WO1999038670A1 - Thermoplastic resin molded product and manufacturing and using methods thereof - Google Patents

Thermoplastic resin molded product and manufacturing and using methods thereof Download PDF

Info

Publication number
WO1999038670A1
WO1999038670A1 PCT/JP1999/000371 JP9900371W WO9938670A1 WO 1999038670 A1 WO1999038670 A1 WO 1999038670A1 JP 9900371 W JP9900371 W JP 9900371W WO 9938670 A1 WO9938670 A1 WO 9938670A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
molding
resin molded
molded product
reduced pressure
Prior art date
Application number
PCT/JP1999/000371
Other languages
French (fr)
Japanese (ja)
Inventor
Sadaatsu Yamaguchi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO1999038670A1 publication Critical patent/WO1999038670A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/02Moulding by agglomerating
    • B29C67/04Sintering

Definitions

  • the present invention relates to a thermoplastic resin molded article having excellent mechanical strength, particularly excellent tensile strength and surface smoothness, and a method for producing and using the same.
  • Molded articles made of thermoplastic resins such as polyethylene and polypropylene are widely used in extremely diverse fields due to their ease of molding. Molded articles made of fluororesin have excellent properties such as heat resistance, chemical resistance, and friction resistance, and are widely used in the daily necessities field, office automation equipment fields, and high-tech fields such as space. In recent years, such molded products, especially those made of polyethylene and fluororesin, have been developed with the advancement of semiconductor manufacturing technology, making use of these excellent chemical resistances to make high-purity chemical containers for semiconductor manufacturing, piping for transferring ultrapure water, etc. It is used for
  • these molded products have high mechanical properties, for example, high tensile strength.
  • molding under reduced pressure has been conventionally performed in the molding industry, but it is for removing moisture, residual monomers, bubbles, etc., which are absorbed by the molding material. there were. They have been applied to resins that may contain moisture, residual monomers, etc., for example, polystyrene, polyacrylates, polyamides, polyethylene terephthalate, polyimides, polyarylates, and the like.
  • Japanese Unexamined Patent Publication No. 60-171110 discloses tetrafluoroethylene / hexaflu Disclosed in the extrusion finishing method of a polypropylene copolymer molding material is a technique for removing the source of volatile substances that cause bubbles and voids in the copolymer by limiting the temperature and the shear rate under reduced pressure. Have been. However, this technology is not concerned with the conditions under which the final part is formed.
  • Japanese Patent Application Laid-Open No. 7-73097 discloses that in order to smooth the surface of a melt-molded product of tetrafluoroethylene nofluoroalkoxy trifluoroethylene copolymer (PFA), There is disclosed a technique in which a small amount of specific polytetrafluoroethylene (PTFE) is added and contained to refine the spherulites of PFA to obtain the surface smoothness of a molded product.
  • PTFE polytetrafluoroethylene
  • an object of the present invention is to provide a molded article having improved tensile strength compared to the case of the same molding material and exhibiting superior surface smoothness, and a method for producing and using the same. It is.
  • the present invention relates to a thermoplastic resin molded product obtained by subjecting a molding material containing a thermoplastic resin to molding under high pressure, wherein the molding material is the same as the molding material containing the thermoplastic resin.
  • This is a thermoplastic resin molded product characterized in that its tensile strength is increased by at least 5% with respect to other molded products obtained by molding under the same conditions except that it is not performed under reduced pressure.
  • the present invention provides the method for producing a thermoplastic resin molded article, wherein the molded article obtained by molding a molding material containing the thermoplastic resin is processed under a high vacuum. This is a method for producing a thermoplastic resin molded product.
  • the present invention is a method of using the thermoplastic resin molded product described above as a high-purity chemical container, an insulator, and an inflation film.
  • Figure 1 shows the crystal of polyvinylidene fluoride (PVdF) obtained in Example 1. It is an electron micrograph (400000 magnification) which shows a structure.
  • FIG. 2 is an electron micrograph ( ⁇ 3000) showing the crystal structure of PV dF obtained in Comparative Example 2.
  • FIG. 3 is a scanning electron micrograph ( ⁇ 30) showing the crystal structure of PVd F obtained in Comparative Example 1.
  • FIG. 4 is a schematic perspective view showing a method for creating a closed molding space in a compression molding machine.
  • FIG. 5 is a schematic sectional view showing a method for creating a closed molding space in a compression molding machine.
  • FIG. 6 is a schematic cross-sectional view showing a method for creating a closed molding space in a melt extrusion molding machine.
  • the tensile strength is increased by at least 5%.
  • “tensile strength” is defined as follows according to the method described in ASTM D 638-94b and ASTM D 882-91 in accordance with the thickness of the sample. A sample punched out with a dumbbell was measured at a speed of 500 mm / min.
  • ASTM D 8 8 2 9 1 Micro dumbbell
  • the above-mentioned increase in tensile strength of at least 5% means that a molded material containing the same thermoplastic resin is used as a raw material and is not subjected to reduced pressure, and other molded products are molded under the same conditions. 5% or more, and the tensile strength at break also increased by 5% or more.
  • the cause of the increase in the tensile strength is not necessarily clear, but for example, a molding method close to vacuum can be used.
  • the increase in the tensile strength is 5% or more, and more preferably 10% or more.
  • thermoplastic resin means polyethylene, ultra-high molecular weight polyethylene, polypropylene, and fluororesin. The thermoplastic resin in the present specification has not been molded under reduced pressure to obtain a final molded product.
  • fluororesin examples include those that cannot be melt-processed include polytetrafluoroethylene and modified polytetrafluoroethylene, and those that can be melt-processed include tetrafluoroethylene.
  • thermoplastic resins general-purpose resins are preferably polyethylene, ultra-high molecular weight polyethylene and polypropylene, and fluorine resins are preferably polytetrafluoroethylene, modified polytetrafluoroethylene, and tetrafluoroethylene hexafluoro.
  • fluorine resins are preferably polytetrafluoroethylene, modified polytetrafluoroethylene, and tetrafluoroethylene hexafluoro.
  • Preferred are a polypropylene copolymer, a vinylidene fluoride z-tetrafluoroethylene copolymer, and a vinylidene fluoride trifluoroethylene copolymer.
  • the molding material containing a thermoplastic resin used in the present invention may have a filler added thereto.
  • the above-mentioned filler is not particularly restricted but includes, for example, rubbers such as titanium oxide, zircon, fibrous glass short fibers, asbestos, flaky graphite, mica, talc: ethylene-propylene rubber, fluorine rubber and the like. it can. These can be used alone or in combination of two or more.
  • the size of the filler and the amount of the filler are not particularly limited, and a commonly used size and the amount of the filler can be applied.
  • the shape of the molding material containing a thermoplastic resin used in the present invention is not particularly limited.
  • any shape can be used as a usual molding material such as a powder or a pellet. Good.
  • the shape may be a block shape, a plate shape, a sheet shape, a film shape, a hollow shape, or another shape.
  • the method for molding the molding material containing the thermoplastic resin of the present invention is not particularly limited, but it is important that this is performed at least at the time of heating and melting or firing the thermoplastic resin under a specific high vacuum.
  • under reduced pressure used in the present specification for a molding process refers to a thermoplastic resin molding machine having a closed molding space connected to at least one operating vacuum line and having a vacuum gauge disposed on the vacuum line.
  • the degree of pressure reduction in one of the vacuum lines in the closed molding space where the thermoplastic resin to be molded is present in a molten state, and the portion closest to the obtained molded product is obtained by reading the above vacuum gauge. 1 OT orr, preferably less than 5 Torr.
  • the degree of decompression of the part closest to the obtained molded product means the reduced pressure state of the vacuum line when there are only one vacuum line, and the obtained molded product when there are two or more vacuum lines. Is the decompression state of the vacuum line that is closest to the space that is connected in a sealed state, and the interval between them is not specified.
  • the degree of pressure reduction in the vacuum line on the right side of the two vacuum lines is the degree of pressure reduction in the portion closest to the molded product that can be obtained.
  • such a reduced pressure condition is necessary when molding a thermoplastic resin molded product, but it is more preferable to employ it also in the steps of pelletization and transfer thereof.
  • the molded article referred to in the present invention means only a molded article giving a final shape, and does not include a pellet used as a raw material of a molded article giving a final shape, and a molded article for producing the pellet.
  • the closed molding space can be formed, for example, as follows in a typical molding method.
  • thermoplastic resin that cannot be melt-processed
  • Compression molding The same compression molding is the same as powder metallurgy pre-molding, in which a molding material is poured into a mold of a desired shape or a similar shape, and is pressed at room temperature and pressed from a certain direction. The molding material inside the machine is compressed to obtain a preform.
  • the above-mentioned closed molding space is obtained by mounting a 0 ring in a mold, drawing a vacuum, and placing these compression molding machine molding spaces under high pressure reduction. Can be made.
  • the firing means that the raw material is present inside a furnace having a heating device for raising the temperature to a constant temperature of, for example, about 360 to 380 ° C. The heating is continued for a certain time and then cooled. It is not always necessary to reduce the pressure during cooling.
  • the sealed molding space can be created by placing a sealed container in a furnace for performing the above-described firing, placing the preformed product therein, and evacuating the container.
  • Ram extrusion The extrusion is the simultaneous compression molding and baking.
  • ram extrusion a type of extrusion molding, a ram extruder consisting of a feeding section, a baking section, and a cooling section is used, and the molding powder is intermittently injected with a ram from the top of a single cylinder and heated in the baking section. Then, after cooling in the lower cooling section, molding era is obtained.
  • the entire cylinder and ram should be sealed by installing a 0 ring at the connection part, sealing with a copper seal or other methods as necessary, and further molding powder.
  • a nozzle is provided by sealing the upper part of the hopper without opening, and the nozzle is opened to supply molding powder, and the nozzle is closed to shut off the outside.
  • the evacuation can be performed in the nozzle portion above the hopper or in the closed portion of the cylinder.
  • (2-1) Melt extrusion molding examples include extrusion molding and injection molding. Extrusion molding is performed using an ordinary molding machine composed of a barrel, a screw, a die and the like. Injection molding is performed using an ordinary molding machine composed of a cylinder, a screw, a plunger, a nozzle and the like.
  • Figure 6 shows a typical device. In Figure 6, where no pressure is applied Vacuum with. In an extruder, since a vent hole exists in the molding machine itself, it is desirable to evacuate the vent hole.
  • the molding apparatus of the present invention is appropriately employed in a molding apparatus such as a T-die method or an inflation method for forming a film, and a blow molding method for forming a hollow product in the same manner as in (2-1).
  • a molding apparatus such as a T-die method or an inflation method for forming a film
  • a blow molding method for forming a hollow product in the same manner as in (2-1).
  • articles including pipes, tubes, films, irregularly shaped articles, hollow molded articles, monofilaments, wire coatings, laminate molded articles, etc.
  • the molded article of the present invention Eliminates ultra-fine voids that have not been known to improve mechanical strength and smoothness, and greatly improves stress crack resistance.
  • voids micropores formed by air
  • the chemical penetrates into it, and then expands and contracts repeatedly, causing distortion and cracks. Since the molded article of the present invention has almost no voids, there is no concern about occurrence of such distortion and cracks.
  • Thermoplastic resin molded articles suitable for these uses include those made of polyethylene, ultra-high molecular weight polyethylene, fluororesin, and the like.
  • thermoplastic resin molded article of the present invention has a very low dielectric breakdown voltage due to a small amount of voids in the molded article, and is suitable for application to products requiring this.
  • examples of such a product include an insulator, and specific examples include an insulating film and an insulating sheet.
  • thermoplastic resin molded article of the present invention suitable for these uses a molded article made of polyethylene, ultrahigh molecular weight polyethylene, PTFE, or the like is preferable.
  • the molded article of the present invention has an improved tensile strength of 5% or more, it can be made thinner and requires less molding material. Therefore, it is also suitable as an inflation film.
  • Polyethylene, melt-processable fluororesin, etc. are suitable for this application.
  • the PvdF film was injection molded at a temperature of 230 ° C and atmospheric pressure to create a sheet with a thickness of 2 mm.
  • the surface was observed with a scanning electron microscope (30 ⁇ ).
  • Figure 3 shows the results. It was found that there were irregularities on the surface that seemed to indicate that bubbles had escaped.
  • Example 1 In addition, a portion where no bubble was present was partially selected, and further observed with an electron microscope (40000 magnification). Clear spherulites were formed, indicating no surface smoothness.
  • Comparative Example 2 The sheet obtained in Comparative Example 1 was placed in a sealed glass container, and the whole container was immersed in a thermostat kept at 230 ° C. for 10 minutes while drawing a vacuum of 2 Torr from one location. Then, after air-cooling at room temperature under the same reduced pressure, it is taken out of the container and the surface is Observation was performed with a microscope (400,000 times). The results are shown in FIG. No spherulites could be observed, indicating that the surface smoothness was clear. Comparative Example 2
  • Example 2 The sheet obtained in Comparative Example 1 was melted in the air, and cooled in the air at room temperature. . The results are shown in FIG. Plane smoothness is not sufficient.
  • Example 2 The sheet obtained in Comparative Example 1 was melted in the air, and cooled in the air at room temperature. . The results are shown in FIG. Plane smoothness is not sufficient.
  • the PVdF powder was put into a mold and kept at a temperature of 237 ° C. for 30 minutes. At least the last 10 minutes of the 30 minutes was kept at a reduced pressure of 2 T 0 rr. After applying a pressure of 30 kg / cm 2 for 90 seconds with a compression press, the mold was cooled with circulating cooling water to produce a compression molded sheet. The resulting create five specimens from the sheet, by Shimadzu Sakushosha made Otogurafu DC S 5 0 0, was measured each tensile strength, an average 6 3 0 kgf / cm 2. Comparative Example 3
  • a PV dF sheet was prepared in the same manner as in Example 2 except that the operation was performed under the atmospheric pressure, and five test pieces were prepared from the obtained sheets, and the tensile strength at break was measured. As a result, the average was 570 kgf / cm 2 .
  • Example 3 Comparative Example 4
  • test piece B (example).
  • test piece C (Example).
  • the decompression conditions were maintained at 2 Torr for at least the last 10 minutes of the 40-minute aging process.
  • the molded article of the present invention increases mechanical strength and achieves excellent surface smoothness, it can be favorably applied to, for example, applications requiring extremely high purity containers such as semiconductor-related applications. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

A thermoplastic resin molded product improved in tensile strength and surface smoothness over another product using the same molding material and manufacturing and using methods thereof. The thermoplastic resin molded product which is obtained by forming a molding material containing thermoplastic resin under a highly reduced pressure and has at least 5 % larger tensile strength than another molded product formed of the same molding material containing thermoplastic resin and under the identical conditions except that the latter is not formed under a reduced pressure.

Description

明細書  Specification
熱可塑性樹脂成形品及びその製造方法並びに使用方法 技術分野  TECHNICAL FIELD
本発明は、 機械的強度、 特に引張強度及び表面平滑性に優れた熱可塑性樹脂成 形品、 及び、 その製造方法並びに使用方法に関する。 背景技術  The present invention relates to a thermoplastic resin molded article having excellent mechanical strength, particularly excellent tensile strength and surface smoothness, and a method for producing and using the same. Background art
ポリエチレン、 ポリプロピレン等の熱可塑性樹脂からなる成形品は、 成形が容 易であることから極めて多様な分野において汎用されている。 フッ素樹脂からな る成形品は、 耐熱性、 耐薬品性、 耐摩擦性等に優れた性質を有することから、 日 用品分野から O A機器分野、 宇宙等のハイテク分野まで巾広く活用されている。 近年は、 かかる成形品、 特にポリエチレン、 フッ素樹脂からなるものは、 半導体 製造技術の進歩に伴い、 これら優れた耐薬品性を活かして、 半導体製造用高純度 薬品容器、 超純水移送用配管等に用いられている。  Molded articles made of thermoplastic resins such as polyethylene and polypropylene are widely used in extremely diverse fields due to their ease of molding. Molded articles made of fluororesin have excellent properties such as heat resistance, chemical resistance, and friction resistance, and are widely used in the daily necessities field, office automation equipment fields, and high-tech fields such as space. In recent years, such molded products, especially those made of polyethylene and fluororesin, have been developed with the advancement of semiconductor manufacturing technology, making use of these excellent chemical resistances to make high-purity chemical containers for semiconductor manufacturing, piping for transferring ultrapure water, etc. It is used for
一般にこれらの成形品は、 機械的性質、 例えば、 引張強度が高いことが望まれ る。  Generally, it is desired that these molded products have high mechanical properties, for example, high tensile strength.
また、 半導体関連用途においては、 極めて高純度の薬品を保管し移送するため に不純物の混入や残留を極端に嫌う要求があつたが、 これまでポリエチレンゃフ ッ素樹脂の成形品はその表面があまり平滑ではないために、 汚染物が表面に付着 しゃすくなり、 また洗浄しても当該汚染物が除去しがたいという問題点を有して いた。 そこで、 表面の平滑性が高い成形品の供給が望まれていた。  In addition, in semiconductor-related applications, there has been a demand to extremely dislike the entry and retention of impurities in order to store and transport extremely high-purity chemicals. Since the surface is not so smooth, contaminants adhere to the surface and become chewy, and there is a problem that the contaminants are difficult to be removed even by washing. Therefore, supply of a molded product having a high surface smoothness has been desired.
ところで、 減圧下に成形することは、 成形業界で従来から行われて来たことで あるが、 それは成形材料に吸着されたり、 含まれている水分、 残モノマー、 気泡 などを除くためのものであった。 それらは、 水分、 残モノマーなどが入り込む可 能性のある樹脂、 例えば、 ポリスチレン、 ポリアクリル酸エステル、 ポリアミ ド 、 ポリエチレンテレフタレート、 ポリイ ミ ド、 ポリアリレ一ト等に対して行われ ていた。  By the way, molding under reduced pressure has been conventionally performed in the molding industry, but it is for removing moisture, residual monomers, bubbles, etc., which are absorbed by the molding material. there were. They have been applied to resins that may contain moisture, residual monomers, etc., for example, polystyrene, polyacrylates, polyamides, polyethylene terephthalate, polyimides, polyarylates, and the like.
特開昭 6 0 - 1 7 1 1 1 0号公報には、 テトラフルォロエチレン/へキサフル ォロプロピレン共重合体の成形材料の押出仕上げ方法において、 減圧下、 温度と 剪断速度とを限定することにより、 共重合体中の気泡、 空隙の原因となる揮発性 物質の源を除去する技術が開示されている。 しかしこの技術は、 最終成形品を成 形するときの条件に関するものではない。 Japanese Unexamined Patent Publication No. 60-171110 discloses tetrafluoroethylene / hexaflu Disclosed in the extrusion finishing method of a polypropylene copolymer molding material is a technique for removing the source of volatile substances that cause bubbles and voids in the copolymer by limiting the temperature and the shear rate under reduced pressure. Have been. However, this technology is not concerned with the conditions under which the final part is formed.
特開平 7 - 7 0 3 9 7号公報には、 テトラフルォロエチレンノフルォロアルコ キシトリフルォロエチレン共重合体 (P F A ) において、 その溶融成形品の表面 を平滑にするために、 少量の特定のポリテトラフルォロエチレン (P T F E ) を 添加含有させて、 P F Aの球晶を微細化して成形品の表面平滑性を獲得する技術 が開示されている。 しかしながら、 この技術は得られる成形品の表面平滑性が充 分に満足のゆくものとは言いがたいものであった。 発明の要約  Japanese Patent Application Laid-Open No. 7-73097 discloses that in order to smooth the surface of a melt-molded product of tetrafluoroethylene nofluoroalkoxy trifluoroethylene copolymer (PFA), There is disclosed a technique in which a small amount of specific polytetrafluoroethylene (PTFE) is added and contained to refine the spherulites of PFA to obtain the surface smoothness of a molded product. However, this technique has been far from satisfactory in terms of the surface smoothness of the resulting molded article. Summary of the Invention
本発明は、 上記の現状に鑑み、 同じ成形材料の場合よりも引張強度の向上した 、 より優れた表面平滑性を示す成形品及びその製造方法並びに使用方法を提供す ることを目的とするものである。  In view of the above situation, an object of the present invention is to provide a molded article having improved tensile strength compared to the case of the same molding material and exhibiting superior surface smoothness, and a method for producing and using the same. It is.
本発明は、 熱可塑性樹脂を含有する成形材料を高減圧下で成形加工することに より得られた熱可塑性樹脂成形品であって、 上記熱可塑性樹脂を含有する成形材 料と同一の成形材料を減圧下で行わない以外は同一の条件で成形することにより 得られる他の成形品に対して、 引張強度が、 少なくとも 5 %上昇していることを 特徵とする熱可塑性樹脂成形品である。  The present invention relates to a thermoplastic resin molded product obtained by subjecting a molding material containing a thermoplastic resin to molding under high pressure, wherein the molding material is the same as the molding material containing the thermoplastic resin. This is a thermoplastic resin molded product characterized in that its tensile strength is increased by at least 5% with respect to other molded products obtained by molding under the same conditions except that it is not performed under reduced pressure.
また本発明は、 上記熱可塑性樹脂成形品の製造方法であって、 上記熱可塑性榭 脂を含有する成形材料を成形加工することにより得られた成形品の成形加工を、 高減圧下において行うものであることを特徴とする熱可塑性樹脂成形品の製造方 法である。  Further, the present invention provides the method for producing a thermoplastic resin molded article, wherein the molded article obtained by molding a molding material containing the thermoplastic resin is processed under a high vacuum. This is a method for producing a thermoplastic resin molded product.
更に本発明は、 上記に記載の熱可塑性樹脂成形品を、 高純度薬品容器、 絶縁体 、 及び、 インフレーションフィルムとして用いる方法である。 図面の簡単な説明  Further, the present invention is a method of using the thermoplastic resin molded product described above as a high-purity chemical container, an insulator, and an inflation film. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例 1で得られたポリビニリデンフルオラィ ド (P V d F ) の結晶 構造を示す電子顕微鏡写真 (4 0 0 0倍) である。 Figure 1 shows the crystal of polyvinylidene fluoride (PVdF) obtained in Example 1. It is an electron micrograph (400000 magnification) which shows a structure.
図 2は、 比較例 2で得られた PV d Fの結晶構造を示す電子顕微鏡写真 (3 0 0 0倍) である。  FIG. 2 is an electron micrograph (× 3000) showing the crystal structure of PV dF obtained in Comparative Example 2.
図 3は、 比較例 1で得られた PVd Fの結晶構造を示す走査型電子顕微鏡写真 ( 3 0倍) である。  FIG. 3 is a scanning electron micrograph (× 30) showing the crystal structure of PVd F obtained in Comparative Example 1.
図 4は、 圧縮成形機における密閉成形空間の作成方法を示す斜視概略図である 図 5は、 圧縮成形機における密閉成形空間の作成方法を示す断面概略図である σ  FIG. 4 is a schematic perspective view showing a method for creating a closed molding space in a compression molding machine. FIG. 5 is a schematic sectional view showing a method for creating a closed molding space in a compression molding machine.
図 6は、 溶融押出成形機における密閉成形空間の作成方法を示す断面概略図で ある。 発明の詳細な開示  FIG. 6 is a schematic cross-sectional view showing a method for creating a closed molding space in a melt extrusion molding machine. Detailed Disclosure of the Invention
本発明の熱可塑性樹脂成形品は、 引張強度が、 少なくとも 5 %上昇している。 本明細書において、 「引張強度」 は、 試料の厚さに従って、 AS TM D 6 3 8— 9 4 b、 及び、 A S TM D 8 8 2— 9 1に記載された方法に準じて、 次 のダンベルで打ち抜いた試料を、 5 0 0 mm,分の速度で測定したものをいう。  In the thermoplastic resin molded article of the present invention, the tensile strength is increased by at least 5%. In the present specification, “tensile strength” is defined as follows according to the method described in ASTM D 638-94b and ASTM D 882-91 in accordance with the thickness of the sample. A sample punched out with a dumbbell was measured at a speed of 500 mm / min.
( 1 ) 試料の厚さが 1 mmを超える場合、 A S TM D 6 3 8— 9 4 b : 3号 ダンベル (1) If the sample thickness exceeds 1 mm, ASTM D 638—94b: No. 3 dumbbell
( 2 ) 試料の厚さが 1 mm以下の場合、 A S TM D 8 8 2— 9 1 :マイクロ ダンベル  (2) When the sample thickness is 1 mm or less, ASTM D 8 8 2 9 1: Micro dumbbell
上記引張強度が少なくとも 5 %上昇しているとは、 同じ熱可塑性樹脂を含有す る成形材料を原料として用いて減圧下で行わない以外は同一の条件で成形された 他の成形品に対して、 5 %以上上昇していることを意味し、 引張破断強度におい ても 5 %以上上昇していることを意味する。  The above-mentioned increase in tensile strength of at least 5% means that a molded material containing the same thermoplastic resin is used as a raw material and is not subjected to reduced pressure, and other molded products are molded under the same conditions. 5% or more, and the tensile strength at break also increased by 5% or more.
本発明においては当該引張強度の上昇の原因は、 必ずしも明確ではないが、 例 えば、 真空に近い成形方法等を挙げることができる。 上記引張強度の上昇は、 本 発明においては 5 %以上であるが、 より好ましくは、 1 0 %以上である。 本明細書において、 「熱可塑性樹脂」 とは、 ポリエチレン、 超高分子量ポリエ チレン、 ポリプロピレン、 フッ素樹脂のことを意味する。 上記本明細書における 熱可塑性樹脂は、 これまで最終成形品を得るために減圧下において成形されるも のではなかった。 In the present invention, the cause of the increase in the tensile strength is not necessarily clear, but for example, a molding method close to vacuum can be used. In the present invention, the increase in the tensile strength is 5% or more, and more preferably 10% or more. In the present specification, “thermoplastic resin” means polyethylene, ultra-high molecular weight polyethylene, polypropylene, and fluororesin. The thermoplastic resin in the present specification has not been molded under reduced pressure to obtain a final molded product.
上記フッ素樹脂としては、 例えば、 溶融加工をすることができないものとして 、 ポリテトラフルォロエチレン、 変性ポリテトラフルォロエチレンを挙げること ができ、 溶融加工することができるものとして、 テトラフルォロエチレン Zへキ サフルォロプロピレン共重合体、 テ卜ラフルォロエチレンノパーフルォロ (アル キルビニルエーテル) 共重合体、 エチレン Zテトラフルォロエチレン共重合体、 ェチレン/クロロ トリフルォロェチレン共重合体、 ポリクロロ トリフルォロェチ レン、 ポリビニリデンフルオラィ ド、 ビニリデンフルォラィ ド/テトラフルォ口 エチレン共重合体、 ビニリデンフルオラィ ド /テトラフルォロエチレン/クロロ トリフルォロェチレン共重合体、 ビニリデンフルオラィ ド Z卜リフルォロェチレ ン共重合体等を挙げることができる。  Examples of the fluororesin include those that cannot be melt-processed include polytetrafluoroethylene and modified polytetrafluoroethylene, and those that can be melt-processed include tetrafluoroethylene. Polyethylene Z hexafluoropropylene copolymer, Tetrafluoroethylenenoperfluoro (alkyl vinyl ether) copolymer, Ethylene Z tetrafluoroethylene copolymer, Ethylene / Chloro trifluoro Tylene copolymer, polychloro trifluoroethylene, polyvinylidenefluoride, vinylidenefluoride / tetrafluoroethylene copolymer, vinylidenefluoride / tetrafluoroethylene / chlorotrifluoroethylene copolymer, vinylidenefluoride Raid Z Trifluorene Mention may be made of the body or the like.
上記熱可塑性樹脂のうち、 汎用樹脂としては、 ポリエチレン、 超高分子量ポリ エチレン、 ポリプロピレンが好ましく、 フッ素樹脂としては、 ポリテトラフルォ 口エチレン、 変性ポリテトラフルォロエチレン、 テトラフルォロエチレン へキ サフルォロプロピレン共重合体、 ビニリデンフルオラィ ド zテトラフルォロェチ レン共重合体、 ビニリデンフルオラィ ド トリフルォロエチレン共重合体が好ま しい。  Among the above thermoplastic resins, general-purpose resins are preferably polyethylene, ultra-high molecular weight polyethylene and polypropylene, and fluorine resins are preferably polytetrafluoroethylene, modified polytetrafluoroethylene, and tetrafluoroethylene hexafluoro. Preferred are a polypropylene copolymer, a vinylidene fluoride z-tetrafluoroethylene copolymer, and a vinylidene fluoride trifluoroethylene copolymer.
本発明に使用される熱可塑性樹脂を含有する成形材料は、 フィラーが添加され ているものであってもよい。 上記フイラ一としては特に限定されず、 例えば、 酸 化チタン、 ジルコン、 繊維状ガラス短繊維、 石綿、 鱗状黒鉛、 雲母、 タルク : ェ チレン一プロピレンゴム、 フッ素ゴム等のゴム類等を挙げることができる。 これ らは単独で又は 2種以上を併用して用いることができる。 また、 上記フイラ一の 大きさやその添加量も特に限定されず、 通常用いられる大きさ及び添加量を適用 することができる。  The molding material containing a thermoplastic resin used in the present invention may have a filler added thereto. The above-mentioned filler is not particularly restricted but includes, for example, rubbers such as titanium oxide, zircon, fibrous glass short fibers, asbestos, flaky graphite, mica, talc: ethylene-propylene rubber, fluorine rubber and the like. it can. These can be used alone or in combination of two or more. In addition, the size of the filler and the amount of the filler are not particularly limited, and a commonly used size and the amount of the filler can be applied.
本発明で使用される熱可塑性樹脂を含有する成形材料の形状は特に限定されず 、 例えば、 粉末状、 ペレツ ト状等の通常成形材料として用いられる形状であれば よい。 また、 ブロック状、 板状、 シート状、 フィルム状、 中空状、 その他の形状 であってもよい。 The shape of the molding material containing a thermoplastic resin used in the present invention is not particularly limited. For example, any shape can be used as a usual molding material such as a powder or a pellet. Good. Further, the shape may be a block shape, a plate shape, a sheet shape, a film shape, a hollow shape, or another shape.
本発明の熱可塑性樹脂を含有する成形材料を成形加工する方法は特に限定され ないが、 これを少なくとも熱可塑性樹脂の加熱溶融時や焼成時に、 特定の高減圧 下で行うことが重要である。  The method for molding the molding material containing the thermoplastic resin of the present invention is not particularly limited, but it is important that this is performed at least at the time of heating and melting or firing the thermoplastic resin under a specific high vacuum.
本明細書において成形加工を行う際の 「減圧下」 とは、 作動する少なくとも 1 つの真空ラインと連結し、 当該真空ライン上に真空計を配した密閉成形空間を有 する熱可塑性樹脂の成形機又は成形装置において、 成形加工すべき熱可塑性樹脂 が溶融状態で存在する当該密閉成形空間の 1つの真空ラインであって、 得られる 成形品に最も近い部位の減圧程度が、 上記真空計の読みで 1 O T o r r、 好まし くは 5 T o r r以下となる状態をいう。  The term "under reduced pressure" used in the present specification for a molding process refers to a thermoplastic resin molding machine having a closed molding space connected to at least one operating vacuum line and having a vacuum gauge disposed on the vacuum line. Alternatively, in the molding apparatus, the degree of pressure reduction in one of the vacuum lines in the closed molding space where the thermoplastic resin to be molded is present in a molten state, and the portion closest to the obtained molded product is obtained by reading the above vacuum gauge. 1 OT orr, preferably less than 5 Torr.
なお、 得られる成形品に最も近い部位の減圧程度とは、 真空ラインが〖つのと きは、 その真空ライ ンの減圧状態をいい、 真空ラインが 2つ以上存在するときは 、 得られる成形品との間が密閉状態で連なっている最も近いところに存在する真 空ラインの減圧状態をいい、 その間の間隔は問わない。  The degree of decompression of the part closest to the obtained molded product means the reduced pressure state of the vacuum line when there are only one vacuum line, and the obtained molded product when there are two or more vacuum lines. Is the decompression state of the vacuum line that is closest to the space that is connected in a sealed state, and the interval between them is not specified.
後者については、 例えば、 図 6においては、 2つの真空ライ ンのうち右側の真 空ラインの減圧程度が得られる成形品に最も近い部位の減圧程度となる。  For the latter, for example, in FIG. 6, the degree of pressure reduction in the vacuum line on the right side of the two vacuum lines is the degree of pressure reduction in the portion closest to the molded product that can be obtained.
本発明においては、 かかる減圧条件は、 熱可塑性樹脂成形品を成形する際に必 要であるが、 加えてペレツ ト化、 これらの移送等の段階においても採用すると更 に好ましい。  In the present invention, such a reduced pressure condition is necessary when molding a thermoplastic resin molded product, but it is more preferable to employ it also in the steps of pelletization and transfer thereof.
本発明にいう成形品とは、 最終形状を与える成形品のみをいい、 最終形状を与 える成形品の原料として用いるペレツ ト、 そのペレツ トを作るための成形品は含 まない。  The molded article referred to in the present invention means only a molded article giving a final shape, and does not include a pellet used as a raw material of a molded article giving a final shape, and a molded article for producing the pellet.
上記密閉成形空間は、 例えば、 代表的な成形法において以下のようにして作る ことができる。  The closed molding space can be formed, for example, as follows in a typical molding method.
( 1 ) 溶融加工不可能な熱可塑性樹脂の場合  (1) For thermoplastic resin that cannot be melt-processed
( 1 - 1 ) 圧縮成形:当該圧縮成形とは、 粉末冶金の予備成形と同様、 所期形状 又はそれに近い金型中に成形材料を流し込み、 室温において、 一定方向から加圧 することにより圧縮成形機内部の成形材料を圧縮して予備成形品を得る。 この場合においては、 上記密閉成形空間は、 例えば、 図 4、 図 5に示すように 、 金型内に 0リングを取り付け真空に引いて、 これら圧縮成形機成形空間を高減 圧下に置く ことにより作ることができる。 (1-1) Compression molding: The same compression molding is the same as powder metallurgy pre-molding, in which a molding material is poured into a mold of a desired shape or a similar shape, and is pressed at room temperature and pressed from a certain direction. The molding material inside the machine is compressed to obtain a preform. In this case, for example, as shown in FIG. 4 and FIG. 5, the above-mentioned closed molding space is obtained by mounting a 0 ring in a mold, drawing a vacuum, and placing these compression molding machine molding spaces under high pressure reduction. Can be made.
( 1 - 2 ) 予備成形品の焼成、 冷却: 当該焼成とは、 例えば、 3 6 0 ~ 3 8 0 °C 程度の一定温度に昇温するための加熱装置を有する炉の内部に原料を存在させ、 一定時間加熱を継続させ、 その後冷却させるものである。 冷却時には、 必ずしも 減圧にする必要はない。  (1-2) Firing and cooling of the preform: The firing means that the raw material is present inside a furnace having a heating device for raising the temperature to a constant temperature of, for example, about 360 to 380 ° C. The heating is continued for a certain time and then cooled. It is not always necessary to reduce the pressure during cooling.
この場合においては、 上記焼成を行う炉内に密封容器を入れ、 その中に予備成 形品を置いて、 その容器を真空に引く ことにより上記密閉成形空間を作ることが できる。  In this case, the sealed molding space can be created by placing a sealed container in a furnace for performing the above-described firing, placing the preformed product therein, and evacuating the container.
( 1 - 3 ) ラム押出成形: 当該押出成形とは、 上記の圧縮成形と焼成とを同時に 行うものである。 押出成形の一種であるラム押出においては、 送入部、 焼成部、 冷却部とからなるラム押出機を用い、 単一円筒の上部から成形粉末をラムで間欠 的に圧入し、 焼成部において加熱し、 下部の冷却部において冷却した後、 成形 era を取得するものである。  (1-3) Ram extrusion: The extrusion is the simultaneous compression molding and baking. In ram extrusion, a type of extrusion molding, a ram extruder consisting of a feeding section, a baking section, and a cooling section is used, and the molding powder is intermittently injected with a ram from the top of a single cylinder and heated in the baking section. Then, after cooling in the lower cooling section, molding era is obtained.
この場合においては、 まず押出機内部を密閉に保っために、 必要に応じて接続 部に 0リ ングの設置、 銅シールによるシールその他の方法によりシリンダとラム 全体を密閉化し、 更に、 成形粉末を供袷するホッパ部分において、 ホッパ上部を 開放することなく密閉してノズルを設け、 ノズルを開けて成形粉末を供給すると ともにノズルを閉じて外部と遮断しうる状態とする。 真空引きは、 上記ホッパ上 部のノズル部において、 又は、 シリンダの密閉部分において行うことができる。  In this case, first, in order to keep the inside of the extruder hermetically sealed, the entire cylinder and ram should be sealed by installing a 0 ring at the connection part, sealing with a copper seal or other methods as necessary, and further molding powder. At the hopper part to be supplied, a nozzle is provided by sealing the upper part of the hopper without opening, and the nozzle is opened to supply molding powder, and the nozzle is closed to shut off the outside. The evacuation can be performed in the nozzle portion above the hopper or in the closed portion of the cylinder.
( 2 ) 溶融加工可能な熱可塑性樹脂の場合 (2) For thermoplastic resin that can be melt processed
( 2 - 1 ) 溶融押出成形: 当該成形としては、 押出成形、 射出成形等を挙げるこ とができる。 押出成形は、 バレル、 スクリュー、 ダイ等で構成される通常の成形 機を用いて行う。 射出成形は、 シリ ンダ、 スクリュー、 プランジャ、 ノズル等で 構成される通常の成形機を用いて行う。  (2-1) Melt extrusion molding: Examples of the molding include extrusion molding and injection molding. Extrusion molding is performed using an ordinary molding machine composed of a barrel, a screw, a die and the like. Injection molding is performed using an ordinary molding machine composed of a cylinder, a screw, a plunger, a nozzle and the like.
この場合においては、 上記 ( 1— 3 ) と同様にして密閉成形空間を作ることが できる。 代表的な装置を図 6に示す。 図 6においては、 圧力のかからないところ で真空引きをする。 なお、 押出成形機においては、 成形機自体にベン ト孔が存在 することから、 当該ベント孔からも真空引きを行うことが望ましい。 In this case, a closed molding space can be created in the same manner as in (1-3) above. Figure 6 shows a typical device. In Figure 6, where no pressure is applied Vacuum with. In an extruder, since a vent hole exists in the molding machine itself, it is desirable to evacuate the vent hole.
( 2— 2 ) 押出成形はホッパーからダイまでを高減圧下におくことによって、 榭 脂中にボイ ドをなく し、 大気中に押出するので、 成形品中のボイ ドもほとんどな く、 本発明の条件を満足させる。  (2-2) In extrusion molding, high pressure is applied from the hopper to the die to eliminate voids in the resin and extrude into the atmosphere.Therefore, there is almost no voids in the molded product. Meet the requirements of the invention.
従って、 ダイより外側は真空に引くことが好ましいが、 しいて高減圧下に置く 必要はない。  Therefore, it is preferable to apply a vacuum to the outside of the die, but it is not necessary to put it under high vacuum.
( 2 - 3 ) 射出成形の場合は、 ホッパーからダイまでを高減圧下におくことによ つて、 溶融した樹脂が金型内に侵入したとき、 金型内の空気が外部へ出されるの でしいて真空に引く必要はない。  (2-3) In the case of injection molding, by keeping the pressure from the hopper to the die under high vacuum, when the molten resin enters the mold, the air in the mold is discharged to the outside. There is no need to draw a vacuum.
また、 フィルム成形のための Tダイ法やインフレーショ ン法、 更には中空品成 形のためのブロー成形法等の成形装置にも (2— 1 ) と同様にして適宜採用され 本発明の成形品には、 各種のものがあり、 パイプ、 チューブ、 フィルム、 異形 成形品、 中空成形品、 モノフィ ラメ ント、 電線被覆、 ラミネート成形品等がある 本発明の成形品は、 その内部において今までその存在が知られていなかつた超 微小な空隙をなく し、 機械的強度や平滑性を向上させるほか、 耐ス トレスクラッ ク性が大幅に向上する。 薬品容器等として成形品を用いる場合、 室温から 2 0 0 °C程度の温度をサイクル下で使用する場合等には、 成形品中にボイ ド (空気によ り形成される微細孔) が存在するとその中に薬品が浸透し、 その後、 膨張、 収縮 を繰り返すことにより、 歪みやクラックの原因となる。 本発明の成形品は、 上記 ボイ ドがほとんど存在しないので、 このような歪みやクラックの発生の心配がな い。  In addition, the molding apparatus of the present invention is appropriately employed in a molding apparatus such as a T-die method or an inflation method for forming a film, and a blow molding method for forming a hollow product in the same manner as in (2-1). There are various types of articles, including pipes, tubes, films, irregularly shaped articles, hollow molded articles, monofilaments, wire coatings, laminate molded articles, etc.The molded article of the present invention Eliminates ultra-fine voids that have not been known to improve mechanical strength and smoothness, and greatly improves stress crack resistance. When a molded product is used as a chemical container, etc., or when a temperature from room temperature to about 200 ° C is used under a cycle, voids (micropores formed by air) exist in the molded product. Then, the chemical penetrates into it, and then expands and contracts repeatedly, causing distortion and cracks. Since the molded article of the present invention has almost no voids, there is no concern about occurrence of such distortion and cracks.
また、 薬品容器の中でも特にダストを嫌う半導体関連容器等に使用する場合に は、 表面の平滑性が少ない場合には、 汚染物質の溜まり場となって容器性能を低 下させるが、 本発明の成形品は、 後に実施例において詳述するように球晶が全く ないか若しくは極めて少ないので、 表面が極めて平滑でありかつボイ ドがないの で、 汚染物質が溜まる場所が全くなく、 極めて良好な状態を保つことができる。 これらの用途に適した熱可塑性樹脂成形品としては、 ポリエチレン、 超高分子 量ポリエチレン、 フッ素樹脂等からなるものが挙げられる。 In addition, when used in semiconductor-related containers that dislike dust especially among chemical containers, if the surface is low in smoothness, it becomes a pool of contaminants and reduces container performance. The product has no or very few spherulites, as will be described in detail later in the examples, so the surface is extremely smooth and free of voids, so there is no place for contaminants to accumulate and the condition is extremely good Can be kept. Thermoplastic resin molded articles suitable for these uses include those made of polyethylene, ultra-high molecular weight polyethylene, fluororesin, and the like.
本発明の熱可塑性樹脂成形品は、 成形品中のボイ ドが少ないので、 絶縁破壊電 圧が著しく高くなり、 これが要求される製品への応用に適している。 このような 製品としては絶縁体が挙げられ、 具体的には、 絶縁フィルム、 絶縁シート等を挙 げることができる。 これらの用途に適した本発明の熱可塑性樹脂成形品としては 、 ポリエチレン、 超高分子量ポリエチレン、 P T F Eからなる成形品等が好まし い。  The thermoplastic resin molded article of the present invention has a very low dielectric breakdown voltage due to a small amount of voids in the molded article, and is suitable for application to products requiring this. Examples of such a product include an insulator, and specific examples include an insulating film and an insulating sheet. As the thermoplastic resin molded article of the present invention suitable for these uses, a molded article made of polyethylene, ultrahigh molecular weight polyethylene, PTFE, or the like is preferable.
本発明の成形品は、 また引張強度が 5 %以上向上するので、 厚さが薄くでき、 成形材料が少量ですむ。 したがって又、 インフレーションフィルムとしても好適 である。 ポリエチレン、 溶融加工可能なフッ素樹脂等はこの用途に適する。 発明を実施するための最良の形態  Since the molded article of the present invention has an improved tensile strength of 5% or more, it can be made thinner and requires less molding material. Therefore, it is also suitable as an inflation film. Polyethylene, melt-processable fluororesin, etc. are suitable for this application. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の実施例を掲げて、 本発明を更に詳しく説明するが、 本発明はこ れら実施例のみに限定されるものではない。 比較例 1  Hereinafter, the present invention will be described in more detail with reference to Examples of the present invention. However, the present invention is not limited to these Examples. Comparative Example 1
P V d Fの扮末を、 温度 2 3 0 °C、 大気圧中で射出成形して厚さ 2 m mのシー トを作成した。 このものの表面を、 走査型電子顕微鏡 (3 0倍) で観察した。 結 果を図 3に示した。 表面に気泡が抜け出た形跡とみられる凹凸が存在することが 判った。  The PvdF film was injection molded at a temperature of 230 ° C and atmospheric pressure to create a sheet with a thickness of 2 mm. The surface was observed with a scanning electron microscope (30 ×). Figure 3 shows the results. It was found that there were irregularities on the surface that seemed to indicate that bubbles had escaped.
なお、 又、 このものの気泡の存在しない箇所を部分的に選び、 更に電子顕微鏡 ( 4 0 0 0倍) で観察した。 明瞭な球晶が構成されており、 表面平滑性がないこ とが判った。 実施例 1  In addition, a portion where no bubble was present was partially selected, and further observed with an electron microscope (40000 magnification). Clear spherulites were formed, indicating no surface smoothness. Example 1
比較例 1で得られたシートを、 密封したガラス容器に入れ、 一個所から 2 T o r rの真空に引きながら、 容器全体を 2 3 0 °Cに保った恒温槽に 1 0分間つけた 。 その後、 同減圧状態で室温空冷した後、 容器より取り出して、 その表面を電子 顕微鏡 (4 0 0 0倍) で観察した。 結果を図 1に示した。 球晶を観察することが できず、 表面平滑性が明らかであることが判った。 比較例 2 The sheet obtained in Comparative Example 1 was placed in a sealed glass container, and the whole container was immersed in a thermostat kept at 230 ° C. for 10 minutes while drawing a vacuum of 2 Torr from one location. Then, after air-cooling at room temperature under the same reduced pressure, it is taken out of the container and the surface is Observation was performed with a microscope (400,000 times). The results are shown in FIG. No spherulites could be observed, indicating that the surface smoothness was clear. Comparative Example 2
比較例 1で得られたシートを、 大気中で溶融、 室温空冷した以外は、 実施例 1 と同様にした後、 容器より取り出して、 その表面を電子顕微鏡 (3 0 0 0倍) で 観察した。 結果を図 2に示した。 平面平滑性が充分とはいえない。 実施例 2  The sheet obtained in Comparative Example 1 was melted in the air, and cooled in the air at room temperature. . The results are shown in FIG. Plane smoothness is not sufficient. Example 2
金型に P V d Fの粉末を入れ、 2 3 7 °Cの温度で 3 0分間保ち、 3 0分間のう ち少なくとも最後の 1 0分間は 2 T 0 r rの状態の減圧が保持された。 圧縮プレ スで 3 0 k g/cm2 の圧力を 9 0秒間加えた後、 循環冷却水で金型を冷却して 圧縮成形シートを作成した。 得られたシートから 5つの試験片を作成し、 島津製 作所社製ォートグラフ DC S 5 0 0により、 それぞれの引張破断強度を測定した ところ、 平均 6 3 0 k g f /cm2 であった。 比較例 3 The PVdF powder was put into a mold and kept at a temperature of 237 ° C. for 30 minutes. At least the last 10 minutes of the 30 minutes was kept at a reduced pressure of 2 T 0 rr. After applying a pressure of 30 kg / cm 2 for 90 seconds with a compression press, the mold was cooled with circulating cooling water to produce a compression molded sheet. The resulting create five specimens from the sheet, by Shimadzu Sakushosha made Otogurafu DC S 5 0 0, was measured each tensile strength, an average 6 3 0 kgf / cm 2. Comparative Example 3
大気圧下での操作を行った以外は実施例 2と同様にして、 PV d Fシ一トを調 製し、 得られたシートから 5つの試験片を作成し、 それぞれの引張破断強度を測 定したところ、 平均 5 7 0 k g f / c m2 であった。 A PV dF sheet was prepared in the same manner as in Example 2 except that the operation was performed under the atmospheric pressure, and five test pieces were prepared from the obtained sheets, and the tensile strength at break was measured. As a result, the average was 570 kgf / cm 2 .
実施例 2と比較例 3の結果から、 高減圧下での操作により、 引張破断強度が約 1割增加したことが判った。 実施例 3、 比較例 4  From the results of Example 2 and Comparative Example 3, it was found that the operation under a high vacuum reduced the tensile strength at break by about 10%. Example 3, Comparative Example 4
PTF Eの粉末を金型に充塡し、 大気圧下、 予備成形圧力を 2 0 0 k g f Zc m2 にして、 7 0 0 mm0 x 1 0 0 mm0の予備成形ブロックを作成した。 3 8 0°Cに設定した電気炉で、 大気圧下、 8時間焼成後、 4 0°CZ時間で冷却して焼 成ブロックを得た。 このブロックから厚さ 0. 5 mmのテープをスカイブして被 検用テープとした。 このテープを、 3 8 0 °Cで 4 0分間大気中で再度焼成した後 、 室温で冷却して試験片 A (比較例) を得、 3 8 0°Cで 4 0分間減圧下で焼成後 空気中で冷却して試験片 B (実施例) を得、 更に、 3 8 0 °Cで 4 0分間減圧下で 焼成した後、 同減圧下で空冷して試験片 C (実施例) を得た。 なお、 減圧の条件 は、 いずれも各 4 0分間の暁成工程のうちの少なくとも最後の 1 0分間が 2 T o r rに保持された。 And Takashi塡powder PTF E in the mold under atmospheric pressure, and the pre-molding pressure to 2 0 0 kgf Zc m 2, created a 7 0 0 mm0 x 1 0 0 mm0 preformed blocks. After firing in an electric furnace set at 380 ° C. under atmospheric pressure for 8 hours, the sintering block was obtained by cooling at 40 ° C.Z time. A tape having a thickness of 0.5 mm was skived from this block to obtain a test tape. After re-baking this tape in air at 380 ° C for 40 minutes After cooling at room temperature, a test piece A (comparative example) was obtained, and calcined at 38 ° C. for 40 minutes under reduced pressure, and then cooled in air to obtain a test piece B (example). After calcining at 0 ° C for 40 minutes under reduced pressure, it was air-cooled under the reduced pressure to obtain a test piece C (Example). The decompression conditions were maintained at 2 Torr for at least the last 10 minutes of the 40-minute aging process.
それぞれの引張破断強度特性を調べるために、 各試験片を 5つずつ用意して、 引張破断強度を測定し、 その平均値で引張強度を求めたところ、 以下のようであ つた。  In order to examine the tensile strength at break, five test pieces were prepared, and the tensile strength at break was measured. The average value of the tensile strengths was as follows.
A ^ O S k g f /cm2 A ^ OS kgf / cm 2
B : 4 6 0 k g f /cm2 B: 4600 kgf / cm 2
C : 4 4 7 k g f /cm2 C: 4 4 7 kgf / cm 2
これらの結果から、 高減圧下で作成した試験片は、 大気中で作成した試験片ょ りも 1割以上引張強度が増加していることが判った。 產業上の利用可能性  From these results, it was found that the tensile strength of the test piece prepared under high vacuum was more than 10% higher than that of the test piece prepared in air.上 の Business availability
本発明の成形品は、 機械的強度を増大せしめるとともに、 優れた表面平滑性を 実現せしめるため、 例えば、 半導体関連用途等の極めて高純度の容器等が要求さ れる用途に良好に適用することができる。  Since the molded article of the present invention increases mechanical strength and achieves excellent surface smoothness, it can be favorably applied to, for example, applications requiring extremely high purity containers such as semiconductor-related applications. it can.

Claims

請求の範囲 The scope of the claims
1 . 熱可塑性樹脂を含有する成形材料を 1 0 T o r r以下の減圧下で成形加 ェすることにより得られた熱可塑性樹脂成形品であつて、 前記熱可塑性樹脂を含 有する成形材料と同一の成形材料を減圧下で行わない以外は同一の条件で成形す ることにより得られる他の成形品に対して、 引張強度が、 少なくとも 5 %上昇し ていることを特徴とする熱可塑性樹脂成形品。 1. A thermoplastic resin molded product obtained by molding and molding a molding material containing a thermoplastic resin under reduced pressure of 10 Torr or less, the same as the molding material containing the thermoplastic resin. A thermoplastic resin molded article characterized in that its tensile strength is increased by at least 5% with respect to other molded articles obtained by molding under the same conditions except that the molding material is not subjected to reduced pressure. .
2 . 減圧が 5 T o r r以下である請求項 1記載の熱可塑性樹脂成形品。 2. The thermoplastic resin molded article according to claim 1, wherein the reduced pressure is 5 T or less.
3 . 熱可塑性樹脂を含有する成形材料に、 フィラーが添加されている請求項3. A filler is added to a molding material containing a thermoplastic resin.
1又は 2記載の熱可塑性樹脂成形 , Thermoplastic resin molding according to 1 or 2,
;クロロ o  Chloro o
4 . 熱可塑性樹脂を含有する成形材料は、 粉末状、 ペレツ ト状、 ブロック状 、 板状、 シート状、 フィルム状又は中空状である請求項 1 、 2又は 3記載の熱可 塑性榭脂成形品。 4. The thermoplastic resin molding according to claim 1, 2 or 3, wherein the molding material containing the thermoplastic resin is in the form of powder, pellet, block, plate, sheet, film or hollow. Goods.
5 . 請求項 1 、 2 、 3又は 4記載の熱可塑性樹脂成形品の製造方法であって 、 熱可塑性樹脂を含有する成形材料の前記成形加工は、 1 O T o r r以下の減圧 下において行われるものであることを特徴とする熱可塑性樹脂成形品の製造方法 5. The method for producing a thermoplastic resin molded product according to claim 1, 2, 3, or 4, wherein the molding of the molding material containing a thermoplastic resin is performed under a reduced pressure of 1 OT orr or less. A method for producing a thermoplastic resin molded product, characterized in that:
6 . 減圧が 5 T o r r以下である請求項 5記載の熱可塑性樹脂成形品の製造 方法。 6. The method for producing a thermoplastic resin molded product according to claim 5, wherein the reduced pressure is 5 T or less.
7 . 熱可塑性樹脂は、 溶融加工不可能なポリテトラフルォロエチレン又は超 高分子量ポリェチレンである請求項 5又は 6記載の熱可塑性樹脂成形品の製造方 法。 7. The method for producing a thermoplastic resin molded product according to claim 5, wherein the thermoplastic resin is polytetrafluoroethylene or ultra-high molecular weight polyethylene that cannot be melt-processed.
8 . 減圧下において行う成形加工は、 ポリテトラフルォロエチレンを含有す る成形材料を予備成形する工程及び焼成する工程のうち少なくとも 1つの工程を 含むものである請求項 7記載の熱可塑性樹脂成形品の製造方法。 8. The thermoplastic resin molded article according to claim 7, wherein the molding process performed under reduced pressure includes at least one of a step of preforming and a step of firing a molding material containing polytetrafluoroethylene. Manufacturing method.
9 . 熱可塑性樹脂は、 溶融加工可能なものである請求項 7記載の熱可塑性樹 脂成形品の製造方法。 9. The method for producing a thermoplastic resin molded article according to claim 7, wherein the thermoplastic resin can be melt-processed.
1 0 . 減圧下において行う成形加工は、 熱可塑性樹脂を含有する成形材料を加 熟溶融する工程を少なくとも含むものである請求項 9記載の熱可塑性樹脂成形品 の製造方法。 10. The method for producing a thermoplastic resin molded article according to claim 9, wherein the molding performed under reduced pressure includes at least a step of ripening and melting a molding material containing a thermoplastic resin.
1 1 . 熱可塑性樹脂は、 溶融加工可能なフッ素樹脂である請求項 5、 6、 9又 は 1 0記載の熱可塑性樹脂成形品の製造方法。 11. The method for producing a thermoplastic resin molded product according to claim 5, 6, 9, or 10, wherein the thermoplastic resin is a melt-processable fluororesin.
1 2 . 請求項 1又は 2記載の熱可塑性樹脂成形品を半導体製造用の高純度薬品 容器として用いる方法。 12. A method of using the thermoplastic resin molded product according to claim 1 or 2 as a high-purity chemical container for semiconductor production.
1 3 . 熱可塑性樹脂成形品が、 ポリエチレン、 超高分子量ポリエチレン又はフ ッ素樹脂を成形加工して得られるものである請求項 1 2記載の方法。 13. The method according to claim 12, wherein the thermoplastic resin molded article is obtained by molding and processing polyethylene, ultra-high molecular weight polyethylene, or fluororesin.
1 4 . 請求項 1又は 2記載の熱可塑性樹脂成形品を絶縁体として用いる方法。 14. A method using the thermoplastic resin molded product according to claim 1 or 2 as an insulator.
1 5 . 熱可塑性樹脂成形品が、 ポリエチレン、 超高分子量ポリエチレン又はフ ッ素樹脂を成形加工して得られるものである請求項 1 4記載の方法。 15. The method according to claim 14, wherein the thermoplastic resin molded product is obtained by molding and processing polyethylene, ultrahigh molecular weight polyethylene, or fluororesin.
1 6 , 請求項 1又は 2記載の熱可塑性樹脂成形品を、 イ ンフレーショ ンフィル ムとして用いる方法。 16. A method of using the thermoplastic resin molded product according to claim 1 or 2 as an inflation film.
1 7 . 熱可塑性樹脂が、 ポリェチレン又は溶融加工可能なフッ素樹脂を成形加 ェして得られるものである請求項 1 6記載の方法。 17. The method according to claim 16, wherein the thermoplastic resin is obtained by molding and processing polyethylene or a melt-processable fluororesin.
PCT/JP1999/000371 1998-01-29 1999-01-29 Thermoplastic resin molded product and manufacturing and using methods thereof WO1999038670A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3413098 1998-01-29
JP10/34130 1998-01-29

Publications (1)

Publication Number Publication Date
WO1999038670A1 true WO1999038670A1 (en) 1999-08-05

Family

ID=12405656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000371 WO1999038670A1 (en) 1998-01-29 1999-01-29 Thermoplastic resin molded product and manufacturing and using methods thereof

Country Status (1)

Country Link
WO (1) WO1999038670A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017082315A1 (en) * 2015-11-13 2017-05-18 旭硝子株式会社 Resin film and production process therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5277181A (en) * 1975-12-24 1977-06-29 Sumitomo Electric Industries Method and apparatus for sintering tubes made of ethylene tetrafluoride resin
JPS55100145A (en) * 1979-01-25 1980-07-30 Nippon Valqua Ind Ltd Compression molding of emulsion polymer powder of tetrafluoruethylene resin
JPS6079933A (en) * 1983-10-07 1985-05-07 Nec Corp Conditioning method of resin sheet
JPS61188428A (en) * 1985-02-15 1986-08-22 Kanebo Ltd Production of thermoplastic resin molding
JPH08505094A (en) * 1992-08-19 1996-06-04 ダブリュ.エル.ゴア アンド アソシエーツ,インコーポレイティド Dense polytetrafluoroethylene products and methods for their production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5277181A (en) * 1975-12-24 1977-06-29 Sumitomo Electric Industries Method and apparatus for sintering tubes made of ethylene tetrafluoride resin
JPS55100145A (en) * 1979-01-25 1980-07-30 Nippon Valqua Ind Ltd Compression molding of emulsion polymer powder of tetrafluoruethylene resin
JPS6079933A (en) * 1983-10-07 1985-05-07 Nec Corp Conditioning method of resin sheet
JPS61188428A (en) * 1985-02-15 1986-08-22 Kanebo Ltd Production of thermoplastic resin molding
JPH08505094A (en) * 1992-08-19 1996-06-04 ダブリュ.エル.ゴア アンド アソシエーツ,インコーポレイティド Dense polytetrafluoroethylene products and methods for their production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017082315A1 (en) * 2015-11-13 2017-05-18 旭硝子株式会社 Resin film and production process therefor
US10807776B2 (en) 2015-11-13 2020-10-20 AGC Inc. Resin film and process for its production

Similar Documents

Publication Publication Date Title
CN100343313C (en) Method of making liquid crystal polymer films
US9306135B2 (en) Mold release film and method of process for producing a semiconductor device using the same
US20080061472A1 (en) Fluoropolymer Barrier Material
EP1838760B1 (en) Fluoropolymer molding process and fluoropolymer molded product
US4824898A (en) Shaped article of a tetrafluoroethylene polymer
JP5544505B2 (en) Method for producing stretched polytetrafluoroethylene film and stretched polytetrafluoroethylene film
CN1026304C (en) Method for producing stretched styrene-based molded article
KR101331439B1 (en) Method of forming an article from non-melt processible polymers and articles formed thereby
TWI731889B (en) Resin film and its manufacturing method
KR102507245B1 (en) Pfa molded body with excellent blister resistance and method of controlling occurrence of blisters in pfa molded body
JPS61277445A (en) Laminated rubber plug and manufacture thereof
JP5633793B2 (en) Method for producing stretched polytetrafluoroethylene film and stretched polytetrafluoroethylene film
EP0693363B1 (en) Fluororesin molded product smoothing method and smoothed molded product
WO1999038670A1 (en) Thermoplastic resin molded product and manufacturing and using methods thereof
CN115136409A (en) Dielectric waveguide circuit
JP7288219B2 (en) fluorine-containing copolymer
WO2002102572A1 (en) Method for producing polytetrafluoroethylene resin formed product and resin formed product
JP3555628B2 (en) Method for producing fluoroelastomer molded article, method for producing insulated wire using same, method for producing insulated tube
WO2021200409A1 (en) Heat-resistant release sheet and method for carrying out step involving heating and melting of resin
JP2992589B2 (en) Polytetrafluoroethylene resin film and method for producing the same
JPH1135716A (en) Production of porous polytetrafluoroethylene film
JPH056495B2 (en)
JPH03175029A (en) Manufacture of product made of at least polyethylene layer and elastomer layer and product obtained using said method
Drobny Fabrication of Melt-Processible Fluoropolymers
JPH07145253A (en) Method for improving water repellency of molded article of polytetrafluoroethylene

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase