WO2002102572A1 - Method for producing polytetrafluoroethylene resin formed product and resin formed product - Google Patents

Method for producing polytetrafluoroethylene resin formed product and resin formed product Download PDF

Info

Publication number
WO2002102572A1
WO2002102572A1 PCT/JP2002/005316 JP0205316W WO02102572A1 WO 2002102572 A1 WO2002102572 A1 WO 2002102572A1 JP 0205316 W JP0205316 W JP 0205316W WO 02102572 A1 WO02102572 A1 WO 02102572A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded article
resin
stretching
resin molded
molded
Prior art date
Application number
PCT/JP2002/005316
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Murakami
Kazuo Ishiwari
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to JP2003505137A priority Critical patent/JPWO2002102572A1/en
Publication of WO2002102572A1 publication Critical patent/WO2002102572A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0005Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms

Definitions

  • the present invention relates to a method for producing a molded article made of polytetrafluoroethylene resin by stretching a molded article made of polytetrafluoroethylene resin, particularly a production method utilizing a blow molding method, And a molded article obtained by the method.
  • the present invention also relates to a resin molded product having a high degree of crystallinity and high transparency, and more particularly to a resin molded product excellent in barrier properties and surface smoothness, and comprising the resin molded product.
  • the present invention relates to a packaging material for blocking atmospheric moisture, a packaging material for blocking chemicals, a packaging material for blocking gas, a belt material, and a package. Background art
  • Fluororesin especially polytetrafluoroethylene resin [PTFE]
  • PTFE polytetrafluoroethylene resin
  • PTFE has a high melt viscosity and does not show fluidity even at temperatures higher than its melting point.Therefore, in order to obtain a PTFE molded product, compression molding or pre-molding such as paste extrusion molding is generally used. After the preform is obtained, a method of firing it is used (Fluorine Resin Handbook (1990, Nikkan Kogyo Shimbun, edited by Takaomi Satokawa), No. 93-: L4 See page 7).
  • Japanese Unexamined Patent Publication No. Hei 6-520265 discloses a method for producing a bellows for a bellows pump by preforming a preform of a perfluoroalkylbutyl ether-modified polytetrafluoroethylene resin.
  • Bellows as molded articles obtained by the method disclosed in this publication are those obtained by performing the same operation except that blow molding is not performed, that is, those having a specific gravity lower than that of molded articles having the same heat history. Yes, it functions as a bellows, but the molded product itself is in a so-called porous state.
  • WO 0 OZl 0805 discloses that PTFE is improved in crystallinity to improve barrier properties.
  • the crystals formed by sintering the preformed body and then slowly cooling are randomly generated without any direction.
  • the amount of such disordered crystals increases, light scattering at the interface of the crystals increases. Therefore, there has been a problem that the higher the crystallinity, the lower the transparency.
  • the conventional molding of PTFE differs from the general molding of thermoplastics in that Since the powder particles are fused at the time of firing the form and then cooled, voids are easily generated, and the PTFE 'does not show fluidity even at the time of firing, so that the generated voids are hard to disappear. Poids are also generated in PTFE paste extrusion by drying out the necessary lubricating aids. There was a problem that the transparency of the molded article was also impaired by light scattering in the void.
  • a first object of the present invention is to provide a new PTFE molding method capable of obtaining a molded article better than the known PTFE molding method, that is, it is possible to stretch with a uniform thickness without making it porous.
  • An object of the present invention is to provide a method for manufacturing a molded article and a molded article.
  • the first invention is to form a P-shaped FE by stretching a PTFE molded body at a temperature higher than the crystal melting start temperature of PTFE and at a temperature at which a crystal part exists in PTFE constituting the molded body.
  • a method for producing a product comprising stretching a molded body by a differential pressure, and cooling to a temperature lower than a crystal melting start temperature while maintaining the differential pressure.
  • a second object of the present invention is to provide a resin molded article having a higher degree of crystallinity and excellent transparency, a resin molded article made of PTFE having excellent barrier properties, and a PTFE having excellent surface smoothness. To provide a resin molded product.
  • the second present invention is a resin molded product having a melting point peak of 250 ° C. or higher, a crystallinity of 78% or higher, and a haze value of 30% or lower.
  • a third aspect of the present invention is a resin molded article made of a fluorine-containing resin, wherein the fluorine-containing resin is made of a tetrafluoroethylene-based polymer, and has a crystallinity of 78% or more, A resin molded product having a haze value of 30% or less.
  • the fourth present invention relates to a tetrafluoroethylene homopolymer and / or a modified polyester.
  • a resin molded article comprising the trough Ruo Russia ethylene, 25 ° water vapor permeability coefficient of 0. 02 (g ⁇ mm) at a relative humidity of difference of 90% in the C / (m 2 ⁇ day), wherein Der Rukoto less It is a resin molded body to be described.
  • the fifth of the present invention is a resin molded article comprising tetrafluoropropoxy O b ethylene homopolymers and / or modified Porite trough Ruo Russia ethylene, 35 weight 0/0 in 25 ° C permeability coefficient of hydrochloric acid 1.8 a resin molded body characterized by X 10- 11 (g ⁇ cm) Bruno (cm 2 ⁇ sec) or less.
  • the sixth invention is a resin molded article comprising a tetrafluoroethylene homopolymer and / or a modified polytetrafluoroethylene, which has a nitrogen permeability coefficient of 0.2 MPa at 25 ° C. of 6.8 X 10- 8 (cm 3 ⁇ cm) / (cm 2 - sec - MP a) is a resin molding, which is a bottom.
  • a seventh aspect of the present invention is a resin molded product comprising a tetrafluoroethylene homopolymer and ⁇ or modified polytetrafluoroethylene, having a specific gravity of 2.1 or more and an arithmetic average roughness of 0.03 ⁇ . It is a resin molding characterized by the following.
  • An eighth aspect of the present invention is a packaging material for blocking moisture in the air, comprising the resin molded product of the second to seventh aspects of the present invention, which is used for covering an article to be packaged.
  • a ninth aspect of the present invention is a drug blocking packaging material comprising the resin molded product of the second to seventh aspects of the present invention.
  • a tenth aspect of the present invention is a gas shielding packaging material comprising the resin molded product of the second to seventh aspects of the present invention.
  • the eleventh aspect of the present invention is a belt material comprising the resin molded product of the second to seventh aspects of the present invention, which is used for a photosensitive portion for forming an image in an electrophotographic apparatus.
  • Belt material comprising the resin molded product of the second to seventh aspects of the present invention, which is used for a photosensitive portion for forming an image in an electrophotographic apparatus.
  • a belt material comprising the resin molded product according to the second to seventh aspects of the present invention, wherein the belt material is used for a fixing unit for forming an image in an electrophotographic apparatus. It is a belt material.
  • a package comprising the packaged article and the resin molded article according to the second to seventh aspects of the present invention, wherein the resin molded article covers the packaged article.
  • the contact between the above package and the atmospheric moisture, chemicals and / or gas must be suppressed. It is a package characterized by the above.
  • FIG. 1 is a schematic cross-sectional view of a mold of a pottle-shaped blow-stretched product according to one embodiment of the present invention (used in Examples 1 to 5 and Comparative Examples 1 and 2).
  • FIG. 2 is a schematic cross-sectional view of a mold for a fusion bottle-shaped professional stretch-formed product according to one embodiment of the first invention (used in Embodiment 7).
  • FIG. 3 is a schematic sectional view of a mold of a cylindrical blow-stretched product according to one embodiment of the first invention (used in Example 5, Comparative Examples 3 and 4).
  • FIG. 4 is a schematic cross-sectional view of a blow-stretch-molded mold according to one embodiment of the first invention (used in Embodiment 6 and Comparative Example 5).
  • FIG. 5 is a schematic diagram of X-ray diffraction for obtaining crystallinity by an X-ray diffraction method.
  • FIG. 6 is a schematic cross-sectional view of a measuring device for determining a chemical solution permeability coefficient.
  • FIG. 7 is a schematic cross-sectional view of the mold used in Examples 8 to 10.
  • FIG. 8 is a schematic sectional view of the mold used in Examples 11 to L3.
  • FIG. 9 is an X-ray diffraction chart of the molded body 1 obtained in Production Example 1.
  • Figure 10 is a c Figure 1 1 is an X-ray diffraction Chiya one bets PTFE stretched molded article obtained in Example 11 is a TEM replica photograph of the cross section of the molded body 1 obtained in Production Example 1 c Fig. 12 is a TEM replica photograph of a cross section of the stretched PTFE product obtained in Example 11; Explanation of reference numerals
  • the present inventors have conducted intensive studies to provide a new method of molding PTFE.As a result, when the molded body is stretched in a state in which the crystalline part and the amorphous part are mixed in the PTFE constituting the molded body, the stretching is performed. First, the amorphous portion having a lower elastic modulus than the crystalline portion tends to proceed preferentially, and then the stretching also proceeds in the crystalline portion.Also, the stretching of the crystalline portion of the PTFE constituting the molded body to some extent It has been found that the molded article becomes porous as it proceeds.
  • the amorphous part having a small elastic modulus is easily stretched first, and the elasticity of the amorphous part is increased by the stretching.
  • the elastic modulus of the crystal part reaches the same as the elastic modulus of the crystal part, it is considered that the stretching also starts substantially in the crystal part. It is thought that when it becomes large, porosity occurs.
  • the decrease in the elastic modulus due to temperature rise is greater in the amorphous part than in the crystalline part.Therefore, in a state where the crystalline part and the amorphous part are mixed, the amorphous part has the same elasticity as the crystalline part at the higher temperature.
  • the amount of deformation up to the rate increases.
  • the amount by which the amorphous portion is stretched before the stretching of the crystalline portion substantially starts increases, and therefore, the stretching ratio of the PTFE until the portion becomes porous is increased. That is, when the stretching is performed at a higher temperature, the amount by which the amorphous portion is stretched before the stretching of the crystal portion substantially starts increases.
  • the higher the proportion of the amorphous part the greater the amount of deformation due to stretching until it becomes porous, that is, the larger the stretching ratio, and it is possible to stretch at a larger stretching ratio.
  • the higher the ratio the smaller the amount of deformation due to stretching until it becomes porous, that is, the smaller the draw ratio.
  • the higher the proportion of the amorphous portion the easier it is to stretch the PTFE at a higher stretching ratio without being porous, and conversely, the greater the proportion of the crystalline portion, the smaller the stretching ratio until it becomes porous.
  • the above-mentioned stretching ratio is an amount of deformation caused by stretching a heated molded body and then cooling it as defined below.
  • PTFE is known as a resin having high crystallinity.
  • the ratio of the crystalline part to the amorphous part does not change. Therefore, when the film is stretched at a temperature lower than the crystal melting onset temperature, the crystal portion starts to be stretched even at a relatively low stretching ratio, and is easily made porous.
  • the molded body when the molded body is stretched by a blow method using a gas in a state in which the crystal part is substantially absent (completely melted state), the molded body is stretched without whitening.
  • the molded body before stretching is not always uniform in thickness and strength, and usually has a thinner portion, a lower strength portion, and the like. Wake up.
  • the uneven thickness of the molded product increases, and depending on the dimension Z of the molded product, the part is brought into contact with the mold first due to local elongation and then further stretched, so that the part that has not been stretched It was also found that the molded body was bent by pushing in, causing a portion to overlap with the molded product, and even more severe, bursting.
  • a molded product having an outer diameter of up to 40 mm is merely described in the examples.
  • satisfactory molded products having an outer diameter of, for example, 12 O mm or a length of 30 O mm can be obtained, and although these molded products are large in size, Small unevenness.
  • a molded article of PTFE (hereinafter referred to as “molded article (I)” in the first aspect of the present invention) is not less than the crystal melting start temperature of PTFE and constitutes the molded article (I).
  • This is a method of manufacturing a PTFE molded article by stretching at a temperature at which crystal parts exist in PTFE, and stretching the molded object (I) by differential pressure, and starting crystal melting while maintaining the differential pressure
  • a production method characterized by cooling to a temperature lower than the temperature.
  • the PTF constituting the molded article (I) according to the stretching ratio It has been found that by appropriately selecting the proportion of the crystal part contained in E, a molded article which is further improved with respect to the above problems can be obtained, and as a result, a non-porous molded article can be obtained. That is, the first aspect of the present invention relates to a method for forming a molded article (I) at a temperature not lower than the melting start temperature of the PTFE constituting the molded article (I), wherein the PTFE has both a crystalline part and an amorphous part. The molding (I) is stretched.
  • a temperature at which the crystal part of the PTFE constituting the material starts melting that is, a temperature equal to or higher than the melting start temperature and at a preselected temperature at which both the crystal part and the amorphous part exist.
  • Stretching is performed by applying a pressure difference to the molded body (I) at a stretch ratio selected in advance, and then cooled while maintaining the stretched state to obtain a molded product.
  • the specific gravity (d b ) of the article is compared with the specific gravity (d c ) of the molded body (I) (also referred to as “reference body”) that has been subjected to the same thermal history except that stretching is not performed.
  • d b d.
  • the stretching temperature and the stretching ratio are determined by selecting these conditions in advance, performing molding, and then comparing the specific gravities of the obtained molded article and the reference body. It can be easily determined whether or not the stretching ratio and the stretching temperature allow the method of the present invention to be carried out. That is, the stretching temperature and the stretching ratio required for the first method of the present invention can be determined by trial and error.
  • the molded object (I) is placed in a mold, and the molded object (I) is pressed against a wall defining the mold cavity.
  • the molded object (I) is stretched and formed into a desired shape, preferably by pressing with a gas.
  • the molded object (I) used in the first method of the present invention is a hollow body having a wall, and the first method of the present invention can be called a stretch molding method.
  • the method when pressure is applied using a gas as in a preferred embodiment, the method also has a side face of a blow molding method, and thus can be called a professional stretch molding method.
  • the specific gravity of the molded article is not reduced, that is, the specific gravity of the molded article is reduced due to the stretching, as compared with the conventional blow molding method.
  • the term "non-porous" is used herein. 6
  • the thermal history of the non-stretched molded object (I) includes the thermal history of the process from cooling to removal of the molded product from the mold after molding.
  • the crystal melting onset temperature of PTFE is determined by measuring using a differential scanning calorimeter [DSC] obtained for PTFE constituting the molded object (I), and the curve obtained by measuring the PTFE sample is as follows. In measurements with increasing temperature, it means the temperature at which the endothermic curve begins to fall away from the baseline, ie, the temperature at which the crystal begins to require heat of fusion to begin melting. Conversely, in the measurement when the temperature of the PT FE sample is lowered, it means the temperature at which the curve obtained by heat radiation descends and reaches the baseline and agrees with it, that is, the temperature at which heat release due to crystallization ends. .
  • the crystal melting onset temperature varies slightly depending on the type of PTFE, but in general, it is within the range of about 270 to 290 ° C when increasing the temperature of the PTFE sample. In the case of measurement, it is within the range of about 260 to 280 ° C.
  • the time of stretching that is, at the temperature at the time of stretching (hereinafter also referred to as “Te”)
  • the determination is made based on the curve obtained by subjecting the PTFE constituting the molded article (I) to differential scanning calorimetry. It is generally known that when measuring PTFE by DSC, the profiles of the obtained curves do not always match when the PTFE sample is subjected to the temperature rising condition as described above and when the PTFE sample is subjected to the temperature decreasing condition. You.
  • the determination of whether or not a crystal part exists in the PTFE constituting the molded object (I) depends on the temperature process during which the PTFE reaches the stretching temperature during stretching, that is, a low temperature.
  • the method of determination differs depending on whether it is the force to reach the stretching temperature only by heating from the beginning, or whether it is heated to a temperature higher than the stretching temperature and then cooled to reach the stretching temperature.
  • the former case for convenience, also referred to as “Case Aj”
  • the latter case also called “Case B” for convenience
  • the presence or absence of a crystal part is determined based on the obtained curve.
  • the presence or absence of a crystal part in the PTFE constituting the molded body (I) at the time of stretching is determined based on the DSC curve measured in accordance with the temperature condition in the molding method.
  • whether or not the crystal part exists is determined by whether or not heat is absorbed at the selected temperature Te (whether or not the measurement point at the temperature Te is located below the baseline). (If an endotherm is observed, the crystal part is still present.)
  • whether or not the crystal part exists is determined by whether or not heat is generated at Te (whether or not the measurement point at temperature Te is located above the baseline). (If a fever is observed, the melted crystal part is still present).
  • the state in which the crystal part exists at or above the crystal melting onset temperature means that in case A, the curve obtained by the differential scanning calorimeter falls from the baseline due to crystal melting, and a peak occurs. This is a state at any temperature within the temperature range until it completely returns to the baseline.
  • case B the curve obtained by the differential scanning calorimeter rises from the baseline due to crystallization, and a peak is generated. After that, the condition at any temperature within the temperature range until it completely returns to the baseline. ⁇
  • the stretching can be performed at a large stretching ratio due to the state in which the crystal part is slightly present at the time of stretching.
  • the dimensions of the obtained molded article (or Irrespective of the dimension) and the draw ratio it is particularly preferable in that the film is drawn uniformly without substantially reducing the specific gravity described above.
  • the molded object (I) may be heated after fixing the molded object (I) in the mold.
  • the molded article (I) is preferably restrained in the mold in a stretch-free state during stretching because the molded article may have a defective portion. This is the object (I
  • the molded object (I) is an object to be stretched corresponding to the parison in the blow molding method, and may be formed by any appropriate method. Specific examples include paste extrusion molding, compression molding, ram extrusion molding, cutting, isostatic molding, and wrapping molding.
  • the molded object (I) may be a fired product or an unfired product.
  • the shape of the molded object (I) may be any suitable form if the airtight state for applying a differential pressure can be secured during stretching. Considering the molding efficiency of the molded object (I), etc. In general, it is preferably a tubular (or tubular) hollow material. .
  • cylindrical has a longitudinal axis, and a cross section perpendicular to the axial direction has substantially the same shape at any point of the longitudinal axis.
  • Such cross-sectional shapes include what is called an irregular shape (that is, a non-circular cross-sectional shape, such as an ellipse, a polygon, a shape with rounded corners of a polygon, a combination of these shapes, a more complex shape, etc.).
  • a non-irregular shape that is, a cross-sectional shape may be circular.
  • the longitudinal axis of the cylinder is, for example, an axis passing through the center of the cylinder, and such an axis passes through the center of the circumscribed circle or the inscribed circle having the above-described vertical cross section.
  • the longitudinal axis is its central axis in the case of a cylinder.
  • longitudinal J means the direction along the length (or height) of the cylinder, where the longitudinal dimension (or dimension) is longer than the dimension along the other direction. Does not mean Thus, for example, in the case of a cylindrical shape, the length (or height) of the cylinder may be smaller than the diameter of the circular cross section of the cylinder.
  • the cylindrical form of the molded article (I) is selected according to the form of the molded article, but is preferably cylindrical because of high versatility. Accordingly, paste extrusion molding is particularly preferable among the above-mentioned molding methods in that a tube-shaped molded product can be efficiently obtained.
  • the molded object (I) may have a bottomed form, for example, a cylindrical shape with a bottom, in which case the force of obtaining such a molded object (I) by compression molding, isostatic molding, or cutting s. it can.
  • the PTFE used for molding such a molded article (I) is either a suspension (molding powder) obtained by suspension polymerization or an emulsification (fine powder) obtained by emulsion polymerization. However, it is more preferable to use a material (fine powder) obtained by emulsion polymerization because the film has better stretchability.
  • a material (fine powder) obtained by emulsion polymerization because the film has better stretchability.
  • either homopolymer or modified PTFE can be used as PTFE.
  • Modifiers used for denaturation include hexafluoropropene, chlorotrinoleoethylene, ⁇ 0 —fluoro (anoreki / levininoleatenore) ⁇ perfluoro (anolecoxy alkynole vinyl ether), trifluoroethylene And polyfluoroanolealkyl ethylene.
  • PTFE constituting the molded article (I) contains a crystal part. Therefore, the PTFE constituting the molded object (I) has a certain percentage of crystals in the crystal parts originally contained (ie, the crystals contained in the PTFE at the time of producing the molded object (I)). Thawing.
  • the “crystal melting ratio j” (hereinafter, also referred to as “crystal melting ratio J”) can be obtained from the curve obtained by the above-mentioned DSC measurement.
  • the crystal melting ratio can be obtained, for example, by weighing out a DSC measurement chart.
  • the DSC curve generally differs between a temperature rise and a temperature drop, in which case the same stretching temperature T is used.
  • the ratio of the crystal part differs between Case A and Case B. That is, in the case A, in the process of temperature rise, the crystal melting ratio is the amount of the crystal part already dissolved at the stretching temperature with respect to the total amount of the crystal part existing in the PTFE constituting the molded object (I).
  • case B it can be said that in the course of the temperature drop, it is the ratio of the amount of crystal parts that are still molten at the stretching temperature to the total amount of crystal parts crystallized by cooling.
  • the first method of the present invention basically, a crystal part needs to be present at the stretching temperature Te, but the larger the crystal melting ratio, the more preferable. In particular, it is preferable that the higher the draw ratio, the higher the crystal melting ratio. Therefore, the upper limit of the crystal melting ratio can be defined as less than 100%. In other words, as long as precise measurement of the crystal melting onset temperature of PTFE constituting the molded object (I) and precise control of the stretching temperature are possible, the first embodiment of the present invention can be performed. It suffices if the film can be stretched at a temperature lower than the temperature at which the crystal part completely melts. Considering the accuracy of industrially practical temperature measurement and temperature control, stretching is usually performed at a crystal melting ratio of 99.8% or less, preferably 95 to 99.5%, for example, about 99%. It is possible.
  • the first aspect of the present invention stretches in a state where crystal parts are present in PTFE at a temperature equal to or higher than the crystal melting start temperature of PTFE constituting the molded object (I), and the specific gravity decreases substantially. Try not to happen. Substantially preventing this specific gravity reduction from occurring can be implemented, for example, by the following specific embodiments:
  • the crystal melting ratio is preferably at least 10%, more preferably at least 20%, still more preferably at least 25%, and particularly preferably. Is at least 30%, most preferably at least 50%;
  • the crystal melting ratio is preferably at least 20%, more preferably at least 25%, further preferably at least 30%, particularly Preferably at least 50%, most preferably at least 70%;
  • the crystal melting ratio is preferably at least 50%, more preferably at least 80%, and most preferably at least 90%. And; When the stretching ratio is about 20 times or less (for example, about 10 to 20 times), the crystal melting ratio is preferably at least 80%, more preferably at least 90%, and most preferably at least 90%. 5% or more.
  • the crystal melting ratio at the stretching temperature Te is 30% or more; L 0% (excluding 100%), particularly 80 to 100%. L 00. / 0 ( ⁇ , excluding 100%).
  • the stretching ratio is about 10 times, the crystal melting ratio at the stretching temperature Te is 50% to 100% ( ⁇ , excluding 100%), particularly 80 to 100%. (However, 100% is not included).
  • the stretching ratio is about 20 times, the crystal melting ratio at the stretching temperature Te is preferably 80 to 100% (however, 100% is not included).
  • the crystal melting ratio is close to 100%, because the higher the crystal melting ratio, the higher the draw ratio.
  • the crystal melting ratio is 100%, local thickness deviation occurs due to local elongation, and it is not preferable to stretch at a temperature higher than 100%.
  • the stretching ratio is defined as a one-dimensional dimension of a portion of the molded object (I).
  • the stretch ratio is a ratio of the diameter of the cylinder before stretching to the diameter of the cylinder before stretching.
  • the ratio based on the length of the cylinder instead of the diameter is also a draw ratio.
  • the above-mentioned stretch-formed product is a stretched product obtained by stretching a heated molded body and then cooling it.
  • the largest magnification is the stretching magnification used in the present specification.
  • the ratio of stretching in the circumferential direction is generally the largest, so the corresponding one-dimensional dimension of the molded object (I) and the molded product is The ratio of the length of the circumference is used as the stretching ratio.
  • the object to be molded (I) is substantially cylindrical and the molded article is also substantially cylindrical and the stretching ratio in the circumferential direction is the largest
  • the ratio of the length of the circumference is the stretching magnification of the first present invention.
  • the crystal melting onset temperature, the presence or absence of crystals, the crystal melting ratio, and the draw ratio of PTFE described above are concepts that can be easily understood by those skilled in the field of PTFE molding.
  • the stretching by the differential pressure is a result of a difference in pressure acting on the inside and outside of the molded object (I) in a state where the molded object (I) is arranged in a mold. Then, when the pressure substantially acts from the inside to the outside of the molded object (I) (that is, a differential pressure acts), the molded object (I) is pressed against the inner wall of the mold. Means to extend the PTFE constituting the molded object (I).
  • the mold has an inner wall that forms a cavity corresponding to the outer shape of the molded article produced by stretching. Stretching by such a differential pressure is substantially the same as a molding method known as a blow molding method.
  • any of the following methods may be used: only pressurization inside the molded object (I), reduced pressure only outside the molded object (I), or a combination thereof. It is not possible to cope with a thick body (I) with only the body. That is, when the wall thickness is large, the differential pressure required to start stretching is larger than 0.098 MPa, which is the upper limit of the differential pressure due to the reduced pressure. Also, in order to use reduced pressure, it is necessary to form a large number of holes required for reduced pressure in part or all of the mold, or to make the material of the mold porous, so that the pressure difference by means of only pressurization is required. Is efficient and preferred.
  • the pressure is preferably applied using a fluid, particularly a gas.
  • a fluid particularly a gas.
  • any gas can be used as long as it is inert to the molded object (I) and the apparatus.
  • air, nitrogen, helium, and carbon dioxide are used. are preferred.
  • the first method of the present invention after stretching, a temperature lower than the crystal melting onset temperature from the stretching temperature while maintaining the differential pressure (for example, a temperature of about 200 to 250 ° C. or lower). Temperature), and then remove the molded product from the mold.
  • the molded product is taken out after cooling while maintaining the differential pressure, but when the pressure is released at a temperature equal to or higher than the melting start temperature, the molded product shrinks due to residual stress. It is.
  • the molded product obtained by the production method of the first aspect of the present invention as described above usually has a size of about 2.1 or less. It has the above specific gravity (d b ), and when heated to a temperature equal to or higher than the crystal melting onset temperature, it has a shrinkage property that tends to return to the original shape of the molded object (I). When heated in such a manner, the thickness of the molded article becomes close to the thickness of the molded object (I) before stretching.
  • the molded article obtained by the method of the prior art (for example, the method described in JP-A-6-520265) is porous and has a specific gravity of about 1.7 (see the comparative example described later). See).
  • the shape is formed not by melt flow but by stretching, it may not be easy to form a relatively fine shape.
  • the thickness of the molded object (I) is large, the shape that can be formed may be limited. Therefore, when it is necessary to impart a fine shape to a molded article, it may be preferable to incorporate, in the method of the first invention, fusion of another member to the molded object (I). This fusion may be performed at any time before, during, or after the stretching.However, it is possible to perform fusion with another member by heating during the stretching and a differential pressure acting thereon. Sometimes it is efficient and most preferred.
  • the other members are not particularly limited as long as they provide a desired molded product, and may be, for example, a molded product of PPTFE having a predetermined shape, a cut product, or the like.
  • a molded article can be obtained.
  • a molded product having a desired shape can be obtained by cutting or the like the member fused to the molded product as necessary.
  • the fusing includes a member for fusing another member to be fused (fused member) and a member to be molded (I) outside the member to be molded (I);
  • the molded article (I) is stretched by a differential pressure so that the molded article (I) is stretched by a differential pressure so that a part of the stretched molded article (I) is fused to a predetermined portion of the molded article. This is carried out by holding in a state pressed against the fusion member.
  • the material of the fusion member may be any material that has heat resistance at the stretching temperature and that can be fused to PPTFE (including one containing a filler), but is preferably a fluorine-based resin from the viewpoint of heat resistance. It is particularly preferable that the fluororesin is a PTFE resin, a PTFE resin, or a FEP resin because of its heat resistance.
  • the PTFE may be the same type of PTFE as that constituting the molded object (I), and in another preferred embodiment, may be a modified PTFE having good fusibility (for example, an alkylbutyl ether-modified PTFE). .
  • the molded article according to the first aspect of the present invention is based on the assumption that the longitudinal axis of the molded article (I) as described above remains as it is in the molded article obtained by stretching and molding the molded article (I). Can be specified as follows. That is, it is assumed that the molded article manufactured according to the first aspect of the present invention is the direction in the molded article corresponding to the longitudinal axis of the molded object (I) (that is, it remains in the molded article as it is).
  • Cross-section of the molded product in a direction perpendicular to the direction of the longitudinal axis of the molded object (I) (a cross-section in which the thickness of the molded product is neglected, hereinafter simply referred to as “cross-sectional shape of the molded product”) )
  • At least one molded product cross-sectional shape is an irregular cross-sectional shape.
  • the cross-sectional shape may be, for example, an ellipse, a polygon, a shape obtained by rounding a corner of a polygon, or the like, and further, at least one other cross-sectional shape may be a circular cross-section.
  • a part or all of the molded article is a hollow three-dimensional form other than the cylindrical form, for example, a molded article having a rectangular cylindrical form, and a part of such a molded article has a cylindrical form and A molded product in the form of a truncated cone can be exemplified.
  • the molded articles included in this case are not simple forms having a cylindrical shape as a whole, but include virtually all molded forms in which various forms are complicated or simply combined.
  • this Specific examples of such molded articles include containers of various forms (for example, so-called polycontainers), molded articles used for lining of different-diameter pipes or fuel tanks, molded articles used for casings of chemical pumps, and the like. Moldings (ie, pre-molded products), etc., which are used as materials for obtaining various molded products.
  • the cross-sectional shape of the molded product is a non-irregular cross-sectional shape, that is, a circular shape.
  • the molded article is substantially cylindrical, and the cylindrical form may be substantially straight or bent.
  • the shape is a conical or truncated cone shape, and a shape in which a bulging portion and a shrinking portion exist along the longitudinal axis direction.
  • the molded object (I) is stretched more uniformly.
  • unevenness in the thickness of the PTFE defining the molded product that is, the thickness
  • the thickness deviation of the cylindrical portion of the molded article having the same diameter and the same cross-sectional shape therefore, the thickness unevenness is compared with the case of the conventional professional molding. , Greatly improved.
  • the maximum thickness is the maximum thickness measured at the relevant cylindrical part
  • the minimum thickness is the minimum thickness measured at the relevant cylindrical part. Measure the location and calculate from the maximum and minimum values of the measured values.
  • Depth of wall thickness expressed as (%) 1S 120% or less, preferably 100% or less, more preferably 50% or less It is. Such improved thickness unevenness is observed not only in the cylindrical part but also in other parts of the molded article.
  • the method for producing a molded article according to the first aspect of the present invention is useful for forming a molded article having a large deformation amount, and therefore, a molded article having a large size, particularly a cylindrical molded article.
  • the usefulness of the first invention is demonstrated by the fact that the cross-sectional shape of the molded article is circular (strictly, the cross-sectional shape is a narrow ring shape because the molded article is hollow).
  • Those whose length is larger than those of conventional cylindrical products, for example, at least 5 mn! Preferably at least 10 Omm, more preferably at least 15 Omm .
  • the resin molded product of the second aspect of the present invention is characterized in that the melting point peak is 250 ° C. or more, the crystallinity is 78% or more, and the haze value is 30% or less.
  • the above-mentioned “second resin molded article of the present invention” is referred to as a resin molded article (1).
  • the term "resin molded body" without such a number refers to the resin molding of the second to seventh aspects of the present invention, which is not limited to the resin molded body represented by such a number. Mean body.
  • the resin molded article (1) is obtained by molding a resin.
  • the resin is not particularly limited as long as a molded article having a crystallinity, a haze value, and a melting point peak within the above-described ranges can be obtained, but is preferably a fluororesin.
  • Molded articles made of fluorine-containing resin are heat-resistant, have a relatively high crystallinity, and have non-adhesive properties, electrical insulation properties, chemical resistance, weather resistance, water and oil repellency, etc. It has a wide range of applications because of its excellent properties.
  • the fluororesin used for the resin molded product (1) is not particularly limited as long as the obtained molded product can exhibit a crystallinity, a haze value and a melting point peak within the above ranges.
  • a resin made of a polymer obtained from a monomer component containing tetrafluoroethylene [TFE] is preferable in that it has a relatively high molecular weight and is often excellent in the above-mentioned properties.
  • a polymer obtained from such a monomer component containing TFE may be referred to as a “tetrafluoroethylene-based polymer [TFE-based polymer]”.
  • the TFE polymer is not particularly limited, and examples thereof include tetrafluoroethylene homopolymer [PTFE homopolymer], modified polytetrafluoroethylene [modified PTFE], tetrafluoroethylene / perfluoro (alkyl vinyl ether). Ter) copolymer [PFA], tetrafluoroethylene / hexafluoropropylene copolymer [FEP], and the like.
  • PTFE homopolymer and modified PTFE are more preferable in terms of good crystallinity and melting point peak characteristics.
  • the fluororesin used for the resin molded article (1) may be a polymer (a) containing a modifying agent.
  • the “polymer (a) containing a modifier hereinafter, referred to as“ polymer (a) ”)” means a polymer obtained from a monomer component and a modifier.
  • the polymer (a) may be one in which a monomer component and a modifier are polymerized to form a polymer chain, or the polymer (a) may be used in a state in which the modifier is not polymerized. May be contained, or a mixture thereof.
  • the polymer (a) is one of the above-mentioned TFE-based polymers.
  • a polymer (a) for example, the above-mentioned modified PTFE And the like.
  • the “modified PTFE” means a polymer obtained from TFE and a modifying agent.
  • the modified PTFE is different from the PTFE homopolymer in that the PTFE homopolymer is a TFE homopolymer obtained by polymerizing TFE alone and does not contain a modifier.
  • the modifier for the modified PTFE is not particularly limited as long as it can be copolymerized with TFE.
  • the modifier include perfluorophenol such as hexafluoropropene [HFP]; chlorotrifluoroethylene [CTFE ]; Hydrofluoroolefins such as trifluoroethylene; perfluorobier ether and the like.
  • the perfluorovinyl ether is not particularly limited, and may be, for example, the following general formula (I)
  • R f represents a perfluoro group.
  • the perfluoro opening means that all hydrogen atoms bonded to carbon atoms are replaced by fluorine atoms.
  • the perfluoro group may have an ether oxygen.
  • perfluorovinyl ether examples include, for example, perfluoro (alkyl vinyl ether) [PAVE in which R f represents a perfluoroalkyl group having 1 to 10 carbon atoms in the above general formula (.1). ].
  • Perfolo above The alkyl group preferably has 1 to 5 carbon atoms.
  • Examples of the perfluoroalkyl group in the above PAVE include a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluoropropyl group, a perfluoropentyl group, and a perfluorohexyl group.
  • a monofluoropropyl group is preferred.
  • perfluorovinyl ether examples include a perfluoro (alkoxyalkyl) group having 4 to 9 carbon atoms in the general formula (I);
  • perfluorovinyl ether and chlorotrifluoroethylene are preferred from the viewpoint that the resulting resin molded article (1) has good crystallinity, and perfluorovinyl ether is preferred. PAVE is preferred.
  • the ratio (% by weight) of the modified PTFE to the total amount of the modified agent and TFE in the modified PTFE depends on the type of the modified agent, but is not large enough to give the obtained modified PTFE melt flowability. Preferably, the amount is small. For example, when using the par full O b vinyl ether as the modifying agent, usually 1 weight 0/0 or less good Preferred, from 0.001 to 1 weight 0/0 is more preferable.
  • the fluorinated resin used in the resin molded article (1) one or more kinds can be used.
  • one or more kinds of the TFE polymers can be used.
  • One or more of the polymers (a) can be used.
  • the modified PTFE those having different average molecular weights, copolymer compositions, etc.
  • PTFE homopolymer for example, one or more kinds having different average molecular weights may be used, or a mixture of modified PTFE and PTFE homopolymer may be used.
  • PTFE PTFE homopolymer one and modified or modified PTFE in the second to thirteenth inventions
  • TFE homopolymer and “modified PTFE” are the same as those in the first present invention.
  • PTFE can be obtained by conventionally known polymerization methods such as suspension polymerization, emulsion polymerization, bulk polymerization, and solution polymerization.However, since PTFE is widely used industrially, it is necessary to use suspension polymerization or emulsion polymerization. Emulsion polymerization is more preferred because moldability, particularly stretchability, when producing the resin molded article (1) is good.
  • a resin powder composed of PTFE obtained by suspension polymerization may be referred to as PTFE molding powder, and a resin powder composed of PT FE obtained by emulsion polymerization may be referred to as PTFE fine powder.
  • PTFE fine powder is preferable.
  • the resin molded product (1) has a crystallinity of 78% or more. Within the above range, the water vapor permeability, gas permeability and drug permeability of the resin molded article (1) can be reduced.
  • the amount of gas molecules such as water vapor and nitrogen in the atmosphere and chemicals such as acid permeate the resin molded article (1), that is, the resin molded article (1) ) can be suppressed from passing through from one field to the other field.
  • the above two fields are, for example, space, solution, etc.
  • the reduction in water vapor permeability, gas permeability and drug permeability may be referred to as “barrier property” or “improvement in barrier property”.
  • the above “drug” means a substance having a chemical action.
  • the above-mentioned drug may be composed of one or more compounds, and may be various drugs, drugs, drug solutions, acids, etc., regardless of whether it is solid, liquid or gas.
  • the lower limit of the crystallinity is preferably 80%, and more preferably 81%.
  • the upper limit may be 98% from the viewpoint that the barrier property of the resin molded article (1) is not practically impaired, and 95 ° /. It may be.
  • the crystallinity can be made particularly high when the resin molded product (1) is made of the above-mentioned fluororesin, especially PTFE.
  • Fluorine-containing resins, especially PTFE have a rigid molecular chain and are easily arranged in an orderly manner, so that crystallization proceeds during the polymerization process, and is usually obtained as a polymer with high crystallinity.
  • the conventional molding method involves firing at a temperature equal to or higher than the melting point in order to fuse the particles. Although new crystals were formed, a sufficiently high crystallinity could not be obtained even if the cooling rate was reduced. Since the resin molded article (1) is obtained by a method for producing a resin molded article described later, it can have a high degree of crystallinity.
  • I c + KIa (Where C is the crystallinity (%), I c is the area of the crystal part, I a is the area of the amorphous part, and K is 0.66.)
  • the resin molded article (1) has a haze value of 30% or less. When it is within the above range, the resin molded article (1) can have transparency. With a conventional molded body having a melting point peak in the range described below, a molded product having a high crystallinity as in the above range and having a low haze value in the above range has not been obtained. However, the resin molded article (1) can achieve both high crystallinity and high transparency.
  • a preferable upper limit is 20 ° / 0
  • a more preferable upper limit is 15%
  • a further preferable upper limit is 10%
  • a particularly preferable upper limit is 8%.
  • the haze value may be 0.5% or more, or 1% or more, as long as the haze value is within the above range, in that high transparency is maintained.
  • the haze value is easily reduced to 30% or less when the resin molded article (1) is made of a fluororesin and the fluororesin is made of a polymer (a) containing a modifier. be able to.
  • a polymer (a) a TFE polymer containing a modifying agent is preferable, and modified PTFE is more preferable.
  • the polymer (a) differs from PTFE homopolymer in that atoms other than side chains and fluorine are bonded to the main chain, resulting in reduced crystallinity, less microcrystals that cause light scattering, and high transparency. Can be provided.
  • a preferable upper limit is 20%, a more preferable upper limit is 15%, and a further preferable upper limit is 10%. If it is within these ranges, it may be 0.5% or more, or 1% or more, in that high transparency is maintained.
  • haze value means a value measured using a haze meter (manufactured by Toyo Seiki Seisaku-Sho, Ltd., direct-read haze meter) in accordance with JIS K 7136.
  • the resin molded product (1) has a melting point peak of 250 ° C. or higher. Having a melting point peak within the above range can be used not only for applications used at low and medium temperatures such as room temperature, but also for applications used at high temperatures because of its high heat resistance.
  • a preferred lower limit of the melting point peak is 260 ° C. With the above melting point peak Then, within the above range, the temperature may be 400 ° C or lower, or 350 ° C or lower, from the viewpoint of having sufficient heat resistance in ordinary use.
  • the “melting point peak” means a temperature at which a peak is observed in a melting curve measured using a differential scanning calorimeter [DSC].
  • the resin molded product (1) has a melting point peak, a crystallinity and a haze value within the above-mentioned ranges, various additives such as a molding aid, a leveling agent, a heat stabilizer and the like may be used as required. It may be molded using.
  • the resin molded article according to the third aspect of the present invention is made of a fluorine-containing resin, wherein the fluorine-containing resin is made of a TFE polymer, and has a crystallinity of 78% or more, The haze value is 30% or less.
  • the above-mentioned “third resin molded article of the present invention” is referred to as a resin molded article (2).
  • Such a resin molded article (2) is obtained by molding a fluororesin made of a TFE-based polymer, it can be used in a wide range of applications. Those satisfying both the degree of crystallinity and the haze value were not obtained.
  • the fluororesin, the TFE polymer, the crystallinity, the haze value, and the heat resistance of the resin molded product (2) are as described above for the resin molded product (1).
  • the resin molded article of the fourth invention is made of PTF E homopolymer and / or modified PTFE, and has a water vapor permeability coefficient of 0.02 (g (m 2 ⁇ day) or less.
  • the above-mentioned “fourth resin molded article of the present invention” is referred to as a resin molded article (3).
  • the resin molded body (3) When the resin molded body (3) has a water vapor transmission coefficient within the above range, it can substantially block water vapor in the atmosphere under a normal use environment. Therefore, the resin molded body (3) can prevent contact with water vapor by, for example, covering an object that is not preferable to contact with water vapor.
  • the preferred upper limit is 0. 0 15 (g - mm) / (m 2 'day) in a more preferred upper limit is 0. 0 1 (g ⁇ mm) / (m 2 ⁇ da y).
  • the water vapor permeability coefficient is within the above range, a point capable of retaining water vapor barrier properties in normal applications, even 0. 0 0 0 1 (g ⁇ mm) / (m 2 ⁇ day) or well, further 0. 0 0 1 (g ⁇ mm ) / (m 2 ⁇ day) or more derconnection may.
  • the “water vapor permeability coefficient” means a value obtained by measuring according to JISZ208.
  • the unit of the water vapor transmission coefficient represents the amount (g) of water vapor that permeates a thickness l mm of the resin molded body (3) to be measured per day per lm 2 of surface area.
  • the PTFE homopolymer and / or modified PTFE for the resin molded product (3) is as described above for the resin molded product (1).
  • the fifth resin molded article of the present invention is made of a PTFE homopolymer and / or a modified PTFE, and has a permeation coefficient of 35% by weight of hydrochloric acid at 25 ° C. (hereinafter, referred to as “a permeation coefficient of hydrochloric acid”). There is characterized in that 1. at 8 X 1 0- 1 1 (g ⁇ cm) / (cm 2 ⁇ sec) or less.
  • the “fifth resin molded article of the present invention” is referred to as a resin molded article (4).
  • the resin molded product (4) When the resin molded product (4) has a hydrochloric acid permeability within the above range, it can substantially block hydrochloric acid under a normal use environment, and can effectively remove various chemicals such as other acids. It can have drug permeability to block. As described above, it is a resin molded product composed of PTFE homopolymer and / or modified PTFE, which has a chemical barrier property that is not limited to a hydrochloric acid barrier property, and is measured using 35% by weight hydrochloric acid at 25 ° C.
  • the resin molded body (4) can prevent contact with the above-mentioned chemicals, for example, by covering an object which is not preferably in contact with the chemicals such as hydrochloric acid and other acids.
  • the preferred upper limit is 1. 5 X 1 0- 1 1 ( g. Cm) / (cm 2 ' s), and more preferable upper limit is 1. 0 X 1 0- 1 1 ( g. Cm) / (cm 2 ⁇ sec), still more preferred upper limit 9. is 0 X 1 0- 12.
  • the hydrochloric acid permeability coefficient may be at least 1 ⁇ 10-15 (g-cm) / (cm 2 ⁇ ), as long as it has a practically sufficient hydrochloric acid barrier property, as long as it is within the above range.
  • X 1 0- 14 (g ⁇ cm ) / ( cm 2 ⁇ second).
  • the 35% by weight hydrochloric acid is a 35% by weight aqueous hydrogen chloride solution.
  • the “hydrochloric acid permeability coefficient” means a value obtained by the following method for determining a chemical solution permeability coefficient. That is, using the measuring device shown in the schematic cross-sectional view of FIG. Pinch it.
  • One glass container 62a is charged with hydrochloric acid having a concentration of 35% by weight, and the other glass container 62b is charged with 20 Om1 each, and placed in a thermostat at 25 ° C.
  • the liquid contact surface of the measurement sample 61 is 70 mmmm. In this state, the sample was sampled from the sampling port 64 of the glass container 62b containing pure water, and the chlorine ion concentration in the pure water was measured using a liquid chromatograph (trade name: IC700-E, Yokogawa).
  • the amount permeating the measurement sample 61 is calculated from the obtained hydrochloric acid ion concentration, and the obtained calculated value is plotted with respect to time. The same measurement is performed until the plotted values are aligned on a straight line, and the daily transmission amount per unit thickness is calculated from the slope of the straight line.
  • the PTFE homopolymer and Z or modified PTFE are as described above for the resin molded article (1), and are excellent in chemical resistance. It is considered that the chemical barrier property of the resin molded article (1) is physically caused by the high crystallinity obtained by the method for producing a resin molded article described later and the dense crystal structure composed of a multilayer structure described later. .
  • the chemical barrier property of the resin molded article (1) is further characterized in that the chemical resistance of the PTFE homopolymer and / or the modified PTFE can prevent the resin molded article (1) from being deteriorated or deteriorated by the chemical. Which is chemically contributed.
  • the sixth resin molded product of the present invention is made of PTFE homopolymer and / or modified PTFE, and has a nitrogen permeability coefficient of 0.2 MPa at 25 ° C (hereinafter referred to as “nitrogen permeability coefficient”) of 6. . 8 X 10- 8 (cm 3 ⁇ cm) / - is characterized in that it is (cm 2 sec ⁇ MP a) below.
  • nitrogen permeability coefficient nitrogen permeability coefficient
  • the resin molded article (5) When the resin molded article (5) has a nitrogen permeability coefficient within the above range, it can substantially block nitrogen molecules under a normal use environment, and usually effectively blocks other gas molecules. It can have a gas barrier property for blocking.
  • the PTF EResin molded body made of homopolymer and / or modified PTF II.It has gas barrier properties that are not limited to nitrogen barrier properties and is measured using 0.2 MPa nitrogen at 25 ° C.
  • the resin molded article having the nitrogen permeability coefficient in the above range is the resin molded article (5).
  • the resin molded body (5) can prevent contact with gas by, for example, covering an object that is not preferable to contact with gas.
  • the preferred upper limit is 6. 4 X 10- 8 (cm 3 ⁇ cm) / (cm 2 ⁇ sec ⁇ MP a), a more preferred upper limit 6. OX 10- 8 (cm 3 ⁇ cm) / (cm 2 - sec ⁇ MP a), a still more preferred upper limit is 5. is 0 X 10- 8 (cm 3 ⁇ cm) / (cm 2 ⁇ sec ⁇ MP a). In - (sec ⁇ MP a cm 2 ) or more above the nitrogen permeability coefficient, is within the above range, from the viewpoint of having a practically sufficient nitrogen barrier properties, 1. 0 X 10- 9 (cm 3 'cm) / there may be a further 1.
  • the above “nitrogen permeability coefficient” means a value obtained by the following method of obtaining a gas permeability coefficient. That is, a measurement gas is introduced into one of two sealed spaces partitioned by using a measurement sample such as the resin molded body (5) as a boundary film, and is pressurized to a pressure exceeding atmospheric pressure. A differential pressure is established by keeping air at atmospheric pressure, and the amount of gas that has permeated to the atmospheric pressure side is measured and converted to the amount permeated per 1 cm thickness of the measurement sample. In this specification, using a pressurized gas permeation analyzer (trade name: Ga spe rm-100, manufactured by JASCO Corporation), the amount of gas measured using nitrogen as the measurement gas and a differential pressure of 0.2 MPa use.
  • a pressurized gas permeation analyzer trade name: Ga spe rm-100, manufactured by JASCO Corporation
  • the PTFE homopolymer and / or modified PTFE for the resin molded article (5) is as described above for the resin molded article (1).
  • the resin molded product according to the seventh aspect of the present invention comprises a PTFE homopolymer and / or a modified PTFE, has a specific gravity of 2.1 or more, and has an arithmetic average roughness (Ra) of 0.03 ⁇ or less. It is characterized by having.
  • the “seventh resin molded article of the present invention” is referred to as a resin molded article (6).
  • the resin molded article (6) is generally non-porous and has a high degree of crystallinity, so that good barrier properties can be obtained.
  • a preferred lower limit is 2.14, and a more preferred lower limit is 2. One is five. If the specific gravity is within the above range, it may be less than 2.3, or may be 2.25 or less, from the viewpoint of having practically sufficient high crystallinity and barrier properties.
  • the specific gravity of PTFE is considered to be proportional to the crystallinity when the molecular weight is constant and the obtained molded body has no voids.When the crystallinity is 100%, the specific gravity obtained from the unit cell is 2.3. It is assumed that
  • specific gravity means a value obtained using an automatic hydrometer (trade name: automatic hydrometer D-1, manufactured by Toyo Seiki Seisaku-sho, Ltd.).
  • the resin molded body (6) has an arithmetic average roughness [R a] within the above range, and thus has excellent surface smoothness. Such surface smoothness cannot be obtained by surface treatment such as cutting after molding.
  • the surface smoothness of the resin molded product (6) is particularly excellent when stretched in the method for producing a resin molded product described below. In this case, the stretching makes the unevenness on the surface of the resin molded product (6) averaged. It is thought to be due to
  • a preferable upper limit of the arithmetic average roughness is 0.0. If the arithmetic average roughness is within the above range, it may be 0.0001 m or more, and even 0.001 / zm or more, from the viewpoint of having practically sufficient surface smoothness. Good. A more preferred upper limit is 0.015 ⁇ .
  • the “arithmetic mean roughness” is obtained by measuring using a surface roughness measuring instrument (trade name: Surface roughness measuring instrument SV-624, manufactured by Mitutoyo Corporation) in accordance with JISB0601. Mean value.
  • the PTFE homopolymer and / or the modified PTFE are the same as those described above for the resin molded article (1), and the specific gravity is proportional to the crystallinity as described above.
  • these PTFEs undergo crystallization during the polymerization process, and generally have a high molecular weight, so that a polymer having a high specific gravity can be obtained by polymerization.
  • the crystals are once melted by firing. Since a high degree of crystallinity cannot be obtained when newly crystallizing during cooling, the specific gravity is reduced. Since the resin molded article (6) has a high degree of crystallinity by the method for producing a resin molded article described later, it can have a high specific gravity within the above range.
  • the resin molded article of the present invention is preferably in the form of a film.
  • Film-like The resin molded article may have any shape as long as it is a thin film.
  • a preferable upper limit is 5 mm
  • a more preferable upper limit is 3 mm
  • a more preferable upper limit is 1 mm
  • a preferable lower limit is 0.001 mm
  • a more preferable lower limit is 0.01 mm.
  • the film-shaped resin molded product may be a tube-shaped product described below, which is cut out and spread into a sheet shape.
  • the resin molded article of the present invention is in the form of a film, it is preferable that the resin molded article be shaped by stretching in the method for producing a resin molded article described below.
  • the resin molded product of the present invention is preferably in the form of a tube, and the outer peripheral length of the cross-sectional shape of the molded product is preferably 15 Omm or more.
  • the resin molded article of the present invention can easily obtain a high degree of crystallinity and transparency within the above-mentioned range even with such a large-diameter tube.
  • the outer peripheral length may be practically 15 m or less, preferably 1 Om or less, in order to avoid inconveniences such as temperature unevenness when using an existing molding apparatus within the above range. And more preferably 5 m or less.
  • the resin molded article of the present invention having such a shape and size is preferably obtained by shaping by stretching in a method for producing a resin molded article described later.
  • the above-mentioned tubular shape is also called a tubular shape, and is hollow.
  • the “cylindrical shape” refers to a shape having a longitudinal axis, and a cross section perpendicular to the longitudinal axis direction being substantially the same figure at any point of the longitudinal axis. means.
  • the longitudinal axis is an axis passing through the center of the cylinder.
  • the above-mentioned cross section in the resin molded article of the present invention is referred to as “molded product cross-sectional shape”. Note that these “cylindrical shape”, “longitudinal axis”, “cross-sectional shape of molded product”, and “outer peripheral length of cross-sectional shape of molded product” are concepts similar to those in the first present invention.
  • the cross-sectional shape of the above-mentioned molded product is generally preferably a circle because the versatility of the molded article (II) described later and the extension described later, particularly the stretching by the blow method, can be easily performed uniformly.
  • the cross-sectional shape of the molded product is circular, the resin molded product of the present invention is a cylinder.
  • the outer peripheral length of the cross-sectional shape of the molded product is preferably 150 mm or more as described above, and the resin molded product of the present invention having a relatively large size is manufactured as described below.
  • Forming by stretching in the method, especially by the blow method it is preferable to stretch the film in a state where an amorphous portion and a trace amount of unmelted crystal portion are mixed in the resin as described later.
  • the resin molded product (1), the resin molded product (2), the resin molded product (3), the resin molded product (4), the resin molded product (5) and the resin molded product (6) of the present invention are described above. It is made of resin.
  • the method for producing these resin molded articles is that the molded article (II) made of this resin is shaped by stretching at a temperature equal to or higher than the crystal melting start temperature of the resin, and then cooled and solidified. It is a method consisting of As the method, for example, when the resin is PTFE, the same method as the method used for the above-mentioned molded article (I) can be used.
  • the “molded object (11)” means a molded object on which the shaping is performed.
  • the method for obtaining the molded object (II) is not particularly limited, and for example, a conventionally known method can be used.
  • the molded object (II) is made of PTFE, the same method as that for obtaining the molded object (I) described above can be used, and the one obtained by paste extrusion molding is preferable. It may be fired or unfired.
  • the shape of the molded article (II) is not particularly limited, but when the shaping is performed by a blow method described later, a tubular hollow material is preferred from the viewpoint of good stretching efficiency.
  • the tube shape is the same as the tube shape described above for the resin molded article of the present invention.
  • the shape of the cross section is preferably circular because of its versatility.
  • a method of stretching the molded object (II) is preferable because a molded article having both high crystallinity and high transparency is easily obtained.
  • the cooling and solidification can be performed by cooling to a temperature lower than the crystal melting start temperature.
  • the shaping is performed at a temperature equal to or higher than the crystal melting start temperature of the resin.
  • the temperature is within this range, it is possible to prevent porosity and obtain a resin molded body having a high degree of crystallinity.
  • a molded body (II) composed of a resin in which a crystal part and an amorphous part are mixed is stretched, it is considered that the molded body becomes porous when the crystal part is stretched. If there is, the crystal part melts and changes into an amorphous part, so the existence ratio of the crystal part is reduced. It is possible to increase the abundance ratio of the amorphous part.
  • the crystal part Before the crystal part starts to be stretched, it is preferentially stretched in the amorphous part having a low modulus of elasticity, and the whole body (II) is formed without making it porous. It is considered that the amount of deformation caused by the stretching can be increased. Also, the higher the temperature, the greater the amount of deformation due to stretching of the amorphous part due to softening.
  • the shaping is performed at a temperature lower than the crystal melting onset temperature of the resin, the abundance of crystal parts cannot be reduced, and before the deformation of the molded body (II) due to stretching as a whole increases.
  • the elongation of the crystal part starts, causing porosity.
  • the temperature is lower than the crystal melting start temperature of PTFE, since the crystal part has a high elastic modulus and is hard, it is difficult to change the arrangement of the particles by stretching, so that the distance between the particles increases, and the distance increases. As a result, the entangled portion between the particles is drawn out into a fibrous form, and the whole becomes a porous body having fine pores.
  • This porous body increases the irregular reflection of light between the air layer and the resin, which is increased by the porosity, so that the porous body becomes cloudy and has low transparency, and the fine pores are formed, so that the barrier property is deteriorated.
  • a porous body is conventionally known as a porous PTFE membrane.
  • the shaping may be performed in a completely melted state in which the crystals in the molded body (II) are completely melted, but may be locally formed due to uneven thickness and strength of the molded body (II).
  • the unmelted crystal part is left in a small amount. By leaving the unmelted crystal part, the force for stretching is transmitted to the whole molded object (II), so that local stretching can be prevented.
  • the above-described local elongation is likely to occur when, for example, a blow method described later is used, but an unmelted crystal part exists in the molded body (II) as the upper limit of the stretching temperature at which the stretching is performed.
  • the temperature By selecting the temperature, local stretching can be prevented and a uniform molded article can be obtained.
  • the crystal melting onset temperature can be easily determined by measuring the molded body (II) using a differential scanning calorimeter (DSC).
  • the crystal melting onset temperature differs depending on whether the DSC measurement is performed while increasing or decreasing the temperature of the molded body (II).
  • the crystal melting onset temperature is such that when the temperature of the molded body (II) is increased, the curve obtained by endotherm begins to fall away from the baseline. This is the temperature at which the crystal begins to require heat of fusion to begin melting.
  • the temperature of the molded body (II) is lowered, the curve obtained by heat radiation falls and reaches the base line, where the temperature matches. That is, it is the temperature at which the heat release by crystallization ends.
  • the crystal melting onset temperature differs depending on the type of resin.
  • Whether or not there is an unmelted crystal part in the green body (II) can be easily determined by the same method as the method for obtaining the crystal melting ratio by DSC used for the green body (I). it can.
  • uniaxial stretching either uniaxial stretching or biaxial stretching is possible.However, in uniaxial stretching, the size decreases in a direction perpendicular to the stretching direction. Preferably, uniaxial stretching is performed in which a constraint is applied so as not to shrink in a direction perpendicular to the direction. Such uniaxial stretching is conveniently referred to as "semini-axial stretching”. As the stretching method, biaxial stretching is also preferably used.
  • the stretching method in the stretching is not particularly limited, and examples thereof include a mechanical method using a roll stretching machine, a tenter and the like, and a professional method using compressed air and the like.
  • the stretching method may be a mechanical method or a blow method.
  • the stretching temperature is high, when a tenter is used, the machine is seized and the molded body (II) is cut off from the chuck portion due to softening. In some cases, stretching unevenness may occur because the entire body is not gripped.
  • a blow method that does not cause these inconveniences is preferable.
  • the resin molded article of the present invention obtained by the method for producing a resin molded article has excellent crystallinity, transparency, and barrier properties as described above.
  • the mechanism by which the resin molded article of the present invention exhibits such advantageous effects is not clear, it is considered as follows. That is, when, for example, stretching is performed in the method for producing a resin molded article, the molded article (II) has a certain thickness by laminating a plurality of resin particles before stretching. However, this thickness decreases in the stretching direction. Stretching is started in the amorphous part having a low elastic modulus prior to the crystal part having a high modulus, and the individual particles stacked in the amorphous part are slid in the stretching direction sequentially as the part is stretched to be flat. While filling the poid, it is oriented and densely packed. In this slide, each of the individual particles is larger than the particle size before stretching. 5316
  • the particles move not at the size of the secondary particles having a particle diameter of about 500 / xm but at the size of the primary particles having a particle diameter of about 230 nm.
  • the molecular chains are extracted from the primary particles (fibrillation), so that movement at the molecular chain level is also performed, so that the particles become denser.
  • the distance between the molecular chains is close and a crystalline state is formed.
  • the resin molded article of the present invention is considered to have a high degree of crystallinity.
  • the melt viscosity is high, and the stress relaxation time is extremely long. Therefore, during cooling and solidification, the crystal state is well preserved, and the crystallinity can be extremely increased.
  • a band-shaped band structure having a width is formed in the stretching direction and in a direction parallel to the stretching direction, and the band structure forms a layer. Since this layer has directionality, transmitted light is hardly scattered, and the resin molded article of the present invention can have high transparency despite its high crystallinity.
  • the layer having the above band structure can be confirmed by observing a cross section of the obtained resin molded product by a TEM (transmission electron microscope) photograph of a replica.
  • the resin molded article of the present invention has a highly crystallized multilayer structure as described above, band structures in which molecular chains are densely oriented are stacked in layers to exhibit high barrier properties.
  • the resin molded article of the present invention can also obtain surface smoothness that cannot be obtained by surface processing such as cutting after molding by the above stretching.
  • the resin molded article of the present invention can be used, for example, as a material for blocking water vapor, gas, and / or chemicals from those that are not desired to be in contact with them.
  • Such materials may be used, for example, to cover water vapor, gases and / or drugs, to prevent them from seeping out, and to avoid contact with water vapor, gases, and / or drugs. It may be used to cover objects and prevent contact with water vapor, gas and / or chemicals even in an environment where they may be present.
  • the resin molded article of the present invention is also excellent in transparency and surface smoothness, so that it can be used for applications utilizing these properties, for example, applications requiring visibility, washability, and the like.
  • the resin molded article of the present invention can further add a function based on the inherent properties of the resin, depending on the type of resin used. Properties such as TFE's inherent chemical resistance, non-adhesion, release properties, electrical insulation, high-frequency characteristics, and low friction coefficient can be added. Thus, the use of the resin molded article of the present invention can be expanded in many fields.
  • Examples of the application of the resin molded article of the present invention include those utilizing the barrier properties, such as containers for pharmaceuticals, foods, and other packaging materials; lining applications for containers and pipes; and low-permeability tubes and hoses.
  • the protective film of an electroluminescent element or a solar cell a bag for a drug; a container for collecting, storing, and transporting a gas, a chemical solution, and the like, as well as those that utilize transparency as well as a barrier property.
  • a belt for a fixing unit or a photosensitive unit in an image forming unit of an electrophotographic apparatus may be used as a device utilizing the surface smoothness.
  • the resin molded article of the present invention can be obtained in a large size as described above, and is suitable for a belt of an image forming section and the like.
  • An eighth aspect of the present invention is directed to a packaging material for blocking moisture in the air, comprising the above-mentioned resin molded article, which is used for covering an object to be wrapped.
  • the above-mentioned packaging material for blocking moisture in the atmosphere is made of the above-mentioned resin molded product, it has excellent barrier properties and effectively blocks moisture in the atmosphere such as water vapor, and has transparency.
  • the package can be visually recognized, is not easily damaged, and can be shielded from various gases and / or chemicals.
  • the above-mentioned "packaged object” means an object covered with the packaging material for blocking moisture in the air of the present invention.
  • the package is not particularly limited, and for example, a drug, a food, an electroluminescent device, a solar cell, and the like are suitable, and a drug and an electroluminescent device are preferable.
  • the packaging material for blocking moisture in the air a material in which the resin molded body is made of the above-described fluorine-containing resin is preferable from the viewpoint of excellent barrier property against the moisture in the atmosphere.
  • the fluorine-containing resin of the packaging material for blocking moisture in the air of the present invention has chemical resistance to a wide variety of chemicals
  • the material to be packaged is made of various chemicals, reactive gas such as acidic gas, or the like. They are also suitably used, and their applications can be expanded.
  • PTFE is preferable.
  • the shape of the packaging material for blocking moisture in the atmosphere is not particularly limited. However, a material that can completely cover the packaged object is preferable in order to enhance the barrier property against the moisture in the atmosphere.
  • a material that can completely cover the packaged object is preferable in order to enhance the barrier property against the moisture in the atmosphere.
  • it may be in the form of a film or a tube as described above.
  • the packaging material for blocking moisture in the atmosphere may be used so as to have a gap between the packaging material and the packaging material, or may be used in close contact with the packaging product.
  • the packaging material for blocking moisture in the air is used in close contact with the package, the packaging material is coated with an adhesive or the like, and the packaging material for blocking the moisture in the atmosphere is bonded to the package.
  • the packaging material for blocking moisture in the air may be directly adhered to the packaged object without using such an adhesive or the like.
  • a ninth aspect of the present invention is directed to a medicine blocking packaging material comprising the above resin molded body.
  • the above-mentioned medicine blocking packaging material is suitably used for blocking various medicines and those which are not desired to come into contact with the medicines. For example, they cover various medicines and prevent the medicines from seeping out. It may be used to prevent or prevent undesired contact with various drugs, and to prevent contact with various drugs even in an environment where various drugs can exist outside. You may.
  • the packaging material for blocking medicines may be used in combination with other materials such as glass having a barrier property against medicines, and may be used, for example, as a lid of a glass container, a partition film inside a glass container, or the like.
  • the above-mentioned medicine blocking packaging material is made of the above-mentioned resin molded article, it has excellent barrier properties, so that it effectively blocks various kinds of medicines, and also has excellent transparency. It is also possible to see what is covered, hard to break, and to block water vapor and / or various gases.
  • the packaging material for blocking medicines can also be used for acids such as hydrochloric acid.
  • the above-mentioned resin molded body is made of the above-mentioned fluororesin from the viewpoint of excellent barrier properties against medicine.
  • the fluorine-containing resin has chemical resistance to a wide variety of chemicals
  • the use of the above-mentioned chemical-blocking packaging material can be expanded as a blocking material for various types of chemicals.
  • PTFE is preferable from the viewpoint of excellent barrier properties and chemical resistance. According to a tenth aspect of the present invention, there is provided a gas shielding packaging material comprising the above resin molded body.
  • the above gas shielding packaging material contact between various gases and this gas is undesirable.
  • a material covering various gases for example, a material covering undesired contact with various gases, etc. It may be used, or may be used in combination with other materials such as glass and metal having a barrier property against gas.
  • the gas shielding packaging material is preferably used for nitrogen and oxygen from the viewpoint of excellent barrier properties.
  • the gas blocking packaging material is made of the resin molded body and has excellent barrier properties, it effectively blocks various gases, and is separated from the various gases and this gas by the gas blocking packaging material. Even if there is a difference in pressure, such as air pressure, with the one that has been provided, it has excellent blocking properties. Since the gas-blocking packaging material of the present invention is further excellent in transparency, it is possible to see what is covered with the above-mentioned gas-blocking packaging material, it is difficult to break, and furthermore, it is difficult to break down with water vapor and / or various chemicals. Is also possible. As the gas shielding packaging material, the one in which the resin molded body is made of the above-described fluorine-containing resin is preferable from the viewpoint of excellent gas barrier properties.
  • the gas blocking packaging material of the present invention is not limited to an inert gas such as nitrogen because the fluorine-containing resin has chemical resistance to a wide variety of chemicals.
  • the application can be expanded to a barrier material for.
  • PTFE is preferred from the viewpoint of excellent barrier properties and chemical resistance.
  • a package according to a thirteenth aspect of the present invention is an article to be packaged, and a package comprising the resin molded article, wherein the resin molded article covers the article to be packaged, and It is characterized by suppressing contact with atmospheric moisture, chemicals and Z or gas.
  • the phrase “suppresses contact with atmospheric moisture, a drug, and a gas or a gas” means having the above-described barrier properties.
  • the package may be any as long as it suppresses any of contact between the package and the atmospheric moisture, contact between the package and the drug, or contact between the package and the gas.
  • the packaged article may suppress the contact between the packaged article and the atmospheric water and the drug, the atmospheric moisture and the gas, or the gas and the drug, and the packaged article and the atmospheric moisture, the drug and the gas may be suppressed.
  • the contact may be suppressed.
  • the medicine or gas whose contact is suppressed in the package of the present invention is one or more kinds of medicines, or one or more kinds of gases. May be.
  • the resin molded article in the package is not particularly limited as long as the resin molded article of the present invention is as described above, but is preferably made of a fluorine-containing resin, and more preferably made of PTFE from the viewpoint of excellent barrier properties. preferable.
  • the package is not particularly limited, but when contact with atmospheric moisture, chemicals, and Z or gas is undesirable, the barrier properties of the package of the present invention can be effectively utilized.
  • Examples of such a package include those similar to those described above for the package in the atmospheric moisture blocking packaging material of the eighth aspect of the present invention, and a drug and an electroluminescent element are preferable. .
  • the package includes, for example, the packaged article and the packaging material for blocking atmospheric moisture of the present invention described above.
  • the water vapor transmission coefficient at 25 ° C. and a relative humidity of 90% is 0.02 (g (mm) / (m 2 -day) or less.
  • the above water vapor transmission coefficient is the same as that described above for the resin molded article (3).
  • the packaged body may be composed of, for example, the packaged object and the above-described drug blocking packaging material of the present invention.
  • the permeation coefficient of 35% by weight hydrochloric acid at 25 ° C. is preferably 1.8 ⁇ 10 11 (g 1 cm) / (cm 2 ⁇ second) or less.
  • the permeation coefficient of the hydrochloric acid is the same as that described above for the resin molded product (4).
  • the package body may include the package object and the above-described gas blocking packaging material of the present invention.
  • the permeability coefficient of nitrogen at 0.2 MPa at 25 ° C. is 6.8 ⁇ 10 18 (cm 3 ⁇ cm) no (cm 2 -sec secMPa) or less.
  • the nitrogen transmission coefficient is the same as that described above for the resin molded body (5).
  • the eleventh belt material of the present invention is made of the above resin molded body, and is characterized in that it is used for a photosensitive portion for forming an image in an electrophotographic apparatus.
  • the “electrophotographic device” is used for image formation. Means equipment.
  • the electrophotographic device is not particularly limited, and examples thereof include a printer, a facsimile, a copier, and a photographic printing device.
  • the image formation is to form an image by fixing toner, ink and the like to a transfer material such as paper.
  • the electrophotographic device has a photosensitive unit and a fixing unit for forming the image.
  • the photosensitive unit is a device for placing charged toner particles and ink on a transfer material on a photoconductor drum by light irradiation.
  • various rolls such as a developing roll and a transfer roller are provided. including. It is desirable that these drums and rolls have surface smoothness and non-adhesiveness.
  • Another belt material of the twelfth aspect of the present invention comprises the above-mentioned resin molded article, and is used for a fixing section for forming an image in an electrophotographic apparatus. .
  • the fixing unit is a device for fixing the toner, ink, and the like placed on the transfer material by the above-described photosensitive unit to the transfer material.
  • the fixing unit includes a fixing roll and a pressure roll that sandwich the transfer material.
  • a belt may be used instead of a roll. It is desirable that these rolls and belts have surface smoothness and non-adhesiveness.
  • the belt material used for the photosensitive portion or the fixing portion of the present invention is made of the resin molded body, the belt material is excellent in surface smoothness and non-adhesiveness, and can be obtained as a large size. It can be suitably used for the photosensitive section and the fixing section, particularly for the surface layer section of the drums, rolls and belts.
  • the belt material of the present invention is preferably made of PTFE, since it is further excellent in non-adhesiveness and heat resistance.
  • Polytetrafluoroethylene fine powder (F302, manufactured by Daikin Industries, Perfluoroalkyl and butyl ether-modified PTFE, Crystal melting onset temperature after firing about 270 ° C, 100% crystal melting temperature after firing about 335 ° C) 100 parts by weight of Isopar E (manufactured by Exxon Chemical Co., Ltd.) A mixture of 22 parts by weight and aged at 25 ° C for 24 hours are pressed into a cylinder and ram extruder (cylinder inner diameter 9 Omm, mandrel outer diameter 20 mm, die inner diameter 21.6 mm, core pin) (With an outer diameter of 16.6 mm and a die temperature of 60 ° C).
  • the extrudate was continuously dried and fired in a tunnel furnace (final temperature: 390 ° C) to obtain a PTFE cylindrical article having an outer diameter of 2 'Omm and a wall thickness of 2.5mm.
  • This cylindrical article was cut into an appropriate length, and one end was heated to about 350 ° C and spread into a flared shape to obtain a tubular shaped body.
  • the method for producing a molded article of the present invention was carried out using a mold shown in a schematic sectional view in FIG.
  • the flared portion of the molded body was arranged in the mold by fixing it to the mold head 11 of FIG. 1 with screws using an air joint 15.
  • the mold head 11 was combined with one of the combination molds of the mold body 12 having a diameter of 6 Omm and the mold bottom 13, and a copper pipe was connected to the air joint 15.
  • a flange for fixing to the electric furnace was fixed to the mold head 11 by screwing, fixed to a shelf attached to the door of the electric furnace, and the door was closed. One end of the copper tube was exposed outside through a hole in the door. A thermocouple was inserted into the tubular body of the mold through a copper tube, and the temperature of the tubular body was monitored.
  • the electric furnace was heated until the temperature of the compact reached 300 ° C.
  • the door of the electric furnace was opened, and the other of the mating dies at the mold bottom 13 was quickly fixed with mounting screws while tension was applied to the molded object.
  • a groove is engraved in the mold bottom portion 13, and one end of the molded object is closed by sandwiching the end of the molded object in the groove, whereby an airtight state inside the molded object is secured. Tension is applied to the molded object, and the occurrence of loosening is prevented.
  • the door was closed and the object was heated again until the temperature of the object reached 330 ° C.
  • thermocouple After reaching 330 ° C, the thermocouple was pulled out and the copper tube connected to the air compressor was attached to the copper tube leading to the air joint 15. In this state, open the valve and press the molded body with compressed air of 0.4 MPa to apply a differential pressure to blow stretch. Forming was performed, and PTF E was shaped into the shape of the mold. The door was opened with the pressurized state, and the mold was water-cooled. After cooling, the pressure was released, the mold was opened, and the molded product was taken out to obtain a PTFE bottle-shaped molded product.
  • Example 3 A PTFE bottle under the same conditions as in Example 1 except that a cylindrical molded product with an outer diameter of 12 mm and a wall thickness of 1.5 mm was obtained using a die with an inner diameter of 13.3 mm and a core pin with an outer diameter of 10.3 mm A shaped article was obtained.
  • Example 3 A PTFE bottle under the same conditions as in Example 1 except that a cylindrical molded product with an outer diameter of 12 mm and a wall thickness of 1.5 mm was obtained using a die with an inner diameter of 13.3 mm and a core pin with an outer diameter of 10.3 mm A shaped article was obtained.
  • a PTF E bottle-shaped molded product was obtained under the same conditions as in Example 1 except that the temperature of the molded body was changed to 330 ° C. and the blow stretching was performed by heating to 310 ° C.
  • Example 4
  • a PTF E pottle-shaped molded product was obtained under the same conditions as in Example 2, except that the temperature of the molded body was heated to 310 ° C. and blow stretching was performed. The body of the bottle-shaped product was whitened. Comparative Example 2
  • a PTFE bottle-shaped molded product was obtained under the same conditions as in Example 2 except that the temperature of the molded body was 350 ° C and blow stretching was performed. Although molding was possible, the bottom of the bottle-shaped molded product had a fold and was partially stretched, resulting in a large uneven thickness. Embodiment 5.
  • Figure 3 shows a cross-section of a cylindrical article as an object with an outer diameter of 20 mm and a wall thickness of 0.6 mm obtained using a die with an inner diameter of 21.6 mm and a core pin with an outer diameter of 20.4 mm.
  • the end of the cylindrical article is tightened by a hand vise using the movable angle 35 attached to the mold bottom 34.
  • a PTFE cylindrical molded product was obtained under the same conditions as in Example 1 except that the portion was fixed. Comparative Example 3
  • Example 4 Blow stretch molding was performed under the same conditions as in Example 5 except that the temperature of the molded body was heated to 310 ° C. to perform blow stretch molding. The molded object burst and no molded product was obtained. Comparative Example 4
  • Example 6 Blow stretch molding was performed under the same conditions as in Example 5 except that the temperature of the molded body was heated to 350 ° C. to perform blow stretch molding. The molded body burst and no molded product was obtained.
  • Example 6 Blow stretch molding was performed under the same conditions as in Example 5 except that the temperature of the molded body was heated to 350 ° C. to perform blow stretch molding. The molded body burst and no molded product was obtained.
  • Example 1 was the same as Example 1 except that the mold used was a mold whose cross-sectional view is schematically shown in FIG. 4 and the object to be molded was the one having an outer diameter of 20 mm and a wall thickness of 0.6 mm described in Example 5. A PTFE molded body was obtained under the same conditions. Comparative Example 5
  • Example 7 The professional stretch molding was performed under the same conditions as in Example 6, except that the temperature of the molded body was heated to 350 ° C. to perform blow stretch molding. Molding was possible, but the molded product had folds at the top and bottom, and was partially stretched, resulting in increased thickness deviation.
  • Example 7 The professional stretch molding was performed under the same conditions as in Example 6, except that the temperature of the molded body was heated to 350 ° C. to perform blow stretch molding. Molding was possible, but the molded product had folds at the top and bottom, and was partially stretched, resulting in increased thickness deviation.
  • Example 2 Inside this mold, a die having an inner diameter of 33.4 mm and a core having an outer diameter of 27.4 mm were used as a molded body having an outer diameter of 30 mm and a wall thickness of 3 mm obtained under the same conditions as in Example 1. This was stretched under the same conditions as in Example 1 except that the cylindrical molded product was placed to obtain a pottle-shaped molded product. A screw was formed by cutting the fused member part of the obtained molded product, and a polyethylene lid matching the screw was fitted and tightened.However, the fused member did not peel off, and to the extent that there was no practical problem. Had been fused.
  • Table 1 shows the conditions and results of the above-mentioned examples and comparative examples, together with the degree of wall thickness deviation of the cylindrical portion of the obtained molded product, measured based on the above equation (1).
  • Example 1 330 99 3 60 2.17 9.2 2.45 2.52 0.fi5 0.64 0.62 0.68 0.68 0.67 Good Actual translation 2 330 99 5 60 2.19 26.7 1.44 1.51 0.13 0.16 0.13 0.17 0.17 0.17 Good
  • Example Q 310 20 60 2.17 12.4 2.45 2.62 0.62 0.63 0.61 0.68 0.G8 0.67 Good
  • Example 4 330 99 3 60 2.17 13.9 2.38 2.65 0.69 0.68 0.67 0.79 0.78 0.77 Good
  • Example 5 830 99 5 100 2.19 22.2 0.60 0.66 0.08 0.08 0.09 0.10 0.09 0.10 good ⁇ example 6 330 99 6 120 2.20 40 0.04 0.04 0.05 0.06 0.06 0.06 good comparative example 1 310 20 5 60 1.71 29.S 1.44 1.51 0.12 0.13 0.11 0.16 0.15 0.14 body comparative example 2 350 100 5 60 2.18 140.4 1.44 1.51 0.11 0.09 0.07 0.14 0.18 0.40 Large uneven thickness
  • Example 3 310 20 5 0.60 0.66 Rupture (transformed whitening) Gland example 4 350 100 0.60 0.66 Fiber (transformed part minimum thickness) Comparative shelf 5 3fi0 100 6 120 2.18 188.2 0.01 0.02 0.01 0.13 0.10 0.33 Large uneven thickness
  • the specific gravity (d b ) force of the molded article is not less than the specific gravity (d c ) of the reference body which has received the same heat history except that it is not stretched. Specifically, it is at least 2.1, and a good molded product can be obtained.
  • the molded article based on the present invention also shows improved results with respect to the wall thickness unevenness of the cylindrical portion of the molded article. According to the present invention, a cylindrical molded article having an improved wall thickness unevenness is manufactured. You can see that it can be done. Production Example 1
  • PTFE fine powder (trade name: F302, manufactured by Daikin Industries, Ltd., emulsion polymerization type perfluoro (alkyl vinyl ether) modified PTFE, molecular weight: 60000 00, crystal melting start temperature after firing: about 270 ° C, 100% crystal after firing (Melting temperature: about 335 ° C) 22 parts by weight of Isopar E (trade name, manufactured by Exxon Chemical Co., Ltd.) as a molding aid is mixed with 100 parts by weight, and aged at 25 ° C for 24 hours to form a cylinder. It was compacted and extruded into a cylindrical shape using a ram extruder.
  • Isopar E trade name, manufactured by Exxon Chemical Co., Ltd.
  • the ram extruder had a cylinder inner diameter of 90 mm, a mandrenole outer diameter of 20 mni, a die inner diameter of 21.6 mm, a core pin outer diameter of 20.4 mm, and a die temperature of 60.
  • the extrudate was continuously dried and fired using a tunnel furnace having a final temperature of 420 ° C. to obtain a cylindrical molded body 1 having an outer diameter of 20 mm and a wall thickness of 0.6 mm.
  • Production Example 2
  • a cylindrical molded body 2 having an outer diameter of 20 mm and a wall thickness of 2.5 mm was obtained under the same conditions as in Production Example 1, except that the outer diameter of the core pin of the ram extruder was changed to 16.6 mm.
  • Production Example 3
  • PTFE fine powder (trade name: F 201, manufactured by Daikin Industries, Ltd., emulsion polymerization system, trifluoroethylene-modified PT FE, molecular weight: 600000, crystal melting start temperature after firing: about 280 ° C, 1 after firing)
  • a cylindrical molded object 3 was obtained under the same conditions as in Production Example 1 except that the melting temperature was 00% (about 335 ° C.).
  • PTFE fine powder (trade name: F104, manufactured by Daikin Industries, Ltd., emulsion polymerization type tetrafluoroethylene homopolymer, molecular weight: 600,000, crystal melting start temperature after firing: about 27)
  • F104 emulsion polymerization type tetrafluoroethylene homopolymer, molecular weight: 600,000, crystal melting start temperature after firing: about 27
  • a cylindrical molded object 4 was obtained under the same conditions as in Production Example 1 except that 5 ° C. and a 100% crystal melting temperature after firing: about 33 ° C.) were used.
  • the molded body 1 obtained in Production Example 1 was urged to a length of 350 mm on the longitudinal axis, and the end was heated to about 350 ° C and spread in a flared shape.
  • the flared part was screwed into the mold head 72 using the air joint 75. It was arranged by fixing with.
  • a copper tube (not shown) was connected to the air joint 75, and the mold 71 was set in an electric furnace (not shown).
  • a thermocouple (not shown) is inserted into the molded object 1 in the mold 71 through the copper tube, and the electric furnace is heated while monitoring the temperature of the molded object 1. Heated to 300 ° C. After heating to 300 ° C., the end of the molded body 1 was fixed by tightening with a hand vise (not shown) using a movable angle 74 attached to the mold bottom 73.
  • the object 1 was heated again until the temperature of the object 1 reached 330 ° C. After the temperature reached 330 ° C, the thermocouple was pulled out, and a copper tube (not shown) connected to an air compressor (not shown) was attached to the copper tube connected to the air joint 75. In this state, the valve (not shown) is opened and the molded object 1 is pressurized with compressed air of 0.4 MPa to apply a differential pressure to perform a semi-axial stretching process by a blow method to form a mold. Shaped. Thereafter, the mold 71 was water-cooled while maintaining the pressurized state. After cooling, the pressure was released and the molded product was taken out to obtain a PTF E stretched molded product.
  • Example 9 The thickness of the obtained stretched PTFE molded article was measured, and the specific gravity, crystallinity, haze value, water vapor permeability coefficient, gas permeability coefficient for nitrogen, and 35 wt. The arithmetic mean roughness was determined as the chemical liquid permeability coefficient of and the surface roughness. Table 2 shows the results.
  • Example 9 The arithmetic mean roughness was determined as the chemical liquid permeability coefficient of and the surface roughness. Table 2 shows the results.
  • Example 10 A PTF E stretched molded article was obtained under the same conditions as in Example 8, except that the molded article 3 obtained in Production Example 3 was used instead of the molded article 1.
  • Example 10 A PTF E stretched molded article was obtained under the same conditions as in Example 8, except that the molded article 3 obtained in Production Example 3 was used instead of the molded article 1.
  • Example 1 A PTF E stretched molded article was obtained under the same conditions as in Example 8, except that the molded article 4 obtained in Production Example 4 was used instead of the molded article 1.
  • Example 1 1 A PTF E stretched molded article was obtained under the same conditions as in Example 8, except that the molded article 4 obtained in Production Example 4 was used instead of the molded article 1.
  • Example 1 2 The mold shown in Fig. 8 (diameter 10 Omm, length 30 Omm) 81 was used as the mold, and P was applied under the same conditions as in Example 8 except that the non-molded body was pressed to 450 mm on the longitudinal axis. A TFE stretch molded article was obtained.
  • Example 1 2 The mold shown in Fig. 8 (diameter 10 Omm, length 30 Omm) 81 was used as the mold, and P was applied under the same conditions as in Example 8 except that the non-molded body was pressed to 450 mm on the longitudinal axis. A TFE stretch molded article was obtained.
  • Example 1 2 The mold shown in Fig. 8 (diameter 10 Omm, length 30 Omm) 81 was used as the mold, and P was applied under the same conditions as in Example 8 except that the non-molded body was pressed to 450 mm on the longitudinal axis. A TFE stretch molded article was obtained.
  • Example 1 2 The mold shown in Fig. 8 (diameter 10
  • Example 13 A PTF E stretched molded article was obtained under the same conditions as in Example 11 except that the molded article 2 obtained in Production Example 2 was used instead of the molded article 1.
  • Example 13 A PTF E stretched molded article was obtained under the same conditions as in Example 11 except that the molded article 2 obtained in Production Example 2 was used instead of the molded article 1.
  • PTFE was prepared in the same manner as in Comparative Example 6 except that PTF E molding powder (trade name: M-112, manufactured by Daikin Industries, Ltd., suspension polymerization system, perfluoro (alkyl vinyl ether) modified PTFE, molecular weight 1 X 10 7 ) was used. A sheet-shaped molded product was obtained. Comparative Example 8.
  • a PTFE sheet-shaped molded product was obtained in the same manner as in Comparative Example 8 except that PTFE molding powder (trade name: M-112, manufactured by Daikin Industries, Ltd.) was used. Comparative Example 10
  • Comparative Examples 6 to 12 which are not PTF E stretched molded products, at least one of these physical properties is not within the above range, and particularly, the crystallinity, the water vapor transmission coefficient, the nitrogen transmission coefficient, the hydrochloric acid transmission coefficient, and the arithmetic operation The average roughness was found to be significantly inferior.
  • the X-ray diffractometer (trade name: RAD-RA, manufactured by Rigaku Denki Co., Ltd.) was used for the molded article 1 obtained in Production Example 1 and the stretched PTFE molded article obtained in Example 11 respectively.
  • the above-mentioned crystallinity was calculated from the obtained X-ray diffraction chart.
  • the molded article of the present invention Since the molded article of the present invention has the above-described configuration, it can be uniformly maintained while maintaining properties such as PTFE's inherent chemical resistance, non-adhesion, release properties, electrical insulation, high-frequency characteristics, and low friction coefficient. Stretched hollow molded products and large molded products can be obtained. Further, the molded article of the present invention is useful in the fields of chemistry, automobiles, machines, drugs, pharmaceuticals, foods, semiconductors, electricity, and the like. For example, they are useful as pumps, piping, fittings, valve members, wafer and device storage, and moving container members used in supply lines for manufacturing equipment, chemicals, and gases used in semiconductor manufacturing processes.
  • Molded products with irregular cross-sectional shapes can be used for containers, linings, etc.
  • Tubular molded products can be used for pipes, hoses, coating films for pipes, hoses, etc., protective films for linings, etc., for chemicals and gases.
  • Large tube-shaped products can be used as endless belts.
  • the tubular molded product is subjected to fusion processing and made into a bag shape, which can be used for collecting, storing, and transporting medicine bags, gases, and chemical solutions.
  • Sheets cut from molded products can be used as mold release, packaging, covers, electrical insulation, protective films from chemicals, gases, etc., diaphragms for pumps and valves, etc.
  • the resin molded article of the present invention has the above-described configuration, it has high crystallinity and high transparency, and also has excellent barrier properties and surface smoothness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

A novel method for producing a polytetrafluoroethylene resin formed product, characterized in that a material comprising a polytetrafluoroethylene resin to be formed is stretched through the application of a pressure difference to the material at a temperature not lower than the temperature at which a crystal of the polytetrafluoroethylene resin starts to melt and in a state wherein crystals are still present in the material, and then cooling the stretched material, while retaining the pressure difference, to a temperature lower than the above temperature of start of melting; and a formed product produced by the method. The method allows the production of a better PTFE formed product as compared to a conventional PTFE formed product, that is, a formed product which is not porous and has been stretched so as to have a uniform thickness.

Description

明細書  Specification
ポリテトラフルォロエチレン樹脂成形品製造方法及び樹脂成形体 技術分野  Method for producing polytetrafluoroethylene resin molded article and resin molded article
本発明は、 ポリテトラフルォロエチレン樹脂製の被成形体を延伸する成形によ つて、 ポリテトラフルォロエチレン樹脂製の成形品を製造する方法、 特にブロー 成形方法を利用する製造方法、 及び、 その方法により られる成形品に関する。 本発明は、 また、 高い結晶化度とともに高い透明性をも有する樹脂成形体に関 し、 詳しくは、 更にバリア性と表面平滑性に優れた樹脂成形体に関し、 並びに、 上記樹脂成形体からなる大気中水分遮断用包装材料、 薬剤遮断用包装材料、 ガス 遮断用包装材料、 ベルト材料及び包装体に関する。 背景技術  The present invention relates to a method for producing a molded article made of polytetrafluoroethylene resin by stretching a molded article made of polytetrafluoroethylene resin, particularly a production method utilizing a blow molding method, And a molded article obtained by the method. The present invention also relates to a resin molded product having a high degree of crystallinity and high transparency, and more particularly to a resin molded product excellent in barrier properties and surface smoothness, and comprising the resin molded product. The present invention relates to a packaging material for blocking atmospheric moisture, a packaging material for blocking chemicals, a packaging material for blocking gas, a belt material, and a package. Background art
フッ素樹脂、 特にポリテトラフルォロエチレン樹脂 〔P T F E〕 は、 耐熱性に 優れるので高温下で使用することができ、 更に、 耐薬品性、 耐候性、 非粘着性、 電気絶縁性、 高周波特性等の多くの優れた特性を有するので、 薬品等の化学、 半 導体、 自動車、 機械等の多くの分野で使用されている。  Fluororesin, especially polytetrafluoroethylene resin [PTFE], has excellent heat resistance and can be used at high temperatures. Furthermore, chemical resistance, weather resistance, non-adhesion, electrical insulation, high frequency properties, etc. Since it has many excellent properties, it is used in many fields such as chemicals such as chemicals, semiconductors, automobiles and machinery.
P T F Eは、 溶融粘度が高く、 また、 融点以上の温度においても流動性を示さ ないので、 P T F Eの成形品を得るには、 一般的に、 圧縮成形やペースト押出成 形等の予備成形によって腑形し、 予備成形品を得た後、 これを焼成する方法が用 いられている (フッ素樹脂ハンドブック (1 9 9 0年、 日刊工業新聞社、 里川孝 臣編) 、 第 9 3〜: L 4 7頁参照) 。  PTFE has a high melt viscosity and does not show fluidity even at temperatures higher than its melting point.Therefore, in order to obtain a PTFE molded product, compression molding or pre-molding such as paste extrusion molding is generally used. After the preform is obtained, a method of firing it is used (Fluorine Resin Handbook (1990, Nikkan Kogyo Shimbun, edited by Takaomi Satokawa), No. 93-: L4 See page 7).
特開平 6— 5 0 2 6 5号公報には、 パーフルォロアルキルビュルエーテル変性 ポリテトラフルォロェチレン樹脂の予備成形品をプロ一成形することによってべ ローズポンプ用べローズを製造する方法が開示されている。 この公報において開 示された方法によって得られる成形品としてのベローズは、 ブロー成形を行わな い以外は同じ操作を行ったもの、 即ち、 同じ熱履歴を有する成形品よりも比重が 低下したものであり、 ベローズとしては機能するが、 成形品自体は、 いわゆる多 孔質の状態となっている。 従って、 多孔質状態が望ましくない成形品、 例えば、 容器等に使用する成形品を得るには、 このプロ一成形法は適当ではない。 また、 特開平 4一 296332号公報、 特開平 4— 345836号公報及ぴ特 開昭 53— 58579号公報には、 P T F E製熱収縮チューブの製造方法として ブロー成形法が開示されている。 これらの方法では、 非常に高い雰囲気温度にお いてチューブが製造されており、 成形時には PTFEが完全溶融状態になってい ると推定される。 このような方法では、 後述するように、 折れ曲がった成形品、 肉厚が不均一な成形品、 又は破裂した成形品になり易いことが判った。 Japanese Unexamined Patent Publication No. Hei 6-520265 discloses a method for producing a bellows for a bellows pump by preforming a preform of a perfluoroalkylbutyl ether-modified polytetrafluoroethylene resin. Is disclosed. Bellows as molded articles obtained by the method disclosed in this publication are those obtained by performing the same operation except that blow molding is not performed, that is, those having a specific gravity lower than that of molded articles having the same heat history. Yes, it functions as a bellows, but the molded product itself is in a so-called porous state. Therefore, a molded article whose porous state is not desirable, for example, This pro-molding method is not suitable for obtaining molded articles used for containers and the like. In addition, Japanese Patent Application Laid-Open Nos. Hei 4-296332, Hei 4-34536 and Heisei 53-58579 disclose a blow molding method as a method for producing a PTFE heat-shrinkable tube. In these methods, tubes are manufactured at very high ambient temperatures, and it is presumed that PTFE is in a completely molten state during molding. It has been found that such a method tends to result in a bent molded product, a molded product having an uneven wall thickness, or a ruptured molded product, as described later.
これらの特許公報では、 成形時の樹脂の温度に関する詳細な情報については明 確な具体的開示が見当たらず、 特に、 使用する PTFEの結晶の状態、 結晶化度 等については一切記載されていない。 また、 成形品の寸法等に関する情報も必ず しも充分ではない。 フッ素樹脂、 特に PTFEは、 分子構造上、 結晶性の高いことが知られている。 例えば圧縮成形やペースト押出成形で、 得られる成形品は高い結晶化度を有する。 しかしながら、 これらの成形方法により得られる成形品の結晶化の程度は、 充分 に高いものではない。  In these patent publications, there is no clear and specific disclosure of detailed information on the temperature of the resin at the time of molding, and in particular, there is no description of the crystal state, crystallinity, etc. of the PTFE used. Also, information on the dimensions of molded articles is not always sufficient. Fluororesins, especially PTFE, are known to have high crystallinity due to their molecular structure. For example, a molded product obtained by compression molding or paste extrusion molding has a high degree of crystallinity. However, the degree of crystallization of the molded article obtained by these molding methods is not sufficiently high.
成形品の結晶化度が高くなるとバリァ性が向上することは一般的に知られてい る。 WO 0 OZl 0805号公報には、 PTFEについて結晶化度を高めてバリ ァ性を向上することが開示されている。  It is generally known that the higher the crystallinity of a molded product, the higher the barrier property. WO 0 OZl 0805 discloses that PTFE is improved in crystallinity to improve barrier properties.
PTFEの成形品の結晶化度を高める方法としては、 成形において予備成形体 を焼成した後の冷却速度を遅くする方法がある (フッ素樹脂なんでも Q&A読本 (1991年、 曰本弗素樹脂工業会、 技術委員会 · Q& A読本編集委員会編、 第 107〜 109項) 。 しかしながら、 この方法では、 結晶化度は通常 75%程度 までにしか上昇せず、 より高い結晶化度を有する樹脂成形体を得ることはできな いという問題があった。  As a method of increasing the crystallinity of a molded article of PTFE, there is a method of slowing the cooling rate after baking the preformed body in molding. (Q & A reading book for all fluororesins (1991, Fluoroplastics Industry Association, Committee · Q & A Readers' Editing Committee, pp. 107-109) However, with this method, the crystallinity usually rises only to about 75%, and resin molded products with higher crystallinity can be obtained. There was a problem that it could not be obtained.
予備成形体を焼成した後徐冷することにより形成される結晶は、 方向性なくラ ンダムに生成される。 このような無秩序な結晶の量が増加すると、 結晶の界面で の光散乱が多くなるので、 結晶化度が高くなるほど透明性は低下するという問題 があった。  The crystals formed by sintering the preformed body and then slowly cooling are randomly generated without any direction. When the amount of such disordered crystals increases, light scattering at the interface of the crystals increases. Therefore, there has been a problem that the higher the crystallinity, the lower the transparency.
PTFEの従来の成形は、 一般の熱可塑性樹脂の溶融成形とは異なり、 予備成 形体の焼成時に粉末粒子を融着させ、 次いで冷却するものであるので、 ボイドを 生じやすく、 PTFEが焼成時であっても流動性を示さないので、 生じたポイド 'は消失しにくい。 ポイドは、 PTFEのペースト押出成形では、 必要な潤滑助剤 が乾燥することによつても生じる。 成形品の透明性は、 ボイドでの光散乱によつ ても損なわれるという問題があった。 The conventional molding of PTFE differs from the general molding of thermoplastics in that Since the powder particles are fused at the time of firing the form and then cooled, voids are easily generated, and the PTFE 'does not show fluidity even at the time of firing, so that the generated voids are hard to disappear. Poids are also generated in PTFE paste extrusion by drying out the necessary lubricating aids. There was a problem that the transparency of the molded article was also impaired by light scattering in the void.
このように、 従来、 結晶化度と透明性の両方を高めた PTFEの成形品は得ら れなかった。 従って、 PTFEは、 従来、 高いバリア性と透明性との両方が要求 される用途、 例えば、 エレクト口ルミネッセンス素子又は太陽電池の保護膜、 薬 剤の包装材料等に使用することや、 視認性の要求される薬液チューブ等の用途に 使用することはできないという問題があった。 発明の要約  As described above, conventionally, a PTFE molded article having improved crystallinity and transparency has not been obtained. Therefore, PTFE has conventionally been used for applications that require both high barrier properties and transparency, such as for use in electorum luminescent elements or protective films for solar cells, packaging materials for drugs, etc. There was a problem that it could not be used for the required applications such as chemical tubes. Summary of the Invention
本発明の第 1の目的は、 既知の PTFEの成形方法よりも良い成形品を得るこ とができる新たな PTFEの成形方法、 即ち、 多孔化させることなく均一な肉厚 で延伸することができる成形品の製造方法と、 成形品とを提供することにある。 第 1の本発明は、 PTFEの被成形体を PTFEの結晶融解開始温度以上かつ 被成形体を構成する P T F E中に結晶部が存在する温度にて延伸することによつ て P丁 F Eの成形品を製造する方法であって、 差圧によって被成形体を延伸し、 差圧を保持したまま結晶融解開始温度より低い温度まで冷却することを特徴とす る製造方法である。  A first object of the present invention is to provide a new PTFE molding method capable of obtaining a molded article better than the known PTFE molding method, that is, it is possible to stretch with a uniform thickness without making it porous. An object of the present invention is to provide a method for manufacturing a molded article and a molded article. The first invention is to form a P-shaped FE by stretching a PTFE molded body at a temperature higher than the crystal melting start temperature of PTFE and at a temperature at which a crystal part exists in PTFE constituting the molded body. A method for producing a product, comprising stretching a molded body by a differential pressure, and cooling to a temperature lower than a crystal melting start temperature while maintaining the differential pressure.
本発明の第 2の目的は、 従来よりも高い結晶化度を有し透明性に優れた樹脂成 形体、 バリア性に優れた PTFEからなる樹脂成形体、 及び、 表面平滑性に優れ た P T F Eからなる樹脂成形体を提供することにある。  A second object of the present invention is to provide a resin molded article having a higher degree of crystallinity and excellent transparency, a resin molded article made of PTFE having excellent barrier properties, and a PTFE having excellent surface smoothness. To provide a resin molded product.
第 2の本発明は、 融点ピークが 250 °C以上であり、 結晶化度が 78 %以上で あり、 ヘイズ値が 30%以下であることを特徴とする樹脂成形体である。 第 3の本発明は、 含フッ素樹脂からなる樹脂成形体であって、 上記含フッ素樹 脂は、 テトラフルォロエチレン系重合体からなるものであり、 結晶化度が 78% 以上であり、 ヘイズ値が 30 %以下であることを特徴とする樹脂成形体である。 第 4の本発明は、 テトラフルォロエチレンホモポリマー及び/又は変性ポリテ トラフルォロエチレンからなる樹脂成形体であって、 25°Cにおける相対湿度差 90%での水蒸気透過係数が 0. 02 (g · mm) / (m2 · d a y ) 以下であ ることを特徴とする樹脂成形体である。 The second present invention is a resin molded product having a melting point peak of 250 ° C. or higher, a crystallinity of 78% or higher, and a haze value of 30% or lower. A third aspect of the present invention is a resin molded article made of a fluorine-containing resin, wherein the fluorine-containing resin is made of a tetrafluoroethylene-based polymer, and has a crystallinity of 78% or more, A resin molded product having a haze value of 30% or less. The fourth present invention relates to a tetrafluoroethylene homopolymer and / or a modified polyester. A resin molded article comprising the trough Ruo Russia ethylene, 25 ° water vapor permeability coefficient of 0. 02 (g · mm) at a relative humidity of difference of 90% in the C / (m 2 · day), wherein Der Rukoto less It is a resin molded body to be described.
第 5の本発明は、 テトラフルォロエチレンホモポリマー及び/又は変性ポリテ トラフルォロエチレンからなる樹脂成形体であって、 25°Cにおける 35重量0 /0 の塩酸の透過係数が 1. 8 X 10— 11 (g · cm) ノ (cm2 ·秒) 以下である ことを特徴とする樹脂成形体である。 The fifth of the present invention is a resin molded article comprising tetrafluoropropoxy O b ethylene homopolymers and / or modified Porite trough Ruo Russia ethylene, 35 weight 0/0 in 25 ° C permeability coefficient of hydrochloric acid 1.8 a resin molded body characterized by X 10- 11 (g · cm) Bruno (cm 2 · sec) or less.
第 6の本発明は、 テトラフルォロエチレンホモポリマー及び/又は変性ポリテ トラフルォロエチレンからなる樹脂成形体であって、 25°Cにおける 0. 2MP aの窒素の透過係数が 6. 8 X 10—8 (cm3 · cm) / (cm2 - s e c - M P a) 下であることを特徴とする樹脂成形体である。 The sixth invention is a resin molded article comprising a tetrafluoroethylene homopolymer and / or a modified polytetrafluoroethylene, which has a nitrogen permeability coefficient of 0.2 MPa at 25 ° C. of 6.8 X 10- 8 (cm 3 · cm) / (cm 2 - sec - MP a) is a resin molding, which is a bottom.
第 7の本発明は、 テトラフルォロエチレンホモポリマー及び Ζ又は変性ポリテ トラフルォロエチレンからなる樹脂成形体であって、 比重が 2. 1以上であり、 算術平均粗さが 0. 03 μπι以下であることを特徴とする樹脂成形体である。 第 8の本発明は、 第 2〜第 7の本努明の樹脂成形体からなり、 被包装物を覆う ために用いられるものであることを特徴とする大気中水分遮断用包装材料である。 第 9の本発明は、 第 2〜第 7の本発明の樹脂成形体からなるものであることを 特徴とする薬剤遮断用包装材料である。  A seventh aspect of the present invention is a resin molded product comprising a tetrafluoroethylene homopolymer and Ζ or modified polytetrafluoroethylene, having a specific gravity of 2.1 or more and an arithmetic average roughness of 0.03 μπι. It is a resin molding characterized by the following. An eighth aspect of the present invention is a packaging material for blocking moisture in the air, comprising the resin molded product of the second to seventh aspects of the present invention, which is used for covering an article to be packaged. A ninth aspect of the present invention is a drug blocking packaging material comprising the resin molded product of the second to seventh aspects of the present invention.
第 10の本発明は、 第 2〜第 7の本発明の樹脂成形体からなるものであること を特徴とするガス遮断用包装材料である。  A tenth aspect of the present invention is a gas shielding packaging material comprising the resin molded product of the second to seventh aspects of the present invention.
第 1 1.の本発明は、 第 2〜第 7の本発明の樹脂成形体からなるベルト材料であ つて、 電子写真機器における画像形成のための感光部に用いられるものであるこ とを特徴とするベルト材料である。  The eleventh aspect of the present invention is a belt material comprising the resin molded product of the second to seventh aspects of the present invention, which is used for a photosensitive portion for forming an image in an electrophotographic apparatus. Belt material.
第 1 2の本発明は、 第 2〜第 7の本発明の樹脂成形体からなるベルト材料であ つて、 電子写真機器における画像形成のための定着部に用いられるものであるこ とを特徴とするベルト材料である。  According to a twelfth aspect of the present invention, there is provided a belt material comprising the resin molded product according to the second to seventh aspects of the present invention, wherein the belt material is used for a fixing unit for forming an image in an electrophotographic apparatus. It is a belt material.
第 1 3の本発明は、 被包装物、 及び、 第 2〜第 7の本発明の樹脂成形体からな る包装体であって、 上記樹脂成形体は、 上記被包装物を覆うものであり、 上記被 包装物と、 大気中水分、 薬剤及び 又はガスとの接触を抑制するものであること を特徴とする包装体である。 図面の簡単な説明 According to a thirteenth aspect of the present invention, there is provided a package comprising the packaged article and the resin molded article according to the second to seventh aspects of the present invention, wherein the resin molded article covers the packaged article. The contact between the above package and the atmospheric moisture, chemicals and / or gas must be suppressed. It is a package characterized by the above. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 第 1の本発明の一実施例であるポトル状ブロー延伸成型品の金型の模式 的断面図である (実施例 1〜5、 比較例 1、 2で使用) 。 FIG. 1 is a schematic cross-sectional view of a mold of a pottle-shaped blow-stretched product according to one embodiment of the present invention (used in Examples 1 to 5 and Comparative Examples 1 and 2).
図 2は、 第 1の本発明の一実施例である融着ボトル状プロ一延伸成型品の金型の 模式的断面図である (実施例 7で使用) 。 FIG. 2 is a schematic cross-sectional view of a mold for a fusion bottle-shaped professional stretch-formed product according to one embodiment of the first invention (used in Embodiment 7).
図 3は、 第 1の本発明の一実施例である円筒状ブロー延伸成型品の金型の模式的 断面図である (実施例 5、 比較例 3、 4で使用) 。 FIG. 3 is a schematic sectional view of a mold of a cylindrical blow-stretched product according to one embodiment of the first invention (used in Example 5, Comparative Examples 3 and 4).
図 4は、 第 1の本発明の一実施例であるブロー延伸成型品の金型の模式的断面図 である (実施例 6、 比較例 5で使用) 。 FIG. 4 is a schematic cross-sectional view of a blow-stretch-molded mold according to one embodiment of the first invention (used in Embodiment 6 and Comparative Example 5).
図 5は、 X線回折法により結晶化度を求めるための X線回折の模式図である。 図 6は、 薬液透過係数を求めるための測定装置の模式的断面図である。 FIG. 5 is a schematic diagram of X-ray diffraction for obtaining crystallinity by an X-ray diffraction method. FIG. 6 is a schematic cross-sectional view of a measuring device for determining a chemical solution permeability coefficient.
図 7は、 実施例 8〜1 0で用いた金型の模式的断面図である。 FIG. 7 is a schematic cross-sectional view of the mold used in Examples 8 to 10.
図 8は、 実施例 1 1〜: L 3で用いた金型の模式的断面図である。 FIG. 8 is a schematic sectional view of the mold used in Examples 11 to L3.
図 9は、 製造例 1で得られた被成形体 1の X線回折チャートである。 FIG. 9 is an X-ray diffraction chart of the molded body 1 obtained in Production Example 1.
図 10は、 実施例 11で得られた P T F E延伸成形体の X線回折チヤ一トである c 図 1 1は、 製造例 1で得られた被成形体 1の横断面の TEMレプリカ写真である c 図 1 2は、 実施例 1 1で得られた PTF E延伸成形体の横断面の TEMレプリカ 写真である。 符号の説明 Figure 10 is a c Figure 1 1 is an X-ray diffraction Chiya one bets PTFE stretched molded article obtained in Example 11 is a TEM replica photograph of the cross section of the molded body 1 obtained in Production Example 1 c Fig. 12 is a TEM replica photograph of a cross section of the stretched PTFE product obtained in Example 11; Explanation of reference numerals
1 1、 2 1、 3 1、 4 1、 72、 8 2 金型頭部、  1 1, 2 1, 3 1, 4 1, 72, 8 2 Mold head,
1 2、 22、 42 金型胴部、  1 2, 22, 42 Mold body,
1 3、 23、 43、 73、 8 3 金型底部、  1 3, 23, 43, 73, 8 3 Mold bottom,
14、 25、 44 エアー抜き孔、  14, 25, 44 air vent holes,
1 5、 75、 85 エアー継ぎ手  1 5, 75, 85 air fitting
24 融着用スリーブ設置部、  24 Splice sleeve installation part,
3 2 頭部本体接続部、 3 3 金型本体、 34 金型下部 3 5 被成形体挟み込み用アングル、 3 2 Head body connection, 3 3 Mold body, 34 Mold bottom 3 5 Angle for sandwiching the molded object,
6 1 測定サンプル  6 1 Measurement sample
6 2 a、 6 2 b ガラス容器  6 2a, 6 2b glass container
6 3 O—リング  6 3 O—Ring
6 4 サンプリング口 6 4 Sampling port
7 1 , 8 1 金型  7 1, 8 1 Mold
7 4、 8 4 可動式アングル 発明の詳細な開示  7 4, 8 4 Movable angle Detailed disclosure of the invention
以下に本発明を詳述する。  Hereinafter, the present invention will be described in detail.
本発明者らは、 新たな P T F Eの成形方法を提供すべく鋭意検討した結果、 被 成形体を構成する P T F E中に結晶部と非晶部が混在する状態で被成形体を延伸 する場合、 延伸は、 まず、 結晶部よりも弾性率の小さい非晶部で優先的に進行し 易く、 その後、 結晶部でも延伸が進行すること、 また、 被成形体を構成する P T F Eの結晶部の延伸がある程度進行することにより成形品が多孔化することを見 出した。 これは、 結晶部と非晶部が混在する状態で延伸を実施する場合、 弾性率 の小さい非晶部分が、 まず延伸され易く、 延伸により非晶部の弾性率が増加し、 その結果、 非晶部の弾性率が結晶部の弾性率と同じに到ると、 結晶部においても 延伸が実質的に始まると考えられ、 そして、 このように結晶部における延伸が始 まり、 その延伸量がある程度大きくなると、 多孔化が生じると考えられる。 一般的に、 温度上昇に対する弾性率の低下は非晶部のほうが結晶部より大きい そのため結晶部と非晶部が混在する状態においては、 高温である方が非晶部が結 晶部と同じ弾性率に到るまでの変形量は大きくなる。 その結果、 結晶部の延伸が 実質的に始まるまでに非晶部が延伸される量が大きくなり、 従って、 多孔化する までの P T F Eの延伸倍率は大きくなる。 即ち、 より高い温度において延伸する 場合、 結晶部の延伸が実質的に始まるまでに非晶部が延伸される量はより大きく なる。  The present inventors have conducted intensive studies to provide a new method of molding PTFE.As a result, when the molded body is stretched in a state in which the crystalline part and the amorphous part are mixed in the PTFE constituting the molded body, the stretching is performed. First, the amorphous portion having a lower elastic modulus than the crystalline portion tends to proceed preferentially, and then the stretching also proceeds in the crystalline portion.Also, the stretching of the crystalline portion of the PTFE constituting the molded body to some extent It has been found that the molded article becomes porous as it proceeds. This is because, when stretching is performed in a state where the crystal part and the amorphous part are mixed, the amorphous part having a small elastic modulus is easily stretched first, and the elasticity of the amorphous part is increased by the stretching. When the elastic modulus of the crystal part reaches the same as the elastic modulus of the crystal part, it is considered that the stretching also starts substantially in the crystal part. It is thought that when it becomes large, porosity occurs. In general, the decrease in the elastic modulus due to temperature rise is greater in the amorphous part than in the crystalline part.Therefore, in a state where the crystalline part and the amorphous part are mixed, the amorphous part has the same elasticity as the crystalline part at the higher temperature. The amount of deformation up to the rate increases. As a result, the amount by which the amorphous portion is stretched before the stretching of the crystalline portion substantially starts increases, and therefore, the stretching ratio of the PTFE until the portion becomes porous is increased. That is, when the stretching is performed at a higher temperature, the amount by which the amorphous portion is stretched before the stretching of the crystal portion substantially starts increases.
当然、 非晶部の割合が高い方が多孔化するまでの延伸による変形量、 即ち、 延 伸倍率は大きくなり、 より大きい延伸倍率で延伸可能であり、 逆に、 結晶部の割 合が高い方が多孔化するまでの延伸による変形量、 即ち、 延伸倍率は小さくなる。 換言すれば、 非晶部の割合が大きいほど、 P T F Eは多孔化することなく、 より 大きい延伸倍率で延伸し易く、 逆に、 結晶部の割合が大きいほど多孔化するまで の延伸倍率は小さくなる。 なお、 上記延伸倍率は、 後述の定義のように、 加熱し た被成形体を延伸し、 その後、 冷却することにより生じる変形量である。 Naturally, the higher the proportion of the amorphous part, the greater the amount of deformation due to stretching until it becomes porous, that is, the larger the stretching ratio, and it is possible to stretch at a larger stretching ratio. The higher the ratio, the smaller the amount of deformation due to stretching until it becomes porous, that is, the smaller the draw ratio. In other words, the higher the proportion of the amorphous portion, the easier it is to stretch the PTFE at a higher stretching ratio without being porous, and conversely, the greater the proportion of the crystalline portion, the smaller the stretching ratio until it becomes porous. . In addition, the above-mentioned stretching ratio is an amount of deformation caused by stretching a heated molded body and then cooling it as defined below.
P T F Eは結晶性の高い樹脂として知られている。 また、 結晶融解開始温度未 満においては結晶部と非晶部の割合は変化しない。 そのため、 結晶融解開始温度 未満の温度での延伸では、 比較的低い延伸倍率であっても結晶部の延伸が始まり 多孔化し易い。  PTFE is known as a resin having high crystallinity. In addition, below the crystal melting onset temperature, the ratio of the crystalline part to the amorphous part does not change. Therefore, when the film is stretched at a temperature lower than the crystal melting onset temperature, the crystal portion starts to be stretched even at a relatively low stretching ratio, and is easily made porous.
また、 結晶部が実質的に存在しない状態 (完全溶融状態) で被成形体を気体に よってブロー方式で延伸すると、 白化することなく延伸される。 しかしながら、 延伸前の被成形体は、 厚み及び強度は必ずしも均一ではなく、 厚みのより薄い部 分、 強度のより低い部分等を通常有し、 そのような部分が延伸により、 局所的な 伸びを起こす。 その結果、 成形品の偏肉が大きくなり、 成形品の寸法 Z形態によ つては局所的な伸びによりその部分が先に金型に接し、 更に延伸されることであ まり延伸されていない部位を押し込み被成形体が折れ曲がり成形品に重なる部位 ができたり、 更にひどい場合は破裂したりしてしまうことも見出した。  Further, when the molded body is stretched by a blow method using a gas in a state in which the crystal part is substantially absent (completely melted state), the molded body is stretched without whitening. However, the molded body before stretching is not always uniform in thickness and strength, and usually has a thinner portion, a lower strength portion, and the like. Wake up. As a result, the uneven thickness of the molded product increases, and depending on the dimension Z of the molded product, the part is brought into contact with the mold first due to local elongation and then further stretched, so that the part that has not been stretched It was also found that the molded body was bent by pushing in, causing a portion to overlap with the molded product, and even more severe, bursting.
このように完全溶融状態では、 局所的な伸びが起こるので、 延伸倍率に関係な く、 成形品のサイズが大きくなるほど、 即ち、 得られる成形品の例えば直径又は 長さが大きくなるほど、 偏肉度が大きくなり破裂する確率が高くなる。 これは、 延伸倍率が同じでも、 サイズが大きくなると、 延伸による被成形体の変形量の絶 対値が増加するからである。 局所的な伸びを起こすと、 その部分だけが他の部分 に比べて変形量が大きくなり、 成形品のサイズが大きくなればなるほど、 局所的 に伸びる部分の変形量、 即ち、 延伸倍率が増加し、 その部分では延伸可能な倍率 の限界を超えてしまうからである。  In this way, in the completely melted state, local elongation occurs. Therefore, regardless of the draw ratio, the larger the size of the molded product, that is, the larger the diameter or length of the obtained molded product, the greater the uneven thickness And the probability of rupture increases. This is because, even if the stretching ratio is the same, as the size increases, the absolute value of the amount of deformation of the molded body due to stretching increases. When local elongation occurs, only that part has a larger deformation amount than the other parts, and as the size of the molded article increases, the deformation amount of the locally expanded part, that is, the stretching ratio, increases. This is because, in that part, the drawable ratio exceeds the limit.
上述の知見に基づいて、 更に検討を重ねた結果、 P T F E製の被成形体たる予 備成形品を延伸して成形品を製造するに際して、 P T F Eの結晶融解開始温度以 上の温度の特定の延伸温度において、 かつ P T F E中に結晶が存在する状態にお いて、 特定の延伸倍率で延伸することにより、 従来技術の欄にて説明した成形品 の多孔性ならびに成形品の偏肉及び破裂の問題点に関して改善された成形品が得 られることを見出した。 Based on the above findings, as a result of further studies, when a preformed article, which is a PTFE molded object, is drawn to produce a molded article, a specific elongation at a temperature equal to or higher than the PTFE crystal melting onset temperature At a temperature and in a state where crystals are present in PTFE, the molded article described in the section of the prior art is stretched at a specific stretching ratio. It has been found that an improved molded article can be obtained with regard to the porosity of the molded article and the problems of uneven thickness and rupture of the molded article.
これは、 延伸時に被成形体を構成する P T F E中に結晶部が存在する場合、 被 成形体全体に延伸のための力が伝達され、 被成形体が局所的に延伸されることが 防止され、 その結果、 被成形体全体が多孔化することなく均一に伸びが生じるこ とに基づくものと考えられる。 即ち、 延伸時に被成形体中に結晶部を存在させる ことによって、 局所的な伸びの発生が防止され、 その結果、 被成形体が全体とし てより均一に延伸され、 偏肉の小さい良好なブロー延伸成形品が得られる。 この ように局所的な伸ぴが防止され、 均一に伸びることによってサイズの大き 、成形 品を得ることが可能になった。  This is because, when a crystal part exists in the PTFE constituting the molded body at the time of stretching, the force for stretching is transmitted to the entire molded body, and the molded body is prevented from being locally stretched. As a result, it is considered that this is based on the fact that elongation occurs uniformly without making the entire molded body porous. In other words, the presence of crystal parts in the molded body during stretching prevents local elongation, and as a result, the molded body is more uniformly stretched as a whole and has good unevenness with small thickness unevenness. A stretch molded product is obtained. In this way, local elongation was prevented, and uniform elongation made it possible to obtain a molded article having a large size.
成形品のサイズが大きくなるほど、 即ち、 得られる成形品の径又は長さが大き くなるほど、 被成形体の変形量が増えるが、 均一に伸びることで、 サイズが変わ つても設定した延伸倍率で被成形体全体が延伸されるからである。 これに比べ、 完全溶融状態では局所的な伸びを起こすことにより、 成形品のサイズが大きくな るほど、 局所的に伸びる部分の変形量、 即ち、 延伸倍率が大きくなり、 その結果、 偏肉度が大きくなり、 ついには延伸可能な倍率の限界を越え破裂してしまう。 実際、 特開平 4一 2 9 6 3 3 2号公報、 特開平 4— 3 4 5 8 3 6号公報、 特開 昭 5 3— 5 8 5 7 9号公報等で開示されている、 完全溶融状態での P T F E製熱 収縮チューブの製造方法においても外径 4 0 mmまでの成形品が実施例に記載さ れているに過ぎない。 しかしながら、 第 1の本発明では、 例えば外径 1 2 O mm 又は長さ 3 0 O mmの満足すべき成形品を得ることができ、 これらの成形品は、 そのサイズが大きいにもかかわらず、 偏肉度が小さい。  The larger the size of the molded product, that is, the larger the diameter or length of the obtained molded product, the greater the amount of deformation of the molded body.However, even expansion can be achieved at the set stretching ratio even if the size changes. This is because the entire molded object is stretched. In contrast, in the completely melted state, local elongation occurs, and as the size of the molded product increases, the amount of deformation of the locally expanded portion, that is, the stretching ratio, increases, and as a result, the thickness deviation And eventually burst beyond the limit of the draw ratio. In fact, the complete melting disclosed in Japanese Patent Application Laid-Open Nos. Hei 4-29663-2, Hei 4-3495836, and Hei 5-3-5797, etc. In the method of manufacturing a PTFE heat-shrinkable tube in the state, a molded product having an outer diameter of up to 40 mm is merely described in the examples. However, in the first invention, satisfactory molded products having an outer diameter of, for example, 12 O mm or a length of 30 O mm can be obtained, and although these molded products are large in size, Small unevenness.
第 1の本発明は、 P T F Eの被成形体 (以下、 第 1の本発明において、 「被成 形体 (I ) 」 という。 ) を P T F Eの結晶融解開始温度以上かつ被成形体 (I ) を構成する P T F E中に結晶部が存在する温度にて延伸することによって P T F Eの成形品を製造する方法であって、 差圧によって被成形体 (I ) を延伸し、 差 圧を保持したまま結晶融解開始温度より低い温度まで冷却することを特徴とする 製造方法である。  In the first aspect of the present invention, a molded article of PTFE (hereinafter referred to as “molded article (I)” in the first aspect of the present invention) is not less than the crystal melting start temperature of PTFE and constitutes the molded article (I). This is a method of manufacturing a PTFE molded article by stretching at a temperature at which crystal parts exist in PTFE, and stretching the molded object (I) by differential pressure, and starting crystal melting while maintaining the differential pressure A production method characterized by cooling to a temperature lower than the temperature.
特に、 好ましい態様では、 延伸倍率に応じて被成形体 (I ) を構成する P T F Eが含む結晶部の割合を適切に選択することによって、 上述の問題点に関して一 層改善された成形品が得られ、 その結果、 非多孔性成形品が得られることを見出 した。 即ち、 第 1の本発明は、 被成形体 (I) を構成する PTFEの融解開始温 度以上の温度であって、 P T F Eには結晶部及び非晶部の双方が存在する温度に おいて被成形体 (I) を延伸することを特徴とする。 In particular, in a preferred embodiment, the PTF constituting the molded article (I) according to the stretching ratio It has been found that by appropriately selecting the proportion of the crystal part contained in E, a molded article which is further improved with respect to the above problems can be obtained, and as a result, a non-porous molded article can be obtained. That is, the first aspect of the present invention relates to a method for forming a molded article (I) at a temperature not lower than the melting start temperature of the PTFE constituting the molded article (I), wherein the PTFE has both a crystalline part and an amorphous part. The molding (I) is stretched.
具体的には、.構成する PTFEの結晶部が融解を開始する温度、 即ち、 融解開 始温度以上の温度であつて、 結晶部及ぴ非晶部の双方が存在する予め選択した温 度にて延伸を予め選択した延伸倍率にて、 被成形体 (I) に差圧を適用すること によって延伸を実施し、 その後、 延伸した状態のままで冷却して成形品を得、 得 られた成形品の比重 (db) を、 延伸を実施しないことを除いて同じ熱履歴に付 した被成形体 ( I ) ( 「参照体」 とも呼ぶ) の比重 (dc) とを比較して、 db >d。又は db=d。となった時の温度 (即ち、 延伸温度) 及び延伸倍率を求め、 以後、 その延伸温度及び延伸倍率を用いて成形を実施すると、 上述の課題を達成 できる成形品を得るこどができる。 このような延伸温度及び延伸倍率は、 これら の条件を予め選択して、 成形を実施して、 その後、 得られた成形品と参照体の比 重を比較することによって、 選択した条件が第 1の本発明の方法を実施できる延 伸倍率及び延伸温度であるか否かを容易に判断できる。 即ち、 試行錯誤によって 第 1の本発明の方法に必要な延伸温度及び延伸倍率を求めることができる。 第 1の本発明の PTFEの成形品を製造する方法の実施に際しては、 被成形体 (I) を金型に配置して、 被成形体 (I) を金型のキヤビティを規定する壁面に 押し付けることによって、 好ましくは気体によって押し付けることによつて被成 形体 (I) を延伸して所望の形態を有するように成形する。 この意味で、 第 1の 本発明の方法にて使用する被成形体 (I) は、 壁を有する中空体であり、 第 1の 本発明の方法は延伸成形方法であると呼ぶことができる。 また、 好ましい態様の ように気体を使用して圧力を加える場合には、 ブロー成形方法の側面をも有する ので、 プロ一延伸成形方法であると呼ぶことができる。 Specifically, at a temperature at which the crystal part of the PTFE constituting the material starts melting, that is, a temperature equal to or higher than the melting start temperature and at a preselected temperature at which both the crystal part and the amorphous part exist. Stretching is performed by applying a pressure difference to the molded body (I) at a stretch ratio selected in advance, and then cooled while maintaining the stretched state to obtain a molded product. The specific gravity (d b ) of the article is compared with the specific gravity (d c ) of the molded body (I) (also referred to as “reference body”) that has been subjected to the same thermal history except that stretching is not performed. b > d. Or d b = d. By obtaining the temperature (ie, the stretching temperature) and the stretching ratio at the time of, and then performing molding using the stretching temperature and the stretching ratio, it is possible to obtain a molded product that can achieve the above-mentioned objects. The stretching temperature and the stretching ratio are determined by selecting these conditions in advance, performing molding, and then comparing the specific gravities of the obtained molded article and the reference body. It can be easily determined whether or not the stretching ratio and the stretching temperature allow the method of the present invention to be carried out. That is, the stretching temperature and the stretching ratio required for the first method of the present invention can be determined by trial and error. In carrying out the method for producing a molded article of PTFE according to the first aspect of the present invention, the molded object (I) is placed in a mold, and the molded object (I) is pressed against a wall defining the mold cavity. In this case, the molded object (I) is stretched and formed into a desired shape, preferably by pressing with a gas. In this sense, the molded object (I) used in the first method of the present invention is a hollow body having a wall, and the first method of the present invention can be called a stretch molding method. Further, when pressure is applied using a gas as in a preferred embodiment, the method also has a side face of a blow molding method, and thus can be called a professional stretch molding method.
第 1の本発明の PT F Eの成形品を製造する方法では、 従来技術のブロー成形 方法と比較して、 成形品の比重低下がない、 即ち、 成形品の比重が延伸に起因し て減少することはない。 この意味で、 「非多孔性」 なる用語を本明細書で使用し 6 In the first method for producing a molded article of PTFE of the present invention, the specific gravity of the molded article is not reduced, that is, the specific gravity of the molded article is reduced due to the stretching, as compared with the conventional blow molding method. Never. In this sense, the term "non-porous" is used herein. 6
10 Ten
ている。 このことは、 第 1の本発明の製造方法において被成形体 (I) が受ける 熱履歴と同じ熱履歴を受ける (即ち、 同じ温度条件下に曝される) 1 延伸され ない被成形体 (I ) の比重 (dc) と、 第 1の本発明の製造方法によって得られ る成形品の比重 (db) とを比較すると、 後者の比重が前者の比重と実質的に同 じである力、 それより大きいこと、 即ち、 比重低下が起こらないことを意味する。 尚、 この場合において、 延伸後の冷却過程の条件に応じて、 結晶化度の変化 (即 ち、 冷却後の結晶部の割合) により、 製造される成形品の比重は変わり得るので、 比較する非延伸の被成形体 (I) が受ける熱履歴には、 成形後に冷却して成形品 を型から取り出すまでの過程の熱履歴も含まれる.。 ing. This means that the molded article (I) receives the same heat history as the molded article (I) in the production method of the first invention (that is, is exposed to the same temperature conditions). a specific gravity (d c) of), is compared with the first specific gravity of the molded article that is obtained by the production method of the present invention (d b), the latter specific gravity of Ji substantially the same as the former gravity force , Which means that the specific gravity does not decrease. In this case, the specific gravity of the molded article to be produced can be changed due to the change in crystallinity (that is, the ratio of crystal parts after cooling) depending on the conditions of the cooling process after stretching. The thermal history of the non-stretched molded object (I) includes the thermal history of the process from cooling to removal of the molded product from the mold after molding.
第 1の本発明の方法において、 PTFEの結晶融解開始温度は、 被成形体 (I ) を構成する PTFEについて得られる示差走查熱量計 〔DSC〕 を用いる測定 によって得られる曲線が、 P T F E試料の温度を上げていく場合の測定において は吸熱によって得られる曲線がベースラインから離れて下がり始める温度、 即ち、 結晶が融解を始めるために融解熱を必要とし始める温度を意味する。 逆に、 PT FE試料の温度を下げていく場合の測定においては放熱によって得られる曲線が 降下してきてベースラインに達してそれに一致する温度、 即ち、 結晶化による放 熱が終了する温度を意味する。 この結晶融解開始温度は、 PTFEの種類により 多少異なるが、 一般的には、 PTFE試料の温度を上げていく場合の測定では約 270〜290°Cの範囲内にあり、 PTFE試料の温度を下げていく場合の測定 では約 260〜 280°Cの範囲内にある。  In the method of the first aspect of the present invention, the crystal melting onset temperature of PTFE is determined by measuring using a differential scanning calorimeter [DSC] obtained for PTFE constituting the molded object (I), and the curve obtained by measuring the PTFE sample is as follows. In measurements with increasing temperature, it means the temperature at which the endothermic curve begins to fall away from the baseline, ie, the temperature at which the crystal begins to require heat of fusion to begin melting. Conversely, in the measurement when the temperature of the PT FE sample is lowered, it means the temperature at which the curve obtained by heat radiation descends and reaches the baseline and agrees with it, that is, the temperature at which heat release due to crystallization ends. . The crystal melting onset temperature varies slightly depending on the type of PTFE, but in general, it is within the range of about 270 to 290 ° C when increasing the temperature of the PTFE sample. In the case of measurement, it is within the range of about 260 to 280 ° C.
第 1の本発明の方法において、 延伸時に、 即ち、 延伸時の温度 (以下、 「Te 」 とも呼ぶ) において被成形体 (I) を構成する PTFE内に結晶部が存在して いるか否かは、 被成形体 (I) を構成する PTFEを示差走査熱量測定に付して 得られる曲線に基づいて判断する。 尚、 PTFEをDSC測定する場合、 上述の ように P T F E試料を温度上昇条件に付す場合と、 温度降下条件に付す場合とで は得られる曲線のプロファイルが必ずしも一致しないことが一般的に知られてい る。  In the method of the first aspect of the present invention, at the time of stretching, that is, at the temperature at the time of stretching (hereinafter also referred to as “Te”), it is determined whether or not a crystal part exists in the PTFE constituting the molded body (I). The determination is made based on the curve obtained by subjecting the PTFE constituting the molded article (I) to differential scanning calorimetry. It is generally known that when measuring PTFE by DSC, the profiles of the obtained curves do not always match when the PTFE sample is subjected to the temperature rising condition as described above and when the PTFE sample is subjected to the temperature decreasing condition. You.
従って、 同じ温度であっても、 温度上昇条件に付す場合と、 温度降下条件に付 す場合の双方の温度において結晶が常に存在しているとは限らない。 そのため、 被成形体 (I ) を構成する P T F E内に結晶部が存在しているか否かの判断は、 延伸時に P T F Eをどのような温度過程によつて延伸温度に到らしめるのか、 即 ち、 低い温度から加熱のみによって延伸温度に達するようにするの力 —且延伸 温度より高い温度まで加熱してから冷却して延伸温度に達するようにするのかに よって判断の方法が異なる。 前者の場合 (便宜的に 「ケース Aj とも呼ぶ) は、 温度上昇条件に付して得られた曲線に基づいて、 後者の場合 (便宜的に 「ケース B」 とも呼ぶ) は、 温度降下条件に付して得られた曲線に基づいて、 結晶部の存 否を判断する。 Therefore, even at the same temperature, the crystals are not always present at both the temperature increase condition and the temperature decrease condition. for that reason, The determination of whether or not a crystal part exists in the PTFE constituting the molded object (I) depends on the temperature process during which the PTFE reaches the stretching temperature during stretching, that is, a low temperature. The method of determination differs depending on whether it is the force to reach the stretching temperature only by heating from the beginning, or whether it is heated to a temperature higher than the stretching temperature and then cooled to reach the stretching temperature. In the former case (for convenience, also referred to as “Case Aj”), the latter case (also called “Case B” for convenience) is based on the curve obtained by applying the temperature rise condition. The presence or absence of a crystal part is determined based on the obtained curve.
従って、 延伸時における被成形体 (I ) を構成する P T F Eにおける結晶部の 有無は、 成形方法における温度条件に対応させて測定した D S C曲線に基づいて 判断する。 尚、 温度上昇時の測定では、 結晶部が存在するか否かは、 選択した温 度 T eにおいて吸熱しているか否か (温度 T eにおける測定点がベースラインよ り下方に位置するか否か) で判断する (吸熱が認められる場合には結晶部がまだ 存在する) 。 逆に、 温度降下時の測定では、 結晶部が存在する力否かは、 T eに おいて発熱しているか否か (温度 T eにおける測定点がベースラインより上方に 位置するか否か) によって判断できる (発熱が認められる場合には融解した結晶 部がまだ存在する) 。  Therefore, the presence or absence of a crystal part in the PTFE constituting the molded body (I) at the time of stretching is determined based on the DSC curve measured in accordance with the temperature condition in the molding method. In the measurement at the time of temperature rise, whether or not the crystal part exists is determined by whether or not heat is absorbed at the selected temperature Te (whether or not the measurement point at the temperature Te is located below the baseline). (If an endotherm is observed, the crystal part is still present.) Conversely, in the measurement at the time of temperature drop, whether or not the crystal part exists is determined by whether or not heat is generated at Te (whether or not the measurement point at temperature Te is located above the baseline). (If a fever is observed, the melted crystal part is still present).
換言すれば、 結晶融解開始温度以上で結晶部が存在する状態とは、 ケース Aの 場合では、 示差走査熱量計により得られる曲線が結晶融解によりベースラインか ら降下し、 ピークが生じ、 その後、 ベースラインに完全に戻るまでの温度範囲の いずれかの温度における状態であり、 ケース Bの場合では、 示差走査熱量計によ り得られる曲線が結晶化によりベースラインから立ち上がり、 ピークが生じ、 そ の後、 ベースラインに完全に戻るまでの温 範囲のいずれかの温度における状態 のことである。 ·  In other words, the state in which the crystal part exists at or above the crystal melting onset temperature means that in case A, the curve obtained by the differential scanning calorimeter falls from the baseline due to crystal melting, and a peak occurs. This is a state at any temperature within the temperature range until it completely returns to the baseline.In case B, the curve obtained by the differential scanning calorimeter rises from the baseline due to crystallization, and a peak is generated. After that, the condition at any temperature within the temperature range until it completely returns to the baseline. ·
尚、 この状態は、 先に説明したように P T F Eを昇温する場合及び降温する場 合に加えて、 P T F Eが焼成品である場合及び未焼成品で異なり、 その結果、 同 じ温度であっても、 熱履歴及び P T F Eの種類が異なると、 被成形体 (I ) にお ける結晶の有無は必ずしも一致せず、 また、 熱履歴及び P T F Eの種類に応じて、 後述する結晶融解割合が異なり得る。 尚、 第 1の本発明の方法においては、 延伸時に結晶部がわずかに存在する状態 であることによって、 大きい延伸倍率で延伸を実施することができ、 この場合、 得られる成形品の寸法 (又はディメンション) 及び延伸倍率に関係なく、 上述の 比重低下を実質的に起こすことなく、 均一に延伸される点で特に好ましい。 Note that this state differs between the case where the PTFE is heated and the case where the temperature is lowered as described above, and the case where the PTFE is a fired product and the case where the PTFE is not fired. As a result, the same temperature is obtained. However, if the heat history and the type of PTFE are different, the presence or absence of crystals in the molded body (I) does not always match, and the crystal melting ratio described later may differ depending on the heat history and the type of PTFE. . In the method of the first aspect of the present invention, the stretching can be performed at a large stretching ratio due to the state in which the crystal part is slightly present at the time of stretching. In this case, the dimensions of the obtained molded article (or Irrespective of the dimension) and the draw ratio, it is particularly preferable in that the film is drawn uniformly without substantially reducing the specific gravity described above.
第 1の本発明の方法の実施に際して、 被成形体 (I ) を型内に固定してから加 熱してかまわないが、 加熱により被成形体 (I ) が熱膨張し、 その結果、 弛みが 生じて、 成形品に不良部分が生じることがあるので、 被成形体 (I ) は延伸時に 弛みのない状態で型内で拘束されていることが好ましい。 これは、 被成形体 (I In carrying out the method of the first aspect of the present invention, the molded object (I) may be heated after fixing the molded object (I) in the mold. In such a case, the molded article (I) is preferably restrained in the mold in a stretch-free state during stretching because the molded article may have a defective portion. This is the object (I
) が熱膨張し、 軟化した状態、 即ち、 延伸成形温度に近い温度状態で被成形体 ( I ) にテンションをかけて固定することにより行うことができる。 · ) Is thermally expanded and softened, that is, by fixing the molded body (I) by applying tension thereto at a temperature close to the stretch molding temperature. ·
第 1の本発明の方法において、 被成形体 (I ) とは、 ブロー成形方法における パリソンに対応する延伸される対象であり、 いずれの適当な方法で形成してもよ い。 具体的には、 ペースト押出成型、 圧縮成型、 ラム押出成型、 切削、 アイソス タティック成型、 ラッピング成形等が挙げられる。 被成形体 (I ) は、 焼成品で もあっても、 未焼成品であってもよい。 被成形体 (I ) の形態は、 延伸時、 差圧 を作用させるための気密状態を確保できれば 、ずれの適当な形態であってもよい 力 被成形体 (I ) の成形効率等を考えれば、 一般的に筒形 (又はチューブ状) の中空物であることが好ましい。.  In the first method of the present invention, the molded object (I) is an object to be stretched corresponding to the parison in the blow molding method, and may be formed by any appropriate method. Specific examples include paste extrusion molding, compression molding, ram extrusion molding, cutting, isostatic molding, and wrapping molding. The molded object (I) may be a fired product or an unfired product. The shape of the molded object (I) may be any suitable form if the airtight state for applying a differential pressure can be secured during stretching. Considering the molding efficiency of the molded object (I), etc. In general, it is preferably a tubular (or tubular) hollow material. .
本明細書において、 筒形とは、 長手方向軸を有し、 その軸方向に対して垂直な 断面は、 長手方向軸のいずれの箇所においても実質的に同じ図形である、 従って、 これらの断面の図形は実質的に合同関係にある。 そのような断面の形状は、 いわ ゆる異形と呼ばれるもの (即ち、 断面形状が円形でないもの、 例えば楕円、 多角 形、 多角形の角を丸めた形状、 これらを組み合わせた形状、 更に複雑な形状等) であっても、 非異形であってもよい、 即ち、 断面形状が円形であってもよい。 尚、 筒形の長手方向軸とは、 例えば筒形の中心を通過する軸であり、 そのよう な軸は、 上述の垂直な断面の外接円又は内接円の中心を通過するものであってよ い。 具体的には、 長手方向軸は、 円筒形の場合ではその中心軸である。 「長手方 向 J なる用語は、 筒形の長さ (又は高さ) 方向に沿う方向を意味し、 長手方向の ディメンション (又は寸法) が他の方向に沿うディメンションと比較して長いこ とを意味するものではない。 従って、 例えば円筒形において、 円筒の長さ (又は 高さ) が円筒の断面である円形の直径より小さくてもよい。 In the present specification, the term “cylindrical” has a longitudinal axis, and a cross section perpendicular to the axial direction has substantially the same shape at any point of the longitudinal axis. Are substantially congruent. Such cross-sectional shapes include what is called an irregular shape (that is, a non-circular cross-sectional shape, such as an ellipse, a polygon, a shape with rounded corners of a polygon, a combination of these shapes, a more complex shape, etc.). ) Or a non-irregular shape, that is, a cross-sectional shape may be circular. The longitudinal axis of the cylinder is, for example, an axis passing through the center of the cylinder, and such an axis passes through the center of the circumscribed circle or the inscribed circle having the above-described vertical cross section. Good. Specifically, the longitudinal axis is its central axis in the case of a cylinder. "The term longitudinal J means the direction along the length (or height) of the cylinder, where the longitudinal dimension (or dimension) is longer than the dimension along the other direction. Does not mean Thus, for example, in the case of a cylindrical shape, the length (or height) of the cylinder may be smaller than the diameter of the circular cross section of the cylinder.
被成形体 (I) の筒形の形態は、 成形品の形態に応じて選択するが、 汎用性が 高いことより円筒形であることが好ましい。 従って、 上述の成形方法の中でも筒 形成形品を効率よく得られるという点でペースト押出成形が特に好ましい。 被成 形体 (I) は、 有底形態、 例えば有底筒形であってもよく、 その場合、 圧縮成形、 ァイソスタティック成形、 切削によってそのような被成形体 (I) を得ること力 s できる。  The cylindrical form of the molded article (I) is selected according to the form of the molded article, but is preferably cylindrical because of high versatility. Accordingly, paste extrusion molding is particularly preferable among the above-mentioned molding methods in that a tube-shaped molded product can be efficiently obtained. The molded object (I) may have a bottomed form, for example, a cylindrical shape with a bottom, in which case the force of obtaining such a molded object (I) by compression molding, isostatic molding, or cutting s. it can.
このような被成形体 (I) の成形に用いる PTFEは、 懸濁重合により得られ るものである懸濁系 (モールディングパウダー) 、 乳化重合により得られるもの である乳化系 (ファインパウダー) のどちらでもよいが、 延伸性がより良いので 乳化重合により得られるもの (ファインパウダー) を用いるのがより好ましい。 第 1の本発明の方法では、 PTFEとしてはホモポリマー、 変性 PTFEのど ちらも使用できる。 変性に使用される変性剤としてはへキサフルォロプロペン、 クロロ トリフノレオ口エチレン、 ノヽ0—フルォロ (ァノレキ /レビニノレエーテノレ) ゝ パー フルォロ (ァノレコキシアルキノレビニルエーテル) 、 トリフルォロエチレン及びパ 一フルォロアノレキルエチレンなどが挙げられる。 The PTFE used for molding such a molded article (I) is either a suspension (molding powder) obtained by suspension polymerization or an emulsification (fine powder) obtained by emulsion polymerization. However, it is more preferable to use a material (fine powder) obtained by emulsion polymerization because the film has better stretchability. In the first method of the present invention, either homopolymer or modified PTFE can be used as PTFE. Modifiers used for denaturation include hexafluoropropene, chlorotrinoleoethylene, ヽ0 —fluoro (anoreki / levininoleatenore) ロ perfluoro (anolecoxy alkynole vinyl ether), trifluoroethylene And polyfluoroanolealkyl ethylene.
第 1の本発明の 1つの好ましい態様では、 延伸時、 即ち、 延伸時の温度 T eに おいて、 被成形体 (I) を構成する PTFEは結晶部を含む。 従って、 被成形体 ( I) を構成する PTFEは、 本来含んでいる結晶部 (即ち、 被成形体 (I) を 製造した時の PTFEが含んでいる結晶) の内のある程度の割合の結晶が融解し ている。 本明細書で用いる 「結晶が融解している割合 j (以下、 「結晶融解割合 J とも呼ぶ) とは、 上述の D S C測定により得られる曲線から求めることができ、 ベースラインとそれから下方 (又は上方) の曲線によって囲まれる面積に対する 融解開始温度から延伸温度 T eまでの温度範囲の面積の割合である。 この結晶融 解割合は、 例えば、 DSC測定のチャートを切り抜いて重量測定して得ることが でき、 本明細書ではこれを使用している。 尚、 上述のように、 DSC曲線は、 温 度上昇時と温度降下時とでは異なることが一般的に多く、 その場合は、 同じ延伸 温度 T。であっても、 ケース A及びケース Bで結晶部の割合は異なる。 即ち、 結晶融解割合は、 ケース Aでは、 温度上昇の過程において、 被成形体 ( I ) を構成する P T F Eに存在していた結晶部の全量に対する延伸温度において 既に溶解している結晶部の量の割合であり、 ケース Bでは、 温度降下の過程にお いて、 冷却により結晶化する結晶部の全量に対する延伸温度においてまだ融解し ている状態のままの結晶部の量の割合であると言える。 In one preferred embodiment of the first present invention, at the time of stretching, that is, at the temperature Te at the time of stretching, PTFE constituting the molded article (I) contains a crystal part. Therefore, the PTFE constituting the molded object (I) has a certain percentage of crystals in the crystal parts originally contained (ie, the crystals contained in the PTFE at the time of producing the molded object (I)). Thawing. As used herein, the “crystal melting ratio j” (hereinafter, also referred to as “crystal melting ratio J”) can be obtained from the curve obtained by the above-mentioned DSC measurement. ) Is the ratio of the area in the temperature range from the melting start temperature to the stretching temperature Te with respect to the area surrounded by the curve.The crystal melting ratio can be obtained, for example, by weighing out a DSC measurement chart. As described above, the DSC curve generally differs between a temperature rise and a temperature drop, in which case the same stretching temperature T is used. However, the ratio of the crystal part differs between Case A and Case B. That is, in the case A, in the process of temperature rise, the crystal melting ratio is the amount of the crystal part already dissolved at the stretching temperature with respect to the total amount of the crystal part existing in the PTFE constituting the molded object (I). In case B, it can be said that in the course of the temperature drop, it is the ratio of the amount of crystal parts that are still molten at the stretching temperature to the total amount of crystal parts crystallized by cooling.
第 1の本発明の方法において、 基本的には、 延伸温度 T eにおいて結晶部が存 在する必要があるが、 結晶融解割合は大きいほど好ましレ、。 特に、 延伸倍率が大 きくなるほど、 結晶融解割合が大きいことが好ましい。 従って、 結晶融解割合の 上限は 1 0 0 %未満であると定義できる。 換言すれば、 第 1の本発明の実施に際 して、 被成形体 ( I ) を構成する P T F Eの結晶溶融開始温度の精密な測定及ぴ 延伸温度の精密な制御が可能である限りにおいて、 結晶部が完全に融解する温度 より低い温度で延伸できればよい。 工業的に実用可能な温度測定及び温度制御の 精度を考慮した場合、 通常 9 9 . 8 %以下、 好ましくは 9 5〜 9 9 . 5 %、 例え ば約 9 9 %の結晶融解割合で延伸することは充分可能である。  In the first method of the present invention, basically, a crystal part needs to be present at the stretching temperature Te, but the larger the crystal melting ratio, the more preferable. In particular, it is preferable that the higher the draw ratio, the higher the crystal melting ratio. Therefore, the upper limit of the crystal melting ratio can be defined as less than 100%. In other words, as long as precise measurement of the crystal melting onset temperature of PTFE constituting the molded object (I) and precise control of the stretching temperature are possible, the first embodiment of the present invention can be performed. It suffices if the film can be stretched at a temperature lower than the temperature at which the crystal part completely melts. Considering the accuracy of industrially practical temperature measurement and temperature control, stretching is usually performed at a crystal melting ratio of 99.8% or less, preferably 95 to 99.5%, for example, about 99%. It is possible.
上述のように、 第 1の本発明は、 被成形体 (I ) を構成する P T F Eの結晶融 解開始温度以上の温度で P T F Eに結晶部が存在する状態で延伸し、 比重低下が 実質的に起こらないようにする。 この比重低下が起こるのを実質的に防止するこ とは、 例えば、 次のような具体的な態様によって実施できる :  As described above, the first aspect of the present invention stretches in a state where crystal parts are present in PTFE at a temperature equal to or higher than the crystal melting start temperature of PTFE constituting the molded object (I), and the specific gravity decreases substantially. Try not to happen. Substantially preventing this specific gravity reduction from occurring can be implemented, for example, by the following specific embodiments:
延伸倍率が約 3倍以下 (勿論、 1倍より大きい) の場合、 結晶融解割合は好ま しくは少なくとも 1 0 %、 より好ましくは少なくとも 2 0 %、 更に好ましくは少 なくとも 2 5 %、 特に好ましくは少なくとも 3 0 %、 最も好ましくは 5 0 %以上 とする ;  When the stretching ratio is about 3 times or less (of course, greater than 1 time), the crystal melting ratio is preferably at least 10%, more preferably at least 20%, still more preferably at least 25%, and particularly preferably. Is at least 30%, most preferably at least 50%;
延伸倍率が約 5倍以下の場合 (例えば約 3〜5倍の場合) 、 結晶融解割合は好 ましくは少なくとも 2 0 %、 より好ましくは少なくとも 2 5 %、 更に好ましくは 少なくとも 3 0 %、 特に好ましくは少なくとも 5 0 %、 最も好ましくは 7 0 %以 上とする ;  When the stretching ratio is about 5 times or less (for example, about 3 to 5 times), the crystal melting ratio is preferably at least 20%, more preferably at least 25%, further preferably at least 30%, particularly Preferably at least 50%, most preferably at least 70%;
延伸倍率が約 1 0倍以下の場合 (例えば約 5〜 1 0倍の場合) 、 結晶融解割合 は好ましくは少なくとも 5 0 %、 より好ましくは少なくとも 8 0 %、 最も好まし くは 9 0 %以上とする ;また、 延伸倍率が約 2 0倍以下の場合 (例えば約 1 0〜2 0倍の場合) 、 結晶融解割 合は少なくとも 8 0 %であるのが好ましく、 より好ましくは少なくとも 9 0 %、 最も好ましくは 9 5 %以上とする。 When the draw ratio is about 10 times or less (for example, about 5 to 10 times), the crystal melting ratio is preferably at least 50%, more preferably at least 80%, and most preferably at least 90%. And; When the stretching ratio is about 20 times or less (for example, about 10 to 20 times), the crystal melting ratio is preferably at least 80%, more preferably at least 90%, and most preferably at least 90%. 5% or more.
具体的には、 延伸倍率が約 5倍の場合、 延伸温度 T eにおける結晶融解割合は、 3 0 %〜; L 0 0 % (伹し、 1 0 0 %は含まない) 、 特に 8 0〜; L 0 0。/0 (伹し、 1 0 0.%は含まない) であるのが好ましい。 延伸倍率が約 1 0倍の場合、 延伸温 度 T eにおける結晶融解割合は、 5 0 %〜 1 0 0 % (伹し、 1 0 0 %は含まない ) 、 特に 8 0〜1 0 0 % (但し、 1 0 0 %は含まない) であるのが好ましい。 ま た、 延伸倍率が約 2 0倍の場合、 延伸温度 T eにおける結晶融解割合は、 8 0〜 1 0 0 % (但し、 1 0 0 %は含まない) であるのが好ましい。 Specifically, when the stretching ratio is about 5 times, the crystal melting ratio at the stretching temperature Te is 30% or more; L 0% (excluding 100%), particularly 80 to 100%. L 00. / 0 (伹, excluding 100%). When the stretching ratio is about 10 times, the crystal melting ratio at the stretching temperature Te is 50% to 100% (伹, excluding 100%), particularly 80 to 100%. (However, 100% is not included). When the stretching ratio is about 20 times, the crystal melting ratio at the stretching temperature Te is preferably 80 to 100% (however, 100% is not included).
結晶融解割合が大きいほど、 より大きい延伸倍率で延伸することができるので、 基本的には、 結晶融解割合は 1 0 0 %に近いのが特に好ましい。 伹し、 結晶融解 割合が 1 0 0 %では、 局部的な伸ぴによる偏肉が起こるので、 1 0 0 %になる以 上の温度で延伸することは好ましくない。  Basically, it is particularly preferable that the crystal melting ratio is close to 100%, because the higher the crystal melting ratio, the higher the draw ratio. On the other hand, if the crystal melting ratio is 100%, local thickness deviation occurs due to local elongation, and it is not preferable to stretch at a temperature higher than 100%.
尚、 本明細書において、 延伸倍率は、 被成形体 (I ) のある部分の一次元寸法 In this specification, the stretching ratio is defined as a one-dimensional dimension of a portion of the molded object (I).
(長さ) に対するその部分に対応する延伸成形品の部分の一次元寸法 (長さ) の 割合である。 例えば、 被成形体 (I ) が円筒形状であり、 延伸成形品も円筒形状 である場合、 延伸倍率は、 円筒の延伸前の直径に対する延伸後の直径の割合であ る。 直径の代わりに円筒の長さに基づく割合も延伸倍率である。 上記延伸成形品 は、 加熱した被成形体を延伸し、 その後、 冷却することにより、 延伸された成形 である。 It is the ratio of the one-dimensional dimension (length) of the stretched product corresponding to that part to (length). For example, when the object (I) has a cylindrical shape and the stretch-formed product has a cylindrical shape, the stretch ratio is a ratio of the diameter of the cylinder before stretching to the diameter of the cylinder before stretching. The ratio based on the length of the cylinder instead of the diameter is also a draw ratio. The above-mentioned stretch-formed product is a stretched product obtained by stretching a heated molded body and then cooling it.
一般的には、 被成形体 (I ) の種々の部分は、 異なる倍率で延伸されて成形品 となる場合が多く、 その場合は、 最も大きい倍率を本明細書で使用する延伸倍率 とする。 筒形の被成形体 (I ) を延伸する場合、 一般的に周方向 (又は直径方向 ) の延伸の割合が最も大きいので、 被成形体 (I ) と成形品の対応する一次元寸 法として周の長さの比を延伸倍率として用いる。 例えば、 被成形体 (I ) が実質 的に円筒状であり、 成形品も実質的に円筒状であり、 円周方向での延伸倍率が最 も大きい場合、 円周の長さの比 (又は直径の長さの比) が第 1の本発明の延伸倍 率となる。 尚、 上述の P T F Eに関する結晶融解開始温度、 結晶の存在の有無、 結晶融解 割合及び延伸倍率は、 P T F Eを成形する分野の当業者であれば容易に理解でき る概念である。 In general, various portions of the molded article (I) are often stretched at different magnifications to form molded articles. In such a case, the largest magnification is the stretching magnification used in the present specification. When a cylindrical molded object (I) is stretched, the ratio of stretching in the circumferential direction (or diametric direction) is generally the largest, so the corresponding one-dimensional dimension of the molded object (I) and the molded product is The ratio of the length of the circumference is used as the stretching ratio. For example, when the object to be molded (I) is substantially cylindrical and the molded article is also substantially cylindrical and the stretching ratio in the circumferential direction is the largest, the ratio of the length of the circumference (or The ratio of the length of the diameter) is the stretching magnification of the first present invention. The crystal melting onset temperature, the presence or absence of crystals, the crystal melting ratio, and the draw ratio of PTFE described above are concepts that can be easily understood by those skilled in the field of PTFE molding.
第 1の本発明の方法において、 差圧による延伸とは、 被成形体 (I ) を金型に 配置した状態で被成形体 (I ) の内側と外側に作用する圧力に差がある結果とし て、 被成形体 (I ) の内側から外側に向かって圧力が実質的に作用する (即ち、 差圧が作用する) ことによって、 被成形体 (I ) を金型の内側壁に押し付けるこ とによって被成形体 (I ) を構成する P T F Eを延ばすことを意味する。 従って、 金型は、 延伸によつて製造する成形品の外側形状に対応するキヤビティを形成す る内側壁を有する。 このような差圧による延伸は、 ブロー成形方法と'して知られ ている成形方法と実質的に同じである。  In the method of the first aspect of the present invention, the stretching by the differential pressure is a result of a difference in pressure acting on the inside and outside of the molded object (I) in a state where the molded object (I) is arranged in a mold. Then, when the pressure substantially acts from the inside to the outside of the molded object (I) (that is, a differential pressure acts), the molded object (I) is pressed against the inner wall of the mold. Means to extend the PTFE constituting the molded object (I). Thus, the mold has an inner wall that forms a cavity corresponding to the outer shape of the molded article produced by stretching. Stretching by such a differential pressure is substantially the same as a molding method known as a blow molding method.
被成形体 (I ) に差圧が作用する場合、 被成形体 (I ) 内側の加圧のみ、 被成 形体 (I ) 外側の減圧のみ、 これらの併用のいずれを用いてもよいが、 減圧のみ では被成形体 (I ) の肉厚が厚いものに対応できない。 即ち、 肉厚が大きい場合、 延伸を開始するのに必要な差圧が、 減圧による差圧の上限である 0 . 0 9 8 MP aよりも大きくなる。 また、 減圧を用いるには金型の一部又は全部に減圧に必要 な孔を多数形成したり、 金型の材質を多孔体にしたりする必要があるので、 加圧 のみの手段での差圧が効率的で好ましい。  When a differential pressure acts on the molded object (I), any of the following methods may be used: only pressurization inside the molded object (I), reduced pressure only outside the molded object (I), or a combination thereof. It is not possible to cope with a thick body (I) with only the body. That is, when the wall thickness is large, the differential pressure required to start stretching is larger than 0.098 MPa, which is the upper limit of the differential pressure due to the reduced pressure. Also, in order to use reduced pressure, it is necessary to form a large number of holes required for reduced pressure in part or all of the mold, or to make the material of the mold porous, so that the pressure difference by means of only pressurization is required. Is efficient and preferred.
加圧の場合、 圧力は流体、 特に気体を用いて加えるのが好ましい。 気体は、 被 成形体 (I ) 及び装置に対して不活性なものであれば、 いずれの気体であっても 使用可能であるが、 取り扱い、 コスト的な面から空気、 窒素、 ヘリウム、 二酸化 炭素等が好ましい。  In the case of pressurization, the pressure is preferably applied using a fluid, particularly a gas. As the gas, any gas can be used as long as it is inert to the molded object (I) and the apparatus. However, from the viewpoint of handling and cost, air, nitrogen, helium, and carbon dioxide are used. Are preferred.
第 1の本発明の方法において、 延伸した後、 差圧を保持した状態で延伸温度か ら結晶融解開始温度より低い温度 (例えば約 2 0 0〜2 5 0 °Cの温度又はそれ以 下の温度) まで冷却し、 その後、 成形品を金型から取り出す。 第 1の本発明の方 法では、 差圧を保持した状態で冷却してから取り出すが、 これは、 溶融開始温度 以上の温度で圧力を開放すると成形品は残有応力により収縮してしまうからであ る。  In the first method of the present invention, after stretching, a temperature lower than the crystal melting onset temperature from the stretching temperature while maintaining the differential pressure (for example, a temperature of about 200 to 250 ° C. or lower). Temperature), and then remove the molded product from the mold. In the first method of the present invention, the molded product is taken out after cooling while maintaining the differential pressure, but when the pressure is released at a temperature equal to or higher than the melting start temperature, the molded product shrinks due to residual stress. It is.
上述のような第 1の本発明の製造方法より得られる成形品は、 通常約 2 . 1以 上の比重 (d b ) を有し、 結晶融解開始温度以上の温度に加熱すると、 元の被成 形体 (I ) の形態に向かって戻ろうとする収縮性を有する。 そのように加熱する と、 成形品の肉厚が延伸前の被成形体 (I ) の肉厚に近くなる。 尚、 従来技術の 方法 (例えば、 特開平 6— 5 0 2 6 5号公報記載の方法) によって得られる成形 品は、 多孔性であり、 その比重は約 1 . 7である (後述の比較例参照) 。 The molded product obtained by the production method of the first aspect of the present invention as described above usually has a size of about 2.1 or less. It has the above specific gravity (d b ), and when heated to a temperature equal to or higher than the crystal melting onset temperature, it has a shrinkage property that tends to return to the original shape of the molded object (I). When heated in such a manner, the thickness of the molded article becomes close to the thickness of the molded object (I) before stretching. The molded article obtained by the method of the prior art (for example, the method described in JP-A-6-520265) is porous and has a specific gravity of about 1.7 (see the comparative example described later). See).
第 1の本発明の方法では、 溶融流動ではなく延伸によって賦形するので、 比較 的細かい形状を賦形することは容易でない場合がある。 特に、 被成形体 (I ) の 肉厚が厚い場合、 賦形可能な形状が制限される場合がある。 従って、 成形品に細 かい形状を賦与することが必要な場合、 第 1の 発明の方法に、 他の部材を被成 形体 (I ) に融着することを組み込むことが好ましい場合がある。 この融着は、 延伸前、 延伸時、 延伸後のどの時期に行ってもよいが、 延伸時の加熱及び作用す る差圧によつて他の部材との融着が可能であるので、 延伸時に行うのが効率的で 最も好ましい。 他の部材は、 目的とする成形品をもたらすものであれば特に限定 されるものではなく、 例えば所定の形状を有する P T F Eの成形体、 切削加工物 等であってよい。  In the first method of the present invention, since the shape is formed not by melt flow but by stretching, it may not be easy to form a relatively fine shape. In particular, when the thickness of the molded object (I) is large, the shape that can be formed may be limited. Therefore, when it is necessary to impart a fine shape to a molded article, it may be preferable to incorporate, in the method of the first invention, fusion of another member to the molded object (I). This fusion may be performed at any time before, during, or after the stretching.However, it is possible to perform fusion with another member by heating during the stretching and a differential pressure acting thereon. Sometimes it is efficient and most preferred. The other members are not particularly limited as long as they provide a desired molded product, and may be, for example, a molded product of PPTFE having a predetermined shape, a cut product, or the like.
具体的には、 予め所定の形状にした他の部材を準備し、 これを型内に配置して、 延伸時に延伸された被成形体 (I ) にこの部材を融着し、 その後、 冷却して成形 品を得ることができる。 別の態様では、 必要に応じて成形品に融着した部材を切 削加工等して所望の形状を有する成形品とすることもできる。  Specifically, another member having a predetermined shape is prepared in advance, this is placed in a mold, and this member is fused to the molded object (I) stretched at the time of stretching, and then cooled. Thus, a molded article can be obtained. In another aspect, a molded product having a desired shape can be obtained by cutting or the like the member fused to the molded product as necessary.
このように、 他の部材を融着することによって、 成形品を補強したり、 後の加 ェ等に必要な部分のみ肉厚を増やしたりすることができる。 延伸時に融着する場 合、 融着は、 融着する他の部材 (融着部材) 及び被成形体 (I ) を、 被成形体 ( I ) の外側に融着する部材が位置し、 また、 成形品の所定の部分に融着するよう に、 金型の所定の箇所に配置し、 被成形体 (I ) を差圧によって延伸し、 延伸さ れた被成形体 (I ) の一部分が融着部材に押し付けられた状態で保持することに よって実施する。  By fusing other members in this way, it is possible to reinforce a molded product or to increase the thickness of only a portion necessary for later processing. In the case of fusing at the time of stretching, the fusing includes a member for fusing another member to be fused (fused member) and a member to be molded (I) outside the member to be molded (I); The molded article (I) is stretched by a differential pressure so that the molded article (I) is stretched by a differential pressure so that a part of the stretched molded article (I) is fused to a predetermined portion of the molded article. This is carried out by holding in a state pressed against the fusion member.
上述のように成形品の一部分を構成するように他の部材を融着する場合以外に、 例えば筒形である被成形体 (I ) の外側に筒形の別の融着部材を配置し、 延伸に より被成形体 (I ) と融着部材が接触した後に被成形体 (I ) と共に融着部材を も延伸しながら融着するような全体的な融着も可能である。 この場合、 溶着部材 の固定に関しては、 被成形体 (I ) と共に金型に、 その上部と下部を固定する方 法、 その上部のみを固定する方法、 その下部のみを固定する方法、 又は、 両端と も固定しない方法等を採用できる。 In addition to the case where another member is fused so as to constitute a part of the molded article as described above, for example, another cylindrical fusion member is arranged outside the cylindrical body (I), After the molded article (I) and the fusion member come into contact by stretching, the fusion member is removed together with the molded article (I). Also, it is possible to perform overall fusion such that fusion is performed while stretching. In this case, regarding the fixing of the welding member, a method of fixing the upper and lower parts, a method of fixing only the upper part, a method of fixing only the lower part, or both ends to the mold together with the molded object (I). However, it is possible to adopt a method that does not fix it.
融着を行う場合、 延伸時の差圧を大きくする方が融着状態が良くなることから 好ましい。 また、 延伸時の温度及び圧力を保持する時間を長くしたり、 延伸後に 差圧を保持した状態で温度を上げて P T F Eを完全溶融状態にするのが融着状態 が良くなることから好ましい場合がある。 融着部材の材料は、 延伸温度での耐熱 性があり、 P T F Eに融着可能なもの (充填材入りのものを含む) であればよい が耐熱性からフッ素系の樹脂であることが好ましい。 フッ素系の樹脂でも耐熱性 より P T F E、 P F A樹脂、 F E P樹脂であるのが特に好ましい。 P T F Eは、 被成形体 (I ) を構成するものと同じ種類の P T F Eであってよく、 別の好まし い態様では、 融着性が良い変性 P T F E (例えばアルキルビュルエーテル変性 P T F E ) であってよい。  When performing fusion, it is preferable to increase the differential pressure during stretching, since the fusion state is improved. In addition, it is preferable to extend the time during which the temperature and pressure during stretching are maintained, or to raise the temperature while maintaining the differential pressure after stretching to bring the PTFE into a completely molten state, because the fusion state is improved, which is preferable. is there. The material of the fusion member may be any material that has heat resistance at the stretching temperature and that can be fused to PPTFE (including one containing a filler), but is preferably a fluorine-based resin from the viewpoint of heat resistance. It is particularly preferable that the fluororesin is a PTFE resin, a PTFE resin, or a FEP resin because of its heat resistance. The PTFE may be the same type of PTFE as that constituting the molded object (I), and in another preferred embodiment, may be a modified PTFE having good fusibility (for example, an alkylbutyl ether-modified PTFE). .
第 1の本発明の成形品は、 上述のような被成形体 (I ) の長手方向軸が、 被成 形体 (I ) を延伸して成形して得られる成形品においてもそのまま残ると仮定し て、 以下のように特定できる。 即ち、 第 1の本発明に基づいて製造される成形品 は、 被成形体 (I ) の長手方向軸に対応する、 成形品における方向 (即ち、 成形 品にそのまま残っていると仮定している被成形体 (I ) の長手方向軸の方向) に 対して垂直な方向の成形品の断面 (成形品の肉厚を無視小として考えた断面、 以 下、 単に 「成形品断面形状」 と呼ぶ) が次のような場合を含む:  The molded article according to the first aspect of the present invention is based on the assumption that the longitudinal axis of the molded article (I) as described above remains as it is in the molded article obtained by stretching and molding the molded article (I). Can be specified as follows. That is, it is assumed that the molded article manufactured according to the first aspect of the present invention is the direction in the molded article corresponding to the longitudinal axis of the molded object (I) (that is, it remains in the molded article as it is). Cross-section of the molded product in a direction perpendicular to the direction of the longitudinal axis of the molded object (I) (a cross-section in which the thickness of the molded product is neglected, hereinafter simply referred to as “cross-sectional shape of the molded product”) ) Includes when:
( 1 ) 1つの場合では、 少なくとも 1つの成形品断面形状は、 異形断面形状で ある。 断面形状は、 例えば楕円、 多角形、 多角形の角を丸めたもの等の形状であ つてよく、 更に、 他の少なくとも 1つの断面形状が円形断面であってもよい。 具 体的には、 成形品の一部分又は全部が円筒形態以外の種々の中空の立体形態、 例 えば角筒形態である成形品、 及びそのような成形品においてその一部分が円筒形 態及びノ又は円錐台筒形態である成形品などを例示できる。 即ち、 この場合に含 まれる成形品には、 全体が円筒形態であるような単純な形態ではなく、 種々の形 態が複雑又は単純に組み合わされた形態の成形品が実質的に全て含まれる。 この ような成形品の具体例としては、 種々の形態の容器 (例えばいわゆるポリ容器と 呼ばれるもの) 、 異径配管又は燃料タンク等のライニングに用いる成形品、 ケミ カルポンプのケーシングに用いる成形品、 そのような成形品を得るための素材と なる成形品 (即ち、 予備成形品) 等が含まれる。 (1) In one case, at least one molded product cross-sectional shape is an irregular cross-sectional shape. The cross-sectional shape may be, for example, an ellipse, a polygon, a shape obtained by rounding a corner of a polygon, or the like, and further, at least one other cross-sectional shape may be a circular cross-section. More specifically, a part or all of the molded article is a hollow three-dimensional form other than the cylindrical form, for example, a molded article having a rectangular cylindrical form, and a part of such a molded article has a cylindrical form and A molded product in the form of a truncated cone can be exemplified. In other words, the molded articles included in this case are not simple forms having a cylindrical shape as a whole, but include virtually all molded forms in which various forms are complicated or simply combined. . this Specific examples of such molded articles include containers of various forms (for example, so-called polycontainers), molded articles used for lining of different-diameter pipes or fuel tanks, molded articles used for casings of chemical pumps, and the like. Moldings (ie, pre-molded products), etc., which are used as materials for obtaining various molded products.
( 2 ) もう 1つの場合では、 成形品断面形状が、 いずれも非異形断面形状、 即 ち、 円形である。 この場合に^いて、 円の直径が同じである時、 成形品は実質的 に円筒形態であり、 円筒形態は実質的に真っ直ぐでも、 屈曲していてもよい。 ま た、 円の直径が異なる時は、 例えば円錐状又は円錐台形態、 長手軸方向に沿って 膨らみ部及び収縮部が存在するような形態である。  (2) In another case, the cross-sectional shape of the molded product is a non-irregular cross-sectional shape, that is, a circular shape. In this case, when the diameters of the circles are the same, the molded article is substantially cylindrical, and the cylindrical form may be substantially straight or bent. Further, when the diameters of the circles are different, for example, the shape is a conical or truncated cone shape, and a shape in which a bulging portion and a shrinking portion exist along the longitudinal axis direction.
第 1の本発明の成形品の製造方法では、 上述のように、 被成形体 (I ) がより 均一に延伸される。 その結果、 成形品を規定する P T F Eの厚さ、 即ち、 肉厚の 偏りは抑制される。 後述の実施例において具体的に示すように、 同一径で同一断 面形状の成形品の円筒状部分の肉厚の偏り、 従って、 偏肉度は、 常套のプロ一成 形の場合と比較すると、 大きく改善される。  In the method for producing a molded article according to the first aspect of the present invention, as described above, the molded object (I) is stretched more uniformly. As a result, unevenness in the thickness of the PTFE defining the molded product, that is, the thickness, is suppressed. As will be specifically shown in the examples described later, the thickness deviation of the cylindrical portion of the molded article having the same diameter and the same cross-sectional shape, therefore, the thickness unevenness is compared with the case of the conventional professional molding. , Greatly improved.
具体的には、 第 1の本発明の成形品の下記の式 (1 ) :  Specifically, the following formula (1) of the molded article of the first present invention:
偏肉度 (%) = ( 2 (最大肉厚一最小肉厚) / (最大肉厚 +最小肉厚) ) X 1 0 0 式 ( 1 )  Deflection degree (%) = (2 (maximum thickness-minimum thickness) / (maximum thickness + minimum thickness)) X100 formula (1)
(式中、 最大肉厚は、 該当する円筒状部分において測定される最大の肉厚であり、 最小肉厚は、 該当する円筒状部分において測定される最小の肉厚であり、 通常、 複数の箇所を測定し、 測定値の最大値及び最小値から算出する。 ) で表される偏 肉度 (%) 1S 1 2 0 %以下、 好ましくは 1 0 0 %以下、 より好ましくは 5 0 % 以下である。 このような向上した偏肉度は、 円筒状部分のみでなく、 成形品の他 の部分においても認められる。  (Where the maximum thickness is the maximum thickness measured at the relevant cylindrical part, and the minimum thickness is the minimum thickness measured at the relevant cylindrical part. Measure the location and calculate from the maximum and minimum values of the measured values.) Depth of wall thickness expressed as (%) 1S 120% or less, preferably 100% or less, more preferably 50% or less It is. Such improved thickness unevenness is observed not only in the cylindrical part but also in other parts of the molded article.
また、 第 1の本発明の成形品の製造方法は、 変形量が大きい成形、 従って、 サ ィズの大きい成形品、 特に円筒形状成形品を得るのに有用である。 第 1の本発明 のその有用性が発揮されるのは、 成形品断面形状が円形であり (成形品が中空で あるので、 厳密には断面形状は細幅のリング状である) 、 その外周長さが従来製 造されているような円筒状成形品より大きいもの、 例えば少なくとも 5 O mn!、 好ましくは少なくとも 1 0 O mm、 より好ましくは少なくとも 1 5 O mmのもの 。 The method for producing a molded article according to the first aspect of the present invention is useful for forming a molded article having a large deformation amount, and therefore, a molded article having a large size, particularly a cylindrical molded article. The usefulness of the first invention is demonstrated by the fact that the cross-sectional shape of the molded article is circular (strictly, the cross-sectional shape is a narrow ring shape because the molded article is hollow). Those whose length is larger than those of conventional cylindrical products, for example, at least 5 mn! , Preferably at least 10 Omm, more preferably at least 15 Omm .
20 20
である。  It is.
第 2の本発明の樹脂成形体は、 融点ピークが 250°C以上であり、 結晶化度が 78%以上であり、 ヘイズ値が 30%以下であることを特徴とするものである。 本明細書において、 上記 「第 2の本発明の樹脂成形体」 を、 樹脂成形体 (1) と いう。 なお、 本明細書において、 このように番号を付すことなく 「樹脂成形体」 というときは、 このように番号を付して表す樹脂成形体に限定しない第 2〜第 7 の本発明の樹脂成形体を意味する。  The resin molded product of the second aspect of the present invention is characterized in that the melting point peak is 250 ° C. or more, the crystallinity is 78% or more, and the haze value is 30% or less. In the present specification, the above-mentioned “second resin molded article of the present invention” is referred to as a resin molded article (1). In this specification, the term "resin molded body" without such a number refers to the resin molding of the second to seventh aspects of the present invention, which is not limited to the resin molded body represented by such a number. Mean body.
上記樹脂成形体 (1) は、 樹脂を成形させて得られるものである。 上記樹脂と しては上述の範囲内の結晶化度、 ヘイズ値及び融点ピークを有する成形体を得る ことができるものであれば特に限定されないが、 含フッ素樹脂からなるものであ ることが好ましい。 含フッ素樹脂からなる成形体は、 耐熱性があり、 比較的高い 結晶化度を有しやすく、 更に、 非粘着性、 電気的絶縁性、 耐薬品性、 耐候性、 撥 • 水撥油性等の優れた特性を有するので幅広い用途がある。  The resin molded article (1) is obtained by molding a resin. The resin is not particularly limited as long as a molded article having a crystallinity, a haze value, and a melting point peak within the above-described ranges can be obtained, but is preferably a fluororesin. . Molded articles made of fluorine-containing resin are heat-resistant, have a relatively high crystallinity, and have non-adhesive properties, electrical insulation properties, chemical resistance, weather resistance, water and oil repellency, etc. It has a wide range of applications because of its excellent properties.
上記樹脂成形体 (1) に用いる含フッ素樹脂としては、 得られる成形体が上述 の範囲内の結晶化度、 ヘイズ値及び融点ピークを示すことができるものであれば 特に限定されないが、 結晶性が比較的高く、 上述の特性にも優れることが多い点 から、 テトラフルォロエチレン 〔TFE〕 を含む単量体成分から得られる重合体 からなる樹脂が好ましい。 本明細書において、 このような TFEを含む単量体成 分から得られる重合体を、 「テトラフルォロエチレン系重合体 〔TFE系重合体 〕 」 ということがある。 .  The fluororesin used for the resin molded product (1) is not particularly limited as long as the obtained molded product can exhibit a crystallinity, a haze value and a melting point peak within the above ranges. In particular, a resin made of a polymer obtained from a monomer component containing tetrafluoroethylene [TFE] is preferable in that it has a relatively high molecular weight and is often excellent in the above-mentioned properties. In the present specification, a polymer obtained from such a monomer component containing TFE may be referred to as a “tetrafluoroethylene-based polymer [TFE-based polymer]”. .
上記 TF E系重合体としては特に限定されず、 例えば、 テトラフルォロェチレ ンホモポリマー 〔PTFEホモポリマー〕 、 変性ポリテトラフルォロエチレン 〔 変性 PTFE〕 、 テトラフルォロエチレン/パーフルォロ (アルキルビニルエー テル) 共重合体 〔PFA〕 、 テトラフルォロエチレン/へキサフルォロプロピレ ン共重合体 〔FEP〕 等が挙げられる。 なかでも、 結晶化度及び融点ピークの特 性が良好である点から、 PTFEホモポリマー及び変性 P T F Eがより好ましい。  The TFE polymer is not particularly limited, and examples thereof include tetrafluoroethylene homopolymer [PTFE homopolymer], modified polytetrafluoroethylene [modified PTFE], tetrafluoroethylene / perfluoro (alkyl vinyl ether). Ter) copolymer [PFA], tetrafluoroethylene / hexafluoropropylene copolymer [FEP], and the like. Among them, PTFE homopolymer and modified PTFE are more preferable in terms of good crystallinity and melting point peak characteristics.
P T F Eホモポリマー又は変性 P T F Eからなる従来の成形体は、 結晶化度が充 分に高くなく、 結晶化度に起因するバリア性等の特性に問題があつたが、 上記樹 脂成形体 (1) は、 含フッ素樹脂からなるものであっても、 高結晶化度とともに 透明性をも有するので、 用途を拡大することができる。 Conventional molded articles made of PTFE homopolymer or modified PTFE have not sufficiently high crystallinity and have problems in properties such as barrier properties caused by the crystallinity. However, the above resin molded article (1) Has a high degree of crystallinity, even if it is made of fluororesin. Since it also has transparency, its use can be expanded.
上記樹脂成形体 (1) に用いる含フッ素樹脂としては、 変性剤を含む重合体 ( a) からなるものであってもよい。 本明細書において、 上記 「変性剤を含む重合 体 (a) (以下、 「重合体 (a) 」 という。 ) 」 とは、 単量体成分と変性剤とか ら得られる重合体を意味する。 上記重合体 (a) は、 単量体成分と変性剤とが重 合してポリマー鎖を形成してなるものであってもよいし、 変性剤が未重合のまま 上記重合体 (a) に含まれているものであってもよく、 これらの混合物であって あよい。  The fluororesin used for the resin molded article (1) may be a polymer (a) containing a modifying agent. In the present specification, the “polymer (a) containing a modifier (hereinafter, referred to as“ polymer (a) ”)” means a polymer obtained from a monomer component and a modifier. The polymer (a) may be one in which a monomer component and a modifier are polymerized to form a polymer chain, or the polymer (a) may be used in a state in which the modifier is not polymerized. May be contained, or a mixture thereof.
上記重合体 (a) は、 単量体成分の少なくとも 1種が TFEである場合、 上述 の TFE系重合体の 1種であり、 このような重合体 (a) としては、 例えば上述 の変性 P T F E等が挙げられる。  When at least one of the monomer components is TFE, the polymer (a) is one of the above-mentioned TFE-based polymers. As such a polymer (a), for example, the above-mentioned modified PTFE And the like.
本明細書において、 上記 「変性 PTFE」 とは、 TFE及び変性剤から得られ る重合体を意味する。 上記変性 PTFEは、 PTFEホモポリマーが TFEのみ を重合することにより得られる TFEのホモポリマーであって、 変性剤を含まな いものである点で、 PTFEホモポリマーとは異なるものである。  In the present specification, the “modified PTFE” means a polymer obtained from TFE and a modifying agent. The modified PTFE is different from the PTFE homopolymer in that the PTFE homopolymer is a TFE homopolymer obtained by polymerizing TFE alone and does not contain a modifier.
上記変性 P T F Eの変性剤としては T F Eとの共重合が可能なものであれば特 に限定されず、 例えば、 へキサフルォロプロペン 〔HFP〕 等のパーフルォロォ レフイン) ; クロロ トリフルォロエチレン 〔CTFE〕 ; トリフルォロエチレン 等のハイドロフルォロォレフイン;パーフルォロビエルエーテル等が挙げられる。 上記パーフルォロビニルエーテルとしては特に限定されず、 例えば、 下記一般 式 (I)  The modifier for the modified PTFE is not particularly limited as long as it can be copolymerized with TFE. Examples of the modifier include perfluorophenol such as hexafluoropropene [HFP]; chlorotrifluoroethylene [CTFE ]; Hydrofluoroolefins such as trifluoroethylene; perfluorobier ether and the like. The perfluorovinyl ether is not particularly limited, and may be, for example, the following general formula (I)
CF2 = CF— OR f (I) CF 2 = CF—OR f (I)
(式中、 R f は ーフルォロ基を表す。 ) で表されるパーフルォロ不飽和化合物 等が挙げられる。 本明細書において、 パーフルォ口とは、 炭素原子に結合する水 素原子が全てフッ素原子に置換されてなることを意味する。 上記パーフルォロ基 は、 エーテル酸素を有していてもよい。  (In the formula, R f represents a perfluoro group.) And the like. In the present specification, the perfluoro opening means that all hydrogen atoms bonded to carbon atoms are replaced by fluorine atoms. The perfluoro group may have an ether oxygen.
上記パーフルォロビニルエーテルとしては、 例えば、 上記一般式 (.1) におい て、 R f が炭素数 1〜10のパーフルォロアルキル基を表すものであるパーフル ォロ (アルキルビニルエーテル) 〔PAVE〕 が挙げられる。 上記パーフルォロ アルキル基の炭素数は、 好ましくは 1〜 5である。 Examples of the above perfluorovinyl ether include, for example, perfluoro (alkyl vinyl ether) [PAVE in which R f represents a perfluoroalkyl group having 1 to 10 carbon atoms in the above general formula (.1). ]. Perfolo above The alkyl group preferably has 1 to 5 carbon atoms.
上記 P A V Eにおけるパーフルォロアルキル基としては、 例えばパーフルォロ メチル基、 パーフルォロェチル基、 パーフルォロプロピル基、 パーフルォロプチ ル基、 パーフルォロペンチル基、 パーフルォ口へキシル基等が挙げられるが、 Λ 一フルォロプロピル基が好ましい。  Examples of the perfluoroalkyl group in the above PAVE include a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluoropropyl group, a perfluoropentyl group, and a perfluorohexyl group. However, a monofluoropropyl group is preferred.
上記パーフルォロビニルエーテルとしては、 また、 上記一般式 (I ) において、 R ίが炭素数 4〜 9のパーフルォロ (アルコキシアルキル) 基、 下記式  Examples of the perfluorovinyl ether include a perfluoro (alkoxyalkyl) group having 4 to 9 carbon atoms in the general formula (I);
Figure imgf000024_0001
(式中、 mは 0又は 1〜4の整数を表す。 ) で表される有機基、 又は、 下記式
Figure imgf000024_0001
(In the formula, m represents 0 or an integer of 1 to 4.) or an organic group represented by the following formula:
CF 3 CF 3
CF3CF2CF2— (-0— CF-CF2†- (式中、 nは 1〜4の整数を表す。 ) で表される有機基を表すものであるパーフ /レオ口 (アルコキシアルキルビュルエーテル) 又はパーフルォロ (アルキルポリ ォキシアルキレンビエルエーテル) 等が挙げられる。 CF 3 CF 2 CF 2 — (-0—CF-CF 2 †-(wherein, n represents an integer of 1 to 4). Butyl ether) or perfluoro (alkylpolyoxyalkylene biel ether).
上記変性 P T F Eの変性剤としては、 得られる樹脂成形体 (1 ) の結晶性が良 好である点から、 パーフルォロビエルエーテル及びクロロトリフルォロエチレン が好ましく、 パーフルォロビニルエーテルとしては P A V Eが好ましい。  As the modifying agent for the modified PTFE, perfluorovinyl ether and chlorotrifluoroethylene are preferred from the viewpoint that the resulting resin molded article (1) has good crystallinity, and perfluorovinyl ether is preferred. PAVE is preferred.
上記変性 P T F Eにおいて上記変性剤が上記変性剤と T F Eとの全体量に占め ' る割合 (重量%) としては、 上記変性剤の種類によるが、 得られる変性 P T F E に溶融流動性を付与しない程度の少量であることが好ましい。 例えば上記変性剤 として上記パーフルォロビニルエーテルを用いる場合、 通常、 1重量0 /0以下が好 ましく、 0. 001〜 1重量0 /0がより好ましい。 The ratio (% by weight) of the modified PTFE to the total amount of the modified agent and TFE in the modified PTFE depends on the type of the modified agent, but is not large enough to give the obtained modified PTFE melt flowability. Preferably, the amount is small. For example, when using the par full O b vinyl ether as the modifying agent, usually 1 weight 0/0 or less good Preferred, from 0.001 to 1 weight 0/0 is more preferable.
上記樹脂成形体 (1) に用いる含フッ素樹脂としては、 1種又は 2種以上を用 いることができ、 例えば、 上記 TF E系重合体として 1種又は 2種以上を用いる ことができ、 上記重合体 (a) として 1種又は 2種以上を用いることができる。 例えば、 上記変性 PTFEとしては、 平均分子量、 共重合組成等が異なるものを As the fluorinated resin used in the resin molded article (1), one or more kinds can be used.For example, one or more kinds of the TFE polymers can be used. One or more of the polymers (a) can be used. For example, as the modified PTFE, those having different average molecular weights, copolymer compositions, etc.
1種又は 2種以上用いてよく、 上記 PTFEホモポリマーとしては、 例えば平均 分子量が異なるものを 1種又は 2種以上用いてもよく、 変性 PTFEと PTFE ホモポリマーとの混合物を用いてもよい。 One or two or more kinds may be used. As the PTFE homopolymer, for example, one or more kinds having different average molecular weights may be used, or a mixture of modified PTFE and PTFE homopolymer may be used.
本明細書において、 第 2〜第 1 3の本発明における上記 「PTFEホモポリマ 一及びノ又は変性 PTFE」 を、 「PTFE」 ということがある。 これらの 「P In the present specification, the above-mentioned “PTFE homopolymer one and modified or modified PTFE” in the second to thirteenth inventions may be referred to as “PTFE”. These "P
TFEホモポリマー」 及び 「変性 PTFE」 は、 第 1の本発明におけるものと同 様である。 “TFE homopolymer” and “modified PTFE” are the same as those in the first present invention.
PTFEは、 懸濁重合、 乳化重合、 塊状重合、 溶液重合等の従来公知の重合方 法により得ることができるが、 工業的に多用されている点等から、 懸濁重合又は 乳化重合を用いることが好ましく、 上記樹脂成形体 (1) を製造する際の成形性、 特に延伸性が良好である点から、 乳化重合がより好ましい。  PTFE can be obtained by conventionally known polymerization methods such as suspension polymerization, emulsion polymerization, bulk polymerization, and solution polymerization.However, since PTFE is widely used industrially, it is necessary to use suspension polymerization or emulsion polymerization. Emulsion polymerization is more preferred because moldability, particularly stretchability, when producing the resin molded article (1) is good.
本明細書において、 懸濁重合により得られる PTFEからなる樹脂粉末を、 P T F Eモールディングパウダーということがあり、 乳化重合により得られる PT FEからなる樹脂粉末を、 PTFEファインパウダーということがある。 上記榭 脂成形体 (1) を製造するための樹脂粉末としては、 PTFEファインパウダー が好ましい。 上記樹脂成形体 (1) は、 結晶化度が 78%以上である。 上記範囲内であると、 上記樹脂成形体 (1) の水蒸気透過性、 ガス透過性及び薬剤透過性を低減するこ とができる。 これらの透過性を低減することができると、 大気中の水蒸気、 窒素 等の気体分子、 及び、 酸等の薬剤が上記樹脂成形体 (1) を透過する量、 即ち、 上記樹脂成形体 (1) を境界として隔てた 2つの場のうち一方から他方へ通り抜 ける量を抑制することができる。 上記 2つの場は、 例えば空間、 溶液等である。 本明細書において、 水蒸気透過性、 ガス透過性及び薬剤透過性が低減することに ついて、 「バリア性」 又は 「バリア性の向上」 等ということがある。 本明細書において、 上記 「薬剤」 は、 化学的作用を有するものを意味する。 上 記薬剤は、 1種類又は 2種類以上の化合物からなるものであってよく、 各種の薬 品、 薬物、 薬液、 酸等であってよく、 固体、 液体又は気体の別を問わない。 上記結晶化度としては、 好ましい下限は 8 0%、 より好ましい下限は 8 1 %で ある。 上記結晶化度は、 上記範囲内であれば、 上記樹脂成形体 (1) のバリア性 を実用上損なわない点から、 上限は 9 8%であってもよく、 更に 95°/。であって もよい。 In the present specification, a resin powder composed of PTFE obtained by suspension polymerization may be referred to as PTFE molding powder, and a resin powder composed of PT FE obtained by emulsion polymerization may be referred to as PTFE fine powder. As the resin powder for producing the resin molded article (1), PTFE fine powder is preferable. The resin molded product (1) has a crystallinity of 78% or more. Within the above range, the water vapor permeability, gas permeability and drug permeability of the resin molded article (1) can be reduced. When these permeability can be reduced, the amount of gas molecules such as water vapor and nitrogen in the atmosphere and chemicals such as acid permeate the resin molded article (1), that is, the resin molded article (1) ) Can be suppressed from passing through from one field to the other field. The above two fields are, for example, space, solution, etc. In this specification, the reduction in water vapor permeability, gas permeability and drug permeability may be referred to as “barrier property” or “improvement in barrier property”. In the present specification, the above “drug” means a substance having a chemical action. The above-mentioned drug may be composed of one or more compounds, and may be various drugs, drugs, drug solutions, acids, etc., regardless of whether it is solid, liquid or gas. The lower limit of the crystallinity is preferably 80%, and more preferably 81%. When the crystallinity is within the above range, the upper limit may be 98% from the viewpoint that the barrier property of the resin molded article (1) is not practically impaired, and 95 ° /. It may be.
上記結晶化度は、 上記樹脂成形体 (1) が上述の含フッ素樹脂、 特に PTFE からなるものである場合、 特に高い値にすることができる。 含フッ素樹脂、 特に PTFEは、 剛直な分子鎖を有し整然と配列しやすいので、 重合過程において結 晶化が進み、 通常、 結晶化度の高いポリマーとして得られる。 しかしながら、 こ のポリマーを用いて成形する際、 従来の成形方法では、 粒子間を融着させるため に融点以上の温度で焼成することにより、 一旦結晶が融解して非晶状態になり、 冷却時に新たに結晶が形成されるが、 冷却速度を遅くしても充分に高い結晶化度 を得ることはできなかった。 上記樹脂成形体 (1) は、 後述の樹脂成形体の製造 方法により得たものであるので、 高い結晶化度を有することができる。  The crystallinity can be made particularly high when the resin molded product (1) is made of the above-mentioned fluororesin, especially PTFE. Fluorine-containing resins, especially PTFE, have a rigid molecular chain and are easily arranged in an orderly manner, so that crystallization proceeds during the polymerization process, and is usually obtained as a polymer with high crystallinity. However, when molding using this polymer, the conventional molding method involves firing at a temperature equal to or higher than the melting point in order to fuse the particles. Although new crystals were formed, a sufficiently high crystallinity could not be obtained even if the cooling rate was reduced. Since the resin molded article (1) is obtained by a method for producing a resin molded article described later, it can have a high degree of crystallinity.
本明細書において、 上記 「結晶化度」 とは、 次のように X線回折法を用いて得 られる値を意味する。 即ち、 図 5に示す X線回折の模式図のように、 ブラッグ反 射角を走査し、 回折強度をゴ-ォメーターで計量して得られたチャートから 2 Θ = 1 6° にピークをもつ非晶部由来の信号の面積 〔I a〕 と、 2 0 = 1 8° にピ ークをもつ結晶部由来の信号の面積 〔I c〕 を求めて計算する。 ベースラインは 2 0 = 1 0° と 2 0 = 2 0° との間で引き、 結晶部と非晶部との境界線は 2 0 = 1 7° と 2 6 = 1 9° との間で引く。 それにより求められた面積を用い下記の式 にて計算する (ふつ素樹脂ハンドブック (1 9 9 0年、 日刊工業新聞社、 里川孝 臣編) 、 第 4 5〜46頁参照) 。 X線回折装置として RAD - RA型 (商品名、 理学電気社製) を用いる。  In the present specification, the “crystallinity” means a value obtained by using an X-ray diffraction method as follows. That is, as shown in the schematic diagram of X-ray diffraction shown in Fig. 5, a chart obtained by scanning the Bragg reflection angle and weighing the diffraction intensity with a gomometer has a peak at 2Θ = 16 °. The area [Ia] of the signal derived from the crystal part and the area [Ic] of the signal derived from the crystal part having a peak at 20 = 18 ° are calculated. The baseline is drawn between 20 = 10 ° and 20 = 20 ° and the boundary between the crystalline and amorphous parts is between 20 = 17 ° and 26 = 19 ° Pull. Using the area obtained in this way, calculate using the following formula (see Fluoroplastics Handbook (1990, Nikkan Kogyo Shimbun, edited by Takaomi Satokawa), pp. 45-46). RAD-RA type (trade name, manufactured by Rigaku Denki Co., Ltd.) is used as an X-ray diffractometer.
C= X 100 C = X 100
I c +K · I a (式中、 Cは結晶化度 (%) 、 I cは結晶部の面積、 I aは非晶部の面積を表し、 Kは 0. 66とする。 ) I c + KIa (Where C is the crystallinity (%), I c is the area of the crystal part, I a is the area of the amorphous part, and K is 0.66.)
上記樹脂成形体 (1) は、 ヘイズ値が 30%以下である。 上記範囲内であると、 上記樹脂成形体 (1) は透明性を有することができる。 後述の範囲内の融点ピー クを有する従来の成形体では、 上記範囲内のように高い結晶化度を有し、 かつ、 上記範囲内のように低いヘイズ値を有するものは得られていなかつたが、 上記樹 脂成形体 (1) は、 高い結晶化度と高い透明性とを両立することができる。  The resin molded article (1) has a haze value of 30% or less. When it is within the above range, the resin molded article (1) can have transparency. With a conventional molded body having a melting point peak in the range described below, a molded product having a high crystallinity as in the above range and having a low haze value in the above range has not been obtained. However, the resin molded article (1) can achieve both high crystallinity and high transparency.
上記ヘイズ值としては、 好ましい上限は 20 °/0、 より好ましい上限は 15 %、 更に好ましい上限は 10 %、 特に好ましい上限は 8 %である。 上記ヘイズ値は、 上記範囲内であれば、 高い透明性を保持している点で、 0. 5%以上であっても よく、 更に 1%以上であってもよい。 As the haze, a preferable upper limit is 20 ° / 0 , a more preferable upper limit is 15%, a further preferable upper limit is 10%, and a particularly preferable upper limit is 8%. The haze value may be 0.5% or more, or 1% or more, as long as the haze value is within the above range, in that high transparency is maintained.
上記ヘイズ値は、 上記樹脂成形体 (1) が含フッ素樹脂からなるものであり、 上記含フッ素樹脂が変性剤を含む重合体 (a) からなるものである場合、 容易に 30%以下にすることができる。 このような重合体 (a) としては、 変性剤を含 む TFE系重合体が好ましく、 変性 PTFEがより好ましい。  The haze value is easily reduced to 30% or less when the resin molded article (1) is made of a fluororesin and the fluororesin is made of a polymer (a) containing a modifier. be able to. As such a polymer (a), a TFE polymer containing a modifying agent is preferable, and modified PTFE is more preferable.
上記重合体 (a) は、 PTFEホモポリマーと異なり、 主鎖に側鎖やフッ素以 外の原子が結合しているので、 結晶性が低下し、 光散乱を生じる微結晶が少なく、 高い透明性を有することができる。 上記ヘイズ値としては、 上記樹脂成形体 (1 ) が上記重合体 (a) からなるものである場合、 好ましい上限は 20%、 より好 ましい上限は 1 5 %、 更に好ましい上限は 10%であり、 これらの範囲内であれ ば、 高い透明性を保持している点で、 0. 5%以上であってもよく、 更に 1%以 上であってもよい。  The polymer (a) differs from PTFE homopolymer in that atoms other than side chains and fluorine are bonded to the main chain, resulting in reduced crystallinity, less microcrystals that cause light scattering, and high transparency. Can be provided. As the haze value, when the resin molded article (1) is composed of the polymer (a), a preferable upper limit is 20%, a more preferable upper limit is 15%, and a further preferable upper limit is 10%. If it is within these ranges, it may be 0.5% or more, or 1% or more, in that high transparency is maintained.
本明細書において、 上記 「ヘイズ値」 とは、 J I S K 7136に従い、 へ ィズメーター (東洋精機製作所社製、 直読ヘイズメーター) を用いて測定した値 を意味する。  In the present specification, the above-mentioned “haze value” means a value measured using a haze meter (manufactured by Toyo Seiki Seisaku-Sho, Ltd., direct-read haze meter) in accordance with JIS K 7136.
上記樹脂成形体 (1) は、 融点ピークが 250°C以上である。 上記範囲内の融 点ピークを有すると、 常温等の低中温で使用する用途のみならず、 耐熱性が高い ので高温で使用する用途にも用いることができる。  The resin molded product (1) has a melting point peak of 250 ° C. or higher. Having a melting point peak within the above range can be used not only for applications used at low and medium temperatures such as room temperature, but also for applications used at high temperatures because of its high heat resistance.
上記融点ピークとしては、 好ましい下限は 260°Cである。 上記融点ピークと しては、 上記範囲内であれば、 通常の用途において充分な耐熱性を有する点で、 400°C以下であってもよく、 更に 350°C以下であってもよい。 A preferred lower limit of the melting point peak is 260 ° C. With the above melting point peak Then, within the above range, the temperature may be 400 ° C or lower, or 350 ° C or lower, from the viewpoint of having sufficient heat resistance in ordinary use.
本明細書において、 上記 「融点ピーク」 とは、 示差走査熱量計 〔DSC〕 を用 いて測定した融解カーブにおいてピークを示す温度を意味する。  In the present specification, the “melting point peak” means a temperature at which a peak is observed in a melting curve measured using a differential scanning calorimeter [DSC].
上記樹脂成形体 (1) は、 上述の範囲内の融点ピーク、 結晶化度及びヘイズ値 を有するものであれば、 所望により成形助剤、 レべリング剤、 熱安定剤等の各種 添加剤を用いて成形したものであってもよい。  As long as the resin molded product (1) has a melting point peak, a crystallinity and a haze value within the above-mentioned ranges, various additives such as a molding aid, a leveling agent, a heat stabilizer and the like may be used as required. It may be molded using.
第 3の本発明の樹脂成形体は、 含フッ素樹脂からなるものであって、 上記含フ ッ素榭脂は、 TFE系重合体からなるものであり、 結晶化度が 78%以上であり、 ヘイズ値が 30%以下であることを特徴とするものである。 本明細書において、 上記 「第 3の本発明の樹脂成形体」 を、 樹脂成形体 (2) という。  The resin molded article according to the third aspect of the present invention is made of a fluorine-containing resin, wherein the fluorine-containing resin is made of a TFE polymer, and has a crystallinity of 78% or more, The haze value is 30% or less. In this specification, the above-mentioned “third resin molded article of the present invention” is referred to as a resin molded article (2).
このような樹脂成形体 (2) は、 TFE系重合体からなる含フッ素樹脂を成形 させて得られるものであるので幅広い用途が考えられるが、 従来、 特に PTFE がらなる成形体としては、 上記範囲内の結晶化度とヘイズ値とを両立するものは 得られていなかった。  Since such a resin molded article (2) is obtained by molding a fluororesin made of a TFE-based polymer, it can be used in a wide range of applications. Those satisfying both the degree of crystallinity and the haze value were not obtained.
上記樹脂成形体 (2) についての上記含フッ素樹脂、 上記 TFE系重合体、 上 記結晶化度、 上記ヘイズ値及び上記耐熱性は、 上記樹脂成形体 (1) について上 述したものである。  The fluororesin, the TFE polymer, the crystallinity, the haze value, and the heat resistance of the resin molded product (2) are as described above for the resin molded product (1).
第 4の本発明の樹脂成形体は、 PTF Eホモポリマー及び/又は変性 PTFE からなるものであり、 25 °Cにおける相対湿度差 90%での水蒸気透過係数が 0. 02 (g · mm) / (m2 ■ d a y) 以下であることを特徴とするものである。 本明細書において、 上記 「第 4の本発明の樹脂成形体」 を、 樹脂成形体 (3) と いう。 The resin molded article of the fourth invention is made of PTF E homopolymer and / or modified PTFE, and has a water vapor permeability coefficient of 0.02 (g (m 2 ■ day) or less. In the present specification, the above-mentioned “fourth resin molded article of the present invention” is referred to as a resin molded article (3).
上記樹脂成形体 (3) は、 上記範囲内の水蒸気透過係数を有すると、 通常の使 用環境下において実質的に大気中の水蒸気を遮断することができる。 従って、 上 記樹脂成形体 (3) は、 例えば、 水蒸気との接触が好ましくないものを覆うこと 等により、 水蒸気との接触を防止することができる。  When the resin molded body (3) has a water vapor transmission coefficient within the above range, it can substantially block water vapor in the atmosphere under a normal use environment. Therefore, the resin molded body (3) can prevent contact with water vapor by, for example, covering an object that is not preferable to contact with water vapor.
上記水蒸気透過係数としては、 好ましい上限は 0. 0 15 (g - mm) / (m 2 ' d a y) であり、 より好ましい上限は 0. 0 1 (g · mm) / (m2 · d a y) である。 上記水蒸気透過係数は、 上記範囲内であれば、 通常の用途において 水蒸気遮断性を保持し得る点で、 0. 0 0 0 1 ( g · mm) / (m2 ■ d a y) 以上であってもよく、 更に 0. 0 0 1 ( g · mm) / (m2 · d a y) 以上であ つてもよい。 As the water vapor permeability coefficient, the preferred upper limit is 0. 0 15 (g - mm) / (m 2 'day) in a more preferred upper limit is 0. 0 1 (g · mm) / (m 2 · da y). The water vapor permeability coefficient is within the above range, a point capable of retaining water vapor barrier properties in normal applications, even 0. 0 0 0 1 (g · mm) / (m 2 ■ day) or well, further 0. 0 0 1 (g · mm ) / (m 2 · day) or more der connexion may.
本明細書において、 上記 「水蒸気透過係数」 とは、 J I S Z 0 2 0 8に準 じて測定して得られる値を意味する。 なお、 上記水蒸気透過係数の単位は、 測定 対象である上記樹脂成形体 (3) の厚さ l mmを表面積 l m2当り 1日で透過す る水蒸気の量 (g) を表すものである。 In the present specification, the “water vapor permeability coefficient” means a value obtained by measuring according to JISZ208. The unit of the water vapor transmission coefficient represents the amount (g) of water vapor that permeates a thickness l mm of the resin molded body (3) to be measured per day per lm 2 of surface area.
上記樹脂成形体 (3) についての上記 PTFEホモポリマ^ "及び/又は変性 P T F Eは、 上記樹脂成形体 (1 ) について上述したものである。  The PTFE homopolymer and / or modified PTFE for the resin molded product (3) is as described above for the resin molded product (1).
第 5の本発明の樹脂成形体は、 P T F Eホモポリマー及び/又は変性 P T F E からなるものであり、 2 5 °Cにおける 3 5重量%の塩酸の透過係数 (以下、 「塩 酸透過係数」 という) が 1. 8 X 1 0— 1 1 ( g · c m) / ( c m2■秒) 以下で あることを特徴とするものである。 本明細書において、 上記 「第 5の本発明の榭 脂成形体」 を、 樹脂成形体 (4) という。 The fifth resin molded article of the present invention is made of a PTFE homopolymer and / or a modified PTFE, and has a permeation coefficient of 35% by weight of hydrochloric acid at 25 ° C. (hereinafter, referred to as “a permeation coefficient of hydrochloric acid”). There is characterized in that 1. at 8 X 1 0- 1 1 (g · cm) / (cm 2 ■ sec) or less. In the present specification, the “fifth resin molded article of the present invention” is referred to as a resin molded article (4).
上記樹脂成形体 (4) は、 上記範囲内の塩酸透過係数を有すると、 通常の使用 環境下において、 実質的に塩酸を遮断することができ、 その他の酸等の各種薬剤 をも効果的に遮断する薬剤透過性を有することができる。 このように、 P T F E ホモポリマー及び/又は変性 P T F Eからなる樹脂成形体であり、 塩酸に対する 遮断性に限られない薬剤遮断性を有し、 2 5°Cにおける 3 5重量%の塩酸を用い て測定した場合に上記範囲内の塩酸透過係数を有するものは、 上記樹脂成形体 ( 4) である。 上記樹脂成形体 (4) は、 例えば、 塩酸その他の酸等の薬剤との接 触が好ましくないものを覆うこと等により、 上記薬剤との接触を防止することが できる。  When the resin molded product (4) has a hydrochloric acid permeability within the above range, it can substantially block hydrochloric acid under a normal use environment, and can effectively remove various chemicals such as other acids. It can have drug permeability to block. As described above, it is a resin molded product composed of PTFE homopolymer and / or modified PTFE, which has a chemical barrier property that is not limited to a hydrochloric acid barrier property, and is measured using 35% by weight hydrochloric acid at 25 ° C. The resin molded article (4) having a hydrochloric acid permeability coefficient in the above range in the above case. The resin molded body (4) can prevent contact with the above-mentioned chemicals, for example, by covering an object which is not preferably in contact with the chemicals such as hydrochloric acid and other acids.
上記塩酸透過係数としては、 好ましい上限は 1. 5 X 1 0— 1 1 (g . c m) / (c m2 '秒) 、 より好ましい上限は 1. 0 X 1 0-1 1 (g . c m) / (c m2 · 秒) 、 更に好ましい上限は 9. 0 X 1 0— 12である。 上記塩酸透過係数は、 上記 範囲内であれば、 実用上充分な塩酸遮断性を有する点から、 1 X 1 0— 15 (g - c m) / ( c m2 ■ ) 以上であってよく、 更に 1 X 1 0— 14 (g · c m) / ( c m2 ·秒) であってもよレヽ。 As the hydrochloric acid permeability coefficient, the preferred upper limit is 1. 5 X 1 0- 1 1 ( g. Cm) / (cm 2 ' s), and more preferable upper limit is 1. 0 X 1 0- 1 1 ( g. Cm) / (cm 2 · sec), still more preferred upper limit 9. is 0 X 1 0- 12. The hydrochloric acid permeability coefficient may be at least 1 × 10-15 (g-cm) / (cm 2 ■), as long as it has a practically sufficient hydrochloric acid barrier property, as long as it is within the above range. X 1 0- 14 (g · cm ) / ( cm 2 · second).
上記 35重量%の塩酸は、 3 5重量%の塩化水素水溶液である。  The 35% by weight hydrochloric acid is a 35% by weight aqueous hydrogen chloride solution.
本明細書において、 上記 「塩酸透過係数」 とは、 次の薬液透過係数の求め方に より得られる値を意味する。 即ち、 図 6の模式的断面図に示す測定装置を用い、 それぞれ容量 200m 1である 2個のガラス容器 62 aと 62 bとの間に、 測定 サンプル 61をフッ素ゴム製 O—リング 63を用いて挟み込む。 一方のガラス容 器 62 aに 35重量%濃度の塩酸を、 他方のガラス容器 62 bに純水を、 それぞ れ 20 Om 1ずつ入れて、 25 °Cの恒温槽内に置く。 測定サンプル 61の接液面 は 70mm ψとする。 この状態で放置し、 純水を入れたガラス容器 62 bのサン プリング口 64からサンプリングを行い、 純水中に含まれる塩素イオン濃度をィ 才ンクロマトグラフ (商品名: I C 700— E、 横河電機社製) を用いて定量す る。 得られた塩酸イオン濃度より測定サンプル 61を透過した量を計算し、 得ら れた計算値を時間ごとにプロットする。 プロットされた数値が直線上に並ぶまで 同様に計測し、 直線の傾きより単位厚みあたりの 1日の透過量を求める。  In the present specification, the “hydrochloric acid permeability coefficient” means a value obtained by the following method for determining a chemical solution permeability coefficient. That is, using the measuring device shown in the schematic cross-sectional view of FIG. Pinch it. One glass container 62a is charged with hydrochloric acid having a concentration of 35% by weight, and the other glass container 62b is charged with 20 Om1 each, and placed in a thermostat at 25 ° C. The liquid contact surface of the measurement sample 61 is 70 mmmm. In this state, the sample was sampled from the sampling port 64 of the glass container 62b containing pure water, and the chlorine ion concentration in the pure water was measured using a liquid chromatograph (trade name: IC700-E, Yokogawa). (Made by Denki Co., Ltd.). The amount permeating the measurement sample 61 is calculated from the obtained hydrochloric acid ion concentration, and the obtained calculated value is plotted with respect to time. The same measurement is performed until the plotted values are aligned on a straight line, and the daily transmission amount per unit thickness is calculated from the slope of the straight line.
上記 PTFEホモポリマー及ぴ Z又は変性 PTFEは、 上記樹脂成形体 (1) について上述したものであり、 耐薬品性に優れる。 上記樹脂成形体 (1) の薬剤 遮断性は、 後述の樹脂成形体の製造方法により得られる高い結晶化度と、 後述の 多層構造からなる緻密な結晶構造に物理的に起因するものと考えられる。 上記榭 脂成形体 (1) の薬剤遮断性は、 更に、 上記 PTFEホモポリマー及び/又は変 性 PTFEの耐薬品性により上記樹脂成形体 (1) の薬剤による変質や劣化を防 止し得る点で、 化学的に寄与されるものである。  The PTFE homopolymer and Z or modified PTFE are as described above for the resin molded article (1), and are excellent in chemical resistance. It is considered that the chemical barrier property of the resin molded article (1) is physically caused by the high crystallinity obtained by the method for producing a resin molded article described later and the dense crystal structure composed of a multilayer structure described later. . The chemical barrier property of the resin molded article (1) is further characterized in that the chemical resistance of the PTFE homopolymer and / or the modified PTFE can prevent the resin molded article (1) from being deteriorated or deteriorated by the chemical. Which is chemically contributed.
第 6の本発明の樹脂成形体は、 P T F Eホモポリマー及び/又は変性 P T F E からなるものであり、 25°Cにおける 0. 2MP aの窒素の透過係数 (以下、 「 窒素透過係数」 という) が 6. 8 X 10—8 (cm3 · cm) / (cm2 - s e c ■ MP a) 以下であることを特徴とするものである。 本明細書において、 上記 「 第 6の本発明の樹脂成形体」 を、 樹脂成形体 (5) という。 The sixth resin molded product of the present invention is made of PTFE homopolymer and / or modified PTFE, and has a nitrogen permeability coefficient of 0.2 MPa at 25 ° C (hereinafter referred to as “nitrogen permeability coefficient”) of 6. . 8 X 10- 8 (cm 3 · cm) / - is characterized in that it is (cm 2 sec ■ MP a) below. In this specification, the “resin molded article of the sixth aspect of the present invention” is referred to as a resin molded article (5).
上記樹脂成形体 (5) は、 上記範囲内の窒素透過係数を有すると、 通常の使用 環境下において実質的に窒素分子を遮断することができ、 通常、 その他の気体分 子をも効果的に遮断するガス遮断性を有することができる。 このように、 PTF Eホモポリマー及び/又は変性 P T F Εからなる樹脂成形体であり、 窒素に対す る遮断性に限られないガス遮断性を有し、 25°Cにおける 0. 2MP aの窒素を 用いて測定した場合に上記範囲内の窒素透過係数を有するものは、 上記樹脂成形 体 (5) である。 上記樹脂成形体 (5) は、 例えば、 気体との接触が好ましくな いものを覆うこと等により、 気体との接触を防止することができる。 When the resin molded article (5) has a nitrogen permeability coefficient within the above range, it can substantially block nitrogen molecules under a normal use environment, and usually effectively blocks other gas molecules. It can have a gas barrier property for blocking. Thus, the PTF EResin molded body made of homopolymer and / or modified PTF II.It has gas barrier properties that are not limited to nitrogen barrier properties and is measured using 0.2 MPa nitrogen at 25 ° C. The resin molded article having the nitrogen permeability coefficient in the above range is the resin molded article (5). The resin molded body (5) can prevent contact with gas by, for example, covering an object that is not preferable to contact with gas.
上記窒素透過係数としては、 好ましい上限は 6. 4 X 10— 8 (cm3 ■ cm) / (cm2 · s e c · MP a) 、 より好ましい上限は 6. O X 10— 8 (cm3 · cm) / (cm2 - s e c · MP a) 、 更に好ましい上限は 5. 0 X 10— 8 (c m3 · cm) / (cm2 · s e c ■ MP a) である。 上記窒素透過係数は、 上記 範囲内であれば、 実用上充分な窒素遮断性を有する点から、 1. 0 X 10—9 ( cm3 ' cm) / (cm2 - s e c · MP a) 以上であってもよく、 更に 1. 0 X 10— 8 (cm3 - cm) / (cm2 - s e c - MP a ) 以上であってもよい。 本明細書において、 上記 「窒素透過係数」 とは、 次のガス透過係数の求め方に より得られる値を意味する。 即ち、 上記樹脂成形体 (5) 等の測定試料を境界膜 として仕切られた二つの密閉された空間の一方に測定気体を入れて大気圧を超え る圧力に加圧し、 もう一方の密閉空間に空気を入れて大気圧に保つようにして差 圧を設け、 大気圧側に透過してきた気体量を測定し、 測定試料の厚み 1 cm当り の透過量に換算する。 本明細書では、 加圧式ガス透過測定機 (商品名: Ga s p e rm— 100、 日本分光社製) を用い、 窒素を測定気体とし、 差圧を 0. 2M P aにして測定した気体量を使用する。 As the nitrogen permeability coefficient, the preferred upper limit is 6. 4 X 10- 8 (cm 3 ■ cm) / (cm 2 · sec · MP a), a more preferred upper limit 6. OX 10- 8 (cm 3 · cm) / (cm 2 - sec · MP a), a still more preferred upper limit is 5. is 0 X 10- 8 (cm 3 · cm) / (cm 2 · sec ■ MP a). In - (sec · MP a cm 2 ) or more above the nitrogen permeability coefficient, is within the above range, from the viewpoint of having a practically sufficient nitrogen barrier properties, 1. 0 X 10- 9 (cm 3 'cm) / there may be a further 1. 0 X 10- 8 (cm 3 - cm) / may be (cm 2 - - sec MP a ) above. In the present specification, the above “nitrogen permeability coefficient” means a value obtained by the following method of obtaining a gas permeability coefficient. That is, a measurement gas is introduced into one of two sealed spaces partitioned by using a measurement sample such as the resin molded body (5) as a boundary film, and is pressurized to a pressure exceeding atmospheric pressure. A differential pressure is established by keeping air at atmospheric pressure, and the amount of gas that has permeated to the atmospheric pressure side is measured and converted to the amount permeated per 1 cm thickness of the measurement sample. In this specification, using a pressurized gas permeation analyzer (trade name: Ga spe rm-100, manufactured by JASCO Corporation), the amount of gas measured using nitrogen as the measurement gas and a differential pressure of 0.2 MPa use.
上記樹脂成形体 (5) についての上記 PTFEホモポリマー及び/又は変性 P TFEは、 上記樹脂成形体 (1) について上述したものである。  The PTFE homopolymer and / or modified PTFE for the resin molded article (5) is as described above for the resin molded article (1).
第 7の本発明の樹脂成形体は、 PTFEホモポリマー及び/又は変性 P T F E からなるものであり、 比重が 2. 1以上であり、 算術平均粗さ 〔R a〕 が 0. 0 3 μπι以下であることを特徴とするものである。 本明細書において、 上記 「第 7 の本発明の樹脂成形体」 を、 樹脂成形体 (6) という。  The resin molded product according to the seventh aspect of the present invention comprises a PTFE homopolymer and / or a modified PTFE, has a specific gravity of 2.1 or more, and has an arithmetic average roughness (Ra) of 0.03 μπι or less. It is characterized by having. In the present specification, the “seventh resin molded article of the present invention” is referred to as a resin molded article (6).
上記樹脂成形体 (6) は、 比重が上記範囲内であると、 一般的に非多孔性であ り、 結晶化度が高いので、 バリア性を良好なものにすることができる。  When the specific gravity is within the above range, the resin molded article (6) is generally non-porous and has a high degree of crystallinity, so that good barrier properties can be obtained.
上記比重としては、 好ましい下限は 2. 14であり、 より好ましい下限は 2. 1 5である。 上記比重は、 上記範囲内であれば、 実用上充分な高結晶化度とバリ ァ性を有する点から、 2. 3未満であってもよく、 更に 2. 25以下であっても よい。 なお、 PTFEの比重は、 分子量が一定であり、 得られる成形体にボイド がない場合、 結晶化度に比例するとされ、 結晶化度 100%の場合、 単位格子か ら求めた比重は 2. 3であるとされる。 As the above specific gravity, a preferred lower limit is 2.14, and a more preferred lower limit is 2. One is five. If the specific gravity is within the above range, it may be less than 2.3, or may be 2.25 or less, from the viewpoint of having practically sufficient high crystallinity and barrier properties. The specific gravity of PTFE is considered to be proportional to the crystallinity when the molecular weight is constant and the obtained molded body has no voids.When the crystallinity is 100%, the specific gravity obtained from the unit cell is 2.3. It is assumed that
本明細書において、 上記 「比重」 は、 自動比重計 (商品名: 自動比重計 D— 1、 東洋精機製作所社製) を用いて得られる値を意味する。  In the present specification, the above “specific gravity” means a value obtained using an automatic hydrometer (trade name: automatic hydrometer D-1, manufactured by Toyo Seiki Seisaku-sho, Ltd.).
上記樹脂成形体 (6) は、 上記範囲内の算術平均粗さ 〔R a〕 を有するので、 表面平滑性に優れる。 このような表面平滑性は、 例えば成形後における切削等の 表面処理によっては得ることができない。 上記樹脂成形体 (6) の表面平滑性は、 後述の樹脂成形体の製造方法において延伸する場合、 特に優れ、 この場合、 延伸 により上記樹脂成形体 (6) の表面上の凹凸が平均化されることによるものと考 えられる。  The resin molded body (6) has an arithmetic average roughness [R a] within the above range, and thus has excellent surface smoothness. Such surface smoothness cannot be obtained by surface treatment such as cutting after molding. The surface smoothness of the resin molded product (6) is particularly excellent when stretched in the method for producing a resin molded product described below. In this case, the stretching makes the unevenness on the surface of the resin molded product (6) averaged. It is thought to be due to
上記算術平均粗さとしては、 好ましい上限は 0. 0 である。 上記算術平 均粗さは、 上記範囲内であれば、 実用上充分な表面平滑性を有する点から、 0. 0001 m以上であってもよく、 更に 0. 00 1 /zm以上であってもよい。 よ り好ましい上限は、 0. 01 5 μπιである。 本明細書において、 上記 「算術平均 粗さ」 は、 J I S B 0601に従い、 表面粗さ計測器 (商品名:表面粗さ測 定機 SV - 624、 ミツトヨ社製) を用いて測定することにより得られる値を意 味する。  A preferable upper limit of the arithmetic average roughness is 0.0. If the arithmetic average roughness is within the above range, it may be 0.0001 m or more, and even 0.001 / zm or more, from the viewpoint of having practically sufficient surface smoothness. Good. A more preferred upper limit is 0.015 μπι. In the present specification, the “arithmetic mean roughness” is obtained by measuring using a surface roughness measuring instrument (trade name: Surface roughness measuring instrument SV-624, manufactured by Mitutoyo Corporation) in accordance with JISB0601. Mean value.
上記 P T F Eホモポリマー及び/又は変性 P T F Eは、 上記樹脂成形体 ( 1 ) について上述したものと同様であり、 上述のように比重は結晶化度に比例すると される。 これらの PTFEは、 上述のように重合過程において結晶化が進み、 ま た、 一般に高分子量となるので、 重合により比重の高いポリマーとして得られる 力 従来の成形方法では、 焼成により一旦結晶を融解し冷却時に新たに結晶化す る際に高い結晶化度を得ることができないので、 比重が小さくなる。 上記樹脂成 形体 (6) では、 後述の樹脂成形体の製造方法により高い結晶化度を有するので、 上記範囲内のように高い比重を有することができる。  The PTFE homopolymer and / or the modified PTFE are the same as those described above for the resin molded article (1), and the specific gravity is proportional to the crystallinity as described above. As described above, these PTFEs undergo crystallization during the polymerization process, and generally have a high molecular weight, so that a polymer having a high specific gravity can be obtained by polymerization.In the conventional molding method, the crystals are once melted by firing. Since a high degree of crystallinity cannot be obtained when newly crystallizing during cooling, the specific gravity is reduced. Since the resin molded article (6) has a high degree of crystallinity by the method for producing a resin molded article described later, it can have a high specific gravity within the above range.
本発明の樹脂成形体は、 フィルム状であることが好ましい。 上記フィルム状の 樹脂成形体は、 薄膜であればどのような形状のものであってもよい。 上記フィル ム状の樹脂成形体の厚みとしては、 好ましい上限は 5 mm, より好ましい上限は 3 mmであり、 更に好ましい上限は l mmであり、 好ましい下限は 0 . 0 0 1 m m、 より好ましい下限は 0 . 0 1 mmである。 上記フィルム状の樹脂成形体は、 後述のチューブ状に成形したものを切開してシート状に広げたものであってもよ い。 本発明の樹脂成形体は、 フィルム状のものである場合、 後述の樹脂成形体の 製造方法において延伸により賦形したものであることが好ましい。 The resin molded article of the present invention is preferably in the form of a film. Film-like The resin molded article may have any shape as long as it is a thin film. As the thickness of the film-shaped resin molded body, a preferable upper limit is 5 mm, a more preferable upper limit is 3 mm, a more preferable upper limit is 1 mm, a preferable lower limit is 0.001 mm, and a more preferable lower limit. Is 0.01 mm. The film-shaped resin molded product may be a tube-shaped product described below, which is cut out and spread into a sheet shape. When the resin molded article of the present invention is in the form of a film, it is preferable that the resin molded article be shaped by stretching in the method for producing a resin molded article described below.
本発明の樹脂成形体は、 チューブ状であり、 成形品断面形状の外周長さが 1 5 O mm以上であることが好ましい。 本発明の樹脂成形体は、 このように大口径の チューブであっても、 上述の範囲内のように高い結晶化度と透明性どを容易に得 ることができる。 上記外周長さは、 上記範囲内であれば、 既存の成形装置を用い る場合、 温度むら等の不都合を回避するため、 実用上 1 5 m以下であってよく、 好ましくは 1 O m以下であり、 更に好ましくは 5 m以下である。 このような形状 と大きさを有する本発明の樹脂成形体は、 後述の樹脂成形体の製造方法において 延伸により賦形することにより得たものであることが好ましい。  The resin molded product of the present invention is preferably in the form of a tube, and the outer peripheral length of the cross-sectional shape of the molded product is preferably 15 Omm or more. The resin molded article of the present invention can easily obtain a high degree of crystallinity and transparency within the above-mentioned range even with such a large-diameter tube. The outer peripheral length may be practically 15 m or less, preferably 1 Om or less, in order to avoid inconveniences such as temperature unevenness when using an existing molding apparatus within the above range. And more preferably 5 m or less. The resin molded article of the present invention having such a shape and size is preferably obtained by shaping by stretching in a method for producing a resin molded article described later.
上記チューブ状は、 筒形とも称され、 中空である。 本明細書において、 上記 「 筒形」 は、 長手方向軸を有し、 上記長手軸方向に対して垂直な断面が上記長手方 向軸の何れの箇所においても実質的に同じ図形であるものを意味する。 上記長手 方向軸は、 筒形の中心を通過する軸である。 本明細書において、 上記断面として 本発明の樹脂成形体におけるものを 「成形品断面形状」 という。 なお、 これらの 「筒形」 、 「長手方向軸」 、 「成形品断面形状」 及び 「成形品断面形状の外周長 さ」 は、 第 1の本発明におけるものと同様の概念である。  The above-mentioned tubular shape is also called a tubular shape, and is hollow. In the present specification, the “cylindrical shape” refers to a shape having a longitudinal axis, and a cross section perpendicular to the longitudinal axis direction being substantially the same figure at any point of the longitudinal axis. means. The longitudinal axis is an axis passing through the center of the cylinder. In the present specification, the above-mentioned cross section in the resin molded article of the present invention is referred to as “molded product cross-sectional shape”. Note that these “cylindrical shape”, “longitudinal axis”, “cross-sectional shape of molded product”, and “outer peripheral length of cross-sectional shape of molded product” are concepts similar to those in the first present invention.
上記成形品断面形状は、 通常、 後述の被成形体 (I I ) の汎用性と、 後述の延 伸、 特にブロー方式による延伸を均一に行うことが容易である点から、 円形が好 ましい。 上記成形品断面形状が円形である場合、 本発明の樹脂成形体は、 円筒で ある。  The cross-sectional shape of the above-mentioned molded product is generally preferably a circle because the versatility of the molded article (II) described later and the extension described later, particularly the stretching by the blow method, can be easily performed uniformly. When the cross-sectional shape of the molded product is circular, the resin molded product of the present invention is a cylinder.
上記成形品断面形状の外周長さは、 上述のように 1 5 0 mm以上であることが 好ましく、 このように比較的大きなサイズを有する本発明の樹脂成形体は、 後述 の樹脂成形体の製造方法において延伸、 特にブロー方式による延伸により賦形す ることにより、 容易に得ることができ、 後述のように樹脂中に非晶部と微量の融 解していない結晶部とが混在している状態で延伸することが好ましい。 The outer peripheral length of the cross-sectional shape of the molded product is preferably 150 mm or more as described above, and the resin molded product of the present invention having a relatively large size is manufactured as described below. Forming by stretching in the method, especially by the blow method Thus, it is preferable to stretch the film in a state where an amorphous portion and a trace amount of unmelted crystal portion are mixed in the resin as described later.
本発明の樹脂成形体 (1) 、 樹脂成形体 (2) 、 樹脂成形体 (3) 、 樹脂成形 体 (4) 、 樹脂成形体 (5) 及び樹脂成形体 (6) は、 それぞれについて上述し た樹脂からなるものである。 これらの樹脂成形体の製造方法は、 この樹脂からな る被成形体 (I I) を、 上記樹脂の結晶融解開始温度以上の温度にして延伸によ り賦形を行い、 次いで冷却固化を行うことよりなる方法である。 この方法として は、 例えば上記樹脂が PTFEである場合、 上述の被成形体 (I) に対して用い た方法と同様の方法を用いることができる。  The resin molded product (1), the resin molded product (2), the resin molded product (3), the resin molded product (4), the resin molded product (5) and the resin molded product (6) of the present invention are described above. It is made of resin. The method for producing these resin molded articles is that the molded article (II) made of this resin is shaped by stretching at a temperature equal to or higher than the crystal melting start temperature of the resin, and then cooled and solidified. It is a method consisting of As the method, for example, when the resin is PTFE, the same method as the method used for the above-mentioned molded article (I) can be used.
本明細書において、 上記 「被成形体 (1 1) 」 とは、 上記賦形を行う対象とな る成形体を意味する。 上記被成形体 (I I ) を得る方法としては特に限定されず、 例えば、 従来公知の方法を用いることができる。 上記被成形体 (I I) は、 PT FEからなるものである場合、 上述の被成形体 (I) を得た方法と同様の方法を 用いることができ、 ペースト押出成形により得られたものが好ましく、 焼成した ものであってもよく、 焼成していないものであってもよい。  In the present specification, the “molded object (11)” means a molded object on which the shaping is performed. The method for obtaining the molded object (II) is not particularly limited, and for example, a conventionally known method can be used. When the molded object (II) is made of PTFE, the same method as that for obtaining the molded object (I) described above can be used, and the one obtained by paste extrusion molding is preferable. It may be fired or unfired.
上記被成形体 (I I) の形状としては特に限定されないが、 上記賦形を後述の ブロー方式による延伸により行う場合、 延伸効率が良い点から、 チューブ状の中 空物が好ましい。 上記チューブ状は、 本発明の樹脂成形体について上述したチュ ーブ状と同様の形状である。 上記断面の形状は、 汎用性がある点から、 円形が好 ましい。  The shape of the molded article (II) is not particularly limited, but when the shaping is performed by a blow method described later, a tubular hollow material is preferred from the viewpoint of good stretching efficiency. The tube shape is the same as the tube shape described above for the resin molded article of the present invention. The shape of the cross section is preferably circular because of its versatility.
上記賦形の方法としては、 結晶化度と透明性がともに高い成形体を得やすい点 から、 上記被成形体 (I I) を延伸する方法が好ましい。  As a method of the shaping, a method of stretching the molded object (II) is preferable because a molded article having both high crystallinity and high transparency is easily obtained.
上記冷却固化は、 上記結晶融解開始温度よりも低い温度まで冷却することによ り行うことができる。  The cooling and solidification can be performed by cooling to a temperature lower than the crystal melting start temperature.
上記賦形は、 樹脂の結晶融解開始温度以上の温度で行う。 この範囲内の温度で あると、 多孔化を防止して結晶化度の高い樹脂成形体を得ることができる。 例え ば、 結晶部と非晶部とが混在する樹脂からなる被成形体 (I I) を延伸する場合、 結晶部が延伸されると成形体は多孔化すると考えられるが、 上記範囲内の温度で あると、 結晶部が融解して非晶部に変化していくので結晶部の存在率を低減して 非晶部の存在率を増加させることができ、 結晶部が延伸し始める前に、 弾性率の 低い非晶部で優先的に延伸させ、 多孔化させることなく被成形体 (I I) 全体と しての延伸による変形量を高めることができるものと考えられる。 また、 高温で あるほど、 軟化により非晶部の延伸による変形量も増大する。 The shaping is performed at a temperature equal to or higher than the crystal melting start temperature of the resin. When the temperature is within this range, it is possible to prevent porosity and obtain a resin molded body having a high degree of crystallinity. For example, when a molded body (II) composed of a resin in which a crystal part and an amorphous part are mixed is stretched, it is considered that the molded body becomes porous when the crystal part is stretched. If there is, the crystal part melts and changes into an amorphous part, so the existence ratio of the crystal part is reduced. It is possible to increase the abundance ratio of the amorphous part. Before the crystal part starts to be stretched, it is preferentially stretched in the amorphous part having a low modulus of elasticity, and the whole body (II) is formed without making it porous. It is considered that the amount of deformation caused by the stretching can be increased. Also, the higher the temperature, the greater the amount of deformation due to stretching of the amorphous part due to softening.
上記賦形は、 樹脂の結晶融解開始温度未満の温度で行うと、 結晶部の存在率を 低減することができず、 被成形体 (I I) 全体としての延伸による変形量が大き くなる前に結晶部の延伸が始まり、 多孔化が起こってしまう。 例えば PTFEの 結晶融解開始温度未満の温度である場合、 結晶部では弾性率が高く堅いことから、 延伸によって粒子は配置を変えにくいので粒子間距離が増大することとなり、 こ の距離の増大に伴って粒子間の絡み部分が繊維状に引き出され、 全体的に微細な 孔のあいた多孔体になる。 この多孔体は、 多孔化により増加した空気層と樹脂と の間で光の乱反射が増大するので白濁して透明性が低くなり、 微細な孔が空いて いるのでバリア性が低下する。 このような多孔体は、 従来、 PTFEの多孔膜と して知られているものである。  If the shaping is performed at a temperature lower than the crystal melting onset temperature of the resin, the abundance of crystal parts cannot be reduced, and before the deformation of the molded body (II) due to stretching as a whole increases. The elongation of the crystal part starts, causing porosity. For example, when the temperature is lower than the crystal melting start temperature of PTFE, since the crystal part has a high elastic modulus and is hard, it is difficult to change the arrangement of the particles by stretching, so that the distance between the particles increases, and the distance increases. As a result, the entangled portion between the particles is drawn out into a fibrous form, and the whole becomes a porous body having fine pores. This porous body increases the irregular reflection of light between the air layer and the resin, which is increased by the porosity, so that the porous body becomes cloudy and has low transparency, and the fine pores are formed, so that the barrier property is deteriorated. Such a porous body is conventionally known as a porous PTFE membrane.
上記賦形は、 被成形体 (I I) 中の結晶が完全に溶融した完全溶融状態で行つ てもよいが、 被成形体 (I I) における厚みや強度の不均一に起因するような局 部的な伸びが延伸により起こる場合は、 融解していない結晶部をわずかでも残存 させた状態で行うことが好ましい。 融解していない結晶部を残存させることによ り、 被成形体 (I I) 全体に延伸のための力が伝達されるので、 局部的な延伸を 防止することができる。  The shaping may be performed in a completely melted state in which the crystals in the molded body (II) are completely melted, but may be locally formed due to uneven thickness and strength of the molded body (II). In the case where the elongation is caused by stretching, it is preferable that the unmelted crystal part is left in a small amount. By leaving the unmelted crystal part, the force for stretching is transmitted to the whole molded object (II), so that local stretching can be prevented.
従って、 上記局部的な伸びは、 例えば、 後述のブロー方式を用いる場合に生じ やすいが、 延伸を行う延伸温度の上限値として融解していない結晶部が被成形体 (I I) に存在している温度を選択することにより、 局部的な延伸を防止し、 均 一な成形品を得ることができる。 ·  Therefore, the above-described local elongation is likely to occur when, for example, a blow method described later is used, but an unmelted crystal part exists in the molded body (II) as the upper limit of the stretching temperature at which the stretching is performed. By selecting the temperature, local stretching can be prevented and a uniform molded article can be obtained. ·
上記結晶融解開始温度は、 被成形体 (I I) について示差走査熱量計 (DSC ) を用いて測定することにより容易に判断することができる。 結晶融解開始温度 は、 DSCによる測定を、 被成形体 (I I) の温度を上昇させながら行うか又は 下降させながら行うかにより、 異なる。 結晶融解開始温度は、 被成形体 (I I) を昇温する場合、 吸熱により得られる曲線がベースラインから離れて下がり始め る温度、 即ち、 結晶が融解を始めるために融解熱を必要とし始める温度であり、 被成形体 (I I ) を降温する場合、 放熱により得られる曲線が降下してきてベー スラインに達して一致する温度、 即ち、 結晶化による放熱が終了する温度である。 結晶融解開始温度は、 樹脂の種類によっても異なる。 The crystal melting onset temperature can be easily determined by measuring the molded body (II) using a differential scanning calorimeter (DSC). The crystal melting onset temperature differs depending on whether the DSC measurement is performed while increasing or decreasing the temperature of the molded body (II). The crystal melting onset temperature is such that when the temperature of the molded body (II) is increased, the curve obtained by endotherm begins to fall away from the baseline. This is the temperature at which the crystal begins to require heat of fusion to begin melting. When the temperature of the molded body (II) is lowered, the curve obtained by heat radiation falls and reaches the base line, where the temperature matches. That is, it is the temperature at which the heat release by crystallization ends. The crystal melting onset temperature differs depending on the type of resin.
被成形体 (I I ) 中に融解していない結晶部が存在するか否かは、 被成形体 ( I ) について用いた D S Cにより結晶融解割合を求める方法と同様の方法により 容易に判断することができる。  Whether or not there is an unmelted crystal part in the green body (II) can be easily determined by the same method as the method for obtaining the crystal melting ratio by DSC used for the green body (I). it can.
上記延伸の方法としては、 一軸延伸、 二軸延伸のどちらでも可能であるが、 一軸 延伸では延伸方向と直角の方向にサイズが減少するので、 大きなサイズの成形品 を得にくい点から、 延伸方向と直角の方向に収縮しないように拘束を加えた一軸 延伸が好ましい。 このような一軸延伸は、 便宜的に 「セミニ軸延伸」 と称する。 上記延伸の方法としては、 二軸延伸も好ましく用いられる。 As the stretching method, either uniaxial stretching or biaxial stretching is possible.However, in uniaxial stretching, the size decreases in a direction perpendicular to the stretching direction. Preferably, uniaxial stretching is performed in which a constraint is applied so as not to shrink in a direction perpendicular to the direction. Such uniaxial stretching is conveniently referred to as "semini-axial stretching". As the stretching method, biaxial stretching is also preferably used.
上記延伸における延伸方式としては特に限定されず、 例えば、 ロール延伸機、 テンター等を用いた機械式、 圧縮エアー等を用いたプロ一方式等が挙げられる。 上記延伸方式としては機械式でもブロー方式でも可能であるが、 延伸温度が高温 であるので、 テンターを用いる場合、 機械の焼きつき、 被成形体 (I I ) の軟ィ匕 によるチャック部からの切れ、 全体が把持されないための延伸ムラが生じること があり、 ロール延伸機等を用いるロール式の場合、 一軸延伸物しか得ることがで きないので、 これらの不都合が生じないブロー方式が好ましい。  The stretching method in the stretching is not particularly limited, and examples thereof include a mechanical method using a roll stretching machine, a tenter and the like, and a professional method using compressed air and the like. The stretching method may be a mechanical method or a blow method. However, since the stretching temperature is high, when a tenter is used, the machine is seized and the molded body (II) is cut off from the chuck portion due to softening. In some cases, stretching unevenness may occur because the entire body is not gripped. In the case of a roll type using a roll stretching machine or the like, only a uniaxially stretched product can be obtained. Therefore, a blow method that does not cause these inconveniences is preferable.
上記樹脂成形体の製造方法により得られる本発明の樹脂成形体は、 上述のよう に結晶化度、 透明性及びバリア性に優れている。 本発明の樹脂成形体がこのよう に有利な効果を奏する機構としては明確ではないが、 次のように考えられる。 即ち、 上記樹脂成形体の製造方法において例えば延伸を行う場合、 被成形体 (I I ) は、 延伸前において、 樹脂からなる複数の粒子が積層してある程度の厚みを 有しているが、 延伸により、 この厚みが延伸方向に減少していく。 延伸は、 弹性 率が高い結晶部に先立ち、 弾性率が低い非晶部において開始され、 非晶部におい て積層していた個々の粒子は、 延伸に伴い延伸方向に順次スライドして平坦に並 んでいき、 ポイドを埋めながら密に詰まる形で配向して緻密化する。 このスライ ドにおいて、 上記個々の粒子は、 延伸前における粒子サイズよりも細分化した大 5316 The resin molded article of the present invention obtained by the method for producing a resin molded article has excellent crystallinity, transparency, and barrier properties as described above. Although the mechanism by which the resin molded article of the present invention exhibits such advantageous effects is not clear, it is considered as follows. That is, when, for example, stretching is performed in the method for producing a resin molded article, the molded article (II) has a certain thickness by laminating a plurality of resin particles before stretching. However, this thickness decreases in the stretching direction. Stretching is started in the amorphous part having a low elastic modulus prior to the crystal part having a high modulus, and the individual particles stacked in the amorphous part are slid in the stretching direction sequentially as the part is stretched to be flat. While filling the poid, it is oriented and densely packed. In this slide, each of the individual particles is larger than the particle size before stretching. 5316
35 35
きさで動いていき、 例えば、 粒子径約 5 0 0 /x m程度の 2次粒子の大きさではな く、 粒子径 2 3 0 n m程度の 1次粒子のサイズで動いていく。 更に 1次粒子から 分子鎖が引き出される (繊維化) ことにより、 分子鎖レベルでの移動も行われる ことで緻密化していく。 この緻密化した状態では、 分子鎖間の距離が近接してお り、 結晶状態が形成される。 この結晶状態を維持したまま冷却固化するので、 本 発明の樹脂成形体は、 高い結晶化度を有するものと考えられる。 特に P T F Eの 場合、 溶融粘度が高く、 応力緩和時間が極めて長いので、 冷却固化する間、 結晶 状態の保存は良好であり、 結晶化度を極めて高くすることができる。 For example, the particles move not at the size of the secondary particles having a particle diameter of about 500 / xm but at the size of the primary particles having a particle diameter of about 230 nm. Furthermore, the molecular chains are extracted from the primary particles (fibrillation), so that movement at the molecular chain level is also performed, so that the particles become denser. In this densified state, the distance between the molecular chains is close and a crystalline state is formed. Since the resin is cooled and solidified while maintaining this crystalline state, the resin molded article of the present invention is considered to have a high degree of crystallinity. In particular, in the case of PTFE, the melt viscosity is high, and the stress relaxation time is extremely long. Therefore, during cooling and solidification, the crystal state is well preserved, and the crystallinity can be extremely increased.
上記延伸により緻密化した状態は、 延伸方向及び上記延伸方向に水平な方向に、 幅をもった帯状のバンド構造が形成され、 このバンド構造は層をなしている。 こ の層に方向性があるので透過する光が散乱しにくく、 本発明の樹脂成形体は、 結 晶化度が高いにもかかわらず高い透明性を有することができる。 なお、 上記バン ド構造の層は、 得られる樹脂成形品の断面を T EM (透過型電子顕微鏡) のレブ リカ写真を観察することにより、 確認することができる。  In the state densified by the stretching, a band-shaped band structure having a width is formed in the stretching direction and in a direction parallel to the stretching direction, and the band structure forms a layer. Since this layer has directionality, transmitted light is hardly scattered, and the resin molded article of the present invention can have high transparency despite its high crystallinity. The layer having the above band structure can be confirmed by observing a cross section of the obtained resin molded product by a TEM (transmission electron microscope) photograph of a replica.
本発明の樹脂成形体は、 このように高結晶化された多層構造を有するので、 分 子鎖が緻密に配向したバンド構造が層状に積み重なって、 高いバリア性を示すこ とができる。  Since the resin molded article of the present invention has a highly crystallized multilayer structure as described above, band structures in which molecular chains are densely oriented are stacked in layers to exhibit high barrier properties.
本発明の樹脂成形体は、 また、 上記延伸により、 成形後の切削等の表面加工で は得られない表面平滑性を得ることができる。  The resin molded article of the present invention can also obtain surface smoothness that cannot be obtained by surface processing such as cutting after molding by the above stretching.
従って、 本発明の樹脂成形体は、 例えば、 水蒸気、 気体及び 又は薬剤と、 こ れらとの接触が望ましくないものとを遮断するための材料として用いることがで きる。 このような材料は、 例えば、 水蒸気、 気体及び/又は薬剤を覆い、 これら が外部に滲出することを防止するために用いてもよいし、 水蒸気、 気体及び/又 は薬剤との接触が望ましくないものを覆い、 外部に水蒸気、 気体及び 又は薬剤 が存在し得る環境下にあってもこれらとの接触を防止し得るように用いてもよい。 本発明の樹脂成形体は、 また、 透明性と表面平滑性にも優れるので、 これらを活 かした用途、 例えば視認性、 洗浄性等が要求される用途にも用いることができる。 本発明の樹脂成形体は、 更に、 用いる樹脂の種類によって、 樹脂本来の性質に基 づく機能をも付加することができ、 例えば P T F Eからなるものである場合、 P T F E本来の耐薬品性、 非粘着性、 離型性、 電気絶縁性、 高周波特性、 低摩擦係 数等の特性をも付加することができる。 このように、 本発明の樹脂成形体は、 多 くの分野で用途を拡大することができる。 Therefore, the resin molded article of the present invention can be used, for example, as a material for blocking water vapor, gas, and / or chemicals from those that are not desired to be in contact with them. Such materials may be used, for example, to cover water vapor, gases and / or drugs, to prevent them from seeping out, and to avoid contact with water vapor, gases, and / or drugs. It may be used to cover objects and prevent contact with water vapor, gas and / or chemicals even in an environment where they may be present. The resin molded article of the present invention is also excellent in transparency and surface smoothness, so that it can be used for applications utilizing these properties, for example, applications requiring visibility, washability, and the like. The resin molded article of the present invention can further add a function based on the inherent properties of the resin, depending on the type of resin used. Properties such as TFE's inherent chemical resistance, non-adhesion, release properties, electrical insulation, high-frequency characteristics, and low friction coefficient can be added. Thus, the use of the resin molded article of the present invention can be expanded in many fields.
本発明の樹脂成形体の用途としては、 バリア性を生かしたものとして、 薬剤、 食品等の容器その他の包装材;容器、 管等のライニング用途;低透過性のチュー ブ -ホース等が挙げられ、 バリア性とともに透明性をも生かしたものとして、 こ れらに加え、 エレクトロルミネッセンス素子又は太陽電池の保護膜;薬剤用バッ グ;ガス、 薬液等の採集、 保管、 搬送用容器等が挙げられ、 表面平滑性を生かし たものとして、 電子写真機器の画像形成部における定着部用や感光部用のベルト 等が挙げられる。 本発明の樹脂成形体は、 上述のように大きなサイズで得ること ができ、 画像形成部のベルト等にも好適である。  Examples of the application of the resin molded article of the present invention include those utilizing the barrier properties, such as containers for pharmaceuticals, foods, and other packaging materials; lining applications for containers and pipes; and low-permeability tubes and hoses. In addition to these materials, the protective film of an electroluminescent element or a solar cell; a bag for a drug; a container for collecting, storing, and transporting a gas, a chemical solution, and the like, as well as those that utilize transparency as well as a barrier property. A belt for a fixing unit or a photosensitive unit in an image forming unit of an electrophotographic apparatus may be used as a device utilizing the surface smoothness. The resin molded article of the present invention can be obtained in a large size as described above, and is suitable for a belt of an image forming section and the like.
第 8の本発明の大気中水分遮断用包装材料は、 上記樹脂成形体からなり、 被包 装物を覆うために用いられるものであることを特徴とするものである。  An eighth aspect of the present invention is directed to a packaging material for blocking moisture in the air, comprising the above-mentioned resin molded article, which is used for covering an object to be wrapped.
上記大気中水分遮断用包装材料は、 上記樹脂成形体からなるものであることか ら、 バリア性に優れるので水蒸気等の大気中水分との遮断を効果的に行い、 透明 性を有するので上記被包装物を視認することができ、 破損しにくく、 また、 各種 の気体及び/又は薬剤との遮断も可能である。  Since the above-mentioned packaging material for blocking moisture in the atmosphere is made of the above-mentioned resin molded product, it has excellent barrier properties and effectively blocks moisture in the atmosphere such as water vapor, and has transparency. The package can be visually recognized, is not easily damaged, and can be shielded from various gases and / or chemicals.
本明細書において、 上記 「被包装物」 は、 本発明の大気中水分遮断用包装材料 により覆われるものを意味する。 上記被包装物としては特に限定されず、 例えば、 薬剤、 食品、 エレクトロルミネッセンス素子、 太陽電池等が好適であり、 薬剤及 びエレクトロルミネッセンス素子が好ましい。  In the present specification, the above-mentioned "packaged object" means an object covered with the packaging material for blocking moisture in the air of the present invention. The package is not particularly limited, and for example, a drug, a food, an electroluminescent device, a solar cell, and the like are suitable, and a drug and an electroluminescent device are preferable.
上記大気中水分遮断用包装材料としては、 大気中水分との遮断性に優れる点か ら、 上記樹脂成形体が上述の含フッ素樹脂からなるものが好ましい。 この場合、 本発明の大気中水分遮断用包装材料は、 含フッ素樹脂が広範な種類の薬剤に対し て耐薬品性を有するので、 被包装物が各種薬剤、 酸性ガス等の反応性ガス等であ つても好適に用いられ、 用途を拡大することができる。 上記含フッ素樹脂として は、 P T F Eが好ましい。  As the packaging material for blocking moisture in the air, a material in which the resin molded body is made of the above-described fluorine-containing resin is preferable from the viewpoint of excellent barrier property against the moisture in the atmosphere. In this case, since the fluorine-containing resin of the packaging material for blocking moisture in the air of the present invention has chemical resistance to a wide variety of chemicals, the material to be packaged is made of various chemicals, reactive gas such as acidic gas, or the like. They are also suitably used, and their applications can be expanded. As the above-mentioned fluorine-containing resin, PTFE is preferable.
上記大気中水分遮断用包装材料の形状としては特に限定されないが、 大気中水 分との遮断性を高めるため、 上記被包装物を完全に覆うことができるものが好ま しく、 例えば、 上述のフィルム状、 チューブ状等であってもよい。 The shape of the packaging material for blocking moisture in the atmosphere is not particularly limited. However, a material that can completely cover the packaged object is preferable in order to enhance the barrier property against the moisture in the atmosphere. For example, it may be in the form of a film or a tube as described above.
上記大気中水分遮断用包装材料は、 上記被包装物との間に空隙を有するように 用いてもよいし、 上記被包装物に密着させて用いてもよい。 上記大気中水分遮断 用包装材料を上記被包装物に密着させて用いる場合、 上記被包装物上に接着剤等 を被覆し、 その上に上記大気中水分遮断用包装材料を接着させることにより密着 させてもよいし、 このような接着剤等を用いることなく上記大気中水分遮断用包 装材料を上記被包装物に直接密着させてもよい。  The packaging material for blocking moisture in the atmosphere may be used so as to have a gap between the packaging material and the packaging material, or may be used in close contact with the packaging product. When the packaging material for blocking moisture in the air is used in close contact with the package, the packaging material is coated with an adhesive or the like, and the packaging material for blocking the moisture in the atmosphere is bonded to the package. The packaging material for blocking moisture in the air may be directly adhered to the packaged object without using such an adhesive or the like.
第 9の本発明の薬剤遮断用包装材料は、 上記樹脂成形体からなるものであるこ とを特徴とするものである。  A ninth aspect of the present invention is directed to a medicine blocking packaging material comprising the above resin molded body.
上記薬剤遮断用包装材料は、 各種薬剤と、 この薬剤との接触が望ましくないも のとを遮断するために好適に用いられ、 例えば、 各種薬剤を覆い、 この薬剤が外 部に滲出することを防止するために用いてもよいし、 各種薬剤との接触が望まし くないものを覆い、 外部に各種薬剤が存在し得る環境下にあっても各種薬剤との 接触を防止し得るように用いてもよい。 上記薬剤遮断用包装材料は、 また、 薬剤 に対するバリア性を有するガラス等の他材と組み合わせて用いてもよく、 例えば、 ガラス容器の蓋、 ガラス容器内部の仕切り膜等として用いてもよい。  The above-mentioned medicine blocking packaging material is suitably used for blocking various medicines and those which are not desired to come into contact with the medicines. For example, they cover various medicines and prevent the medicines from seeping out. It may be used to prevent or prevent undesired contact with various drugs, and to prevent contact with various drugs even in an environment where various drugs can exist outside. You may. The packaging material for blocking medicines may be used in combination with other materials such as glass having a barrier property against medicines, and may be used, for example, as a lid of a glass container, a partition film inside a glass container, or the like.
上記薬剤遮断用包装材料は、 上記樹脂成形体からなるものであることによりバ リァ性に優れるので各種薬剤との遮断を効果的に行い、 透明性にも優れるので、 上記薬剤遮断用包装材料により覆ったものを視認することもでき、 破損しにくく、 更に水蒸気及び/又は各種の気体との遮断も可能である。 上記薬剤遮断用包装材 料は、 塩酸等の酸に対して用いることも可能である。  Since the above-mentioned medicine blocking packaging material is made of the above-mentioned resin molded article, it has excellent barrier properties, so that it effectively blocks various kinds of medicines, and also has excellent transparency. It is also possible to see what is covered, hard to break, and to block water vapor and / or various gases. The packaging material for blocking medicines can also be used for acids such as hydrochloric acid.
上記薬剤遮断用包装材料としては、 薬剤との遮断性に優れる点から、 上記樹脂 成形体が上述の含フッ素樹脂からなるものが好ましい。 この場合、 上記薬剤遮断 用包装材料は、 含フッ素樹脂が広範な種類の薬剤に対して耐薬品性を有するので、 多種類の薬剤に対する遮断材として用途を拡大することもできる。 上記含フッ素 樹脂としては、 バリア性と耐薬品性に優れる点から、 P T F Eが好ましい。 第 1 0の本発明のガス遮断用包装材料は、 上記樹脂成形体からなるものである ことを特徴とする。  As the above-mentioned packaging material for blocking medicine, it is preferable that the above-mentioned resin molded body is made of the above-mentioned fluororesin from the viewpoint of excellent barrier properties against medicine. In this case, since the fluorine-containing resin has chemical resistance to a wide variety of chemicals, the use of the above-mentioned chemical-blocking packaging material can be expanded as a blocking material for various types of chemicals. As the above-mentioned fluorine-containing resin, PTFE is preferable from the viewpoint of excellent barrier properties and chemical resistance. According to a tenth aspect of the present invention, there is provided a gas shielding packaging material comprising the above resin molded body.
上記ガス遮断用包装材料は、 各種気体と、 この気体との接触が望ましくないも のとを遮断するために好適に用いられ、 上述の本発明の薬剤遮断用包装材料と同 様に、 例えば、 各種ガスを覆うもの、 各種ガスとの接触が望ましくないものを覆 うもの等として用いてよく、 また、 気体に対するバリア性を有するガラス、 金属 等の他材と組み合わせて用いてもよい。 上記ガス遮断用包装材料は、 遮断性に優 れる点から、 窒素や酸素に対して用いることが好ましい。 In the above gas shielding packaging material, contact between various gases and this gas is undesirable. Like the above-mentioned medicine-blocking packaging material of the present invention, for example, as a material covering various gases, a material covering undesired contact with various gases, etc. It may be used, or may be used in combination with other materials such as glass and metal having a barrier property against gas. The gas shielding packaging material is preferably used for nitrogen and oxygen from the viewpoint of excellent barrier properties.
上記ガス遮断用包装材料は、 上記樹脂成形体からなるものであることによりバ リァ性に優れるので各種気体との遮断を効果的に行い、 各種気体とこの気体から 上記ガス遮断用包装材料により仕切られたものとの間に気圧等の圧力に差がある 場合であっても遮断性に優れている。 本発明のガス遮断用包装材料は、 更に透明 性にも優れるので、 上記ガス遮断用包装材料により覆ったものを視^ ·することも でき、 破損しにくく、 更に水蒸気及び/又は各種の薬剤との遮断も可能である。 上記ガス遮断用包装材料としては、 ガスとの遮断性に優れる点から、 上記樹脂 成形体が上述の含フッ素樹脂からなるものが好ましい。 この場合、 本発明のガス 遮断用包装材料は、 含フッ素樹脂が広範な種類の薬剤に対して耐薬品性を有する ので、 窒素等の不活性ガスに限られず、 例えば酸性ガス等の反応性ガスに対する 遮断材にも用途を拡大することができる。 上記含フッ素樹脂としては、 バリア性 と耐薬品性に優れる点から、 P T F Eが好ましい。  Since the gas blocking packaging material is made of the resin molded body and has excellent barrier properties, it effectively blocks various gases, and is separated from the various gases and this gas by the gas blocking packaging material. Even if there is a difference in pressure, such as air pressure, with the one that has been provided, it has excellent blocking properties. Since the gas-blocking packaging material of the present invention is further excellent in transparency, it is possible to see what is covered with the above-mentioned gas-blocking packaging material, it is difficult to break, and furthermore, it is difficult to break down with water vapor and / or various chemicals. Is also possible. As the gas shielding packaging material, the one in which the resin molded body is made of the above-described fluorine-containing resin is preferable from the viewpoint of excellent gas barrier properties. In this case, the gas blocking packaging material of the present invention is not limited to an inert gas such as nitrogen because the fluorine-containing resin has chemical resistance to a wide variety of chemicals. The application can be expanded to a barrier material for. As the above-mentioned fluororesin, PTFE is preferred from the viewpoint of excellent barrier properties and chemical resistance.
第 1 3の本発明の包装体は、 被包装物、 及び、 上記樹脂成形体からなる包装体 であって、 上記樹脂成形体は、 上記被包装物を覆うものであり、 上記被包装物と、 大気中水分、 薬剤及び Z又はガスとの接触を抑制するものであることを特徴とす るものである。  A package according to a thirteenth aspect of the present invention is an article to be packaged, and a package comprising the resin molded article, wherein the resin molded article covers the article to be packaged, and It is characterized by suppressing contact with atmospheric moisture, chemicals and Z or gas.
本明細書において、 上記 「大気中水分、 薬剤及びノ又はガスとの接触を抑制す る」 とは、 上述のバリア性を有することを意味する。 上記包装体は、 上記被包装 物と大気中水分との接触、 上記被包装物と薬剤との接触、 又は、 上記被包装物と ガスとの接触の何れかを抑制するものであればよく、 上記被包装物と、 大気中水 分及び薬剤、 大気中水分及びガス、 又は、 ガス及び薬剤との接触を抑制するもの であってもよく、 上記被包装物と、 大気中水分、 薬剤及びガスとの接触を抑制す るものであってもよい。 本発明の包装体において接触が抑制される薬剤又はガス としては、 1種若しくは 2種以上の薬剤、 又は、 1種若しくは 2種以上のガスで あってよい。 In the present specification, the phrase “suppresses contact with atmospheric moisture, a drug, and a gas or a gas” means having the above-described barrier properties. The package may be any as long as it suppresses any of contact between the package and the atmospheric moisture, contact between the package and the drug, or contact between the package and the gas. The packaged article may suppress the contact between the packaged article and the atmospheric water and the drug, the atmospheric moisture and the gas, or the gas and the drug, and the packaged article and the atmospheric moisture, the drug and the gas may be suppressed. The contact may be suppressed. The medicine or gas whose contact is suppressed in the package of the present invention is one or more kinds of medicines, or one or more kinds of gases. May be.
上記包装体における樹脂成形体としては、 本発明の樹脂成形体として上述した ものであれば特に限定されないが、 バリア性に優れる点から、 含フッ素樹脂から なるものが好ましく、 P T F Eからなるものがより好ましい。  The resin molded article in the package is not particularly limited as long as the resin molded article of the present invention is as described above, but is preferably made of a fluorine-containing resin, and more preferably made of PTFE from the viewpoint of excellent barrier properties. preferable.
上記被包装物としては特に限定されないが、 大気中水分、 薬剤及び Z又はガス との接触が望ましくないものである場合、 本発明の包装体のバリア性を効果的に 活かすことができる。 このような被包装物としては、 例えば、 第 8の本発明の大 気中水分遮断用包装材料における被包装物について上述したものと同様のものが 挙げられ、 薬剤及ぴエレク トロルミネッセンス素子が好ましい。  The package is not particularly limited, but when contact with atmospheric moisture, chemicals, and Z or gas is undesirable, the barrier properties of the package of the present invention can be effectively utilized. Examples of such a package include those similar to those described above for the package in the atmospheric moisture blocking packaging material of the eighth aspect of the present invention, and a drug and an electroluminescent element are preferable. .
上記包装体は、 上記被包装物と、 少なくとも大気中水分との接触を抑制するも のである場合、 例えば上記被包装物と、 上述の本発明の大気中水分遮断用包装材 料とからなるものであってよく、 2 5°Cにおける相対湿度 9 0 %での水蒸気透過 係数が 0. 0 2 ( g ■ mm) / (m2 - d a y) 以下であることが好ましい。 上 記水蒸気透過係数は、 上記樹脂成形体 (3) について上述したものと同様である。 上記包装体は、 上記被包装物と、 少なくとも薬剤との接触を抑制するものであ る場合、 例えば上記被包装物と、 上述の本発明の薬剤遮断用包装材料とからなる ものであってよく、 2 5°Cにおける 3 5重量%の塩酸の透過係数が 1. 8 X 1 0 一1 1 (g ■ c m) / (c m2 ·秒) 以下であることが好ましい。 上記塩酸の透過 係数は、 上記樹脂成形体 (4) について上述したものと同様である。 In the case where the package body suppresses contact between the packaged object and at least the moisture in the atmosphere, the package includes, for example, the packaged article and the packaging material for blocking atmospheric moisture of the present invention described above. Preferably, the water vapor transmission coefficient at 25 ° C. and a relative humidity of 90% is 0.02 (g (mm) / (m 2 -day) or less. The above water vapor transmission coefficient is the same as that described above for the resin molded article (3). In the case where the package body suppresses at least contact between the packaged object and a drug, the packaged body may be composed of, for example, the packaged object and the above-described drug blocking packaging material of the present invention. The permeation coefficient of 35% by weight hydrochloric acid at 25 ° C. is preferably 1.8 × 10 11 (g 1 cm) / (cm 2 · second) or less. The permeation coefficient of the hydrochloric acid is the same as that described above for the resin molded product (4).
上記包装体は、 上記被包装物と、 少なくともガスとの接触を抑制するものであ る場合、 例えば上記被包装物と、 上述の本発明のガス遮断用包装材料とからなる ものであってよく、 2 5°〇にぉける0. 2 MP aの窒素の透過係数が 6. 8 X 1 0一8 ( c m3 · c m) ノ ( cm2 - s e c ■ MP a ) 以下であることが好ましい。 上記窒素の透過係数は、 上記樹脂成形体 (5) について上述したものと同様であ る。 In the case where the package body suppresses contact between the package object and at least the gas, for example, the package body may include the package object and the above-described gas blocking packaging material of the present invention. It is preferable that the permeability coefficient of nitrogen at 0.2 MPa at 25 ° C. is 6.8 × 10 18 (cm 3 · cm) no (cm 2 -sec secMPa) or less. The nitrogen transmission coefficient is the same as that described above for the resin molded body (5).
第 1 1の本努明のベルト材料は、 上記樹脂成形体からなるものであって、 電子 写真機器における画像形成のための感光部に用いられるものであることを特徴と するものである。  The eleventh belt material of the present invention is made of the above resin molded body, and is characterized in that it is used for a photosensitive portion for forming an image in an electrophotographic apparatus.
本明細書において、 上記 「電子写真機器」 とは、 画像形成のために用いられる 機器を意味する。 上記電子写真機器としては特に限定されず、 例えば、 プリンタ 一、 ファクシミ リ、 コピー機、 写真印画装置等が挙げられる。 In the present specification, the “electrophotographic device” is used for image formation. Means equipment. The electrophotographic device is not particularly limited, and examples thereof include a printer, a facsimile, a copier, and a photographic printing device.
上記画像形成は、 トナー、 インク等を紙等の転写材に定着させ画像を形成する ものである。 上記電子写真機器は、 上記画像形成のために、 感光部と定着部とを 有している。  The image formation is to form an image by fixing toner, ink and the like to a transfer material such as paper. The electrophotographic device has a photosensitive unit and a fixing unit for forming the image.
上記感光部は、 光照射により、 荷電させたトナー粒子やインクを感光体ドラム 上の転写材上に載置するための装置であり、 感光体ドラムのほか、 現像ロール、 転写ローラー等の各種ロールを含む。 これらのドラム、 ロール類は、 表面平滑性、 非粘着性を有することが望ましい。  The photosensitive unit is a device for placing charged toner particles and ink on a transfer material on a photoconductor drum by light irradiation. In addition to the photoconductor drum, various rolls such as a developing roll and a transfer roller are provided. including. It is desirable that these drums and rolls have surface smoothness and non-adhesiveness.
第 1 2の本発明のもう 1つのベルト材料は、 上記樹脂成形体からなるものであ つて、 電子写真機器における画像形成のための定着部に用いられるものであるこ とを特徴とするものである。  Another belt material of the twelfth aspect of the present invention comprises the above-mentioned resin molded article, and is used for a fixing section for forming an image in an electrophotographic apparatus. .
上記電子写真機器と上記画像形成は、 上述と同様である。 上記定着部は、 上述 の感光部により転写材上に載置されたトナー、 インク等を、 転写材に定着させる ための装置であり、 通常、 転写材を挟持する定着用ロール及び加圧用ロールから なり、 ロールの代わりにベルトが用いられることもある。 これらのロールとベル トは、 表面平滑性、 非粘着性を有することが望ましい。  The electrophotographic device and the image formation are the same as described above. The fixing unit is a device for fixing the toner, ink, and the like placed on the transfer material by the above-described photosensitive unit to the transfer material. Usually, the fixing unit includes a fixing roll and a pressure roll that sandwich the transfer material. In other words, a belt may be used instead of a roll. It is desirable that these rolls and belts have surface smoothness and non-adhesiveness.
本発明の上記感光部又は上記定着部に用いられるベルト材料は、 上記樹脂成形 体からなるものであることから、 表面平滑性と非粘着性に優れ、 大きなサイズの ものとして得ることができるので、 上記感光部及び上記定着部、 特に上述のドラ ム、 ロール、 ベルト類の表層部に好適に用いることができる。 本発明のベルト材 料は、 更に非粘着性と耐熱性にも優れる点から、 P T F Eからなるものが好まし い。 発明を実施するための最良の形態  Since the belt material used for the photosensitive portion or the fixing portion of the present invention is made of the resin molded body, the belt material is excellent in surface smoothness and non-adhesiveness, and can be obtained as a large size. It can be suitably used for the photosensitive section and the fixing section, particularly for the surface layer section of the drums, rolls and belts. The belt material of the present invention is preferably made of PTFE, since it is further excellent in non-adhesiveness and heat resistance. BEST MODE FOR CARRYING OUT THE INVENTION
以下に実施例を掲げて本 明を更に詳しく説明するが、 本発明はこれら実施例 のみに限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to only these Examples.
実施例 1  Example 1
ポリテトラフルォロエチレンファインパウダー ( F 3 0 2、 ダイキン工業社製、 パーフルォロアルキルとビュルエーテル変性 P T F E、 焼成後の結晶融解開始温 度約 270°C、 焼成後の 100 %結晶融解温度約 335°C) 100重量部に、 ァ イソパー E (ェクソン化学社製) 22重量部を混合し、 25°Cにて 24時間熟成 したものを円筒状に押し固め、 ラム式押出機 (シリンダー内径 9 Omm、 マンド レル外径 20 mm、 ダイ内径 21. 6 mm、 コァピン外径 16. 6 mm、 ダイ温 度 60°Cにして) を用いて円筒状に押し出した。 Polytetrafluoroethylene fine powder (F302, manufactured by Daikin Industries, Perfluoroalkyl and butyl ether-modified PTFE, Crystal melting onset temperature after firing about 270 ° C, 100% crystal melting temperature after firing about 335 ° C) 100 parts by weight of Isopar E (manufactured by Exxon Chemical Co., Ltd.) A mixture of 22 parts by weight and aged at 25 ° C for 24 hours are pressed into a cylinder and ram extruder (cylinder inner diameter 9 Omm, mandrel outer diameter 20 mm, die inner diameter 21.6 mm, core pin) (With an outer diameter of 16.6 mm and a die temperature of 60 ° C).
押出物をトンネル炉 (最終温度 390°C) で連続的に乾燥して焼成し、 外径 2 ' Omm, 肉厚 2. 5mmの PTFE円筒状物品を得た。 この円筒状物品を適切な 長さにカツトし、.一端を約 350°Cに加熱してフレアー状に広げてチューブ状被 成形体を得た。  The extrudate was continuously dried and fired in a tunnel furnace (final temperature: 390 ° C) to obtain a PTFE cylindrical article having an outer diameter of 2 'Omm and a wall thickness of 2.5mm. This cylindrical article was cut into an appropriate length, and one end was heated to about 350 ° C and spread into a flared shape to obtain a tubular shaped body.
次に、 図 1に模式的断面図にて示す金型を用いて本発明の成形品の製造方法を 実施した。 最初に、 被成形体のフレアー状に広げた部分を図 1の金型頭部 11に エアー継ぎ手 15を用いてねじによって固定することによって金型内に配置した。 この状態で、 金型頭部 11に內径 6 Ommの金型胴部 12と金型底部 1 3の合わ せ型の一方を組み合わせ、 エアー継ぎ手 15に銅管を接続した。  Next, the method for producing a molded article of the present invention was carried out using a mold shown in a schematic sectional view in FIG. First, the flared portion of the molded body was arranged in the mold by fixing it to the mold head 11 of FIG. 1 with screws using an air joint 15. In this state, the mold head 11 was combined with one of the combination molds of the mold body 12 having a diameter of 6 Omm and the mold bottom 13, and a copper pipe was connected to the air joint 15.
電気炉に固定するためのフランジを金型頭部 11にねじ止めによって固定し、 電気炉の扉に取り付けた棚に固定して扉を閉めた。 銅管の一端は、 扉に設けた穴 より外部に出しておいた。 銅管を通して金型のチューブ状被成形体内に熱電対を 挿入しておき、 チューブ状被成形体の温度をモニターした。  A flange for fixing to the electric furnace was fixed to the mold head 11 by screwing, fixed to a shelf attached to the door of the electric furnace, and the door was closed. One end of the copper tube was exposed outside through a hole in the door. A thermocouple was inserted into the tubular body of the mold through a copper tube, and the temperature of the tubular body was monitored.
この状態で電気炉を加熱し、 被成形体温度が 300 °Cになるまで加熱した。 3 00°Cに加熱した後、 電気炉の扉を開けて、 被成形体にテンションをかけた状態 で素早く金型底部 13の合わせ型の他方を取り付けねじにより固定した。 金型底 部 13には溝が彫ってあり、 この溝内に被成形体の端部を挟みこむことで被成形 体の一端が塞がれ被成形体内部の気密状態が確保され、 また、 被成形体にテンシ ヨンが加わり弛みの発生が防止されるようになる。 この状態で扉を閉め、 被成形 体の温度が 330 °Cとなるまで再加熱した。  In this state, the electric furnace was heated until the temperature of the compact reached 300 ° C. After heating to 300 ° C., the door of the electric furnace was opened, and the other of the mating dies at the mold bottom 13 was quickly fixed with mounting screws while tension was applied to the molded object. A groove is engraved in the mold bottom portion 13, and one end of the molded object is closed by sandwiching the end of the molded object in the groove, whereby an airtight state inside the molded object is secured. Tension is applied to the molded object, and the occurrence of loosening is prevented. In this state, the door was closed and the object was heated again until the temperature of the object reached 330 ° C.
330°Cに到達後、 熱電対を引き出し、 エアーコンプレッサーに接続された銅 管をエアー継ぎ手 15につながる銅管に取り付けた。 この状態でバルブを開き 0. 4MP aの圧縮エアーにより被成形体を加圧して差圧を作用させてブロー延伸成 形を行い、 金型の形状に PTF Eを賦形した。 加圧状態のまま扉を開き、 金型を 水冷した。 冷却後圧力を抜き金型を開き成形品を取り出し、 PTFEボトル状成 形品を得た。 実施例 2 After reaching 330 ° C, the thermocouple was pulled out and the copper tube connected to the air compressor was attached to the copper tube leading to the air joint 15. In this state, open the valve and press the molded body with compressed air of 0.4 MPa to apply a differential pressure to blow stretch. Forming was performed, and PTF E was shaped into the shape of the mold. The door was opened with the pressurized state, and the mold was water-cooled. After cooling, the pressure was released, the mold was opened, and the molded product was taken out to obtain a PTFE bottle-shaped molded product. Example 2
内径 13. 3mmのダイ、 外径 10. 3 mmのコアピンを用いて、 外径 12 mm、 肉厚 1. 5 mmの円筒形成形品を得た以外は実施例 1と同じ条件で P T F Eポト ル状成形品を得た。 実施例 3 · A PTFE bottle under the same conditions as in Example 1 except that a cylindrical molded product with an outer diameter of 12 mm and a wall thickness of 1.5 mm was obtained using a die with an inner diameter of 13.3 mm and a core pin with an outer diameter of 10.3 mm A shaped article was obtained. Example 3
被成形体の温度を、 330°Cに代えて、 310°Cに加熱してブロー延伸成形を 行った以外は実施例 1と同じ条件で P T F Eボトル状成形品を得た。 実施例 4  A PTF E bottle-shaped molded product was obtained under the same conditions as in Example 1 except that the temperature of the molded body was changed to 330 ° C. and the blow stretching was performed by heating to 310 ° C. Example 4
PTFEファインパウダー (F 104、 ダイキン工業社製、 TFE (テトラフ ルォロエチレン) 単独重合体、 焼成後の結晶融解開始温度約 275°C、 焼成後の 100%結晶融解温度約 333°C) を用いた以外は実施例 1と同じ条件で PTF Eボトル状成形品を得た。 比較例 1  Except using PTFE fine powder (F104, manufactured by Daikin Industries, TFE (tetrafluoroethylene) homopolymer, crystal melting onset temperature after firing about 275 ° C, 100% crystal melting temperature after firing about 333 ° C) In the same manner as in Example 1, a PTF E bottle-shaped molded product was obtained. Comparative Example 1
被成形体の温度を 310°Cに加熱してブロー延伸成形を行った以外は実施例 2 と同じ条件で P T F Eポトル状成形品を得た。 ボトル状成形品の胴部は白化して いた。 比較例 2  A PTF E pottle-shaped molded product was obtained under the same conditions as in Example 2, except that the temperature of the molded body was heated to 310 ° C. and blow stretching was performed. The body of the bottle-shaped product was whitened. Comparative Example 2
被成形体の温度を 350°Cにしてブロー延伸成形を行った以外は実施例 2と同 じ条件で PTFEボトル状成形品を得た。 成形は可能であつたが、 ボトル状成形 品の底部に折れ込みがあり部分的に延伸され偏肉が大きくなつていた。 実施例 5 . A PTFE bottle-shaped molded product was obtained under the same conditions as in Example 2 except that the temperature of the molded body was 350 ° C and blow stretching was performed. Although molding was possible, the bottom of the bottle-shaped molded product had a fold and was partially stretched, resulting in a large uneven thickness. Embodiment 5.
内径 2 1 . 6 mmのダイ、 外径 2 0 . 4 mmのコアピンを用いて得た外径 2 0 mm, 肉厚 0 . 6 mmの被成形体としての円筒形物品を、 図 3に断面図を模式的 に示す金型に固定して、 3 0 0 °Cに加熱した後、 金型底部 3 4に取り付けた可動 式アングル 3 5を用いてハンドバイスで締め付けることによって円筒形物品の端 部を固定した以外は実施例 1と同じ条件で P T F E円筒状成形品を得た。 比較例 3  Figure 3 shows a cross-section of a cylindrical article as an object with an outer diameter of 20 mm and a wall thickness of 0.6 mm obtained using a die with an inner diameter of 21.6 mm and a core pin with an outer diameter of 20.4 mm. After fixing to the mold shown schematically in the figure and heating to 300 ° C, the end of the cylindrical article is tightened by a hand vise using the movable angle 35 attached to the mold bottom 34. A PTFE cylindrical molded product was obtained under the same conditions as in Example 1 except that the portion was fixed. Comparative Example 3
被成形体の温度を 3 1 0 °Cに加熱してブロー延伸成形を行った以外は実施例 5 と同じ条件でブロー延伸成形を行った。 被成形体は破裂し、 成形品は得られなか つた。 比較例 4  Blow stretch molding was performed under the same conditions as in Example 5 except that the temperature of the molded body was heated to 310 ° C. to perform blow stretch molding. The molded object burst and no molded product was obtained. Comparative Example 4
被成形体の温度を 3 5 0 °Cに加熱してブロー延伸成形を行った以外は実施例 5 と同じ条件でブロー延伸成形を行つた。 被成形体は破裂し成形品は得られなかつ た。 実施例 6  Blow stretch molding was performed under the same conditions as in Example 5 except that the temperature of the molded body was heated to 350 ° C. to perform blow stretch molding. The molded body burst and no molded product was obtained. Example 6
金型として図 4に断面図を模式的に示す金型を用い、 被成形体として実施例 5 記載の外径 2 0 mm、 肉厚 0 . 6 mmのものを用いた以外は実施例 1と同じ条件 で P T F E成形体を得た。 比較例 5  Example 1 was the same as Example 1 except that the mold used was a mold whose cross-sectional view is schematically shown in FIG. 4 and the object to be molded was the one having an outer diameter of 20 mm and a wall thickness of 0.6 mm described in Example 5. A PTFE molded body was obtained under the same conditions. Comparative Example 5
被成形体の温度を 3 5 0 °Cに加熱してブロー延伸成形を行った以外は実施例 6 と同じ条件でプロ一延伸成形を行った。 成形は可能であつたが、 成形品の頭部と 底部に折れ込みがあり部分的に延伸され偏肉が大きくなっていた。 実施例 7  The professional stretch molding was performed under the same conditions as in Example 6, except that the temperature of the molded body was heated to 350 ° C. to perform blow stretch molding. Molding was possible, but the molded product had folds at the top and bottom, and was partially stretched, resulting in increased thickness deviation. Example 7
金型として図 2に断面図を模式的に示す金型を用い、 金型胴部 2 2の上部分の 内側の融着用スリーブ設置部 24に、 PTFEモールディングパウダー (Mi l 2、 ダイキン工業社製) の圧縮成形及びその後の焼成により得られた外径 58m m、 肉厚 9 mmのスリーブ状の融着部材を、 配置した。 As the mold, a mold whose cross section is schematically shown in FIG. 2 is used. A sleeve-shaped fusion member with an outer diameter of 58 mm and a wall thickness of 9 mm, obtained by compression molding of PTFE molding powder (Mil 2, manufactured by Daikin Industries, Ltd.) and subsequent sintering, is attached to the inner fusion sleeve installation part 24. Was placed.
この金型の内部に、 内径 33. 4mmのダイを、 外径 27. 4mmのコアピン を用いた以外は実施例 1と同じ条件で得た外径 30 mm, 肉厚 3 mmの被成形体 としての円筒状成形品を配置した以外は実施例 1と同じ条件で延伸してポトル状 成形品を得た。 得られた成形品の融着部材の部分を切削によりネジを形成し、 そ のネジに合うポリエチレン製の蓋を嵌め締め付けたが、 融着部材の剥離は起こら ず、 実用上問題のない程度まで融着されていた。  Inside this mold, a die having an inner diameter of 33.4 mm and a core having an outer diameter of 27.4 mm were used as a molded body having an outer diameter of 30 mm and a wall thickness of 3 mm obtained under the same conditions as in Example 1. This was stretched under the same conditions as in Example 1 except that the cylindrical molded product was placed to obtain a pottle-shaped molded product. A screw was formed by cutting the fused member part of the obtained molded product, and a polyethylene lid matching the screw was fitted and tightened.However, the fused member did not peel off, and to the extent that there was no practical problem. Had been fused.
上述の実施例及び比較例の条件及び結果等を、 上記式 (1) に基づいて測定し た、 得られた成形品の円筒状部分の偏肉度と共に表 1に示す。 尚、 延伸されない 以外は同じ熱履歴を受けた参照体の比重 (d J はいずれの場 でも 2. 14で めった。 Table 1 shows the conditions and results of the above-mentioned examples and comparative examples, together with the degree of wall thickness deviation of the cylindrical portion of the obtained molded product, measured based on the above equation (1). The specific gravity of the reference body which received the same thermal history except that it was not stretched (d J was 2.14 in any case).
t t
プロ一 結晶融 延伸 成形品 成形品 偏肉度 延伸前峰 延伸後肉厚 状 ¾ 延伸贩 解量 倍率 舰 比!: (%) (mm) imm) Pro-crystal melt-stretching Molded article Molded article Uneven thickness Depth before peak Thickness after stretching ¾ Stretching 贩 Decomposition ratio 舰 Ratio! : (%) (Mm) imm)
ΓΟ (%) (if) (mm) d b ΓΟ (%) (if) (mm) d b
最小 最大 最大  Min Max Max
上部 中部 下部 上部 中部  Upper Middle Lower Upper Middle
実施例 1 330 99 3 60 2.17 9.2 2.45 2.52 0.fi5 0.64 0.62 0.68 0.68 0.67 良好 実翻 2 330 99 5 60 2.19 26.7 1.44 1.51 0.13 0.16 0.13 0.17 0.17 0.17 良好Example 1 330 99 3 60 2.17 9.2 2.45 2.52 0.fi5 0.64 0.62 0.68 0.68 0.67 Good Actual translation 2 330 99 5 60 2.19 26.7 1.44 1.51 0.13 0.16 0.13 0.17 0.17 0.17 Good
¾¾Γ例 Q 310 20 60 2.17 12.4 2.45 2.62 0.62 0.63 0.61 0.68 0.G8 0.67 良好 実施例 4 330 99 3 60 2.17 13.9 2.38 2.65 0.69 0.68 0.67 0.79 0.78 0.77 良好 実施例 5 830 99 5 100 2.19 22.2 0.60 0.66 0.08 0.08 0.09 0.10 0.09 0.10 良好 雞例 6 330 99 6 120 2.20 40 0.04 0.04 0.05 0.06 0.06 0.06 良好 比較例 1 310 20 5 60 1.71 29.S 1.44 1.51 0.12 0.13 0.11 0.16 0.15 0.14 胴 ヒ 比較例 2 350 100 5 60 2.18 140.4 1.44 1.51 0.11 0.09 0.07 0.14 0.18 0.40 偏肉が大きい 赚例 3 310 20 5 0.60 0.66 破裂 (翻部 白化) 腺例 4 350 100 0.60 0.66 纖 (翻部 肉厚最小) 比棚 5 3fi0 100 6 120 2.18 188.2 0.01 0.02 0.01 0.13 0.10 0.33 偏肉が大きい ¾¾ΓExample Q 310 20 60 2.17 12.4 2.45 2.62 0.62 0.63 0.61 0.68 0.G8 0.67 Good Example 4 330 99 3 60 2.17 13.9 2.38 2.65 0.69 0.68 0.67 0.79 0.78 0.77 Good Example 5 830 99 5 100 2.19 22.2 0.60 0.66 0.08 0.08 0.09 0.10 0.09 0.10 good 雞 example 6 330 99 6 120 2.20 40 0.04 0.04 0.05 0.06 0.06 0.06 good comparative example 1 310 20 5 60 1.71 29.S 1.44 1.51 0.12 0.13 0.11 0.16 0.15 0.14 body comparative example 2 350 100 5 60 2.18 140.4 1.44 1.51 0.11 0.09 0.07 0.14 0.18 0.40 Large uneven thickness Example 3 310 20 5 0.60 0.66 Rupture (transformed whitening) Gland example 4 350 100 0.60 0.66 Fiber (transformed part minimum thickness) Comparative shelf 5 3fi0 100 6 120 2.18 188.2 0.01 0.02 0.01 0.13 0.10 0.33 Large uneven thickness
表 1から明らかなように、 本発明の成形品の製造方法では、 成形品の比重 ( d b) 力 延伸されない以外は同じ熱履歴を受けた参照体の比重 (dc) 以上であ り、 具体的には少なくとも 2. 1であり、 良好な成形品が得られる。 また、 成形 品の円筒状部分の偏肉度に関しても、 本発明に基づく成形品は向上した結果を示 しており、 本発明に基づけば、 向上した偏肉度を有する円筒状成形品を製造でき ることが判る。 製造例 1 As is clear from Table 1, in the method for producing a molded article of the present invention, the specific gravity (d b ) force of the molded article is not less than the specific gravity (d c ) of the reference body which has received the same heat history except that it is not stretched. Specifically, it is at least 2.1, and a good molded product can be obtained. In addition, the molded article based on the present invention also shows improved results with respect to the wall thickness unevenness of the cylindrical portion of the molded article. According to the present invention, a cylindrical molded article having an improved wall thickness unevenness is manufactured. You can see that it can be done. Production Example 1
P T F Eファインパウダー (商品名: F 302、 ダイキン工業社製、 乳化重合 系パーフルォロ (アルキルビニルエーテル) 変性 PTFE、 分子量: 60000 00、 焼成後の結晶融解開始温度:約 270°C、 焼成後の 100%結晶融解温度 :約 335°C) 100重量部に、 成形助剤としてアイソパー E (商品名、 ェクソ ン化学社製) 22重量部を混合し、 25°Cにて 24時間熟成したものを円筒状に 押し固め、 ラム式押出機を用いて円筒状に押し出した。 ラム式押出機は、 シリン ダー内径 90mm、 マンドレノレ外径 20 mni、 ダイ内径 2 1. 6mm、 コアピン 外径 20. 4mm ダイ温度 60 とした。  PTFE fine powder (trade name: F302, manufactured by Daikin Industries, Ltd., emulsion polymerization type perfluoro (alkyl vinyl ether) modified PTFE, molecular weight: 60000 00, crystal melting start temperature after firing: about 270 ° C, 100% crystal after firing (Melting temperature: about 335 ° C) 22 parts by weight of Isopar E (trade name, manufactured by Exxon Chemical Co., Ltd.) as a molding aid is mixed with 100 parts by weight, and aged at 25 ° C for 24 hours to form a cylinder. It was compacted and extruded into a cylindrical shape using a ram extruder. The ram extruder had a cylinder inner diameter of 90 mm, a mandrenole outer diameter of 20 mni, a die inner diameter of 21.6 mm, a core pin outer diameter of 20.4 mm, and a die temperature of 60.
最終温度が 420°Cのトンネル炉を用いて押出物を連続的に乾燥して焼成し、 外径 20mm、 肉厚 0. 6 mmの円筒状の被成形体 1を得た。 製造例 2  The extrudate was continuously dried and fired using a tunnel furnace having a final temperature of 420 ° C. to obtain a cylindrical molded body 1 having an outer diameter of 20 mm and a wall thickness of 0.6 mm. Production Example 2
ラム式押出機のコアピンの外径を 1 6. 6 mmにした以外は製造例 1と同じ条 件で外形 20mm、 肉厚 2. 5 mmの円筒状の被成形体 2を得た。 製造例 3  A cylindrical molded body 2 having an outer diameter of 20 mm and a wall thickness of 2.5 mm was obtained under the same conditions as in Production Example 1, except that the outer diameter of the core pin of the ram extruder was changed to 16.6 mm. Production Example 3
P T F Eファインパゥダー (商品名 : F 201、 ダイキン工業社製、 乳化重合 系クロ口トリフルォロエチレン変性 PT F E、 分子量: 6000000、 焼成後 の結晶融解開始温度:約 280°C、 焼成後の 1 00 %結晶融解温度:約 335°C ) を用いた以外は製造例 1と同じ条件で円筒状の被成形体 3を得た。 製造例 4 PTFE fine powder (trade name: F 201, manufactured by Daikin Industries, Ltd., emulsion polymerization system, trifluoroethylene-modified PT FE, molecular weight: 600000, crystal melting start temperature after firing: about 280 ° C, 1 after firing) A cylindrical molded object 3 was obtained under the same conditions as in Production Example 1 except that the melting temperature was 00% (about 335 ° C.). Production Example 4
P T F Eファインパウダー (商品名: F 1 0 4、 ダイキン工業社製、 乳化重合 系テトラフルォロエチレンホモポリマー、 分子量: 6 0 0 0 0 0 0、 焼成後の結 晶融解開始温度:約 2 7 5 °C、 焼成後の 1 0 0 %結晶融解温度:約 3 3 3 °C) を 用いた以外は製造例 1と同じ条件で円筒状の被成形体 4を得た。 実施例 8  PTFE fine powder (trade name: F104, manufactured by Daikin Industries, Ltd., emulsion polymerization type tetrafluoroethylene homopolymer, molecular weight: 600,000, crystal melting start temperature after firing: about 27) A cylindrical molded object 4 was obtained under the same conditions as in Production Example 1 except that 5 ° C. and a 100% crystal melting temperature after firing: about 33 ° C.) were used. Example 8
製造例 1により得た被成形体 1を、 長手方向軸に 3 5 0 mmの長さに力ットし、 —端を約 3 5 0 °Cに加熱してフレアー状に広げ、 図 7に模式的断面図にて示す金 型 7 1 (内径 8 0 mm、 長さ 2 0 0 mm) の内部に、 フレアー状に広げた部分を 金型頭部 7 2にエアー継ぎ手 7 5を用いてねじで固定することにより、 配置した。 次いで、 エアー継ぎ手 7 5に銅管 (図示せず) を接続し、 金型 7 1を電気炉 (図 示せず) にセットした。 上記銅管を通して金型 7 1内の被成形体 1に熱電対 (図 示せず) を挿入しておき、 被成形体 1の温度をモニターしながら、 電気炉を加熱 し、 被成形体温度が 3 0 0 °Cになるまで加熱した。 3 0 0 °Cに加熱した後、 金型 底部 7 3に取り付けた可動式アングル 7 4を用いてハンドバイス (図示せず) で 締め付けることによつて被成形体 1の端部を固定した。  The molded body 1 obtained in Production Example 1 was urged to a length of 350 mm on the longitudinal axis, and the end was heated to about 350 ° C and spread in a flared shape. Inside the mold 71 (diameter 80 mm, length 200 mm) shown in a schematic cross-sectional view, the flared part was screwed into the mold head 72 using the air joint 75. It was arranged by fixing with. Next, a copper tube (not shown) was connected to the air joint 75, and the mold 71 was set in an electric furnace (not shown). A thermocouple (not shown) is inserted into the molded object 1 in the mold 71 through the copper tube, and the electric furnace is heated while monitoring the temperature of the molded object 1. Heated to 300 ° C. After heating to 300 ° C., the end of the molded body 1 was fixed by tightening with a hand vise (not shown) using a movable angle 74 attached to the mold bottom 73.
その後、 被成形体 1の温度が 3 3 0 °Cとなるまで再加熱した。 3 3 0 °Cに到達 した後、 熱電対を引き出し、 エアーコンプレッサー (図示せず) に接続された銅 管 (図示せず) をエアー継ぎ手 7 5につながる銅管に取り付けた。 この状態でバ ルブ (図示せず) を開き 0 . 4 M P aの圧縮エアーにより被成形体 1を加圧して 差圧を作用させてブロー方式でセミニ軸延伸成形を行い、 金型の形状に賦形した。 その後、 加圧状態を保持したまま金型 7 1を水冷した。 冷却後圧力を抜き成形体 を取り出し、 P T F E延伸成形体を得た。  Thereafter, the object 1 was heated again until the temperature of the object 1 reached 330 ° C. After the temperature reached 330 ° C, the thermocouple was pulled out, and a copper tube (not shown) connected to an air compressor (not shown) was attached to the copper tube connected to the air joint 75. In this state, the valve (not shown) is opened and the molded object 1 is pressurized with compressed air of 0.4 MPa to apply a differential pressure to perform a semi-axial stretching process by a blow method to form a mold. Shaped. Thereafter, the mold 71 was water-cooled while maintaining the pressurized state. After cooling, the pressure was released and the molded product was taken out to obtain a PTF E stretched molded product.
得られた P T F E延伸成形体について、 厚みを計測し、 それぞれ上述の方法に より、 比重、 結晶化度、 ヘイズ値、 水蒸気透過係数、 窒素についてのガス透過係 数、 3 5重量 °/0塩酸についての薬液透過係数、 及び、 表面粗度として算術平均粗 さを求めた。 結果を表 2に示す。 実施例 9 The thickness of the obtained stretched PTFE molded article was measured, and the specific gravity, crystallinity, haze value, water vapor permeability coefficient, gas permeability coefficient for nitrogen, and 35 wt. The arithmetic mean roughness was determined as the chemical liquid permeability coefficient of and the surface roughness. Table 2 shows the results. Example 9
被成形体 1に代えて、 製造例 3により得た被成形体 3を用いた以外は実施例 8 と同じ条件で P T F E延伸成形体を得た。 実施例 1 0  A PTF E stretched molded article was obtained under the same conditions as in Example 8, except that the molded article 3 obtained in Production Example 3 was used instead of the molded article 1. Example 10
被成形体 1に代えて、 製造例 4により得た被成形体 4を用いた以外は実施例 8 と同じ条件で P T F E延伸成形体を得た。 実施例 1 1  A PTF E stretched molded article was obtained under the same conditions as in Example 8, except that the molded article 4 obtained in Production Example 4 was used instead of the molded article 1. Example 1 1
金型として図 8に示す金型 (內径 1 0 Omm、 長さ 30 Omm) 81を用い、 非成形体を長手方向軸に 450 mmに力ットした以外は実施例 8と同じ条件で P TFE延伸成形体を得た。 実施例 1 2  The mold shown in Fig. 8 (diameter 10 Omm, length 30 Omm) 81 was used as the mold, and P was applied under the same conditions as in Example 8 except that the non-molded body was pressed to 450 mm on the longitudinal axis. A TFE stretch molded article was obtained. Example 1 2
被成形体 1に代えて、 製造例 2により得た被成形体 2を用いた以外は実施例 1 1と同じ条件で P T F E延伸成形体を得た。 実施例 1 3  A PTF E stretched molded article was obtained under the same conditions as in Example 11 except that the molded article 2 obtained in Production Example 2 was used instead of the molded article 1. Example 13
3 30°Cに加熱した状態で長手方向軸に 4倍の長さに延伸して、 金型底部 83 に取り付けた可動式アングル 84を用いてハンドバイス (図示せず) で締め付け て被成形体 1の端部を固定することによって二軸延伸成形を行った以外は実施例 1 1と同じ条件で P T F E延伸成形体を得た。 比較例 6  3 While being heated to 30 ° C, it is stretched to 4 times the length in the longitudinal axis, and is tightened with a hand vise (not shown) using a movable angle 84 attached to the mold bottom 83. A PTFE stretched molded article was obtained under the same conditions as in Example 11 except that biaxial stretch molding was performed by fixing the end of No. 1. Comparative Example 6
PTF Eモールディングパウダー (商品名: M— 1 5、 ダイキン工業社製、 テ トラフルォロエチレン単独重合体、 懸濁重合系、 分子量: 8000000) を用 い、 内径 106 mm φの金型を用いて圧縮成形 (最終圧力 20 MP a、 保持時間 10分) により PTFE予備成形体を得た。 この PTFE予備成形体を 24時間 以上放置後、 電気炉に入れ常温から 50°CZ時で 365 °Cまで昇温し、 365°C で 10時間保持した後 50 °C /時で常温まで冷却し、 P T F E成型体を得た。 こ の P T F E成型体をスカイブして PTFEシート状成形品を得た。 比較例 7 Using a PTF E molding powder (trade name: M-15, manufactured by Daikin Industries, Tetrafluoroethylene homopolymer, suspension polymerization, molecular weight: 8000000), using a mold with an inner diameter of 106 mm φ A PTFE preform was obtained by compression molding (final pressure 20 MPa, holding time 10 minutes). After leaving this PTFE preform for 24 hours or more, put it in an electric furnace and raise the temperature from normal temperature to 365 ° C at 50 ° C, 365 ° C , And cooled to room temperature at 50 ° C / hour to obtain a PTFE molded body. This PTFE molded body was skived to obtain a PTFE sheet-like molded product. Comparative Example 7
PTF Eモールディングパウダー (商品名: M— 112、 ダイキン工業社製、 懸濁重合系、 パーフルォロ (アルキルビニルエーテル) 変性 PTFE、 分子量 1 X 107) を用いた以外は比較例 6と同様にして、 P T F Eシート状成形品を得 た。 比較例 8 . PTFE was prepared in the same manner as in Comparative Example 6 except that PTF E molding powder (trade name: M-112, manufactured by Daikin Industries, Ltd., suspension polymerization system, perfluoro (alkyl vinyl ether) modified PTFE, molecular weight 1 X 10 7 ) was used. A sheet-shaped molded product was obtained. Comparative Example 8.
冷却を 365°Cから 325°Cまで 5°Cノ時で、 325°Cから 310°Cまで 1°C ノ時で、 310°Cから 250°Cまで 時で、 250°Cから常温までを 50°C /時で行った以外は比較例 6と同様にして、 P T F Eシート状成形品を得た。 比較例 9  Cool from 365 ° C to 325 ° C at 5 ° C, from 325 ° C to 310 ° C at 1 ° C, from 310 ° C to 250 ° C, from 250 ° C to room temperature. A PTFE sheet-like molded product was obtained in the same manner as in Comparative Example 6, except that the test was performed at 50 ° C / hour. Comparative Example 9
PTFEモールディングパウダー (商品名: M— 112、 ダイキン工業社製) を用いた以外は比較例 8と同様にして、 P T F Eシート状成形品を得た。 比較例 10  A PTFE sheet-shaped molded product was obtained in the same manner as in Comparative Example 8 except that PTFE molding powder (trade name: M-112, manufactured by Daikin Industries, Ltd.) was used. Comparative Example 10
製造例 1により得た被成形体 1の物性を実施例 8と同様にして求めた。 比較例 1 1  The physical properties of the molded body 1 obtained in Production Example 1 were determined in the same manner as in Example 8. Comparative Example 1 1
製造例 3により得られた被成形体 3の物性を実施例 8と同様にして求めた。 比較例 12  The physical properties of the molded body 3 obtained in Production Example 3 were determined in the same manner as in Example 8. Comparative Example 12
製造例 4により得られた被成形体 4の物性を実施例 8と同様にして求めた。
Figure imgf000052_0001
The physical properties of the molded body 4 obtained in Production Example 4 were determined in the same manner as in Example 8.
Figure imgf000052_0001
02 表 2から、 被成形体を延伸して P T F E延伸成形体を得た実施例 8〜 1 3では 何れも、 比重が 2. 1以上であり、 結晶化度が 78 %以上であり、 ヘイズ値が 3 0%以下であり、 水蒸気透過係数が 0. 02 (g · mm) Z (m 2 · d a y ) 以 下であり、 窒素透過係数が 6. 8 X 1 0— 8 (cm3 ■ cm) / (cm2 · s e c • MP a) 以下であり、 塩酸透過係数が 1. 8 X 10 n ig . cn / m 2 ·秒) 以下であり、 かつ、 算術平均粗さが 0. 03 以下であるのに対し、 PTF E延伸成形体でない比較例 6〜 1 2では、 これらの物性のうち少なくとも 1つは上記範囲内になく、 特に結晶化度、 水蒸気透過係数、 窒素透過係数、 塩酸 透過係数及び算術平均粗さが顕著に劣ることがわかった。 02 From Table 2, it can be seen that in Examples 8 to 13 in which the molded article was stretched to obtain a PTFE stretched molded article, the specific gravity was 2.1 or more, the crystallinity was 78% or more, and the haze value was 3 or less 0%, the water vapor permeability coefficient is the 0. 02 (g · mm) Z (m 2 · day) or less under a nitrogen permeability coefficient 6. 8 X 1 0- 8 (cm 3 ■ cm) / (cm 2 · sec • MP a) or less, the hydrochloric acid permeability coefficient is less than 1.8 × 10 nig.cn/m 2 · second), and the arithmetic average roughness is less than 0.03. On the other hand, in Comparative Examples 6 to 12, which are not PTF E stretched molded products, at least one of these physical properties is not within the above range, and particularly, the crystallinity, the water vapor transmission coefficient, the nitrogen transmission coefficient, the hydrochloric acid transmission coefficient, and the arithmetic operation The average roughness was found to be significantly inferior.
X線回折 X-ray diffraction
製造例 1により得た被成形体 1と、 実施例 1 1で得た P T F E延伸成形体のそ れぞれについて X線回折装置 (商品名 : RAD - RA型、 理学電気社製) を用い て X線回折チャートを得、 前者を図 9、 後者を図 10に示した。 図 9と図 10か ら, 被成形体 1が有していた非晶部由来の 20 = 1 6° のピークは、 PTFE延 伸成形体において消失することがわかった。 なお、 得られた X線回折チャートか ら上述の結晶化度を算出した。  The X-ray diffractometer (trade name: RAD-RA, manufactured by Rigaku Denki Co., Ltd.) was used for the molded article 1 obtained in Production Example 1 and the stretched PTFE molded article obtained in Example 11 respectively. An X-ray diffraction chart was obtained. The former is shown in FIG. 9 and the latter is shown in FIG. From Figs. 9 and 10, it was found that the peak at 20 = 16 ° originating from the amorphous part in the molded article 1 disappeared in the expanded PTFE article. The above-mentioned crystallinity was calculated from the obtained X-ray diffraction chart.
TEMレプリカ写真の撮影 Taking a TEM replica photo
製造例 1により得た被成形体 1と、 実施例 1 1で得た P T F E延伸成形体のそ れぞれの横断面について、 試料の撮影断面に酢酸メチルを少量滴下し、 その上に ァセチルセルロースフィルムをのせた。 ァセチルセルロースは酢酸メチルに溶解 するので、 ァセチルセルロースフィルムに試料断面が転写された。 乾燥後、 試料 断面が転写されたァセチルセルロースフィルムを試料から剥がし、 転写面を白金 パラジウム合金 (P t : P d = 80 : 20) で真空蒸着した。  For each of the cross sections of the molded article 1 obtained in Production Example 1 and the stretched PTFE molded article obtained in Example 11, a small amount of methyl acetate was dropped on the photographed cross section of the sample, and acetyl A cellulose film was placed. Since acetyl cellulose was dissolved in methyl acetate, the cross section of the sample was transferred to the acetyl cellulose film. After drying, the acetyl cellulose film on which the cross section of the sample was transferred was peeled off from the sample, and the transfer surface was vacuum-deposited with a platinum-palladium alloy (Pt: Pd = 80: 20).
これらの試料から、 齚酸メチルを用いてァセチルセルロースフィルムを溶かし、 試料断面が転写された白金パラジゥム合金膜を得た。 この膜を透過型電子顕微鏡 (TEM、 商品名 : H— 710 O FA、 日立社製) を用いて撮影し、 得られた T EMレプリカ写真を製造例 1で得た被成形体 1について図 1 1、 実施例 1 1で得 た P T F E延伸成形体について図 1 2に示した。 図 1 1と図 1 2から、 被成形体 1はバンド構造を有していないが、 P T F E延伸成形体はバンド構造を有するこ とがわかった。 産業上の利用可能性 From these samples, the acetyl cellulose film was melted using methyl peroxide to obtain a platinum-palladium alloy film to which the cross section of the sample was transferred. This film was photographed using a transmission electron microscope (TEM, trade name: H-710 OFA, manufactured by Hitachi, Ltd.). The obtained TEM replica photograph was obtained for the molded article 1 obtained in Production Example 1 as shown in FIG. 1, obtained in Example 11 The stretched PTFE molded body is shown in FIG. From FIGS. 11 and 12, it was found that the molded article 1 did not have a band structure, but the stretched PTFE molded article had a band structure. Industrial applicability
本発明の成形品は、 上述の構成よりなるので、 P T F E本来の耐薬品性、 非粘 着性、 離型性、 電気絶縁性、 高周波特性、 低摩擦係数等の特性を維持したまま均 一に延伸された中空成形品、 しかも大型の成形品も得ることができる。 また、 本 発明の成形品は、 化学、 自動車、 機械、 薬品、 医薬、 食品、 半導体、 電気等の分 野に有用である。 例えば、 半導体製造工程に用いられる製造装置用 ^材、 薬液、 ガス等の供給ラインに使用されるポンプ、 配管、 継手、 バルブ用部材、 ウェハや デバイスの保管、 移動容器用部材として有用である。 また、 ガス、 液体、 湿気等 の低透過性材料、 透明性を必要とするフィルム、 シート、 チューブ、 袋、 異形断 面を有する成形品等に有用である。 異形断面形状を有する成形品は容器用途ゃラ イニング用途等に利用可能である。 チューブ状成形品は、 薬液、 ガス等の、 配管、 ホース、 及び、 配管、 ホース等の被覆膜、 ライニング等の保護膜等に利用可能で ある。 チューブ状成形品の径の大きい物はエンドレスベルトとして利用可能であ る。 チューブ状成形品に融着加工を施し、 袋状にしたものを薬 バックやガス、 薬液等の採集、 保管、 搬送用途等に利用可能である。 成形品から切り出したシー トは、 離形用、 包装用、 カバー用、 電気絶縁、 薬液、 ガス等からの保護膜、 ボン プゃバルブ用のダイヤフラム等として利用可能である。  Since the molded article of the present invention has the above-described configuration, it can be uniformly maintained while maintaining properties such as PTFE's inherent chemical resistance, non-adhesion, release properties, electrical insulation, high-frequency characteristics, and low friction coefficient. Stretched hollow molded products and large molded products can be obtained. Further, the molded article of the present invention is useful in the fields of chemistry, automobiles, machines, drugs, pharmaceuticals, foods, semiconductors, electricity, and the like. For example, they are useful as pumps, piping, fittings, valve members, wafer and device storage, and moving container members used in supply lines for manufacturing equipment, chemicals, and gases used in semiconductor manufacturing processes. It is also useful for low-permeability materials such as gas, liquid, and moisture, films, sheets, tubes, bags, and molded products having irregular cross-sections that require transparency. Molded products with irregular cross-sectional shapes can be used for containers, linings, etc. Tubular molded products can be used for pipes, hoses, coating films for pipes, hoses, etc., protective films for linings, etc., for chemicals and gases. Large tube-shaped products can be used as endless belts. The tubular molded product is subjected to fusion processing and made into a bag shape, which can be used for collecting, storing, and transporting medicine bags, gases, and chemical solutions. Sheets cut from molded products can be used as mold release, packaging, covers, electrical insulation, protective films from chemicals, gases, etc., diaphragms for pumps and valves, etc.
本発明の樹脂成形体は、 上述の構成よりなるので、 高い結晶化度と高い透明性 とを有し、 バリア性、 表面平滑性にも優れる。  Since the resin molded article of the present invention has the above-described configuration, it has high crystallinity and high transparency, and also has excellent barrier properties and surface smoothness.

Claims

請求の範囲 The scope of the claims
1 . ポリテトラフルォロエチレン樹脂製の被成形体を加熱し、 加熱した被成形体 を延伸し、 その後、 冷却することにより、 延伸されたポリテトラフルォロェチレ ン樹脂製の成形品を製造する成形品の製造方法において、 1. A molded article made of polytetrafluoroethylene resin is heated by heating the molded article made of polytetrafluoroethylene resin, stretching the heated molded article, and then cooling the molded article made of polytetrafluoroethylene resin. In the manufacturing method of the molded article to be manufactured,
被成形体の延伸は、 被成形体を構成するポリテトラフルォロエチレン樹脂の結晶 融解開始温度以上の温度にて、 被成形体を構成するポリテトラフルォロエチレン 樹脂中に結晶部と非晶部とが存在する状態で、 差圧を用いて実施し、 Stretching of the molded body is performed at a temperature equal to or higher than the crystal melting temperature of the polytetrafluoroethylene resin constituting the molded body. In the presence of the crystal part, using a differential pressure,
延伸された被成形体の冷却は、 差圧を保持した状態で、 被成形体を構成するポリ テトラフルォロエチレン樹脂の結晶融解開始温度よりも低い温度まで冷却し、 更に、 延伸は、 関係式: The stretched molded body is cooled to a temperature lower than the crystal melting start temperature of the polytetrafluoroethylene resin constituting the molded body while maintaining the differential pressure. Formula:
d b≥d c d b ≥d c
(式中、 d bは、 上記加熱、 延伸及び冷却により製造されるポリテトラフルォロ エチレン樹脂製の成形品の比重であり、 (1。は、 延伸を行わない以外は同一の条 件下で被成形体を加熱及び冷却して得られるポリテトラフルォロエチレン樹脂製 の参照体の比重) (Wherein, d b is the heating, a stretching and polytetramethylene full O b ethylene resin molded article density produced by cooling, (1., but for the stretching same conditions under (Specific gravity of reference body made of polytetrafluoroethylene resin obtained by heating and cooling the molded body in step)
を満たすように実施することを特徴とするポリテトラフルォロェチレン樹脂成形 品の製造方法。 2 . 被成形体を構成するポリテトラフルォロエチレン樹脂の結晶融解割合が、 延 伸時において、 A method for producing a molded article of polytetrafluoroethylene resin, wherein the method is carried out so as to satisfy the following. 2. When the crystal melting ratio of the polytetrafluoroethylene resin constituting the molded body is
2 5 %以上 1 0 0 %未満である請求の範囲第 1項記載の製造方法。 2. The production method according to claim 1, which is at least 25% and less than 100%.
3 . 被成形体を構成するポリテトラブルォロエチレン樹脂の結晶融解割合が、 延 伸時において、 3 0 %以上 1 0 0 %未満である請求の範囲第 1項記載の製造方法。 3. The production method according to claim 1, wherein the crystal melting ratio of the polytetrafluoroethylene resin constituting the molded body is at least 30% and less than 100% at the time of elongation.
4 . 延伸倍率が、 1倍より大きく、 3倍以下である請求の範囲第 1、 2又は 3項 のいずれか記載の方法。 4. The method according to any one of claims 1, 2 and 3, wherein the stretching ratio is greater than 1 and not more than 3 times.
5 . 延伸倍率が、 1倍より大きく、 5倍以下である請求の範囲第 1、 2又は 3項 のいずれか記載の方法。 5. Claims 1, 2 or 3 wherein the stretching ratio is greater than 1 and less than or equal to 5 The method according to any one of the above.
6. 延伸倍率が、 1倍より大きく、 10倍以下であり、 結晶融解割合が 50%以 上 100%未満である請求の範囲第 1、 2又は 3項のいずれか記載の方法。 6. The method according to any one of claims 1, 2 or 3, wherein the stretching ratio is more than 1 and not more than 10 times, and the crystal melting ratio is 50% or more and less than 100%.
7. ポリテトラフルォロエチレンは、 変性ポリテトラフルォロエチレンである請 求の範囲第 1、 2、 3、 4、 5又は 6項のいずれか記載の方法。 7. The method according to any one of claims 1, 2, 3, 4, 5, and 6, wherein the polytetrafluoroethylene is a modified polytetrafluoroethylene.
8. ポリテトラフルォロエチレンは、 乳化重合により得られたものである請求の 範囲第 1、 2、 3、 4、 5、 6又は 7項のいずれか記載の方法。 8. The method according to any one of claims 1, 2, 3, 4, 5, 6, and 7, wherein the polytetrafluoroethylene is obtained by emulsion polymerization.
9. ポリテトラフルォロエチレン樹脂製の被成形体は、 ペース ト押出成形により 得られたものである請求の範囲第 1、 2、 3、 4、 5、 6、 7又は 8項のいずれ か記載の方法。 9. The molded article made of polytetrafluoroethylene resin is obtained by paste extrusion molding, any one of claims 1, 2, 3, 4, 5, 6, 7, and 8 The described method.
10. 延伸時の差圧を用いて、 更に他の部材を融着させる請求の範囲第 1、 2、 3、 4、 5、 6、 7、 8又は 9項のいずれか記載の方法。 10. The method according to any one of claims 1, 2, 3, 4, 5, 6, 7, 8, and 9, wherein another member is fused using a differential pressure at the time of stretching.
1 1. 請求の範囲第 1、 2、 3、 4、 5、 6、 7、 8、 9又は 10項のいずれか 記載の方法により得られるポリテトラフルォロエチレン樹脂製の成形品。 1 1. A molded article made of polytetrafluoroethylene resin obtained by the method according to any one of claims 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.
1 2. 比重 dbが 2. 1以上である請求の範囲第 1 1項記載の成形品。 1 2. density d b is 2.1 or more at which claims moldings ranging first one of claims.
1 3. 被成形体は長手方向軸を有する筒形であり、 被成形体の長手方向軸の方向 に対応する、 成形品における方向に対して垂直な成形品の断面の少なくとも 1つ は異形断面形状である請求の範囲第 1 1又は 1 2項記載の成形品。 1 3. The molding is cylindrical with a longitudinal axis, and at least one of the sections of the molding perpendicular to the direction of the molding, corresponding to the direction of the longitudinal axis of the molding, is of irregular shape 13. The molded article according to claim 11, which is in a shape.
14. 被成形体の長手方向軸の方向に対応する、 成形品における方向に対して垂 直な成形品の断面の少なくとも 1つは円形断面である請求の範囲第 1 3項記載の 成形品。 14. The method according to claim 13, wherein at least one of the cross sections of the molded article perpendicular to the direction of the molded article corresponding to the direction of the longitudinal axis of the molded object is a circular cross section. Molding.
1 5 . 被成形体は長手方向軸を有する筒形であり、 成形品において、 被成形体の 長手方向軸に対応する、 成形品における方向に対して垂直な断面形状が、 いずれ も円形であってその直径が等しい又は異なるものである請求の範囲第 1 1又は 1 2項記載の成形品。 15. The molded object is a cylindrical shape having a longitudinal axis, and the cross-sectional shape of the molded product corresponding to the longitudinal axis of the molded product and perpendicular to the direction of the molded product is all circular. 13. The molded article according to claim 11, wherein said molded articles have the same or different diameters.
1 6 . 成形品は、 その断面の周長が 1 5 O ram以上である請求の範囲第 1 5項記 載の成形品。 16. The molded article according to claim 15, wherein the molded article has a cross-sectional circumference of 15 O ram or more.
1 7 . 成形品は、 式: 1 7. The molded product has the formula:
偏肉度 (%) = ( 2 (最大肉厚一最小肉厚) Z (最大肉厚 +最小肉厚) ) X 1 0 0 Deflection degree (%) = (2 (maximum thickness-minimum thickness) Z (maximum thickness + minimum thickness)) X 1 0 0
で表される偏肉度が、 同一の断面形状及び同一の径の部分に関して 1 2 0 %以下 である請求の範囲第 1 5又は 1 6項記載の成形品。 The molded article according to claim 15 or 16, wherein the thickness deviation expressed by: is 120% or less for a portion having the same cross-sectional shape and the same diameter.
1 8 . 融点ピークが 2 5 0 °C以上であり、 結晶化度が 7 8 %以上であり、 ヘイズ 値が 3 0 %以下であることを特徴とする榭脂成形体。 18. A resin molded product having a melting point peak of 250 ° C or more, a crystallinity of 78% or more, and a haze value of 30% or less.
1 9 . 含フッ素樹脂からなるものである請求の範囲第 1 8項記載の樹脂成形体。 19. The resin molded article according to claim 18, which is made of a fluorine-containing resin.
2 0 . 含フッ素樹脂は、 テトラフルォロエチレン系重合体からなるものである請 求の範囲第 1 9項記載の樹脂成形体。 20. The resin molded article according to claim 19, wherein the fluorine-containing resin comprises a tetrafluoroethylene-based polymer.
2 1 . 含フッ素樹脂は、 変性剤を含む重合体からなるものであり、 21. The fluorine-containing resin is made of a polymer containing a modifier,
ヘイズ値は、 2 0 %以下である請求の範囲第 1 9又は 2 0項記載の樹脂成形体。 The resin molded product according to claim 19 or 20, wherein the haze value is 20% or less.
2 2 . テトラフルォロエチレン系重合体は、 テトラフルォロエチレンホモポリマ 一及び/又は変性ポリテトラフルォロエチレンである請求の範固第 2 0項記載の 樹脂成形体。 22. The method according to claim 20, wherein the tetrafluoroethylene-based polymer is a tetrafluoroethylene homopolymer and / or a modified polytetrafluoroethylene. Resin molding.
23. 含フッ素樹脂からなる樹脂成形体であって、 前記含フッ素樹脂は、 テトラ フルォロエチレン系重合体からなるものであり、 結晶化度が 78%以上であり、 ヘイズ値が 30%以下であることを特徴とする樹脂成形体。 23. A resin molded article made of a fluorine-containing resin, wherein the fluorine-containing resin is made of a tetrafluoroethylene-based polymer, and has a crystallinity of 78% or more and a haze value of 30% or less. A resin molded product characterized by the following.
24. テトラフルォロエチレンホモポリマー及び/又は変性ポリテトラフルォロ エチレンからなる樹脂成形体であって、 24. A resin molded article comprising tetrafluoroethylene homopolymer and / or modified polytetrafluoroethylene,
25 °Cにおける相対湿度差 90%での水蒸気透過係数が 0. 02 (g · mm) / (m2 · d a y) 以下である - ことを特徴とする樹脂成形体。 A resin molded product having a water vapor transmission coefficient at a relative humidity difference of 90% at 25 ° C of not more than 0.02 (g · mm) / (m 2 · day).
25. テトラフルォロエチレンホモポリマー及び 又は変性ポリテトラフルォロ エチレンからなる樹脂成形体であつて、 25. A resin molded article comprising tetrafluoroethylene homopolymer and / or modified polytetrafluoroethylene,
25 °Cにおける 35重量%の塩酸の透過係数が 1. 8 X 10— 11 (g . cm) / (cm2 ·秒) 以下である Permeability coefficient of 35 wt% hydrochloric acid is not more than 1. 8 X 10- 11 (g. Cm) / (cm 2 · sec) at 25 ° C
ことを特徴とする樹脂成形体。  A resin molded article characterized by the above-mentioned.
26. テトラフルォロエチレンホモポリマー及び Z又は変性ポリテトラフルォロ エチレンからなる樹脂成形体であって、 26. A resin molded article comprising tetrafluoroethylene homopolymer and Z or modified polytetrafluoroethylene,
25°〇にぉける0. 2 MP aの窒素の透過係数が 6. 8 X 10— 8 (cm3 . cm ) / (cm2 - s e c - MP a ) 以下である 25 permeability coefficient of nitrogen ° 〇 in Okeru 0. 2 MP a is 6. 8 X 10- 8 (cm 3 cm.) / Is (cm 2 - - sec MP a ) below
ことを特徴とする樹脂成形体。  A resin molded article characterized by the above-mentioned.
27. テトラフルォロエチレンホモポリマー及び Z又は変性ポリテトラフルォロ エチレンからなる樹脂成形体であって、 27. A resin molded article comprising tetrafluoroethylene homopolymer and Z or modified polytetrafluoroethylene,
比重が 2. 1以上であり、  The specific gravity is 2.1 or more,
算術平均粗さが 0. 03 ; m以下である Arithmetic mean roughness is less than 0.03; m
ことを特徴とする樹脂成形体。 A resin molded article characterized by the above-mentioned.
28. フィルム状である請求の範囲第 18、 1 9、 20、 2 1、 22、 23、 2 4、 25、 26又は 27項記載の樹脂成形体。 28. The resin molded product according to claim 18, 19, 20, 21, 22, 22, 23, 24, 25, 26, or 27, which is in the form of a film.
29. チューブ状であり、 成形品断面形状の外周長さが 15 Omm以上である請 求の範囲第 1 8、 19、 20、 21、 22、 23、 24、 25、 26、 27又は29. The range of claims 18 to 19, 20, 20, 21, 22, 23, 24, 25, 26, 27, in the form of a tube, in which the outer peripheral length of the cross-sectional shape of the molded product is 15 Omm or more
28項記載の樹脂成形体。 Item 29. The resin molded article according to Item 28.
30 · 請求の範囲第 1 8、 1 9、 20、 21、 22、 23、 24、 25、 26、 27、 28又は 29項記載の樹脂成形体からなり、 被包装物を覆うために用いら れるものである 30Consists of the resin molded product described in claims 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, or 29, and is used to cover an object to be packaged Is the thing
ことを特徴とする大気中水分遮断用包装材料。 A packaging material for intercepting atmospheric moisture.
3 1. 被包装物は、 エレクトロルミネ 素子である請求の範囲第 30項記 載の大気中水分遮断用包装材料。 3 1. The packaging material for blocking moisture in the air according to claim 30, wherein the packaged object is an electroluminescent element.
32. 被包装物は、 薬剤である請求の範囲第 30項記載の大気中水分遮断用包装 材料。 32. The packaging material for blocking moisture in the air according to claim 30, wherein the packaged product is a drug.
33. 請求の範囲第 18、 1 9、 20、 21、 22、 23、 24、 25、 26、 27、 28又は 29項記載の樹脂成形体からなるものである 33. It is made of the resin molded product according to claims 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, or 29.
ことを特徴とする薬剤遮断用包装材料。 A packaging material for blocking medicine, characterized in that:
34. 請求の範囲第 1 8、 1 9、 20、 21、 22、 23、 24、 25、 26 27、 28又は 29項記載の樹脂成形体からなるものである 34. It is made of the resin molded product according to claims 18, 19, 20, 21, 22, 23, 24, 25, 26 27, 28, or 29.
ことを特徴とするガス遮断用包装材料。 A gas shielding packaging material characterized by the above-mentioned.
35. 請求の範囲第 1 8、 1 9、 20、 21、 22、 23、 24、 25、 26、 27、 28又は 29項記載の樹脂成形体からなるベルト材料であって、 電子写真機器における画像形成のための感光部に用いられるものである ことを特徴とするベルト材料。 35. A belt material comprising the resin molded product according to claim 18, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, or 29, A belt material used for a photosensitive portion for image formation in electrophotographic equipment.
36. 請求の範囲第 1 8、 1 9、 20、 21、 22、 23、 24、 25、 26、36. Claims 18, 19, 20, 21, 22, 23, 24, 25, 26,
27、 28又は 29記載の樹脂成形体からなるベルト材料であって、 電子写真機器における画像形成のための定着部に用いられるものである ことを特徴とするベルト材料。 30. A belt material comprising the resin molded article according to 27, 28 or 29, wherein the belt material is used for a fixing section for forming an image in an electrophotographic apparatus.
37 · 被包装物、 及ぴ、 請求の範囲第 1 8、 1 9、 20、 21、 22、 23、 2 4、 25、 26、 27、 2.8又は 29項記載の樹脂成形体からなる包装体であつ て、 37Packaged material and a package consisting of the resin molded product described in paragraphs 18, 19, 20, 21, 22, 22, 23, 24, 25, 26, 27, 2.8 or 29 of the claims At
前記樹脂成形体は、 前記被包装物を覆うものであり、 The resin molded body covers the packaged object,
前記被包装物と、 大気中水分、 薬剤及び/又はガスとの接触を抑制するものであ ることを特徴とする包装体。 A package which suppresses contact between the object to be packaged and atmospheric moisture, chemicals and / or gas.
38. 被包装物は、 エレクト口ルミネッセンス素子である請求の範囲第 37項記 載の包装体。 38. The package according to claim 37, wherein the object to be packaged is an elect-emission luminescence element.
39. 被包装物は、 薬剤である請求の範囲第 37項記載の包装体。 39. The package according to claim 37, wherein the packaged substance is a medicine.
40. 樹脂成形体は、 被包装物と、 大気中水分との接触を抑制するものである請 求の範囲第 3 7又は 38項記載の包装体。 40. The package according to claim 37 or 38, wherein the resin molded article suppresses contact between an object to be packaged and atmospheric moisture.
PCT/JP2002/005316 2001-05-30 2002-05-30 Method for producing polytetrafluoroethylene resin formed product and resin formed product WO2002102572A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003505137A JPWO2002102572A1 (en) 2001-05-30 2002-05-30 Method for producing polytetrafluoroethylene resin molded article and resin molded article

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001162296 2001-05-30
JP2001-162296 2001-05-30
JP2002026628 2002-02-04
JP2002-026628 2002-02-04

Publications (1)

Publication Number Publication Date
WO2002102572A1 true WO2002102572A1 (en) 2002-12-27

Family

ID=26615954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005316 WO2002102572A1 (en) 2001-05-30 2002-05-30 Method for producing polytetrafluoroethylene resin formed product and resin formed product

Country Status (2)

Country Link
JP (1) JPWO2002102572A1 (en)
WO (1) WO2002102572A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151442A (en) * 2004-11-29 2006-06-15 Asahi Glass Co Ltd Fluorine-containing polymer molding and laminate for fuel tank or hose for fuel transport
WO2007128158A1 (en) 2006-05-09 2007-11-15 Ecole Polytechnique Federale De Lausanne (Epfl) Transition metal complexes for inhibiting resistance in the treatment of cancer and metastasis
JP2007534523A (en) * 2004-04-23 2007-11-29 ゴア エンタープライズ ホールディングス,インコーポレイティド Fluoropolymer barrier material
WO2013038395A1 (en) 2011-09-16 2013-03-21 Universidade De Lisboa Transition metal complexes for pharmaceutical applications
WO2013136296A2 (en) 2012-03-14 2013-09-19 Universidade De Lisboa Water-soluble organometallic ruthenium and iron compunds presenting heteroaromatic ligands
WO2019003527A1 (en) * 2017-06-27 2019-01-03 住友電工ファインポリマー株式会社 Heat recovery article and covered body covered by said heat recovery article
JP2019178766A (en) * 2018-03-30 2019-10-17 大日本印刷株式会社 Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material
CN115335438A (en) * 2020-03-31 2022-11-11 Agc株式会社 Fluororesin film and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156037A (en) * 1987-12-14 1989-06-19 Daikin Ind Ltd Manufacture of polytetrafluoroethylene vessel
JPH05221458A (en) * 1992-02-12 1993-08-31 Sumitomo Bakelite Co Ltd Cover tape for packaging chip type electronic part
JPH06340751A (en) * 1993-01-29 1994-12-13 Nissei Denki Kk Packaging film
JP2000187395A (en) * 1998-12-21 2000-07-04 Canon Inc Intermediate transfer body and transfer member, their production and image forming device using same
US6207091B1 (en) * 1997-05-23 2001-03-27 Nippon Mitsubishi Oil Corporation Process for producing the drawn molded article of a fluoroplastic

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156037A (en) * 1987-12-14 1989-06-19 Daikin Ind Ltd Manufacture of polytetrafluoroethylene vessel
JPH05221458A (en) * 1992-02-12 1993-08-31 Sumitomo Bakelite Co Ltd Cover tape for packaging chip type electronic part
JPH06340751A (en) * 1993-01-29 1994-12-13 Nissei Denki Kk Packaging film
US6207091B1 (en) * 1997-05-23 2001-03-27 Nippon Mitsubishi Oil Corporation Process for producing the drawn molded article of a fluoroplastic
JP2000187395A (en) * 1998-12-21 2000-07-04 Canon Inc Intermediate transfer body and transfer member, their production and image forming device using same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534523A (en) * 2004-04-23 2007-11-29 ゴア エンタープライズ ホールディングス,インコーポレイティド Fluoropolymer barrier material
US7521010B2 (en) 2004-04-23 2009-04-21 Gore Enterprise Holdings, Inc. Fluoropolymer barrier material
JP2011183814A (en) * 2004-04-23 2011-09-22 Gore Enterprise Holdings Inc Fluoropolymer barrier material
JP4782774B2 (en) * 2004-04-23 2011-09-28 ゴア エンタープライズ ホールディングス,インコーポレイティド Method for producing fluoropolymer barrier material
JP2006151442A (en) * 2004-11-29 2006-06-15 Asahi Glass Co Ltd Fluorine-containing polymer molding and laminate for fuel tank or hose for fuel transport
US9018199B2 (en) 2006-05-09 2015-04-28 Ecole Polytechnique Federale De Lausanne (Epfl) Transition metal complexes for inhibiting resistance in the treatment of cancer and metastasis
WO2007128158A1 (en) 2006-05-09 2007-11-15 Ecole Polytechnique Federale De Lausanne (Epfl) Transition metal complexes for inhibiting resistance in the treatment of cancer and metastasis
WO2013038395A1 (en) 2011-09-16 2013-03-21 Universidade De Lisboa Transition metal complexes for pharmaceutical applications
WO2013136296A2 (en) 2012-03-14 2013-09-19 Universidade De Lisboa Water-soluble organometallic ruthenium and iron compunds presenting heteroaromatic ligands
WO2019003527A1 (en) * 2017-06-27 2019-01-03 住友電工ファインポリマー株式会社 Heat recovery article and covered body covered by said heat recovery article
WO2019003319A1 (en) * 2017-06-27 2019-01-03 住友電工ファインポリマー株式会社 Heat recovery article and covered body covered by said heat recovery article
JP2019178766A (en) * 2018-03-30 2019-10-17 大日本印刷株式会社 Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material
JP7106941B2 (en) 2018-03-30 2022-07-27 大日本印刷株式会社 Outer packaging for vacuum insulation, vacuum insulation, and articles with vacuum insulation
CN115335438A (en) * 2020-03-31 2022-11-11 Agc株式会社 Fluororesin film and method for producing same

Also Published As

Publication number Publication date
JPWO2002102572A1 (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP5008850B2 (en) Tetrafluoroethylene resin molded body, stretched tetrafluoroethylene resin molded body, manufacturing method thereof, composite, filter, impact deformation absorbing material, and sealing material
KR0150640B1 (en) Process for producing multilayer polytetra-fluoroethylene porous membrane
TWI731889B (en) Resin film and its manufacturing method
US5510176A (en) Polytetrafluoroethylene porous film
EP0918616B1 (en) Heat-shrinkable uhmv polymer film, tubing, and roll covers
US5863488A (en) Molded article of liquid crystal polymer
US11801480B2 (en) Hollow-fiber membrane and hollow-fiber membrane module
WO2002102572A1 (en) Method for producing polytetrafluoroethylene resin formed product and resin formed product
WO1997047460A9 (en) Heat-shrinkable uhmv polymer film, tubing, and roll covers
KR102507245B1 (en) Pfa molded body with excellent blister resistance and method of controlling occurrence of blisters in pfa molded body
KR102499065B1 (en) Fluororesin molded body
JPH10237203A (en) Porous polytetrafluoroethylene molding
JPH05214140A (en) Porous film made of polytetrafluoroethylene and its production
TW201347959A (en) Biaxially stretched nylon film, laminated film, laminated packing material, and method of manufacturing a biaxially stretched nylon film
WO2022181848A1 (en) Fluorine-containing copolymer
US6162514A (en) Molded article of liquid crystal polymer
CN112585196A (en) Film, method for producing film, laminate, and packaging material
US6001302A (en) Method of blow-molding an article of liquid crystal polymer and porous PTFE
KR100221277B1 (en) Polytetrafluoroethylene porous film and process for preparing the same
WO2021200409A1 (en) Heat-resistant release sheet and method for carrying out step involving heating and melting of resin
JP7487662B2 (en) Biaxially oriented polyamide film and polyamide film mill roll
JP2005298702A (en) Chlorotrifluoroethylene copolymer
EP0767192B1 (en) Heat-shrinkable tubing, process for production thereof, and use thereof
JPH09157402A (en) Heat-shrinkable tube, its production and utilization thereof
JP2010241890A (en) Fluororesin sheet, method for producing the same and gasket

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003505137

Country of ref document: JP

122 Ep: pct application non-entry in european phase