WO2019003527A1 - Heat recovery article and covered body covered by said heat recovery article - Google Patents

Heat recovery article and covered body covered by said heat recovery article Download PDF

Info

Publication number
WO2019003527A1
WO2019003527A1 PCT/JP2018/012198 JP2018012198W WO2019003527A1 WO 2019003527 A1 WO2019003527 A1 WO 2019003527A1 JP 2018012198 W JP2018012198 W JP 2018012198W WO 2019003527 A1 WO2019003527 A1 WO 2019003527A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat recovery
recovery article
base material
material layer
water vapor
Prior art date
Application number
PCT/JP2018/012198
Other languages
French (fr)
Japanese (ja)
Inventor
太郎 藤田
西川 信也
遼太 福本
智 山崎
翔太 町中
修司 東
晃一郎 狩野
Original Assignee
住友電工ファインポリマー株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ファインポリマー株式会社, 住友電気工業株式会社 filed Critical 住友電工ファインポリマー株式会社
Publication of WO2019003527A1 publication Critical patent/WO2019003527A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances

Definitions

  • the present invention relates to a heat recovery article and a cover coated with the heat recovery article.
  • Products having low resistance to water vapor such as food, medical equipment, batteries containing lithium ions, displays made of organic EL, liquid crystal, etc. as materials, need to prevent the intrusion of water vapor during storage or use.
  • a barrier label comprising a substance layer having high water vapor barrier properties and an adhesive layer
  • This barrier label is in the form of a sheet, and is affixed to the periphery of a container for containing the above-mentioned product having low resistance to water vapor. And, the barrier label reduces the penetration of water vapor into the container.
  • the heat recovery article according to one aspect of the present invention is a cylindrical heat recovery article provided with a base material layer, and the water vapor transmission rate is 0.1 g when the average thickness of the base material layer after shrinkage is 100 ⁇ m. / M 2 ⁇ day or less.
  • FIG. 1 is a perspective view of a heat recovery article according to an embodiment of the present invention.
  • the barrier label described in the above-mentioned publication adheres a sheet-like label to the periphery of the container, and therefore can not avoid the entry of water vapor from the joint of the end. Further, since the barrier label of the above-mentioned publication is attached by the adhesive layer, water vapor easily infiltrates due to a lack of adhesion or peeling at the curved surface portion of the container. Therefore, it can not be said that the barrier label described in the above publication has a sufficiently high water vapor penetration preventing effect.
  • the present invention has been made based on the circumstances as described above, and provides a heat recovery article which is easy to coat and has a high water vapor penetration preventing effect, and a cover coated with the heat recovery article.
  • the purpose is
  • the heat recovery article according to one aspect of the present invention is easy to coat and has a high water vapor penetration preventing effect. Therefore, the cover coated with the heat recovery article is less susceptible to the penetration of water vapor into the interior.
  • the heat recovery article according to one aspect of the present invention is a cylindrical heat recovery article provided with a base material layer, and the water vapor transmission rate is 0.1 g when the average thickness of the base material layer after shrinkage is 100 ⁇ m. / M 2 ⁇ day or less.
  • the heat recovery article coats the coated object by shrinkage, so that the coating is easy and the heat recovery article adheres to the object to be coated.
  • the heat recovery article is cylindrical and thus has no seam. For this reason, by covering with the said heat recovery article, a crevice does not produce easily between the heat recovery article concerned and a covering subject, and it can control the penetration of water vapor.
  • the water vapor transmission rate when the average thickness of the base material layer after shrinkage is 100 ⁇ m is equal to or less than the above-mentioned upper limit, the water vapor which permeates through the heat recovery article can also be reduced. Therefore, the heat recovery article is easy to coat and has a high water vapor penetration preventing effect.
  • the main component of the base layer is preferably polychlorotrifluoroethylene. Because polychlorotrifluoroethylene has a low water vapor transmission rate, it can further reduce the water vapor that permeates through the heat recovery article.
  • the base layer may further contain a fluororubber.
  • the base material layer further contains a fluororubber, the elastic modulus of the base material layer is reduced and the elongation is increased, so that the heat recovery article is easily expanded.
  • fluororubber with polychlorotrifluoroethylene, it is possible to suppress the progress of crystallization of polychlorotrifluoroethylene at the time of heating. Therefore, by containing the polychlorotrifluoroethylene as the main component of the base material layer and further containing a fluororubber, the heat recovery article can maintain its water vapor barrier property and function (in particular, tensile elongation) by heating. Etc.) can be suppressed.
  • the content rate of the said fluororubber in the resin component contained in the said base material layer is 10 to 50 mass%.
  • the base material layer contains polychlorotrifluoroethylene as the main component and further contains a fluororubber
  • the content ratio of the fluororubber in the resin component contained in the base layer is within the above range The crystallization of polychlorotrifluoroethylene can be better suppressed while minimizing the decrease in water vapor barrier properties of the heat recovery article, and the mechanical properties of the heat recovery article can be easily maintained.
  • the water vapor transmission rate is preferably 0.04 g / m 2 ⁇ day or less.
  • the water vapor transmission rate of the heat recovery article is 0.04 g / m 2 ⁇ day or less, it is possible to further reduce the water vapor that permeates through the heat recovery article.
  • the base layer may be crosslinked. By crosslinking the constituent material of the base layer in this manner, the heat resistance is improved.
  • the crosslinking of the base material layer be crosslinking by electron beam irradiation. Electron beam irradiation crosslinking can increase the production efficiency because the crosslinking time is short.
  • the crosslinking of the base material layer be crosslinking via a crosslinking aid.
  • a crosslinking aid By using a crosslinking aid, extrusion processability is improved and crosslinking efficiency is enhanced.
  • the heat resistance is further improved and the processability is improved, so the gap between the heat recovery article and the object to be coated Can be more difficult to occur. Therefore, the penetration of water vapor can be further suppressed.
  • the heat recovery article may have a multilayer structure, and at least one layer of the multilayer structure may be constituted by the base layer. With such a configuration, it is possible to impart further different properties to the heat recovery article by the other layers while enhancing the penetration prevention effect of water vapor by the base material layer.
  • the covering according to another aspect of the present invention is covered by the heat recovery article.
  • the covering is covered by the heat recovery article, so that the water vapor is less likely to penetrate inside. Accordingly, the coating is suitably used as a coating for products with low resistance to water vapor, such as food, medical devices, batteries containing lithium ions, and displays using organic EL, liquid crystals, etc. as materials.
  • the “water vapor permeability” is a value measured in accordance with JIS-K7129 (2008) Appendix C. “The water vapor transmission rate when the average thickness of the base material layer after shrinkage is 100 ⁇ m” means the water vapor transmission rate of the base material layer after shrinkage, and then the water vapor transmission rate is the average thickness of the base material layer Refers to proportionally converted value per 100 ⁇ m based on The term “main component” means a component having the highest content, for example, a component having a content of 50% by mass or more, preferably 90% or more.
  • a "resin component” refers to the substance which consists of a high molecular compound, and is the concept containing rubber
  • the heat recovery article of FIG. 1 is cylindrical and comprises a substrate layer 1.
  • the base material layer 1 is a cylindrical tube whose diameter is reduced by heating.
  • Examples of the main component of the base material layer 1 include polychlorotrifluoroethylene (PCTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), high density polyethylene (HDPE), and the like. Among them, polychlorotrifluoroethylene is preferable from the viewpoint of water vapor permeability. These resins may be used alone or in combination of two or more.
  • PCTFE polychlorotrifluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • HDPE high density polyethylene
  • resins may be used alone or in combination of two or more.
  • the base material layer 1 may further contain fluororubber.
  • the base material layer 1 further contains a fluororubber, the elastic modulus of the base material layer 1 is decreased and the elongation is increased, so that the heat recovery article is easily expanded.
  • fluororubber with PCTFE, the progress of crystallization of PCTFE can be suppressed at the time of heating. Therefore, by containing PCTFE as the main component of the base material layer 1 and further containing a fluororubber, the heat recovery article can maintain its water vapor barrier property and function by heating (especially, machine such as tensile elongation) Of the physical characteristics) can be suppressed.
  • the base material layer 1 may contain other resin, another elastomer, etc.
  • fluororubber examples include vinylidene fluoride rubber, tetrafluoroethylene-propylene rubber, tetrafluoroethylene-perfluoromethyl vinyl ether rubber and the like. These fluororubbers may be used alone or in combination of two or more.
  • the lower limit of the content of the fluororubber in the resin component contained in the base layer 1 is preferably 10% by mass, and more preferably 20% by mass. .
  • a maximum of a content rate of the above-mentioned fluororubber in a resin ingredient contained in the above-mentioned base material layer 1 50 mass% is preferred and 40 mass% is more preferred. If the content ratio of the fluororubber in the resin component contained in the base material layer 1 does not reach the above lower limit, there is a possibility that the suppressing effect on the crystallization of PCTFE may be insufficient.
  • the content rate of the said fluororubber exceeds the said upper limit, there exists a possibility that the water-vapor-barrier fall of the base material layer 1 and by extension, the said heat recovery articles
  • the base material layer 1 may be crosslinked.
  • the crosslinking method include methods such as crosslinking by electron beam irradiation, chemical crosslinking, and thermal crosslinking. Among them, electron beam irradiation crosslinking is preferable because the crosslinking time is short and the production efficiency is high.
  • the irradiation dose is preferably 40 kGy or more and 80 kGy or less.
  • the crosslinking of the base layer 1 be crosslinking via a crosslinking aid.
  • a crosslinking aid By using a crosslinking aid, extrusion processability is improved and crosslinking efficiency is enhanced.
  • the heat resistance is further improved and the processability is improved, so the gap between the heat recovery article and the object to be coated Can be more difficult to occur. Therefore, the penetration of water vapor can be further suppressed.
  • crosslinking adjuvant an oxime compound, an acrylate or a methacrylate compound, a vinyl compound, an allyl compound, a maleimide compound etc. are mentioned, for example.
  • a crosslinking adjuvant can be used individually or in combination of 2 or more types.
  • oxime compound examples include p-quinonedioxime, p, p'-dibenzoylquinone dioxime and the like.
  • acrylate or methacrylate compound examples include diethylene glycol diacrylate, diethylene glycol dimethacrylate, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, acrylic acid / zinc oxide mixture, allyl acrylate, allyl Examples include methacrylate, trimethacrylic isocyanurate and the like.
  • vinyl compound examples include divinylbenzene, divinyltoluene, divinylpyridine and the like.
  • allyl compound examples include hexamethylenediallyl nadiimide, diallyl itaconate, diallyl phthalate, diallyl isophthalate, diallyl monoglycidyl isocyanurate, triallyl cyanurate, triallyl isocyanurate and the like.
  • maleimide compound examples include N, N'-m-phenylenebismaleimide, N, N '-(4,4'-methylenediphenylene) dimaleimide and the like.
  • triallyl isocyanurate (TAIC) of allyl compound diallyl monoglycidyl isocyanurate (DA-MGIC) of allyl compound
  • TMPTA trimethylolpropane triacrylate
  • the average inner diameter and the average thickness of the base material layer 1 are appropriately selected in accordance with the application and the like.
  • the average inner diameter of the base material layer 1 before thermal contraction can be, for example, 1 mm or more and 60 mm or less.
  • an average internal diameter after the heat contraction of the base material layer 1 it can be 30% or more and 50% or less of the average internal diameter before heat contraction, for example.
  • contraction of the base material layer 1 it can be set as 0.1 mm or more and 5 mm or less, for example.
  • the average thickness of the base material layer 1 after contraction changes in accordance with the contraction rate.
  • the upper limit of the water vapor permeability when the average thickness of the base material layer 1 after shrinkage is 100 ⁇ m is 0.1 g / m 2 ⁇ day, more preferably 0.08 g / m 2 ⁇ day, 0. 04 g / m 2 ⁇ day is more preferable, and 0.01 g / m 2 ⁇ day is particularly preferable. If the water vapor transmission rate exceeds the above upper limit, the effect of the heat recovery article against invading water vapor may be insufficient.
  • the lower limit of the water vapor permeability is not particularly limited and is preferably as low as possible, but it is usually about 0.003 g / m 2 ⁇ day.
  • the heat shrinkable temperature of the base material layer 1 is less than the above lower limit, the heat recovery article may be softened when used under a high temperature environment, and a gap may be generated to facilitate the penetration of water vapor.
  • the thermal contraction temperature of the substrate layer 1 exceeds the upper limit, there is a possibility that the object to be coated may be damaged by high heat when the thermal recovery article is thermally shrunk, and the thermal energy for heating is unnecessarily large. And the cost of the coating may increase.
  • the 2% secant modulus of substrate layer 1 As a maximum of 2% secant modulus of substrate layer 1, 1000MPa is preferred, 800MPa is more preferred, and 500MPa is still more preferred.
  • the 2% secant modulus exceeds the above upper limit, the flexibility of the heat recovery article is insufficient, and a gap with the object to be coated is easily formed when the object to be coated is covered, and thus the penetration prevention effect of water vapor May be insufficient.
  • the lower limit of the 2% secant modulus of the base material layer 1 is not particularly limited, but is usually about 100 MPa.
  • the 2% secant modulus is a value measured based on ASTM-D5223-92.
  • a filler may be added to the base material layer 1 for the purpose of enhancing the water vapor barrier property.
  • you may add a flame retardant for the purpose of improving a flame retardance.
  • other additives may be added to the base layer 1 as required. Examples of such additives include antioxidants, copper inhibitors, lubricants, colorants, heat stabilizers, ultraviolet light absorbers and the like.
  • filler As the filler, talc, silica, mica, clay, carbon, alumina, magnesium carbonate, calcium carbonate, zinc carbonate, zinc oxide, zinc oxide, zinc borate, aluminum hydroxide, magnesium hydroxide, magnesium oxide, calcium hydroxide, titanium oxide, Montmorillonite, cellulose nanofibers and the like can be mentioned.
  • a filler in base material layer 1 As a minimum of content of a filler in base material layer 1, 0.1 mass part is preferred to 100 mass parts of resin components, and 1 mass part is more preferred. On the other hand, as an upper limit of content of the said filler, 100 mass parts is preferable with respect to 100 mass parts of resin components, and 80 mass parts is more preferable. If the content of the filler is less than the above lower limit, the effect of providing the water vapor barrier property may be insufficient. Moreover, when content of the said filler exceeds the said upper limit, there exists a possibility that the toughness and elongation of the said heat recovery articles
  • chlorinated flame retardants such as chlorinated paraffin, chlorinated polyethylene, chlorinated polyphenyl and perchloropentacyclodecane, 1,2-bis (2,3,4,5,6-pentabromophenyl) Ethane, ethylenebispentabromobenzene, ethylenebispentabromodiphenyl, tetrabromoethane, tetrabromobisphenol A, hexabromobenzene, decabromobiphenyl ether, tetrabromophthalic anhydride, polydibromophenylene oxide, hexabromocyclodecane, ammonium bromide And other brominated flame retardants, triallyl phosphate, alkylallyl phosphate, alkyl phosphate, dimethyl phosphonate, phosphorylate, halogenated phosphorylate ester, trimethyl phosphate, tributyl phosphate
  • phosphorus compounds such as phosphonate type polyols, phosphate type polyols, polyols such as halogen elements, melamine cyanurate, triazine, isocyanurate, nitrogen compounds such as urea and guanidine, silicone polymers, ferrocene, fumaric acid, maleic acid, etc.
  • halogen-based flame retardants such as bromine-based flame retardants and chlorine-based flame retardants are preferable.
  • the bromine-based flame retardant and the chlorine-based flame retardant may be used alone or in combination of two or more.
  • a flame retardant in base material layer 1 As a minimum of content of a flame retardant in base material layer 1, 1 mass part is preferred to 100 mass parts of resin components, and 5 mass parts is more preferred.
  • an upper limit of content of a flame retardant 100 mass parts is preferred to 100 mass parts of resin components, and 80 mass parts is more preferred. If the content of the flame retardant is less than the above lower limit, the effect of imparting flame retardancy may not be obtained. Moreover, when content of the said flame retardant exceeds the said upper limit, there exists a possibility that the toughness and elongation of the said heat recovery articles
  • antioxidant examples include phenol compounds, amine compounds, hindered amine compounds, hindered phenol compounds, salicylic acid derivatives, benzophenone compounds, benzotriazole compounds and the like, and particularly hindered amine compounds excellent in the crosslinking inhibitory effect.
  • the compounds are preferably used.
  • sulfur compounds and phosphite ester compounds can be used alone or in combination.
  • amine compounds used as an antioxidant include 4,4 ′-( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, polymers of 2,2,4-trimethyl-1,2-dihydroquinoline, 6-ethoxy-2, 2,4-trimethyl-1,2-dihydroquinoline, N- (1,3-dimethylbutyl) -N'-phenyl-1,4-phenylenediamine, N-isopropyl-N'-phenyl-1,4-phenylene Diamine etc. can be mentioned.
  • the lower limit of the content of the antioxidant in the base material layer 1 is preferably 1 part by mass, and more preferably 1.5 parts by mass with respect to 100 parts by mass of the resin component.
  • an upper limit of content of the said antioxidant 30 mass parts is preferable with respect to 100 mass parts of resin components, and 20 mass parts is more preferable. If the content of the antioxidant is less than the above lower limit, the base material layer 1 is easily oxidized, and the heat recovery article may be deteriorated. Conversely, if the content of the antioxidant exceeds the above upper limit, bloom and bleed may occur.
  • the heat recovery article can be manufactured, for example, by a manufacturing method including an extrusion molding step and a diameter expansion step. Each process will be described below.
  • a base material layer forming material for forming the base material layer 1 is extrusion molded using a melt extrusion molding machine to form an extrusion molded article.
  • the base material layer-forming material may be prepared, for example, by adding other resin components such as fluororubber, a cross-linking aid, a flame retardant and various additives to the resin as the main component of the base layer 1, if necessary. It can be prepared by mixing by machine.
  • the melt mixer known ones such as an open roll, a Banbury mixer, a pressure kneader, a single-shaft mixer, a multi-shaft mixer and the like can be used.
  • An extrusion-molded article is formed by extruding the above-mentioned base material layer-forming material using a known melt extruder. Specifically, extrusion is performed using an extrusion die having a cylindrical space for extruding a layer corresponding to the base material layer 1. This gives an extruded product. In the extrusion molding step, the heat resistance may be improved by crosslinking the constituent material of the base material layer forming material.
  • the dimensions of the extrusion can be designed according to the application and the like.
  • the average inner diameter of the extrusion-molded product is, for example, 0.4 mm or more and 30 mm or less, and the maximum thickness is 0.4 mm or more and 10 mm or less.
  • the die temperature in the extrusion molding step is not particularly limited, but can be, for example, a temperature higher by 10 ° C. or more and 100 ° C. or less than the melting point of the resin material forming the base material layer 1.
  • the lower limit of the extrusion linear velocity in the extrusion molding step is preferably 5 m / min, and more preferably 8 m / min. If the extrusion linear velocity is less than the lower limit, the productivity of the heat recovery article may be insufficient.
  • the upper limit of the extrusion linear velocity is not particularly limited, but is usually about 15 m / min.
  • the expanded diameter of the extrusion-molded product is expanded to a predetermined inner diameter by a method such as introducing compressed air inside while the extrusion-molded product is heated to the glass transition temperature or more, and then cooled to fix the shape. It is done by Such diameter expansion of the extrusion-molded product is performed, for example, such that the inner diameter of the extrusion-molded product is 2 or more and 4 or less.
  • the heat recovery article is obtained by expanding and fixing the shape of the extrusion-molded product.
  • the covering is configured by covering the object to be covered with the heat recovery article.
  • the object to be covered with the cover is not particularly limited, and examples thereof include food, medical devices, batteries including lithium ion and the like, and displays using organic EL and liquid crystal as materials.
  • medical devices and batteries are preferable, and those used for wearable applications are particularly preferable. Since these are particularly in an environment susceptible to water vapor and have low resistance to water vapor, the coating of the heat recovery article is highly effective in preventing the intrusion of water vapor.
  • the said coating can be manufactured, for example by the manufacturing method provided with a covering object insertion process, a heat recovery article heating process, and a cooling process.
  • the heat recovery article is covered so as to cover the covering object. Specifically, the object to be coated is inserted from the end of the heat recovery article having a cylindrical shape.
  • the heat recovery article heating step the heat recovery article is heated and thermally shrunk.
  • the heating method examples include a method of heating the heat recovery article with a heat gun or the like.
  • the heating temperature is determined by the heat shrinkage temperature of the heat recovery article, and is, for example, 100 ° C. or more and 200 ° C. or less.
  • the heating time may be any time as long as the heat recovery article contracts sufficiently, and can be, for example, 10 seconds to 15 minutes.
  • the coated object may be sealed inside the heat recovery article by heat shrinking both ends of the heat recovery article and closing the both ends.
  • the heat recovery article after heat contraction is cooled.
  • the cooling method is not particularly limited. For example, cooling by natural standing or forced cooling by cold air can be used. This cooling can fix the shape of the heat recovery article.
  • the heat recovery article coats the coated object by shrinkage, so that the coating is easy and the heat recovery article adheres to the object to be coated.
  • the heat recovery article is cylindrical and thus has no seam. For this reason, by covering with the said heat recovery article, a crevice does not produce easily between the heat recovery article concerned and a covering subject, and it can control the penetration of water vapor.
  • the water vapor transmission rate is 0.1 g / m 2 ⁇ day or less when the average thickness of the base material layer 1 after shrinkage is 100 ⁇ m, the heat recovery article penetrates the heat recovery article. Invasive water vapor can also be reduced. Therefore, the heat recovery article is easy to coat and has a high water vapor penetration preventing effect.
  • the covering is covered by the heat recovery article, so that the water vapor is less likely to penetrate inside. Accordingly, the coating is suitably used as a coating for products with low resistance to water vapor, such as food, medical devices, batteries containing lithium ions, and displays using organic EL, liquid crystals, etc. as materials.
  • the heat recovery article of the present invention may have a multilayer structure, and at least one layer of the multilayer structure may be constituted by the above-mentioned base material layer.
  • the heat recovery article of the present invention may comprise an adhesive layer laminated to the inner circumferential surface of the base layer. This adhesive layer is for enhancing the adhesion between the adhered portion of the object to be coated and the substrate layer, and for improving the effect of suppressing the penetration of water vapor.
  • polyolefin, polyamide etc. can be used, for example.
  • the polyamide may be crosslinked by electron beam irradiation or the like.
  • the adhesive layer may contain additives such as a viscosity characteristic improver, a deterioration inhibitor, a flame retardant, a lubricant, a colorant, a heat stabilizer, an ultraviolet absorber, and an adhesive.
  • the average thickness and the average length of the adhesive layer are determined so that the amount of adhesive capable of filling the inside of the base material layer after shrinkage can be secured, and the object to be covered can be stored inside the heat recovery article. Be done.
  • the average thickness of the adhesive layer can be 5% or more and 90% or less of the average thickness of the base material layer.
  • the average length of the adhesive layer can be equivalent to the average length of the base layer.
  • the heat recovery article comprising the base layer and the adhesive layer can be formed, for example, by extruding the base layer and the adhesive layer separately.
  • the adhesive layer is disposed on the inner peripheral surface of the base layer expanded after extrusion molding, and this is adhered to the object to be coated and then the base layer is shrunk. used.
  • PCTFE Neoflon PCTFE M-300P manufactured by Daikin Industries, Ltd.
  • Material B As material B, 100 parts by weight of PCTFE was heated and melted by a roll mixer at a set temperature of 220 ° C., and 5 parts by weight of TAIC (manufactured by Nippon Kasei Co., Ltd.) was kneaded as a crosslinking aid and pelletized.
  • Material D As material D, 80 parts by mass of PCTFE (Aclar (registered trademark) UltRx 6000, manufactured by Honeywell) and 20 parts by mass of tetrafluoroethylene-propylene rubber (AFLAS (registered trademark) 150 CS, manufactured by Asahi Glass) as fluororubber are compounded at 260 ° C. The resin obtained by kneading was prepared.
  • PCTFE Aclar (registered trademark) UltRx 6000, manufactured by Honeywell)
  • AFLAS (registered trademark) 150 CS manufactured by Asahi Glass
  • Material E As material E, 60 parts by mass of PCTFE (Aclar (registered trademark) UltRx 6000, manufactured by Honeywell) and 40 parts by mass of tetrafluoroethylene-propylene rubber (AFLAS (registered trademark) 150 CS, manufactured by Asahi Glass) as fluororubber are blended, 260 ° C. The resin obtained by kneading was prepared.
  • PCTFE Aclar (registered trademark) UltRx 6000, manufactured by Honeywell) and 40 parts by mass of tetrafluoroethylene-propylene rubber (AFLAS (registered trademark) 150 CS, manufactured by Asahi Glass) as fluororubber
  • the material A was used as a base material layer forming material, and an extrusion-formed product was formed by extrusion.
  • a die for extrusion having a diameter of 8 mm and a diameter of 7.5 mm was used.
  • molding die was 6 mm, and the internal diameter was 4 mm.
  • extrusion molding was performed at a die temperature of 220 ° C. and a linear velocity of 10 m / min using an extrusion molding machine with a cylinder diameter of 50 mm ⁇ . After extrusion, an electron beam was irradiated at an irradiation dose of 60 kGy for crosslinking.
  • the resulting extrusion-molded product was sealed using heat and expansion machines, while applying internal pressure while heating and sealing the both ends, and then air-cooling and fixing its shape.
  • the diameter expansion temperature was 120 ° C., and the diameter was increased until the inner diameter reached 12 mm, and the average thickness was 100 ⁇ m. Thus, No. 1 heat recovery article was obtained.
  • No. 6 was produced except that no electron beam irradiation was performed and no crosslinking was performed. In the same manner as No. 1, No. Two heat recovery articles were produced.
  • No. 1 was used except that the material B was used as a base material layer forming material. In the same manner as No. 1, No. Three heat recovery articles were produced.
  • No. 6 was produced except that no electron beam irradiation was performed and no crosslinking was performed. In the same manner as No. 3, no. Four heat recovery articles were produced.
  • the material A is used as a material for forming a base layer, No. 2 having a base layer in the outer layer and an adhesive layer in the inner layer by two-layer extrusion molding. Five heat recovery articles were produced.
  • a die for extrusion having a diameter of 8 mm and a diameter of 7.5 mm was used.
  • molding die was 6 mm, and the internal diameter was 5.8 mm.
  • extrusion molding was performed at a die temperature of 220 ° C. and a linear velocity of 10 m / min using an extrusion molding machine with a cylinder diameter of 50 mm ⁇ . Except for the above, no. In the same manner as No. 1, No. Five heat recovery articles were produced.
  • No. 4 was used except that the material C was used as a base material layer forming material. In the same manner as No. 1, No. Six heat recovery articles were produced.
  • No. 1 was used except that the material D was used as a base material layer forming material.
  • No. 2 in the same manner as No. 2. 7 heat recovery articles were produced.
  • No. 1 was used except that the material E was used as the base material layer forming material.
  • No. 2 in the same manner as No. 2. Eight heat recovery articles were produced.
  • the heat recovery article was in close contact with the object to be covered without a gap.
  • no. No. 5 had good adhesion to the object to be coated. From this, it is considered that the penetration of water from the gap between the coating and the object to be coated can be suppressed in the coating using any of the heat recovery articles.
  • the No. 1 water vapor transmission rate is 0.1 g / m 2 ⁇ day or less. 1 to No.
  • the coating using the heat recovery article of No. 6 can not sufficiently suppress permeation and infiltration of water vapor.
  • the electron beam irradiated crosslinked No. 1 and No. 1 No. 3 heat recovery articles are No. 2 and No.
  • the water vapor transmission rate is low for the heat recovery article of 4. From this, it is understood that the water vapor barrier property of the heat recovery article can be improved by electron beam crosslinking the constituent material of the base material layer.
  • the No. 1 water vapor transmission rate was 0.1 g / m 2 ⁇ day or less. 1 to No. 5 and No. 5 7 to No. It can be seen that in the case of a coating coated with the heat recovery article of No. 8, it is difficult for water vapor to penetrate into the object to be coated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

The heat recovery article according to one embodiment of the present invention is a cylindrical heat recovery article equipped with a substrate layer, wherein the water vapor permeability is 0.1 g/m2∙day or less when the average thickness of the substrate layer after shrinkage is 100 μm.

Description

熱回復物品及びこの熱回復物品により被覆されている被覆体Heat recovery article and cover coated with the heat recovery article
 本発明は、熱回復物品及びこの熱回復物品により被覆されている被覆体に関する。
 本出願は、2017年6月27日出願のPCT国際出願第PCT/JP2017/023644号に基づく優先権を主張し、前記PCT国際出願に記載された全ての記載内容を援用するものである。
The present invention relates to a heat recovery article and a cover coated with the heat recovery article.
This application claims the priority based on PCT International Application No. PCT / JP2017 / 023644 filed on June 27, 2017, and incorporates all the contents described in the PCT International Application.
 食品、医療機器、リチウムイオン等を含む電池、有機ELや液晶等を素材とするディスプレイなど水蒸気に対する耐性が低い製品は、保管あるいは使用時に水蒸気の侵入を防ぐ必要がある。 Products having low resistance to water vapor, such as food, medical equipment, batteries containing lithium ions, displays made of organic EL, liquid crystal, etc. as materials, need to prevent the intrusion of water vapor during storage or use.
 これに対し、高い水蒸気バリア性を有する物質層と接着層とを備えるバリアラベルが提案されている(特開平5-123378号公報参照)。このバリアラベルは、シート状であり、上述の水蒸気に対する耐性が低い製品を収納する容器の周囲に貼付される。そして、このバリアラベルにより容器への水蒸気の侵入が軽減される。 On the other hand, a barrier label comprising a substance layer having high water vapor barrier properties and an adhesive layer has been proposed (see Japanese Patent Application Laid-Open No. 5-123378). This barrier label is in the form of a sheet, and is affixed to the periphery of a container for containing the above-mentioned product having low resistance to water vapor. And, the barrier label reduces the penetration of water vapor into the container.
特開平5-123378号公報Unexamined-Japanese-Patent No. 5-123378
 本発明の一態様に係る熱回復物品は、基材層を備える円筒状の熱回復物品であって、収縮後の基材層の平均厚さを100μmとしたときの水蒸気透過度が0.1g/m・day以下である。 The heat recovery article according to one aspect of the present invention is a cylindrical heat recovery article provided with a base material layer, and the water vapor transmission rate is 0.1 g when the average thickness of the base material layer after shrinkage is 100 μm. / M 2 · day or less.
図1は、本発明の一実施形態の熱回復物品の斜視図である。FIG. 1 is a perspective view of a heat recovery article according to an embodiment of the present invention.
[本開示が解決しようとする課題]
 上記公報に記載のバリアラベルは、シート状のラベルを容器の周囲に貼付するものであるため、端部のつなぎ目からの水蒸気の侵入を免れない。また、上記公報のバリアラベルは、接着層により貼付するため、容器の曲面部分において接着力の不足や剥離により水蒸気が侵入し易い。従って、上記公報に記載のバリアラベルでは、水蒸気の侵入防止効果が十分に高いとは言えない。
[Problems to be solved by the present disclosure]
The barrier label described in the above-mentioned publication adheres a sheet-like label to the periphery of the container, and therefore can not avoid the entry of water vapor from the joint of the end. Further, since the barrier label of the above-mentioned publication is attached by the adhesive layer, water vapor easily infiltrates due to a lack of adhesion or peeling at the curved surface portion of the container. Therefore, it can not be said that the barrier label described in the above publication has a sufficiently high water vapor penetration preventing effect.
 本発明は、上述のような事情に基づいてなされたものであり、被覆が容易であり、かつ水蒸気の侵入防止効果が高い熱回復物品及びこの熱回復物品により被覆されている被覆体を提供することを目的とする。 The present invention has been made based on the circumstances as described above, and provides a heat recovery article which is easy to coat and has a high water vapor penetration preventing effect, and a cover coated with the heat recovery article. The purpose is
[本開示の効果]
 本発明の一態様に係る熱回復物品は、被覆が容易であり、かつ水蒸気の侵入防止効果が高い。従って、この熱回復物品により被覆されている被覆体は、内部へ水蒸気が侵入し難い。
[Effect of the present disclosure]
The heat recovery article according to one aspect of the present invention is easy to coat and has a high water vapor penetration preventing effect. Therefore, the cover coated with the heat recovery article is less susceptible to the penetration of water vapor into the interior.
[本発明の実施形態の説明]
 本発明の一態様に係る熱回復物品は、基材層を備える円筒状の熱回復物品であって、収縮後の基材層の平均厚さを100μmとしたときの水蒸気透過度が0.1g/m・day以下である。
Description of the embodiment of the present invention
The heat recovery article according to one aspect of the present invention is a cylindrical heat recovery article provided with a base material layer, and the water vapor transmission rate is 0.1 g when the average thickness of the base material layer after shrinkage is 100 μm. / M 2 · day or less.
 当該熱回復物品は、収縮により被覆対象物を被覆するので被覆が容易であり、かつ当該熱回復物品が被覆対象物に密着する。また、当該熱回復物品は、円筒状であるのでつなぎ目がない。このため、当該熱回復物品により被覆することで、当該熱回復物品と被覆対象物との間に隙間が生じ難く、水蒸気の侵入を抑止できる。また、当該熱回復物品は、収縮後の基材層の平均厚さを100μmとしたときの水蒸気透過度が上記上限以下であるので、当該熱回復物品を透過して侵入する水蒸気も低減できる。従って、当該熱回復物品は、被覆が容易であり、かつ水蒸気の侵入防止効果が高い。 The heat recovery article coats the coated object by shrinkage, so that the coating is easy and the heat recovery article adheres to the object to be coated. In addition, the heat recovery article is cylindrical and thus has no seam. For this reason, by covering with the said heat recovery article, a crevice does not produce easily between the heat recovery article concerned and a covering subject, and it can control the penetration of water vapor. Moreover, since the water vapor transmission rate when the average thickness of the base material layer after shrinkage is 100 μm is equal to or less than the above-mentioned upper limit, the water vapor which permeates through the heat recovery article can also be reduced. Therefore, the heat recovery article is easy to coat and has a high water vapor penetration preventing effect.
 上記基材層の主成分がポリクロロトリフルオロエチレンであるとよい。ポリクロロトリフルオロエチレンは、水蒸気透過度が低いので、当該熱回復物品を透過して侵入する水蒸気をさらに低減できる。 The main component of the base layer is preferably polychlorotrifluoroethylene. Because polychlorotrifluoroethylene has a low water vapor transmission rate, it can further reduce the water vapor that permeates through the heat recovery article.
 上記基材層の主成分がポリクロロトリフルオロエチレンである場合に、上記基材層がフッ素ゴムをさらに含有してもよい。上記基材層がフッ素ゴムをさらに含有することで、基材層の弾性率が低下し、伸びが大きくなるため、当該熱回復物品を膨張させやすくなる。また、ポリクロロトリフルオロエチレンにフッ素ゴムを配合することで、加熱時にポリクロロトリフルオロエチレンの結晶化の進行を抑制することができる。このため、上記基材層が主成分としてポリクロロトリフルオロエチレンを含み、フッ素ゴムをさらに含有することで、当該熱回復物品は、水蒸気バリア性を維持しつつ、加熱による機能(特に、引張伸び等の機械的特性)の低下を抑制することができる。 When the main component of the base layer is polychlorotrifluoroethylene, the base layer may further contain a fluororubber. When the base material layer further contains a fluororubber, the elastic modulus of the base material layer is reduced and the elongation is increased, so that the heat recovery article is easily expanded. Further, by blending fluororubber with polychlorotrifluoroethylene, it is possible to suppress the progress of crystallization of polychlorotrifluoroethylene at the time of heating. Therefore, by containing the polychlorotrifluoroethylene as the main component of the base material layer and further containing a fluororubber, the heat recovery article can maintain its water vapor barrier property and function (in particular, tensile elongation) by heating. Etc.) can be suppressed.
 上記基材層に含有される樹脂成分における上記フッ素ゴムの含有割合が、10質量%以上50質量%以下であることが好ましい。上記基材層が主成分としてポリクロロトリフルオロエチレンを含み、フッ素ゴムをさらに含有する場合に、上記基材層に含有される樹脂成分における上記フッ素ゴムの含有割合が上記範囲内にあることで、当該熱回復物品の水蒸気バリア性の低下を最小限に抑えつつ、ポリクロロトリフルオロエチレンの結晶化をより良好に抑制でき、当該熱回復物品の機械的特性を維持しやすい。 It is preferable that the content rate of the said fluororubber in the resin component contained in the said base material layer is 10 to 50 mass%. When the base material layer contains polychlorotrifluoroethylene as the main component and further contains a fluororubber, the content ratio of the fluororubber in the resin component contained in the base layer is within the above range The crystallization of polychlorotrifluoroethylene can be better suppressed while minimizing the decrease in water vapor barrier properties of the heat recovery article, and the mechanical properties of the heat recovery article can be easily maintained.
 当該熱回復物品において、上記水蒸気透過度が0.04g/m・day以下であることが好ましい。当該熱回復物品の水蒸気透過度が0.04g/m・day以下であることで、当該熱回復物品を透過して侵入する水蒸気をさらに低減できる。 In the heat recovery article, the water vapor transmission rate is preferably 0.04 g / m 2 · day or less. When the water vapor transmission rate of the heat recovery article is 0.04 g / m 2 · day or less, it is possible to further reduce the water vapor that permeates through the heat recovery article.
 上記基材層が架橋されているとよい。このように基材層の構成材料を架橋することにより、耐熱性が向上する。 The base layer may be crosslinked. By crosslinking the constituent material of the base layer in this manner, the heat resistance is improved.
 上記基材層の架橋が電子線照射による架橋であるとよい。電子線照射架橋は、架橋時間が短いため、製造効率を高めることができる。 It is preferable that the crosslinking of the base material layer be crosslinking by electron beam irradiation. Electron beam irradiation crosslinking can increase the production efficiency because the crosslinking time is short.
 上記基材層の架橋が架橋助剤を介した架橋であるとよい。架橋助剤を用いることで、押出加工性が向上し、また架橋効率が高まる。このため、上記基材層の架橋を架橋助剤を介した架橋とすることで、耐熱性がさらに向上すると共に、加工性が向上するので、当該熱回復物品と被覆対象物との間に隙間をさらに生じ難くできる。従って、水蒸気の侵入がさらに抑止できる。 It is preferable that the crosslinking of the base material layer be crosslinking via a crosslinking aid. By using a crosslinking aid, extrusion processability is improved and crosslinking efficiency is enhanced. For this reason, by making the crosslinking of the above-mentioned base material layer into crosslinking via a crosslinking auxiliary agent, the heat resistance is further improved and the processability is improved, so the gap between the heat recovery article and the object to be coated Can be more difficult to occur. Therefore, the penetration of water vapor can be further suppressed.
 熱回復物品が多層構造を有し、上記多層構造の少なくとも一層が上記基材層により構成されているとよい。このような構成とすることで、基材層により水蒸気の侵入防止効果を高めつつ、他の層によりさらに異なる特性を熱回復物品に付与することができる。 The heat recovery article may have a multilayer structure, and at least one layer of the multilayer structure may be constituted by the base layer. With such a configuration, it is possible to impart further different properties to the heat recovery article by the other layers while enhancing the penetration prevention effect of water vapor by the base material layer.
 本発明の別の態様に係る被覆体は、当該熱回復物品により被覆されている。 The covering according to another aspect of the present invention is covered by the heat recovery article.
 当該被覆体は、当該熱回復物品により被覆されているので、内部へ水蒸気が侵入し難い。従って、当該被覆体は、食品、医療機器、リチウムイオン等を含む電池、有機ELや液晶等を素材とするディスプレイなど水蒸気に対する耐性が低い製品の被覆体として好適に用いられる。 The covering is covered by the heat recovery article, so that the water vapor is less likely to penetrate inside. Accordingly, the coating is suitably used as a coating for products with low resistance to water vapor, such as food, medical devices, batteries containing lithium ions, and displays using organic EL, liquid crystals, etc. as materials.
 ここで、「水蒸気透過度」とは、JIS-K7129(2008)付属書Cに準拠して測定される値である。「収縮後の基材層の平均厚さを100μmとしたときの水蒸気透過度」とは、収縮後の基材層の水蒸気透過度を測定した後、その水蒸気透過度を基材層の平均厚さに基づいて100μm当たりに比例換算した値を指す。また、「主成分」とは、最も含有量の多い成分を意味し、例えば含有量が50質量%以上、好ましくは90%以上の成分をいう。なお、「樹脂成分」とは、高分子化合物からなる物質を指し、ゴム、エラストマーを含む概念である。 Here, the “water vapor permeability” is a value measured in accordance with JIS-K7129 (2008) Appendix C. “The water vapor transmission rate when the average thickness of the base material layer after shrinkage is 100 μm” means the water vapor transmission rate of the base material layer after shrinkage, and then the water vapor transmission rate is the average thickness of the base material layer Refers to proportionally converted value per 100 μm based on The term "main component" means a component having the highest content, for example, a component having a content of 50% by mass or more, preferably 90% or more. In addition, a "resin component" refers to the substance which consists of a high molecular compound, and is the concept containing rubber | gum and an elastomer.
[本発明の実施形態の詳細]
 以下、本発明に係る熱回復物品及びこの熱回復物品により被覆されている被覆体の実施形態について図面を参照しつつ詳説する。
Details of the Embodiment of the Present Invention
Hereinafter, embodiments of a heat recovery article according to the present invention and a cover coated with the heat recovery article will be described in detail with reference to the drawings.
〔熱回復物品〕
 図1の熱回復物品は、円筒状であり、基材層1を備える。
[Heat recovery article]
The heat recovery article of FIG. 1 is cylindrical and comprises a substrate layer 1.
<基材層>
 基材層1は、加熱されることで縮径する円筒状のチューブである。
<Base layer>
The base material layer 1 is a cylindrical tube whose diameter is reduced by heating.
 基材層1の主成分としては、ポリクロロトリフルオロエチレン(PCTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、高密度ポリエチレン(HDPE)等を挙げることができる。中でも水蒸気透過性の観点から、ポリクロロトリフルオロエチレンが好ましい。これらの樹脂は、単独で用いてもよいが、2種以上を組み合わせてもよい。 Examples of the main component of the base material layer 1 include polychlorotrifluoroethylene (PCTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), high density polyethylene (HDPE), and the like. Among them, polychlorotrifluoroethylene is preferable from the viewpoint of water vapor permeability. These resins may be used alone or in combination of two or more.
 上記基材層1の主成分がPCTFEである場合に、基材層1は、フッ素ゴムをさらに含有してもよい。基材層1がフッ素ゴムをさらに含有することで、基材層1の弾性率が低下し、伸びが大きくなるため、当該熱回復物品を膨張させやすくなる。また、PCTFEにフッ素ゴムを配合することで、加熱時にPCTFEの結晶化の進行を抑制することができる。このため、上記基材層1が主成分としてPCTFEを含み、フッ素ゴムをさらに含有することで、当該熱回復物品は、水蒸気バリア性を維持しつつ、加熱による機能(特に、引張伸び等の機械的特性)の低下を抑制することができる。また、本発明の効果を損なわない範囲において、基材層1は、他の樹脂、他のエラストマー等を含有してもよい。 When the main component of the base material layer 1 is PCTFE, the base material layer 1 may further contain fluororubber. When the base material layer 1 further contains a fluororubber, the elastic modulus of the base material layer 1 is decreased and the elongation is increased, so that the heat recovery article is easily expanded. Further, by blending fluororubber with PCTFE, the progress of crystallization of PCTFE can be suppressed at the time of heating. Therefore, by containing PCTFE as the main component of the base material layer 1 and further containing a fluororubber, the heat recovery article can maintain its water vapor barrier property and function by heating (especially, machine such as tensile elongation) Of the physical characteristics) can be suppressed. Moreover, in the range which does not impair the effect of this invention, the base material layer 1 may contain other resin, another elastomer, etc.
 上記フッ素ゴムとしては、例えばフッ化ビニリデンゴム、テトラフルオロエチレン-プロピレンゴム、テトラフルオロエチレン-パーフルオロメチルビニルエーテルゴム等が挙げられる。これらのフッ素ゴムは、単独で用いてもよいが、2種以上を組み合わせてもよい。 Examples of the fluororubber include vinylidene fluoride rubber, tetrafluoroethylene-propylene rubber, tetrafluoroethylene-perfluoromethyl vinyl ether rubber and the like. These fluororubbers may be used alone or in combination of two or more.
 上記基材層1の主成分がPCTFEである場合に、上記基材層1に含有される樹脂成分における上記フッ素ゴムの含有割合の下限としては、10質量%が好ましく、20質量%がより好ましい。上記基材層1に含有される樹脂成分における上記フッ素ゴムの含有割合の上限としては、50質量%が好ましく、40質量%がより好ましい。上記基材層1に含有される樹脂成分における上記フッ素ゴムの含有割合が上記下限に満たないと、PCTFEの結晶化に対する抑制効果が不十分となるおそれがある。一方、上記フッ素ゴムの含有割合が上記上限を超えると、基材層1、ひいては当該熱回復物品の水蒸気バリア性の低下や強度の低下が生じるおそれがある。 When the main component of the base layer 1 is PCTFE, the lower limit of the content of the fluororubber in the resin component contained in the base layer 1 is preferably 10% by mass, and more preferably 20% by mass. . As a maximum of a content rate of the above-mentioned fluororubber in a resin ingredient contained in the above-mentioned base material layer 1, 50 mass% is preferred and 40 mass% is more preferred. If the content ratio of the fluororubber in the resin component contained in the base material layer 1 does not reach the above lower limit, there is a possibility that the suppressing effect on the crystallization of PCTFE may be insufficient. On the other hand, when the content rate of the said fluororubber exceeds the said upper limit, there exists a possibility that the water-vapor-barrier fall of the base material layer 1 and by extension, the said heat recovery articles | goods may fall.
 基材層1は、架橋されているとよい。基材層1の構成材料を架橋することにより、当該熱回復物品の耐熱性及び水蒸気バリア性を向上できる。架橋方法としては、例えば電子線照射による架橋、化学架橋、熱架橋等の方法が挙げられる。中でも架橋時間が短く製造効率の高い電子線照射架橋が好ましい。電子線照射架橋を行う場合、照射線量としては、40kGy以上80kGy以下が好ましい。 The base material layer 1 may be crosslinked. By crosslinking the constituent material of the base layer 1, the heat resistance and the water vapor barrier property of the heat recovery article can be improved. Examples of the crosslinking method include methods such as crosslinking by electron beam irradiation, chemical crosslinking, and thermal crosslinking. Among them, electron beam irradiation crosslinking is preferable because the crosslinking time is short and the production efficiency is high. When electron beam irradiation crosslinking is performed, the irradiation dose is preferably 40 kGy or more and 80 kGy or less.
 また、基材層1の架橋が架橋助剤を介した架橋であるとよい。架橋助剤を用いることで、押出加工性が向上し、また架橋効率が高まる。このため、基材層1の架橋を架橋助剤を介した架橋とすることで、耐熱性がさらに向上すると共に、加工性が向上するので、当該熱回復物品と被覆対象物との間に隙間をさらに生じ難くできる。従って、水蒸気の侵入がさらに抑止できる。 In addition, it is preferable that the crosslinking of the base layer 1 be crosslinking via a crosslinking aid. By using a crosslinking aid, extrusion processability is improved and crosslinking efficiency is enhanced. For this reason, by making crosslinking of the base material layer 1 into crosslinking via a crosslinking aid, the heat resistance is further improved and the processability is improved, so the gap between the heat recovery article and the object to be coated Can be more difficult to occur. Therefore, the penetration of water vapor can be further suppressed.
 上記架橋助剤としては、例えばオキシム化合物、アクリレート又はメタクリレート化合物、ビニル化合物、アリル化合物、マレイミド化合物等が挙げられる。なお、架橋助剤は単独で又は2種以上組み合わせて用いることができる。 As said crosslinking adjuvant, an oxime compound, an acrylate or a methacrylate compound, a vinyl compound, an allyl compound, a maleimide compound etc. are mentioned, for example. In addition, a crosslinking adjuvant can be used individually or in combination of 2 or more types.
 上記オキシム化合物としては、例えばp-キノンジオキシム、p,p’-ジベンゾイルキノンジオキシム等が挙げられる。 Examples of the oxime compound include p-quinonedioxime, p, p'-dibenzoylquinone dioxime and the like.
 上記アクリレート又はメタクリレート化合物としては、例えばジエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、アクリル酸/酸化亜鉛混合物、アリルアクリレート、アリルメタクリレート、トリメタクリルイソシアヌレート等が挙げられる。 Examples of the acrylate or methacrylate compound include diethylene glycol diacrylate, diethylene glycol dimethacrylate, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, acrylic acid / zinc oxide mixture, allyl acrylate, allyl Examples include methacrylate, trimethacrylic isocyanurate and the like.
 上記ビニル化合物としては、例えばジビニルベンゼン、ジビニルトルエン、ジビニルピリジン等が挙げられる。 Examples of the vinyl compound include divinylbenzene, divinyltoluene, divinylpyridine and the like.
 上記アリル化合物としては、例えばヘキサメチレンジアリルナジイミド、ジアリルイタコネート、ジアリルフタレート、ジアリルイソフタレート、ジアリルモノグリシジルイソシアヌレート、トリアリルシアヌレート、トリアリルイソシアヌレート等が挙げられる。 Examples of the allyl compound include hexamethylenediallyl nadiimide, diallyl itaconate, diallyl phthalate, diallyl isophthalate, diallyl monoglycidyl isocyanurate, triallyl cyanurate, triallyl isocyanurate and the like.
 上記マレイミド化合物としては、例えばN,N’-m-フェニレンビスマレイミド、N,N’-(4,4’-メチレンジフェニレン)ジマレイミド等が挙げられる。 Examples of the maleimide compound include N, N'-m-phenylenebismaleimide, N, N '-(4,4'-methylenediphenylene) dimaleimide and the like.
 これらの中でも架橋反応を効果的に促進する観点から、アリル化合物のトリアリルイソシアヌレート(TAIC)、アリル化合物のジアリルモノグリシジルイソシアヌレート(DA-MGIC)、及びアクリレート化合物のトリメチロールプロパントリアクリレート(TMPTA)が好ましい。 Among these, from the viewpoint of effectively promoting the crosslinking reaction, triallyl isocyanurate (TAIC) of allyl compound, diallyl monoglycidyl isocyanurate (DA-MGIC) of allyl compound, and trimethylolpropane triacrylate (TMPTA) of acrylate compound. Is preferred.
 基材層1の平均内径及び平均厚さは、用途等に合わせて適宜選択される。基材層1の熱収縮前の平均内径としては、例えば1mm以上60mm以下とできる。また、基材層1の熱収縮後の平均内径としては、例えば熱収縮前の平均内径の30%以上50%以下とできる。また、基材層1の収縮前の平均厚さとしては、例えば0.1mm以上5mm以下とできる。なお、基材層1の収縮後の平均厚さは、収縮率に応じて変化する。 The average inner diameter and the average thickness of the base material layer 1 are appropriately selected in accordance with the application and the like. The average inner diameter of the base material layer 1 before thermal contraction can be, for example, 1 mm or more and 60 mm or less. Moreover, as an average internal diameter after the heat contraction of the base material layer 1, it can be 30% or more and 50% or less of the average internal diameter before heat contraction, for example. Moreover, as average thickness before shrinkage | contraction of the base material layer 1, it can be set as 0.1 mm or more and 5 mm or less, for example. The average thickness of the base material layer 1 after contraction changes in accordance with the contraction rate.
 収縮後の基材層1の平均厚さを100μmとしたときの水蒸気透過度の上限としては、0.1g/m・dayであり、0.08g/m・dayがより好ましく、0.04g/m・dayがさらに好ましく、0.01g/m・dayが特に好ましい。上記水蒸気透過度が上記上限を超えると、当該熱回復物品の水蒸気の侵入防止効果が不十分となるおそれがある。一方、上記水蒸気透過度の下限としては、特に限定されず低いほどよいが、通常0.003g/m・day程度である。 The upper limit of the water vapor permeability when the average thickness of the base material layer 1 after shrinkage is 100 μm is 0.1 g / m 2 · day, more preferably 0.08 g / m 2 · day, 0. 04 g / m 2 · day is more preferable, and 0.01 g / m 2 · day is particularly preferable. If the water vapor transmission rate exceeds the above upper limit, the effect of the heat recovery article against invading water vapor may be insufficient. On the other hand, the lower limit of the water vapor permeability is not particularly limited and is preferably as low as possible, but it is usually about 0.003 g / m 2 · day.
 基材層1の熱収縮温度の下限としては、80℃が好ましく、100℃がより好ましい。一方、基材層1の熱収縮温度の上限としては、200℃が好ましく、180℃がより好ましい。基材層1の熱収縮温度が上記下限未満であると、当該熱回復物品が高温環境下で使用された場合に軟化し、隙間が生じて水蒸気が侵入し易くなるおそれがある。逆に、基材層1の熱収縮温度が上記上限を超えると、当該熱回復物品を熱収縮させる際に、高熱により被覆対象物を損傷するおそれや、加熱のための熱エネルギーが不要に大きくなり、被覆のコストが上昇するおそれがある。 As a minimum of heat contraction temperature of substrate layer 1, 80 ° C is preferred and 100 ° C is more preferred. On the other hand, as a maximum of heat contraction temperature of substrate layer 1, 200 ° C is preferred and 180 ° C is more preferred. If the heat shrinkable temperature of the base material layer 1 is less than the above lower limit, the heat recovery article may be softened when used under a high temperature environment, and a gap may be generated to facilitate the penetration of water vapor. On the contrary, when the thermal contraction temperature of the substrate layer 1 exceeds the upper limit, there is a possibility that the object to be coated may be damaged by high heat when the thermal recovery article is thermally shrunk, and the thermal energy for heating is unnecessarily large. And the cost of the coating may increase.
 基材層1の2%セカントモジュラスの上限としては、1000MPaが好ましく、800MPaがより好ましく、500MPaがさらに好ましい。上記2%セカントモジュラスが上記上限を超えると、当該熱回復物品の柔軟性が不足し、被覆対象物を被覆した際に被覆対象物との間に隙間が生じ易くなるため、水蒸気の侵入防止効果が不十分となるおそれがある。一方、基材層1の2%セカントモジュラスの下限としては、特に限定されないが、通常100MPa程度である。なお、2%セカントモジュラスは、ASTM-D5223-92に基づき測定される値である。 As a maximum of 2% secant modulus of substrate layer 1, 1000MPa is preferred, 800MPa is more preferred, and 500MPa is still more preferred. When the 2% secant modulus exceeds the above upper limit, the flexibility of the heat recovery article is insufficient, and a gap with the object to be coated is easily formed when the object to be coated is covered, and thus the penetration prevention effect of water vapor May be insufficient. On the other hand, the lower limit of the 2% secant modulus of the base material layer 1 is not particularly limited, but is usually about 100 MPa. The 2% secant modulus is a value measured based on ASTM-D5223-92.
 また、基材層1には水蒸気バリア性を高める目的で、フィラーを添加してもよい。また、難燃性を向上させる目的で難燃剤を添加してもよい。さらに、この基材層1に必要に応じて他の添加剤を添加してもよい。そのような添加剤としては、例えば酸化防止剤、銅害防止剤、滑材、着色剤、熱安定剤、紫外線吸収剤等が挙げられる。 In addition, a filler may be added to the base material layer 1 for the purpose of enhancing the water vapor barrier property. Moreover, you may add a flame retardant for the purpose of improving a flame retardance. Furthermore, other additives may be added to the base layer 1 as required. Examples of such additives include antioxidants, copper inhibitors, lubricants, colorants, heat stabilizers, ultraviolet light absorbers and the like.
(フィラー)
 フィラーとしては、タルク、シリカ、マイカ、クレー、カーボン、アルミナ、炭酸マグネシウム、炭酸カルシウム、炭酸亜鉛、酸化亜鉛、ホウ酸亜鉛、水酸化アルミニウム、水酸化マグネシウム、酸化マグネシウム、水酸化カルシウム、酸化チタン、モンモリロナイト、セルロースナノファイバーなどが挙げられる。
(Filler)
As the filler, talc, silica, mica, clay, carbon, alumina, magnesium carbonate, calcium carbonate, zinc carbonate, zinc oxide, zinc oxide, zinc borate, aluminum hydroxide, magnesium hydroxide, magnesium oxide, calcium hydroxide, titanium oxide, Montmorillonite, cellulose nanofibers and the like can be mentioned.
 基材層1におけるフィラーの含有量の下限としては、樹脂成分100質量部に対して0.1質量部が好ましく、1質量部がより好ましい。一方、上記フィラーの含有量の上限としては、樹脂成分100質量部に対して100質量部が好ましく、80質量部がより好ましい。上記フィラーの含有量が上記下限未満であると、水蒸気バリア性の付与効果が不足するおそれがある。また、上記フィラーの含有量が上記上限を超えると、当該熱回復物品の靭性や伸びが低下するおそれがある。 As a minimum of content of a filler in base material layer 1, 0.1 mass part is preferred to 100 mass parts of resin components, and 1 mass part is more preferred. On the other hand, as an upper limit of content of the said filler, 100 mass parts is preferable with respect to 100 mass parts of resin components, and 80 mass parts is more preferable. If the content of the filler is less than the above lower limit, the effect of providing the water vapor barrier property may be insufficient. Moreover, when content of the said filler exceeds the said upper limit, there exists a possibility that the toughness and elongation of the said heat recovery articles | goods may fall.
(難燃剤)
 難燃剤としては、塩素化パラフィン、塩素化ポリエチレン、塩素化ポリフェニル、パークロルペンタシクロデカン等の塩素系難燃剤、1,2-ビス(2,3,4,5,6-ペンタブロモフェニル)エタン、エチレンビスペンタブロモベンゼン、エチレンビスペンタブロモジフェニル、テトラブロモエタン、テトラブロモビスフェノールA、ヘキサブロモベンゼン、デカブロモビフェニルエーテル、テトラブロモ無水フタル酸、ポリジブロモフェニレンオキサイド、ヘキサブロモシクロデカン、臭化アンモニウム等の臭素系難燃剤、トリアリルホスフェート、アルキルアリルホスフェート、アルキルホスフェート、ジメチルホスフォネート、ホスフォリネート、ハロゲン化ホスフォリネートエステル、トリメチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリブトキシエチルホスフェート、オクチルジフェニルホスフェート、トリクレジルホスフェート、クレジルフェニルホスフェート、トリフェニルホスフェート、トリス(クロロエチル)ホスフェート、トリス(2-クロロプロピル)ホスフェート、トリス(2,3-ジクロロプロピル)ホスフェート、トリス(2,3-ジブロモプロピル)ホスフェート、トリス(ブロモクロロプロピル)ホスフェート、ビス(2,3-ジブロモプロピル)2,3-ジクロロプロピルホスフェート、ビス(クロロプロピル)モノオクチルホスフェート、ポリホスホネート、ポリホスフェート、芳香族ポリホスフェート、ジブロモネオペンチルグリコール、トリス(ジエチルホスフィン酸)アルミニウム等のリン酸エステル又はリン化合物、ホスホネート型ポリオール、ホスフェート型ポリオール、ハロゲン元素等のポリオール類、メラミンシアヌレート、トリアジン、イソシアヌレート、尿素、グアニジン等の窒素化合物、シリコーン系ポリマー、フェロセン、フマル酸、マレイン酸等のその他の化合物などが挙げられる。これらの中でも、臭素系難燃剤、塩素系難燃剤等のハロゲン系難燃剤が好ましい。臭素系難燃剤及び塩素系難燃剤は単独で使用しても2種以上を併用してもよい。
(Flame retardants)
As a flame retardant, chlorinated flame retardants such as chlorinated paraffin, chlorinated polyethylene, chlorinated polyphenyl and perchloropentacyclodecane, 1,2-bis (2,3,4,5,6-pentabromophenyl) Ethane, ethylenebispentabromobenzene, ethylenebispentabromodiphenyl, tetrabromoethane, tetrabromobisphenol A, hexabromobenzene, decabromobiphenyl ether, tetrabromophthalic anhydride, polydibromophenylene oxide, hexabromocyclodecane, ammonium bromide And other brominated flame retardants, triallyl phosphate, alkylallyl phosphate, alkyl phosphate, dimethyl phosphonate, phosphorylate, halogenated phosphorylate ester, trimethyl phosphate, tributyl phosphate Acetate, trioctyl phosphate, tributoxyethyl phosphate, octyl diphenyl phosphate, tricresyl phosphate, cresyl phenyl phosphate, triphenyl phosphate, tris (chloroethyl) phosphate, tris (2-chloropropyl) phosphate, tris (2,3-) Dichloropropyl) phosphate, tris (2,3-dibromopropyl) phosphate, tris (bromochloropropyl) phosphate, bis (2,3-dibromopropyl) 2,3-dichloropropyl phosphate, bis (chloropropyl) monooctyl phosphate, Phosphoric acid salts such as polyphosphonates, polyphosphates, aromatic polyphosphates, dibromoneopentyl glycol, aluminum tris (diethyl phosphinate), etc. And phosphorus compounds, phosphonate type polyols, phosphate type polyols, polyols such as halogen elements, melamine cyanurate, triazine, isocyanurate, nitrogen compounds such as urea and guanidine, silicone polymers, ferrocene, fumaric acid, maleic acid, etc. Other compounds may be mentioned. Among these, halogen-based flame retardants such as bromine-based flame retardants and chlorine-based flame retardants are preferable. The bromine-based flame retardant and the chlorine-based flame retardant may be used alone or in combination of two or more.
 基材層1における難燃剤の含有量の下限としては、樹脂成分100質量部に対して1質量部が好ましく、5質量部がより好ましい。一方、難燃剤の含有量の上限としては、樹脂成分100質量部に対して100質量部が好ましく、80質量部がより好ましい。上記難燃剤の含有量が上記下限未満であると、難燃性付与の効果が得られないおそれがある。また、上記難燃剤の含有量が上記上限を超えると、当該熱回復物品の靭性や伸びが低下するおそれがある。 As a minimum of content of a flame retardant in base material layer 1, 1 mass part is preferred to 100 mass parts of resin components, and 5 mass parts is more preferred. On the other hand, as an upper limit of content of a flame retardant, 100 mass parts is preferred to 100 mass parts of resin components, and 80 mass parts is more preferred. If the content of the flame retardant is less than the above lower limit, the effect of imparting flame retardancy may not be obtained. Moreover, when content of the said flame retardant exceeds the said upper limit, there exists a possibility that the toughness and elongation of the said heat recovery articles | goods may fall.
(酸化防止剤)
 酸化防止剤としては、例えばフェノール系化合物、アミン系化合物、ヒンダードアミン系化合物、ヒンダードフェノール系化合物、サリチル酸誘導体、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物等が挙げられ、特に架橋抑制効果に優れたヒンダードアミン系化合物が好適に使用される。なお、酸化防止剤としては、上述した以外に硫黄系化合物及び亜リン酸エステル系化合物等を単独又は併用で用いることができる。
(Antioxidant)
Examples of the antioxidant include phenol compounds, amine compounds, hindered amine compounds, hindered phenol compounds, salicylic acid derivatives, benzophenone compounds, benzotriazole compounds and the like, and particularly hindered amine compounds excellent in the crosslinking inhibitory effect. The compounds are preferably used. As the antioxidant, in addition to those described above, sulfur compounds and phosphite ester compounds can be used alone or in combination.
 酸化防止剤として用いるフェノール系化合物としては、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、テトラキス-[メチレン-3-(3’5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、6-(4-ヒドロキシ-3,5-ジ-tert-ブチルアニリノ)-2,4-ビス(オクチルチオ)-1,3,5-トリアジン等を挙げることができる。 As a phenol type compound used as an antioxidant, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], tetrakis- [methylene-3- (3′5′-di] -Tert-Butyl-4'-hydroxyphenyl) propionate] methane, triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 6- (4-hydroxy-3) And 3,5-di-tert-butylanilino) -2,4-bis (octylthio) -1,3,5-triazine.
 酸化防止剤として用いるアミン系化合物としては、4,4’-(α、α-ジメチルベンジル)ジフェニルアミン、2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物、6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリン、N-(1,3-ジメチルブチル)-N’-フェニル-1,4-フェニレンジアミン、N-イソプロピル-N’-フェニル-1,4-フェニレンジアミン等を挙げることができる。 Examples of amine compounds used as an antioxidant include 4,4 ′-(α, α-dimethylbenzyl) diphenylamine, polymers of 2,2,4-trimethyl-1,2-dihydroquinoline, 6-ethoxy-2, 2,4-trimethyl-1,2-dihydroquinoline, N- (1,3-dimethylbutyl) -N'-phenyl-1,4-phenylenediamine, N-isopropyl-N'-phenyl-1,4-phenylene Diamine etc. can be mentioned.
 基材層1における酸化防止剤の含有量の下限としては、樹脂成分100質量部に対して1質量部が好ましく、1.5質量部がより好ましい。一方、上記酸化防止剤の含有量の上限としては、樹脂成分100質量部に対して30質量部が好ましく、20質量部がより好ましい。上記酸化防止剤の含有量が上記下限未満であると、基材層1が酸化し易くなり、当該熱回復物品が劣化するおそれがある。逆に、上記酸化防止剤の含有量が上記上限を超えると、ブルーム及びブリードが発生するおそれがある。 The lower limit of the content of the antioxidant in the base material layer 1 is preferably 1 part by mass, and more preferably 1.5 parts by mass with respect to 100 parts by mass of the resin component. On the other hand, as an upper limit of content of the said antioxidant, 30 mass parts is preferable with respect to 100 mass parts of resin components, and 20 mass parts is more preferable. If the content of the antioxidant is less than the above lower limit, the base material layer 1 is easily oxidized, and the heat recovery article may be deteriorated. Conversely, if the content of the antioxidant exceeds the above upper limit, bloom and bleed may occur.
〔熱回復物品の製造方法〕
 当該熱回復物品は、例えば押出成形工程及び拡径工程を備える製造方法により製造することができる。以下に各工程について説明する。
[Method for producing heat recovery article]
The heat recovery article can be manufactured, for example, by a manufacturing method including an extrusion molding step and a diameter expansion step. Each process will be described below.
<押出成形工程>
 押出成形工程では、基材層1を形成するための基材層形成材料を溶融押出成形機を用いて押出成形することで押出成形品を形成する。
<Extrusion molding process>
In the extrusion molding step, a base material layer forming material for forming the base material layer 1 is extrusion molded using a melt extrusion molding machine to form an extrusion molded article.
 上記基材層形成材料は、基材層1の主成分となる樹脂に、必要に応じてフッ素ゴム等の他の樹脂成分、架橋助剤、難燃剤や各種添加剤を加えて、例えば溶融混合機により混合することで調製できる。溶融混合機としては、公知のもの、例えばオープンロール、バンバリーミキサー、加圧ニーダー、単軸混合機、多軸混合機等を使用できる。 The base material layer-forming material may be prepared, for example, by adding other resin components such as fluororubber, a cross-linking aid, a flame retardant and various additives to the resin as the main component of the base layer 1, if necessary. It can be prepared by mixing by machine. As the melt mixer, known ones such as an open roll, a Banbury mixer, a pressure kneader, a single-shaft mixer, a multi-shaft mixer and the like can be used.
 上記基材層形成材料を公知の溶融押出成形機を用いて押出成形することで、押出成形品が形成される。具体的には、基材層1に対応する層を押出す円筒状の空間を有する押出ダイスを用いて押出成形する。これにより押出成形品が得られる。押出成形工程において、基材層形成材料の構成材料を架橋することにより、耐熱性を向上させてもよい。 An extrusion-molded article is formed by extruding the above-mentioned base material layer-forming material using a known melt extruder. Specifically, extrusion is performed using an extrusion die having a cylindrical space for extruding a layer corresponding to the base material layer 1. This gives an extruded product. In the extrusion molding step, the heat resistance may be improved by crosslinking the constituent material of the base material layer forming material.
 押出成形品の寸法は、用途等に応じて設計することができる。押出成形品の平均内径としては、例えば0.4mm以上30mm以下とされ、最大肉厚としては、0.4mm以上10mm以下とされる。 The dimensions of the extrusion can be designed according to the application and the like. The average inner diameter of the extrusion-molded product is, for example, 0.4 mm or more and 30 mm or less, and the maximum thickness is 0.4 mm or more and 10 mm or less.
 押出成形工程におけるダイス温度は、特に限定されないが、例えば基材層1を形成する樹脂材料の融点より10℃以上100℃以下高い温度とすることができる。 The die temperature in the extrusion molding step is not particularly limited, but can be, for example, a temperature higher by 10 ° C. or more and 100 ° C. or less than the melting point of the resin material forming the base material layer 1.
 押出成形工程における押出線速の下限としては、5m/minが好ましく、8m/minがより好ましい。上記押出線速が上記下限未満であると、当該熱回復物品の生産性が不十分となるおそれがある。一方、上記押出線速の上限は特に限定されないが、通常15m/min程度である。 The lower limit of the extrusion linear velocity in the extrusion molding step is preferably 5 m / min, and more preferably 8 m / min. If the extrusion linear velocity is less than the lower limit, the productivity of the heat recovery article may be insufficient. On the other hand, the upper limit of the extrusion linear velocity is not particularly limited, but is usually about 15 m / min.
<拡径工程>
 拡径工程では、上記押出成形品を拡径させて熱回復物品とする。
<Diameter expansion process>
In the diameter expansion step, the extruded product is expanded in diameter to obtain a heat recovery article.
 押出成形品の拡径は、押出成形品をガラス転移温度以上に加熱した状態で内部に圧縮空気を導入する等の方法により所定の内径となるように膨張させた後、冷却して形状を固定させることで行われる。このような押出成形品の拡径は、例えば押出成形品の内径が2倍以上4倍以下となるように行われる。このようにして押出成形品を拡径させて形状固定したものが当該熱回復物品となる。 The expanded diameter of the extrusion-molded product is expanded to a predetermined inner diameter by a method such as introducing compressed air inside while the extrusion-molded product is heated to the glass transition temperature or more, and then cooled to fix the shape. It is done by Such diameter expansion of the extrusion-molded product is performed, for example, such that the inner diameter of the extrusion-molded product is 2 or more and 4 or less. Thus, the heat recovery article is obtained by expanding and fixing the shape of the extrusion-molded product.
〔被覆体〕
 当該被覆体は、被覆対象物が当該熱回復物品により被覆されて構成される。
[Covered]
The covering is configured by covering the object to be covered with the heat recovery article.
 当該被覆体の被覆対象物としては、特に限定されないが、例えば食品、医療機器、リチウムイオン等を含む電池、有機ELや液晶等を素材とするディスプレイなどを挙げることができる。中でも医療機器や電池が好適であり、ウェアラブル用途に用いられるものが特に好適である。これらは特に水蒸気に曝されやすい環境にあり、かつ水蒸気に対する耐性が低いため、当該熱回復物品の被覆により水蒸気の侵入を防止する効果が高い。 The object to be covered with the cover is not particularly limited, and examples thereof include food, medical devices, batteries including lithium ion and the like, and displays using organic EL and liquid crystal as materials. Among them, medical devices and batteries are preferable, and those used for wearable applications are particularly preferable. Since these are particularly in an environment susceptible to water vapor and have low resistance to water vapor, the coating of the heat recovery article is highly effective in preventing the intrusion of water vapor.
 当該被覆体は、例えば被覆対象物挿入工程と、熱回復物品加熱工程と、冷却工程とを備える製造方法により製造できる。 The said coating can be manufactured, for example by the manufacturing method provided with a covering object insertion process, a heat recovery article heating process, and a cooling process.
 まず、被覆対象物挿入工程で、被覆対象物を覆うように当該熱回復物品を被せる。具体的には円筒状の当該熱回復物品の端部から被覆対象物を挿入する。 First, in the covering object insertion step, the heat recovery article is covered so as to cover the covering object. Specifically, the object to be coated is inserted from the end of the heat recovery article having a cylindrical shape.
 次に、熱回復物品加熱工程で、当該熱回復物品を加熱し、熱収縮させる。 Next, in the heat recovery article heating step, the heat recovery article is heated and thermally shrunk.
 上記加熱方法としては、例えば当該熱回復物品をヒートガン等で加熱する方法が挙げられる。また、加熱温度は、当該熱回復物品の熱収縮温度により決まるが、例えば100℃以上200℃以下である。また、加熱時間としては、当該熱回復物品が十分に収縮する時間であればよく、例えば10秒以上15分以下とできる。 Examples of the heating method include a method of heating the heat recovery article with a heat gun or the like. The heating temperature is determined by the heat shrinkage temperature of the heat recovery article, and is, for example, 100 ° C. or more and 200 ° C. or less. Further, the heating time may be any time as long as the heat recovery article contracts sufficiently, and can be, for example, 10 seconds to 15 minutes.
 また、この熱回復物品加熱工程で、熱回復物品の両端についても加熱収縮させて両端部を閉じることで、被覆対象物を熱回復物品内部に封止するとよい。このように被覆対象物を熱回復物品内部に封止することで、より確実に水蒸気の侵入を防止できる。 Further, in the heat recovery article heating step, the coated object may be sealed inside the heat recovery article by heat shrinking both ends of the heat recovery article and closing the both ends. By sealing the object to be coated inside the heat recovery article in this way, it is possible to more reliably prevent the entry of water vapor.
 最後に、冷却工程で、熱収縮後の当該熱回復物品を冷却する。冷却方法としては、特に限定されないが、例えば自然放置による冷却や冷風等による強制冷却を利用することができる。この冷却により、当該熱回復物品の形状を固定させることができる。 Finally, in the cooling step, the heat recovery article after heat contraction is cooled. The cooling method is not particularly limited. For example, cooling by natural standing or forced cooling by cold air can be used. This cooling can fix the shape of the heat recovery article.
〔利点〕
 当該熱回復物品は、収縮により被覆対象物を被覆するので被覆が容易であり、かつ当該熱回復物品が被覆対象物に密着する。また、当該熱回復物品は、円筒状であるのでつなぎ目がない。このため、当該熱回復物品により被覆することで、当該熱回復物品と被覆対象物との間に隙間が生じ難く、水蒸気の侵入を抑止できる。また、当該熱回復物品は、収縮後の基材層1の平均厚さを100μmとしたときの水蒸気透過度が0.1g/m・day以下であるので、当該熱回復物品を透過して侵入する水蒸気も低減できる。従って、当該熱回復物品は、被覆が容易であり、かつ水蒸気の侵入防止効果が高い。
〔advantage〕
The heat recovery article coats the coated object by shrinkage, so that the coating is easy and the heat recovery article adheres to the object to be coated. In addition, the heat recovery article is cylindrical and thus has no seam. For this reason, by covering with the said heat recovery article, a crevice does not produce easily between the heat recovery article concerned and a covering subject, and it can control the penetration of water vapor. Moreover, since the water vapor transmission rate is 0.1 g / m 2 · day or less when the average thickness of the base material layer 1 after shrinkage is 100 μm, the heat recovery article penetrates the heat recovery article. Invasive water vapor can also be reduced. Therefore, the heat recovery article is easy to coat and has a high water vapor penetration preventing effect.
 当該被覆体は、当該熱回復物品により被覆されているので、内部へ水蒸気が侵入し難い。従って、当該被覆体は、食品、医療機器、リチウムイオン等を含む電池、有機ELや液晶等を素材とするディスプレイなど水蒸気に対する耐性が低い製品の被覆体として好適に用いられる。 The covering is covered by the heat recovery article, so that the water vapor is less likely to penetrate inside. Accordingly, the coating is suitably used as a coating for products with low resistance to water vapor, such as food, medical devices, batteries containing lithium ions, and displays using organic EL, liquid crystals, etc. as materials.
[その他の実施形態]
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
Other Embodiments
It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is not limited to the configuration of the above embodiment, but is shown by the claims, and is intended to include all modifications within the meaning and scope equivalent to the claims.
 本発明の熱回復物品は、多層構造を有して、この多層構造の少なくとも一層が上記基材層により構成されているものでもよい。例えば、本発明の熱回復物品は、基材層の内周面に積層される接着剤層を備えてもよい。この接着剤層は、被覆対象物の被着部分と基材層との密着性を高め、水蒸気の侵入抑止効果を向上させるためのものである。 The heat recovery article of the present invention may have a multilayer structure, and at least one layer of the multilayer structure may be constituted by the above-mentioned base material layer. For example, the heat recovery article of the present invention may comprise an adhesive layer laminated to the inner circumferential surface of the base layer. This adhesive layer is for enhancing the adhesion between the adhered portion of the object to be coated and the substrate layer, and for improving the effect of suppressing the penetration of water vapor.
 この接着剤層の主成分としては、例えばポリオレフィン、ポリアミド等を用いることができる。このポリアミドは電子線照射等により架橋されていてもよい。また、上記接着剤層は、粘度特性改良剤、劣化抑制剤、難燃剤、滑材、着色剤、熱安定剤、紫外線吸収剤、粘着剤等の添加剤を含んでもよい。 As a main component of this adhesive layer, polyolefin, polyamide etc. can be used, for example. The polyamide may be crosslinked by electron beam irradiation or the like. In addition, the adhesive layer may contain additives such as a viscosity characteristic improver, a deterioration inhibitor, a flame retardant, a lubricant, a colorant, a heat stabilizer, an ultraviolet absorber, and an adhesive.
 上記接着剤層の平均厚さ及び平均長さは、収縮後の基材層の内部を充填できる接着剤量が確保でき、かつ当該熱回復物品の内側に被覆対象物が格納可能なように決定される。このような観点から、例えば上記接着剤層の平均厚さとしては、基材層の平均厚さの5%以上90%以下とできる。また、上記接着剤層の平均長さとしては、基材層の平均長さと同等とできる。 The average thickness and the average length of the adhesive layer are determined so that the amount of adhesive capable of filling the inside of the base material layer after shrinkage can be secured, and the object to be covered can be stored inside the heat recovery article. Be done. From such a viewpoint, for example, the average thickness of the adhesive layer can be 5% or more and 90% or less of the average thickness of the base material layer. The average length of the adhesive layer can be equivalent to the average length of the base layer.
 基材層と接着剤層とを備える熱回復物品は、例えば基材層と接着剤層とを個別に押出成形することで形成できる。この場合の熱回復物品は、押出成形後に膨張させた基材層の内周面に接着剤層を配設し、これを被覆対象物に被着させた上で基材層を収縮させることにより使用される。 The heat recovery article comprising the base layer and the adhesive layer can be formed, for example, by extruding the base layer and the adhesive layer separately. In the heat recovery article in this case, the adhesive layer is disposed on the inner peripheral surface of the base layer expanded after extrusion molding, and this is adhered to the object to be coated and then the base layer is shrunk. used.
 また、上記実施形態では熱回復物品の両端部を加熱収縮させて、被覆対象物を熱回復物品内部に封止する方法を説明したが、両端部は接着剤層を用いて封止してもよい。 Further, although the method of sealing the coated object inside the heat recovery article by heating and shrinking both ends of the heat recovery article has been described in the above embodiment, even if the both ends are sealed using an adhesive layer Good.
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be more specifically described by way of examples, but the present invention is not limited to the following examples.
[熱回復物品の製造]
 下記に説明する材料A、材料B、及び材料Cの3種類の基材層形成材料を準備した。
[Manufacturing of heat recovery articles]
Three types of base material layer forming materials of the material A, the material B, and the material C described below were prepared.
(材料A)
 材料Aとして、PCTFE(ダイキン社製ネオフロンPCTFE M-300P)を準備した。
(Material A)
As a material A, PCTFE (Neoflon PCTFE M-300P manufactured by Daikin Industries, Ltd.) was prepared.
(材料B)
 材料Bとして、PCTFE100重量部を設定温度220℃のロール混合機にて加熱溶融させ、架橋助剤としてTAIC(日本化成社製)を5重量部練り込んだ後、ペレタイズしたものを準備した。
(Material B)
As material B, 100 parts by weight of PCTFE was heated and melted by a roll mixer at a set temperature of 220 ° C., and 5 parts by weight of TAIC (manufactured by Nippon Kasei Co., Ltd.) was kneaded as a crosslinking aid and pelletized.
(材料C)
 材料Cとして、ポリエチレン(タフマーDF110、三井化学製、融点94℃、MFR(190℃、2.16kgf)=1.2g/10分)を準備した。
(Material C)
As material C, polyethylene (Tafmer DF110, manufactured by Mitsui Chemicals, melting point 94 ° C., MFR (190 ° C., 2.16 kgf) = 1.2 g / 10 min) was prepared.
(材料D)
 材料Dとして、PCTFE(Aclar(登録商標) UltRx6000、ハネウェル製)80質量部及びフッ素ゴムとしてのテトラフルオロエチレン-プロピレンゴム(AFLAS(登録商標) 150CS、旭硝子製)20質量部を配合し、260℃で混練して得た樹脂を準備した。
(Material D)
As material D, 80 parts by mass of PCTFE (Aclar (registered trademark) UltRx 6000, manufactured by Honeywell) and 20 parts by mass of tetrafluoroethylene-propylene rubber (AFLAS (registered trademark) 150 CS, manufactured by Asahi Glass) as fluororubber are compounded at 260 ° C. The resin obtained by kneading was prepared.
(材料E)
 材料Eとして、PCTFE(Aclar(登録商標) UltRx6000、ハネウェル製)60質量部及びフッ素ゴムとしてのテトラフルオロエチレン-プロピレンゴム(AFLAS(登録商標) 150CS、旭硝子製)40質量部を配合し、260℃で混練して得た樹脂を準備した。
(Material E)
As material E, 60 parts by mass of PCTFE (Aclar (registered trademark) UltRx 6000, manufactured by Honeywell) and 40 parts by mass of tetrafluoroethylene-propylene rubber (AFLAS (registered trademark) 150 CS, manufactured by Asahi Glass) as fluororubber are blended, 260 ° C. The resin obtained by kneading was prepared.
<No.1>
 基材層形成材料として材料Aを用い、押出成形により押出成形品を形成した。押出成形には、ダイスの直径が8mmであり、ポイントの直径が7.5mmである押出成形用ダイを用いた。なお、この成形用ダイにより押出される成形体の外径は6mm、内径は4mmであった。また、押出成形は、シリンダー径50mmφの押出成形機を用い、ダイス温度220℃で、線速10m/minで行った。押出成形後、電子線を60kGyの照射線量で照射して架橋させた。
<No. 1>
The material A was used as a base material layer forming material, and an extrusion-formed product was formed by extrusion. For extrusion, a die for extrusion having a diameter of 8 mm and a diameter of 7.5 mm was used. In addition, the outer diameter of the molded object extruded by this shaping | molding die was 6 mm, and the internal diameter was 4 mm. Moreover, extrusion molding was performed at a die temperature of 220 ° C. and a linear velocity of 10 m / min using an extrusion molding machine with a cylinder diameter of 50 mmφ. After extrusion, an electron beam was irradiated at an irradiation dose of 60 kGy for crosslinking.
 得られた押出成形品を加圧膨張機を用いて、両端を封止して加熱しながら内圧をかけ、拡径させた後に空冷して形状固定した。なお拡径温度は120℃として、内径が12mmになるまで拡径し、平均厚みを100μmとした。このようにしてNo.1の熱回復物品を得た。 The resulting extrusion-molded product was sealed using heat and expansion machines, while applying internal pressure while heating and sealing the both ends, and then air-cooling and fixing its shape. The diameter expansion temperature was 120 ° C., and the diameter was increased until the inner diameter reached 12 mm, and the average thickness was 100 μm. Thus, No. 1 heat recovery article was obtained.
<No.2>
 電子線照射を行わず架橋させなかった以外は、No.1と同様にしてNo.2の熱回復物品を製造した。
<No. 2>
No. 6 was produced except that no electron beam irradiation was performed and no crosslinking was performed. In the same manner as No. 1, No. Two heat recovery articles were produced.
<No.3>
 基材層形成材料として材料Bを用いた以外は、No.1と同様にしてNo.3の熱回復物品を製造した。
<No. 3>
No. 1 was used except that the material B was used as a base material layer forming material. In the same manner as No. 1, No. Three heat recovery articles were produced.
<No.4>
 電子線照射を行わず架橋させなかった以外は、No.3と同様にしてNo.4の熱回復物品を製造した。
<No. 4>
No. 6 was produced except that no electron beam irradiation was performed and no crosslinking was performed. In the same manner as No. 3, no. Four heat recovery articles were produced.
<No.5>
 基材層形成材料として材料Aを用い、2層押出成形により外層に基材層、内層に接着層を有するNo.5の熱回復物品を製造した。なお、接着層形成材料としては、ポリエチレン(三井化学製タフマーDF810、融点=66℃、MFR(190℃、2.16kgf)=1.2g/10分)を用いた。押出成形には、ダイスの直径が8mmであり、ポイントの直径が7.5mmである押出成形用ダイを用いた。なお、この成形用ダイにより押出される成形体の外径は6mm、内径は5.8mmであった。基材層と接着層との平均厚みの比は1:1とした。また、押出成形は、シリンダー径50mmφの押出成形機を用い、ダイス温度220℃で、線速10m/minで行った。上記以外は、No.1と同様にしてNo.5の熱回復物品を製造した。
<No. 5>
The material A is used as a material for forming a base layer, No. 2 having a base layer in the outer layer and an adhesive layer in the inner layer by two-layer extrusion molding. Five heat recovery articles were produced. In addition, polyethylene (Tafmer DF810 made by Mitsui Chemicals, melting point = 66 ° C., MFR (190 ° C., 2.16 kgf) = 1.2 g / 10 min) was used as the adhesive layer forming material. For extrusion, a die for extrusion having a diameter of 8 mm and a diameter of 7.5 mm was used. In addition, the outer diameter of the molded object extruded by this shaping | molding die was 6 mm, and the internal diameter was 5.8 mm. The ratio of the average thickness of the substrate layer to the adhesive layer was 1: 1. Moreover, extrusion molding was performed at a die temperature of 220 ° C. and a linear velocity of 10 m / min using an extrusion molding machine with a cylinder diameter of 50 mmφ. Except for the above, no. In the same manner as No. 1, No. Five heat recovery articles were produced.
<No.6>
 基材層形成材料として材料Cを用いた以外は、No.1と同様にしてNo.6の熱回復物品を製造した。
<No. 6>
No. 4 was used except that the material C was used as a base material layer forming material. In the same manner as No. 1, No. Six heat recovery articles were produced.
<No.7>
 基材層形成材料として材料Dを用いた以外は、No.2と同様にしてNo.7の熱回復物品を製造した。
<No. 7>
No. 1 was used except that the material D was used as a base material layer forming material. No. 2 in the same manner as No. 2. 7 heat recovery articles were produced.
<No.8>
 基材層形成材料として材料Eを用いた以外は、No.2と同様にしてNo.8の熱回復物品を製造した。
<No. 8>
No. 1 was used except that the material E was used as the base material layer forming material. No. 2 in the same manner as No. 2. Eight heat recovery articles were produced.
[被覆体の製造]
 No.1からNo.8の熱回復物品を用い、被覆対象物を5mmφのアルミロッドとして被せて、120℃の温度で熱収縮することにより、被覆体を製造した。
[Manufacture of a covering]
No. 1 to No. Using the heat recovery article of No. 8, the coated object was covered as a 5 mmφ aluminum rod, and the coated body was manufactured by heat shrinking at a temperature of 120 ° C.
 目視により外観を観察したところ、いずれの被覆体においても熱回復物品は、被覆対象物に対して隙間なく密着していた。特に、接着層を有するNo.5は、被覆対象物への密着が良好であった。このことから、いずれの熱回復物品を用いた被覆体においても被覆体と被覆対象物との隙間からの水の浸入は抑止できていると考えられる。 As a result of visual observation of the appearance, in any of the coverings, the heat recovery article was in close contact with the object to be covered without a gap. In particular, no. No. 5 had good adhesion to the object to be coated. From this, it is considered that the penetration of water from the gap between the coating and the object to be coated can be suppressed in the coating using any of the heat recovery articles.
[評価用シートの製造]
 No.1からNo.8の熱回復物品の特性を評価する目的で、No.1からNo.8と同じ構成のシートを準備した。シートは、プレス装置を用いて、温度220℃、予熱時間5分、加圧時間10分の条件にて100mm×100mm×100μm厚にて作製した。No.1、No.3及びNo.6については、熱回復物品の製造の場合と同様に電子線を60kGyの照射線量にて照射して架橋を行った。
[Production of evaluation sheet]
No. 1 to No. For the purpose of evaluating the characteristics of the heat recovery article of No. 8, No. 8 1 to No. A sheet of the same configuration as 8 was prepared. The sheet was produced with a press apparatus at a temperature of 220 ° C., a preheating time of 5 minutes, and a pressurizing time of 10 minutes in a thickness of 100 mm × 100 mm × 100 μm. No. 1, No. 3 and No. As for No. 6, in the same manner as in the production of the heat recovery article, crosslinking was performed by irradiating an electron beam at an irradiation dose of 60 kGy.
[評価]
(水蒸気透過度)
 このようにして得たNo.1からNo.8のシートについて、JIS-K7129(2008)付属書Cを参考にした差圧法とよばれる方法にて水蒸気透過度を測定した。環境条件は、温度40℃、湿度95%とした。結果を表1に示す。
[Evaluation]
(Water vapor permeability)
Thus obtained No. 1 to No. With respect to the sheet of No. 8, the water vapor transmission rate was measured by a method called differential pressure method with reference to JIS-K7129 (2008) Appendix C. The environmental conditions were a temperature of 40 ° C. and a humidity of 95%. The results are shown in Table 1.
(引張伸び残率)
 上記No.1からNo.8のシートのうちNo.2、No.7及びNo.8のシートについて、JIS-K7127(1995)に従ってシートから試験片を作製し、島津製作所社のオートグラフ「AG-1」を用いてシートの引張伸びE1を測定した。次に、これらのシートを175℃で5分間加熱した。続いて、加熱後のシートから同様に試験片を作製し、同様の方法で加熱後のシートの引張伸びE2を測定した。No.2、No.7及びNo.8の各シートについて、下記式に従い、引張伸び残率(%)を求めた。結果を表1に示す。
 引張伸び残率(%)=(E2/E1)×100
(Tensile elongation residual rate)
The above No. 1 to No. No. 8 out of 8 sheets. 2, No. 7 and No. For the sheet No. 8, test pieces were prepared from the sheet according to JIS-K7127 (1995), and the tensile elongation E1 of the sheet was measured using an autograph “AG-1” manufactured by Shimadzu Corporation. The sheets were then heated to 175 ° C. for 5 minutes. Subsequently, test pieces were similarly produced from the sheet after heating, and the tensile elongation E2 of the sheet after heating was measured in the same manner. No. 2, No. 7 and No. The tensile elongation residual ratio (%) was determined for each of the eight sheets according to the following equation. The results are shown in Table 1.
Tensile elongation residual ratio (%) = (E2 / E1) × 100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、基材層の厚さが100μmであるNo.1からNo.4及びNo.7からNo.8は水蒸気透過度が0.1g/m・dayを下回り良好であることが分かる。また、基材層の厚さが50μmであるNo.5においても、水蒸気透過度が0.1g/m・dayを下回り、厚さ100μmとしたときの水蒸気透過度は0.1g/m・day以下であると言える。一方、No.6では、水蒸気透過度が0.1g/m・dayを上回った。このことから、基材層の平均厚さを100μmとしたときの水蒸気透過度が0.1g/m・day以下であるNo.1からNo.5の熱回復物品を用いた被覆体では、熱回復物品を透過して侵入する水蒸気を抑止できるのに対し、No.6の熱回復物品を用いた被覆体では、透過して侵入する水蒸気を十分に抑止できないと考えられる。 From Table 1, No. 1 in which the thickness of the base material layer is 100 μm. 1 to No. 4 and No. 4 7 to No. It is understood that No. 8 has a water vapor permeability of less than 0.1 g / m 2 · day and is good. In addition, No. 1 in which the thickness of the base material layer is 50 μm. Also in 5, the water vapor transmission rate is less than 0.1 g / m 2 · day, and when the thickness is 100 μm, it can be said that the water vapor transmission rate is 0.1 g / m 2 · day or less. On the other hand, no. In No. 6, the water vapor permeability exceeded 0.1 g / m 2 · day. From this, when the average thickness of the base material layer is 100 μm, the No. 1 water vapor transmission rate is 0.1 g / m 2 · day or less. 1 to No. In the case of the covering using the heat recovery article of No. 5, while the water vapor which permeates through the heat recovery article can be suppressed, no. It is considered that the coating using the heat recovery article of No. 6 can not sufficiently suppress permeation and infiltration of water vapor.
 さらに詳細に見ると、電子線照射架橋を行ったNo.1及びNo.3の熱回復物品は、No.2及びNo.4の熱回復物品に対して水蒸気透過度が低い。このことから、基材層の構成材料を電子線架橋することにより、熱回復物品の水蒸気バリア性を向上できることが分かる。 In more detail, the electron beam irradiated crosslinked No. 1 and No. 1 No. 3 heat recovery articles are No. 2 and No. The water vapor transmission rate is low for the heat recovery article of 4. From this, it is understood that the water vapor barrier property of the heat recovery article can be improved by electron beam crosslinking the constituent material of the base material layer.
 また、フッ素ゴムを配合したNo.7及びNo.8では、フッ素ゴムを配合していないNo.2と比較して、水蒸気透過度の数値の上昇が抑制されつつ、加熱後の引張伸び残率が大きい。このことから、PCTFEにフッ素ゴムをさらに含有させた基材層を用いることで、水蒸気透過度が低く、かつ加熱した際にも機能低下が抑制される熱回復物品が得られることがわかる。 In addition, No. 1 blended with fluoro rubber. 7 and No. In No. 8, no. Compared with 2, the tensile elongation residual rate after heating is large while the increase in the water vapor permeability numerical value is suppressed. From this, it is understood that, by using the base material layer in which the fluorocarbon rubber is further contained in PCTFE, it is possible to obtain a heat-recoverable article having a low water vapor transmission rate and suppressing functional deterioration even when heated.
 以上から、水蒸気透過度が0.1g/m・day以下としたNo.1からNo.5及びNo.7からNo.8の熱回復物品を用いて被覆した被覆体では被覆対象物へ水蒸気が侵入し難いことが分かる。 From the above, the No. 1 water vapor transmission rate was 0.1 g / m 2 · day or less. 1 to No. 5 and No. 5 7 to No. It can be seen that in the case of a coating coated with the heat recovery article of No. 8, it is difficult for water vapor to penetrate into the object to be coated.
1 基材層 1 Base layer

Claims (10)

  1.  基材層を備える円筒状の熱回復物品であって、
     収縮後の基材層の平均厚さを100μmとしたときの水蒸気透過度が0.1g/m・day以下である熱回復物品。
    A cylindrical heat recovery article comprising a substrate layer, comprising:
    The heat recovery article whose water vapor transmission rate is 0.1 g / m 2 · day or less when the average thickness of the base material layer after shrinkage is 100 μm.
  2.  上記基材層の主成分がポリクロロトリフルオロエチレンである請求項1に記載の熱回復物品。 The heat recovery article according to claim 1, wherein the main component of the substrate layer is polychlorotrifluoroethylene.
  3.  上記基材層がフッ素ゴムをさらに含有する請求項2に記載の熱回復物品。 The heat recovery article according to claim 2, wherein the base material layer further contains a fluororubber.
  4.  上記基材層に含有される樹脂成分における上記フッ素ゴムの含有割合が、10質量%以上50質量%以下である請求項3に記載の熱回復物品。 The heat recovery article according to claim 3, wherein a content ratio of the fluororubber in a resin component contained in the base material layer is 10% by mass or more and 50% by mass or less.
  5.  上記水蒸気透過度が0.04g/m・day以下である請求項1から請求項4のいずれか1項に記載の熱回復物品。 The heat recovery article according to any one of claims 1 to 4, wherein the water vapor transmission rate is 0.04 g / m 2 · day or less.
  6.  上記基材層が架橋されている請求項1から請求項5のいずれか1項に記載の熱回復物品。 The heat recovery article according to any one of claims 1 to 5, wherein the base material layer is crosslinked.
  7.  上記基材層の架橋が電子線照射による架橋である請求項6に記載の熱回復物品。 The heat recovery article according to claim 6, wherein the crosslinking of the base material layer is crosslinking by electron beam irradiation.
  8.  上記基材層の架橋が架橋助剤を介した架橋である請求項6又は請求項7に記載の熱回復物品。 The heat recovery article according to claim 6 or 7, wherein the crosslinking of the base material layer is crosslinking via a crosslinking coagent.
  9.  多層構造を有し、
     上記多層構造の少なくとも一層が上記基材層により構成される請求項1から請求項8のいずれか1項に記載の熱回復物品。
    Has a multilayer structure,
    The heat recovery article according to any one of claims 1 to 8, wherein at least one layer of the multilayer structure is constituted by the base material layer.
  10.  請求項1から請求項9のいずれか1項に記載の熱回復物品により被覆されている被覆体。 A cover coated with the heat recovery article according to any one of the preceding claims.
PCT/JP2018/012198 2017-06-27 2018-03-26 Heat recovery article and covered body covered by said heat recovery article WO2019003527A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2017/023644 2017-06-27
PCT/JP2017/023644 WO2019003319A1 (en) 2017-06-27 2017-06-27 Heat recovery article and covered body covered by said heat recovery article

Publications (1)

Publication Number Publication Date
WO2019003527A1 true WO2019003527A1 (en) 2019-01-03

Family

ID=64740532

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/023644 WO2019003319A1 (en) 2017-06-27 2017-06-27 Heat recovery article and covered body covered by said heat recovery article
PCT/JP2018/012198 WO2019003527A1 (en) 2017-06-27 2018-03-26 Heat recovery article and covered body covered by said heat recovery article

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023644 WO2019003319A1 (en) 2017-06-27 2017-06-27 Heat recovery article and covered body covered by said heat recovery article

Country Status (1)

Country Link
WO (2) WO2019003319A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178454A (en) * 1984-02-25 1985-09-12 Canon Inc Image bearing member
US4544721A (en) * 1983-10-06 1985-10-01 E. I. Du Pont De Nemours And Company Chlorotriflouroethylene polymer oriented films
JPH06511271A (en) * 1991-09-27 1994-12-15 アライド−シグナル・インコーポレーテッド High barrier PCTFE film
JPH0772740A (en) * 1993-09-03 1995-03-17 Minolta Co Ltd Image forming device
WO2002102572A1 (en) * 2001-05-30 2002-12-27 Daikin Industries, Ltd. Method for producing polytetrafluoroethylene resin formed product and resin formed product
JP2004122734A (en) * 2002-10-07 2004-04-22 Mitsubishi Plastics Ind Ltd Method for fabricating molded article and fabricated article
JP2014125561A (en) * 2012-12-26 2014-07-07 Kureha Corp Vinylidene chloride copolymer composition of plant origin, and heat-shrinkable film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160102252A (en) * 2013-12-23 2016-08-29 솔베이 스페셜티 폴리머스 이태리 에스.피.에이. Blister packages

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544721A (en) * 1983-10-06 1985-10-01 E. I. Du Pont De Nemours And Company Chlorotriflouroethylene polymer oriented films
JPS60178454A (en) * 1984-02-25 1985-09-12 Canon Inc Image bearing member
JPH06511271A (en) * 1991-09-27 1994-12-15 アライド−シグナル・インコーポレーテッド High barrier PCTFE film
JPH0772740A (en) * 1993-09-03 1995-03-17 Minolta Co Ltd Image forming device
WO2002102572A1 (en) * 2001-05-30 2002-12-27 Daikin Industries, Ltd. Method for producing polytetrafluoroethylene resin formed product and resin formed product
JP2004122734A (en) * 2002-10-07 2004-04-22 Mitsubishi Plastics Ind Ltd Method for fabricating molded article and fabricated article
JP2014125561A (en) * 2012-12-26 2014-07-07 Kureha Corp Vinylidene chloride copolymer composition of plant origin, and heat-shrinkable film

Also Published As

Publication number Publication date
WO2019003319A1 (en) 2019-01-03

Similar Documents

Publication Publication Date Title
JP6613147B2 (en) Heat recovery component, wire bundle, and insulated wire coating method
JP6595064B2 (en) Multilayer heat recovery article, wire splice and wire harness, and method for producing adhesive for multilayer heat recovery article
US20100034939A1 (en) Ovenable film
WO2009125623A1 (en) Flame-retardant tube and heat-shrinkable tube made by using the same
TW201120199A (en) An insulating tube and a heat shrinkable tube
US9692222B2 (en) Heat-recoverable article, wire splice, and wire harness
JP7041617B2 (en) Battery packaging materials, their manufacturing methods, and batteries
JPWO2008114731A1 (en) Resin composition used for heat-shrinkable member, heat-shrinkable tube comprising the resin composition, and member coated with the tube
US20190351639A1 (en) Heat-resistant two-layer heat-shrinkable tube and method for covering object to be covered
US20030212180A1 (en) Method of manufacturing a compound based on a thermoplastic
JP5771254B2 (en) Multi-layer heat recovery article, wire splice and wire harness
WO2019003527A1 (en) Heat recovery article and covered body covered by said heat recovery article
KR20170035633A (en) Flame retardant air cushion complex film and method for preparation thereof
JP2009167259A (en) Non-halogen flame-retardant and heat-shrinkable seamless tube, cell and capacitor each bearing the same, and method for producing the non-halogen flame-retardant and heat-shrinkable seamless tube
KR101877796B1 (en) Composition of environment-friendly flame retardant hotmelt film and environment-friendly flame retardant hotmelt film using the same
JP5425568B2 (en) Polyphenylene sulfide-based heat-shrinkable tube and member coated with the tube
KR102501476B1 (en) Flame retardant casting-polypropylene(cpp) film and sheet for interior comprising the same
JP6862709B2 (en) Resin compositions, laminates and building materials
CN113710740B (en) Resin composition and resin sheet
JP6428028B2 (en) Adhesive composition, insulating film, method for producing insulating film, and flat cable
JP2010090368A (en) Heat-shrinkable polyphenylene sulfide-based tube and member coated with the same
JP2011116010A (en) Polyphenylene sulfide-based heat shrinkable tube and member coated therewith
JP4813397B2 (en) Conductive sheet and molded product for packaging electronic parts
JP2011052122A (en) Flame-retardant heat-shrinkable tube and member covered with the same
JP6481980B2 (en) Heat recovery article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18822726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18822726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP