WO1999041192A1 - Tube furnace for carrying out continuous endothermic gas reactions and use of same - Google Patents

Tube furnace for carrying out continuous endothermic gas reactions and use of same Download PDF

Info

Publication number
WO1999041192A1
WO1999041192A1 PCT/EP1999/000228 EP9900228W WO9941192A1 WO 1999041192 A1 WO1999041192 A1 WO 1999041192A1 EP 9900228 W EP9900228 W EP 9900228W WO 9941192 A1 WO9941192 A1 WO 9941192A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
burner
diffuser
combustion
heating chamber
Prior art date
Application number
PCT/EP1999/000228
Other languages
German (de)
French (fr)
Inventor
Heiko Mennerich
Eberhard Aufderheide
Rudolf Jeschar
Andreas Birtigh
Ernst Gail
Hans-Hermann Kriegeris
Ralf Jennes
Original Assignee
Degussa-Hüls Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa-Hüls Aktiengesellschaft filed Critical Degussa-Hüls Aktiengesellschaft
Priority to AU22796/99A priority Critical patent/AU2279699A/en
Publication of WO1999041192A1 publication Critical patent/WO1999041192A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/2425Tubular reactors in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/062Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/02Preparation, separation or purification of hydrogen cyanide
    • C01C3/0208Preparation in gaseous phase
    • C01C3/0229Preparation in gaseous phase from hydrocarbons and ammonia in the absence of oxygen, e.g. HMA-process
    • C01C3/0233Preparation in gaseous phase from hydrocarbons and ammonia in the absence of oxygen, e.g. HMA-process making use of fluidised beds, e.g. the Shawinigan-process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00099Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor the reactor being immersed in the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00157Controlling the temperature by means of a burner
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • Tube furnace for carrying out continuous endothermic gas reactions and its use
  • the invention relates to a tube furnace or tube reactor for carrying out gas reactions and its use for the production of gaseous substances.
  • the tubular reactor according to the invention is used for the production of blue acid according to the BMA process (blue acid methane ammonia process) in ceramic tube bundles.
  • the invention is directed to a tube furnace for continuous endothermic gas reactions, comprising one or a plurality of chambers with ceramic tubes arranged freely suspended in the respective chamber, through which reaction gases can flow, and with at least one burner assigned to the respective chamber, the or the burner is or are arranged so that the combustion gases generated during operation flow into the associated chamber and the ceramic tubes therein are brought from the outside to the temperature required for the desired reaction, the individual components in the reactor according to the invention energetic, process and emission aspects are arranged in a special way to each other and side by side.
  • the previously known tube furnace for carrying out gas reactions consist of a series of parallel chambers, which are equipped with freely suspended ceramic tubes or tube bundles. Each of these chambers is heated on its own. The flue gas is extracted via a separate branch duct, which is connected to the individual chambers via extraction hoods 2
  • the vertically arranged tubes are supplied with the heat required for the reaction through the tube walls, for which the chambers have to be lined appropriately temperature-resistant.
  • the heat is generated by gas or oil burners.
  • the combustion air is heated up recuperatively.
  • the burners, of which two are required per chamber, are arranged in the lower area of the chamber, so that the entire length of the reaction tubes can be brought to the required reaction temperature if possible.
  • the heat of the escaping flue gases can be used for air preheating and / or for steam generation.
  • Such tube furnaces are described for example in DE-PS 10 00 791 and 10 41 476.
  • the recuperators for preheating the combustion air are each arranged between two chambers.
  • DE-A 31 34 851 discloses a tube furnace for carrying out gas reactions, in particular for the production of hydrocyanic acid according to the BMA process, in ceramic tube bundles which are arranged freely suspended in heating chambers within the bricked furnace, which is provided with a metal construction on the outside are the main components of the burner, a flue gas 3
  • Branch duct and recuperators the furnace being in the form of a cuboid or cube, which receives at least two heating chambers arranged in a twin-like manner with recuperators arranged adjacent to the center of the furnace, as well as a flue gas branch duct arranged between the recuperator rooms in the form of a structural unit, and each heating chamber to a maximum has only one burner.
  • the furnace according to DE-A-31 34 851 is preferably designed such that one or more heat exchangers for the combustion air are arranged in the flue gas branch duct.
  • Air preheating of up to approx. 500 ° C can be achieved. This is not without problems, because it means that large amounts of energy in the hot flue gas can only be used to generate steam.
  • Another disadvantage is generally the uneven distribution of the heat-transporting flue gases between the tubes of the ceramic reactor tube bundle.
  • the uneven distribution in the horizontal direction leads to an uneven distribution of the temperature in the individual reaction tubes, which results in a loss of yield.
  • a generally unfavorable energy input present in the entire known prior art also has the consequence that very high heating gas temperatures are necessary. Because of these high temperatures Nitrogen oxides are formed, which make aftertreatment of the heating exhaust gases necessary.
  • the heating and reaction channels are combined in a monolithic arrangement, whereby they are in intimate contact.
  • These reactors require significantly less energy than the tube furnaces or tube reactors described above.
  • a disadvantage of these monolithic reactors is that they have a peak in the middle of the reactor in the temperature profile.
  • the aim is a continuously falling temperature profile in the axial pipe direction.
  • DE-PS 884 348 (Lonza) teaches a generic tube furnace for the production of hydrogen cyanide from ammonia and methane.
  • the tube furnace comprises a two-part chamber, one part of which is designed as a heating chamber with reaction tubes arranged therein and the other part of which is designed as a combustion chamber, and allows the combustion gases to be circulated.
  • the combustion chamber comprises a diffuser, and the burner free jet sucks combustion gases out of the heating chamber through a connecting channel ((5) in FIG. 1). The combustion gases are drawn off laterally in the upper part of the heating chamber.
  • a disadvantage of this tube furnace is that the arrangement of the exhaust opening for the combustion gases ((7) in Fig.
  • the new reactor should be suitable for large-scale use, be as little polluting as possible and at the same time be inexpensive to implement with relatively simple means.
  • Another object of the invention was to provide a tube furnace with the lowest possible horizontal
  • the reactor to be created should have a modular design, so that several reactor modules, each with one or more bundles, can be heated with the aid of one or more combustion chambers.
  • the new reactor should be able to release less nitrogen oxide (NO x ) exhaust gases compared to conventional reactors.
  • NO x nitrogen oxide
  • Another object of the invention was the use of the new reactor for carrying out gas reactions. It was also an object of the invention to provide a method for producing gaseous substances.
  • the burner (s) (120) is or are arranged in such a way that the combustion gases generated during operation flow into the associated heating chamber (101) and the reaction tubes (110) located therein from the outside to the temperature required for the desired reaction bring and in the chamber (100) is arranged at least one means for circulating the combustion gases, which is characterized in that in the immediate vicinity of the burner or burners (120) at least one flue gas outflow device (123) is arranged through which the combustion gases leave the reactor .
  • Appropriate modifications of the reactor according to the invention are protected under the subclaims which are referred to claim 1. Uses belonging to the invention, that is to say processes for carrying out endothermic gas reactions, are likewise the subject of claims for protection.
  • At least one means for effectively circulating the combustion gases is arranged in the chamber and in the immediate vicinity of the burners at least one flue gas outflow device through which the 7
  • the burners of a preferred tubular reactor according to the invention are equipped with a heat recovery unit which serves to preheat the air, the fuel gas or the air / fuel gas mixture by means of the extracted combustion gas and is combined with the flue gas outflow device.
  • the hot combustion gases which are generated during operation of the burner, are used several times, e.g. B. circulated three times between the combustion chamber and the heating chamber before they leave the reactor through a flue gas discharge device in the area of the burner.
  • the circulation according to the invention is carried out by a fan or preferably by the impulse, the gases emerging from the burners and the additional formation of a driving pressure drop, which is generated by the diffuser according to a preferred variant of the invention. Due to the spatial proximity of the outflow device for the combustion gases and the burner and thus the burner free jet, there is an intensive pulse exchange between those leaving the reactor
  • combustion gases and the burner free jet and thus to a stronger circulation (circulation) of the combustion gases (also called flue gases or heating gases) than is the case due to the pure injector effect of the burner free jet.
  • combustion gases also called flue gases or heating gases
  • the reactor of the present invention has the following advantages: 1.
  • the new reactor is suitable for large-scale use, less polluting and at the same time inexpensive to implement with relatively simple means.
  • the reactor specifically uses less energy because of the recirculation and
  • Flow management and arrangement of the flue gas outlet according to the invention has a low horizontal temperature gradient within the tube bundle, so that a uniform temperature profile is achieved, which is necessary for a high yield.
  • the position of possible flow control profiles is variable and can be positioned in the heating chamber depending on the desired temperature profile.
  • the reactor enables a modular
  • the mixture of combustion gas generated in the combustion chamber and low-temperature gas drawn in from the heating chamber results in a reduction in temperature peaks in the combustion zone, which suppresses nitrogen oxide formation.
  • a tubular reactor according to the invention is used to carry out gas reactions.
  • ceramic tube bundles are arranged within a heating chamber of the preferably bricked reactor, which is provided with a metal structure on the outside, usually freely suspended.
  • the anchoring of the ceramic tubes freely suspended in or in the furnace chambers is done, for. B. m the way that the reaction tubes are attached in a cooling head equipped as Kuhlorgan.
  • a specific embodiment of a cooling head which can be used with the invention is disclosed, for example, in DE 33 09 394 C2.
  • the tube furnace is characterized in that the means or means for multiple circulation of the combustion gases are one
  • a diffuser is preferably installed at a distance between 0.2 and 1 m from the entry of the free steel into the combustion chamber.
  • a diffuser in the sense of the invention is, in particular, a flow-comparing installation in a chamber 10
  • the diffuser is arranged in such a way that it can predominantly absorb the fast combustion gases emerging from a burner.
  • predominantly in the context of the invention is meant that more than 50% of a burner free jet volume gets into the diffuser.
  • more than 90% was taken up by the diffuser.
  • the free jet volume of the burner particularly expediently reaches the diffuser.
  • the opening angle of the diffuser is to be selected at 3-7 ° per half angle so that there is no detachment of the flue gas from the reactor wall in order to keep the pressure loss of the tubular reactor small.
  • An asymmetrical design of the diffuser inlet side is particularly preferred, as will also be shown with reference to FIG. 6.
  • Another embodiment of the invention provides that the means for improving the circulation of the gases in the reactor is a ceramic fan. This also enables better thermostatting of the tube bundle. By installing moving elements in the reactor, the combustion gas can be directed or directed onto the tube bundle from reaction tubes.
  • a tube reactor according to the invention in each case has burners and reaction tubes arranged in bundles, preferably ceramic tubes. Both the tube bundle and the burner or burners can be located in one chamber.
  • a tube bundle which extends through the reactor preferably defines a heating chamber which is connected to one another with a combustion chamber or a combustion chamber in the form of a structural unit.
  • the reactor itself can be constructed in a modular manner from several such units, for example from a series of cuboid elements. A so-called combustion chamber with inserted burners and a heating chamber with integrated tube bundles are then present in each element 11
  • heating chamber heating chamber
  • combustion chamber combustion chamber
  • any device familiar to a person skilled in the art for this purpose is suitable as a burner.
  • it can be a gas or an oil burner.
  • One or more burners can be used per module, depending on the desired output.
  • the burner can be positioned both on the top and on the side of the combustion chamber, partially projecting into the combustion chamber.
  • the burner free jet is then arranged so that it sucks and accelerates combustion gases from the heating chamber through its impulse.
  • the burner is then preferably positioned so that by a
  • the flue gases are circulated in the reverse flow direction, so that the ceramic tubes are heated in countercurrent if this is favorable for the gas phase reaction taking place.
  • the burner is built into the combustion chamber from below or laterally, and a flow guiding element can be installed on the chamber head. The diffuser is adjusted accordingly.
  • the height and width of the diffuser can be varied within wide limits depending on the special requirements. The exact position results from the pressure drop required for the circulation.
  • the diffuser works in particular according to the reverse nozzle principle. The diffuser increases the pressure drop driving the circulation within the reactor while reducing the gas velocity of the incoming combustion gases.
  • Asymmetrical design of the diffuser outlet end leads to an improved suction of the combustion gas from the heating chamber.
  • the diffuser is at least partially integrally formed with one or more walls of the chamber of the reactor. This means, for example, that the brick walls of the combustion chamber are designed to give the shape of a diffuser.
  • a further advantageous embodiment of the device according to the invention is that the combustion chamber and the heating chamber or the combustion chamber and the heating chamber are dimensioned such that temperature peaks in the combustion chamber are reduced by a sufficiently high circulation of combustion gases, as a result of which the thermal load on the lining and ceramic pipes is reduced.
  • nitrogen oxide formation is largely prevented.
  • An aftertreatment of the combustion gases withdrawn from the reactor is thereby largely unnecessary.
  • the revolution will improve
  • the device according to the invention it is also advantageous if, based on the direction of flow of the combustion gases, there is at least one flow guide element downstream of the diffuser which improves or optimizes the flow onto the ceramic tubes by combustion gases emerging from the diffuser.
  • the flow within the reactor space i.e. the heating chamber, is additionally distributed by the installation of flow guiding elements, for example guide plates and the like, so that the gases which result from the combustion of the fuel gas make the tube bundle more uniform 13
  • the invention provides that the diffuser has an inlet end which is adjacent to the burner and an outlet end and a flow profile is used as the flow guide element which is adjacent to the outlet end; this profile is arranged outside the diffuser so that it projects into the heating chamber.
  • the actual conversion of the reaction gases takes place in the tube bundles made of ceramic tubes.
  • All ceramics made of oxides, carbides and nitrides and mixtures thereof are suitable as materials for the reaction tubes in the context of the invention. If the ceramics used are porous materials, the walls of the reaction tubes must be coated gas-tight.
  • the reaction tubes are preferably made of I or K aluminum oxide. Due to the manufacturing process, this material may also contain other oxides to a small extent.
  • reaction tubes to be used according to the invention can be produced from the ceramic materials with the aid of known extrusion techniques and with any other technique known to the person skilled in the art.
  • the reaction tubes are typically at least 2 m long and have an inner diameter of approximately 16-18 mm.
  • reaction tubes are provided on their inner surface with a catalytically active coating which is known per se to the person skilled in the art.
  • Coating contains platinum and aluminum nitride.
  • EP 0 407 809 B1 describes a particularly advantageous process for producing these catalytically active coatings, the process described being characterized in that highly active coatings are obtained even with loads of only 2 mg of platinum per cm 2 of the inner surface of the reaction tubes.
  • the reactors according to the invention can be assembled in modular form to form larger reactors. This reduces the space required for individual reactors, since the distance between two furnaces can be reduced or omitted entirely, because heating is no longer carried out from both sides of the chambers, but rather only from one side. Furthermore, the heat radiation is reduced.
  • the invention also relates to the use of the
  • the invention also includes a process for the production of gaseous substances, in which gaseous starting materials are converted to gaseous products, the process being characterized in that a reactor is used as described hereinbefore.
  • the starting materials are ammonia and methane, which leads to the products hydrocyanic acid and hydrogen.
  • FIG. 1 shows a section through a schematic diagram of an embodiment of a particularly preferred reactor according to the invention
  • FIG. 2 shows a section along the plane AB from FIG. 1;
  • FIG. 3 shows a section along the plane CD from FIG. 1;
  • FIG. 4 shows a section through a schematic diagram of a further embodiment of a reactor according to the invention, in which a burner is positioned on the bottom side;
  • Figure 5 is a plan view of two exemplary modular arrangements of several reactors to larger reactor units (variant A, variant B);
  • FIG. 6 shows a section through a combustion chamber with an asymmetrical design of the diffuser.
  • FIG. 1 shows a schematically drawn cross section through a tube furnace reactor 10 according to the invention, which has a single actual chamber 100.
  • This chamber 100 can be divided into two rooms 101 and 102.
  • 101 is called the boiler room or heating chamber
  • 102 is called the combustion chamber or combustion chamber. It can be seen that in the example chosen, the construction described describes a parallel arrangement of combustion chamber 102 and heating chamber 101. Both rooms are not actually separated from each other, but are connected to each other.
  • FIG. 1 denotes the cuboid basic element of the tube furnace according to the invention, from which the reactor is constructed, consisting of the lining with heat-resistant refractory material and one 16
  • the outflow device acts, 134 the burner free jet, 135 the lining of the combustion chamber designed as a diffuser, 150 a flow guiding element in the form of a plate for equalizing the supply of combustion gas into the heating chamber 101.
  • a flow guiding element in the form of a plate for equalizing the supply of combustion gas into the heating chamber 101.
  • Such any number of such elements can be arranged in series or side by side in a row.
  • the element 150 is arranged adjacent to the outlet end 132 of the diffuser and projects into the heating chamber.
  • the device according to the invention as can be seen in FIG. 1, is operated as follows:
  • the educt stream is introduced into the tube bundle (s) 110 from below, the educts being converted into the desired product in the tube bundles.
  • the product emerging from the top of the reaction tube bundle is cooled and removed in the cooling head 111, which is only indicated. It is particularly important here that the product stream can be cooled quickly during insulation, since in most cases the product is only metastable. Devices which are suitable for this are known to the person skilled in the art.
  • the heating gases are generated in the burner 120 and introduced into the heating chamber 101 via the diffuser 135, which is located in the combustion chamber 102 and optionally via a flow guide plate 150. Here, they heat the reaction tubes 110 in which the actual conversion takes place. After repeated circulation, the combustion gases acting as heating gas leave the reactor 10 through those acting as heat recovery unit 121
  • Flue gas discharge device which is located on the burner 120.
  • FIG. 2 shows a schematic longitudinal section along the AB plane through the reactor.
  • Figure 2 illustrates 17
  • the arrangement of the tube bundle (s) 110, as well as the combustion chamber shaft 102 can be clearly seen.
  • the diffuser 135 is arranged in the shaft 102.
  • the guide element 150 can be seen both in the shaft 101 and in the shaft 102.
  • FIG. 3 illustrates a section along the line C-D from FIG. 1.
  • the passage or the connection between the heating chamber 101 and the combustion chamber 102 can be seen.
  • Pipe bundles 110 can also be seen.
  • FIG. 4 shows the arrangement of the burner 120 on the bottom of the tube furnace 10. This enables operation according to the countercurrent principle.
  • Figure 5 shows several variants for the arrangement of reactor modules to larger reactor units.
  • two module units 10 are connected to one another in such a way that one of the two heating chambers shown is adjacent to two combustion chambers. This enables the ceramic tubes to be heated from two sides with simultaneous flow from two sides.
  • Variant B from FIG. 5 illustrates another one
  • Embodiment of the invention wherein in variant B the modules 10 are arranged so that the cuboid units are combined with each other both in the longitudinal and in the transverse direction. This allows particularly good use of the available resources in a small space. Energy savings are possible due to the reduced radiation area.
  • FIG. 6 illustrates how the asymmetrical design of the inlet side 131 of the diffuser 135 is designed to enable an improved circulation of the flue gases.
  • FIG. 6 shows the combustion chamber 102 with the burner 120, the flue gas outflow device arranged around the burner 18th
  • ⁇ H ⁇ s is generally in the range from 0 to less than 20 °, in particular 0 to 5 °;
  • ⁇ AWS is generally in the range from 20 to 45 °, in particular 25 to 40 °.
  • the asymmetrical shape of the diffuser inlet end leads to an improved suction of the combustion gas sucked in from the heating chamber via the transition 103 by the free jet 134, because a vortex formation which occurs when entering the combustion chamber 102 is suppressed.

Abstract

The invention relates to a tube furnace (10) for continuous endothermic gas reactions, comprising one or more chambers (100), each of which (100) is divided into a heating chamber (101), in which reaction tubes (110) are placed in which reaction gases are able to circulate, and a combustion chamber (102) with at least one assigned burner (120). The burner(s) (120) are arranged in such a way that the combustible gases produced during operation flow into the assigned heating chamber (101) and from the outside heat the reaction tubes (110) positioned in said heating chamber to the temperature required for the reaction. At least one element for circulating the combustible gases is arranged in the chamber (100). According to the invention, at least one flue gas outlet device which is preferably configured as a heat recovery unit (121) and through which the combustible gases leave the reactor is positioned directly adjacent to the burner(s). The preferred circulating element is a combination of burner free jet (134) and diffuser (135). The tube furnace is suitable for the production of hydrocyanic acid according to the 'hydrocyanic acid - methane - ammonia' method.

Description

1 1
Rohrofen zur Durchführung kontinuierlicher endothermer Gasreaktionen und dessen VerwendungTube furnace for carrying out continuous endothermic gas reactions and its use
Beschreibungdescription
Die Erfindung betrifft einen Rohrofen oder Rohrreaktor zur Durchfuhrung von Gasreaktionen und dessen Verwendung zur Herstellung gasformiger Stoffe. Insbesondere wird der Rohrreaktor gemäß der Erfindung für die Herstellung von Blausaure nach dem BMA-Verfahren (Blausaure-Methan- Ammoniak-Verfahren) in keramischen Rohrbundeln eingesetzt.The invention relates to a tube furnace or tube reactor for carrying out gas reactions and its use for the production of gaseous substances. In particular, the tubular reactor according to the invention is used for the production of blue acid according to the BMA process (blue acid methane ammonia process) in ceramic tube bundles.
Im Speziellen richtet sich die Erfindung auf einen Rohrofen für kontinuierliche endotherme Gasreaktionen, aufweisend eine oder eine Mehrzahl von Kammern mit in der jeweiligen Kammer frei hangend angeordneten Keramikrohren, welche für Reaktionsgase durchstrombar sind, und mit je wenigstens einem der jeweiligen Kammer zugeordneten Brenner, wobei der oder die Brenner so angeordnet ist bzw. sind, daß die wahrend des Betriebs entstehenden Verbrennungsgase in die zugeordnete Kammer strömen und die darin befindlichen Keramikrohre von außen auf die für die angestrebte Reaktion erforderliche Temperatur gebracht werden, wobei beim Reaktor gemäß der Erfindung die einzelnen Bauteile unter energetischen sowie Verfahrens- und emissionstechnischen Aspekten in besonderer Weise zueinander und nebeneinander angeordnet sind.In particular, the invention is directed to a tube furnace for continuous endothermic gas reactions, comprising one or a plurality of chambers with ceramic tubes arranged freely suspended in the respective chamber, through which reaction gases can flow, and with at least one burner assigned to the respective chamber, the or the burner is or are arranged so that the combustion gases generated during operation flow into the associated chamber and the ceramic tubes therein are brought from the outside to the temperature required for the desired reaction, the individual components in the reactor according to the invention energetic, process and emission aspects are arranged in a special way to each other and side by side.
Die bisher bekannten Rohrofen für die Durchfuhrung von Gasreaktionen, insbesondere bei Temperaturen über 900 °C, z. B. bei Temperaturen zwischen 1000 und 1500°C, bestehen aus einer Reihe parallel geschalteter Kammern, die mit frei aufgehängten keramischen Rohren bzw. Rohrbundeln bestuckt sind. Jede dieser Kammern wird für sich beheizt. Der Rauchgasabzug erfolgt über einen gesonderten Stichkanal, der über Abzugshauben mit den einzelnen Kammern verbunden 2The previously known tube furnace for carrying out gas reactions, especially at temperatures above 900 ° C, for. B. at temperatures between 1000 and 1500 ° C, consist of a series of parallel chambers, which are equipped with freely suspended ceramic tubes or tube bundles. Each of these chambers is heated on its own. The flue gas is extracted via a separate branch duct, which is connected to the individual chambers via extraction hoods 2
ist. Den senkrecht angeordneten Rohren, deren Inneres den eigentlichen Reaktionsraum darstellt, wird die für die Reaktion erforderliche Wärme durch die Rohrwände zugeführt, wofür die Kammern entsprechend temperaturbeständig ausgekleidet sein müssen. Die Wärme wird durch Gas- oder Ölbrenner erzeugt. Die Verbrennungsluft wird rekuperativ aufgeheizt. Die Brenner, von denen pro Kammer zwei Stück benötigt werden, sind im unteren Bereich der Kammer angeordnet, damit möglichst die gesamte Länge der Reaktionsrohre auf die erforderliche Reaktionstemperatur gebracht werden kann. Die Wärme der austretenden Rauchgase kann für die Luftvorwärmung und/oder für die Dampferzeugung ausgenutzt werden. Solche Rohröfen werden beispielsweise in den DE-PSen 10 00 791 und 10 41 476 beschrieben.is. The vertically arranged tubes, the interior of which represents the actual reaction space, are supplied with the heat required for the reaction through the tube walls, for which the chambers have to be lined appropriately temperature-resistant. The heat is generated by gas or oil burners. The combustion air is heated up recuperatively. The burners, of which two are required per chamber, are arranged in the lower area of the chamber, so that the entire length of the reaction tubes can be brought to the required reaction temperature if possible. The heat of the escaping flue gases can be used for air preheating and / or for steam generation. Such tube furnaces are described for example in DE-PS 10 00 791 and 10 41 476.
Bei mehreren Öfen ist es möglich, je zwei Öfen an einen gemeinsamen Stichkanal, der dann zwischen diesen beiden Öfen angeordnet ist, anzuschließen und über einen Sammelkanal mit Hilfe eines Saugzuggebläses den Wärmeinhalt des Rauchgases in einem Abhitzekessel zur Herstellung von Dampf auszunützen.In the case of several furnaces, it is possible to connect two furnaces to a common branch duct, which is then arranged between these two furnaces, and to utilize the heat content of the flue gas in a waste heat boiler to produce steam via a collecting duct with the aid of an induced draft fan.
Die Rekuperatoren für die Vorwärmung der Verbrennungsluft sind jeweils zwischen zwei Kammern angeordnet.The recuperators for preheating the combustion air are each arranged between two chambers.
Ein Nachteil dieser vorgenannten Öfen ist ihre recht große äußere Oberfläche, die zu Energieverlusten führt.A disadvantage of these aforementioned furnaces is their rather large outer surface, which leads to energy losses.
In gewissem Maße wird dieser Nachteil durch die Öfen gemäß der DE-A-31 34 851 vermieden.To a certain extent this disadvantage is avoided by the furnaces according to DE-A-31 34 851.
In der DE-A 31 34 851 wird ein Rohrofen für die Durchführung von Gasreaktionen, insbesondere für die Herstellung von Blausäure nach dem BMA-Verfahren offenbart, in keramischen Rohrbündeln, die innerhalb des gemauerten, außen mit einer Metallkonstruktion versehenen Ofens in Heizkammern frei hängend angeordnet sind, wobei der Ofen als wesentliche Bestandteile Brenner, einen Rauchgas- 3DE-A 31 34 851 discloses a tube furnace for carrying out gas reactions, in particular for the production of hydrocyanic acid according to the BMA process, in ceramic tube bundles which are arranged freely suspended in heating chambers within the bricked furnace, which is provided with a metal construction on the outside are the main components of the burner, a flue gas 3
Stichkanal und Rekuperatoren aufweist, wobei der Ofen die Form eines Quaders oder Würfels hat, der mindestens zwei zwillingsartig zueinander angeordnete Heizkammern mit zur Ofenmitte daran anschließend angeordneten Rekuperatoren sowie einen zwischen den Rekuperatorräumen angeordneten Rauchgas-Stichkanal in Form einer baulichen Einheit aufnimmt und wobei jede Heizkammer maximal nur einen Brenner aufweist. Schließlich ist der Ofen gemäß der DE-A- 31 34 851 vorzugsweise so ausgestaltet, daß im Rauchgas- Stichkanal ein oder mehrere Wärmetauscher für die Verbrennungsluft angeordnet sind.Branch duct and recuperators, the furnace being in the form of a cuboid or cube, which receives at least two heating chambers arranged in a twin-like manner with recuperators arranged adjacent to the center of the furnace, as well as a flue gas branch duct arranged between the recuperator rooms in the form of a structural unit, and each heating chamber to a maximum has only one burner. Finally, the furnace according to DE-A-31 34 851 is preferably designed such that one or more heat exchangers for the combustion air are arranged in the flue gas branch duct.
Obwohl einige der vorerwähnten Nachteile hierdurch vermeidbar sind, fällt bei solcher Art Rohröfen weiterhin nachteilig ins Gewicht, daß wegen der Beständigkeit des Materials der Rekuperatoren nur Temperaturen derAlthough some of the aforementioned disadvantages can be avoided in this way, in this type of tube furnace it is still disadvantageous that, due to the durability of the material of the recuperators, only temperatures of
Luftvorwärmung von bis zu ca. 500°C erreichbar sind. Dies ist nicht unproblematisch, weil dadurch große Mengen- Energie im heißen Rauchgas nur noch zur Dampferzeugung verwendet werden können.Air preheating of up to approx. 500 ° C can be achieved. This is not without problems, because it means that large amounts of energy in the hot flue gas can only be used to generate steam.
Ein weiterer Nachteil ist generell die ungleichmäßige Verteilung der die Wärme transportierenden Rauchgase zwischen den Rohren der keramischen Reaktorrohrbündel. Die Ungleichverteilung in horizontaler Richtung führt zu einer Ungleichverteilung der Temperatur in den einzelnen Reaktionsrohren, was Ausbeuteeinbußen zur Folge hat.Another disadvantage is generally the uneven distribution of the heat-transporting flue gases between the tubes of the ceramic reactor tube bundle. The uneven distribution in the horizontal direction leads to an uneven distribution of the temperature in the individual reaction tubes, which results in a loss of yield.
Die Ungleichverteilung der horizontalen Rohrtemperatur wird beim heutigen Reaktor dadurch unterstützt, daß das Rohrbündel von der schmalen Seite angeströmt wird, was den Energieeintrag in die mittleren Rohre des Rohrbündels verschlechtert.The unequal distribution of the horizontal tube temperature is supported in today's reactor in that the tube bundle is flowed from the narrow side, which worsens the energy input into the middle tubes of the tube bundle.
Ein insgesamt im gesamten bekannten Stand der Technik vorhandener recht ungünstiger Energieeintrag hat des weiteren zur Folge, daß sehr hohe Heizgastemperaturen notwendig sind. Durch diese hohen Temperaturen werden Stickoxide gebildet, die eine Nachbehandlung der Heizabgase erforderlich machen.A generally unfavorable energy input present in the entire known prior art also has the consequence that very high heating gas temperatures are necessary. Because of these high temperatures Nitrogen oxides are formed, which make aftertreatment of the heating exhaust gases necessary.
Neben den genannten Rohröfen oder Rohrreaktoren sind zur Durchführung von Gasreaktionen, insbesondere zur Durchführung des BMA-Verfahrens, monolithische Gleich- oder Gegenstromreaktoren bekannt, wie sie beispielsweise in den deutschen Patentanmeldungen DE-A 195 24 158, DE-A 196 53 989, DE-A 196 53 991 beschrieben sind.In addition to the tube furnaces or tube reactors mentioned, monolithic cocurrent or countercurrent reactors are known for carrying out gas reactions, in particular for carrying out the BMA process, as described, for example, in German patent applications DE-A 195 24 158, DE-A 196 53 989, DE- A 196 53 991 are described.
Hierbei werden die Heiz- und Reaktionskanäle in einer monolithischen Anordnung zusammengefaßt, wodurch diese in einem innigen Kontakt stehen. Diese Reaktoren benötigen deutlich weniger Energie als die vorstehend beschriebenen Rohröfen bzw. Rohrreaktoren. Nachteilig ist jedoch bei diesen monolithischen Reaktoren, daß sie im Temperaturprofil eine Spitze in der Reaktormitte aufweisen. Angestrebt wird, wie in der Erfindung verwirklicht, ein kontinuierlich fallendes Temperaturprofil in axialer Rohrrichtung.Here, the heating and reaction channels are combined in a monolithic arrangement, whereby they are in intimate contact. These reactors require significantly less energy than the tube furnaces or tube reactors described above. However, a disadvantage of these monolithic reactors is that they have a peak in the middle of the reactor in the temperature profile. As is realized in the invention, the aim is a continuously falling temperature profile in the axial pipe direction.
Die DE-PS 884 348 (Lonza) lehrt einen gattungsgemäßen Rohrofen zur Herstellung von Cyanwasserstoff aus Ammoniak und Methan. Der Rohrofen umfaßt eine zweiteilige Kammer deren einer Teil als Heizkammer mit darin angeordneten Reaktionsrohren und deren anderer Teil als Brennkammer ausgebildet ist, und gestattet eine Umwälzung der Verbrennungsgase. Die Brennkammer umfaßt einen Diffusor, und der Brennerfreistrahl saugt durch einen Verbindungskanal ( (5) in Fig. 1) Verbrennungsgase aus der Heizkammer an. Die Verbrennungsgase werden im oberen Teil der Heizkammer seitlich abgezogen. Ein Nachteil dieses Rohrofens ist, daß durch die Anordnung der Abzugsöffnung für die Verbrennungsgase ((7) in Fig. 1) - seitlich am oberen Ende der Heizkammer (= Rohrkammer) - der Unterdruck am Rauchgasabzug verstärkt wird und damit das Verbrennungsgas in der Heizkammer bevorzugt entlang der Kammerwand, an welcher die Abzugsöffnung liegt, nach oben strömt. Hierdurch wird ein ungleichmäßiges Strömungs- und Temperaturprofil erzeugt und die Ausbeute gemindert. Des weiteren wirkt die räumliche Trennung der Abzugsöffnung für die Verbrennungsgase (= Rauchgase) und des Brennerfreistrahls einem intensiven Impulsaustausch und somit der Verbrennungsgasumwälzung entgegen.DE-PS 884 348 (Lonza) teaches a generic tube furnace for the production of hydrogen cyanide from ammonia and methane. The tube furnace comprises a two-part chamber, one part of which is designed as a heating chamber with reaction tubes arranged therein and the other part of which is designed as a combustion chamber, and allows the combustion gases to be circulated. The combustion chamber comprises a diffuser, and the burner free jet sucks combustion gases out of the heating chamber through a connecting channel ((5) in FIG. 1). The combustion gases are drawn off laterally in the upper part of the heating chamber. A disadvantage of this tube furnace is that the arrangement of the exhaust opening for the combustion gases ((7) in Fig. 1) - on the side at the upper end of the heating chamber (= tube chamber) - increases the negative pressure on the flue gas exhaust and thus prefers the combustion gas in the heating chamber along the chamber wall on which the discharge opening is located, upwards flows. This creates an uneven flow and temperature profile and reduces the yield. Furthermore, the spatial separation of the exhaust opening for the combustion gases (= flue gases) and the burner free jet counteracts an intensive exchange of impulses and thus the combustion gas circulation.
Angesichts des hierin angegebenen und diskutierten Standes der Technik war es mithin Aufgabe der Erfindung, einen Rohrofen oder Rohrreaktor der eingangs erwähnten Art anzugeben, der die Durchführung endothermer Gasreaktionen, insbesondere des BMA-Verfahrens, in guter Ausbeute erlaubt.In view of the prior art specified and discussed herein, it was therefore an object of the invention to provide a tube furnace or tube reactor of the type mentioned at the outset which allows endothermic gas reactions, in particular the BMA process, to be carried out in good yield.
Der neue Reaktor soll für den großtechnischen Einsatz tauglich sein, möglichst wenig umweltbelastend und gleichzeitig mit relativ einfachen Mitteln kostengünstig zu realisieren sein.The new reactor should be suitable for large-scale use, be as little polluting as possible and at the same time be inexpensive to implement with relatively simple means.
Des weiteren war es Aufgabe der Erfindung, einen Reaktor zur Verfügung zu stellen, der einen geringen spezifischen Energieverbrauch aufweist.Furthermore, it was an object of the invention to provide a reactor which has a low specific energy consumption.
Noch eine Aufgabe der Erfindung war die Angabe eines Rohrofens, der einen möglichst geringen horizontalenAnother object of the invention was to provide a tube furnace with the lowest possible horizontal
Temperaturgradienten innerhalb der Rohrbündel aufweist, so daß ein gleichmäßiges Temperaturprofil erreicht wird, welches für eine hohe Ausbeute förderlich ist.Has temperature gradients within the tube bundle, so that a uniform temperature profile is achieved, which is conducive to a high yield.
Weiterhin sollte der zu schaffende Reaktor eine odulare Bauweise aufweisen, so daß mehrere Reaktormodule mit jeweils einem oder mehreren Bündeln mit Hilfe eines oder mehrerer Brennräume erhitzt werden können.Furthermore, the reactor to be created should have a modular design, so that several reactor modules, each with one or more bundles, can be heated with the aid of one or more combustion chambers.
Darüber hinaus soll der neue Reaktor die Möglichkeit besitzen, im Vergleich zu herkömmlichen Reaktoren weniger stickoxidhaltige (NOx) Abgase freizusetzen.In addition, the new reactor should be able to release less nitrogen oxide (NO x ) exhaust gases compared to conventional reactors.
Noch eine Aufgabe der Erfindung war die Verwendung des neuen Reaktors zur Durchführung von Gasreaktionen. Weiter war es Aufgabe der Erfindung, ein Verfahren zur Herstellung von gasformigen Stoffen anzugeben.Another object of the invention was the use of the new reactor for carrying out gas reactions. It was also an object of the invention to provide a method for producing gaseous substances.
Gelost werden diese Aufgaben sowie weitere nicht einzeln und wortlich aufgezahlte Aufgaben, die jedoch aus den hierin einleitend diskutierten Zusammenhangen ableitbar oder erschließbar sind, durch einen Rohrofen oder Rohrreaktor der eingangs erwähnten Art, welcher das Merkmal des kennzeichnenden Teils des Anspruches 1 aufweist. Gefunden wurde somit ein Rohrofen (10) für kontinuierliche endotherme Gasreaktionen, aufweisend eine oder eineThese tasks, as well as other tasks that are not listed individually and verbatim, but which can be derived or inferred from the contexts discussed in the introduction, are solved by a tube furnace or tube reactor of the type mentioned at the outset, which has the feature of the characterizing part of claim 1. A tube furnace (10) for continuous endothermic gas reactions was thus found, comprising one or one
Mehrzahl von Kammern (100) , wobei die jeweilige Kammer (100) in eine Heizkammer (101) mit darin angeordneten Reaktionsrohren (110), welche für Reaktionsgase durchstrombar sind, und in eine Brennkammer (102) mit wenigstens einem zugeordneten Brenner (120) gegliedert ist, wobei der oder die Brenner (120) so angeordnet ist bzw. sind, daß die wahrend des Betriebs entstehenden Verbrennungsgase in die zugeordnete Heizkammer (101) strömen und die darin befindlichen Reaktionsrohre (110) von außen auf die für die angestrebte Reaktion erforderliche Temperatur bringen und in der Kammer (100) wenigstens ein Mittel zur Umwälzung der Verbrennungsgase angeordnet ist, der dadurch gekennzeichnet ist, daß in unmittelbarer Nachbarschaft des oder der Brenner (120) mindestens eine Rauchgasausstromvorrichtung (123) angeordnet ist, durch welche die Verbrennungsgase den Reaktor verlassen. Zweckmäßige Abwandlungen des erfindungsgemaßen Reaktors werden m den auf Anspruch 1 ruckbezogenen Unteranspruchen unter Schutz gestellt. Zur Erfindung gehörige Verwendungen, also Verfahren zur Durchf hrung endothermer Gasreaktionen, sind ebenfalls Gegenstand von Schutzanspruchen.A plurality of chambers (100), the respective chamber (100) being divided into a heating chamber (101) with reaction tubes (110) arranged therein, through which reaction gases can flow, and into a combustion chamber (102) with at least one assigned burner (120) The burner (s) (120) is or are arranged in such a way that the combustion gases generated during operation flow into the associated heating chamber (101) and the reaction tubes (110) located therein from the outside to the temperature required for the desired reaction bring and in the chamber (100) is arranged at least one means for circulating the combustion gases, which is characterized in that in the immediate vicinity of the burner or burners (120) at least one flue gas outflow device (123) is arranged through which the combustion gases leave the reactor . Appropriate modifications of the reactor according to the invention are protected under the subclaims which are referred to claim 1. Uses belonging to the invention, that is to say processes for carrying out endothermic gas reactions, are likewise the subject of claims for protection.
Dadurch, daß in der Kammer wenigstens ein Mittel zur wirksamen Umwälzung der Verbrennungsgase angeordnet ist und in unmittelbarer Nachbarschaft der Brenner mindestens eine Rauchgasausstromvorrichtung, durch welche die 7Characterized in that at least one means for effectively circulating the combustion gases is arranged in the chamber and in the immediate vicinity of the burners at least one flue gas outflow device through which the 7
Verbrennungsgase aus dem Reaktor entweichen, angeordnet ist, gelingt es, einen Rohrofen respektive Rohrreaktor anzugeben, der die Durchführung endothermer Gasreaktionen, insbesondere des BMA-Verfahrens, in hervorragender Weise mit hoher Ausbeute erlaubt.Combustion gases escape from the reactor, arranged, it is possible to specify a tube furnace or tube reactor that allows the implementation of endothermic gas reactions, in particular the BMA process, in an excellent manner with high yield.
Die Brenner eines bevorzugten erfindungsgemäßen Rohrreaktors sind mit einer Wärmerückgewinnungseinheit ausgestattet, welche der Vorerwärmung der Luft, des Brenngases oder des Luft-Brenngas-Gemisches mittels des abgezogenen Verbrennungsgases dient und mit der Rauchgasausstromvorrichtung kombiniert ist.The burners of a preferred tubular reactor according to the invention are equipped with a heat recovery unit which serves to preheat the air, the fuel gas or the air / fuel gas mixture by means of the extracted combustion gas and is combined with the flue gas outflow device.
Die heißen Verbrennungsgase, welche beim Betrieb des Brenners erzeugt werden, werden mehrfach, z. B. dreifach zwischen Brennkammer und Heizkammer umgewälzt, bevor sie den Reaktor durch eine Rauchgasausstromvorrichtung im Bereich des Brenners verlassen. Die erfindungsgemäße_ Umwälzung erfolgt durch einen Ventilator oder vorzugsweise durch den Impuls, der aus den Brennern austretenden Gase und der zusätzlichen Ausbildung eines treibenden Druckgefälles, welches gemäß einer bevorzugten erfindungsgemäßen Variante durch den Diffusor erzeugt wird. Aufgrund der räumlichen Nähe der Ausströmvorrichtung für die Verbrennungsgase und des Brenners und damit des Brennerfreistrahls kommt es zu einem intensiven Impulsaustausch zwischen den den Reaktor verlassendenThe hot combustion gases, which are generated during operation of the burner, are used several times, e.g. B. circulated three times between the combustion chamber and the heating chamber before they leave the reactor through a flue gas discharge device in the area of the burner. The circulation according to the invention is carried out by a fan or preferably by the impulse, the gases emerging from the burners and the additional formation of a driving pressure drop, which is generated by the diffuser according to a preferred variant of the invention. Due to the spatial proximity of the outflow device for the combustion gases and the burner and thus the burner free jet, there is an intensive pulse exchange between those leaving the reactor
Verbrennungsgasen und dem Brennerfreistrahl und damit zu einer stärkeren Zirkulation (Umwälzung) der Verbrennungsgase (auch Rauchgase- oder Heizgase genannt) als dies durch reine Injektorwirkung des Brennerfreistrahls der Fall ist.Combustion gases and the burner free jet and thus to a stronger circulation (circulation) of the combustion gases (also called flue gases or heating gases) than is the case due to the pure injector effect of the burner free jet.
Insbesondere weist der Reaktor der vorliegenden Erfindung folgende Vorteile auf: 1. Der neue Reaktor ist für den großtechnischen Einsatz tauglich, wenig umweltbelastend und gleichzeitig mit relativ einfachen Mitteln kostengünstig zu realisieren.In particular, the reactor of the present invention has the following advantages: 1. The new reactor is suitable for large-scale use, less polluting and at the same time inexpensive to implement with relatively simple means.
2. Desweiteren verbraucht der Reaktor spezifisch weniger Energie, weil er aufgrund der Umwälzung und2. Furthermore, the reactor specifically uses less energy because of the recirculation and
Stromungsfuhrung und erfmdungsgemaßen Anordnung des Rauchgasauslasses einen geringen horizontalen Temperaturgradienten innerhalb des Rohrbundeis aufweist, so daß ein gleichmäßiges Temperaturprofil erreicht wird, welches für eine hohe Ausbeute forderlich ist.Flow management and arrangement of the flue gas outlet according to the invention has a low horizontal temperature gradient within the tube bundle, so that a uniform temperature profile is achieved, which is necessary for a high yield.
3a. Die Stellung von möglichen Stromungsleitprofilen ist variabel und kann in Abhängigkeit vom gewünschten Temperaturprofil in der Heizkammer positioniert werden.3a. The position of possible flow control profiles is variable and can be positioned in the heating chamber depending on the desired temperature profile.
3b. Weiterhin ermöglicht der Reaktor eine modulare3b. Furthermore, the reactor enables a modular
Bauweise, so daß mehrere Bündel Reaktionsrohre mit Hilfe einer oder mehrerer Brennkammern erhitzt werden können.Construction so that several bundles of reaction tubes can be heated with the help of one or more combustion chambers.
4. Durch die Umwälzung der Verbrennungsgase wird zusätzlich zur gleichmaßigeren Beheizung eine an sich bekannte Reduzierung der Stickoxide durch Verbrennungsgasrezyklierung in einem Verfahrensschritt erreicht .4. As a result of the circulation of the combustion gases, in addition to the more uniform heating, a known reduction of the nitrogen oxides by recycling of combustion gas is achieved in one process step.
5. Durch die Mischung von in der Brennkammer erzeugtem Verbrennungsgas und aus der Heizkammer angesaugtem Gas niedriger Temperatur wird eine Verminderung von Temperaturspitzen in der Verbrennungszone bewirkt, was die Stickoxidbildung zurückdrängt.5. The mixture of combustion gas generated in the combustion chamber and low-temperature gas drawn in from the heating chamber results in a reduction in temperature peaks in the combustion zone, which suppresses nitrogen oxide formation.
6. Der neue Reaktor setzt im Vergleich zu herkömmlichen Reaktoren aus dem Stand der Technik weniger Stickoxide frei, so daß auf eine Nachbehandlung der ausgeschleusten Verbrennungsgase weitestgehend verzichtet werden kann. Ein erfindungsgemaßer Rohrreaktor dient zur Durchfuhrung von Gasreaktionen. Für die Herstellung von Blausaure nach dem BMA-Verfahren sind keramische Rohrbundel innerhalb einer Heizkammer des vorzugsweise gemauerten, außen mit einer Metallkonstruktion versehenen Reaktors, üblicherweise freihangend angeordnet. Die Verankerung der frei m der oder in den Ofenkammern aufgehängten Keramikrohre erfolgt dabei z. B. m der Weise, daß die Reaktionsrohre in einem als Kuhlorgan ausgestatteten Kuhlkopf befestigt sind. Eine bestimmte Ausgestaltung eines mit der Erfindung einsetzbaren Kuhlkopfes ist beispielsweise in der DE 33 09 394 C2 offenbart.6. The new reactor releases fewer nitrogen oxides compared to conventional reactors from the prior art, so that post-treatment of the discharged combustion gases can be largely avoided. A tubular reactor according to the invention is used to carry out gas reactions. For the production of hydrocyanic acid according to the BMA process, ceramic tube bundles are arranged within a heating chamber of the preferably bricked reactor, which is provided with a metal structure on the outside, usually freely suspended. The anchoring of the ceramic tubes freely suspended in or in the furnace chambers is done, for. B. m the way that the reaction tubes are attached in a cooling head equipped as Kuhlorgan. A specific embodiment of a cooling head which can be used with the invention is disclosed, for example, in DE 33 09 394 C2.
Die vorgenannten Vorteile werden überraschend einfach durch die mehrfache Umwälzung der Verbrennungsgase und das durch die erfindungsgemaß angeordnete Ausstromvorrichtung bewirkte gleichmäßige horizontale Temperaturniveau in der Heizkammer erreicht.The aforementioned advantages are surprisingly achieved simply by the multiple circulation of the combustion gases and the uniform horizontal temperature level in the heating chamber caused by the outflow device arranged according to the invention.
In einer besonders bevorzugten Abwandlung der Erfindung ist der Rohrofen dadurch ausgezeichnet, daß das oder die Mittel zur mehrfachen Umwälzung der Verbrennungsgase eineIn a particularly preferred modification of the invention, the tube furnace is characterized in that the means or means for multiple circulation of the combustion gases are one
Kombination aus einem oder mehreren Brennerfreistrahlen und einem bzw. mehreren -Diffusoren darstellen. Der aus dem oder den Brennern austretende Freistrahl reißt Rauchgas aus der Umgebung mit (Wasserstrahlpumpenprinzip/- Injektorprinzip) , so daß sich der vom Freistrahl beforderte Massenstrom entlang seiner Länge vergrößert. Zur verbesserten Überwindung des Druckverlustes den die umgewälzte Strömung im Reaktor erzeugt, wird vorzugsweise in einem Abstand zwischen 0,2 und Im vom Eintritt des Freistahls in die Brennkammer ein Diffusor installiert. Hierdurch wird die im Freistrahl am Ort des Diffusors vorhandene kinetische Energie in eine Druckerhohung umgewandelt .Represent a combination of one or more burner free jets and one or more diffusers. The free jet emerging from the burner (s) entrains flue gas from the environment (water jet pump principle / injector principle), so that the mass flow required by the free jet increases along its length. In order to better overcome the pressure loss that the circulated flow generates in the reactor, a diffuser is preferably installed at a distance between 0.2 and 1 m from the entry of the free steel into the combustion chamber. As a result, the kinetic energy present in the free jet at the location of the diffuser is converted into an increase in pressure.
Unter Diffusor im Sinne der Erfindung wird insbesondere eine stromungsvergleichmaßigende Einbaute in einer Kammer 10A diffuser in the sense of the invention is, in particular, a flow-comparing installation in a chamber 10
des Reaktors verstanden. Der Diffusor ist dabei so angeordnet, daß er die aus einem Brenner austretenden schnellen Verbrennungsgase überwiegend aufnehmen kann. Mit überwiegend ist im Rahmen der Erfindung gemeint, daß mehr als 50 % eines Brennerfreistrahlvolumens in den Diffusor gelangt. Vorzugsweise wurden mehr als 90 % vom Diffusor aufgenommen. Besonders zweckmäßig gelangt das Freistrahlvolumen des Brenners vollständig in den Diffusor. In einer zweckmäßigen Ausführungsform ist der Öffnungswinkel des Diffusors mit 3-7° pro Halbwinkel so zu wählen, daß es zu keiner Ablösung des Rauchgases von der Reaktorwand kommt, um den Druckverlust des Rohrreaktors klein zu halten. Eine asymmetrische Ausbildung der Diffusoreintrittsseite wird, wie noch anhand der Figur 6 gezeigt wird, besonders bevorzugt.understood the reactor. The diffuser is arranged in such a way that it can predominantly absorb the fast combustion gases emerging from a burner. By predominantly in the context of the invention is meant that more than 50% of a burner free jet volume gets into the diffuser. Preferably, more than 90% was taken up by the diffuser. The free jet volume of the burner particularly expediently reaches the diffuser. In an expedient embodiment, the opening angle of the diffuser is to be selected at 3-7 ° per half angle so that there is no detachment of the flue gas from the reactor wall in order to keep the pressure loss of the tubular reactor small. An asymmetrical design of the diffuser inlet side is particularly preferred, as will also be shown with reference to FIG. 6.
Eine weitere Ausgestaltung der Erfindung sieht vor, daß das Mittel zur Verbesserung der Umwälzung der Gase im Reaktor ein keramischer Ventilator ist. Auch hierdurch kann man eine bessere Thermostatisierung der Rohrbündel erreichen. Durch den Einbau bewegter Elemente in den Reaktor kann das Verbrennungsgas auf die Rohrbündel aus Reaktionsrohren gerichtet oder gelenkt werden.Another embodiment of the invention provides that the means for improving the circulation of the gases in the reactor is a ceramic fan. This also enables better thermostatting of the tube bundle. By installing moving elements in the reactor, the combustion gas can be directed or directed onto the tube bundle from reaction tubes.
Ein erfindungsgemäßer Rohrreaktor weist neben Mitteln zur Umwälzung in jedem Falle Brenner sowie zu Bündeln geordnete Reaktionsrohre, vorzugsweise Keramikrohre, auf. Sowohl die Rohrbündel als auch der oder die Brenner können sich in einer Kammer befinden. Vorzugsweise definiert ein den Reaktor durchziehendes Rohrbündel eine Heizkammer, die mit einer Brennkammer oder einem Brennraum in Form einer baulichen Einheit miteinander verbunden ist. Der Reaktor selbst kann aus mehreren solcher Einheiten beispielsweise aus einer Reihe von quaderförmigen Elementen modulartig aufgebaut sein. In jedem Element ist dann jeweils ein sogenannter Brennraum mit eingesetzten Brennern und eine Heizkammer mit integrierten Rohrbündeln vorhanden, wobei 11In addition to means for circulation, a tube reactor according to the invention in each case has burners and reaction tubes arranged in bundles, preferably ceramic tubes. Both the tube bundle and the burner or burners can be located in one chamber. A tube bundle which extends through the reactor preferably defines a heating chamber which is connected to one another with a combustion chamber or a combustion chamber in the form of a structural unit. The reactor itself can be constructed in a modular manner from several such units, for example from a series of cuboid elements. A so-called combustion chamber with inserted burners and a heating chamber with integrated tube bundles are then present in each element 11
keine tatsächliche Trennung der Kammern stattzufinden hat. Eine bauliche Trennung von Heizkammer (= Heizraum) und Brennkammer (= Brennraum) ist jedoch günstig für die Strömungsführung der Verbrennungsgase entlang der Gesamtheit der Rohrbündel oder Kontaktrohre.there is no actual separation of the chambers. A structural separation of the heating chamber (= heating chamber) and the combustion chamber (= combustion chamber) is, however, favorable for the flow of the combustion gases along the entirety of the tube bundle or contact tube.
Als Brenner ist jede dem Fachmann hierfür geläufige Vorrichtung geeignet. Es kann sich beispielsweise um einen Gas- oder einen Ölbrenner handeln. Es können pro Modul ein oder mehrere Brenner eingesetzt werden, je nach gewünschter Leistung. Der Brenner kann sowohl oben als auch seitlich an der Brennkammer positioniert sein, wobei er teilweise in die Brennkammer ragt. Der Brennerfreistrahl ist dann so angeordnet, daß er durch seinen Impuls Verbrennungsgase aus der Heizkammer ansaugt und beschleunigt. Vorzugsweise ist der Brenner dann so positioniert, daß durch eineAny device familiar to a person skilled in the art for this purpose is suitable as a burner. For example, it can be a gas or an oil burner. One or more burners can be used per module, depending on the desired output. The burner can be positioned both on the top and on the side of the combustion chamber, partially projecting into the combustion chamber. The burner free jet is then arranged so that it sucks and accelerates combustion gases from the heating chamber through its impulse. The burner is then preferably positioned so that by a
Ansaugöffnung zwischen der Brennkammer und der Heizkammer Verbrennungsgase aus der Heizkammer durch den Freistrahl angesaugt und mitgerissen wird. Hier erfolgt eine Beheizung der Keramikrohre im Gleichstrom.Intake opening between the combustion chamber and the heating chamber combustion gases are sucked out of the heating chamber through the free jet and entrained. Here the ceramic tubes are heated in direct current.
In einer anderen Ausbildung des erfindungsgemäßen Reaktors erfolgt die Umwälzung der Rauchgase in umgekehrter Strömungsrichtung, so daß die Keramikrohre im Gegenstrom beheizt werden, wenn dies für die ablaufende Gasphasenreaktion günstig ist. Dabei ist der Brenner von unten oder seitlich in die Brennkammer eingebaut, und am Kammerkopf kann ein Strömungsleitelement eingebaut sein. Der Diffusor wird entsprechend angepaßt.In another embodiment of the reactor according to the invention, the flue gases are circulated in the reverse flow direction, so that the ceramic tubes are heated in countercurrent if this is favorable for the gas phase reaction taking place. The burner is built into the combustion chamber from below or laterally, and a flow guiding element can be installed on the chamber head. The diffuser is adjusted accordingly.
Die Höhe und die Weite des Diffusors sind in Abhängigkeit von den speziellen Erfordernissen in weiten Grenzen variabel. Die genaue Position ergibt sich aus dem für die Umwälzung benötigten Druckgefälle. Der Diffusor wirkt insbesondere nach dem umgekehrten Düsenprinzip. Der Diffusor erhöht dabei das die Umwälzung treibende Druckgefälle innerhalb des Reaktors unter Verminderung der Gasgeschwindigkeit der eintretenden Verbrennungsgase. Eine 12The height and width of the diffuser can be varied within wide limits depending on the special requirements. The exact position results from the pressure drop required for the circulation. The diffuser works in particular according to the reverse nozzle principle. The diffuser increases the pressure drop driving the circulation within the reactor while reducing the gas velocity of the incoming combustion gases. A 12
asymmetrische Bauform des Diffusor-Emtrittsendes fuhrt zu einer verbesserten Ansaugung des Verbrennungsgases aus der Heizkammer .Asymmetrical design of the diffuser outlet end leads to an improved suction of the combustion gas from the heating chamber.
In einer besonders vorteilhaften Abwandlung des erfmdungsgemaßen Rohrreaktors ist der Diffusor zumindest teilweise integral mit einer oder mehreren Wanden der Kammer des Reaktors ausgebildet. Das heißt beispielsweise, daß die gemauerten Wände der Brennkammer so ausgebildet sind, daß sie die Form eines Diffusors ergeben.In a particularly advantageous modification of the tubular reactor according to the invention, the diffuser is at least partially integrally formed with one or more walls of the chamber of the reactor. This means, for example, that the brick walls of the combustion chamber are designed to give the shape of a diffuser.
Eine weitere gunstige Ausgestaltung der erfmdungsgemaßen Vorrichtung besteht darin, daß Brennraum und Heizraum respektive Brennkammer und Heizkammer so dimensioniert werden, daß durch eine ausreichend hohe Umwälzung von Verbrennungsgasen Temperaturspitzen im Brennraum vermindert werden, wodurch die thermische Belastung von Ausmauerung und keramischen Rohren vermindert wird. Darüber hinaus wird die Stickoxidbildung weitgehend verhindert. Eine Nachbehandlung der aus dem Reaktor abgezogenen Verbrennungsgase wird hierdurch weitgehend überflüssig. Darüber hinaus wird mit der Umwälzung eine verbesserteA further advantageous embodiment of the device according to the invention is that the combustion chamber and the heating chamber or the combustion chamber and the heating chamber are dimensioned such that temperature peaks in the combustion chamber are reduced by a sufficiently high circulation of combustion gases, as a result of which the thermal load on the lining and ceramic pipes is reduced. In addition, nitrogen oxide formation is largely prevented. An aftertreatment of the combustion gases withdrawn from the reactor is thereby largely unnecessary. In addition, the revolution will improve
Energieverteilung im Rohrbündel erzielt, was die Ausbeute steigert.Energy distribution in the tube bundle is achieved, which increases the yield.
Schließlich ist es bei der erfindungsgemäßen Vorrichtung auch vorteilhaft, wenn sich bezogen auf die Stromungsrichtung der Verbrennungsgase stromabwärts vom Diffusor wenigstens ein Strömungsleitelement befindet, welches die Anstromung der Keramikrohre durch aus dem Diffusor austretende Verbrennungsgase verbessert oder optimiert. Dies bedeutet insbesondere, daß die Strömung innerhalb des Reaktorraumes, also der Heizkammer, zusatzlich durch den Einbau von Stromungsleitelementen, beispielsweise Fuhrungsplatten und dergleichen, so verteilt wird, daß die Gase, welche durch die Verbrennung des Brenngases entstehen, das Rohrbundel gleichmäßiger 13Finally, in the device according to the invention it is also advantageous if, based on the direction of flow of the combustion gases, there is at least one flow guide element downstream of the diffuser which improves or optimizes the flow onto the ceramic tubes by combustion gases emerging from the diffuser. This means in particular that the flow within the reactor space, i.e. the heating chamber, is additionally distributed by the installation of flow guiding elements, for example guide plates and the like, so that the gases which result from the combustion of the fuel gas make the tube bundle more uniform 13
umströmen, da sich dadurch eine gleichmaßigere Beheizung der Rohre und höhere Ausbeute ergibt .flow around, since this results in a more uniform heating of the pipes and higher yield.
In einer besonders vorteilhaften Ausgestaltung sieht die Erfindung vor, daß der Diffusor ein Eintrittsende, welches dem Brenner benachbart ist, und ein Austrittsende aufweist und als Stromungsleitelement ein Strömungsprofil verwendet wird, das dem Austrittsende benachbart ist; dieses Profil ist außerhalb des Diffusors so angeordnet, daß es in die Heizkammer ragt. Hierdurch gelingt es, besonders gunstig Verbrennungsgase, welche den Diffusor verlassen, direkt in Richtung der in der Heizkammer angeordneten Rohrbundel zu leiten.In a particularly advantageous embodiment, the invention provides that the diffuser has an inlet end which is adjacent to the burner and an outlet end and a flow profile is used as the flow guide element which is adjacent to the outlet end; this profile is arranged outside the diffuser so that it projects into the heating chamber. As a result, combustion gases which leave the diffuser can be conducted particularly favorably directly in the direction of the tube bundle arranged in the heating chamber.
Im BMA-Verfahren, zu dessen Durchführung der erfindungsgemäße Rohrreaktor besonders geeignet ist, findet die eigentliche Umsetzung der Reaktionsgase (Edukte sind beispielsweise Methan und Ammoniak) in den Rohrbündeln aus Keramikrohren statt. Als Material für die Reaktionsrohre eignen sich im Rahmen der Erfindung alle Keramiken aus Oxiden, Carbiden und Nitriden sowie Mischungen davon. Handelt es sich bei den verwendeten Keramiken um poröse Materialien, so müssen die Wandungen der Reaktionsrohre gasdicht beschichtet werden. Bevorzugt werden die Reaktionsrohre aus I- oder K-Aluminiumoxid gefertigt. Herstellungsbedingt kann dieses Material in geringem Umfang auch andere Oxide enthalten.In the BMA process, for which the tubular reactor according to the invention is particularly suitable, the actual conversion of the reaction gases (starting materials are, for example, methane and ammonia) takes place in the tube bundles made of ceramic tubes. All ceramics made of oxides, carbides and nitrides and mixtures thereof are suitable as materials for the reaction tubes in the context of the invention. If the ceramics used are porous materials, the walls of the reaction tubes must be coated gas-tight. The reaction tubes are preferably made of I or K aluminum oxide. Due to the manufacturing process, this material may also contain other oxides to a small extent.
Die erfindungsgemäß zu verwendenden Reaktionsrohre können mit Hilfe bekannter Extrusionstechniken sowie mit jeder anderen dem Fachmann bekannten Technik aus den keramischen Materialien hergestellt werden. Die Reaktionsrohre sind typischerweise mindestens 2 m lang und weisen Innendurchmesser von etwa 16 - 18 mm auf.The reaction tubes to be used according to the invention can be produced from the ceramic materials with the aid of known extrusion techniques and with any other technique known to the person skilled in the art. The reaction tubes are typically at least 2 m long and have an inner diameter of approximately 16-18 mm.
Die Reaktionsrohre sind auf ihrer Innenfläche mit einer katalytisch wirksamen Beschichtung versehen, die dem Fachmann an sich bekannt ist. Eine bevorzugte katalytische 14The reaction tubes are provided on their inner surface with a catalytically active coating which is known per se to the person skilled in the art. A preferred catalytic 14
Beschichtung enthält Platin und Aluminiumnitrid. Die EP 0 407 809 Bl beschreibt ein besonders vorteilhaftes Verfahren zur Herstellung dieser katalytisch wirksamen Beschichtungen, wobei sich das beschriebene Verfahren dadurch auszeichnet, daß schon mit Beladungen von nur 2 mg Platin pro cm2 der Innenfläche der Reaktionsrohre hoch aktive Beschichtungen ergeben.Coating contains platinum and aluminum nitride. EP 0 407 809 B1 describes a particularly advantageous process for producing these catalytically active coatings, the process described being characterized in that highly active coatings are obtained even with loads of only 2 mg of platinum per cm 2 of the inner surface of the reaction tubes.
Die Reaktoren gemäß der Erfindung lassen sich modulartig zu größeren Reaktoren zusammenstellen. Dadurch wird der Platzbedarf für einzelne Reaktoren vermindert, da der Abstand zwischen jeweils zwei Öfen reduziert oder ganz weggelassen werden kann, weil die Beheizung nicht mehr von beiden Seiten der Kammern erfolgt, sondern vielmehr nur von einer Seite. Ferner wird die Wärmeabstrahlung reduziert.The reactors according to the invention can be assembled in modular form to form larger reactors. This reduces the space required for individual reactors, since the distance between two furnaces can be reduced or omitted entirely, because heating is no longer carried out from both sides of the chambers, but rather only from one side. Furthermore, the heat radiation is reduced.
Gegenstand der Erfindung ist auch die Verwendung desThe invention also relates to the use of the
Reaktors, wie er hierin beschrieben ist, zur Durchführung endothermer katalytischer Gasreaktionen. Unter den in Frage kommenden endothermen Gasreaktionen ist insbesondere die katalytische Umsetzung von Methan und Ammoniak zu Blausäure bevorzugt. Diese wird beispielsweise in UllmannsReactor as described herein for performing endothermic catalytic gas reactions. Among the endothermic gas reactions in question, the catalytic conversion of methane and ammonia to hydrocyanic acid is particularly preferred. This is, for example, in Ullmanns
Enzyklopedia auf Industrial chemistry, 5th edition (1987), Vol. A 8, Seiten 162 - 163 beschrieben.Encyclopedia on Industrial chemistry, 5th edition (1987), Vol. A 8, pages 162-163.
Daneben gehört zur Erfindung auch ein Verfahren zur Herstellung von gasförmigen Stoffen, bei welchem gasförmige Edukte zu gasförmigen Produkten umgesetzt werden, wobei sich das Verfahren dadurch auszeichnet, daß man einen Reaktor einsetzt, wie er hierin voranstehend beschrieben wurde .In addition, the invention also includes a process for the production of gaseous substances, in which gaseous starting materials are converted to gaseous products, the process being characterized in that a reactor is used as described hereinbefore.
In bevorzugter Ausgestaltung des erfindungsgemäßen Verfahrens handelt es sich bei den Edukten um Ammoniak und Methan, was zu den Produkten Blausäure und Wasserstoff führt. 15In a preferred embodiment of the process according to the invention, the starting materials are ammonia and methane, which leads to the products hydrocyanic acid and hydrogen. 15
Zur Veranschaulichung werden nunmehr weitere vorteilhafte Ausführungsformen anhand von Abbildungen näher erläutert.To illustrate, further advantageous embodiments are now explained in more detail with the aid of figures.
Es zeigen in den Figuren:The figures show:
Figur 1 einen Schnitt durch eine Prinzipskizze einer Ausführungsform eines besonders bevorzugten erfindungsgemäßen Reaktors;1 shows a section through a schematic diagram of an embodiment of a particularly preferred reactor according to the invention;
Figur 2 einen Schnitt längs der Ebene AB aus Figur 1;FIG. 2 shows a section along the plane AB from FIG. 1;
Figur 3 einen Schnitt längs der Ebene CD aus Figur 1;FIG. 3 shows a section along the plane CD from FIG. 1;
Figur 4 einen Schnitt durch eine Prinzipskizze einer weiteren Ausführungsform eines erfindungsgemäßen Reaktors, bei welchem ein Brenner bodenseitig positioniert ist;FIG. 4 shows a section through a schematic diagram of a further embodiment of a reactor according to the invention, in which a burner is positioned on the bottom side;
Figur 5 eine Aufsicht auf zwei beispielhafte modulare Anordnungen mehrerer Reaktoren zu größeren Reaktoreinheiten (Variante A, Variante B) ;Figure 5 is a plan view of two exemplary modular arrangements of several reactors to larger reactor units (variant A, variant B);
Figur 6 einen Schnitt durch eine Brennkammer mit einer asymmetrischen Bauform des Diffusors.6 shows a section through a combustion chamber with an asymmetrical design of the diffuser.
Figur 1 zeigt einen schematisch gezeichneten Querschnitt durch einen erfindungsgemäßen Rohrofenreaktor 10, welcher eine einzige tatsächliche Kammer 100 aufweist. Diese Kammer 100 läßt sich in zwei Räume 101 und 102 einteilen. 101 wird als Heizraum oder Heizkammer bezeichnet, während 102 Brennraum oder Brennkammer genannt wird. Es ist zu erkennen, daß in dem gewählten Beispiel unter der beschriebenen Konstruktion eine parallele Anordnung von Brennkammer 102 und Heizkammer 101 zu verstehen ist. Beide Räume sind nicht tatsächlich voneinander getrennt, sondern stehen miteinander in Verbindung.FIG. 1 shows a schematically drawn cross section through a tube furnace reactor 10 according to the invention, which has a single actual chamber 100. This chamber 100 can be divided into two rooms 101 and 102. 101 is called the boiler room or heating chamber, while 102 is called the combustion chamber or combustion chamber. It can be seen that in the example chosen, the construction described describes a parallel arrangement of combustion chamber 102 and heating chamber 101. Both rooms are not actually separated from each other, but are connected to each other.
In Figur 1 bedeutet 10 das quaderförmige Grundelement des erfindungsgemäßen Rohrofens, aus welchem der Reaktor, aufgebaut ist, bestehend aus der Ausmauerung mit hitzebeständigem feuerfestem Material und einer 16In FIG. 1, 10 denotes the cuboid basic element of the tube furnace according to the invention, from which the reactor is constructed, consisting of the lining with heat-resistant refractory material and one 16
Ummantelung, z. B. aus Blech, 120 den Brenner, 121 die Wärmerückgewinnungseinheit, die auch alsSheathing, e.g. B. made of sheet metal, 120 the burner, 121 the heat recovery unit, which also as
Ausströmvorrichtung wirkt, 134 den Brennerfreistrahl, 135 die als Diffusor ausgebildete Ausmauerung des Brennraumes, 150 ein Strömungsleitelement in Form einer Platte zur Vergleichmäßigung der Verbrennungsgaszuführung in die Heizkammer 101. Derartige Elemente können in beliebiger Anzahl hintereinander oder nebeneinander in Reihenbauweise angeordnet sein. Im gezeigten Beispiel ist das Element 150 dem Austrittsende 132 des Diffusors benachbart angeordnet und ragt in die Heizkammer.The outflow device acts, 134 the burner free jet, 135 the lining of the combustion chamber designed as a diffuser, 150 a flow guiding element in the form of a plate for equalizing the supply of combustion gas into the heating chamber 101. Such any number of such elements can be arranged in series or side by side in a row. In the example shown, the element 150 is arranged adjacent to the outlet end 132 of the diffuser and projects into the heating chamber.
Die erfindungsgemäße Vorrichtung, wie sie in Figur 1 zu sehen ist, wird folgendermaßen betrieben:The device according to the invention, as can be seen in FIG. 1, is operated as follows:
Der Eduktstrom wird von unten in das/die Rohrbündel 110 eingeleitet, wobei die Edukte in den Rohrbündeln zum gewünschten Produkt umgesetzt werden. Das oben aus dem Reaktionsrohrbündel austretende Produkt wird in dem nur angedeuteten Kühlkopf 111 abgekühlt und entnommen. Wichtig ist hierbei insbesondere, daß der Produktstrom bei der Isolation schnell abgekühlt werden kann, da das Produkt in den meisten Fällen nur metastabil ist. Vorrichtungen, die hierzu geeignet sind, sind dem Fachmann geläufig.The educt stream is introduced into the tube bundle (s) 110 from below, the educts being converted into the desired product in the tube bundles. The product emerging from the top of the reaction tube bundle is cooled and removed in the cooling head 111, which is only indicated. It is particularly important here that the product stream can be cooled quickly during insulation, since in most cases the product is only metastable. Devices which are suitable for this are known to the person skilled in the art.
Die Heizgase werden in dem Brenner 120 erzeugt und über den Diffusor 135, der sich in der Brennkammer 102 befindet und gegebenenfalls über eine Strömungsleitplatte 150 in die Heizkammer 101 eingeleitet. Hierbei erwärmen diese die Reaktionsrohre 110, in denen die eigentliche Umsetzung stattfindet. Nach mehrfachem Umwälzen verlassen die als Heizgas wirkenden Verbrennungsgase den Reaktor 10 durch die als Wärmerückgewinnungseinheit 121 wirkendeThe heating gases are generated in the burner 120 and introduced into the heating chamber 101 via the diffuser 135, which is located in the combustion chamber 102 and optionally via a flow guide plate 150. Here, they heat the reaction tubes 110 in which the actual conversion takes place. After repeated circulation, the combustion gases acting as heating gas leave the reactor 10 through those acting as heat recovery unit 121
Rauchgasausstromvorrichtung, welche sich am Brenner 120 befindet.Flue gas discharge device, which is located on the burner 120.
In Figur 2 ist ein schematischer Längsschnitt entlang der Ebene AB durch den Reaktor zu sehen. Figur 2 verdeutlicht 17FIG. 2 shows a schematic longitudinal section along the AB plane through the reactor. Figure 2 illustrates 17
insbesondere die Anordnung des/der Rohrbündel 110, ebenso wie der Brennkammerschacht 102 deutlich zu sehen ist. Im Schacht 102 ist der Diffusor 135 angeordnet. Das Leitelement 150 ist sowohl im Schacht 101 als auch im Schacht 102 erkennbar.in particular the arrangement of the tube bundle (s) 110, as well as the combustion chamber shaft 102 can be clearly seen. The diffuser 135 is arranged in the shaft 102. The guide element 150 can be seen both in the shaft 101 and in the shaft 102.
Figur 3 verdeutlicht einen Schnitt längs der Linie C-D aus Figur 1. Erkennbar ist der Durchgang oder die Verbindung von Heizkammer 101 und Brennkammer 102. Ebenso erkennbar sind Rohrbündel 110.FIG. 3 illustrates a section along the line C-D from FIG. 1. The passage or the connection between the heating chamber 101 and the combustion chamber 102 can be seen. Pipe bundles 110 can also be seen.
Figur 4 zeigt die Anordnung des Brenners 120 am Boden des Rohrofens 10. Hindurch wird ein Betrieb nach dem Gegenstromprinzip möglich.FIG. 4 shows the arrangement of the burner 120 on the bottom of the tube furnace 10. This enables operation according to the countercurrent principle.
Figur 5 zeigt mehrere Varianten für die Anordnung von Reaktormodulen zu größeren Reaktoreinheiten.Figure 5 shows several variants for the arrangement of reactor modules to larger reactor units.
In der Variante A sind zwei Moduleinheiten 10 der Gestalt miteinander verbunden, daß eine der beiden gezeigten Heizkammern von zwei Brennkammern benachbart ist. Hierdurch wird eine Aufheizung der Keramikrohre von zwei Seiten unter gleichzeitiger Anströmung von zwei Seiten möglich.In variant A, two module units 10 are connected to one another in such a way that one of the two heating chambers shown is adjacent to two combustion chambers. This enables the ceramic tubes to be heated from two sides with simultaneous flow from two sides.
Die Variante B aus Figur 5 verdeutlicht eine weitereVariant B from FIG. 5 illustrates another one
Ausführungsform der Erfindung, wobei in der Variante B die Module 10 so angeordnet sind, daß die quaderförmigen Einheiten sowohl in Längs- als auch in Querrichtung miteinander kombiniert werden. Hierdurch ist auf engem Raum eine besonders gute Ausnutzung der zur Verfügung stehenden Ressourcen möglich. Durch die verringerte Abstrahlfläche ist eine Energieeinsparung möglich.Embodiment of the invention, wherein in variant B the modules 10 are arranged so that the cuboid units are combined with each other both in the longitudinal and in the transverse direction. This allows particularly good use of the available resources in a small space. Energy savings are possible due to the reduced radiation area.
Figur 6 verdeutlicht, wie die asymmetrische Bauform der Eintrittsseite 131 des Diffusors 135 ausgestaltet ist, um eine verbesserte Umwälzung der Rauchgase zu ermöglichen.FIG. 6 illustrates how the asymmetrical design of the inlet side 131 of the diffuser 135 is designed to enable an improved circulation of the flue gases.
Die Figur 6 zeigt die Brennkammer 102 mit dem Brenner 120, die um den Brenner angeordnete Rauchgasausstromvorrichtung 18FIG. 6 shows the combustion chamber 102 with the burner 120, the flue gas outflow device arranged around the burner 18th
123, die Brennerdüse 122, den Diffusor 135 mit dem Eintrittsende 131, Austrittsende 132 und der Einschnürung 133. Die Eintrittseite des Diffusors bildet zur Vertikalen einen heizkammerseitigen Öffnungswinkel αHκs und einen außenwandseitigen Öffnungswinkel αAws. Das Rauchgas aus der Brennkammer 102 strömt über den Übergang 104 in die nicht gezeigte Heizkammer 101 und gelangt über den Übergang 103 zurück in die Heizkammer. αHκs liegt im allgemeinen im Bereich von 0 bis kleiner 20°, insbesondere 0 bis 5°; αAWS liegt im allgemeinen im Bereich von 20 bis 45°, insbesondere 25 bis 40°. Die asymmetrische Form des Diffusor-Eintrittsendes führt zu einer verbesserten Ansaugung des aus der Heizkammer über den Übergang 103 vom Freistrahl 134 angesaugten Verbrennungsgases, weil eine beim Eintritt in die Brennkammer 102 einsetzende Wirbelbildung unterdrückt wird.123, the burner nozzle 122, the diffuser 135 with the inlet end 131, outlet end 132 and the constriction 133. The inlet side of the diffuser forms an opening angle α H κs on the heating chamber side and an opening angle α Aws on the outer wall side . The flue gas from the combustion chamber 102 flows through the transition 104 into the heating chamber 101, not shown, and passes back into the heating chamber via the transition 103. α H κs is generally in the range from 0 to less than 20 °, in particular 0 to 5 °; α AWS is generally in the range from 20 to 45 °, in particular 25 to 40 °. The asymmetrical shape of the diffuser inlet end leads to an improved suction of the combustion gas sucked in from the heating chamber via the transition 103 by the free jet 134, because a vortex formation which occurs when entering the combustion chamber 102 is suppressed.
BezugszeichenlisteReference list
10 Rohrofen10 tube furnace
100 Kammer100 chamber
101 Heizkammer, Heizraum101 heating chamber, boiler room
102 Brennkammer, Brennraum102 combustion chamber, combustion chamber
103 Übergang von der Heizkammer zur Brennkammer 104 Übergang von der Brennkammer zur Heizkammer103 transition from the heating chamber to the combustion chamber 104 transition from the combustion chamber to the heating chamber
110 Rohre, Rohrbündel110 tubes, tube bundle
111 Kühlköpf111 cooling heads
120 Brenner120 burners
121 Wärmerückgewinnungseinheit 122 Brennerdüse121 heat recovery unit 122 burner nozzle
123 Rauchgasausstromvorrichtung123 Flue gas discharge device
130 Umwälzmittel130 circulating agents
131 Diffusor-Eintrittsende131 diffuser inlet end
132 Diffusor-Austrittsende 133 Diffusor-Einschnürung132 Diffuser outlet end 133 Diffuser necking
134 Brennerfreistrahl134 Burner free jet
135 Diffusor 140 Kammer-Wand135 diffuser 140 chamber wall
150 Strömungsleitelement 150 flow guiding element

Claims

19Patentansprüche 19 patent claims
1. Rohrofen (10) für kontinuierliche endotherme Gasreaktionen, aufweisend eine oder eine Mehrzahl von Kammern (100), wobei die jeweilige Kammer (100) in eine Heizkammer (101) mit darin angeordneten Reaktionsrohren (110), welche für Reaktionsgase durchströmbar sind, und in eine Brennkammer (102) mit wenigstens einem zugeordneten Brenner (120) gegliedert ist, wobei der oder die Brenner (120) so angeordnet ist bzw. sind, daß die während des Betriebs entstehenden Verbrennungsgase in die zugeordnete Heizkammer (101) strömen und die darin befindlichen Reaktionsrohre (110) von außen auf die für die angestrebte Reaktion erforderliche Temperatur bringen und in der Kammer (100) wenigstens ein Mittel zur Umwälzung der Verbrennungsgase angeordnet ist, dadurch gekennzeichnet, daß in unmittelbarer Nachbarschaft des oder der Brenner1. tube furnace (10) for continuous endothermic gas reactions, comprising one or a plurality of chambers (100), the respective chamber (100) in a heating chamber (101) with reaction tubes (110) arranged therein, through which reaction gases can flow, and is divided into a combustion chamber (102) with at least one assigned burner (120), the burner or burners (120) being arranged such that the combustion gases generated during operation flow into and into the assigned heating chamber (101) bring the reaction tubes (110) located from outside to the temperature required for the desired reaction and at least one means for circulating the combustion gases is arranged in the chamber (100), characterized in that in the immediate vicinity of the burner or burners
(120) mindestens eine Rauchgasausstromvorrichtung (123) angeordnet ist, durch welche die Verbrennungsgase den(120) at least one flue gas outflow device (123) is arranged through which the combustion gases
Reaktor verlassen.Leave the reactor.
2. Rohrofen nach Anspruch 1, dadurch gekennzeichnet, daß die Rauchgasausstromvorrichtung (123) als im Brenner (120) integrierte Wärmerückgewinnungseinheit2. Pipe furnace according to claim 1, characterized in that the flue gas outflow device (123) as in the burner (120) integrated heat recovery unit
(121) ausgebildet ist.(121) is formed.
3. Rohrofen nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Mittel zur Umwälzung der Verbrennungsgase (130) eine Kombination aus einem Brennerfreistrahl (134) und einem Diffusor (135) ist, wobei der Freistrahl nach dem Injektorprinzip Verbrennungsgas aus der Heizkammer ansaugt und der Diffusor (135) die aus dem Brenner (120) austretenden schnellen Verbrennungsgase und die angesaugten Verbrennungsgase überwiegend aufnimmt und 203. Pipe furnace according to claim 1 or 2, characterized in that the means for circulating the combustion gases (130) is a combination of a burner free jet (134) and a diffuser (135), the free jet sucking combustion gas from the heating chamber according to the injector principle and the diffuser (135) predominantly receives the fast combustion gases emerging from the burner (120) and the intake combustion gases and 20th
deren kinetische Energie zumindest teilweise unter Erzeugung eines zusätzlichen Druckgefälles in Druck umwandelt .whose kinetic energy is at least partially converted into pressure with the generation of an additional pressure gradient.
4. Rohrofen nach Anspruch 3, dadurch gekennzeichnet, daß der Diffusor (135) zumindest teilweise integral mit einer oder mehreren Wänden (140) der Kammer (100) ausgebildet ist.4. Pipe furnace according to claim 3, characterized in that the diffuser (135) is at least partially integrally formed with one or more walls (140) of the chamber (100).
5. Rohrofen nach den Ansprüchen 3 oder 4, dadurch gekennzeichnet, daß die in der Kammer (100) angeordnete Heizkammer (101), welche von den Reaktionsrohren (110) durchzogen wird, und Brennkammer (102) in Form einer baulichen Einheit miteinander verbunden sind.5. Tube furnace according to claims 3 or 4, characterized in that the heating chamber (101) arranged in the chamber (100), which is traversed by the reaction tubes (110), and the combustion chamber (102) are connected to one another in the form of a structural unit .
6. Rohrofen nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß der oder die Brenner (120) und die6. Tube furnace according to one of claims 3 to 5, characterized in that the one or more burners (120) and
Rauchgasausstromvorrichtung (en) (123) von oben auf und teilweise in die jeweilige Brennkammer (102) gesetzt sind.Flue gas outflow device (s) (123) are placed on top and partially in the respective combustion chamber (102).
7. Rohrofen nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß bezogen auf die Strömungsrichtung der Verbrennungsgase stromab vom Diffusor (135) wenigstens ein Stömungsleitelement (150) angeordnet ist, welches die Anströmung der Reaktionsrohre (110) durch aus dem Diffusor (135) austretende Verbrennungsgase optimiert.7. Tube furnace according to one of claims 3 to 6, characterized in that based on the flow direction of the combustion gases downstream of the diffuser (135) at least one flow control element (150) is arranged, which the flow against the reaction tubes (110) through from the diffuser (135 ) Optimized combustion gases.
8. Rohrofen nach Anspruch 7, dadurch gekennzeichnet, daß der Diffusor (135) ein Eintrittsende (131) und ein Austrittsende (132) aufweist und das Strömungsleitelement (150) dem Austrittsende (132) 218. Pipe furnace according to claim 7, characterized in that the diffuser (135) has an inlet end (131) and an outlet end (132) and the flow guide element (150) the outlet end (132) 21
benachbart außerhalb des Diffusors (135) so angeordnet ist, daß es in die Heizkammer (101) ragt.is arranged adjacent to the outside of the diffuser (135) so that it projects into the heating chamber (101).
9. Rohrofen nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, daß der Diffusor (135) am Eintrittsende (131) asymmetrisch ausgebildet ist, wobei der heizkammerseitige Öffnungswinkel αHκs 0 bis kleiner 20°, insbesondere 0 bis 5°, und der gegenüberliegende (außenwandseitige) Öffnungswinkel αAws 20 bis 45°, insbesondere 25 bis 40°, beträgt.9. Tube furnace according to one of claims 3 to 8, characterized in that the diffuser (135) at the inlet end (131) is asymmetrical, the heating chamber opening angle α H κs 0 to less than 20 °, in particular 0 to 5 °, and the Opposing (outside wall) opening angles α A ws 20 to 45 °, in particular 25 to 40 °.
10. Verfahren zur Herstellung von gasförmigen Stoffen, bei welchem gasförmige Edukte zu gasförmigen Produkten umgesetzt werden, insbesondere zur Durchführung endothermer katalytischer Gasreaktionen, dadurch gekennzeichnet, daß man einen Rohrofen gemäß einem der Ansprüche 1 bis 9 verwendet .10. A process for the production of gaseous substances, in which gaseous starting materials are converted to gaseous products, in particular for carrying out endothermic catalytic gas reactions, characterized in that a tube furnace according to one of claims 1 to 9 is used.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß man Blausäure aus Ammoniak und Methan herstellt, wobei man einen Rohrofen mit freihängenden Keramikrohren als Reaktionsrohre verwendet. 11. The method according to claim 10, characterized in that hydrocyanic acid is produced from ammonia and methane, using a tube furnace with freely hanging ceramic tubes as reaction tubes.
PCT/EP1999/000228 1998-02-11 1999-01-16 Tube furnace for carrying out continuous endothermic gas reactions and use of same WO1999041192A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU22796/99A AU2279699A (en) 1998-02-11 1999-01-16 Tube furnace for carrying out continuous endothermic gas reactions and use of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19805481A DE19805481A1 (en) 1998-02-11 1998-02-11 Tube furnace for carrying out continuous endothermic gas reactions, its use and processes for the production of gaseous substances
DE19805481.5 1998-02-11

Publications (1)

Publication Number Publication Date
WO1999041192A1 true WO1999041192A1 (en) 1999-08-19

Family

ID=7857330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/000228 WO1999041192A1 (en) 1998-02-11 1999-01-16 Tube furnace for carrying out continuous endothermic gas reactions and use of same

Country Status (4)

Country Link
AU (1) AU2279699A (en)
DE (1) DE19805481A1 (en)
WO (1) WO1999041192A1 (en)
ZA (1) ZA991067B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10233931A1 (en) * 2002-07-25 2004-02-05 Basf Ag Process for the production of hydrogen cyanide by oxidation of nitrogenous hydrocarbons in a flame
CN109310970B (en) * 2016-06-09 2021-10-26 沙特基础全球技术有限公司 System for heating a multitubular reactor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE884348C (en) * 1942-09-10 1953-07-27 Lonza Werke Elektrochemische F Furnace for carrying out chemical reactions
GB750084A (en) * 1951-12-31 1956-06-06 Bergbau Ag Neue Hoffnung Improvements in and relating to reaction furnaces for effecting chemical reactions in a gaseous phase
US2776192A (en) * 1952-12-10 1957-01-01 Eastman Kodak Co Acetic acid cracking furnace
JPH09156901A (en) * 1995-12-11 1997-06-17 Chiyoda Corp Process for endothermic reaction and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE884348C (en) * 1942-09-10 1953-07-27 Lonza Werke Elektrochemische F Furnace for carrying out chemical reactions
GB750084A (en) * 1951-12-31 1956-06-06 Bergbau Ag Neue Hoffnung Improvements in and relating to reaction furnaces for effecting chemical reactions in a gaseous phase
US2776192A (en) * 1952-12-10 1957-01-01 Eastman Kodak Co Acetic acid cracking furnace
JPH09156901A (en) * 1995-12-11 1997-06-17 Chiyoda Corp Process for endothermic reaction and apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 097, no. 010 31 October 1997 (1997-10-31) *

Also Published As

Publication number Publication date
DE19805481A1 (en) 1999-08-12
AU2279699A (en) 1999-08-30
ZA991067B (en) 1999-08-11

Similar Documents

Publication Publication Date Title
EP1995516B1 (en) Recuperator burner with flattened heat exchange pipes
EP2445830B1 (en) Primary reformer having variable smoke gas flow
EP2184538B1 (en) Regenerator FLOX burner
DE3315010A1 (en) Gas-fired water heater
EP2202460B1 (en) Flat flame burner and method for operating same
EP0839301B1 (en) Method of incinerating material
DE4128423A1 (en) DEVICE FOR CARRYING OUT A CATALYTIC REACTION
EP1769196A1 (en) Burner nozzle field comprising integrated heat exchangers
EP0074504B1 (en) Tubular furnace for the realisation of gas reactions
DE102009030480B3 (en) Reactor for catalytic primary reformation of hydrocarbons with steam, comprises reformer tube system used as reaction chamber, and burning chamber, where the reformer tube system has vertical tubes, feeding devices and discharging devices
WO1999041192A1 (en) Tube furnace for carrying out continuous endothermic gas reactions and use of same
DE102012010857A1 (en) Removing device e.g. oven, for removing nitrogen oxide from flue gas, has burner arranged in radiation zone, and catalytic converter arranged within convection zone, where device conveys gas stream from radiation zone to convection zone
EP0164098A2 (en) Heat exchanger
DE2448902B2 (en) Oven for baking waffles
EP3260776B1 (en) Lance system, boiler- containing lance system and method for reducing nox
DE102010024539B4 (en) Primary reformer with variable flue gas flow
WO2018108321A1 (en) Heat exchanger having a burner
EP3947267B1 (en) Reformer double bottom
EP4198393B1 (en) Recuperative burner
EP3821973B1 (en) Reformer furnace for carrying out an endothermic process
DE2000766A1 (en) Process for operating a regenerative blast furnace and heater for performing this process
EP2332889A1 (en) Method and device for glass melting
DE3434906A1 (en) Method and apparatus for preheating metallic stock
DE60014665T2 (en) Device for the indirect heating of passing goods with fossil fuels, in particular tapes
AT396016B (en) BURNER

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CN IN JP KR MX PL RU UZ

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase