WO1999046044A1 - Katalysator, umfassend einen komplex eines metalls der viii. nebengruppe auf basis eines phosphonitliganden und verfahren zur hydroformylierung - Google Patents

Katalysator, umfassend einen komplex eines metalls der viii. nebengruppe auf basis eines phosphonitliganden und verfahren zur hydroformylierung Download PDF

Info

Publication number
WO1999046044A1
WO1999046044A1 PCT/EP1999/001597 EP9901597W WO9946044A1 WO 1999046044 A1 WO1999046044 A1 WO 1999046044A1 EP 9901597 W EP9901597 W EP 9901597W WO 9946044 A1 WO9946044 A1 WO 9946044A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydroformylation
alkyl
catalyst
aryl
ligand
Prior art date
Application number
PCT/EP1999/001597
Other languages
English (en)
French (fr)
Inventor
Heiko Maas
Rocco Paciello
Michael Röper
Jakob Fischer
Wolfgang Siegel
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to US09/623,175 priority Critical patent/US6440891B1/en
Priority to JP2000535451A priority patent/JP2002505945A/ja
Priority to EP99911776A priority patent/EP1064093B1/de
Priority to DE59905839T priority patent/DE59905839D1/de
Publication of WO1999046044A1 publication Critical patent/WO1999046044A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • C07F9/65746Esters of oxyacids of phosphorus the molecule containing more than one cyclic phosphorus atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/1865Phosphonites (RP(OR)2), their isomeric phosphinates (R2(RO)P=O) and RO-substitution derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/657163Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom
    • C07F9/65719Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom the ring phosphorus atom and, at least, one ring oxygen atom being part of a (thio)phosphonous acid derivative
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/321Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0261Complexes comprising ligands with non-tetrahedral chirality
    • B01J2531/0266Axially chiral or atropisomeric ligands, e.g. bulky biaryls such as donor-substituted binaphthalenes, e.g. "BINAP" or "BINOL"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt

Definitions

  • Catalyst comprising a complex of a metal of subgroup VIII based on a phosphonite ligand and process for hydroformylation
  • the present invention relates to a catalyst which comprises a complex of a metal of subgroup VIII, with the exception of nickel, which comprises at least one bidentate or polydentate phosphonite ligand, in which the phosphorus and one of the oxygen atoms of the phosphonite group form part of a 5- to 8-membered heterocycle are, and a process for the hydroformylation of compounds which contain at least one ethylenically unsaturated double bond in the presence of such a catalyst.
  • Hydroformylation or oxo synthesis is an important large-scale process and is used to produce aldehydes from olefins, carbon monoxide and hydrogen. These aldehydes can optionally be hydrogenated in the same operation with hydrogen to the corresponding oxo alcohols.
  • the reaction itself is highly exothermic and generally takes place under elevated pressure and at elevated temperatures in the presence of catalysts.
  • Co, Rh or Ru compounds or complexes are used as catalysts which can be modified with amine- or phosphine-containing ligands to influence the activity and / or selectivity. Additional promoters have so far been of no importance in practice.
  • the possible addition of CO to each of the two carbon atoms of a double bond leads to the formation of isomeric aldehyde mixtures.
  • the use of internal olefins can lead to double bond isomerization from an internal position towards a terminal position.
  • the n-aldehyde is generally favored over the iso-aldehyde, but because of the much greater technical importance of the n-aldehydes, the aim is to optimize the hydroformylation catalysts in order to achieve greater n-selectivity.
  • WO 95/30680 describes bidentate phosphine ligands in which the two phosphine groups are each bound to an aryl radical and these two aryl radicals form a double-bridged, ortho-fused ring system, one of the two bridges consisting of an oxygen or a sulfur atom consists.
  • Rhodium complexes based on these ligands are suitable as hydroformylation catalysts, a good n / iso ratio being achieved in the hydroformylation of terminal olefins.
  • a disadvantage of these chelate phosphines is the high synthetic outlay for their preparation, so that technical processes based on such chelate phosphine catalysts are economically disadvantageous.
  • US Pat. No. 4,169,861 describes a process for the preparation of terminal aldehydes by hydroformylation of ⁇ -olefins in the presence of a rhodium hydroformylation catalyst based on a bidentate and a monodentate ligand.
  • 1, 1'-bis (diphenylphosphino) ferrocene is preferably used as the bidentate ligand.
  • the monodentate ligand is preferably phosphine, such as diphenylethylphosphine.
  • US-A-4, 201,714 and US-A-4,193,943 have a comparable disclosure content.
  • the preparation of the bidentate phosphino-ferrocene ligands requires the use of organometallic reagents which are complex to produce, as a result of which hydroformylation processes using these catalysts are economically disadvantageous.
  • US-A-5,312,996 describes a process for the preparation of 1,6-hexanedial by hydroformylation of butadiene in the presence of hydrogen and carbon monoxide.
  • Rhodium complexes with polyphosphite ligands are used as hydroformylation catalysts, in which the phosphorus and two of the oxygen atoms of the phosphite group are part of a 7-membered heterocycle.
  • JP-A 97/255 610 describes a process for the preparation of aldehydes by hydroformylation in the presence of rhodium catalysts which have a monodentate phosphonite ligand.
  • hydroformylation catalysts based on bidentate or multidentate phosphonite ligands, the phosphonite group being part of a 5- to 8-membered heterocycle.
  • the present invention has for its object to provide new catalysts based on complexes of a metal of subgroup VIII. These should preferably be suitable for hydroformylation and have good catalytic activity.
  • catalysts based on complexes of a metal of subgroup VIII have now been found which comprise at least one bidentate or polydentate phosphonite ligand, the phosphonite group being part of a 5- to 8-membered heterocycle.
  • the present invention thus relates to a catalyst comprising a complex of a metal from transition group VIII, with the exception of nickel, with a bidentate or polydentate phosphonite ligand of the general formula I
  • a together with the part of the phosphonite group to which it is attached represents a 5- to 8-membered heterocycle which may optionally be repeated once, twice or three times with cycloalkyl, aryl and / or hetaryl can be fused, where the fused groups can carry one, two or three substituents selected from alkyl, alkoxy, halogen, nitro, cyano or carboxyl, R 1 stands for a C 3 - to C ⁇ -alkylene bridge, which is a have two or three double bonds and / or can be fused one, two or three times with aryl and / or hetaryl, the aryl or hetaryl groups having one, two or three of the following substituents: alkyl, cycloalkyl, aryl, alkoxy, cyclo- alkyloxy, aryloxy, halogen, trifluoromethyl, nitro, cyano, carboxyl or NE X E 2
  • alkyl includes straight-chain and branched alkyl groups. These are preferably straight-chain or branched Ci-C ⁇ -alkyl, preferably 4 ter Ci-C ⁇ -alkyl and particularly preferably C ⁇ -C 4 alkyl groups.
  • alkyl groups are in particular methyl, ethyl, propyl, isopropyl, n-butyl, 2-butyl, sec-butyl, tert-butyl, n-pentyl, 2-pentyl, 2-methylbutyl, 3-methylbutyl, 1,2 -Dirnethylpropyl, 1, 1-dimethylpropyl, 2,2-dimethylpropyl, 1-ethylpropyl, n-hexyl, 2-hexyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,2-dimethylbutyl, 1, 3 -Dimethylbutyl, 2,3-dimethylbutyl, 1, 1-dimethylbutyl, 2,2-dimethylbutyl, 3, 3-dimethylbutyl, 1, 1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1-ethylbutyl , 2-ethylbutyl, l-e
  • the cycloalkyl group is preferably a C 5 -C 7 cycloalkyl group, such as cyclopentyl, cyclohexyl or cycloheptyl.
  • cycloalkyl group preferably has 1, 2, 3, 4 or 5, in particular 1, 2 or 3, substituents selected from alkyl, alkoxy or halogen.
  • Aryl preferably represents phenyl, tolyl, xylyl, mesityl, naphthyl, anthracenyl, phenanthrenyl, naphthacenyl and in particular phenyl or naphthyl.
  • Substituted aryl radicals preferably have 1, 2, 3, 4 or 5, in particular 1, 2 or 3, substituents selected from alkyl, alkoxy or halogen.
  • Hetaryl is preferably pyridyl, quinolinyl, acridinyl, pyridazinyl, pyrimidinyl or pyrazinyl.
  • Substituted hetaryl radicals preferably have 1, 2 or 3 substituents selected from alkyl, alkoxy or halogen.
  • alkyl, cycloalkyl and aryl radicals apply accordingly to alkoxy, cycloalkyloxy and aryloxy radicals.
  • the radicals NE 1 E 2 preferably represent, -dimethyl, N, N-diethyl, N, N-dipro ⁇ yl, N, N-diisopropyl, N, N-di-n-butyl, N, N-di-t.- butyl, N, N-dicyclohexyl or N, N-diphenyl.
  • Halogen represents fluorine, chlorine, bromine and iodine, preferably fluorine, chlorine and bromine.
  • a preferred embodiment of the invention are catalysts which comprise at least one phosphonite ligand of the formula I, where A together with the part of the phosphonite group to which there are 5 is bound, represents a 5- or 6-membered heterocycle which can optionally be fused once or twice with aryl and / or hetaryl, where the fused groups can carry one, two or three of the substituents indicated above.
  • the rest A is then z. B. for a 2,2'-biphenylene, 2,2 'bi- naphthylene or 2, 3-xylylene radical, which can carry 1, 2 or 3 substituents selected from alkyl, alkoxy or halogen.
  • Alkyl is preferably C 1 -C 4 -alkyl and in particular t-butyl.
  • Alkoxy is preferably C 1 -C 4 alkoxy and in particular methoxy.
  • Halogen is especially fluorine, chlorine or bromine.
  • R 1 preferably represents a radical of the formulas II.1, II.2, II.3 or II.4:
  • R 2 and R 3 independently of one another represent hydrogen, alkyl, alkoxy, halogen, trifluoromethyl, nitro or cyano
  • R 4 represents hydrogen, alkyl, preferably methyl, or aryl, preferably phenyl, optionally with alkyl, alkoxy, halogen , Trifluoromethyl, nitro or cyano can be substituted.
  • the phosphonite ligands of the formula I are selected from ligands of the formulas Ia to Ig
  • the catalysts of the invention can have one or more of the phosphonite ligands of the formula I.
  • they can also have at least one further ligand which is selected from halides, amines, carboxylates, acetylacetonate, aryl or alkyl sulfonates, hydride, CO, olefins, dienes, cycloolefins, nitriles , N-containing heterocycles, aromatics and heteroaromatics, ethers, PF 3 and monodentate, bidentate and polydentate phosphine, phosphinite, phosphonite and phosphite ligands.
  • ligands can also be monodentate, bidentate or multidentate and coordinate on the metal atom of the catalyst complex.
  • Suitable other phosphorus-containing ligands are e.g. B. usual phosphine, phosphinite, and phosphite ligands.
  • z. B a hydroxyl group-containing compound of formula III with a phosphorus trihalide, preferably PC1 3 , to a compound of formula IV and this then with a hydroxyl group-containing compound of formula H0R 1 0H and a compound of formula V according to the following scheme
  • m, A, D and R 1 have the meanings given above.
  • 2 moles of a compound of the formula IV can also be reacted with one mole of a compound H0R 1 0H to form a bidentate phosphonite ligand with two identical phosphonite radicals.
  • a process for the preparation of these ligands is described in Phosphorus and Sulfur, 1987, Vol. 31, p. 71 ff. For the construction of 6H-dibenz [c, e] [1,2] oxaphosphorin ring systems.
  • Suitable alcohols of the formula HORiOH are e.g. B. biphenyl-2,2'-diol and binaphthyl-2, 2'-diol. Further suitable diols are mentioned in US-A-5,312,996, column 19, to which reference is made here.
  • a compound of the formula IV can be reacted with a compound of the formula H0R x 0H to form a monocondensation product and this can then be reacted with a compound of the formula V
  • the compounds of formula IV can be isolated and subjected to purification, e.g. B. by distillation.
  • the reaction of the compound of the formula III to a compound of the formula IV generally takes place at an elevated temperature in a range from about 40 to about 200 ° C., the reaction also being able to be carried out with a successive increase in temperature.
  • a Lewis acid such as. As zinc chloride or aluminum chloride, can be added as a catalyst.
  • the further reaction of the compounds of formula IV to the phosphonite ligands of formula I used according to the invention is generally carried out in the presence of a base, for. B. an aliphatic amine such as diethylamine, dipropylamine, dibutylamine, trimethylamine, tripropylamine and preferably triethylamine or pyridine.
  • the phosphonite ligands of the formula I used according to the invention can be prepared without using magnesium or lithium-organic compounds.
  • the simple reaction sequence allows the ligands to be varied widely. The presentation is therefore efficient and economical from easily accessible educts.
  • catalytically active species of the general formula H x M y (C0) 2 L g are formed from the catalysts or catalyst precursors used in each case, in which M for a metal of subgroup VIII, L for a phosphonite ligand according to the invention and q, x, y, z for whole
  • z and q are independently at least 1, such as. B. 1, 2 or 3.
  • the sum of z and q is preferably from 2 to 5.
  • the complexes can, if desired, additionally have at least one of the other ligands described above.
  • the metal M is preferably cobalt, ruthenium, rhodium, palladium, platinum, osmium or iridium and in particular cobalt, rhodium and ruthenium.
  • the hydroformylation catalysts are prepared in situ in the reactor used for the hydroformylation reaction. If desired, however, the catalysts of the invention can also be prepared separately and isolated by customary processes. To produce the catalysts according to the invention in situ, at least one phosphonite ligand of the general formula I, a compound or a complex of a metal from subgroup VIII, optionally at least one further additional ligand and optionally an activating agent are reacted in an inert solvent under the hydroformylation conditions .
  • Suitable rhodium compounds or complexes are e.g. B. rhodium (II) and rhodium (III) salts, such as rhodium (III) chloride, rhodium (III) nitrate, rhodium (III) sulfate, potassium rhodium sulfate, rhodium 11 dium (II) or rhodium (III) carboxylate, rhodium (II) and rhodium (III) acetate, rhodium (III) oxide, salts of rhodium (III) acid, trisammonium hexachlororhodate (III) etc.
  • rhodium (II) and rhodium (III) salts such as rhodium (III) chloride, rhodium (III) nitrate, rhodium (III) sulfate, potassium rhodium sulf
  • rhodium complexes such as rhodium biscarbonylacetylacetonate, acetyl acetonatobisethylene rhodium (I) etc.
  • Rhodium biscarbonylacetylacetonate or rhodium acetate are preferably used.
  • Ruthenium salts or compounds are also suitable.
  • Suitable ruthenium salts are, for example, ruthenium (III) chloride, ruthenium (IV), ruthenium (VI) or ruthenium (VIII) oxide, alkali metal salts of ruthenium oxygen acids such as K 2 Ru0 4 or KRu0 4 or complex compounds of the general formula RuX 1 X 2 L 1 L 2 (L 3 ) n , in which L 1 , L 2 , L 3 and n have the meanings given above and X 1 , X 2 have the meanings given for X (see above), for example RuHCl (CO) (PPh 3 ) 3 .
  • the metal carbonyls of ruthenium such as trisruthenium dodecacarbonyl or hexaruthenium octadecacarbonyl, or mixed forms in which CO is partly replaced by ligands of the formula PR 3 , such as Ru (C0) 3 (PPh 3 ) 2 , can be used in the process according to the invention.
  • Suitable cobalt compounds are, for example, cobalt (II) chloride, cobalt (II) sulfate, cobalt (II) carbonate, cobalt (II) nitrate, their amine or hydrate complexes, cobalt carboxylates, such as cobalt acetate, cobalt ethyl hexanoate, cobalt naphthanoate, and the cobalt caprolactamate -Complex.
  • the carbonyl complexes of cobalt such as dicobalt octacarbonyl, tetracobalt dodecacarbonyl and hexacobalt hexadecacarbonyl can be used.
  • Suitable activating agents are e.g. B. Brönsted acids, Lewis acids, such as. B. BF 3 , A1C1 3 , ZnCl 2 and Lewis bases.
  • the solvents used are preferably the aldehydes which are formed in the hydroformylation of the respective olefins, and also their higher-boiling secondary reaction products, for. B. the products of aldol condensation.
  • the ligands are sufficiently hydrophilized, water, alcohols, such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, ketones, such as acetone and methyl ethyl ketone, etc. can also be used. 12
  • the molar ratio of phosphonite ligand of the general formula I to metal of subgroup VIII is generally in a range from about 1: 1 to 1,000: 1.
  • the invention further provides a process for the hydroformylation of compounds which contain at least one ethylenically unsaturated double bond by reaction with carbon monoxide and hydrogen in the presence of at least one of the hydroformylation catalysts according to the invention.
  • all compounds which contain one or more ethylenically unsaturated double bonds are suitable as substrates for the hydroformylation process according to the invention.
  • These include e.g. B. olefins, such as ⁇ -olefins, internal straight-chain and internal branched olefins.
  • Suitable ⁇ -olefins are e.g. B. ethylene, propene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonen, 1-decene, 1-undecene, 1-dodecene etc.
  • Suitable straight-chain internal olefins are preferably C 4 - to C 2 o-olefins such as 2-butene, 2-pentene, 2-hexene, 3-hexene, 2-heptene, 3-heptene, 2-octene, 3-octene, 4 -Octen etc.
  • Suitable branched, internal olefins are preferably C 4 - to C 2 o-olefins, such as 2-methyl-2-butene, 2-methyl-2-pentene, 3-methyl-2-pentene, branched, internal heptene mixtures , branched, internal octene mixtures, branched, internal non-mixtures, branched, internal decene mixtures, branched, internal undecene mixtures, branched, internal dodecene mixtures etc.
  • Suitable olefins to be hydroformylated are furthermore C 5 -C 6 -cycloalkenes, such as cyclopentene, cyclohexene, cycloheptene, cyclooctene and their derivatives, such as, for. B. their Ci to C 20 alkyl derivatives with 1 to 5 alkyl substituents.
  • Suitable olefins to be hydroformylated are also vinyl aromatics, such as styrene, ⁇ -methylstyrene, 4-isobutylstyrene etc.
  • Suitable olefins to be hydroformylated are furthermore ⁇ , ⁇ -ethylenically unsaturated mono- and / or dicarboxylic acids, their esters, half-esters and amides, such as acrylic acid , Methacrylic acid, maleic acid, fumaric acid, crotonic acid, itaconic acid, 3-pentenoic acid methyl ester, 4-pentenoic acid methyl ester, oleic acid methyl ester, acrylic acid methyl ester, methacrylic acid methyl ester, unsaturated nitriles, such as 3-pentenenitrile, 4-pentenenitrile vinyl, acrylate, such as acrylonitrile Vinyl ethyl ether, vinyl propyl ether etc., Ci to C 2 n-alkenols, alkylene diols and alkadienols, such as 2,7-octadienol-1.
  • Suitable substrates are further di- or polyene
  • the hydroformylation reaction can be carried out continuously, semi-continuously or batchwise.
  • Suitable reactors for the continuous reaction are known to the person skilled in the art and are described, for. B. in Ullmann's Encyclopedia of Industrial Chemistry, Vol. 1, 3rd ed., 1951, pp. 743 ff.
  • Suitable pressure-resistant reactors are also known to the person skilled in the art and are described, for. B. in Ullmann's Encyclopedia of Industrial Chemistry, Vol. 1, 3rd Edition, 1951, pp. 769 ff.
  • an autoclave is used for the method according to the invention, which can, if desired, be provided with a stirring device and an inner lining.
  • composition of the synthesis gas of carbon monoxide and hydrogen used in the process according to the invention can vary within wide ranges.
  • the molar ratio of carbon monoxide and hydrogen is usually about 5:95 to 70:30, preferably about 40:60 to 60:40.
  • a molar ratio of carbon monoxide and hydrogen in the range of approximately 1: 1 is particularly preferably used.
  • the temperature in the hydroformylation reaction is generally in the range from about 20 to 180 ° C., preferably about 50 to 150 ° C.
  • the reaction is usually carried out at the partial pressure of the reaction gas at the selected reaction temperature.
  • the pressure is in a range from about 1 to 700 bar, preferably 1 to 600 bar, in particular 1 to 300 bar.
  • the reaction pressure can be varied depending on the activity of the hydroformylation catalyst according to the invention used.
  • the catalysts based on phosphonite ligands according to the invention allow reaction in a range of low pressures, such as in the range from 1 to 100 bar.
  • hydroformylation catalysts according to the invention can be separated from the discharge of the hydroformylation reaction by customary processes known to the person skilled in the art and can generally be used again for the hydroformylation.
  • the catalysts according to the invention advantageously have a high activity, so that the corresponding aldehydes are generally obtained in good yields. With hydroformyly 14 tion of ⁇ -olefins and of internal, linear olefins, they also show a very low selectivity for the hydrogenation product of the olefin used.
  • the catalysts according to the invention described above which comprise chiral phosphonite ligands of the formula I, are suitable for enantioselective hydroformylation.
  • the ligand Ic is prepared analogously to the synthesis instructions given in Example 1.
  • the raw product obtained has a brown color and is slightly sticky.
  • the mixture is stirred vigorously for 12 hours in n-hexane. After removing the supernatant hexane solution, the ligand Ic is obtained as a white powder.
  • the solid In order to remove traces of impurities, the solid is washed several times with small amounts of cold methyl tert-butyl ether. The remaining solid is taken up in degassed methylene chloride. The organic solution is extracted several times with degassed water, dried over sodium sulfate and concentrated. A white solid remains.
  • Ligand Ib was prepared analogously to the procedure given in Example 3 and obtained as a white solid.
  • Ligand le was prepared analogously to the procedure given in Example 3 and obtained as a white solid.
  • Synthesis gas mixture CO / H 2 (1: 1) implemented at 80 bar. After a reaction time of 4 hours, the autoclave was let down and emptied. The mixture was analyzed by GC with an internal standard. The turnover was 58%. The yields were 57% formylvaleronitrile isomers (12% n component), 1.2% pentanenitrile.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Die vorliegende Erfindung betrifft einen Katalysator, umfassend wenigstens einen Komplex eines Metalls der VIII. Nebengruppe, welcher mindestens einen zwei- oder mehrzähnigen Phosphonitliganden der allgemeinen Formel (I), oder Salze und Mischungen davon, umfasst und ein Verfahren zur Hydroformylierung von Verbindungen, die wenigstens eine ethylenisch ungesättigte Doppelbindung enthalten, durch Umsetzung mit Kohlenmonoxid und Wasserstoff in Gegenwart eines solchen Katalysators.

Description

Katalysator, umfassend einen Komplex eines Metalls der VIII. Nebengruppe auf Basis eines Phosphonitliganden und Verfahren zur Hydroformylierung
Beschreibung
Die vorliegende Erfindung betrifft einen Katalysator, der einen Komplex eines Metalls der VIII. Nebengruppe, ausgenommen Nickel, umfasst, welcher mindestens einen zwei- oder mehrzähnigen Phosphonitliganden umfasst, worin der Phosphor und eines der Sauerstoffatome der Phosphonitgruppe Teil eines 5- bis 8-gliedrigen Heterocyclus sind, sowie ein Verfahren zur Hydroformylierung von Verbindungen, die wenigstens eine ethylenisch ungesättigte Dop- pelbindung enthalten, in Gegenwart eines solchen Katalysators.
Die Hydroformylierung oder Oxo-Synthese ist ein wichtiges großtechnisches Verfahren und dient der Herstellung von Aldehyden aus Olefinen, Kohlenmonoxid und Wasserstoff. Diese Aldehyde können gegebenenfalls im gleichen Arbeitsgang mit Wasserstoff zu den entsprechenden Oxo-Alkoholen hydriert werden. Die Reaktion selbst ist stark exotherm und läuft im Allgemeinen unter erhöhtem Druck und bei erhöhten Temperaturen in Gegenwart von Katalysatoren ab. Als Katalysatoren werden Co-, Rh- oder Ru-Verbindungen bzw. -kom- plexe eingesetzt, die zur Aktivitäts- und/oder Selektivitätsbeeinflussung mit amin- oder phosphinhaltigen Liganden modifiziert sein können. Zusätzliche Promotoren haben in der Praxis bisher keine Bedeutung erlangt. Bei der Hydroformylierungsreak- tion kommt es aufgrund der möglichen CO-Anlagerung an jedes der beiden C-Atome einer Doppelbindung zur Bildung von isomeren Aldehydgemischen. Zusätzlich kann es beim Einsatz von internen Olefinen zu einer Doppelbindungsisomerisierung aus einer internen, in Richtung auf eine terminale Position kommen. In diesen isomeren Gemischen ist der n-Aldehyd im Allgemeinen vor dem iso-Aldehyd begünstigt, wobei jedoch aufgrund der wesentlich größeren technischen Bedeutung der n-Aldehyde eine Optimierung der Hydroformy- lierungskatalysatoren zur Erzielung einer größeren n-Selektivität angestrebt wird.
In Beller et al., Journal of Molecular Catalysis A, 104 (1995), Seiten 17-85, werden rhodiumhaltige, phosphinmodifizierte Katalysatoren zur Hydroformylierung von niedrig siedenden Olefinen beschrieben. Nachteilig an diesen Katalysatoren ist, dass sie nur unter Einsatz metallorganischer Reagenzien hergestellt werden können und die eingesetzten Liganden nur aufwendig und kostspielig hergestellt werden können. Zudem lassen sich mit diesen phosphinmodifizierten Katalysatoren interne, geradkettige und 2 verzweigte Olefine sowie Olefine mit mehr als 7 Kohlenstoffatomen nur sehr langsam hydroformylieren.
Die WO 95/30680 beschreibt zweizähnige Phosphinliganden, bei de- nen die beiden Phosphingruppen an je einen Arylrest gebunden sind und diese beiden Arylreste ein zweifach verbrücktes, ortho-anel- liertes Ringsystem bilden, wobei eine der beiden Brücken aus einem Sauerstoff- oder einem Schwefelatom besteht. Rhodiumkomplexe auf Basis dieser Liganden eignen sich als Hydroformylierungskata- lysatoren, wobei bei der Hydroformylierung endständiger Olefine ein gutes n/iso-Verhältnis erzielt wird. Nachteilig an diesen Chelatphosphinen ist der hohe synthetische Aufwand zu ihrer Herstellung, so dass technische Verfahren, die auf solchen Chelat- phosphinkatalysatoren beruhen, wirtschaftlich benachteiligt sind.
Die US-A-4, 169,861 beschreibt ein Verfahren zur Herstellung endständiger Aldehyde durch Hydroformylierung von α-Olefinen in Gegenwart eines Rhodium-Hydroformylierungskatalysators auf Basis eines zweizähnigen und eines einzähnigen Liganden. Als zweizähni- ger Ligand wird dabei vorzugsweise 1, l'-Bis(diphenylphos- phino)ferrocen eingesetzt. Bei dem einzähnigen Liganden handelt es sich vorzugsweise um Phosphine, wie Diphenylethylphosphin. Die US-A-4, 201,714 und US-A-4.193,943 weisen einen vergleichbaren Offenbarungsgehalt auf. Die Herstellung der zweizähnigen Phosphino- ferrocenliganden erfordert den Einsatz metallorganischer Reagenzien, die aufwendig in ihrer Herstellung sind, wodurch Hydrofor- mylierungsverfahren unter Einsatz dieser Katalysatoren wirtschaftlich benachteiligt sind.
Die US-A-5,312,996 beschreibt ein Verfahren zur Herstellung von 1,6-Hexandial durch Hydroformylierung von Butadien in Gegenwart von Wasserstoff und Kohlenmonoxid. Als Hydroformylierungskataly- satoren werden Rhodiumkomplexe mit Polyphosphitliganden eingesetzt, worin der Phosphor und zwei der SauerStoffatome der Phos- phitgruppe Teil eines 7-gliedrigen Heterocyclus sind.
Die JP-A 97/255 610 beschreibt ein Verfahren zur Herstellung von Aldehyden durch Hydroformylierung in Gegenwart von Rhodiumkatalysatoren, die einen einzähnigen Phosphonitliganden aufweisen.
Keine der zuvor genannten Literaturstellen beschreibt Hydroformy- lierungskatalysatoren auf Basis von zwei- oder mehrzähnigen Phosphonitliganden, wobei die hosphonitgruppe Teil eines 5- bis 8-gliedrigen Heterocyclus ist. 3
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, neue Katalysatoren auf Basis von Komplexen eines Metalls der VIII. Nebengruppe zur Verfügung zu stellen. Diese sollen sich vorzugsweise zur Hydroformylierung eignen und eine gute katalytische Aktivität aufweisen.
überraschenderweise wurden nun Katalysatoren auf Basis von Komplexen eines Metalls der VIII. Nebengruppe gefunden, welche mindestens einen zwei- oder mehrzähnigen Phosphonitliganden u fas- sen, wobei die Phosphonitgruppe Teil eines 5- bis 8-gliedrigen Heterocyclus ist.
Gegenstand der vorliegenden Erfindung ist somit ein Katalysator, umfassend einen Komplex eines Metalls der VIII. Nebengruppe, aus- genommen Nickel, mit einem zwei- oder mehrzähnigen Phosphonitliganden der allgemeinen Formel I
0 Rl 0- Γ (I)
Figure imgf000005_0001
^ worin
m für 0 oder 1 steht, A zusammen mit dem Teil der Phosphonitgruppe, an den es gebunden ist, für einen 5- bis 8-gliedrigen Heterocyclus steht, der gegebenenfalls zusätzlich ein-, zwei- oder dreifach mit Cycloalkyl, Aryl und/oder Hetaryl anelliert sein kann, wobei die anellierten Gruppen je einen, zwei oder drei Substituen- ten, ausgewählt unter Alkyl, Alkoxy, Halogen, Nitro, Cyano oder Carboxyl tragen können, R1 für eine C3- bis Cβ-Alkylenbrücke steht, welche eine, zwei oder drei Doppelbindungen aufweisen und/oder ein-, zwei- oder dreifach mit Aryl und/oder Hetaryl anelliert sein kann, wobei die Aryl- oder Hetarylgruppen einen, zwei oder drei der folgenden Substituenten: Alkyl, Cycloalkyl, Aryl, Alkoxy, Cyclo- alkyloxy, Aryloxy, Halogen, Trifluormethyl, Nitro, Cyano, Carboxyl oder NEXE2 tragen können, wobei E1 und E2 gleich oder verschieden sein können und für Alkyl, Cycloalkyl oder Aryl stehen,
D die zuvor für A angegebenen Bedeutungen besitzen kann,
oder Salze und Mischungen davon.
Im Rahmen der vorliegenden Erfindung umfasst der Ausdruck 'Alkyl' geradkettige und verzweigte Alkylgruppen. Vorzugsweise handelt es sich dabei um geradkettige oder verzweigte Ci-Cβ-Alkyl-, bevorzug- 4 ter Ci-Cε-Alkyl- und besonders bevorzugt Cχ-C4-Alkylgruppen. Beispiele für Alkylgruppen sind insbesondere Methyl, Ethyl, Propyl, Isopropyl, n-Butyl, 2-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, 2-Pentyl, 2-Methylbutyl, 3-Methylbutyl, 1,2-Dirnethylpropyl, 1, 1-Dimethylpropyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 2-Hexyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,2-Di- methylbutyl, 1, 3-Dimethylbutyl, 2,3-Dimethylbutyl, 1, 1-Dimethyl- butyl, 2,2-Dimethylbutyl, 3, 3-Dimethylbutyl, 1, 1,2-Trimethylpro- pyl, 1,2,2-Trimethylpropyl, 1-Ethylbutyl, 2-Ethylbutyl, l-Ethyl-2-methylpropyl, n-Heptyl, 2-Heptyl, 3-Heptyl, 2-Ethylpen- tyl, 1-Propylbutyl, Octyl.
Bei der Cycloalkylgruppe handelt es sich vorzugsweise um eine C5-C7-Cycloalkylgruppe, wie Cyclopentyl, Cyclohexyl oder Cyclo- heptyl.
Wenn die Cycloalkylgruppe substituiert ist, weist sie vorzugsweise 1, 2, 3, 4 oder 5, insbesondere 1, 2 oder 3 Substituenten, ausgewählt unter Alkyl, Alkoxy oder Halogen auf.
Aryl steht vorzugsweise für Phenyl, Tolyl, Xylyl, Mesityl, Naph- thyl, Anthracenyl, Phenanthrenyl, Naphthacenyl und insbesondere für Phenyl oder Naphthyl.
Substituierte Arylreste weisen vorzugsweise 1, 2, 3, 4 oder 5, insbesondere 1, 2 oder 3 Substituenten, ausgewählt unter Alkyl, Alkoxy oder Halogen auf.
Hetaryl steht vorzugsweise für Pyridyl, Chinolinyl, Acridinyl, Pyridazinyl, Pyrimidinyl oder Pyrazinyl.
Substituierte Hetarylreste weisen vorzugsweise 1, 2 oder 3 Substituenten, ausgewählt unter Alkyl, Alkoxy oder Halogen auf.
Die obigen Ausführungen zu Alkyl-, Cycloalkyl- und Arylresten gelten entsprechend für Alkoxy-, Cycloalkyloxy- und Aryloxyreste .
Die Reste NE1E2 stehen vorzugsweise für , -Dimethyl, N,N-Diethyl, N,N-Diproρyl, N,N-Diisopropyl, N,N-Di-n-butyl, N,N-Di-t.-butyl, N,N-Dicyclohexyl oder N,N-Diphenyl.
Halogen steht für Fluor, Chlor, Brom und Iod, bevorzugt für Fluor, Chlor und Brom.
Eine bevorzugte Ausführungsform der Erfindung sind Katalysatoren, die mindestens einen Phosphonitliganden der Formel I umfassen, wobei A zusammen mit dem Teil der Phosphonitgruppe, an den es ge- 5 bunden ist, für einen 5- oder 6-gliedrigen Heterocyclus steht, der gegebenenfalls ein- oder zweifach mit Aryl und/oder Hetaryl anelliert sein kann, wobei die anellierten Gruppen einen, zwei oder drei der zuvor angegebenen Substituenten tragen können.
Der Rest A steht dann z. B. für einen 2,2'-Biphenylen-, 2,2 '-Bi- naphthylen- oder 2, 3-Xylylen-Rest, der 1, 2 oder 3 Substituenten, ausgewählt unter Alkyl, Alkoxy oder Halogen, tragen kann. Alkyl steht dabei vorzugsweise für Cι-C4-Alkyl und insbesondere für t.- Butyl. Alkoxy steht dabei vorzugsweise für Cι-C4-Alkoxy und insbesondere für Methoxy. Halogen steht insbesondere für Fluor, Chlor oder Brom.
Bevorzugt steht R1 für einen Rest der Formeln II.1, II.2, II.3 oder II.4:
Figure imgf000007_0001
R2 und R3 unabhängig voneinander für Wasserstoff, Alkyl, Alkoxy, Halogen, Trifluormethyl, Nitro oder Cyano stehen, und R4 für Wasserstoff, Alkyl, vorzugsweise Methyl, oder Aryl, vorzugsweise Phenyl, steht, welches gegebenenfalls mit Alkyl, Alkoxy, Halogen, Trifluormethyl, Nitro oder Cyano substi- tuiert sein kann.
Die obigen Ausführungen zu bevorzugten Resten A gelten entsprechend für Reste D.
Nach einer geeigneten Ausführungsform sind die Phosphonitliganden der Formel I ausgewählt unter Liganden der Formel Ia bis Ig
OMe OMe
10
Figure imgf000008_0001
(la)
15
20
Figure imgf000008_0002
25
(Ib)
30
35
Figure imgf000008_0003
40
(IC)
45 CH3 CH3
10
Figure imgf000009_0001
(Id)
15
20
Figure imgf000009_0002
Figure imgf000009_0003
Figure imgf000009_0004
Figure imgf000009_0005
25
(le)
30
35
Figure imgf000009_0006
o
Figure imgf000009_0007
Figure imgf000009_0008
40
(if)
45 8
OMe OMe
Figure imgf000010_0001
(ig) •
Die erfindungsgemäßen Katalysatoren können einen oder mehrere der Phosphonitliganden der Formel I aufweisen. Zusätzlich zu den zuvor beschriebenen Liganden der allgemeinen Formel I können sie noch wenigstens einen weiteren Liganden, der ausgewählt ist unter Halogeniden, Aminen, Carboxylaten, Acetylacetonat , Aryl- oder Al- kylsulfonaten, Hydrid, CO, Olefinen, Dienen, Cycloolefinen, Ni- trilen, N-haltigen Heterocyclen, Aromaten und Heteroaromaten, Ethern, PF3 sowie ein-, zwei- und mehrzähnigen Phosphin-, Phosphi- nit-, Phosphonit- und Phosphitliganden aufweisen. Diese weiteren Liganden können ebenfalls ein-, zwei- oder mehrzähnig sein und am Metallatom des Katalysatorkomplexes koordinieren. Geeignete weitere phosphorhaltige Liganden sind z. B. übliche Phosphin-, Phosphinit-, und Phosphitliganden.
Zur Herstellung der erfindungsgemäß eingesetzten Phosphonitligan- den der Formel I kann man z. B. eine Hydroxylgruppen-haltige Verbindung der Formel III mit einem Phosphortrihalogenid, bevorzugt PC13, zu einer Verbindung der Formel IV und diese dann mit einer Hydroxylgruppen-haltigen Verbindung der Formel H0R10H und einer Verbindung der Formel V gemäß folgendem Schema
OH
PC13] HORiOH
Cl 3 -2HC1 -HC1
Figure imgf000010_0002
III IV -HC1
Figure imgf000011_0001
0 Rl 0- (I)
Figure imgf000011_0002
(orm
umsetzen,
wobei m, A, D und R1 die zuvor angegebenen Bedeutungen besitzen. Gewünschtenfalls können auch 2 Mol einer Verbindung der Formel IV mit einem Mol einer Verbindung H0R10H zu einem zweizähnigen Phosphonitliganden mit zwei gleichen Phosphonitresten umgesetzt wer- den. Ein Verfahren zur Herstellung dieser Liganden wird in Phosp- horus and Sulfur, 1987, Bd. 31, S. 71 ff. für den Aufbau von 6H-Dibenz[c,e] [ 1,2 ]oxaphosphorin-Ringsystemen beschrieben.
Geeignete Alkohole der Formel HORiOH sind z. B. Biphenyl-2,2 '-diol und Binaphthyl-2 , 2 ' -diol . Weitere geeignete Diole werden in der US-A-5,312,996, Sp. 19 genannt, auf die hier Bezug genommen wird. Zur Herstellung von zweizähnigen Liganden der Formel I, welche eine Phosphonit- und eine Phosphitgruppe tragen, kann man eine Verbindung der Formel IV mit einer Verbindung der Formel H0Rx0H zu einem Monokondensationsprodukt umsetzen und dieses dann mit einer Verbindung der Formel V
Cl— P D v
X
worin D die zuvor für A angegebenen Bedeutungen besitzen kann, zu einem gemischten Liganden der Formel I umsetzen.
Die Verbindungen der Formel IV können gewünschtenfalls isoliert und einer Reinigung, z. B. durch Destillation, unterworfen werden. Die Umsetzung der Verbindung der Formel III zu einer Verbindung der Formel IV verläuft im Allgemeinen bei einer erhöhten Temperatur in einem Bereich von etwa 40 bis etwa 200 °C, wobei die Umsetzung auch unter sukzessiver Temperaturerhöhung geführt werden kann. Zusätzlich kann zu Beginn der Reaktion oder nach einer 10 gewissen Reaktionsdauer eine Lewis-Säure, wie z. B. Zinkchlorid oder Aluminiumchlorid, als Katalysator zugesetzt werden. Die weitere Umsetzung der Verbindungen der Formel IV zu den erfindungsgemäß eingesetzten Phosphonitliganden der Formel I erfolgt im Allgemeinen in Gegenwart einer Base, z. B. einem aliphatischen Amin, wie Diethylamin, Dipropylamin, Dibutylamin, Trimethylamin, Tripropylamin und vorzugsweise Triethylamin oder Pyridin.
Vorteilhafterweise gelingt die Herstellung der erfindungsgemäß eingesetzten Phosphonitliganden der Formel I ohne Verwendung von Magnesium- oder Lithium-organischen Verbindungen. Die einfache Reaktionssequenz erlaubt eine breite Variationsmöglichkeit der Liganden. Die Darstellung gelingt somit effizient und ökonomisch aus leicht zugängigen Edukten.
Im Allgemeinen werden unter Hydroformylierungsbedingungen aus den jeweils eingesetzten Katalysatoren oder Katalysatorvorstufen ka- talytisch aktive Spezies der allgemeinen Formel HxMy(C0)2Lg gebildet, worin M für ein Metall der VIII. Nebengruppe, L für einen erfindungsgemäßen Phosphonitliganden und q, x, y, z für ganze
Zahlen, abhängig von der Wertigkeit und Art des Metalls sowie der Bindigkeit des Liganden L, stehen. Vorzugsweise stehen z und q unabhängig voneinander mindestens für einen Wert von 1, wie z. B. 1 , 2 oder 3. Die Summe aus z und q steht bevorzugt für einen Wert von 2 bis 5. Dabei können die Komplexe gewünschtenfalls zusätzlich noch mindestens einen der zuvor beschriebenen weiteren Liganden aufweisen.
Bei dem Metall M handelt es sich vorzugsweise um Cobalt, Ruthe- nium, Rhodium, Palladium, Platin, Osmium oder Iridium und insbesondere um Cobalt, Rhodium und Ruthenium.
Nach einer bevorzugten Ausführungsform werden die Hydroformylie- rungskatalysatoren in situ, in dem für die Hydroformylierungs- reaktion eingesetzten Reaktor, hergestellt. Gewünschtenfalls können die erfindungsgemäßen Katalysatoren jedoch auch separat hergestellt und nach üblichen Verfahren isoliert werden. Zur in si- tu-Herstellung der erfindungsgemäßen Katalysatoren setzt man wenigstens einen Phosphonitliganden der allgemeinen Formel I, eine Verbindung oder einen Komplex eines Metalls der VIII. Nebengruppe , gegebenenfalls wenigstens einen weiteren zusätzlichen Liganden und gegebenenfalls ein Aktivierungsmittel in einem inerten Lösungsmittel unter den Hydroformylierungsbedingungen um.
Geeignete Rhodiumverbindungen oder -komplexe sind z. B. Rho- dium(II)- und Rhodium( III)-salze, wie Rhodium( III)-Chlorid, Rho- dium(III)-nitrat, Rhodium(III )-sulfat, Kalium-Rhodiumsulfat, Rho- 11 dium(II)- bzw. Rhodium(III)-carboxylat, Rhodium(II)- und Rho- dium(III)-acetat, Rhodium( III )-oxid, Salze der Rhodium(III)- säure, Trisammoniumhexachlororhodat(III) etc. Weiterhin eignen sich Rhodiumkomplexe, wie Rhodiumbiscarbonylacetylacetonat, Ace- tylacetonatobisethylenrhodium(I) etc. Vorzugsweise werden Rhodi- umbiscarbonylacetylacetonat oder Rhodiumacetat eingesetzt.
Geeignet sind ebenfalls Rutheniumsalze oder Verbindungen. Geeignete Rutheniumsalze sind beispielsweise Ruthenium(lll)chlorid, Ruthenium(IV)-, Ruthenium(VI)- oder Ruthenium(VIII)oxid, Alkalisalze der Rutheniumsauerstoffsäuren wie K2Ru04 oder KRu04 oder Komplexverbindungen der allgemeinen Formel RuX1X2L1L2(L3)n, worin L1, L2, L3 und n die oben angegebenen Bedeutungen und X1, X2 die für X (siehe oben) angegebenen Bedeutungen besitzen, z.B. RuHCl(CO) (PPh3)3. Auch können die Metallcarbonyle des Rutheniums wie Trisrutheniumdodecacarbonyl oder Hexarutheniumoctadecacarbo- nyl, oder Mischformen, in denen CO teilweise durch Liganden der Formel PR3 ersetzt sind, wie Ru(C0)3(PPh3)2, im erfindungsgemäßen Verfahren verwendet werden.
Geeignete Cobaltverbindungen sind beispielsweise Cobalt(II)Chlorid, Cobalt( II )sulfat, Cobalt( II)carbonat, Cobalt( II )nitrat, deren Amin- oder Hydratkomplexe, Cobaltcarboxylate, wie Cobaltace- tat, Cobaltethylhexanoat, Cobaltnaphthanoat, sowie der Cobalt- Caprolactamat-Komplex. Auch hier können die Carbonylkomplexe des Cobalts wie Dicobaltoctacarbonyl, Tetracobaltdodecacarbonyl und Hexacobalthexadecacarbonyl eingesetzt werden.
Die genannten Verbindungen des Cobalts, Rhodiums und Rutheniums sind im Prinzip bekannt und in der Literatur hinreichend beschrieben oder sie können vom Fachmann analog zu den bereits bekannten Verbindungen hergestellt werden.
Geeignete Aktivierungsmittel sind z. B. Brönsted-Säuren, Lewis- Säuren, wie z. B. BF3, A1C13, ZnCl2 und Lewis-Basen.
Als Lösungsmittel werden vorzugsweise die Aldehyde eingesetzt, die bei der Hydroformylierung der jeweiligen Olefine entstehen, sowie deren höher siedende Folgereaktionsprodukte, z. B. die Pro- dukte der Aldolkondensation. Bei ausreichend hydrophilisierten Liganden können auch Wasser, Alkohole, wie Methanol, Ethanol, n- Propanol, Isopropanol, n-Butanol, Isobutanol, Ketone, wie Aceton und Methylethylketon etc. eingesetzt werden. 12
Das Molmengenverhältnis von Phosphonitligand der allgemeinen Formel I zu Metall der VIII. Nebengruppe liegt im Allgemeinen in einem Bereich von etwa 1:1 bis 1 000:1.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Hydroformylierung von Verbindungen, die wenigstens eine ethylenisch ungesättigte Doppelbindung enthalten, durch Umsetzung mit Kohlen- monoxid und Wasserstoff in Gegenwart wenigstens eines der erfindungsgemäßen Hydroformylierungskatalysatoren.
Als Substrate für das erfindungsgemäße Hydroformylierungsverfah- ren kommen prinzipiell alle Verbindungen in Betracht, welche eine oder mehrere ethylenisch ungesättigte Doppelbindungen enthalten. Dazu zählen z. B. Olefine, wie α-Olefine, interne geradkettige und interne verzweigte Olefine. Geeignete α-Olefine sind z. B. Ethylen, Propen, 1-Buten, 1-Penten, 1-Hexen, 1-Hepten, 1-Octen, 1-Nonen, 1-Decen, 1-Undecen, 1-Dodecen etc.
Geeignete geradkettige interne Olefine sind vorzugsweise C4- bis C2o-Olefine, wie 2-Buten, 2-Penten, 2-Hexen, 3-Hexen, 2-Hepten, 3-Hepten, 2-Octen, 3-Octen, 4-Octen etc.
Geeignete verzweigte, interne Olefine sind vorzugsweise C4- bis C2o-Olefine, wie 2-Methyl-2-Buten, 2-Methyl-2-Penten, 3-Me- thyl-2-Penten, verzweigte, interne Hepten-Gemische, verzweigte, interne Octen-Gemische, verzweigte, interne Nonen-Gemische, verzweigte, interne Decen-Gemische, verzweigte, interne Undecen-Ge- mische, verzweigte, interne Dodecen-Gemische etc.
Geeignete zu hydroformylierende Olefine sind weiterhin C5- bis Cg- Cycloalkene, wie Cyclopenten, Cyclohexen, Cyclohepten, Cycloocten und deren Derivate, wie z. B. deren Ci- bis C20-Alkylderivate mit 1 bis 5 Alkylsubstituenten. Geeignete zu hydroformylierende Olefine sind weiterhin Vinylaromaten, wie Styrol, α-Methylstyrol, 4-Isobutylstyrol etc. Geeignete zu hydroformylierende Olefine sind weiterhin α,ß-ethylenisch ungesättigte Mono- und/oder Dicar- bonsäuren, deren Ester, Halbester und Amide, wie Acrylsäure, Me- thacrylsäure, Maleinsäure, Fumarsäure, Crotonsäure, Itaconsäure, 3-Pentensäuremethylester, 4-Pentensäuremethylester, Ölsäureme- thylester, Acrylsauremethylester, Methacrylsäuremethylester, ungesättigte Nitrile, wie 3-Pentennitril, 4-Pentennitril, Acrylni- tril, Vinylether, wie Vinylmethylether, Vinylethylether, Vinyl- propylether etc., Ci- bis C2n-Alkenole, -Alkendiole und -Alkadie- nole, wie 2,7-Octadienol-l. Geeignete Substrate sind weiterhin Di- oder Polyene mit isolierten oder konjugierten Doppelbindungen. Dazu zählen z. B. 1,3-Butadien, 1,4-Pentadien, 1,5-Hexadien, 13
1,6-Heptadien, 1,7-Octadien, Vinylcyclohexen, Dicyclopentadien, 1, 5, 9-Cyclooctatrien sowie Butadienhomo- und -copolymere.
Die Hydroformylierungsreaktion kann kontinuierlich, semikonti- nuierlich oder diskontinuierlich erfolgen.
Geeignete Reaktoren für die kontinuierliche Umsetzung sind dem Fachmann bekannt und werden z. B. in Ullmanns Enzyklopädie der technischen Chemie, Bd. 1, 3. Aufl., 1951, S. 743 ff. beschrie- ben.
Geeignete druckfeste Reaktoren sind dem Fachmann ebenfalls bekannt und werden z. B. in Ullmanns Enzyklopädie der technischen Chemie, Bd. 1, 3. Auflage, 1951, S. 769 ff. beschrieben. Im All- gemeinen wird für das erfindungsgemäße Verfahren ein Autoklav verwendet, der gewünschtenfalls mit einer Rührvorrichtung und einer Innenauskleidung versehen sein kann.
Die Zusammensetzung des im erfindungsgemäßen Verfahren eingesetz- ten Synthesegases aus Kohlenmonoxid und Wasserstoff kann in weiten Bereichen variieren. Das molare Verhältnis von Kohlenmonoxid und Wasserstoff beträgt in der Regel etwa 5:95 bis 70:30, bevorzugt etwa 40:60 bis 60:40. Insbesondere bevorzugt wird ein molares Verhältnis von Kohlenmonoxid und Wasserstoff im Bereich von etwa 1:1 eingesetzt.
Die Temperatur bei der Hydroformylierungsreaktion liegt im Allgemeinen in einem Bereich von etwa 20 bis 180 °C, bevorzugt etwa 50 bis 150 °C. Die Reaktion wird in der Regel bei dem Partialdruck des Reaktionsgases bei der gewählten Reaktionstemperatur durchgeführt. Im Allgemeinen liegt der Druck in einem Bereich von etwa 1 bis 700 bar, bevorzugt 1 bis 600 bar, insbesondere 1 bis 300 bar. Der Reaktionsdruck kann in Abhängigkeit von der Aktivität des eingesetzten erfindungsgemäßen Hydroformylierungskatalysators va- riiert werden. Im Allgemeinen erlauben die erfindungsgemäßen Katalysatoren auf Basis von Phosphonitliganden eine Umsetzung in einem Bereich niedriger Drücke, wie etwa im Bereich von 1 bis 100 bar.
Die erfindungsgemäßen Hydroformylierungskatalysatoren lassen sich nach üblichen, dem Fachmann bekannten Verfahren vom Austrag der Hydroformylierungsreaktion abtrennen und können im Allgemeinen erneut für die Hydroformylierung eingesetzt werden.
Vorteilhafterweise zeigen die erfindungsgemäßen Katalysatoren eine hohe Aktivität, so dass in der Regel die entsprechenden Aldehyde in guten Ausbeuten erhalten werden. Bei der Hydroformylie- 14 rung von α-Olefinen sowie von innenständigen, linearen Olefinen zeigen sie zudem eine sehr geringe Selektivität zum Hydrierprodukt des eingesetzten Olefins.
Die zuvor beschriebenen, erfindungsgemäßen Katalysatoren, die chirale Phosphonitliganden der Formel I umfassen, eignen sich zur enantioselektiven Hydroformylierung.
Die Erfindung wird anhand der folgenden, nicht einschränkenden Beispiele näher erläutert.
Beispiele
A) Herstellung der Liganden la bis Ig
Beispiel 1 :
Herstellung von Ligand la
206 g (1,5 mol) Phosphortrichlorid und 204 g (1,2 mol) Biphe- nyl-2-ol werden unter Rühren in einer Argonatmosphäre langsam auf 50 °C und innerhalb von 8 Stunden weiter auf 140 °C erhitzt. Bei starker Chlorwasserstoffentwicklung färbt sich die Lösung gelb. Nach Abkühlen auf 120 °C fügt man eine katalyti- sche Menge an Zinkchlorid (1,2 g; 17 mmol) zu und erhitzt 24 Stunden bei 140 °C. Bei anschließender Destillation geht das Reaktionsprodukt 6-Chlor-(6H)-dibenz[c,e] [ l,2]-oxaphos- phorin bei einem Siedepunkt von 132 °C (0,2 mbar) über. Ausbeute: 194,8 g (69 %) weiße Kristalle; 31P-NMR-Spektrum: δ (ppm) 134,5.
40 g (0,177 mol) 6-Chlor-(6H)-dibenz[c,e] [ l,2]-oxaphosphorin werden unter Argon zusammen mit 31,7 g (0,088 mol) 4,4 '-Me- thoxy-6,6'-t.-butyl-2,2'-biphenol in 400 ml Toluol vorgelegt. Bei Raumtemperatur werden 20,24 g (0,2 mol) Triethylamin (über KOH getrocknet) zugetropft. Anschließend rührt man
120 Minuten bei 90 °C nach. Das entstandene Triethylammonium- hydrochlorid wird abfiltriert und der Filterrückstand zur Vervollständigung der Ausbeute mit Tetrahydrofuran nachgewaschen. Von den vereinigten organischen Phasen werden die flüchtigen Bestandteile in Hochvakuum entfernt. Als Produkt erhält man den Liganden la in 100 % Rohausbeute. Der weißgelbe Feststoff wird zunächst mit n-Hexan und dann mit Di- ethylether gewaschen. 15
OMe OMe
Figure imgf000017_0001
(la)
31P-NMR-Spektrum: δ (ppm) 128,14
Beispiel 2:
Herstellung von Ligand Ic
Analog der in Beispiel 1 angegebenen Synthesevorschrift erfolgt die Herstellung des Liganden Ic. Das erhaltene Rohprodukt weist eine braune Farbe auf und ist leicht klebrig. Es wird zur Reinigung 12 Stunden in n-Hexan kräftig gerührt. Nach Abtrennen der überstehenden Hexanlösung erhält man den Liganden Ic als weißes Pulver. CI ci
(ic)
Figure imgf000017_0002
31P-NMR-Spektrum: δ (ppm) 128,41 iH-NMR-Spektrum: entspricht dem Strukturvorschlag
Reinheit Rohprodukt: > 89 %
Beispiel 3:
Herstellung von Ligand If
In 200 ml Toluol werden bei Raumtemperatur in einer Argonatmosphäre 7,95 g (33,8 mmol) 6-Chlor-(6H)-di- benz[c,e] [ 1,2 ] -oxaphosphorin und 4,84 g (16,9 mmol) 2,2 ' -Di- hydroxy-l,l'-dinaphthyl vorgelegt. Bei Raumtemperatur werden innerhalb von 10 Minuten 4,28 g (42,2 mmol) Triethylamin zu- 16 getropft. Anschließend rührt man eine Stunde bei 90 °C nach. Das entstandene Triethylammoniumhydrochlorid wird abfiltriert, die flüchtigen Bestandteile werden im Hochvakuum entfernt. Zurück bleiben 11,5 g eines schwach gelblich gefärbten Feststoffes (99,6 % Rohausbeute).
Um Spuren von Verunreinigungen zu entfernen, wird der Feststoff mehrfach mit geringen Mengen an kaltem Methyl-tert.-bu- tylether gewaschen. Der zurückbleibende Feststoff wird in entgastem Methylenchlorid aufgenommen. Die organische Lösung wird mehrfach mit entgastem Wasser extrahiert, über Natriumsulfat getrocknet und eingeengt. Es verbleibt ein weißer Feststoff.
Figure imgf000018_0001
(If)
3!p-NMR-Spektrum: δ (ppm) 131,20; 130,01; 128,75; 127,15 im
Verhältnis 1:1:1:1 (Stereoisomere)
Reinheit Rohprodukt: 97,6 %
^-NMR: entspricht dem Strukturvorschlag
Beispiel 4:
Herstellung von Ligand Ib
Analog der in Beispiel 3 angegebenen Vorschrift wurde Ligand Ib hergestellt und als weißer Feststoff erhalten.
31P-NMR-Spektrum: δ (ppm) 128,20 1H-NMR: entspricht dem Strukturvorschlag Reinheit Rohprodukt: > 99 % 17
Figure imgf000019_0001
(Ib)
Beispiel 5:
Herstellung von Ligand le
Analog der in Beispiel 3 angegebenen Vorschrift wurde Ligand le hergestellt und als weißer Feststoff erhalten.
31P-NMR-Spektrum: δ (ppm) 127,2
1H-NMR: entspricht dem Strukturvorschlag
Reinheit Rohprodukt: > 97 %
Figure imgf000019_0002
(le)
Hydroformylierungen
Beispiel 6 :
Hydroformylierung von 3-Pentennitril
In einem 10 ml-Stahlautoklaven wurden unter Argonschutzgas
0,75 mg Rhodiumbiscarbonylacetylacatonat, 12,3 mg Ligand If, 1,5 g 3-Pentennitril und 1,5 g Xylol bei 100 °C mit einem 18
Synthesegasgemisch CO/H2 (1:1) bei 80 bar umgesetzt. Nach einer Reaktionszeit von 4 Stunden wurde der Autoklav entspannt und entleert. Das Gemisch wurde mittels GC mit internem Standard analysiert. Der Umsatz betrug 58 %. Die Ausbeuten betrugen 57 % Formylvaleronitril-Isomere (12 % n-Anteil), 1,2 % Pentannitril .

Claims

19Patentansprüche
Katalysator, umfassend einen Komplex eines Metalls der VIII, Nebengruppe, ausgenommen Nickel, mit einem zwei- oder mehrzähnigen Phosphonitliganden der allgemeinen Formel I
Ri —0- (I)
Figure imgf000021_0001
worin
m für 0 oder 1 steht, A zusammen mit dem Teil der Phosphonitgruppe, an den es gebunden ist, für einen 5- bis 8-gliedrigen Heterocyclus steht, der gegebenenfalls zusätzlich ein-, zwei- oder dreifach mit Cycloalkyl, Aryl und/oder Hetaryl anelliert sein kann, wobei die anellierten Gruppen je einen, zwei oder drei Substituenten, ausgewählt unter Alkyl, Alkoxy, Halogen, Nitro, Cyano oder Carboxyl tragen können, R1 für eine C3- bis Cβ-Alkylenbrücke steht, welche eine, zwei oder drei Doppelbindungen aufweisen und/oder ein-, zwei- oder dreifach mit Aryl und/oder Hetaryl anelliert sein kann, wobei die Aryl- oder Hetarylgruppen einen, zwei oder drei der folgenden Substituenten: Alkyl, Cycloalkyl, Aryl, Alkoxy, Cycloalkyloxy, Aryloxy, Halogen, Trifluormethyl, Nitro, Cyano, Carboxyl oder NEXE2 tragen können, wobei E1 und E2 gleich oder verschieden sein kön- nen und für Alkyl, Cycloalkyl oder Aryl stehen,
D die zuvor für A angegebenen Bedeutungen besitzen kann,
oder Salze und Mischungen davon.
2. Katalysator nach Anspruch 1, wobei R1 für einen Rest der Formel II.1, II.2, II.3 oder II.4 _.R3
Figure imgf000021_0002
(II.1) (II.2)
Figure imgf000021_0003
steht, worin 20
R2 und R3 unabhängig voneinander für Wasserstoff, Alkyl, Alkoxy, Halogen, Trifluormethyl, Nitro oder Cyano stehen,
R4 für Wasserstoff, Alkyl, vorzugsweise Methyl, oder Aryl, vorzugsweise Phenyl, steht, welches gegebenenfalls durch Alkyl, Alkoxy, Halogen, Trifluormethyl, Nitro oder Cyano substituiert sein kann.
3. Katalysator nach einem der vorhergehenden Ansprüche, wobei der Phosphonitligand der Formel I ausgewählt ist unter Ligan- den der Formeln la bis Ig
OMe OMe
Figure imgf000022_0001
(la)
Figure imgf000022_0002
(Ib) 21
CI CI
Figure imgf000023_0001
Figure imgf000023_0002
10
Figure imgf000023_0003
Figure imgf000023_0004
(Ic)
15
CHi CH3
20
Figure imgf000023_0005
25
(Id)
30
Figure imgf000023_0006
Figure imgf000023_0007
35
Figure imgf000023_0008
Figure imgf000023_0009
40
(le)
45 22
Figure imgf000024_0001
(If)
OMe OMe
Figure imgf000024_0002
( g)
4. Katalysator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem Metall der VIII. Nebengruppe um Cobalt, Ruthenium oder Rhodium handelt.
5. Katalysator nach einem der vorhergehenden Ansprüche, der zu- sätzlich wenigstens einen weiteren Liganden, ausgewählt unter Halogeniden, Aminen, Carboxylaten, Acetylacetonat, Aryl- oder Alkylsulfonaten, Hydrid, CO, Olefinen, Dienen, Cycloolefinen, Nitrilen, N-haltigen Heterocyclen, Aromaten und Heteroaroma- ten, Ethern, PF3 sowie ein-, zwei- und mehrzähnigen Phos- phin-, Phosphinit- und Phosphitliganden aufweist.
6. Verfahren zur Hydroformylierung von Verbindungen, die wenigstens eine ethylenisch ungesättigte Doppelbindung enthalten, durch Umsetzung mit Kohlenmonoxid und Wasserstoff in Gegen- wart eines Hydroformylierungskatalysators, dadurch gekenn- 23 zeichnet, dass man als Hydroformylierungskatalysator einen Katalysator nach einem der Ansprüche 1 bis 5 einsetzt.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der Hydroformylierungskatalysator in situ hergestellt wird, wobei man mindestens einen Phosphonitliganden der allgemeinen Formel I, wie in den Ansprüchen 1 bis 4 definiert, eine Verbindung oder einen Komplex eines Metalls der VIII. Nebengruppe und gegebenenfalls ein Aktivierungsmittel in einem inerten Lösungsmittel unter den Hydroformylierungsbedingungen zur Reaktion bringt.
8. Verwendung von Katalysatoren, umfassend einen Phosphonitliganden der Formel I, gemäß einem der Ansprüche 1 bis 4 zur Hydroformylierung.
PCT/EP1999/001597 1998-03-12 1999-03-11 Katalysator, umfassend einen komplex eines metalls der viii. nebengruppe auf basis eines phosphonitliganden und verfahren zur hydroformylierung WO1999046044A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/623,175 US6440891B1 (en) 1998-03-12 1999-03-11 Catalyst comprising a complex of a metal of subgroup VIII, on the basis of a phosphonite ligand and method for hydroformylation
JP2000535451A JP2002505945A (ja) 1998-03-12 1999-03-11 ホスホナイト配位子をベースとする第viii副族の金属の錯体を含有する触媒及びヒドロホルミル化法
EP99911776A EP1064093B1 (de) 1998-03-12 1999-03-11 Katalysator, umfassend einen rhodium-komplex auf der basis eines phosphonitliganden und verfahren zur hydroformylierung
DE59905839T DE59905839D1 (de) 1998-03-12 1999-03-11 Katalysator, umfassend einen rhodium-komplex auf der basis eines phosphonitliganden und verfahren zur hydroformylierung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19810794A DE19810794A1 (de) 1998-03-12 1998-03-12 Katalysator, umfassend einen Komplex eines Metalls der VIII. Nebengruppe auf Basis eines Phosphonitliganden und Verfahren zur Hydroformylierung
DE19810794.3 1998-03-12

Publications (1)

Publication Number Publication Date
WO1999046044A1 true WO1999046044A1 (de) 1999-09-16

Family

ID=7860680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/001597 WO1999046044A1 (de) 1998-03-12 1999-03-11 Katalysator, umfassend einen komplex eines metalls der viii. nebengruppe auf basis eines phosphonitliganden und verfahren zur hydroformylierung

Country Status (9)

Country Link
US (1) US6440891B1 (de)
EP (1) EP1064093B1 (de)
JP (1) JP2002505945A (de)
KR (1) KR20010052204A (de)
CN (1) CN1159105C (de)
DE (2) DE19810794A1 (de)
ES (1) ES2201686T3 (de)
MY (1) MY120564A (de)
WO (1) WO1999046044A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1091804B1 (de) * 1998-06-05 2002-02-27 Basf Aktiengesellschaft Katalysator, umfassend einen komplex eines metalls der viii. nebengruppe auf basis eines zweizähnigen phosphonitliganden und verfahren zur herstellung von nitrilen
EP1318868A2 (de) * 2000-09-18 2003-06-18 Basf Aktiengesellschaft Verfahren zur hydroformylierung mit katalysatoren von xanthen-verbruckten liganden
WO2003062171A2 (de) 2002-01-24 2003-07-31 Basf Aktiengesellschaft Verfahren zur abtrennung von säuren aus chemischen reaktionsgemischen mit hilfe von ionischen flüssigkeiten
US6660877B2 (en) 2002-03-07 2003-12-09 E. I. Du Pont De Nemours And Company Phosphonite ligands and their use in hydrocyanation
US6660876B2 (en) 2001-11-26 2003-12-09 E. I. Du Pont De Nemours And Company Phosphorus-containing compositions and their use in hydrocyanation, isomerization and hydroformylation reactions
EP2516373B1 (de) 2009-12-22 2016-09-21 Dow Technology Investments LLC Steuerung des verhältnisses von normal- -zu-iso-aldehyd in einem mischligand-hydroformylierungsverfahren
WO2017150337A1 (ja) 2016-03-01 2017-09-08 株式会社クラレ ジアルデヒド化合物の製造方法
EP4059940A1 (de) * 2021-03-18 2022-09-21 Evonik Operations GmbH Liganden auf basis von phosphonit-phosphiten

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10220801A1 (de) 2002-05-10 2003-11-20 Oxeno Olefinchemie Gmbh Verfahren zur Rhodium-katalysierten Hydroformylierung von Olefinen unter Reduzierung der Rhodiumverluste
JP4523411B2 (ja) 2002-08-31 2010-08-11 エボニック オクセノ ゲゼルシャフト ミット ベシュレンクテル ハフツング 環状炭酸エステルの存在下でのオレフィン性不飽和化合物、特にオレフィンのヒドロホルミル化法
TWI227715B (en) * 2003-11-12 2005-02-11 Chung Shan Inst Of Science A method for preparing biphenylphosphonate compound
CN1309728C (zh) * 2004-07-30 2007-04-11 中国科学院上海有机化学研究所 一类手性有机-无机高分子组装体催化剂、合成方法及用途
US7365234B2 (en) 2006-03-17 2008-04-29 University Of Kansas Tuning product selectivity in catalytic hydroformylation reactions with carbon dioxide expanded liquids
US7586010B2 (en) * 2006-12-21 2009-09-08 Eastman Chemical Company Phosphonite-containing catalysts for hydroformylation processes
US7872157B2 (en) * 2007-12-26 2011-01-18 Eastman Chemical Company Phosphonite containing catalysts for hydroformylation processes
US7872156B2 (en) * 2007-12-26 2011-01-18 Eastman Chemical Company Fluorophosphite containing catalysts for hydroformylation processes
JP5670909B2 (ja) 2008-11-14 2015-02-18 ユニバーシティ・オブ・カンザス ポリマーに担持された遷移金属触媒錯体、及びその使用方法
US7928267B1 (en) 2009-06-22 2011-04-19 Eastman Chemical Company Phosphite containing catalysts for hydroformylation processes
WO2012064586A1 (en) 2010-11-12 2012-05-18 Dow Technology Investments Llc Mitigation of fouling in hydroformylation processes by water addition
SA112330271B1 (ar) 2011-04-18 2015-02-09 داو تكنولوجى انفستمنتس ال ال سى تخفيف التلوث في عمليات هيدروفورملة عن طريق إضافة الماء
WO2013184350A1 (en) 2012-06-04 2013-12-12 Dow Technology Investments Llc Hydroformylation process
WO2014051975A1 (en) 2012-09-25 2014-04-03 Dow Technology Investments Llc Process for stabilizing a phosphite ligand against degradation
KR102098429B1 (ko) 2012-12-06 2020-04-07 다우 테크놀로지 인베스트먼츠 엘엘씨. 하이드로포밀화 방법
JP2016540780A (ja) 2013-12-19 2016-12-28 ダウ テクノロジー インベストメンツ リミティド ライアビリティー カンパニー ヒドロホルミル化プロセス
CN104725170B (zh) 2013-12-19 2019-08-23 陶氏技术投资有限责任公司 加氢甲酰化方法
EP3126319B1 (de) 2014-03-31 2019-07-17 Dow Technology Investments LLC Hydroformylierungsverfahren
KR101811102B1 (ko) 2015-07-13 2017-12-20 주식회사 엘지화학 인계 리간드를 포함하는 촉매 조성물 및 이를 이용한 하이드로포밀화 방법
CN106000470B (zh) * 2016-06-06 2018-12-14 四川大学 用于烯烃氢甲酰化反应的催化剂及其制备方法和应用
KR20220024858A (ko) 2019-06-27 2022-03-03 다우 테크놀로지 인베스트먼츠 엘엘씨. 귀금속 회수를 위한 히드로포르밀화 공정으로부터 용액을 제조하는 공정
US11976017B2 (en) 2019-12-19 2024-05-07 Dow Technology Investments Llc Processes for preparing isoprene and mono-olefins comprising at least six carbon atoms

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312996A (en) * 1992-06-29 1994-05-17 Union Carbide Chemicals & Plastics Technology Corporation Hydroformylation process for producing 1,6-hexanedials
US5360938A (en) * 1991-08-21 1994-11-01 Union Carbide Chemicals & Plastics Technology Corporation Asymmetric syntheses
US5600032A (en) * 1994-06-29 1997-02-04 Mitsubishi Chemical Corporation Method for producing an unsaturated alcohol
JPH09255610A (ja) * 1996-03-28 1997-09-30 Mitsubishi Chem Corp アルデヒド類の製造方法
WO1999013983A1 (de) * 1997-09-12 1999-03-25 Basf Aktiengesellschaft Katalysator, umfassend wenigstens einen nickel(o)komplex auf basis eines phosphonitliganden und verfahren zur herstellung von nitrilen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4193943A (en) 1976-01-19 1980-03-18 Celanese Corporation Hydroformylation catalysts
US4201714A (en) 1977-08-19 1980-05-06 Celanese Corporation Stabilized catalyst complex of rhodium metal, bidentate ligand and monodentate ligand
US4169861A (en) 1977-08-19 1979-10-02 Celanese Corporation Hydroformylation process
BE1008343A3 (nl) 1994-05-06 1996-04-02 Dsm Nv Bidentaat fosfineligand

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360938A (en) * 1991-08-21 1994-11-01 Union Carbide Chemicals & Plastics Technology Corporation Asymmetric syntheses
US5312996A (en) * 1992-06-29 1994-05-17 Union Carbide Chemicals & Plastics Technology Corporation Hydroformylation process for producing 1,6-hexanedials
US5600032A (en) * 1994-06-29 1997-02-04 Mitsubishi Chemical Corporation Method for producing an unsaturated alcohol
JPH09255610A (ja) * 1996-03-28 1997-09-30 Mitsubishi Chem Corp アルデヒド類の製造方法
WO1999013983A1 (de) * 1997-09-12 1999-03-25 Basf Aktiengesellschaft Katalysator, umfassend wenigstens einen nickel(o)komplex auf basis eines phosphonitliganden und verfahren zur herstellung von nitrilen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 098, no. 001 30 January 1998 (1998-01-30) *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1091804B1 (de) * 1998-06-05 2002-02-27 Basf Aktiengesellschaft Katalysator, umfassend einen komplex eines metalls der viii. nebengruppe auf basis eines zweizähnigen phosphonitliganden und verfahren zur herstellung von nitrilen
US6521778B1 (en) 1998-06-05 2003-02-18 Basf Aktiengesellschaft Catalyst comprising a complex of a metal from subgroup VIII based on a bidentate phosphonite ligand, and method for producing nitriles
CN1627990B (zh) * 2000-09-18 2010-04-28 巴斯福股份公司 使用含呫吨桥接配体的催化剂的加氢甲酰化方法
EP1318868A2 (de) * 2000-09-18 2003-06-18 Basf Aktiengesellschaft Verfahren zur hydroformylierung mit katalysatoren von xanthen-verbruckten liganden
EP1318868B1 (de) * 2000-09-18 2005-05-25 Basf Aktiengesellschaft Verfahren zur hydroformylierung mit katalysatoren von xanthen-verbruckten liganden
EP2277623A2 (de) 2001-11-26 2011-01-26 INVISTA Technologies S.à.r.l. Polymere phosphorhaltige Zusammensetzungen und ihre Verwendung bei Hydrocyanierungs-, Isomerisierungs- und Hydroformylierungsreaktionen
US6660876B2 (en) 2001-11-26 2003-12-09 E. I. Du Pont De Nemours And Company Phosphorus-containing compositions and their use in hydrocyanation, isomerization and hydroformylation reactions
US6924345B2 (en) 2001-11-26 2005-08-02 Invista North America S.A R.L. Phosphorus-containing compositions and their use in hydrocyanation, isomerization and hydroformylation reactions
EP1905511A2 (de) 2001-11-26 2008-04-02 INVISTA Technologies S.à.r.l. Phosphorhaltige Zusammensetzung und ihre Verwendung bei Hydrocyanierungs-, Isomerisierungs- und Hydroformylierungsreaktionen
US7767852B2 (en) 2002-01-24 2010-08-03 Basf Aktiengesellschaft Method for the separation of acids from chemical reaction mixtures by means of ionic fluids
WO2003062171A2 (de) 2002-01-24 2003-07-31 Basf Aktiengesellschaft Verfahren zur abtrennung von säuren aus chemischen reaktionsgemischen mit hilfe von ionischen flüssigkeiten
US7351339B2 (en) 2002-01-24 2008-04-01 Basf Aktiengesellschaft Method for the separation of acids from chemical reaction mixtures by means of ionic fluids
US6846945B2 (en) 2002-03-07 2005-01-25 Invista North America S.A.R.L. Phosphonite ligands and their use in hydrocyanation
US6737539B2 (en) 2002-03-07 2004-05-18 E. I. Dupont De Nemours And Company Phosphonite ligands and their use in hydrocyanation
US6660877B2 (en) 2002-03-07 2003-12-09 E. I. Du Pont De Nemours And Company Phosphonite ligands and their use in hydrocyanation
EP2516373B1 (de) 2009-12-22 2016-09-21 Dow Technology Investments LLC Steuerung des verhältnisses von normal- -zu-iso-aldehyd in einem mischligand-hydroformylierungsverfahren
EP2516373B2 (de) 2009-12-22 2020-08-12 Dow Technology Investments LLC Steuerung des verhältnisses von normal- -zu-iso-aldehyd in einem mischligand-hydroformylierungsverfahren
WO2017150337A1 (ja) 2016-03-01 2017-09-08 株式会社クラレ ジアルデヒド化合物の製造方法
EP4059940A1 (de) * 2021-03-18 2022-09-21 Evonik Operations GmbH Liganden auf basis von phosphonit-phosphiten

Also Published As

Publication number Publication date
EP1064093B1 (de) 2003-06-04
JP2002505945A (ja) 2002-02-26
DE19810794A1 (de) 1999-09-16
CN1292728A (zh) 2001-04-25
CN1159105C (zh) 2004-07-28
US6440891B1 (en) 2002-08-27
MY120564A (en) 2005-11-30
DE59905839D1 (de) 2003-07-10
ES2201686T3 (es) 2004-03-16
KR20010052204A (ko) 2001-06-25
EP1064093A1 (de) 2001-01-03

Similar Documents

Publication Publication Date Title
EP1064093B1 (de) Katalysator, umfassend einen rhodium-komplex auf der basis eines phosphonitliganden und verfahren zur hydroformylierung
EP1383777B1 (de) Liganden für pnicogenchelatkomplexe mit einem metall der viii. nebengruppe und verwendung der komplexe als katalysatoren für hydroformylierung, carbonylierung, hydrocyanierung oder hydrierung
EP2091958B1 (de) Bisphosphitliganden für die übergangsmetallkatalysierte hydroformylierung
EP1586577B1 (de) Neue Phosphitverbindungen und neue Phosphitmetallkomplexe
EP1257361B1 (de) Verbindungen des phosphors, arsens und des antimons basierend auf diarylanellierten bicyclo[2.2.n]-grundkörpern und diese enthaltende katalysatoren
WO2007028660A1 (de) Carbonylierungsverfahren unter zusatz von sterisch gehinderten sekundären aminen
EP1318868B1 (de) Verfahren zur hydroformylierung mit katalysatoren von xanthen-verbruckten liganden
DE60132242T2 (de) Phosphonitliganden, katalysatorzusammensetzungen und dessen verwendung in hydroformylierungsprozess
EP1486481A2 (de) Verfahren zur Hydroformylierung
WO2003018192A2 (de) Verfahren zur herstellung von 2-propylheptanol sowie dafür geeignete hydroformylierungskatalysatoren und deren weitere verwendung zur carbonylierung, hydrocyanierung und hydrierung
EP1163051B1 (de) Katalysator, umfassend einen rhodium-komplex auf der basis eines phosphinamiditliganden; seine verwendung zur hydroformylierung
DE10205702A1 (de) Verfahren zur Hydroformylierung, Liganden mit von Bisphenol A abgeleiteter Struktur und Katalysator, umfassend einen Komplex dieser Liganden
EP0705268B1 (de) Phosphorhaltige calixarene
DE10206697A1 (de) Hydroformylierungsverfahren
EP1089818B1 (de) Katalysator, umfassend einen komplex eines metalls der viii. nebengruppe auf basis eines phosphinitliganden, verfahren zur hydroformylierung
DE102007052640A1 (de) Verfahren zur Hydroformylierung
DE10205361A1 (de) Phosphorchelatverbindungen
WO2008141853A1 (de) Stabile katalysatorvorstufe von rh-komplexkatalysatoren
EP1280811B1 (de) Verfahren zur hydroformylierung, verbrückte verbindungen des phosphors, arsens und des antimons und katalysator, umfassend einen komplex dieser verbrückten verbindungen
DE10342760A1 (de) Pnicogenverbindungen
DE102013219512A1 (de) Gemisch aus verschiedenen unsymmetrischen Bisphosphiten und dessen Verwendung als Katalysatorgemisch in der Hydroformylierung
DE10215356A1 (de) Verfahren und Herstellung von Additionsprodukten ethylenisch ungesättigter Verbindungen
DE10260797A1 (de) Monopnicogenverbindungen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99803936.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09623175

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020007009990

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1999911776

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999911776

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007009990

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999911776

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020007009990

Country of ref document: KR