EP0839301B1 - Method of incinerating material - Google Patents

Method of incinerating material Download PDF

Info

Publication number
EP0839301B1
EP0839301B1 EP96926373A EP96926373A EP0839301B1 EP 0839301 B1 EP0839301 B1 EP 0839301B1 EP 96926373 A EP96926373 A EP 96926373A EP 96926373 A EP96926373 A EP 96926373A EP 0839301 B1 EP0839301 B1 EP 0839301B1
Authority
EP
European Patent Office
Prior art keywords
zone
grate
air
incineration
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96926373A
Other languages
German (de)
French (fr)
Other versions
EP0839301A1 (en
Inventor
Albert Merz
Hubert Vogg
Roland Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe GmbH filed Critical Forschungszentrum Karlsruhe GmbH
Publication of EP0839301A1 publication Critical patent/EP0839301A1/en
Application granted granted Critical
Publication of EP0839301B1 publication Critical patent/EP0839301B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L1/00Passages or apertures for delivering primary air for combustion 
    • F23L1/02Passages or apertures for delivering primary air for combustion  by discharging the air below the fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/002Incineration of waste; Incinerator constructions; Details, accessories or control therefor characterised by their grates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M3/00Firebridges
    • F23M3/12Firebridges characterised by shape or construction
    • F23M3/20Firebridges characterised by shape or construction comprising loose refractory material, wholly or in part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • F23M5/085Cooling thereof; Tube walls using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/10Drying by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/101Combustion in two or more stages with controlled oxidant supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2203/00Furnace arrangements
    • F23G2203/101Furnace arrangements with stepped or inclined grate

Definitions

  • the present invention relates to a method for the combustion of materials to be thermally treated, for example household waste according to the principle of direct current firing on a grate of an incineration plant with supply of primary air from below through the grate according to the preamble of claim 1, and a combustion plant for carrying out the method .
  • a method for the combustion of materials to be thermally treated for example household waste according to the principle of direct current firing on a grate of an incineration plant with supply of primary air from below through the grate according to the preamble of claim 1, and a combustion plant for carrying out the method .
  • Such a method and such a system are known from document A Merz "Industrial furnaces and boilers - Proceedings of the 3rd European Conference", April 18-21, 1995, Lisbon, Portugal, pages 454 to 466.
  • residual waste is burned as waste with a relatively large amount of excess air. Theoretically, a little more than 3 Nm 3 of air is required per kg of fuel with a calorific value of approx. 8 MJ / kg. In fact, 6 Nm 3 was used until recently. To date, the specific air consumption figure has been reduced to approx. 5 Nm 3 .
  • the object of the present invention is to provide a method which, by means of purely combustion chamber-side measures, enables the NO x components in the exhaust gas of the system to be reduced.
  • the invention is based on the knowledge that this can be achieved by reducing the temperatures in the range below 900 ° C. at the end of the combustion chamber in the outflowing flue gas. This task is new.
  • the present invention proposes the method steps in a method according to the preamble before, which are specified in the characterizing part of claim 1. Further advantageous features of the invention and the solution to the problem with regard to an incineration plant for the method are set out in the features of the subclaims.
  • the zone-by-zone temperature reduction not only a reduction in the specific amount of combustion air but also a flue gas-side temperature of considerably below 900 ° C can be achieved and thus subsequent thermal NO x formation can be prevented in a particularly advantageous manner .
  • a secondary air addition for post-combustion, which would increase the flue gas temperatures, is not necessary. It is essential that the invention specifies a controlled temperature field or profile that must be generated in the combustion chamber.
  • the exhaust gas is guided through the zones in a precisely defined temperature range by the addition of air into the co-current with the movement of solids on the grate, redirected upwards and back again. Due to the forced guidance of the hot combustion gases, the internals take on the temperature of the gases and also act as infrared emitters, similar to the hot gas body located above the drying zone during countercurrent combustion.
  • the fire situation in the DC configuration here is identical to that of countercurrent firing without any further measures.
  • the system therefore combines the favorable properties of both combustion processes in a particularly advantageous manner.
  • waste is burned on a grate 1 according to the principle of direct current firing.
  • the primary air is supplied to the grate from below underwind zones a to d.
  • the hot exhaust gas or flue gas 2a - 2e is described later, above the firing grate 1, arranged heat-conducting and - storing internals 3, 4, which can have approximately the same length as the combustion zone 5 of the primary area I, in cocurrent with the movement of solids on the grate 1 positively guided over this in the combustion direction 6.
  • the combustion takes place in successively defined zones in their temperatures, which will be described later with reference to FIGS. 2 and 3.
  • the hot exhaust gas in the area of the grate end 7 is directed upward around the end of the internals 4 and above the internals 3 in the secondary region II in the opposite direction 2d, 2e over the grate 1, in the embodiment of the system shown in FIG. 1 to its initial area 8, forcibly returned.
  • the heat transferred to the internals 3, 4 by this gas recirculation can be radiated from these internals 3, 4 over their entire length in the direction of the grate 1 onto the combustion material and thus be used.
  • a shorter one Transmission length over only part of the internals is also possible by moving the outflow opening 12.
  • the central element of an exemplary waste incineration plant in which the method is carried out is the combustion chamber 10 consisting of the primary area I and the secondary area II, which is closed at the top by a heat-insulating wall 9 and which is shown enlarged in FIG.
  • the details shown in FIG. 2 correspond to those in FIG. 1, the same elements being intended to have the same position numbers as in FIG. 1, even if these are not shown separately.
  • the primary area I is the firing grate 1, over which the entire combustion zone 5, consisting of individual zones, is also shown in FIG. 2.
  • the combustion of the fired material 11 introduced into the initial area 8 of the grate 1 Refuse is carried out according to the principle of direct current firing, the fired material migrating in the combustion direction 6 or with the combustion up to the ash discharge 14.
  • the resulting smoke or exhaust gas 2 flows in the direction of the arrows 2a to 2e in the secondary region II from the combustion zone 5 to the outflow opening 12 into the flue gas flue 13.
  • the outflow opening 12 lies in the system form shown by way of example in FIG seen -, approximately above the beginning of the combustion zone 5 on the grate 1 in the upper wall 9 of the combustion chamber 10 behind the secondary area II and leads through this into the flue gas flue 13 above it.
  • the outflow opening to the flue gas flue can also - seen against the direction of combustion - be located further forward in secondary area II.
  • a heat-conducting and -saving intermediate wall of approximately the same length as the combustion zone 5 which consists of individual ceramic plates 3 and 4 lying one behind the other, which are on the side walls 17 of the combustion chamber 10 attached ledges 15 are placed and which separates the primary area I from the secondary area II.
  • the last ceramic plate 4, as seen in the direction of combustion 6, is inclined towards the grate 1.
  • the intermediate wall 3, 4 sits tightly between the side walls 17 and the end wall 16 of the combustion chamber 10 and extends, as seen in the combustion direction 6, to approximately the area of the grate end 7 or the combustion zone 5.
  • the lower part of the side walls 17, the Primary area I or the combustion zone 5 is assigned, is designated 18.
  • the deflection region 2c for the deflection of the flue gases 2a, 2b in the opposite direction 2d and 2e is now - again seen in the combustion direction 6 - via the intermediate wall 3, 4 to the outflow opening 12.
  • the secondary area II. B. from an Al oxide ceramic and have a thickness of 25 to 35 mm with a grate width of 80 cm. They have a high heat transfer coefficient in order to ensure good heat transfer through them from the exhaust gas area 2d, 2e and then further by means of heat radiation back into the combustion zone 5.
  • the desired temperature profiles are achieved in that the primary air is fed zone by zone from the underwind zones a, b, c, and d through the grate, the air quantities for zones A and B being metered in such a way that substoichiometric combustion takes place in the material bed . Due to the lack of oxygen on the primary side During combustion, considerable amounts of CO in the order of 100 g / Nm 3 are released from the material bed in this area, which in turn have a reducing effect on NO x that has already formed, as a result of which elemental nitrogen is formed. In addition, a large number of radical reactions can occur, which in turn can influence the NO x reduction.
  • the sub-stoichiometric fire control can be carried out either by increasing the fuel addition or by throttling the air volume from the underwind zones.
  • the side wall or walls of the combustion chamber predominantly or only in the area of zones A and B of the combustion chamber 10 below the internals 3 and 4, i.e. in the combustion chamber above the grate 1 additional air, the so-called fog air 20 of lower or approximately the same temperature is added to the combustion chamber temperature in the combustion chamber.
  • This additional air thus forms an air curtain in the wall area.
  • the fog air supports the gas phase reaction in zones A and B. It is important that in the area above the internals 3 and 4, in the secondary area II i.e. no further secondary air is added after the fourth zone D.
  • FIG. 4 a section through a side wall of the system at the level of the furnace 10 is shown in FIG. 4.
  • a cooling air duct 19 runs through the side wall 17, through which cooling air 22 is guided in a direct current to the combustion direction 6 by means of fans, which are no longer shown, for cooling the side walls with a certain excess cooling air pressure.
  • This side wall 17 is designed to be air-permeable in the partial area 18 located next to the primary area I between the primary area I and the channel 19, so that fog air 20 can escape from the channel 19 into the primary area I.
  • the air permeability can be achieved through porosities, small channels or other passages 21.
  • the portion 18 of the side wall 17 with the Porosity or the openings is preferably or predominantly only in the area of zones A and B.
  • the fog air 20 can be dosed as desired.
  • the temperature of the curtain air is determined by its heating up in the wall.
  • the primary area I is bounded at the bottom by the grate 1, at the top by the ceramic plate internals 3 and 4, and on the sides by the lower side walls 18 in the form of the combustion chamber lining.
  • This side wall 18 in the primary area I has, as already described, a defined air permeability for the passage of the air 20 in whole or in part.
  • the air permeability can be achieved by a uniform, specific and adjustable air passage rate of the wall itself or individual wall parts. This is particularly favorable in the case in which the veil air 20 is taken from the cooling air 22 cooling the side wall 17 from the outside. however, the fog air 20 can also be supplied through one or more openings in the wall from other sources.
  • the temperature profiles of the new method are shown graphically over the individual zones in the lower part and further characteristic values of the combustion in the upper part. These are measured values from a test that was carried out in a waste incineration plant.
  • the curves with the round measuring points show the temperature profile in primary area I, ie in zones A, B, C and D at measuring points T70 to T75, the curves with square points at measuring points T105 to T107 in the exhaust gas flue.
  • the full points show the temperature profile without the addition of the fog air 20, the hollow points show the profile desired with the addition of the fog air 20 in the process according to the invention. It is clearly shown that the required temperature reduction the rear zones C and D is reached. Volume ratios of approximately 1/5 to 1/6 of air to primary air (ie approximately 14-17% of air in the total air) have proven to be particularly favorable at the combustion temperatures and air temperatures of approximately 500 ° C. to 750 ° C. shown.
  • zones A, B, C and D of primary area I as already described above, all processes such as drying, degassing, gasification, sintering reactions and gas phase reactions take place above the material bed.
  • a usual gradation of the primary air addition from the underwind zones a, b, c and d in the tests according to FIG. 3 is at a fuel throughput of approximately 170 kg / h: 100 Nm 3 / h in zone A and D and 200 Nm each 3 / h in zones B and C.
  • the aforementioned air of 100-120 Nm 3 / h is now passed through the side wall 18 that delimits the combustion chamber lengthways mainly fed into zones A and B. Due to the way of guiding through the hot walls, the veil air enters the primary room I at the desired temperatures of 500 ° C to 750 ° C, the temperature in this area being specifiable by air-side measures.
  • the secondary room II directly adjoins the primary room I. As already stated, no further combustion air is fed into this secondary space II. For the chemical reactions taking place there, e.g. B. the remaining CO conversion, the oxygen offered by primary and fog air is sufficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

In a method of incinerating waste material in a parallel flow process wherein hot exhaust gases are conducted above a combustion chamber grate in the same direction as the material is moved on the grate, different temperatures zones are maintained to which air is admitted from the bottom through the grate such that a temperature of less than 900 DEG C. is maintained in a first zone which is a drying zone, a temperature of about 1000 DEG C. is maintained in a second zone which is an evaporization and vaporizing zone, a temperature of about 900 DEG C. is maintained to in a third zone, which is the final combustion zone and a temperature less than 900 DEG C. is maintained in a fourth zone which is a sintering zone. Additional air is supplied to the combustion zones 1 through the side walls of the combustion chamber. A dividing wall is disposed above the grate over which the hot combustion gases are conducted to a discharge opening so that heat is transferred to the dividing wall for radiation back onto the waste material on the grate.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Verbrennung von thermisch zu behandelnden Stoffen, z.B von Hausmüll nach dem Prinzip der Gleichstromfeuerung auf einem Rost einer Verbrennungsanlage mit Zuführung von Primärluft von unten durch den Rost nach dem Oberbegriff des Patentanspruches 1, sowie eine Verbrennungsanlage zur Ausübung des Verfahrens. Ein solches Verfahren und eine solche Anlage sind durch das Dokument A Merz "Industrial furnaces and boilers - Proceedings of the 3rd European Conference", 18-21 April 1995, Lisabon, Portugal, Seiten 454 bis 466, bekannt.The present invention relates to a method for the combustion of materials to be thermally treated, for example household waste according to the principle of direct current firing on a grate of an incineration plant with supply of primary air from below through the grate according to the preamble of claim 1, and a combustion plant for carrying out the method . Such a method and such a system are known from document A Merz "Industrial furnaces and boilers - Proceedings of the 3rd European Conference", April 18-21, 1995, Lisbon, Portugal, pages 454 to 466.

Die thermische Behandlung von Restmüll stellt im Rahmen integrierter Abfallwirtschaftskonzepte einen unverzichtbaren Eckpfeiler dar. Nach wie vor wird jedoch z. B. Restmüll als Abfall mit einer relativ großen Menge Überschußluft verbrannt. Theoretisch werden pro kg Brennstoff mit einem Heizwert von ca. 8 MJ/kg etwas mehr als 3 Nm3 Luft benötigt. Tatsächlich wurde bis vor kurzem noch 6 Nm3 eingesetzt. Bis heute konnte die spezifische Luftverbrauchszahl auf ca. 5 Nm3 reduziert werden.The thermal treatment of residual waste is an indispensable cornerstone within the framework of integrated waste management concepts. B. residual waste is burned as waste with a relatively large amount of excess air. Theoretically, a little more than 3 Nm 3 of air is required per kg of fuel with a calorific value of approx. 8 MJ / kg. In fact, 6 Nm 3 was used until recently. To date, the specific air consumption figure has been reduced to approx. 5 Nm 3 .

Kostenoptimierte Abfallverbrennungsanlagen zu entwickeln steht als Hindernis entgegen, daß es bis heute nicht gelungen ist, primärseitig der Bildung von NOx in einem Ausmaß entgegenzuwirken, daß die nachfolgende, heute allgemein angewandte Rauchgasreinigungstechnik im Abgasstrang auf DeNOX-Maßnahmen verzichten kann. Obwohl für die Abfallverbrennung ein Grenzwert von 200 mg NOx/Nm3 existiert, wird von der Öffentlichkeit, vor allem wegen der Ozonproblematik weniger als der halbe Grenzwert erwartet. Damit ist als Entwicklungsziel für primärseitige NOx-Minderungsmaßnahmen 100 mg NOx/Nm3 vorzugeben.The development of cost-optimized waste incineration plants is an obstacle that to date it has not been possible to counteract the formation of NO x on the primary side to an extent that the subsequent flue gas cleaning technology in the exhaust system, which is generally used today, can do without DeNOX measures. Although there is a limit value of 200 mg NO x / Nm 3 for waste incineration, the public expects less than half the limit value, primarily because of the ozone problem. This means that 100 mg NO x / Nm 3 must be specified as the development goal for NO x reduction measures on the primary side.

Aus der US-PS 3 808 986 sind ein Verfahren zur Verbrennung von Abfall und eine Anlage dazu bekannt. Zweck und Konzeption dieser Anlage zielen darauf, die Verbrennungstemperaturen zu erhöhen, um eine Mengenreduzierung der sonst nicht brennbaren Anteile zu erreichen. Dies führt jedoch zu Abgastemperaturen im Bereich von weit über 1000°C und damit zu einer starken NOx-Bildung im Abgas, einer aufgrund der ständig verschärften Abgasvorschriften nicht mehr tolerablen Maßnahme. Weitere Anlagen nach dem Stand der Technik, die im Mittel- und Gegenstrombetrieb arbeiten, weisen generell hohe NOx-Werte im Bereich von 200 bis über 400 mg/Nm3 auf.From US Pat. No. 3,808,986 a method for the incineration of waste and an installation therefor are known. Purpose and conception of this The aim of the plant is to increase the combustion temperatures in order to reduce the amount of the otherwise non-combustible parts. However, this leads to exhaust gas temperatures in the range of well over 1000 ° C and thus to a strong NO x formation in the exhaust gas, a measure which is no longer tolerable due to the constantly tightened exhaust gas regulations. Other systems according to the state of the art, which operate in medium and countercurrent mode, generally have high NO x values in the range from 200 to over 400 mg / Nm 3 .

Aus der DE 42 19 231 C1 und aus Thome-Kozmiensky: Thermische Abfallbehandlung, Berlin, EF-Verlag für Energie- und Umwelttechnik, 1994, s.160 bis 163, sind ein weiteres Verbrennungsverfahren nach dem Gleichstromprinzip für Abfall und eine Anlage dafür bekannt. Bei diesem Verfahren, bei dem Sekundärluft oder Rauchgas von oben in den Feuerraum geblasen wird, entsteht ein Temperaturprofil in der Feuerungszone über dem Rost, das stetig steigende Rauchgastemperaturen von 700°C am Rostanfang bis 1300°C am Ende der Feuerungszone vor dem Rauchgaszug hinter der Feueraumgeometrie aufweist. Dies führt ebenfalls zu den vorstehend genannten unerwünschten hohen NOx-Werten, eine Erkenntnis, die jedoch hier, wie auch in der vorstehenden Literaturstelle, nicht gemacht wurde und zu deren Beseitigung daher auch keine Maßnahmen getroffen wurden.From DE 42 19 231 C1 and from Thome-Kozmiensky: Thermal waste treatment, Berlin, EF-Verlag für Energie- und Umwelttechnik, 1994, pp. 160 to 163, a further combustion process according to the direct current principle for waste and a plant for it are known. This process, in which secondary air or flue gas is blown into the combustion chamber from above, creates a temperature profile in the firing zone above the grate, which continuously increases flue gas temperatures from 700 ° C at the beginning of the grate to 1300 ° C at the end of the firing zone before the flue gas flue behind Combustion chamber geometry. This also leads to the undesirable high NO x values mentioned above, a finding which, however, as in the above literature reference, was not made here and therefore no measures have been taken to eliminate it.

Demgegenüber stellt sich nun bei der vorliegenden Erfindung die Aufgabe, ein Verfahren anzugeben, welches durch rein feuerraumseitige Maßnahmen ermöglicht, eine Verminderung der NOx-Anteile im Abgas der Anlage zu erreichen. Die Erfindung geht dabei von der Erkenntnis aus, daß dies durch eine Verminderung der Temperaturen in Bereiche unter 900° C am Ende des Feuerraumes im abströmenden Rauchgas erreicht werden kann. Diese Aufgabenstellung ist neu.In contrast, the object of the present invention is to provide a method which, by means of purely combustion chamber-side measures, enables the NO x components in the exhaust gas of the system to be reduced. The invention is based on the knowledge that this can be achieved by reducing the temperatures in the range below 900 ° C. at the end of the combustion chamber in the outflowing flue gas. This task is new.

Zur Lösung der Aufgabe schlägt die vorliegende Erfindung bei einem Verfahren nach dem Oberbegriff die Verfahrenschritte vor, die im Kennzeichen des Patentanspruches 1 angegeben sind. Weitere vorteilhafte Merkmale der Erfindung sowie die Lösung der Aufgabe bezüglich einer Verbrennungsanlage für das Verfahren sind in den Merkmalen der Unteransprüche angeführt.To achieve the object, the present invention proposes the method steps in a method according to the preamble before, which are specified in the characterizing part of claim 1. Further advantageous features of the invention and the solution to the problem with regard to an incineration plant for the method are set out in the features of the subclaims.

Mit dem erfindungsgemäßen Verfahren kann nun durch rein feuerraumseitige Maßnahmen, die zonenweise erfolgende Temperaturabsenkung, nicht nur eine Verminderung der spezifischen Verbrennungsluftmenge sondern auch eine rauchgasseitige Temperatur von erheblich unter 900° C erzielt und damit eine nachträgliche thermische NOx-Bildung auf besonders vorteilhafte Weise verhindert werden. Eine Sekundärluftzugabe zur Nachverbrennung, welche die Rauchgastemperaturen erhöhen würde, entfällt. Wesentlich ist, daß die Erfindung ein kontrolliertes Temperaturfeld bzw. - profil angibt, das im Brennraum erzeugt werden muß.With the method according to the invention, by means of purely firebox-side measures, the zone-by-zone temperature reduction, not only a reduction in the specific amount of combustion air but also a flue gas-side temperature of considerably below 900 ° C can be achieved and thus subsequent thermal NO x formation can be prevented in a particularly advantageous manner . A secondary air addition for post-combustion, which would increase the flue gas temperatures, is not necessary. It is essential that the invention specifies a controlled temperature field or profile that must be generated in the combustion chamber.

Das Abgas wird dabei mit Hilfe der speziellen Einbauten im Feuerraum in genau definierten Temperaturbereichen durch die Schleierluftzugabe im Gleichstrom mit der Feststoffbewegung auf dem Rost durch die Zonen geführt, nach oben um- und darüber wieder zurückgelenkt. Durch die Zwangsführung der heißen Verbrennungsgase nehmen die Einbauten die Temperatur der Gase an und wirken zusätzlich als Infrarotstrahler ähnlich wie der sich bei einer Gegenstromverbrennung über der Trocknungszone befindliche, heiße Gaskörper. Die Feuerlage ist bei der hier vorliegenden Gleichstromkonfiguration ohne weitere Maßnahmen identisch zu der der Gegenstromfeuerung. Die Anlage verbindet daher neben den bereits erwähnten Verbesserungen hinsichtlich der Abgaszusammensetzung noch in besonders vorteilhafter Weise die jeweils günstigen Eigenschaften beider Verbrennungsverfahren.With the help of the special fittings in the combustion chamber, the exhaust gas is guided through the zones in a precisely defined temperature range by the addition of air into the co-current with the movement of solids on the grate, redirected upwards and back again. Due to the forced guidance of the hot combustion gases, the internals take on the temperature of the gases and also act as infrared emitters, similar to the hot gas body located above the drying zone during countercurrent combustion. The fire situation in the DC configuration here is identical to that of countercurrent firing without any further measures. In addition to the already mentioned improvements with regard to the exhaust gas composition, the system therefore combines the favorable properties of both combustion processes in a particularly advantageous manner.

Einzelheiten des neuen Verfahrens werden im folgenden und anhand der Figuren 1 bis 4 näher erläutert: Es zeigen

die Fig. 1
einen schematischen Schnitt durch eine Müllverbrennungsanlage,
die Fig. 2
einen vergrößerten Schnitt des Brennraumbereiches der Fig.1
die Fig. 3
graphische Darstellungen der Temperaturverläufe nach dem Verfahren und
die Fig. 4
einen schematischen Schnitt durch die Seitenwand in Höhe des Primärbereiches I der Fig. 1 und 2.
Details of the new method are explained in more detail below and with reference to FIGS. 1 to 4: It shows
1
a schematic section through a waste incineration plant,
2
an enlarged section of the combustion chamber area of Fig.1
3
graphic representations of the temperature profiles according to the method and
4
2 shows a schematic section through the side wall at the level of the primary region I of FIGS. 1 and 2.

In der in der Figur 1 schematisch als ein mögliches Ausführungsbeispiel für eine solche dargestellten Anlage wird auf einem Rost 1 Abfall nach dem Prinzip der Gleichstromfeuerung verbrannt. Die Primärluft wird dem Rost von unten aus den Unterwindzonen a bis d zugeführt. Das heiße Abgas oder Rauchgas 2a - 2e wird mittels später beschriebener, oberhalb des Feuerungsrostes 1 angeordneter, wärmeleitender und - speichernder Einbauten 3, 4, die etwa gleiche Länge aufweisen können wie die Verbrennungszone 5 des Primärbereiches I, im Gleichstrom mit der Feststoffbewegung auf dem Rost 1 über diesem in Verbrennungsrichtung 6 zwangsgeführt. Die Verbrennung erfolgt dabei in in ihren Temperaturen exakt definierten, aufeinanderfolgenden Zonen, die später anhand der Figuren 2 und 3 genauer beschrieben werden. Anschließend wird das heiße Abgas im Bereich des Rostendes 7 nach oben um das Ende der Einbauten 4 herum und oberhalb der Einbauten 3 in dem Sekundärbereich II in Gegenrichtung 2d, 2e über den Rost 1, bei der in der Fig. 1 dargestellten Ausführungsform der Anlage etwa bis zu dessen Anfangsbereich 8, wieder zwangsweise zurückgeführt. Dadurch kann die durch diese Gasrückführung auf die Einbauten 3, 4 übertragene Wärme aus diesen Einbauten 3, 4 über ihre ganze Länge in Richtung Rost 1 auf das Verbrennungsgut wieder abgestrahlt und damit genutzt werden. Eine kürzere Übertragungslänge über nur einen Teil der Einbauten ist durch eine Verlegung der Abströmöffnung 12 ebenfalls möglich.In the figure 1 schematically as a possible embodiment for such a system shown, waste is burned on a grate 1 according to the principle of direct current firing. The primary air is supplied to the grate from below underwind zones a to d. The hot exhaust gas or flue gas 2a - 2e is described later, above the firing grate 1, arranged heat-conducting and - storing internals 3, 4, which can have approximately the same length as the combustion zone 5 of the primary area I, in cocurrent with the movement of solids on the grate 1 positively guided over this in the combustion direction 6. The combustion takes place in successively defined zones in their temperatures, which will be described later with reference to FIGS. 2 and 3. Subsequently, the hot exhaust gas in the area of the grate end 7 is directed upward around the end of the internals 4 and above the internals 3 in the secondary region II in the opposite direction 2d, 2e over the grate 1, in the embodiment of the system shown in FIG. 1 to its initial area 8, forcibly returned. As a result, the heat transferred to the internals 3, 4 by this gas recirculation can be radiated from these internals 3, 4 over their entire length in the direction of the grate 1 onto the combustion material and thus be used. A shorter one Transmission length over only part of the internals is also possible by moving the outflow opening 12.

Zentrales Element einer beispielhaften Müllverbrennungsanlage, in der das Verfahren durchgeführt wird, ist der aus dem Primärbereich I und dem Sekundärbereich II bestehende Feuerungsraum 10, der nach oben durch eine wärmeisolierende Wand 9 abgeschlossen ist und der in der Fig.2 vergrößert dargestellt ist. Die in der Fig.2 dargestellten Details entsprechen denen der Fig.1, wobei gleiche Elemente die gleichen Positionsziffern wie in der Fig.1 aufweisen sollen, auch wenn diese nicht extra eingezeichnet sind. Im unteren Teil des Feuerungsraumes, dem Primärbereich I, liegt der Feuerungsrost 1, über welchem sich die gesamte Verbrennungszone 5, bestehend aus Einzelzonen befindet, siehe auch die Fig. 2. Die Verbrennung des über den Brennguteintrag 11 in den Anfangsbereich 8 des Rostes 1 eingebrachten Mülls erfolgt nach dem Prinzip der Gleichstromfeuerung, wobei das Brenngut in Verbrennungsrichtung 6 bzw. mit der Verbrennung bis zum Ascheaustrag 14 wandert. Das entstehende Rauch- bzw. Abgas 2 strömt in Richtung der Pfeile 2a bis 2e im Sekundärbereich II von der Verbrennungszone 5 zur Abströmöffnung 12 in den Rauchgaszug 13. Die Abströmöffnung 12 liegt bei der in der Fig.1 beispielhaft dargestellten Anlagenform, - in Verbrennungsrichtung 6 gesehen -, etwa über dem Beginn der Verbrennungszone 5 auf dem Rost 1 in der oberen Wand 9 des Feuerungsraumes 10 hinter dem Sekundärbereich II und führt durch diese in den darüber liegenden Rauchgaszug 13. Die Abströmöffnung zum Rauchgaszug kann jedoch auch - gegen die Verbrennungsrichtung gesehen - im Sekundärbereich II weiter vorne gelegen sein.The central element of an exemplary waste incineration plant in which the method is carried out is the combustion chamber 10 consisting of the primary area I and the secondary area II, which is closed at the top by a heat-insulating wall 9 and which is shown enlarged in FIG. The details shown in FIG. 2 correspond to those in FIG. 1, the same elements being intended to have the same position numbers as in FIG. 1, even if these are not shown separately. In the lower part of the firing chamber, the primary area I, is the firing grate 1, over which the entire combustion zone 5, consisting of individual zones, is also shown in FIG. 2. The combustion of the fired material 11 introduced into the initial area 8 of the grate 1 Refuse is carried out according to the principle of direct current firing, the fired material migrating in the combustion direction 6 or with the combustion up to the ash discharge 14. The resulting smoke or exhaust gas 2 flows in the direction of the arrows 2a to 2e in the secondary region II from the combustion zone 5 to the outflow opening 12 into the flue gas flue 13. The outflow opening 12 lies in the system form shown by way of example in FIG seen -, approximately above the beginning of the combustion zone 5 on the grate 1 in the upper wall 9 of the combustion chamber 10 behind the secondary area II and leads through this into the flue gas flue 13 above it. However, the outflow opening to the flue gas flue can also - seen against the direction of combustion - be located further forward in secondary area II.

Als besondere Maßnahme ist oberhalb des Rostes 1 und unterhalb der oberen Wand 9 des Feuerungsraumes 10 eine wärmeleitende und -speichernde Zwischenwand etwa gleicher Länge wie die Verbrennungszone 5 eingesetzt, die aus einzelnen hintereinander liegenden Keramikplatten 3 und 4 besteht, die auf an den Seitenwänden 17 des Feuerungsraumes 10 angebrachten Simsen 15 aufgelegt sind und die den Primärbereich I von dem Sekundärbereich II trennt. Dabei ist die letzte Keramikplatte 4, - in Verbrennungsrichtung 6 gesehen -, gegen den Rost 1 hin geneigt. Die Zwischenwand 3, 4 sitzt dicht zwischen den Seitenwänden 17 und der Stirnwand 16 des Feuerungsraumes 10 und reicht, - in Verbrennungsrichtung 6 gesehen -, bis etwa in den Bereich des Rostendes 7 oder der Verbrennungszone 5. Der untere Teil der Seitenwände 17, der dem Primärbereich I bzw. der Verbrennungszone 5 zugeordnet ist, ist mit 18 bezeichnet.As a special measure, above the grate 1 and below the upper wall 9 of the combustion chamber 10, a heat-conducting and -saving intermediate wall of approximately the same length as the combustion zone 5 is used, which consists of individual ceramic plates 3 and 4 lying one behind the other, which are on the side walls 17 of the combustion chamber 10 attached ledges 15 are placed and which separates the primary area I from the secondary area II. The last ceramic plate 4, as seen in the direction of combustion 6, is inclined towards the grate 1. The intermediate wall 3, 4 sits tightly between the side walls 17 and the end wall 16 of the combustion chamber 10 and extends, as seen in the combustion direction 6, to approximately the area of the grate end 7 or the combustion zone 5. The lower part of the side walls 17, the Primary area I or the combustion zone 5 is assigned, is designated 18.

Hinter der Zwischenwand 3, 4, liegt nun, - wieder in Verbrennungsrichtung 6 gesehen -, der Umlenkbereich 2c für die Umlenkung der Rauchgase 2a, 2b in die Gegenrichtung 2d und 2e über die Zwischenwand 3, 4 zu der Abströmöffnung 12. Über ihr, schon im Umlenkbereich 2c beginnend, der Sekundärbereich II. Die Platten 3,4 bestehen z. B. aus einer Al-Oxidkeramik und weisen bei einer Rostbreite von 80 cm eine Dicke von 25 bis 35 mm auf. Sie besitzen eine hohe Wärmedurchgangszahl, um einen guten Wärmedurchgang durch sie aus dem Abgasbereich 2d, 2e und dann weiter mittels Wärmestrahlung zurück in die Verbrennungszone 5 sicherzustellen.Behind the intermediate wall 3, 4, the deflection region 2c for the deflection of the flue gases 2a, 2b in the opposite direction 2d and 2e is now - again seen in the combustion direction 6 - via the intermediate wall 3, 4 to the outflow opening 12. Above it, yes beginning in the deflection area 2c, the secondary area II. B. from an Al oxide ceramic and have a thickness of 25 to 35 mm with a grate width of 80 cm. They have a high heat transfer coefficient in order to ensure good heat transfer through them from the exhaust gas area 2d, 2e and then further by means of heat radiation back into the combustion zone 5.

Bei dem vorliegenden Verfahren erfolgt die Verbrennung im Primärbereich I in vier aufeinanderfolgenden Zonen A, B, C und D, die jeweils etwa über den entsprechenden Unterwindzonen a, b, c und d gelegen sind, wie in der Fig.2 dargestellt. Dabei gibt es drei Mechanismen der NOx-Bildung:

  • 1. Aus dem im Brennstoff enthaltenen Stickstoff, wobei in gängigem Müll etwa 1% chemisch gebundener Stickstoff enthalten ist.
  • 2. findet eine prompte NOx-Bildung statt, wobei der Stickstoff aus der Verbrennungsluft stammt.
  • 3. Wird thermisches NOx wie unter 2. durch Stickstoff aus der Luft im Abgaszug hinter dem Feuerungsraum bei höheren Temperaturen unter Flammenbildung gebildet. Diese NOx-Bildung steht im Vordergrund des hier vorliegenden Verfahrens, d.h. es wird mit ihm angestrebt, dort niedrigere Temperaturen zu erreichen.
In the present method, the combustion takes place in primary area I in four successive zones A, B, C and D, which are each located approximately above the corresponding underwind zones a, b, c and d, as shown in FIG. There are three mechanisms for NO x formation:
  • 1. From the nitrogen contained in the fuel, whereby about 1% chemically bound nitrogen is contained in common waste.
  • 2. Prompt NO x formation takes place, the nitrogen coming from the combustion air.
  • 3. Thermal NO x is formed as in 2. by nitrogen from the air in the flue gas duct behind the combustion chamber at higher temperatures with the formation of flames. This NO x formation is at the forefront of the method at hand here, ie the aim is to achieve lower temperatures there.

Dazu werden nun die Temperaturen in den einzelnen Zonen A, B, C und D nach dem Verfahren in ganz spezieller Weise gefahren bzw. eingestellt, wie in der Fig.3 im Kurvenverlauf gezeigt:

  • In einer ersten Zone A des Feuerungsraumes 10 über dem Rost 1, der Trocknungs- und Pyrolysezone des Brennstoffes im Primärbereich I, auf eine mittlere Temperatur im Bereich von unter 900°C.
  • In einer zweiten Zone B, der Entgasungs- und Vergasungszone des Brennstoffes, eine genau kontrollierte mittlere Temperatur im Bereich von maximal 1000°C, die höher ist als die in der Zone A.
  • Als wichtiger Schritt wird danach in einer dritten Zone C, der Ausbrandzone des Brennstoffes, eine gegenüber der zweiten Zone B wieder niedrigere mittlere Temperatur im Bereich von 950°C bis unter 900°C gefahren, während danach
  • in einer vierten Zone D, der Sinterzone, noch niedrigere Temperatur von unter 900°C bis unter 700°C gefahren werden.
For this purpose, the temperatures in the individual zones A, B, C and D are driven or set according to the method in a very special way, as shown in the curve in FIG. 3:
  • In a first zone A of the combustion chamber 10 above the grate 1, the drying and pyrolysis zone of the fuel in the primary region I, to an average temperature in the range of below 900 ° C.
  • In a second zone B, the degassing and gasification zone of the fuel, a precisely controlled average temperature in the range of a maximum of 1000 ° C, which is higher than that in zone A.
  • As an important step, a medium zone in the third zone C, the burnout zone of the fuel, is then again lower than the second zone B in the range from 950 ° C. to below 900 ° C., while thereafter
  • in a fourth zone D, the sintering zone, even lower temperatures of below 900 ° C. to below 700 ° C.

Dies bedeutet fallende Temperaturen in Strömungsrichtung der Rauchgase über denm Gutbett. Die gewünschten Temperaturprofile werden dabei dadurch erzielt, daß die Primärluft zonenweise aus den Unterwindzonen a, b, c, und d durch den Rost zugeführt wird, wobei die Luftmengen für die Zonen A und B so dosiert werden, daß dort im Gutbett eine unterstöchiometrische Verbrennung stattfindet. Durch den primärseitig bedingten Sauerstoffmangel bei der Verbrennung werden in diesem Bereich aus dem Gutbett erhebliche Mengen von CO in der Größenordnung von 100 g/Nm3 freigesetzt, die wiederum reduzierend auf bereits gebildetes NOx wirken, wodurch elementarer Stickstoff gebildet wird. Daneben können eine Vielzahl von Radikalreaktionen ablaufen, die wiederum die NOx-Reduktion beeinflussen können. Die unterstöchiometrische Feuerführung kann wahlweise durch Erhöhung der Brennstoffzugabe oder durch Drosselung der Luftmenge aus den Unterwindzonen erfolgen.This means falling temperatures in the direction of flow of the flue gases over the bed. The desired temperature profiles are achieved in that the primary air is fed zone by zone from the underwind zones a, b, c, and d through the grate, the air quantities for zones A and B being metered in such a way that substoichiometric combustion takes place in the material bed . Due to the lack of oxygen on the primary side During combustion, considerable amounts of CO in the order of 100 g / Nm 3 are released from the material bed in this area, which in turn have a reducing effect on NO x that has already formed, as a result of which elemental nitrogen is formed. In addition, a large number of radical reactions can occur, which in turn can influence the NO x reduction. The sub-stoichiometric fire control can be carried out either by increasing the fuel addition or by throttling the air volume from the underwind zones.

Weiterhin wird durch die Seitenwand oder -wände des Brennraumes überwiegend oder nur in den Bereich der Zonen A und B des Feuerungsraumes 10 unterhalb der Einbauten 3 und 4, d.h. in den Brennraum über dem Rost 1 zusätzliche Luft die sogenannte Schleierluft 20 niedrigerer oder etwa gleicher Temperatur gegenüber der Brennraumtemperatur in den Brennraum zugegeben. Diese Zusatzluft bildet so einen Luftschleier im Wandbereich. Die Schleierluft unterstützt die Gasphasenreaktion in den Zonen A und B. Wichtig ist dabei, daß im Bereich oberhalb der Einbauten 3 und 4, im Sekundärbereich II d.h. hinter der vierten Zone D keine weitere Sekundärluft mehr zugegeben wird.Furthermore, the side wall or walls of the combustion chamber predominantly or only in the area of zones A and B of the combustion chamber 10 below the internals 3 and 4, i.e. in the combustion chamber above the grate 1 additional air, the so-called fog air 20 of lower or approximately the same temperature is added to the combustion chamber temperature in the combustion chamber. This additional air thus forms an air curtain in the wall area. The fog air supports the gas phase reaction in zones A and B. It is important that in the area above the internals 3 and 4, in the secondary area II i.e. no further secondary air is added after the fourth zone D.

Zur Erläuterung der Zugabe der Schleierluft 20 ist in der Fig. 4 ein Schnitt durch eine Seitenwand der Anlage in Höhe des Feuerungsraumes 10 dargestellt. In der Seitenwand 17 verläuft ein Kühluftkanal 19, durch welchen Kühlluft 22 mittels nicht mehr dagestellter Gebläse zur Kühlung der Seitenwände mit einem bestimmten Kühlluftüberdruck im Gleichstrom zur Verbrennungsrichtung 6 geführt wird. Diese Seitenwand 17 ist in dem, neben dem Primärbereich I gelegenen Teilbereich 18 zwischen Primärbereich I und Kanal 19 luftdurchlässig ausgebildet, so daß aus dem Kanal 19 Schleierluft 20 in den Primärbereich I austreten kann. Die Luftdurchlässigkeit kann durch Porositäten, kleine Kanäle oder anderweitige Durchgänge 21 erreicht werden. Der Teilbereich 18 der Seitenwand 17 mit der Porosität oder den Öffnungen liegt dabei vorzugsweise oder überwiegend nur im Bereich der Zonen A und B.To explain the addition of the veil air 20, a section through a side wall of the system at the level of the furnace 10 is shown in FIG. 4. A cooling air duct 19 runs through the side wall 17, through which cooling air 22 is guided in a direct current to the combustion direction 6 by means of fans, which are no longer shown, for cooling the side walls with a certain excess cooling air pressure. This side wall 17 is designed to be air-permeable in the partial area 18 located next to the primary area I between the primary area I and the channel 19, so that fog air 20 can escape from the channel 19 into the primary area I. The air permeability can be achieved through porosities, small channels or other passages 21. The portion 18 of the side wall 17 with the Porosity or the openings is preferably or predominantly only in the area of zones A and B.

Durch Vorgabe der Luftdurchlässigkeit und/oder Variieren des Kühlluftdruckes kann die Schleierluft 20 beliebig dosiert werden. Die Temperatur der Schleierluft bestimmt sich durch ihre Aufheizung in der Wand.By presetting the air permeability and / or varying the cooling air pressure, the fog air 20 can be dosed as desired. The temperature of the curtain air is determined by its heating up in the wall.

Der Primärbereich I ist nach unten durch den Rost 1, nach oben durch die keramischen Platteneinbauten 3 und 4 begrenzt, nach den Seiten durch die unteren Seitenwände 18 in Form der Feuerraumausmauerung. Diese Seitenwand 18 im Primärbereich I weist ganz oder teilweise, wie bereits beschrieben, eine definierte Luftdurchlässigkeit für den Durchtritt der Schleierluft 20 auf. Die Luftdurchlässigkeit kann durch eine gleichmäßige, bestimmte und einstellbare Luftdurchlaßrate der Wand selbst oder einzelner Wandteile erreicht werden. Dies ist für den erwähnten Fall besonders günstig, bei dem die Schleierluft 20 der die Seitenwand 17 von außen kühlenden Kühlluft 22 entnommen wird. die Schleierluft 20 kann aber auch durch einzelne oder mehrere Öffnungen in der Wand aus anderen Quellen zugeführt werden.The primary area I is bounded at the bottom by the grate 1, at the top by the ceramic plate internals 3 and 4, and on the sides by the lower side walls 18 in the form of the combustion chamber lining. This side wall 18 in the primary area I has, as already described, a defined air permeability for the passage of the air 20 in whole or in part. The air permeability can be achieved by a uniform, specific and adjustable air passage rate of the wall itself or individual wall parts. This is particularly favorable in the case in which the veil air 20 is taken from the cooling air 22 cooling the side wall 17 from the outside. however, the fog air 20 can also be supplied through one or more openings in the wall from other sources.

In der Fig. 3 sind im unteren Teil die Temperaturverläufe des neuen Verfahrens über den einzelnen Zonen grafisch dargestellt und im oberen Teil weitere Kennwerte der Verbrennung. Dabei handelt es sich um Meßwerte eines Versuches, der in einer Müllverbrennungsanlage durchgeführt wurde. Die Kurven mit den runden Meßpunkten zeigen dabei den Temperaturverlauf im Primärbereich I, d.h. in den Zonen A, B, C und D an den Meßstellen T70 bis T75, die Kurven mit den eckigen Punkten an den Meßstellen T105 bis T107 im Abgaszug. Die vollen Punkte zeigen dabei den Temperaturverlauf ohne Zugabe der Schleierluft 20, die hohlen Punkte den beim erfindungsgemäßen Verfahren gewünschten Verlauf mit Zugabe der Schleierluft 20. Es zeigt sich dabei deutlich, daß die geforderte Temperaturabsenkung der hinteren Zonen C und D erreicht wird. Dabei haben sich Volumenverhältnisse von etwa 1/5 bis 1/6 von Schleierluft zu Primärluft (d. h. ungefähr 14 - 17 % Schleierluftanteil an der Gesamtluft) bei den gezeigten Verbrennungstemperaturen und Schleierlufttemperaturen von ca. 500° C bis 750°C als besonders günstig erwiesen.In FIG. 3, the temperature profiles of the new method are shown graphically over the individual zones in the lower part and further characteristic values of the combustion in the upper part. These are measured values from a test that was carried out in a waste incineration plant. The curves with the round measuring points show the temperature profile in primary area I, ie in zones A, B, C and D at measuring points T70 to T75, the curves with square points at measuring points T105 to T107 in the exhaust gas flue. The full points show the temperature profile without the addition of the fog air 20, the hollow points show the profile desired with the addition of the fog air 20 in the process according to the invention. It is clearly shown that the required temperature reduction the rear zones C and D is reached. Volume ratios of approximately 1/5 to 1/6 of air to primary air (ie approximately 14-17% of air in the total air) have proven to be particularly favorable at the combustion temperatures and air temperatures of approximately 500 ° C. to 750 ° C. shown.

In den Zonen A, B, C und D des Primärbereiches I laufen wie vorstehend schon beschrieben, sämtliche Prozesse wie Trocknung, Entgasung, Vergasung, Sinterreaktionen und Gasphasenreaktionen oberhalb des Gutbettes ab. Eine übliche Stufung der Primärluftzugabe aus den Unterwindzonen a, b, c und d bei den Versuchen gemäß der Fig. 3 beträgt dabei bei einem Brennstoffdurchsatz von ungefähr 170 kg/h: je 100 Nm3/h in Zone A und D und je 200 Nm3/h in den Zonen B und C. Zur Unterstützung der Gasphasenreaktionen in den Zonen A und B über dem Gutbett auf dem Rost 1 wird nun dabei die bereits erwähnte Schleierluft von 100-120 Nm3/h durch die den Feuerraum längs begrenzende Seitenwand 18 überwiegend den Zonen A und B zugeführt. Aufgrund der Führungsart durch die heissen Wände hindurch tritt die Schleierluft mit den erwünschten Temperaturen von 500° C bis 750° C in den Primärraum I ein, wobei die Temperatur in diesem Bereich durch luftseitige Maßnahmen vorgebbar ist.In zones A, B, C and D of primary area I, as already described above, all processes such as drying, degassing, gasification, sintering reactions and gas phase reactions take place above the material bed. A usual gradation of the primary air addition from the underwind zones a, b, c and d in the tests according to FIG. 3 is at a fuel throughput of approximately 170 kg / h: 100 Nm 3 / h in zone A and D and 200 Nm each 3 / h in zones B and C. To support the gas phase reactions in zones A and B above the material bed on the grate 1, the aforementioned air of 100-120 Nm 3 / h is now passed through the side wall 18 that delimits the combustion chamber lengthways mainly fed into zones A and B. Due to the way of guiding through the hot walls, the veil air enters the primary room I at the desired temperatures of 500 ° C to 750 ° C, the temperature in this area being specifiable by air-side measures.

Der Sekundärraum II schließt sich unmittelbar an den Primärraum I an. In diesen Sekundärraum II wird, wie bereits ausgeführt, keine weitere Verbrennungsluft mehr eingespeist. Für die dort ablaufenden chemischen Reaktionen, z. B. den restlichen CO-Umsatz, reicht der durch Primär- und Schleierluft angebotene Sauerstoff aus.The secondary room II directly adjoins the primary room I. As already stated, no further combustion air is fed into this secondary space II. For the chemical reactions taking place there, e.g. B. the remaining CO conversion, the oxygen offered by primary and fog air is sufficient.

Bei den Versuchen mit der beschriebenen Anlage im Gleichstrom, d. h. mit den Einbauten 3 und 4 wurde durch Zugabe von Primärluft aus den vier Unterwindzonen a, b, c, und d des Rostes in Verbindung mit der Zugabe von Schleierluft 20 aus der Seitenwandkühlung eine vollständige Verbrennung mit CO-Werten < 5 mg/Nm3 realisiert. Durch die besondere Luftzugabe in die Zonen A, B, C und D kann dort auf die Temperaturverteilung im Gaskanal gezielt Einfluß genommen werden. Wenn brennraumseitig nach dem erfindungsgemäßen Verfahren vorgegangen wird, ergeben sich abwärts der Strömung die gewünschten Temperaturen über lange Wegstrecken von 870 bis 930°C, die neben der NOx-Minderung im Abgaszug noch zusätzlich für einen sehr guten Ausbrand des Abgases verantwortlich sind.In the experiments with the described system in direct current, ie with the internals 3 and 4, by adding primary air from the four underwind zones a, b, c, and d of the grate in conjunction with the addition of fog air 20 from the side wall cooling complete combustion with CO values <5 mg / Nm 3 . The special addition of air to zones A, B, C and D can be used to influence the temperature distribution in the gas duct. If the process according to the invention is used on the combustion chamber side, the desired temperatures over long distances of 870 to 930 ° C. result down the flow, which in addition to the NO x reduction in the exhaust gas flue are also responsible for a very good burnout of the exhaust gas.

Versuche zeigten dabei die folgenden Ergebnisse, die im oberen Teil, der Tabelle der Fig.3 angeführt sind:

Verbrennung ohne Schleierluft:
ca.170 mg/Nm3 NOx im Abgaszug, (Temperaturverlauf volle Punkte)
Verbrennung mit Schleierluft:
ca.55 mg/Nm3 NOx im Abgaszug, (Temperaturverlauf hohle Punkte),
bei einem Massenstrom mBr von 171 kg/h und Sauerstoffzugaben von 9.0 bzw. 10,8 % und jeweils ohne abgasseitige Entstickungmaßnahmen. Wie bereits ausgeführt, weisen Anlagen nach dem Stand der Technik, die im Mittel- und Gegenstrombetrieb arbeiten, generell hohe NOx-Werte im Bereich von 200 bis über 400 mg/Nm3 auf.Experiments showed the following results, which are listed in the upper part of the table in FIG. 3:
Combustion without air curtain:
approx. 170 mg / Nm 3 NO x in the flue gas flue, (temperature curve full points)
Combustion with fog air:
approx. 55 mg / Nm 3 NO x in the flue gas duct, (temperature curve hollow points),
at a mass flow m Br of 171 kg / h and oxygen additions of 9.0 or 10.8% and without any denoxing measures on the exhaust gas side. As already explained, systems according to the prior art, which operate in medium and countercurrent operation, generally have high NO x values in the range from 200 to over 400 mg / Nm 3 .

Es konnte somit gezeigt werden, daß mit dem neuen Verfahren durch rein brennraumseitige Maßnahmen zu erwartende Emissionsgrenzwerte von möglicherweise erheblich unter 200 mg/Nm3 NOx ohne weitere Entstickung im Abgasstrang weit unterboten werden können.It was thus possible to show that the new method can be used to significantly undercut emission limit values that may be considerably below 200 mg / Nm 3 NO x without further denitrification in the exhaust system.

Bezugszeichenliste:Reference symbol list:

II.
PrimärbereichPrimary area
IIII
SekundärbereichSecondary area
a -a -
d Unterwindzonend underwind zones
11
VorschubrostMoving grate
22nd
Abgas (2a - 2e Strömungspfeile)Exhaust gas (2a - 2e flow arrows)
33rd
Plattenplates
44th
geneigte Platteinclined plate
55
Verbrennungszone
A  Trocknung- und Pyrolysezone
B  Entgasungs- und Vergasungszone
C  Ausbrandzone
D  Sinterzone
Combustion zone
A drying and pyrolysis zone
B degassing and gasification zone
C Burnout zone
D sintering zone
66
VerbrennungsrichtungDirection of combustion
77
RostendeRusting
88th
AnfangsbereichInitial area
99
obere Wandtop wall
1010th
FeuerungsraumCombustion chamber
1111
BrennguteintragFiring material entry
1212th
AbströmöffnungDischarge opening
1313
RauchgaszugFlue gas flue
1414
AscheaustragAsh discharge
1515
SimseLedges
1616
StirnwandFront wall
1717th
Seitenwändeside walls
1818th
Seitenwand PrimärbereichSidewall primary area
1919th
KühlluftkanalCooling air duct
2020th
SchleierluftFog air
2121
Porosität oder KanälePorosity or channels
2222
KühlluftCooling air
T70 - T75T70 - T75
Temperaturmeßstellen im BrennraumbereichTemperature measuring points in the combustion chamber area
T105 - 107T105 - 107
Temperaturmeßstellen im AbgaszugTemperature measuring points in the flue gas duct

Claims (10)

  1. Process of incinerating materials to be treated thermally, e.g. domestic waste, in the co-current mode on the grate (1) of an incineration plant with primary air (a-d) being passed through the grate (1) from below and the hot exhaust gas (2) being led in incineration direction (6) over part of the movable grate by means of internal structures (3, 4) located above the grate (1) in the primary zone I and, in the range of the grate end (7), passed upwards around the internal structures (3, 4) and discharged above these structures (3, 4) in the secondary zone II or returned in counterdirection at least partially above the internal structures (3, 4) and discharged afterwards, characterized by
    - a mean temperature of less than 900°C in the first zone (A) of the incineration chamber (10) above the grate (1), i.e. the drying and pyrolysis area in the primary zone I;
    - the mean temperature amounting to about 1000°C in the secondary zone (B), i.e. the degasification and gasification zone;
    - a mean temperature, smaller than that of the secondary zone (B), of 950°C down to below 900°C prevailing in a third zone (C), i.e. the burn-out zone;
    - a temperature of less than 900°C to below 700°C being set in a fourth zone (D), i.e. the sintering zone;
    - the primary air being supplied from the underblast zones (a, b, c, and d) through the grate with the amounts of air in the zones A and B being metered such that a sub-stoichiometric incineration takes place in the waste bed;
    - additional air of a temperature identical to or smaller than the furnace chamber temperature as veiling air being fed into the furnace chamber above the grate through the side wall or walls of the burning chamber, mainly or only in the zones A and B of the furnace chamber (10) below the internal structures;
    - no further air being supplied above the internal structures in the secondary zone II, i.e. downstream of the fourth zone (D).
  2. Process according to claim 1, characterized by the additional veiling air having a temperature of about 500°C to 750°C.
  3. Process according to claims 1 or 2, characterized by the volume ratio of veiling air to primary air amounting to 1/5 - 1/6.
  4. Process according to claims 1, 2, or 3, characterized by the veiling air being taken from the air cooling the side wall of the furnace chamber.
  5. Incineration plant for incinerating materials to be treated thermally, e.g. domestic waste, in the co-current mode on the grate of an incineration plant with primary air being passed through the grate from below and the hot exhaust gas being led in incineration direction over part of the movable grate by means of internal structures located above the grate in the primary zone I and, in the range of the grate end, passed upwards around the internal structures and discharged above these structures in the secondary zone II or returned in counterdirection at least partially above the internal structures and discharged afterwards with
    - a mean temperature of less than 900°C in the first zone (A) of the incineration chamber (10) above the grate (1), i.e. the drying and pyrolysis area in the primary zone I;
    - the mean temperature amounting to about 1000°C in the secondary zone (B), i.e. the degasification and gasification zone;
    - a mean temperature, smaller than that of the secondary zone (B), of 950°C down to below 900°C prevailing in a third zone (C), i.e. the burn-out zone;
    - a temperature of less than 900°C to below 700°C being set in a fourth zone (D), i.e. the sintering zone;
    - the primary air being supplied from the underblast zones (a, b, c, and d) through the grate with the amounts of air in the zones A and B being metered such that a sub-stoichiometric incineration takes place in the waste bed;
    - additional air of a temperature identical to or smaller than the furnace chamber temperature as veiling air being fed into the furnace chamber above the grate through the side wall or walls of the burning chamber, mainly or only in the zones A and B of the furnace chamber (10) below the internal structures;
    - no further air being supplied above the internal structures in the secondary zone II, i.e. downstream of the fourth zone (D), and with this plant having the following features:
    a) Above the grate (1) and below the upper wall (9) of the furnace chamber (10), an intermediate wall (3, 4) of about the same length as the zones (A, B, C, D) is located, which delimitates the primary zone (I) to the top and the above secondary zone (II) to the bottom;
    b) This intermediate wall (3, 4) is located close between the side walls (17) and the front wall (16) of the furnace chamber and reaches - in incineration direction (6) - down to the end of the grate (7) or beyond the incineration zone (5);
    c) Behind the intermediate wall (3, 4) - in incineration direction (6) -, a deflection area for the deflection of the flue gases (2) from the primary (I) to the secondary zone (II) in upward direction around the intermediate wall (3, 4) to the outlet (12) is located, which is characterized by
    d) a cooling air channel (19) existing in the side wall (17), through which cooling air (22) is blown;
    e) the side wall (17) having a defined permeability for the cooling air (22) in the partial area (18) between the primary zone (I) and the channel (19), which is adjacent to the primary zone (I), such that veiling air (20) may enter the primary zone (I) from the channel (19).
  6. Incineration plant according to claim 4, characterized by the partial area (18) of the side wall (17) having a homogeneously or heterogeneously distributed porosity.
  7. Incineration plant according to claim 4, characterized by openings or channels being passed through the partial area (18) of the side wall (17).
  8. Incineration plant according to one of the claims 5 or 6, characterized by the partial area (18) of the side wall (17) having the porosity or the openings located only or predominantly in the range of the zones A and B.
  9. Incineration plant according to one of the claims 4 through 7, characterized by the intermediate wall consisting of single ceramic plates (3, 4) arranged in series, which are supported by the ledges (15) at the side walls (17) of the furnace chamber (10).
  10. Incineration plant according to claim 8, characterized by the last ceramic plate (4) in incineration direction (6) being inclined towards the grate (1).
EP96926373A 1995-07-20 1996-07-19 Method of incinerating material Expired - Lifetime EP0839301B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19526457 1995-07-20
DE19526457 1995-07-20
PCT/EP1996/003198 WO1997004274A1 (en) 1995-07-20 1996-07-19 Method of incinerating material

Publications (2)

Publication Number Publication Date
EP0839301A1 EP0839301A1 (en) 1998-05-06
EP0839301B1 true EP0839301B1 (en) 2000-04-05

Family

ID=7767304

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96926373A Expired - Lifetime EP0839301B1 (en) 1995-07-20 1996-07-19 Method of incinerating material

Country Status (7)

Country Link
US (1) US6038988A (en)
EP (1) EP0839301B1 (en)
JP (1) JP3121840B2 (en)
AT (1) ATE191552T1 (en)
DE (2) DE59604896D1 (en)
DK (1) DK0839301T3 (en)
WO (1) WO1997004274A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10012895A1 (en) * 2000-03-16 2001-09-20 Krc Umwelttechnik Gmbh Combustion process for all fuels by means of grate firing involves supplying different amounts of oxygen to individual primary air zones
US6398546B1 (en) * 2000-06-21 2002-06-04 Praxair Technology, Inc. Combustion in a porous wall furnace
US6497187B2 (en) * 2001-03-16 2002-12-24 Gas Technology Institute Advanced NOX reduction for boilers
CN1304786C (en) * 2003-08-17 2007-03-14 王曙光 Garbage burning furnace without combustion-supporting
DE10339133B4 (en) * 2003-08-22 2005-05-12 Fisia Babcock Environment Gmbh NOx reduction process in combustion chambers and apparatus for carrying out the process
US20070209562A1 (en) * 2006-03-07 2007-09-13 L/Mfg/E, Inc. Burner for furnace
US20080145281A1 (en) * 2006-12-14 2008-06-19 Jenne Richard A Gas oxygen incinerator
CA2668147A1 (en) * 2008-06-03 2009-12-03 James Gallant Combustion system with cellular chain grate
US9885478B1 (en) * 2011-02-28 2018-02-06 Recycling Solutions Technology, Llc Process for generating combustible gas from organic feedstock and reactors therefor
CN104214779A (en) * 2014-09-19 2014-12-17 王惠生 Energy-saving type garbage incinerator
CN105698182B (en) * 2016-04-06 2017-10-17 湖南民兴智能科技有限公司 CIU for handling rubbish
CN105698183B (en) * 2016-04-06 2017-09-22 湖南民兴智能科技有限公司 Incinerator for handling rubbish
CN105698185B (en) * 2016-04-06 2017-10-10 湖南民兴智能科技有限公司 The incinerator of unburned thing can be suppressed to produce in Refuse Incineration Process
CN105698184B (en) * 2016-04-06 2017-10-10 湖南民兴智能科技有限公司 The CIU of unburned thing can be suppressed to produce in Refuse Incineration Process
CN108488829A (en) * 2018-05-24 2018-09-04 无锡华光锅炉股份有限公司 A kind of air distribution structure of boiler grate wind next time

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1402843A (en) * 1922-01-10 Boileb
US1232138A (en) * 1916-11-27 1917-07-03 Walter H Lassing Incinerator.
US1229320A (en) * 1917-03-14 1917-06-12 Edgar Peckham Furnace.
US1276490A (en) * 1917-12-14 1918-08-20 Abram Cox Stove Company Boiler-furnace.
US1622356A (en) * 1926-07-20 1927-03-29 Spencer Robert Marven Fire box for boilers
US1813156A (en) * 1927-10-20 1931-07-07 William A Gilchrist Furnace
US2083846A (en) * 1934-08-17 1937-06-15 Hynd Alexander Furnace bridge wall
CH405577A (en) * 1963-11-27 1966-01-15 Von Roll Ag Process for the combustion of bulky fuels of different properties by means of mechanical grate firing and grate firing for carrying out this process
US3301202A (en) * 1964-06-12 1967-01-31 Lucentia Ekman & Brundin Furnace for combustion of solid fuels
DE1526078A1 (en) * 1966-09-28 1970-02-12 Koppers Wistra Ofenbau Gmbh Waste incineration plant
US3808986A (en) * 1972-09-11 1974-05-07 C Logdon Incinerator for refuse material
US4380228A (en) * 1981-04-21 1983-04-19 Crowley Leslie B Sustained ignition secondary combustion unit
JPS5944513A (en) * 1982-09-03 1984-03-13 Hitachi Zosen Corp Nitrogen oxide suppressing operation of incinerator
DE3345867A1 (en) * 1983-12-19 1985-06-27 Wärmetechnik Dr. Pauli GmbH, 8035 Gauting Process and apparatus for the thermal utilisation of residues
AU594549B2 (en) * 1986-11-05 1990-03-08 Bonne Engineering Pty Ltd Incinerators
DE3728299A1 (en) * 1987-08-25 1989-03-09 Ieg Ind Engineering Gmbh METHOD AND ARRANGEMENT FOR DRIVING LIGHT VEGETABLE IMPURITIES FROM THE GROUND
JPH02101312A (en) * 1988-10-11 1990-04-13 Mitsubishi Heavy Ind Ltd Refuse incinerator
US5052310A (en) * 1991-01-22 1991-10-01 Air Products And Chemicals, Inc. Solid waste-to-steam incinerator capacity enhancement by combined oxygen enrichment and liquid quench
DE4103025A1 (en) * 1991-02-01 1992-08-06 Noell K & K Abfalltech METHOD FOR TEMPERATURE REGULATION IN WASTE COMBUSTION PLANTS
JPH05223225A (en) * 1992-02-14 1993-08-31 Nkk Corp Incinerator
JPH05272735A (en) * 1992-03-27 1993-10-19 Hitachi Zosen Corp Refuse incinerator for reducing co gas content in exhaust gas
DE4211839C2 (en) * 1992-04-08 1994-05-05 Hdg Entwicklung Patent Method and device for controlling the combustion of solid fuels in an incinerator
DE4219231C1 (en) * 1992-06-12 1993-10-21 Babcock Anlagen Gmbh Waste incineration process and incinerator
US5323718A (en) * 1992-12-04 1994-06-28 Leon Industries, Inc. Overfire air system for incinerating
NO176455B1 (en) * 1992-12-28 1995-04-24 Energos As grate furnace

Also Published As

Publication number Publication date
DK0839301T3 (en) 2000-07-24
DE59604896D1 (en) 2000-05-11
DE19629216A1 (en) 1997-02-27
US6038988A (en) 2000-03-21
WO1997004274A1 (en) 1997-02-06
JP3121840B2 (en) 2001-01-09
ATE191552T1 (en) 2000-04-15
EP0839301A1 (en) 1998-05-06
DE19629216C2 (en) 2000-01-20
JPH10508371A (en) 1998-08-18

Similar Documents

Publication Publication Date Title
EP0839301B1 (en) Method of incinerating material
DE2615369C3 (en) Process for flue gas conditioning in waste incineration plants with heat recovery, in particular for municipal and industrial waste, and device for carrying out the process
EP0345285B1 (en) Pivoting step grate arrangement providing air nozzles
DE3025851C2 (en) Grate firing
DE60122829T2 (en) Waste incineration plant with exhaust gas recirculation
DE2740537B2 (en) Burner for a regenerative boiler
DE102016001893A1 (en) Burner unit and device for tempering objects
DE4420295C1 (en) Continuous furnace
EP2691701B1 (en) Method for optimising the burnout of exhaust gases of an incinerator
DE2036731A1 (en) Plant for cleaning fluids Mm Ptoctor &amp; Schwartz. Inc, Philadelphia, Pa (VStA)
EP0409790A1 (en) Combustion installation
AT400982B (en) FIREPLACE FOR GASFUL SOLID FUELS
EP0589026B1 (en) Process and device for regulating the burning of solid fuels in a combustion plant
EP0483878B1 (en) Combustion device for wood and coal
EP2024682A1 (en) Method for the improvement of the slag quality in grate furnaces
EP0483877B1 (en) Combustion device for wood and coal
DE2448902B2 (en) Oven for baking waffles
DE4012363A1 (en) Wood-burning stove with two combustion chambers - has secondary combustion air supplied through hollow wall
EP1113223B1 (en) Combustion apparatus
DE2929715A1 (en) Hot air stove with fan - has combustion air inlets near grate and at top of combustion chamber
EP0126920A1 (en) Method of injecting secondary air, secondary air entrance for carrying out said process and the use of said process
EP0595067A1 (en) Burn-out device and process for fuels
CH691508A5 (en) Zuluftverteilungseinrichtung for the combustion air of the heaters, in particular for solid fuels and method for feeding combustion air.
DE1918394C3 (en) Double-walled waste incinerator
AT204673B (en) Plant for the combustion of all kinds of fuels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK FI LI NL SE

17Q First examination report despatched

Effective date: 19980505

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM ENERGY SYSTEMS GMBH

Owner name: FORSCHUNGSZENTRUM KARLSRUHE GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORSCHUNGSZENTRUM KARLSRUHE GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK FI LI NL SE

REF Corresponds to:

Ref document number: 191552

Country of ref document: AT

Date of ref document: 20000415

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59604896

Country of ref document: DE

Date of ref document: 20000511

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090923

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100726

Year of fee payment: 15

Ref country code: CH

Payment date: 20100726

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20100723

Year of fee payment: 15

Ref country code: FI

Payment date: 20100721

Year of fee payment: 15

Ref country code: AT

Payment date: 20100721

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20100726

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100726

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59604896

Country of ref document: DE

Effective date: 20110201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: FORSCHUNGSZENTRUM KARLSRUHE GMBH

Free format text: FORSCHUNGSZENTRUM KARLSRUHE GMBH#WEBERSTRASSE 5#76133 KARLSRUHE (DE) -TRANSFER TO- FORSCHUNGSZENTRUM KARLSRUHE GMBH#WEBERSTRASSE 5#76133 KARLSRUHE (DE)

BERE Be: lapsed

Owner name: FORSCHUNGSZENTRUM *KARLSRUHE G.M.B.H.

Effective date: 20110731

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 191552

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110719

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110720