Publication number
EP2256322B1
EP2256322B1 EP10305490.4A EP10305490A EP2256322B1 EP 2256322 B1 EP2256322 B1 EP 2256322B1 EP 10305490 A EP10305490 A EP 10305490A EP 2256322 B1 EP2256322 B1 EP 2256322B1
Authority
EP
European Patent Office
Prior art keywords
engine
combustion
rate
nitrogen oxides
regulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10305490.4A
Other languages
German (de)
English (en)
Other versions
EP2256322A1 (fr
Inventor
Pascal Emery
Philippe Recouvreur
Olivier Tigrine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP2256322A1 publication Critical patent/EP2256322A1/fr
Application granted granted Critical
Publication of EP2256322B1 publication Critical patent/EP2256322B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/028Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the combustion timing or phasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • F02D41/1462Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1418Several control loops, either as alternatives or simultaneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/025Engine noise, e.g. determined by using an acoustic sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0052Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/144Sensor in intake manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing

Definitions

  • the invention relates to the control of combustion in an internal combustion engine and in particular in a motor vehicle engine.
  • the patent application FR 2 907 852 A1 describes a combustion noise control system of an internal combustion engine.
  • One of the objects of the invention is to provide a simple and more precise means for controlling combustion in an internal combustion engine.
  • a combustion control system in an internal combustion engine of a motor vehicle.
  • This system comprises a first actuator capable of controlling a rate of nitrogen oxides emitted by the engine, a second actuator capable of controlling a combustion noise of the engine, a first regulating means capable of controlling the first actuator to regulate in a loop closed the rate of nitrogen oxides emitted by the engine and a second regulating means able to control the second actuator to regulate in closed loop the combustion noise of the engine.
  • a means is thus provided for controlling combustion in an internal combustion engine which takes into account the rate of nitrogen oxides and the combustion noise emitted during combustion.
  • the engine comprises at least one cylinder, a movable piston driven by means of a crankshaft
  • the system comprises means for measuring the temporal variations of the angle of the crankshaft and of the internal pressure of said cylinder.
  • estimation means capable of respectively estimating a rate of nitrogen oxides emitted by the engine and a combustion noise of the engine from said measurements, the first regulating means being able to control the first actuator from a difference between a first setpoint and said estimate of the rate of nitrogen oxides, and the second regulation means being able to control the second actuator from a difference between a second setpoint and said estimate of combustion noise.
  • an estimation means is provided which overcomes the multiple maps used during the engine development phases.
  • the second regulation means comprises a multiplication means for multiplying said difference, between the second setpoint and the estimation of the noise of combustion, with the first difference developed by the first means of regulation.
  • This method comprises a first closed loop regulation of a rate of nitrogen oxides emitted by the engine and a second closed loop regulation of a combustion noise of the engine.
  • the engine comprises at least one cylinder and a movable piston driven by means of a crankshaft
  • the method comprises a measurement of the temporal variations of the angle of the crankshaft and of the internal pressure of the cylinder, a first and second estimates respectively of a rate of nitrogen oxides emitted by the engine and of a combustion noise of the engine, and during the first regulation, the rate of nitrogen oxides emitted by the engine is regulated from a difference between a first set point and said first estimate of the nitrogen oxide rate, and during the second regulation, the engine combustion noise is regulated from a difference between a second set point and said second estimate of combustion noise.
  • the combustion noise of the engine is regulated on the basis of said difference between the first setpoint and the first estimate of the rate of nitrogen oxides.
  • the figure 1 illustrates, very schematically, a combustion control system 1 in an internal combustion engine 2.
  • the combustion control system 1 comprises an electronic control unit 3 (ECU), sensors 4.5 for measuring respectively the temporal variations of the angle of the crankshaft and of the internal pressure of the cylinder and two actuators 6,7 piloted by the ECU 3.
  • ECU electronice control unit 3
  • sensors 4.5 for measuring respectively the temporal variations of the angle of the crankshaft and of the internal pressure of the cylinder and two actuators 6,7 piloted by the ECU 3.
  • the internal combustion engine 2 comprises a cylinder 8 in which a piston 9 moves by means of a connecting rod 10 connecting the piston 9 to a crankshaft 11.
  • a combustion chamber 12 is delimited by said cylinder 8, said piston 9 and a cylinder head 13.
  • the cylinder head 13 is provided with at least two valves 14, 15 which make it possible to connect the combustion chamber 12 with respectively an intake manifold 16, for air possibly mixed with part of the gases d exhaust, and a gas exhaust manifold 17.
  • the engine 2 also comprises a partial recirculation circuit of the exhaust gases 18 stuck between the gas exhaust manifold 17 and the intake manifold 16.
  • the sensor 4 makes it possible to measure the angle of the crankshaft ⁇ at all times
  • the sensor 5 makes it possible to measure the internal pressure of the cylinder P cyl which corresponds to the pressure inside the combustion chamber 12.
  • These sensors 4,5 each emit a time measurement signal, transmitted respectively by connections 19 and 20, in the direction of the ECU 3.
  • the ECU 3 includes means of regulation, detailed below in the figure 2 , which are each capable of developing a command Cmde1, Cmde2, respectively to drive the actuators 6,7. Furthermore, the regulation means can be included in software form or in the form of logic circuits embedded in the ECU 3.
  • This ECU 3 issues these commands Cmde1, Cmde2, transmitted respectively by connections 21 and 22, in the direction of the actuators 6,7.
  • the actuator 6 makes it possible to control the rate of nitrogen oxides emitted by the engine 2.
  • This actuator 6 can be an EGR valve (Exhaust Gas Recirculation in English) mounted in the partial recirculation circuit of the exhaust gases 18
  • the actuator 6 may be an air flap mounted on the intake manifold 16, or any other means for controlling the flow rate of the gases admitted into the engine 2. Indeed, a control of the flow rate of the admitted gases in engine 2 directly modifies the rate of nitrogen oxides emitted by engine 2 after combustion.
  • the actuator 7 makes it possible to control a fuel injection into the engine 2.
  • This actuator 7 can be a fuel injector located partly in the combustion chamber 12 for a diesel type engine.
  • this fuel injector can be located outside and upstream of this combustion chamber 12. In fact, a control of the injection of fuel into the engine directly modifies the combustion noise of the engine during combustion.
  • the combustion noise is a sound emission generated by the flame which burns the gas-fuel mixture in the combustion chamber 12. This combustion noise causes a noise nuisance and it is considered as a polluting emission from the engine 2.
  • FIG 2 shows schematically an embodiment of a combustion control system 1 of the internal combustion engine 2. We have also reported on this figure 2 certain elements described in figure 1 .
  • the combustion control system 1 comprises at least two regulating means 30, 31 for regulating respectively a rate of nitrogen oxides emitted during combustion and a combustion noise from the engine.
  • the first means of regulating the rate of nitrogen oxides 30 is capable of controlling the actuator 6 to modify the quantity of gas admitted into the engine 2 in order to limit the polluting emissions of nitrogen oxides from the engine 2.
  • the second regulation means 31 for regulating the combustion noise controls the actuator 7 to modify the quantity of fuel injected into the engine in order to limit the combustion noise of the engine 2.
  • This second regulation means 31 makes it possible to obtain a command more precise combustion than with the sole means of regulating the rate of nitrogen oxides 30.
  • this second regulating means 31 makes it possible to limit the pollutant emissions from engine 2 even better.
  • these regulation means regulate the polluting emissions of the engine 2, the nitrogen oxides and the combustion noise, in a closed loop.
  • closed loop regulation means means a regulation means which regulates a variable of a system by controlling an actuator for controlling said variable on the basis of a regulation instruction and of measured or estimated information. , in real time, of the state of the variable to be regulated.
  • the combustion control system 1 also includes an estimation means 32 for estimating the rate of nitrogen oxides emitted by the engine 2 and means 33 for developing at least one regulation setpoint.
  • the means for regulating the rate of nitrogen oxides 30 comprises a summing means 34 and a corrector 35.
  • the means 33 for developing regulation instructions can provide said instructions from maps previously established during the development phases of the engine 2, by physical models or by a computer on board the ECU 3. Furthermore, this means 33 for developing instructions is capable of developing maximum instructions that should not be exceeded.
  • the processing means 33 emits a nitrogen oxide rate setpoint Cons_NOx, transmitted by a connection 33a in the direction of the summation means 34 of the means for regulating the nitrogen oxide rate 30.
  • the summation means 34 is able to calculate a difference dl between the nitrogen oxide rate setpoint Cons_NOx and an NOx estimate e supplied by the estimation means 32 and transmitted by a connection 36. Then, this difference dl is transmitted, via a connection 37, to the corrector 35, which can be, for example, an integral proportional corrector PI known to those skilled in the art. The corrector 35 then develops the command Cmde1 to the actuator 6 resulting from the difference dl received.
  • the estimation means 32 estimates the rate of nitrogen oxides NOx e from measurements of the internal pressure of the cylinder P cyl and of the measurement of the angle of the crankshaft ⁇ and will be described in figure 3 .
  • the combustion control system 1 also includes a second estimation means 40 for estimating the combustion noise Br e emitted by the engine 2.
  • the second combustion noise regulation means 31 includes a summation means 41 and a corrector 42.
  • the means 33 for developing regulation instructions can also provide a combustion noise instruction Cons_Br, transmitted by a connection 43 in the direction of the summing means 41 of the second combustion noise regulation means 31.
  • the summation means 41 is able to calculate a difference d2 between the combustion noise instruction Cons_Br and the estimate Br e supplied by the second estimation means 40 and transmitted by a connection 44. Then, this difference d2 is transmitted, by a connection 45, to the corrector 42, which can also be, for example, a proportional integral corrector PI known to those skilled in the art. The corrector 42 then develops the command Cmde2 towards the actuator 7 resulting from the difference d2 received.
  • the second estimation means 40 estimates the combustion noise Br e from measurements of the internal pressure of the cylinder P cyl and the crankshaft angle measurement ⁇ and will be described in figure 3 .
  • the two regulating means 30, 31 make it possible to modulate combustion by progressively increasing, in a controlled manner, the polluting emissions of nitrogen oxides and combustion noise in order to control combustion in the engine 2. If the estimation of the rate of nitrogen oxides NOx e is less than the setpoint Cons_NOx, the first regulating means 30 increases the air flow admitted into the engine, either by closing the EGR valve to reduce the partial exhaust gases admitted, or by opening the air shutter located on the intake manifold 16 to increase the flow of fresh air admitted.
  • the first regulation means 30 decreases the air flow admitted into the engine, either by opening the EGR valve for increase the partial exhaust gases admitted, either by closing the air flap located on the intake manifold 16 to reduce the flow of fresh air admitted.
  • the second regulation means 31 advances the quantity of fuel injected into the engine. In the opposite case, if the estimate of the combustion noise Br e is greater than the setpoint Cons_Br, the second regulation means 31 delays the amount of fuel injected into the engine.
  • the regulation of the combustion noise is faster than that of the rate of nitrogen oxides.
  • the second regulating means 31 corrects the fuel injection while the first regulating means 30 corrects the flow rate of the admitted gases, the latter having an additional inertia due to the flow of gases between the actuator for controlling the rate of nitrogen oxides and the combustion chamber 12 of the engine 2.
  • the fuel injection corrections are made between two thermodynamic combustion cycles in a faster manner than a gas flow correction.
  • the combustion noise setpoint Cons_Br is reached before that of the nitrogen oxide rate.
  • the second regulation means 31 regulates the combustion noise, on the Cons_Br setpoint, while the first regulation means 30 progressively regulates, in a controlled manner, the rate of nitrogen oxides so that the latter reaches the Cons_NOx setpoint.
  • the difference dl, between the set point of nitrogen oxides rate Cons_NOx and the estimate of the rate of nitrogen oxides NOx e can be emitted, by a connection 50, towards a multiplication means 51 included in the second combustion noise regulation means 31.
  • This multiplication means 51 also receives the difference d2 between the combustion noise instruction Cons Br and the estimation of the combustion noise Br e .
  • the multiplication means 51 is able to multiply the two differences dl, d2 between them and transmit the result, via the connection 45, towards the corrector 42 of the second regulation means 31.
  • This variant makes it possible to obtain controlled control of the combustion even in the case where the Cons_NOx setpoint is reached before the Cons_Br setpoint.
  • the figure 3 illustrates an embodiment of a means of estimation 60 of an output parameter PSe of the motor 2. We have also reported on this figure 3 certain elements described in figures 1 and 2 .
  • the combustion control system 1 may further comprise other means 27 to 29 for measuring state variables of the engine 2 in order to specify the estimate of the engine output parameter PSe.
  • the engine output parameters can be chosen from polluting emissions such as nitrogen oxides or carbon dioxide, combustion noise, fuel consumption, engine torque and in general all the parameters which represent a state emitted directly or indirectly by combustion in the engine 2.
  • the combustion control system 1 can comprise, the measuring means 27 for measuring a quantity of oxygen admitted into the engine 2, the measuring means 28 to measure a flow of fuel admitted into the engine 2 and the measuring means 29 for measuring a flow rate of fresh air admitted into the engine 2.
  • the means 27 for measuring the quantity of oxygen admitted into the engine 2 can be an oxygen sensor located in the intake manifold 16 or in the intake manifold exhaust gas 17.
  • the measurement of the flow of fuel admitted into the engine 2 can be a fuel instruction sent to the injector 7.
  • the means 29 for measuring the flow of fresh air admitted into the engine 2 can be a flowmeter d air located on the intake manifold 16, preferably upstream of the recovery of part of the exhaust gases.
  • the estimation system 60 comprises the calculation means 23 and an estimation module 24.
  • the calculation means 23 and the estimation module 24 can be included in software form or in the form of logic circuits embedded in the ECU 3.
  • the calculation means 23 makes it possible to calculate a certain number of combustion parameters Xi from the input time signals ⁇ , P cyl . In addition, this calculation means 23 can also calculate said combustion parameters Xi from additional time signals from the measurement means 27 to 29.
  • the combustion parameters Xi can be chosen from the instant of start of combustion, the duration of combustion, the maximum internal pressure of the cylinder, the angle of the crankshaft for which the pressure is maximum in the cylinder, the angle of the crankshaft for which a given fraction of the fuel was burned, the temperature of the exhaust gases, the pressure of the exhaust gases.
  • Other parameters can be considered in the measure that they are in direct or indirect relation to the combustion phase in the cylinder.
  • the combustion parameters Xi are chosen to be only values characteristic of the internal pressure of the cylinder, such as internal pressures of the cylinder characteristic of combustion P cyl i, variations of internal pressure of the cylinder ⁇ P cyl i and motor cycle times t cycle i.
  • the internal pressures of the cylinder characteristic of combustion P cyl i can be, for example, the internal pressure of the maximum cylinder P cyl max, the internal pressure of the cylinder at the instant of start of combustion, the internal pressure of the cylinder for an angle of the characteristic crankshaft of combustion (i.e. an angle at which a given fraction of the fuel has been burned), the internal pressure of the cylinder when the angle of the crankshaft is equal to 80 ° after the top dead center of the piston.
  • angles of the crankshaft characteristic of combustion are well known to those skilled in the art and are generally calculated as a function of the apparent energy release in the cylinder.
  • the variations in internal pressure of the cylinder VP cyl i can be, for example, the maximum gradient of the internal pressure of the cylinder ( ⁇ P cyl ) max , the minimum gradient of the internal pressure of the cylinder ( ⁇ P cyl ) min , the gradient maximum internal cylinder pressure between the first pilot injection and the injection at the start of combustion.
  • the cycle times of the motor t cycle i can be, for example, the time between CA05 and CA50, or the time between CA05 and CA90, or the time between CA05 and the time when the maximum internal pressure of the cylinder is reached , or the time during which the internal pressure of the cylinder is greater than a threshold, or the time during which the internal pressure of the cylinder is equal to the maximum value of the ratio P cyl ⁇ P cyl with ⁇ P cyl representing the gradient of the internal pressure of the cylinder and P cyl representing the internal pressure of the cylinder.
  • references CAx correspond to the angles of the crankshaft where x% of the fuel has been burned.
  • the calculation means 23 is able to sample the measurements of the internal pressure of the cylinder P cyl as a function of the measurements of the angle of the crankshaft ⁇ .
  • the sampling step of the internal pressure of the cylinder P cyl is greater than or equal to 0.5 degrees from the angle of the crankshaft ⁇ . Then, for each combustion cycle, the calculation means 23 stores in memory the sampled values of the internal pressure of the cylinder P cyl .
  • the calculation means 23 calculates the combustion parameters Xi, described above, and transmits them, via connections 64, in the direction of the estimation module 24.
  • This estimation module 24 makes it possible to estimate an output parameter PSe of the engine, for example a rate of nitrogen oxides NOx e , from said calculated combustion parameters Xi. In addition, it sends the estimated result PSe via a connection 65.
  • the estimation module 24 can use several models to estimate the output parameter PSe of the engine.
  • the models are capable of estimating the output parameter PSe of the engine from a weighted sum of said combustion parameters Xi.
  • this estimation module 24 uses models whose weighting constants ⁇ i have been determined by preliminary tests.
  • the estimation module 24 can provide an estimate of polluting emissions from a map of polluting emissions established as a function of the internal pressure of the cylinder P cyl and the angle of the crankshaft ⁇ .
  • the estimation means 60 as described in figure 3 can therefore be used to estimate the rate of nitrogen oxides NOx e in place of the first estimation means 32. Furthermore, this estimation means 60 as described in figure 3 can also be used to estimate the combustion noise Br e instead of the second estimation means 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

  • L'invention concerne la commande de la combustion dans un moteur à combustion interne et en particulier dans un moteur de véhicule automobile.
  • Les normes de pollution actuelles imposent aux constructeurs de véhicules automobiles d'améliorer leurs moteurs. Afin de passer les contrôles antipollution à moindres frais, les constructeurs sont obligés de contrôler le plus précisément possible la combustion de leurs moteurs. Un contrôle de la combustion est prépondérant sur les émissions polluantes des moteurs.
  • La complexité accrue des systèmes de contrôle de la combustion est aussi une conséquence de ces nouvelles normes de pollution.
  • On peut citer par exemple la demande de brevet français FR0609337 , déposée au nom de la demanderesse, dans laquelle on utilise une architecture en boucle fermée basée sur la mesure de la pression dans la chambre de combustion pour contrôler le bruit de combustion. Mais ce système n'est pas assez précis pour contrôler la combustion dans le moteur.
  • La demande internationale WO2005/028833 divulgue un procédé pour ajuster la quantité d'oxygène, la pression de suralimentation et l'injection de carburant à partir d'une mesure de la pression de suralimentation dans le collecteur d'admission et d'une mesure par sonde à oxygène de la quantité d'oxygène admise en amont d'un compresseur. Mais ce procédé ne tient pas compte de la dispersion des différents actionneurs utilisés, comme par exemple les injecteurs de carburant et le compresseur.
  • Le brevet US 6 425 372 B1 décrit un système de contrôle du taux d'oxydes d'azote émis par un moteur à combustion interne.
  • La demande de brevet FR 2 907 852 A1 décrit un système de contrôle du bruit de combustion d'un moteur à combustion interne.
  • Un des buts de l'invention est de fournir un moyen simple et plus précis pour commander la combustion dans un moteur à combustion interne.
  • Selon l'invention, il est proposé un système de commande de la combustion dans un moteur à combustion interne de véhicule automobile.
  • Ce système comprend un premier actionneur apte à contrôler un taux d'oxydes d'azote émis par le moteur, un deuxième actionneur apte à contrôler un bruit de combustion du moteur, un premier moyen de régulation apte à piloter le premier actionneur pour réguler en boucle fermée le taux d'oxydes d'azote émis par le moteur et un deuxième moyen de régulation apte à piloter le deuxième actionneur pour réguler en boucle fermée le bruit de combustion du moteur.
  • On fournit ainsi un moyen pour commander la combustion dans un moteur à combustion interne qui tienne compte du taux d'oxydes d'azote et du bruit de combustion émis lors de la combustion.
  • En outre ce moyen améliore la précision des systèmes de commande actuels de la combustion.
  • Selon l'invention, le moteur comprend au moins un cylindre, un piston mobile entraîné par l'intermédiaire d'un vilebrequin, et le système comprend des moyens pour mesurer les variations temporelles de l'angle du vilebrequin et de la pression interne dudit cylindre et des moyens d'estimation aptes à estimer respectivement un taux d'oxydes d'azote émis par le moteur et un bruit de combustion du moteur à partir desdites mesures, le premier moyen de régulation étant apte à piloter le premier actionneur à partir d'une différence entre une première consigne et ladite estimation du taux d'oxydes d'azote, et le deuxième moyen de régulation étant apte à piloter le deuxième actionneur à partir d'une différence entre une deuxième consigne et ladite estimation du bruit de combustion.
  • Ainsi, on fournit un moyen d'estimation qui s'affranchit des multiples cartographies utilisées lors des phases de mise au point des moteurs.
  • Selon l'invention, le deuxième moyen de régulation comprend un moyen de multiplication pour multiplier ladite différence, entre la deuxième consigne et l'estimation du bruit de combustion, avec la première différence élaborée par le premier moyen de régulation.
  • On peut également coupler les moyens de régulation entre eux lorsque ceux-ci ont des vitesses de régulation différentes. En effet, on peut relier les moyens de régulation pour que le moyen le plus lent puisse arrêter le moyen le plus rapide. On économise ainsi les temps de calcul et on permet d'atteindre un équilibre stable pour commander efficacement la combustion.
  • Selon l'invention, il est proposé un procédé de commande de la combustion dans un moteur à combustion interne de véhicule automobile.
  • Ce procédé comprend une première régulation en boucle fermée d'un taux d'oxydes d'azote émis par le moteur et une deuxième régulation en boucle fermée d'un bruit de combustion du moteur.
  • Selon l'invention, le moteur comprend au moins un cylindre et un piston mobile entraîné par l'intermédiaire d'un vilebrequin, et le procédé comprend une mesure des variations temporelles de l'angle du vilebrequin et de la pression interne du cylindre, une première et deuxième estimations respectivement d'un taux d'oxydes d'azote émis par le moteur et d'un bruit de combustion du moteur, et lors de la première régulation, on régule le taux d'oxydes d'azote émis par le moteur à partir d'une différence entre une première consigne et ladite première estimation du taux d'oxydes d'azote, et lors de la deuxième régulation, on régule le bruit de combustion du moteur à partir d'une différence entre une deuxième consigne et ladite deuxième estimation du bruit de combustion.
  • Selon l'invention, on régule le bruit de combustion du moteur à partir de ladite différence entre la première consigne et la première estimation du taux d'oxydes d'azote.
  • D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d'exemple non limitatif, et faite en référence aux dessins annexés, sur lesquels :
    • la figure 1 illustre un mode de réalisation d'un système de commande de la combustion dans un moteur à combustion interne ;
    • la figure 2 est une vue schématique d'un mode de réalisation d'un système de commande de la combustion dans un moteur à combustion interne ; et
    • la figure 3 illustre un mode de réalisation d'un moyen d'estimation d'un paramètre de sortie du moteur.
  • La figure 1, illustre, de manière très schématique, un système de commande de la combustion 1 dans un moteur à combustion interne 2.
  • Le système de commande de la combustion 1 comprend une unité de contrôle électronique 3 (UCE), des capteurs 4,5 pour mesurer respectivement les variations temporelles de l'angle du vilebrequin et de la pression interne du cylindre et deux actionneurs 6,7 pilotés par l'UCE 3.
  • Le moteur à combustion interne 2 comprend un cylindre 8 dans lequel se déplace un piston 9 par l'intermédiaire d'une bielle 10 reliant le piston 9 à un vilebrequin 11. Une chambre de combustion 12 est délimitée par ledit cylindre 8, ledit piston 9 et une culasse 13. La culasse 13 est munie d'au moins deux soupapes 14, 15 qui permettent de relier la chambre de combustion 12 avec respectivement un collecteur d'admission 16, pour de l'air éventuellement mélangé avec une partie des gaz d'échappement, et un collecteur d'échappement des gaz 17. Le moteur 2 comprend également un circuit de recirculation partielle des gaz d'échappement 18 piqué entre le collecteur d'échappement des gaz 17 et le collecteur d'admission 16.
  • Le capteur 4 permet de mesurer à tout instant l'angle du vilebrequin θ, le capteur 5 permet de mesurer la pression interne du cylindre Pcyl qui correspond à la pression à l'intérieur de la chambre de combustion 12.
  • Ces capteurs 4,5 émettent chacun un signal de mesure temporel, transmis respectivement par les connexions 19 et 20, en direction de l'UCE 3.
  • L'UCE 3 comprend des moyens de régulation, détaillés ci-après dans la figure 2, qui sont aptes à élaborer chacun une commande Cmde1,Cmde2, respectivement pour piloter les actionneurs 6,7. Par ailleurs, les moyens de régulations peuvent être inclus sous une forme logicielle ou sous une forme de circuits logiques embarqués dans l'UCE 3.
  • Cette UCE 3 émet ces commandes Cmde1, Cmde2, transmises respectivement par les connexions 21 et 22, en direction des actionneurs 6,7.
  • L'actionneur 6 permet de contrôler le taux d'oxydes d'azote émis par le moteur 2. Cet actionneur 6 peut être une vanne EGR (Exhaust Gaz Recirculation en langue anglaise) montée dans le circuit de recirculation partielle des gaz d'échappement 18. En variante, l'actionneur 6 peut être un volet d'air monté sur le collecteur d'admission 16, ou tout autre moyen de contrôle du débit des gaz admis dans le moteur 2. En effet, un contrôle du débit des gaz admis dans le moteur 2 modifie directement le taux d'oxydes d'azote émis par le moteur 2 après la combustion.
  • L'actionneur 7 permet de contrôler une injection de carburant dans le moteur 2. Cet actionneur 7 peut être un injecteur de carburant situé en partie dans la chambre de combustion 12 pour un moteur de type diesel. Pour un moteur de type essence, cet injecteur de carburant peut être situé en dehors et en amont de cette chambre de combustion 12. En effet, un contrôle de l'injection de carburant dans le moteur modifie directement le bruit de combustion du moteur lors de la combustion.
  • Le bruit de combustion est une émission sonore générée par la flamme qui brûle le mélange gaz-carburant dans la chambre de combustion 12. Ce bruit de combustion entraîne une nuisance sonore et il est considéré comme une émission polluante du moteur 2.
  • La figure 2 représente schématiquement un mode de réalisation d'un système de commande de la combustion 1 du moteur à combustion interne 2. On a également reporté sur cette figure 2 certains éléments décrits à la figure 1.
  • Le système de commande de la combustion 1 comprend au moins deux moyens de régulation 30,31 pour réguler respectivement un taux d'oxydes d'azote émis lors de la combustion et un bruit de combustion du moteur.
  • Le premier moyen de régulation du taux d'oxydes d'azote 30 est apte à commander l'actionneur 6 pour modifier la quantité de gaz admis dans le moteur 2 afin de limiter les émissions polluantes d'oxydes d'azote du moteur 2.
  • Le deuxième moyen de régulation 31 pour réguler le bruit de combustion commande l'actionneur 7 pour modifier la quantité de carburant injecté dans le moteur afin de limiter le bruit de combustion du moteur 2. Ce deuxième moyen de régulation 31 permet d'obtenir une commande de la combustion plus précise qu'avec le seul moyen de régulation du taux d'oxydes d'azote 30. En outre, ce deuxième moyen de régulation 31 permet de limiter encore mieux les émissions polluantes du moteur 2.
  • De préférence, ces moyens de régulation régulent les émissions polluantes du moteur 2, les oxydes d'azote et le bruit de combustion, en boucle fermée. On entend par « moyen de régulation en boucle fermée », un moyen de régulation qui régule une variable d'un système en commandant un actionneur de contrôle de ladite variable à partir d'une consigne de régulation et d'une information mesurée, ou estimée, en temps réel, de l'état de la variable à réguler.
  • Le système de commande de la combustion 1 comprend également un moyen d'estimation 32 pour estimer le taux d'oxydes d'azotes émis par le moteur 2 et un moyen 33 pour élaborer au moins une consigne de régulation. Le moyen de régulation du taux d'oxydes d'azote 30 comprend un moyen de sommation 34 et un correcteur 35.
  • Le moyen 33 d'élaboration de consignes de régulation peut fournir lesdites consignes à partir de cartographies préalablement établies lors des phases de mise au point du moteur 2, par des modèles physiques ou par un calculateur embarqué dans l'UCE 3. En outre ce moyen 33 d'élaboration de consignes est apte à élaborer des consignes maxima à ne pas dépasser. Le moyen d'élaboration 33 émet une consigne de taux d'oxydes d'azote Cons_NOx, transmise par une connexion 33a en direction du moyen de sommation 34 du moyen de régulation du taux d'oxydes d'azote 30.
  • Le moyen de sommation 34 est apte à calculer une différence dl entre la consigne de taux d'oxydes d'azote Cons_NOx et une estimation NOxe fournie par le moyen d'estimation 32 et transmise par une connexion 36. Puis, cette différence dl est transmise, par une connexion 37, vers le correcteur 35, qui peut être, par exemple, un correcteur proportionnel intégral PI connu de l'homme du métier. Le correcteur 35 élabore ensuite la commande Cmde1 vers l'actionneur 6 résultant de la différence dl reçue.
  • Le moyen d'estimation 32 estime le taux d'oxydes d'azote NOxe à partir des mesures de la pression interne du cylindre Pcyl et de la mesure de l'angle du vilebrequin θ et sera décrit à la figure 3.
  • Le système de commande de la combustion 1 comprend également un deuxième moyen d'estimation 40 pour estimer le bruit de combustion Bre émis par le moteur 2. Le deuxième moyen de régulation du bruit de combustion 31 comprend un moyen de sommation 41 et un correcteur 42.
  • Le moyen 33 d'élaboration de consignes de régulation peut également fournir une consigne de bruit de combustion Cons_Br, transmise par une connexion 43 en direction du moyen de sommation 41 du deuxième moyen de régulation du bruit de combustion 31.
  • Le moyen de sommation 41 est apte à calculer une différence d2 entre la consigne de bruit de combustion Cons_Br et l'estimation Bre fournie par le deuxième moyen d'estimation 40 et transmise par une connexion 44. Puis, cette différence d2 est transmise, par une connexion 45, vers le correcteur 42, qui peut être également, par exemple, un correcteur proportionnel intégral PI connu de l'homme du métier. Le correcteur 42 élabore ensuite la commande Cmde2 vers l'actionneur 7 résultant de la différence d2 reçue.
  • Le deuxième moyen d'estimation 40 estime le bruit de combustion Bre à partir des mesures de la pression interne du cylindre Pcyl et de la mesure de l'angle du vilebrequin θ et sera décrit à la figure 3.
  • Ces deux moyens de régulation 30,31 permettent de moduler la combustion en augmentant progressivement, de manière maîtrisée, les émissions polluantes d'oxydes d'azote et de bruit de combustion afin de commander la combustion dans le moteur 2. Si l'estimation du taux d'oxydes d'azote NOxe est inférieure à la consigne Cons_NOx, le premier moyen de régulation 30 augmente le débit d'air admis dans le moteur, soit en fermant la vanne EGR pour diminuer les gaz partiels d'échappement admis, soit en ouvrant le volet d'air situé sur le collecteur d'admission 16 pour augmenter le débit d'air frais admis. Dans le cas contraire, si l'estimation du taux d'oxydes d'azote NOxe est supérieure à la consigne Cons_NOx, le premier moyen de régulation 30 diminue le débit d'air admis dans le moteur, soit en ouvrant la vanne EGR pour augmenter les gaz partiels d'échappement admis, soit en fermant le volet d'air situé sur le collecteur d'admission 16 pour diminuer le débit d'air frais admis.
  • Si l'estimation du bruit de combustion Bre est inférieure à la consigne Cons_Br, le deuxième moyen de régulation 31 avance la quantité de carburant injecté dans le moteur. Dans le cas contraire, si l'estimation du bruit de combustion Bre est supérieure à la consigne Cons_Br,le deuxième moyen de régulation 31 retarde la quantité de carburant injecté dans le moteur.
  • On notera que la régulation du bruit de combustion est plus rapide que celle du taux d'oxydes d'azote. En effet, le deuxième moyen de régulation 31 corrige l'injection de carburant alors que le premier moyen de régulation 30 corrige le débit des gaz admis, ce dernier présente une inertie supplémentaire due à l'écoulement des gaz entre l'actionneur de contrôle du taux d'oxydes d'azote et la chambre de combustion 12 du moteur 2. Par ailleurs, les corrections d'injection de carburant sont réalisées entre deux cycles thermodynamiques de combustion de manière plus rapide qu'une correction de débit de gaz. D'une manière générale, la consigne de bruit de combustion Cons_Br est atteinte avant celle du taux d'oxydes d'azote. Dans ce cas, le deuxième moyen de régulation 31 régule le bruit de combustion, sur la consigne Cons_Br, tandis que le premier moyen de régulation 30 régule progressivement, de manière maîtrisée, le taux d'oxydes d'azote pour que ce dernier atteigne la consigne Cons_NOx.
  • Selon l'invention, la différence dl, entre la consigne de taux d'oxydes d'azote Cons_NOx et l'estimation du taux d'oxydes d'azote NOxe, peut être émise, par une connexion 50, en direction d'un moyen de multiplication 51 compris dans le deuxième moyen de régulation du bruit de combustion 31. Ce moyen de multiplication 51 reçoit également la différence d2 entre la consigne de bruit de combustion Cons Br et l'estimation du bruit de combustion Bre. Le moyen de multiplication 51 est apte à multiplier entre elles les deux différences dl,d2 et transmettre le résultat, par la connexion 45, en direction du correcteur 42 du deuxième moyen de régulation 31. Cette variante permet d'obtenir une commande maîtrisée de la combustion même dans le cas où la consigne Cons_NOx est atteinte avant la consigne Cons_Br. Lorsque la consigne Cons_NOx est atteinte, la différence dl est nulle, et le résultat de la multiplication des deux différences dl,d2 est également nulle. Dans ce cas, une commande nulle transmise au correcteur 42 du deuxième moyen de régulation 31 a pour effet d'arrêter la régulation du bruit de combustion, le bruit de combustion est alors stabilisé proche de la consigne Cons_Br.
  • La figure 3 illustre un mode de réalisation d'un moyen d'estimation 60 d'un paramètre de sortie PSe du moteur 2. On a également reporté sur cette figure 3 certains éléments décrits aux figures 1 et 2.
  • Le système de commande de la combustion 1 peut comprendre, en outre, d'autres moyens de mesure 27 à 29 de variables d'état du moteur 2 afin de préciser l'estimation du paramètre de sortie du moteur PSe.
  • Les paramètres de sortie du moteur peuvent être choisis parmi les émissions polluantes comme les oxydes d'azote ou le dioxyde de carbone, le bruit de combustion, la consommation en carburant, le couple du moteur et d'une manière générale tous les paramètres qui représentent un état émis directement ou indirectement par la combustion dans le moteur 2.
  • Le système de commande de la combustion 1 peut comprendre, le moyen de mesure 27 pour mesurer une quantité d'oxygène admise dans le moteur 2, le moyen de mesure 28 pour mesurer un débit de carburant admis dans le moteur 2 et le moyen de mesure 29 pour mesurer un débit d'air frais admis dans le moteur 2. Le moyen de mesure 27 de la quantité d'oxygène admise dans le moteur 2 peut être une sonde à oxygène située dans collecteur d'admission 16 ou dans le collecteur d'échappement des gaz 17. La mesure du débit de carburant admis dans le moteur 2 peut être une consigne de carburant envoyée à l'injecteur 7. Le moyen de mesure 29 du débit d'air frais admis dans le moteur 2 peut être un débitmètre d'air situé sur le collecteur d'admission 16, de préférence en amont de la récupération d'une partie des gaz d'échappement. Ces moyens de mesure 27 à 29 émettent chacun un signal de mesure temporel, transmis respectivement par des connexions 61 à 63, en direction d'un moyen de calcul 23.
  • Le système d'estimation 60 comprend le moyen de calcul 23 et un module d'estimation 24. Le moyen de calcul 23 et le module d'estimation 24 peuvent être inclus sous une forme logicielle ou sous une forme de circuits logiques embarqués dans l'UCE 3.
  • Le moyen de calcul 23 permet de calculer un certain nombre de paramètres de combustion Xi à partir des signaux temporels d'entrée θ, Pcyl. En outre, ce moyen de calcul 23 peut également calculer lesdits paramètres de combustion Xi à partir des signaux temporels supplémentaires provenant des moyens de mesure 27 à 29.
  • Les paramètres de combustion Xi peuvent être choisis parmi l'instant de début de combustion, la durée de la combustion, la pression interne du cylindre maximale, l'angle du vilebrequin pour lequel la pression est maximale dans le cylindre, l'angle du vilebrequin pour lequel une fraction donnée du combustible a été brûlée, la température des gaz à l'échappement, la pression des gaz à l'échappement. D'autres paramètres peuvent être envisagés dans la mesure où ils sont en relation directe ou indirecte avec la phase de combustion dans le cylindre.
  • De préférence, les paramètres de combustion Xi sont choisis comme étant uniquement des valeurs caractéristiques de la pression interne du cylindre, tels que des pressions internes du cylindre caractéristiques de la combustion Pcyli, des variations de pression interne du cylindre ∇Pcyli et des temps de cycle du moteur tcyclei.
  • Les pressions internes du cylindre caractéristiques de la combustion Pcyli peuvent être, par exemple, la pression interne du cylindre maximum Pcylmax, la pression interne du cylindre à l'instant de début de combustion, la pression interne du cylindre pour un angle du vilebrequin caractéristique de la combustion (c'est-à-dire un angle pour lequel une fraction donnée du combustible a été brûlée), la pression interne du cylindre lorsque l'angle du vilebrequin est égal à 80° après le point mort haut du piston.
  • On note que les angles du vilebrequin caractéristiques de la combustion sont bien connus de l'homme du métier et sont généralement calculés en fonction du dégagement d'énergie apparent dans le cylindre.
  • Les variations de pression interne du cylindre VPcyli peuvent être, par exemple, le gradient maximum de la pression interne du cylindre (∇Pcyl)max, le gradient minimum de la pression interne du cylindre (∇Pcyl)min, le gradient maximum de la pression interne du cylindre entre la première injection pilotée et l'injection au début de la combustion.
  • Les temps de cycle du moteur tcyclei peuvent être, par exemple, le temps écoulé entre CA05 et CA50, ou le temps écoulé entre CA05 et CA90, ou le temps écoulé entre CA05 et le temps où la pression interne du cylindre maximum est atteinte, ou le temps au cours duquel la pression interne du cylindre est supérieure à un seuil, ou encore le temps au cours duquel la pression interne du cylindre est égale à la valeur maximum du rapport P cyl P cyl
    Figure imgb0001
    avec ∇Pcyl représentant le gradient de la pression interne du cylindre et Pcyl représentant la pression interne du cylindre.
  • On note que les références CAx correspondent aux angles du vilebrequin où x% du carburant a été brûlé.
  • Le moyen de calcul 23 est apte à échantillonner les mesures de la pression interne du cylindre Pcyl en fonction des mesures de l'angle du vilebrequin θ. De préférence, le pas d'échantillonnage de la pression interne du cylindre Pcyl est supérieur ou égal à 0,5 degrés de l'angle du vilebrequin θ. Puis, pour chaque cycle de la combustion, le moyen de calcul 23 sauvegarde en mémoire les valeurs échantillonnées de la pression interne du cylindre Pcyl.
  • A partir de ces valeurs échantillonnées, le moyen de calcul 23 calcule les paramètres de combustion Xi, décrits ci-dessus, et les transmet, par des connexions 64, en direction du module d'estimation 24.
  • Ce module d'estimation 24 permet d'estimer un paramètre de sortie PSe du moteur, par exemple un taux d'oxydes d'azote NOxe, à partir desdits paramètres de combustion Xi calculés. En outre, il émet le résultat estimé PSe par une connexion 65.
  • Le module d'estimation 24 peut utiliser plusieurs modèles pour estimer le paramètre de sortie PSe du moteur. De préférence, les modèles sont aptes à estimer le paramètre de sortie PSe du moteur à partir d'une somme pondérée desdits paramètres de combustion Xi.
  • Selon un premier mode de réalisation, le module d'estimation 24 comprend un premier modèle apte à calculer le paramètre de sortie PSe selon l'équation (1) suivante : PSe = i = 1 N α i Xi
    Figure imgb0002
    • N : nombre de paramètres de combustion Xi calculés par le moyen de calcul 23 ;
    • αi : constante de pondération qui varie selon le paramètre de combustion Xi ; et
    • i : indexe d'identification du paramètre de combustion.
  • Selon un deuxième mode de réalisation, le module d'estimation 24 comprend un deuxième modèle apte à calculer le paramètre de sortie PSe selon l'équation (2) suivante : PSe = exp i = 1 N α i Xi
    Figure imgb0003
    • exp : fonction mathématique exponentielle.
  • Selon un troisième mode de réalisation, le module d'estimation 24 comprend un troisième modèle apte à calculer le paramètre de sortie PSe selon l'équation (3) suivante : PSe = ω exp i = 1 N α i Xi
    Figure imgb0004
    • ω : vitesse angulaire du moteur 2 obtenue à partir des mesures de l'angle du vilebrequin θ.
  • Par ailleurs, ce module d'estimation 24 utilise des modèles dont les constantes de pondération αi ont été déterminées par des tests préalables.
  • Dans une autre variante, le module d'estimation 24 peut fournir une estimation d'émissions polluantes à partir d'une cartographie des émissions polluantes établie en fonction de la pression interne du cylindre Pcyl et de l'angle du vilebrequin θ.
  • Le moyen d'estimation 60 tel que décrit à la figure 3 peut donc être utilisé pour estimer le taux d'oxydes d'azote NOxe à la place du premier moyen d'estimation 32. Par ailleurs, ce moyen d'estimation 60 tel que décrit à la figure 3 peut aussi être utilisé pour estimer le bruit de combustion Bre à la place du deuxième moyen d'estimation 40.

Claims (2)

  1. Système de commande de la combustion dans un moteur à combustion interne (2) de véhicule automobile, comprenant un premier actionneur (6) apte à contrôler un taux d'oxydes d'azote émis par le moteur (2), un deuxième actionneur (7) apte à contrôler un bruit de combustion du moteur (2), un premier moyen de régulation (30) apte à piloter le premier actionneur (6) pour réguler en boucle fermée le taux d'oxydes d'azote émis par le moteur (2) et un deuxième moyen de régulation (31) apte à piloter le deuxième actionneur (7) pour réguler en boucle fermée le bruit de combustion du moteur (2), le moteur (2) comprenant au moins un cylindre (8) et un piston mobile (9) entraîné par l'intermédiaire d'un vilebrequin (11), le système comprenant en outre des moyens (4,5) pour mesurer les variations temporelles de l'angle du vilebrequin et de la pression interne dudit cylindre et des moyens d'estimation (32,40) aptes à estimer respectivement un taux d'oxydes d'azote émis par le moteur et un bruit de combustion du moteur à partir desdites mesures, le premier moyen de régulation (30) étant apte à piloter le premier actionneur (6) à partir d'une première différence (d1) entre une première consigne et ladite estimation du taux d'oxydes d'azote, et le deuxième moyen de régulation (31) étant apte à piloter le deuxième actionneur (7) à partir d'une deuxième différence (d2) entre une deuxième consigne et ladite estimation du bruit de combustion, multipliée par la première différence (d1) élaborée par le premier moyen de régulation (30).
  2. Procédé de commande de la combustion dans un moteur à combustion interne (2) de véhicule automobile, comprenant une première régulation en boucle fermée d'un taux d'oxydes d'azote émis par le moteur (2) afin de piloter un premier actionneur (6) et une deuxième régulation en boucle fermée d'un bruit de combustion du moteur (2) afin de piloter un deuxième actionneur (7), le moteur (2) comprenant au moins un cylindre (8) et un piston mobile (9) entraîné par l'intermédiaire d'un vilebrequin (11), le procédé comprenant en outre une mesure des variations temporelles de l'angle du vilebrequin et de la pression interne du cylindre, une première et deuxième estimations respectivement d'un taux d'oxydes d'azote émis par le moteur (2) et d'un bruit de combustion du moteur (2) à partir desdites mesures, et lors de la première régulation, on régule le taux d'oxydes d'azote émis par le moteur (2) à partir d'une première différence entre une première consigne et ladite première estimation du taux d'oxydes d'azote, et lors de la deuxième régulation, on régule le bruit de combustion du moteur (2) à partir d'une deuxième différence entre une deuxième consigne et ladite deuxième estimation du bruit de combustion, multipliée par la première différence entre la première consigne et la première estimation du taux d'oxydes d'azote.
EP10305490.4A 2009-05-11 2010-05-10 Influence de la régulation des nox sur le contrôle du bruit moteur dans un moteur à combustion interne Active EP2256322B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0953079A FR2945319B1 (fr) 2009-05-11 2009-05-11 Systeme et procede de commande de la combustion dans un moteur a combustion interne.

Publications (2)

Publication Number Publication Date
EP2256322A1 EP2256322A1 (fr) 2010-12-01
EP2256322B1 true EP2256322B1 (fr) 2020-04-29

Family

ID=41358328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10305490.4A Active EP2256322B1 (fr) 2009-05-11 2010-05-10 Influence de la régulation des nox sur le contrôle du bruit moteur dans un moteur à combustion interne

Country Status (2)

Country Link
EP (1) EP2256322B1 (fr)
FR (1) FR2945319B1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101317413B1 (ko) 2011-11-22 2013-10-10 서울대학교산학협력단 녹스 제어 시스템 및 방법
SE537308C2 (sv) * 2013-04-25 2015-04-07 Scania Cv Ab Förfarande och system för reglering av en förbränningsmotorgenom reglering av förbränningen i en förbränningskammare under pågående förbränningscykel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR609337A (fr) 1925-04-23 1926-08-12 Navarre Et Fils P Machine à nettoyer les truffes
DE10043383C2 (de) * 2000-09-02 2002-06-20 Daimler Chrysler Ag Verfahren zur Bestimmung des Stickoxidgehalts in sauerstoffhaltigen Abgasen von Brennkraftmaschinen
US6425372B1 (en) * 2001-08-30 2002-07-30 Caterpillar Inc. Method of controlling generation of nitrogen oxides in an internal combustion engine
US7047741B2 (en) 2002-08-08 2006-05-23 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Methods for low emission, controlled temperature combustion in engines which utilize late direct cylinder injection of fuel
FR2857410B1 (fr) * 2003-07-08 2005-10-14 Peugeot Citroen Automobiles Sa Systeme de controle du bruit de combustion d'un moteur diesel de vehicule automobile
DE102006015503A1 (de) * 2006-03-31 2007-10-04 Fev Motorentechnik Gmbh Einspritzverfahren und zugehörige Verbrennungskraftmaschine
FR2907852B1 (fr) * 2006-10-25 2012-02-24 Renault Sas Procede de recalage d'injecteurs d'un moteur et vehicule automobile le mettant en oeuvre
WO2008131788A1 (fr) * 2007-04-26 2008-11-06 Fev Motorentechnik Gmbh Régulation d'un moteur à combustion interne de véhicule automobile

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2256322A1 (fr) 2010-12-01
FR2945319B1 (fr) 2016-03-18
FR2945319A1 (fr) 2010-11-12

Similar Documents

Publication Publication Date Title
EP1815118B1 (fr) Dispositif et procede de determination de la quantite de nox emise par un moteur diesel de vehicule automobile et systemes de diagnostic et de controle du fonctionnement du moteur comprenant un tel dispositif.
US9777649B2 (en) Alcohol concentration estimation and detection apparatus for an engine
EP2935828B1 (fr) Procede de diagnostic d'un moteur suralimente et moteur associe
US20100043751A1 (en) Engine control using cylinder pressure differential
EP3619414A2 (fr) Procede de reactualisation d'une dynamique d'adaptation d'une valeur de richesse à une consigne dans un moteur
JP4192759B2 (ja) ディーゼル機関の噴射量制御装置
EP2594768A1 (fr) Procédé de contrôle de la fraction de gaz brûlés dans un cylindre moteur avec recirculation des gaz brûlés externe et interne
FR3074524A1 (fr) Systeme et procede de commande d'un moteur a combustion interne muni d'un systeme de post traitement des gaz d'echappement de type a catalyse selective
WO2012137331A1 (fr) Appareil de commande de moteur à combustion interne
EP2430298B1 (fr) Estimation de la concentration en oxydes d'azote d'un moteur à combustion interne.
EP2195519B1 (fr) Estimation de parametres d'etat d'un moteur par mesure de la pression interne d'un cylindre
EP2256322B1 (fr) Influence de la régulation des nox sur le contrôle du bruit moteur dans un moteur à combustion interne
JP4942912B2 (ja) 内燃機関の排気系内において発生する排気背圧のモデル化方法
EP0264332B1 (fr) Procédé de correction de la richesse d'un mélange air-carburant admis dans un moteur à combustion interne, à injection électronique
CN113027617B (zh) 发动机扫气控制装置、系统、方法及计算机可读取介质
EP1760295B1 (fr) Système de contrôle du fonctionnement d'un moteur diesel de véhicule automobile équipe de moyens de recirculation de gaz d'échappement
EP2844858B1 (fr) Procede de traitement des gaz d'echappement d'un moteur suralimente avec recyclage des gaz d'echappement
EP3004608B1 (fr) Procédé d'estimation des émissions polluantes d'un moteur à combustion interne et procédé associé de pilotage du moteur
GB2491110A (en) Method of operating an internal combustion engine having crankshaft position sensor correction means
EP1647692A1 (fr) Procédé de régulation d'un système d'admission d'un moteur à combustion interne et véhicule automobile mettant en oeuvre ce procédé
EP4015808B1 (fr) Système et procédé de commande d'un moteur à combustion interne basée sur le rendement de remplissage
EP1916404A1 (fr) Procede d`estimation de parametres caracteritique d`un moteur thermique et de controle des flux thermiques appliques a des composants de ce moteur
FR2833998A1 (fr) Procede et dispositif pour determiner le flux massique de recyclage des gaz d'echappement d'un moteur a combustion interne
EP3808960B1 (fr) Procédé de gestion du couple d'un véhicule automobile comportant un moteur à combustion interne et estimation de l usure d'un tel moteur
WO2002040840A1 (fr) Procede et dispositif de commande du fonctionnement d'un moteur a combustion interne a auto-allumage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20110324

17Q First examination report despatched

Effective date: 20130408

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/14 20060101ALI20191010BHEP

Ipc: F02D 41/18 20060101ALN20191010BHEP

Ipc: F02D 41/00 20060101ALN20191010BHEP

Ipc: F02D 41/40 20060101ALN20191010BHEP

Ipc: F02D 35/02 20060101AFI20191010BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191118

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010064091

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1263680

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200429

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200730

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200831

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200829

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1263680

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010064091

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200510

26N No opposition filed

Effective date: 20210201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200510

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210525

Year of fee payment: 12

Ref country code: DE

Payment date: 20210520

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010064091

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201