WO2009125623A1 - Flame-retardant tube and heat-shrinkable tube made by using the same - Google Patents

Flame-retardant tube and heat-shrinkable tube made by using the same Download PDF

Info

Publication number
WO2009125623A1
WO2009125623A1 PCT/JP2009/052886 JP2009052886W WO2009125623A1 WO 2009125623 A1 WO2009125623 A1 WO 2009125623A1 JP 2009052886 W JP2009052886 W JP 2009052886W WO 2009125623 A1 WO2009125623 A1 WO 2009125623A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
tube
flame retardant
flame
copolymer
Prior art date
Application number
PCT/JP2009/052886
Other languages
French (fr)
Japanese (ja)
Inventor
森内清晃
早味宏
東修司
岡部昭平
Original Assignee
住友電気工業株式会社
住友電工ファインポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工ファインポリマー株式会社 filed Critical 住友電気工業株式会社
Priority to CN2009800004245A priority Critical patent/CN101679720B/en
Priority to JP2009524040A priority patent/JP5172839B2/en
Publication of WO2009125623A1 publication Critical patent/WO2009125623A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a tube and a heat-shrinkable tube made of a non-halogen flame retardant material and having excellent shape retention at high temperatures and tensile properties.
  • Such a flame-retardant tube used for close-packaging is required to have a flame resistance that can pass the UL standard vertical combustion test VW-1 so that it does not ignite even when the temperature of the parts rises.
  • a flame retardant material a bromine-based or chlorine-based flame retardant is blended with a soft polyvinyl chloride composition or a vinyl polymer such as polyethylene, ethylene-ethyl acrylate copolymer, or ethylene-vinyl acetate copolymer.
  • flame retardant resin compositions have been used, since such flame retardant materials have a problem of generating hydrogen halide gas during incineration, so-called halogen-free flame retardant containing no halogen compound.
  • Alternatives to functional resin materials have been demanded.
  • tubes used for protecting cables and wirings of the above devices are required to have excellent flexibility and to be able to maintain tensile strength and elongation even at high temperatures. Further, there are cases where processing and deformation are performed in a state where an article to be packaged is inserted into the tube. Therefore, the tube used for these applications must satisfy not only the above-mentioned standards relating to flame retardancy but also the UL standards relating to tensile strength, elongation, and heat distortion resistance at high temperatures.
  • Non-halogen flame retardant resin material is a material in which metal hydroxide flame retardant such as aluminum hydroxide or magnesium hydroxide is blended with polyethylene, ethylene-ethyl acrylate copolymer, ethylene-vinyl acetate copolymer, etc.
  • metal hydroxide flame retardant such as aluminum hydroxide or magnesium hydroxide
  • polyethylene ethylene-ethyl acrylate copolymer
  • ethylene-vinyl acetate copolymer etc.
  • Patent Document 1 discloses an ethylene-vinyl acetate copolymer. There is disclosed a cross-linked tube composed of a flame retardant resin composition containing 150 to 230 parts by mass of a metal hydrate and 0.1 to 20 parts by mass of a foaming agent with respect to 100 parts by mass of the base polymer. .
  • the flame retardant tube contains a foaming agent, so that a tensile strength of 0.7 kg / mm 2 or more and 100% or more can be secured even if a large amount of a metal hydroxide flame retardant is blended.
  • Patent Document 1 does not evaluate tensile properties and strength at high temperatures, and such flame retardant materials may satisfy UL standards in terms of heat resistance, heat distortion resistance, and the like. Can not.
  • Phosphorus flame retardants such as phosphoric acid esters are also known, but the flame retardant effect is not sufficient, and there is a problem that satisfactory flame retardancy cannot be obtained unless a large amount is blended.
  • Patent Document 2 uses substantially no phosphorus flame retardant, uses a nitrogen flame retardant, and uses a polyphenylene ether resin and a thermoplastic elastomer as a base polymer. Furthermore, a non-halogen flame retardant resin composition containing a crosslinking aid has been proposed.
  • the non-halogen flame retardant resin composition disclosed in Patent Document 2 is intended for use as a coating material for electric wires and cables, and has not been evaluated as a tube. When applied to a tube, it is difficult to satisfy the UL standard with respect to shape retention after heating, shape retention after heating, tensile properties at high temperatures, and heat distortion resistance, and further improvements are required. .
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a non-halogen flame retardant tube that can satisfy flame retardancy, tensile properties at high temperatures, and heat distortion resistance. There is to do.
  • the flame-retardant tube of the present invention comprises 5 to 80% by mass of polyphenylene ether, 20 to 95% by mass of styrene-based thermoplastic elastomer, and 0 to 70% by mass of olefin-based polymer.
  • a flame-retardant resin composition containing ⁇ 100 parts by mass, nitrogen-based organic compound 3 to 80 parts by mass, and polyfunctional monomer 1 to 20 parts by mass is formed into a tube shape and then irradiated with an electron beam.
  • the olefin polymer is preferably a copolymer of an olefin and an ethylenically unsaturated monomer, more preferably a block copolymer containing a polyolefin block and a polymer block of an ethylenically unsaturated monomer, or an olefin and an ethylenically unsaturated monomer.
  • a copolymer with a monomer or a graft copolymer obtained by grafting a side chain of a polyolefin with a vinyl polymer or an ethylene- ⁇ -olefin copolymer.
  • the content of the olefin polymer when the content of the olefin polymer is 0% by mass, it is preferably 5 to 80% by mass of polyphenylene ether and 95 to 20% by mass of styrene thermoplastic elastomer.
  • the polyfunctional monomer is preferably a monomer having a carbon-carbon double bond
  • the phosphorus flame retardant is preferably an ester or ammonium salt of condensed phosphoric acid
  • the nitrogen organic compound is An amino group and / or imide unit-containing compound is preferred.
  • the heat-shrinkable tube of the present invention is obtained by expanding the diameter of the above-mentioned tube of the present invention under heating and then cooling and fixing.
  • the flame retardant tube of the present invention has both tensile properties and flame retardancy, and further has excellent heat resistance and heat distortion resistance due to a crosslinking effect by electron beam irradiation. Since it has such excellent characteristics, the flame-retardant tube of the present invention is also applied to the heat-shrinkable tube of the present invention obtained by expanding the diameter of the flame-retardant tube of the present invention under heating and then fixing by cooling. As well as excellent tensile properties, flame retardancy, heat resistance, and heat distortion resistance.
  • the resin composition used as the flame retardant resin tube material of the present invention is a base polymer comprising 5 to 80% by mass of a polyphenylene ether resin, 20 to 95% by mass of a styrene thermoplastic elastomer, and 0 to 70% by mass of an olefin polymer. It contains 5 to 100 parts by mass of a phosphorus-based flame retardant, 3 to 80 parts by mass of a nitrogen-based organic compound, and 1 to 20 parts by mass of a polyfunctional monomer per 100 parts by mass.
  • the base polymer composition of the flame retardant resin composition is 5 to 80% by mass of a polyphenylene ether resin, 20 to 95% by mass of a styrene thermoplastic elastomer, and 0 to 70% by mass of an olefin polymer.
  • the polyphenylene ether resin is preferably 5 to 80% by mass
  • the styrene thermoplastic elastomer is preferably 95 to 20% by mass.
  • Polyphenylene ether is a resin obtained by oxidative polymerization of 2,6-xylenol synthesized using methanol and phenol as raw materials.
  • the polyphenylene ether resin used in the present invention include not only polyphenylene ether but also modified polyphenylene ether modified with maleic anhydride or the like, or polymer alloy obtained by melt blending these with polystyrene resin, polyamide resin, polyester resin, and polypropylene resin. Can be mentioned.
  • a polymer alloy of a polyphenylene ether resin and polystyrene is preferably used because it is excellent in compatibility with the styrenic thermoplastic elastomer and the extrusion processability is improved.
  • the styrenic thermoplastic elastomer used in the present invention is a block copolymer of a polystyrene block and a rubber component block.
  • Diblock copolymers and triblock copolymers of rubber component blocks such as polybutadiene and polyisoprene with polystyrene blocks, hydrogenated polymers and partially hydrogenated polymers, maleic anhydride modified elastomers, epoxy modified elastomers, aromatics Vinyl-based thermoplastic elastomers can be used.
  • styrene-isobutylene-styrene copolymer styrene-ethylene copolymer, styrene-ethylenepropylene copolymer, styrene-ethylenebutylene-styrene copolymer, styrene-ethylenepropylene-styrene copolymer, styrene -Isoprene copolymer, styrene-ethylene-isoprene copolymer, styrene-isoprene-styrene copolymer, styrene-butadiene copolymer and the like.
  • Such a styrenic thermoplastic elastomer is useful for improving the tensile elongation at break.
  • the styrene content in the styrenic thermoplastic elastomer is preferably 10 to 70% by weight from the viewpoints of elongation and compatibility with polyphenylene ether.
  • the olefin polymer used in the present invention refers to a random copolymer, a block copolymer, or a graft copolymer of an olefin and an ethylenically unsaturated monomer, in addition to a polymer of one or more olefins.
  • the block copolymer examples include a copolymer having a polymer block composed of a polyolefin block and an ethylenically unsaturated monomer.
  • the polyolefin block is not limited to a polymer block of one type of olefin monomer, but is a polymer block of two or more types of olefin monomers. There may be.
  • the polyolefin block may be formed by polymerizing an olefin monomer, or may be formed by hydrogenation after polymerization of a monomer having a plurality of double bonds such as a diene monomer or a triene monomer.
  • the polymer block of the ethylenically unsaturated monomer is not limited to a polymer block composed of one type of ethylenically unsaturated monomer, and may be a polymer block of two or more types of copolymerizable monomers.
  • graft copolymers include polyolefins, random copolymers of olefins and ethylenically unsaturated monomers, and block copolymers as the main chain, and homopolymers, random copolymers, and block copolymers of ethylenically unsaturated monomers on the side chains. Can be mentioned.
  • ethylene, propylene, 1-butene, isobutene, pentene, hexene and the like can be used.
  • the ethylenically unsaturated monomer include unsaturated acids such as acrylic acid, methacrylic acid, methyl methacrylic acid, crotonic acid, (anhydrous) phthalic acid, (anhydrous) maleic acid and (anhydrous) itaconic acid, or carbon atoms of 1 to 8 Monoalkyl esters or esters of glycidyl alcohol; vinyl esters of fatty acids such as vinyl formate, vinyl acetate, vinyl propionate, vinyl valeate; aromatic vinyl compounds such as styrene, allylbenzene; acrylonitrile, acrylonitrile styrene, methacrylonitrile Vinyl cyanides such as can be used.
  • olefin polymer of the present invention examples include ultra low density polyethylene, low density polyethylene, medium density polyethylene, linear low density polyethylene, high density polyethylene, and the like, polypropylene, ethylene- ⁇ olefin copolymer.
  • Olefin-based thermoplastic elastomer ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer, ethylene-methyl acrylate copolymer, Styrene-ethylenebutylene-olefin crystal block copolymer, whose main chain is polyolefin (for example, polyethylene or polypropylene) or a copolymer of olefin and ethylenically unsaturated monomer (for example, ethylene-glycidyl methacrylate copolymer, Tylene-ethyl acrylate copolymer, ethylene-vinyl acetate copolymer, ethylene-ethylene acrylate-maleic anhydride copolymer) and vinyl polymer (for example, polystyrene, polymethyl methacrylate, or acrylonitrile) in the side chain Styrene
  • each polymer (polyphenylene ether resin, styrene thermoplastic elastomer, olefin polymer) in the base polymer is 5 to 80% by mass of polyphenylene ether resin, 20 to 95% by mass of styrene thermoplastic elastomer, and The olefin polymer is 0 to 70% by mass.
  • polyphenylene ether resin: styrene thermoplastic elastomer 5: 95 to 80:20.
  • the content of the olefin-based polymer in the base polymer is more than 70% by mass, the content of the styrene-based thermoplastic elastomer having a relatively excellent flame retardancy must be relatively reduced, and the flame retardancy is reduced. It tends to decrease. Further, if the content ratio of the polyphenylene ether resin is too small and the content ratio of the styrene-based thermoplastic elastomer is too large, the flame retardancy tends not to be satisfied.
  • Phosphorus flame retardant As the phosphorus flame retardant used in the present invention, orthophosphoric acid ester; a crosslinked structure having a branched PO 4 group in a molecule such as pyrophosphoric acid, polyphosphoric acid, metaphosphoric acid, and ultraphosphoric acid, or Examples thereof include organic esters or ammonium salts of condensed phosphoric acid in which a phosphate is bonded linearly or cyclically; phosphonic acid esters; phosphinic acid esters. Of these, organic esters or ammonium salts of condensed phosphoric acid are preferably used, and may have an OH group in the molecule.
  • the phosphorus compound as described above may be one that is surfaced with melamine, melamine cyanurate, fatty acid, silane coupling agent or the like. When mixed with the base polymer, the surface treatment may be performed by an integral blend containing a surface treatment agent.
  • the phosphorus flame retardant is contained in an amount of 5 to 100 parts by mass per 100 parts by mass of the base polymer. If it is less than 5 parts by mass, it is difficult to ensure flame retardancy, and if it exceeds 100 parts by mass, the heat distortion resistance cannot be satisfied.
  • Nitrogen-based organic compound As the nitrogen-based organic compound, derivatives or adducts such as cyanuric acid, melamine, and triazine are preferably used. Specifically, melamine resin, melamine cyanurate, isocyanuric acid, isocyanurate derivatives, An adduct or the like can be used. Of these, melamine and melamine cyanurate containing an amino group and / or an imide unit in the molecule are preferably used. The mechanism of such a nitrogen-based organic compound is not well understood, but when used in combination with a phosphorus-based flame retardant, the flame retardant is at a level that can pass the UL standard VW-1 test without causing a significant decrease in tensile properties. Can be secured.
  • Nitrogen-based organic compounds as described above are aminosilane coupling agents, vinyl silane coupling agents, epoxy silane coupling agents, silane coupling agents such as methacryloxy silane coupling agents; higher fatty acids such as stearic acid and oleic acid. It may be processed.
  • the surface treatment may be carried out in advance, or the surface treatment may be carried out by blending the base polymer and other components, and blending the surface treatment agent during mixing.
  • the nitrogen-based organic compound is contained in an amount of 3 to 80 parts by mass per 100 parts by mass of the base polymer. If the amount is less than 3 parts by mass, the flame retardant effect due to the combined use with the phosphorus compound cannot be obtained, and if the amount is more than 80 parts by mass, the tensile elongation at break decreases and the initial tensile properties cannot be ensured.
  • polyfunctional monomer examples include monoacrylate, diacrylate, triacrylate, monomethacrylate, dimethacrylate, trimethacrylate, triallyl isocyanurate, triallyl cyanurate, etc.
  • Monomers having a plurality of carbon-carbon double bonds in the molecule can be preferably used.
  • trimethacrylate monomers such as trimethylolpropane trimethacrylate are preferably used.
  • Such a polyfunctional monomer can undergo a vinyl polymerization reaction with a diene moiety contained in the base polymer by electron beam irradiation, and can be expected to be useful for improving physical properties at high temperatures.
  • the polyfunctional monomer is contained in an amount of 1 to 20 parts by mass per 100 parts by mass of the base polymer. If the amount is less than 1 part by mass, the crosslinking effect cannot be obtained, the tensile properties at a high temperature are significantly lowered, and the thermal deformation at a high temperature is large. On the other hand, if it exceeds 20 parts by mass, unreacted monomers may remain, which may cause a reduction in flame retardancy.
  • Metal hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, antimony trioxide, stannic acid as long as flame retardancy, heat distortion resistance, tensile properties, and volume resistivity are not impaired.
  • Flame retardants such as zinc, zinc hydroxystannate, zinc borate and boron phosphate may be added.
  • the flame retardant resin composition used in the present invention further includes a polyolefin thermoplastic elastomer, a polyester thermoplastic elastomer, and a polyurethane thermoplastic elastomer for the purpose of improving various properties within a range that does not impair flame retardancy and mechanical strength.
  • a polyolefin thermoplastic elastomer such as; impact-resistant polystyrene, styrene resin such as acrylonitrile-styrene resin, ABS resin; rubber such as EPDM, ethylene acrylic rubber, acrylic rubber, nitrile rubber; nylon, polybutylene terephthalate, polyethylene terephthalate, Various polymers such as polyethylene aphthalate and polyphenyl sulfide may be blended.
  • additives such as an antioxidant, a lubricant, a processing stabilizing aid, a colorant, a foaming agent, a reinforcing agent, a filler, a vulcanizing agent, a metal deactivator, and a silane coupling agent may be blended.
  • It can be prepared by blending the above components in predetermined amounts and mixing them using a known melt mixer such as a single screw extruder, a pressure kneader, or a Banbury mixer.
  • a known melt mixer such as a single screw extruder, a pressure kneader, or a Banbury mixer.
  • the flame-retardant tube of the present invention is obtained by irradiating a tube-shaped molded product obtained by extruding a flame-retardant resin composition having the above composition into a tube shape with an electron beam.
  • the base polymer is cross-linked through the multifunctional monomer by electron beam irradiation. And it is thought that the fall of the elastomeric property at the high temperature of a thermoplastic elastomer is suppressed by bridge
  • the size of the flame retardant tube is not particularly limited, but usually the wall thickness is preferably 1.0 mm or less, more preferably 0.8 mm or less.
  • a flame-retardant resin composition is once prepared, resin pellets having a predetermined composition are manufactured, and then the resin pellets are subjected to an extrusion molding machine.
  • the type of the extruder is not particularly limited, and any of a screw type and a non-screw type may be used, but a screw type is preferable.
  • the type of screw is not particularly limited, but the ratio of the total length L to the cylinder bore diameter D (L / D) is usually preferably about 24 to 28.
  • Examples of electron beams used include accelerated electron beams, ⁇ rays, X rays, ⁇ rays, and ultraviolet rays. Accelerated electron beams are most preferably used from the viewpoints of industrial use, such as ease of use of the radiation source, transmission thickness of ionizing radiation, and speed of crosslinking treatment.
  • the acceleration voltage of the accelerating electron beam may be appropriately set depending on the thickness of the tube layer and the composition of the resin composition that is the tube material. For example, in a tube having a thickness of 0.2 mm to 0.4 mm, the acceleration voltage is selected between 300 keV and 3 MeV.
  • the irradiation dose is not particularly limited, but is usually 20 to 500 kGy.
  • the heat-shrinkable tube of the present invention is obtained by cooling and fixing the flame-retardant tube of the present invention after expanding the diameter under heating.
  • the tube-shaped molded product is heated to a temperature equal to or higher than the softening point of the base polymer, and then expanded to a predetermined outer diameter by a method such as introducing compressed air into the tube, and then cooled. It can be obtained by fixing the shape.
  • the expanded diameter is preferably about 2 to 4 times the original inner diameter.
  • the tube of the present invention is excellent in heat resistance, can be expanded without melting even at high temperatures, and can retain the expanded shape.
  • the heat-shrinkable tube of the present invention has excellent heat resistance, the heat-shrinkable tube can be shrunk to its original shape without melting again by a heat treatment at a softening point, specifically 100 to 250 ° C. Can do. Accordingly, the object to be packaged can be tightly packaged by heat treatment at 100 to 250 ° C. in a state where the object to be packaged such as electronic parts and cables to be protected and packaged is inserted into the tube.
  • the tube shrunk by the heat shrink treatment has the same tensile properties as the tube before the diameter expansion treatment, and can maintain the tensile properties required by the UL standard even under heating conditions. Therefore, the heat-shrinkable tube of the present invention can be used as a protective wrapping material for the purpose of moisture-proofing, waterproofing, dust-proofing, insulation, etc. of articles to be packaged such as electronic parts and cables.
  • a metal rod having an inner diameter of 7.0 mm is inserted in advance during the heat-shrinkage treatment to form a metal rod insertion tube.
  • the tube was preheated in a thermostatic bath, and the thickness after being allowed to stand for 1 hour under load was measured.
  • Example Tube No. 1-15 As shown in Table 1, polyphenylene ether resin 1 or 2, styrene thermoplastic elastomer 1 or 2, olefin polymer 1 to 4, phosphorus compound 1 to 3, nitrogen compound 1 or 2, polyfunctional monomer 1 Alternatively, 2 was blended in the amounts shown in Table 1.
  • the base polymer total of polyphenylene ether resin, styrene thermoplastic elastomer and olefin polymer
  • oleic acid amide pentaerythritol-tetrakis [3- (3,5-di-t -Butyl-4-hydroxyphenyl) propionate] 3 parts and kneaded in a twin-screw mixer set at a die temperature of 280 ° C. 1 to 15 resin pellets were obtained.
  • the diameter expansion-heat shrinkage treatment is preheated by standing in a thermostat set at 160 ° C. for 3 minutes, then expanded to 14 mm inner diameter by sending compressed air into the tube, and immediately taken out from the thermostat. Fix the shape by cooling with water.
  • the heat shrinkable tube obtained by the diameter expansion treatment is heated at 160 ° C. for 3 minutes to shrink to the original size (inner diameter 7 mm).
  • Comparative tube No. 16-26 Except having changed the compounding composition of the resin composition as shown in Table 2, each resin composition No. 16 to 26 resin pellets were extruded in the same manner as in the above examples to obtain a tubular molded product having an inner diameter of 7.0 mm and a wall thickness of 0.3 mm. No. Nos. 16 to 21, 23, and 26 were irradiated with an electron beam with an acceleration voltage of 2.0 MeV by the amount shown in Table 2. The tubes 16 to 21, 23, and 26 were subjected to the same diameter expansion-heat shrinkage treatment as in the above example. Tube No. produced as described above was obtained. With respect to 16 to 26, tensile properties, heat resistance, flame retardancy, heat deformability, and heat shock tests were measured and evaluated based on the above evaluation methods. The measurement results are shown in Table 2.
  • Phosphorous compound 1 MELAPUR200 manufactured by Ciba This is melamine polyphosphate having an average particle size of 4 ⁇ m, a phosphorus content of 13% by mass and a nitrogen content of 43% by mass.
  • Phosphorus compound 2 PX-200 from Daihachi Chemical Industry Co., Ltd. This is a condensed phosphate ester with a phosphorus content of 9.0% by weight.
  • Phosphorus compound 3 BCA manufactured by Sanko Co., Ltd. This is a cyclic organophosphorus compound.
  • Nitrogen-based compound 1 STABIACE MC-5S manufactured by Sakai Chemical Industry Co., Ltd. This is melamine cyanurate (average particle size 0.5 ⁇ m).
  • Nitrogen compound 2 Melamine manufactured by Mitsubishi Chemical Corporation
  • 10 Multifunctional monomer 1: NK ester TMPT manufactured by Shin-Nakamura Chemical Co., Ltd. Trimethylolpropane trimethacrylate
  • 11 Multifunctional monomer 2: Nippon Chemical Co., Ltd.
  • Olefin polymer 2 Elvalloy 1125AC manufactured by DuPont. This is an ethylene-methyl acrylate copolymer (methyl acrylate content 27 mass%, MFR 0.6 (190 ° C., load 2.16 kg)).
  • Olefin polymer 3 Dynalon 4600P manufactured by JSR Corporation. This is a styrene-ethylenebutylene-olefin crystal block copolymer.
  • Olefin polymer 4 MODIPA-A1100 manufactured by NOF Corporation. This is a polymer whose main chain is low density polyethylene and grafted with polystyrene.
  • Reference tube No. 31, 32 A flexible Noryl resin compound manufactured by SABIC Innovative Plastics LLC was extruded in the same manner as in the above example to obtain a tubular molded product. The obtained tube was irradiated with an electron beam in the same manner as in Example 1, and further subjected to diameter expansion-heat shrinkage treatment. 31 and 32 were produced. The prepared tube was measured and evaluated for tensile properties, heat resistance, flame retardancy, heat distortion resistance, and heat shock based on the above evaluation methods. The results are shown in Table 3.
  • No. 1 to 9 are 5 to 100 parts by weight of a phosphorus-based flame retardant and 3 to 3 parts by weight of a nitrogen-based organic compound per 100 parts by weight of a base polymer containing 5 to 80% by weight of polyphenylene ether and 95 to 20% by weight of a styrene thermoplastic elastomer.
  • This is a tube crosslinked by electron beam irradiation using a flame retardant resin composition containing 80 parts by mass and 1 to 20 parts by mass of a polyfunctional monomer as a material, and has tensile properties, flame resistance, heat resistance, and heat distortion resistance. The heat shock test was acceptable. No.
  • 10 to 15 are cases where a blend of 20 to 40% by mass of polyphenylene ether, 20 to 30% by mass of a styrene thermoplastic elastomer, and 40 to 50% by mass of an olefin polymer is used as a base polymer.
  • the tensile properties, flame retardancy, heat resistance, heat distortion resistance, and heat shock test of the tube cross-linked by irradiation were acceptable levels.
  • No. 7, 8, and 9 are No. 1, respectively.
  • the tubes 1, 3, and 6 are the same resin composition as the material. Comparing the evaluation results of the corresponding tubes, it can be seen that the characteristics before the treatment are maintained, with the characteristics hardly deteriorated even by the diameter expansion-heat shrink treatment.
  • No. 24 is a tube which was not irradiated with an electron beam.
  • Reference numeral 22 denotes a tube made of a resin composition that does not contain a polyfunctional monomer. In either case, the tube was melted in the heat resistance test and heat shock test, and the shape could not be maintained. Since these were not subjected to electron beam irradiation or contained no polyfunctional monomer, the crosslinking effect by electron beam irradiation was not obtained, and they could not withstand high-temperature heat treatment. Therefore, it cannot be used as a heat shrinkable tube premised on high-temperature heat treatment.
  • the polyfunctional monomer content is too high (No. 23), the polyphenylene ether content in the base polymer is too low (No. 17), or the phosphorus flame retardant content is too low (No. 18).
  • the content ratio of polyphenylene ether and styrene-based thermoplastic elastomer in the base polymer is appropriate, contains an appropriate amount of phosphorus-based flame retardant, polyfunctional monomer, and nitrogen compounds are not affected even when cross-linking treatment is performed by electron beam irradiation.
  • No. 23 The polyfunctional monomer content is too high (No. 23), the polyphenylene ether content in the base polymer is too low (No. 17), or the phosphorus flame retardant content is too low (No. 18).
  • the content ratio of polyphenylene ether and styrene-based thermoplastic elastomer in the base polymer is appropriate, contains an appropriate amount of phosphorus-based flame retardant, polyfunctional monomer, and nitrogen compounds are not affected even when cross-link
  • flame retardancy By increasing the content of the phosphorus-based flame retardant (No. 19), or by increasing the content ratio of the polyphenylene ether in the base polymer (No. 16), flame retardancy can be achieved without containing a nitrogen compound. Although it can be satisfied, the amount of deformation due to heat treatment increases due to an increase in the content of the phosphorus compound (No. 19), and due to an increase in the content ratio of polyphenylene ether (No. 16), the elongation is increased due to heating at high temperature It was too low to secure the heat resistance and the pass level of the heat shock test.
  • the content ratio of the polyphenylene ether and the styrene-based thermoplastic elastomer in the base polymer is within the scope of the present invention, and a nitrogen compound and a polyfunctional monomer are blended in appropriate amounts to obtain a crosslinking effect.
  • a nitrogen compound and a polyfunctional monomer are blended in appropriate amounts to obtain a crosslinking effect.
  • no. No. 21 is obtained by reducing the amount of the nitrogen compound and increasing the content of the phosphorus compound to obtain a crosslinking effect.
  • No. 4 and no. 19 shows that when a base polymer that does not contain an olefin-based polymer is used, the content ratio of polyphenylene ether and styrene-based elastomer in the base polymer is required to maintain flame retardancy, heat resistance, and strength at high temperatures. It can be seen that it is effective to control the total amount of flame retardant by using (polyphenylene ether: styrene-based elastomer) in the range of 5:95 to 80:20 and using a nitrogen compound and a phosphorus compound in combination. .
  • the tube of the present invention and the heat shrinkable tube are non-halogen type tubes that can satisfy the flame resistance of the UL standard VW-1 test, and also satisfy the UL standard tensile properties, strength, and heat deformation even at high temperatures. It can be used for electronic equipment, OA equipment, consumer electronic equipment such as audio, video, DVD, Blu-ray, tubes used for protecting internal wiring and parts of vehicles, ships, etc. It can be used as a heat shrinkable tube.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

A non-halogen type flame-retardant tube which exhibits satisfactory flame retardance, tensile characteristics under high temperature, and heat deformation resistance; and a heat -shrinkable tube, more specifically, a flame-retardant tube produced by molding a flame-retardant resin composition which comprises 100 parts by mass of a base polymer comprising 5 to 80mass% of polyphenylene ether, 20 to 95mass% of a styrenic thermoplastic elastomer, and 0 to 70mass% of an olefinic polymer, 5 to 100 parts by mass of a phosphorus-containing flame retardant, 3 to 80 parts by mass of a nitrogenous organic compound, and 1 to 20 parts by mass of a polyfunctional monomer into a tube and irradiating the tube with an electron beam; and a heat-shrinkable tube produced by subjecting the tube to diameter expansion under heating and then setting the tube by cooling.

Description

難燃性チューブ及びこれを用いた熱収縮チューブFlame retardant tube and heat shrink tube using the same
 本発明は、ノンハロゲン系の難燃性材料で構成され、且つ高温下での形状保持性、引張り特性に優れたチューブ及び熱収縮チューブに関する。 The present invention relates to a tube and a heat-shrinkable tube made of a non-halogen flame retardant material and having excellent shape retention at high temperatures and tensile properties.
 電子機器、OA機器、オーディオ、ビデオ、DVDなどの民生用電子機器、車両、船舶などの分野に使用される各種部品、内部配線などは、防水、防塵、絶縁等のために、難燃性チューブなどを用いて密着包装することにより保護している場合がある。 Various parts used in the fields of electronic equipment, OA equipment, consumer electronic equipment such as audio, video, DVD, vehicles, ships, etc., internal wiring, etc. are fire retardant tube for waterproof, dustproof, insulation, etc. In some cases, it is protected by close-packaging.
 このような密着包装に用いる難燃性チューブは、部品の温度上昇によっても発火しないように、UL規格の垂直燃焼試験VW-1に合格できる難燃性が求められる。従来、難燃性材料としては、軟質ポリ塩化ビニル組成物あるいはポリエチレンやエチレン-エチルアクリレート共重合体、エチレン-酢酸ビニル共重合体等のビニル系ポリマーに、臭素系や塩素系難燃剤を配合した難燃性樹脂組成物が用いられていたが、このような難燃性材料は、焼却処理時にハロゲン化水素ガスを発生するという問題があることから、ハロゲン化合物を含まない、いわゆるハロゲンフリー難燃性樹脂材料への代替えが求められるようになっている。 Such a flame-retardant tube used for close-packaging is required to have a flame resistance that can pass the UL standard vertical combustion test VW-1 so that it does not ignite even when the temperature of the parts rises. Conventionally, as a flame retardant material, a bromine-based or chlorine-based flame retardant is blended with a soft polyvinyl chloride composition or a vinyl polymer such as polyethylene, ethylene-ethyl acrylate copolymer, or ethylene-vinyl acetate copolymer. Although flame retardant resin compositions have been used, since such flame retardant materials have a problem of generating hydrogen halide gas during incineration, so-called halogen-free flame retardant containing no halogen compound. Alternatives to functional resin materials have been demanded.
 一方、上記機器等のケーブルや配線などの保護に用いられるチューブでは、可とう性に優れていることが求められ、高温下でも引張強度、伸びを保持できることが求められる。また、チューブに被包装物を挿入した状態で加工、変形を行う場合もある。従って、これらの用途に用いるチューブでは、上記難燃性に関する規格を充足するだけでなく、高温下での引張り強度、伸び、耐熱変形性に関するUL規格にも適合しなければならない。 On the other hand, tubes used for protecting cables and wirings of the above devices are required to have excellent flexibility and to be able to maintain tensile strength and elongation even at high temperatures. Further, there are cases where processing and deformation are performed in a state where an article to be packaged is inserted into the tube. Therefore, the tube used for these applications must satisfy not only the above-mentioned standards relating to flame retardancy but also the UL standards relating to tensile strength, elongation, and heat distortion resistance at high temperatures.
 ノンハロゲン系難燃性樹脂材料としては、ポリエチレンやエチレン-エチルアクリレート共重合体、エチレン-酢酸ビニル共重合体等に、水酸化アルミニウムや水酸化マグネシウム等の金属水酸化物系難燃剤を配合した材料が実用化されている。しかしながら、金属水酸化物系難燃剤で、UL規格の垂直燃焼試験VW-1に合格させようとすると、大量に添加しなければならない一方、金属水酸化物系難燃剤を大量に配合すると、機械的特性が低下し、難燃性と機械的特性の両立を図ることができない。 Non-halogen flame retardant resin material is a material in which metal hydroxide flame retardant such as aluminum hydroxide or magnesium hydroxide is blended with polyethylene, ethylene-ethyl acrylate copolymer, ethylene-vinyl acetate copolymer, etc. Has been put to practical use. However, if a metal hydroxide flame retardant is to pass the UL vertical combustion test VW-1, it must be added in a large amount, whereas if a metal hydroxide flame retardant is blended in a large amount, The mechanical properties are lowered, and it is impossible to achieve both flame retardancy and mechanical properties.
 金属水酸化物系難燃剤を用いて、機械的特性と難燃性を両立するチューブとして、例えば、特開平7-145288号公報(特許文献1)には、エチレン-酢酸ビニル系共重合体を含むベースポリマー100質量部に対して、金属水和物150~230質量部及び発泡剤0.1~20質量部含有する難燃性樹脂組成物で構成し、さらに架橋したチューブが開示されている。 As a tube having both mechanical properties and flame retardancy using a metal hydroxide flame retardant, for example, JP-A-7-145288 (Patent Document 1) discloses an ethylene-vinyl acetate copolymer. There is disclosed a cross-linked tube composed of a flame retardant resin composition containing 150 to 230 parts by mass of a metal hydrate and 0.1 to 20 parts by mass of a foaming agent with respect to 100 parts by mass of the base polymer. .
 上記難燃性チューブは、発泡剤を含有することで、大量に金属水酸化物系難燃剤を配合しても、抗張力0.7kg/mm以上、100%以上確保できるというものである。しかしながら、特許文献1では、高温下での引張り特性、強度に関する評価はされておらず、このような難燃性材料は、耐熱性、耐熱変形性などの点に関して、UL規格を満足することができない。 The flame retardant tube contains a foaming agent, so that a tensile strength of 0.7 kg / mm 2 or more and 100% or more can be secured even if a large amount of a metal hydroxide flame retardant is blended. However, Patent Document 1 does not evaluate tensile properties and strength at high temperatures, and such flame retardant materials may satisfy UL standards in terms of heat resistance, heat distortion resistance, and the like. Can not.
 リン酸エステルなどのリン系難燃剤も知られているが、その難燃効果は十分でなく、やはり大量に配合しなければ、満足できる難燃性が得られないといった問題がある。 Phosphorus flame retardants such as phosphoric acid esters are also known, but the flame retardant effect is not sufficient, and there is a problem that satisfactory flame retardancy cannot be obtained unless a large amount is blended.
 難燃剤の含有量を低減すべく、ベースポリマーとして、難燃性ポリマーを使用したノンハロゲン系難燃性材料の開発が進められている。
 例えば、SABICイノベーティブプラスチックジャパン合同会社(旧日本GEプラスチックス)より販売されている柔軟ノリルは、ベースポリマーとして、ポリフェニレンエーテルとスチレン系樹脂あるいはスチレン系熱可塑性エラストマーの混合物を使用し、リン酸エステル系難燃剤を配合している。ポリフェニレンエーテルがポリオレフィン樹脂よりも難燃性が高いことに基づいて、難燃剤の添加量を低減できること、難燃剤の大量添加に伴う引張り特性の低下を抑制できることから、一部のグレードでは電線被覆材料として用いられている。しかしながら、耐熱性の点で十分ではなく、特に密着包装のための熱収縮チューブとして用いようとすると、拡径処理時に形状を保持できなかったり、熱収縮工程や被包装物の加工工程で溶融してしまったりする場合がある。
In order to reduce the content of the flame retardant, development of a non-halogen flame retardant material using a flame retardant polymer as a base polymer is in progress.
For example, flexible Noryl sold by SABIC Innovative Plastics Japan G.K. (formerly GE Plastics) uses a mixture of polyphenylene ether and styrene resin or styrene thermoplastic elastomer as the base polymer. Contains flame retardant. Based on the fact that polyphenylene ether is more flame retardant than polyolefin resin, it is possible to reduce the amount of flame retardant added, and to suppress the deterioration of tensile properties due to the large amount of flame retardant added. It is used as. However, it is not sufficient in terms of heat resistance, and especially if it is used as a heat shrinkable tube for close-packed packaging, the shape cannot be maintained during the diameter expansion process, or it melts in the heat shrinking process or the processing process of the package. Sometimes
 また、特開2007-197615号公報(特許文献2)には、実質的にリン系難燃剤を含有させず、窒素系難燃剤を用いて、ベースポリマーとして、ポリフェニレンエーテル樹脂及び熱可塑性エラストマーを使用し、さらに架橋助剤を配合したノンハロゲン系難燃性樹脂組成物が提案されている。 Japanese Patent Application Laid-Open No. 2007-197615 (Patent Document 2) uses substantially no phosphorus flame retardant, uses a nitrogen flame retardant, and uses a polyphenylene ether resin and a thermoplastic elastomer as a base polymer. Furthermore, a non-halogen flame retardant resin composition containing a crosslinking aid has been proposed.
特開平7-145288号公報JP 7-145288 A 特開2007-197615号公報JP 2007-197615 A
 しかし、特許文献2に開示のノンハロゲン系難燃性樹脂組成物は、電線、ケーブルの被覆材としての利用を意図しており、チューブとしての評価がされていない。チューブに適用した場合には、加熱下での拡径処理後の形状保持、高温下での引張り特性、耐熱変形性に関して、UL規格を満足することが困難であり、さらなる改善が求められている。 However, the non-halogen flame retardant resin composition disclosed in Patent Document 2 is intended for use as a coating material for electric wires and cables, and has not been evaluated as a tube. When applied to a tube, it is difficult to satisfy the UL standard with respect to shape retention after heating, shape retention after heating, tensile properties at high temperatures, and heat distortion resistance, and further improvements are required. .
 本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、難燃性、高温下での引張り特性、耐熱変形性を満足できるノンハロゲン系の難燃性チューブを提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a non-halogen flame retardant tube that can satisfy flame retardancy, tensile properties at high temperatures, and heat distortion resistance. There is to do.
 本発明の難燃性チューブは、ポリフェニレンエーテル5~80質量%、スチレン系熱可塑性エラストマー20~95質量%、およびオレフィン系ポリマー0~70質量%のベースポリマー100質量部あたり、リン系難燃剤5~100質量部、窒素系有機化合物3~80質量部、および多官能性モノマー1~20質量部を含有する難燃性樹脂組成物を、チューブ状に成形した後、電子線照射してなる。 The flame-retardant tube of the present invention comprises 5 to 80% by mass of polyphenylene ether, 20 to 95% by mass of styrene-based thermoplastic elastomer, and 0 to 70% by mass of olefin-based polymer. A flame-retardant resin composition containing ˜100 parts by mass, nitrogen-based organic compound 3 to 80 parts by mass, and polyfunctional monomer 1 to 20 parts by mass is formed into a tube shape and then irradiated with an electron beam.
 前記オレフィン系ポリマーとしては、オレフィンとエチレン性不飽和モノマーとの共重合体が好ましく、より好ましくは、ポリオレフィンブロックとエチレン性不飽和モノマーのポリマーブロックとを含むブロックコポリマー、あるいはオレフィンとエチレン性不飽和モノマーとの共重合体又はポリオレフィンの側鎖をビニル系ポリマー又はエチレン-αオレフィン共重合体でグラフト化したグラフトコポリマーである。
 また、ベースポリマーにおいて、前記オレフィン系ポリマーの含有率が0質量%の場合、ポリフェニレンエーテル5~80質量%、スチレン系熱可塑性エラストマー95~20質量%であることが好ましい。
The olefin polymer is preferably a copolymer of an olefin and an ethylenically unsaturated monomer, more preferably a block copolymer containing a polyolefin block and a polymer block of an ethylenically unsaturated monomer, or an olefin and an ethylenically unsaturated monomer. A copolymer with a monomer or a graft copolymer obtained by grafting a side chain of a polyolefin with a vinyl polymer or an ethylene-α-olefin copolymer.
Further, in the base polymer, when the content of the olefin polymer is 0% by mass, it is preferably 5 to 80% by mass of polyphenylene ether and 95 to 20% by mass of styrene thermoplastic elastomer.
 前記多官能性モノマーは、炭素-炭素二重結合を有するモノマーであることが好ましく、前記リン系難燃剤は、縮合リン酸のエステル又はアンモニウム塩であることが好ましく、前記窒素系有機化合物は、アミノ基及び/又はイミド単位含有化合物であることが好ましい。 The polyfunctional monomer is preferably a monomer having a carbon-carbon double bond, the phosphorus flame retardant is preferably an ester or ammonium salt of condensed phosphoric acid, and the nitrogen organic compound is An amino group and / or imide unit-containing compound is preferred.
 本発明の熱収縮チューブは、上記本発明のチューブを、加熱下で拡径した後、冷却固定してなるものである。 The heat-shrinkable tube of the present invention is obtained by expanding the diameter of the above-mentioned tube of the present invention under heating and then cooling and fixing.
 本発明の難燃性チューブは、引張り特性及び難燃性を両立したもので、さらに電子線照射による架橋効果により、優れた耐熱性、耐熱変形性が得られる。このような優れた特性を有することから、本発明の難燃性チューブを、加熱下で拡径した後、冷却固定して得られる本発明の熱収縮チューブについても、本発明の難燃性チューブと同様に、優れた引張り特性、難燃性、耐熱性、耐熱変形性を有している。 The flame retardant tube of the present invention has both tensile properties and flame retardancy, and further has excellent heat resistance and heat distortion resistance due to a crosslinking effect by electron beam irradiation. Since it has such excellent characteristics, the flame-retardant tube of the present invention is also applied to the heat-shrinkable tube of the present invention obtained by expanding the diameter of the flame-retardant tube of the present invention under heating and then fixing by cooling. As well as excellent tensile properties, flame retardancy, heat resistance, and heat distortion resistance.
 以下に本発明の実施の形態を説明するが、今回、開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 Embodiments of the present invention will be described below. However, it should be considered that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
<難燃性樹脂組成物>
 はじめに本発明の難燃性チューブの材料となる樹脂組成物について説明する。
 本発明の難燃性樹脂チューブ材料として用いられる樹脂組成物は、ポリフェニレンエーテル系樹脂5~80質量%、スチレン系熱可塑性エラストマー20~95質量%、およびオレフィン系ポリマー0~70質量%のベースポリマー100質量部あたり、リン系難燃剤5~100質量部、窒素系有機化合物3~80質量部、および多官能性モノマー1~20質量部を含有する。
<Flame-retardant resin composition>
First, the resin composition used as the material for the flame-retardant tube of the present invention will be described.
The resin composition used as the flame retardant resin tube material of the present invention is a base polymer comprising 5 to 80% by mass of a polyphenylene ether resin, 20 to 95% by mass of a styrene thermoplastic elastomer, and 0 to 70% by mass of an olefin polymer. It contains 5 to 100 parts by mass of a phosphorus-based flame retardant, 3 to 80 parts by mass of a nitrogen-based organic compound, and 1 to 20 parts by mass of a polyfunctional monomer per 100 parts by mass.
(1)ベースポリマー
 難燃性樹脂組成物のベースポリマー組成は、ポリフェニレンエーテル系樹脂5~80質量%、スチレン系熱可塑性エラストマー20~95質量%、およびオレフィン系ポリマー0~70質量%であり、オレフィン系ポリマーを含まない場合には、ポリフェニレンエーテル系樹脂5~80質量%、スチレン系熱可塑性エラストマー95~20質量%であることが好ましい。
(1) Base polymer The base polymer composition of the flame retardant resin composition is 5 to 80% by mass of a polyphenylene ether resin, 20 to 95% by mass of a styrene thermoplastic elastomer, and 0 to 70% by mass of an olefin polymer. When the olefin polymer is not included, the polyphenylene ether resin is preferably 5 to 80% by mass, and the styrene thermoplastic elastomer is preferably 95 to 20% by mass.
 ポリフェニレンエーテルとは、メタノールとフェノールを原料として合成される2,6-キシレノールを酸化重合させて得られる樹脂である。本発明で用いるポリフェニレンエーテル系樹脂としては、ポリフェニレンエーテルだけでなく、無水マレイン酸等で変性した変性ポリフェニレンエーテル、又はこれらとポリスチレン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリプロピレン樹脂を溶融ブレンドしたポリマーアロイなどが挙げられる。ポリフェニレンエーテル樹脂とポリスチレンとのポリマーアロイは、スチレン系熱可塑性エラストマーとの相溶性に優れ、押出加工性が向上することから、好ましく用いられる。 Polyphenylene ether is a resin obtained by oxidative polymerization of 2,6-xylenol synthesized using methanol and phenol as raw materials. Examples of the polyphenylene ether resin used in the present invention include not only polyphenylene ether but also modified polyphenylene ether modified with maleic anhydride or the like, or polymer alloy obtained by melt blending these with polystyrene resin, polyamide resin, polyester resin, and polypropylene resin. Can be mentioned. A polymer alloy of a polyphenylene ether resin and polystyrene is preferably used because it is excellent in compatibility with the styrenic thermoplastic elastomer and the extrusion processability is improved.
 本発明で用いられるスチレン系熱可塑性エラストマーは、ポリスチレンブロックとゴム成分ブロックのブロック共重合体である。ポリブタジエン、ポリイソプレン等のゴム成分ブロックとポリスチレンブロックとのジブロック共重合体、トリブロック共重合体、さらにこれらの水素添加ポリマーや部分水素添加ポリマー、無水マレイン酸変性エラストマー、エポキシ変性エラスマー、芳香族ビニル系熱可塑性エラストマーなどを用いることができる。具体的には、スチレン-イソブチレン-スチレン共重合体、スチレン-エチレン共重合体、スチレン-エチレンプロピレン共重合体、スチレン-エチレンブチレン-スチレン共重合体、スチレン-エチレンプロピレン-スチレン共重合体、スチレン-イソプレン共重合体、スチレン-エチレン-イソプレン共重合体、スチレン-イソプレン-スチレン共重合体、スチレン-ブタジエン共重合体などが挙げられる。 The styrenic thermoplastic elastomer used in the present invention is a block copolymer of a polystyrene block and a rubber component block. Diblock copolymers and triblock copolymers of rubber component blocks such as polybutadiene and polyisoprene with polystyrene blocks, hydrogenated polymers and partially hydrogenated polymers, maleic anhydride modified elastomers, epoxy modified elastomers, aromatics Vinyl-based thermoplastic elastomers can be used. Specifically, styrene-isobutylene-styrene copolymer, styrene-ethylene copolymer, styrene-ethylenepropylene copolymer, styrene-ethylenebutylene-styrene copolymer, styrene-ethylenepropylene-styrene copolymer, styrene -Isoprene copolymer, styrene-ethylene-isoprene copolymer, styrene-isoprene-styrene copolymer, styrene-butadiene copolymer and the like.
 このようなスチレン系熱可塑性エラストマーは、引張破断伸びの向上に役立つ。スチレン系熱可塑性エラストマー中のスチレン含有率は、伸び及びポリフェニレンエーテルとの相溶性の点から、10~70重量%であることが好ましい。 Such a styrenic thermoplastic elastomer is useful for improving the tensile elongation at break. The styrene content in the styrenic thermoplastic elastomer is preferably 10 to 70% by weight from the viewpoints of elongation and compatibility with polyphenylene ether.
 本発明で用いられるオレフィン系ポリマーとは、1又は2種以上のオレフィンの重合体の他、オレフィンとエチレン性不飽和モノマーとのランダムコポリマー、ブロックコポリマー、グラフトコポリマーをいう。 The olefin polymer used in the present invention refers to a random copolymer, a block copolymer, or a graft copolymer of an olefin and an ethylenically unsaturated monomer, in addition to a polymer of one or more olefins.
 ブロックコポリマーとしては、ポリオレフィンブロックとエチレン性不飽和モノマーからなるポリマーブロックを有するコポリマーが挙げられ、ポリオレフィンブロックは1種類のオレフィンモノマーのポリマーブロックに限定されず、2種以上のオレフィンモノマーのポリマーブロックであってもよい。また、ポリオレフィンブロックは、オレフィンモノマーを重合して形成する他、ジエンモノマー、トリエンモノマー等の複数の二重結合を有するモノマーの重合後、水素添加により形成してもよい。 Examples of the block copolymer include a copolymer having a polymer block composed of a polyolefin block and an ethylenically unsaturated monomer. The polyolefin block is not limited to a polymer block of one type of olefin monomer, but is a polymer block of two or more types of olefin monomers. There may be. The polyolefin block may be formed by polymerizing an olefin monomer, or may be formed by hydrogenation after polymerization of a monomer having a plurality of double bonds such as a diene monomer or a triene monomer.
 エチレン性不飽和モノマーのポリマーブロックについても、1種類のエチレン性不飽和モノマーからなるポリマーブロックだけでなく、2種類以上の共重合性モノマーのポリマーブロックであってもよい。 The polymer block of the ethylenically unsaturated monomer is not limited to a polymer block composed of one type of ethylenically unsaturated monomer, and may be a polymer block of two or more types of copolymerizable monomers.
 グラフトコポリマーとしては、ポリオレフィンや、オレフィンとエチレン性不飽和モノマーとのランダムコポリマー、ブロックコポリマーを主鎖として、側鎖にエチレン性不飽和モノマーのホモポリマー、ランダムコポリマー、ブロックコポリマーをグラフト化したものが挙げられる。 Examples of graft copolymers include polyolefins, random copolymers of olefins and ethylenically unsaturated monomers, and block copolymers as the main chain, and homopolymers, random copolymers, and block copolymers of ethylenically unsaturated monomers on the side chains. Can be mentioned.
 上記ポリオレフィンブロック又はポリオレフィンを構成するオレフィン単位としては、エチレン、プロピレン、1-ブテン、イソブテン、ペンテン、ヘキセンなどを用いることができる。
 エチレン性不飽和モノマーとしては、アクリル酸、メタクリル酸、メチルメタクリル酸、クロトン酸、(無水)フタル酸、(無水)マレイン酸、(無水)イタコン酸等の不飽和酸類又はその炭素数1~8のモノアルキルエステル又はグリシジルアルコールとのエステル;ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル等の脂肪酸のビニルエステル;スチレン、アリルベンゼン等の芳香族ビニル化合物;アクリルニトリル、アクリロニトリルスチレン、メタクリルニトリル等のシアン化ビニル類などを用いることができる。
As the olefin unit constituting the polyolefin block or polyolefin, ethylene, propylene, 1-butene, isobutene, pentene, hexene and the like can be used.
Examples of the ethylenically unsaturated monomer include unsaturated acids such as acrylic acid, methacrylic acid, methyl methacrylic acid, crotonic acid, (anhydrous) phthalic acid, (anhydrous) maleic acid and (anhydrous) itaconic acid, or carbon atoms of 1 to 8 Monoalkyl esters or esters of glycidyl alcohol; vinyl esters of fatty acids such as vinyl formate, vinyl acetate, vinyl propionate, vinyl valeate; aromatic vinyl compounds such as styrene, allylbenzene; acrylonitrile, acrylonitrile styrene, methacrylonitrile Vinyl cyanides such as can be used.
 従って、本発明のオレフィン系ポリマーの具体例としては、超低密度ポリエチレン、低密度ポリエチレン、中密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン等のポリエチレン、ポリプロピレン、エチレン-αオレフィン共重合体、オレフィン系熱可塑性エラストマー、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-アクリル酸メチル共重合体、スチレン-エチレンブチレン-オレフィン結晶ブロックコポリマー、主鎖がポリオレフィン(例えば、ポリエチレン又はポリプロピレン)またはオレフィンとエチレン性不飽和モノマーとの共重合体(例えば、エチレン-グリシジルメタクリレート共重合体、エチレン-アクリル酸エチル共重合体、エチレン-酢酸ビニル共重合体、エチレン-エチレンアクリレート-無水マレイン酸共重合体)で、側鎖にビニル系ポリマー(例えば、ポリスチレン、ポリメタクリル酸メチル、又はアクリロニトリル-スチレンコポリマー、ポリ酢酸ビニル、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸ブチル、ポリアクリル酸を金属イオンで中和したものなど)又はエチレン-αオレフィン共重合体(例えば、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸メチル共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸ブチル共重合体、エチレン-プロピレンゴム、エチレンアクリルゴム、エチレン-グリシジルメタクリレート共重合体、エチレン-アクリル酸メチル-グリシジルメタクリレート共重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、エチレンアイオノマーやこれらを無水マレイン酸等で変性したポリマーなど)をグラフト化したグラフトコポリマーなどが挙げられる。このようなオレフィン系ポリマーも、上記スチレン系熱可塑性エラストマーと同様に難燃性を発揮できる。 Accordingly, specific examples of the olefin polymer of the present invention include ultra low density polyethylene, low density polyethylene, medium density polyethylene, linear low density polyethylene, high density polyethylene, and the like, polypropylene, ethylene-α olefin copolymer. Olefin-based thermoplastic elastomer, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer, ethylene-methyl acrylate copolymer, Styrene-ethylenebutylene-olefin crystal block copolymer, whose main chain is polyolefin (for example, polyethylene or polypropylene) or a copolymer of olefin and ethylenically unsaturated monomer (for example, ethylene-glycidyl methacrylate copolymer, Tylene-ethyl acrylate copolymer, ethylene-vinyl acetate copolymer, ethylene-ethylene acrylate-maleic anhydride copolymer) and vinyl polymer (for example, polystyrene, polymethyl methacrylate, or acrylonitrile) in the side chain Styrene copolymer, polyvinyl acetate, polymethyl acrylate, polyethyl acrylate, polybutyl acrylate, polyacrylic acid neutralized with metal ions, etc.) or ethylene-α olefin copolymer (eg, ethylene-vinyl acetate) Copolymer, ethylene-methyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, ethylene-propylene rubber, ethylene acrylic rubber, ethylene -Glycidyl methacrylate Grafted polymer, ethylene-methyl acrylate-glycidyl methacrylate copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, ethylene ionomer and polymers modified with maleic anhydride, etc.) Examples thereof include graft copolymers. Such an olefin-based polymer can also exhibit flame retardancy in the same manner as the styrene-based thermoplastic elastomer.
 ベースポリマー中、上記各ポリマー(ポリフェニレンエーテル系樹脂、スチレン系熱可塑性エラストマー、オレフィン系ポリマー)の含有率は、ポリフェニレンエーテル系樹脂5~80質量%、スチレン系熱可塑性エラストマー20~95質量%、およびオレフィン系ポリマー0~70質量%である。オレフィン系ポリマーの含有率が0質量%の場合、ポリフェニレンエーテル系樹脂:スチレン系熱可塑性エラストマー=5:95~80:20であることが好ましい。 The content of each polymer (polyphenylene ether resin, styrene thermoplastic elastomer, olefin polymer) in the base polymer is 5 to 80% by mass of polyphenylene ether resin, 20 to 95% by mass of styrene thermoplastic elastomer, and The olefin polymer is 0 to 70% by mass. When the content of the olefin polymer is 0% by mass, it is preferable that polyphenylene ether resin: styrene thermoplastic elastomer = 5: 95 to 80:20.
 ベースポリマー中のオレフィン系ポリマーの含有率が70質量%よりも多いと、相対的に、より難燃性に優れたスチレン系熱可塑性エラストマーの含有率を少なくせざるを得ず、難燃性が低下する傾向にある。また、ポリフェニレンエーテル樹脂の含有比率が少なくなりすぎ、スチレン系熱可塑性エラストマーの含有比率が大きくなりすぎると、難燃性を充足できない傾向にある。一方、ポリフェニレンエーテル系樹脂の含有比率が大きくなりすぎて、スチレン系熱可塑性エラストマー、オレフィン系ポリマーの含有比率が小さくなりすぎると、引張り特性を満足できない傾向にある。 If the content of the olefin-based polymer in the base polymer is more than 70% by mass, the content of the styrene-based thermoplastic elastomer having a relatively excellent flame retardancy must be relatively reduced, and the flame retardancy is reduced. It tends to decrease. Further, if the content ratio of the polyphenylene ether resin is too small and the content ratio of the styrene-based thermoplastic elastomer is too large, the flame retardancy tends not to be satisfied. On the other hand, if the content ratio of the polyphenylene ether resin becomes too large and the content ratio of the styrene thermoplastic elastomer and the olefin polymer becomes too small, the tensile properties tend not to be satisfied.
(2)リン系難燃剤
 本発明で用いられるリン系難燃剤としては、オルトリン酸エステル;ピロリン酸、ポリリン酸、メタリン酸、ウルトラリン酸等の分子中に分岐PO基を有する架橋構造、または直鎖状、環状にリン酸塩が結合した縮合リン酸の有機エステル又はアンモニウム塩;ホスホン酸エステル;ホスフィン酸エステルなどが挙げられる。これらのうち、縮合リン酸の有機エステル又はアンモニウム塩が好ましく用いられ、分子内にOH基を有していてもよい。
(2) Phosphorus flame retardant As the phosphorus flame retardant used in the present invention, orthophosphoric acid ester; a crosslinked structure having a branched PO 4 group in a molecule such as pyrophosphoric acid, polyphosphoric acid, metaphosphoric acid, and ultraphosphoric acid, or Examples thereof include organic esters or ammonium salts of condensed phosphoric acid in which a phosphate is bonded linearly or cyclically; phosphonic acid esters; phosphinic acid esters. Of these, organic esters or ammonium salts of condensed phosphoric acid are preferably used, and may have an OH group in the molecule.
 具体的には、トリメチルホスフェート、トリエチルホスフェート、トリフェニルホスフェート、トリクレシジルホスフェート、トリキシレニルホスフェート、クレジルフェニルホスフェート、クレジル2,6-キシレニルホスフェート、2-エチルヘキシルジフェニルホスフェート、1,3-フェニレンビス(ジフェニルホスフェート)、1,3-フェニレンビス(ジ2,6-キシレニルホスフェート)、1,2-フェニレンビス(ジ-2,6-キシレニルホスフェート)、ビスフェノールAビス(ジフェニルホスフェート)、レゾルシノールビスジフェニルホスフェート、オクチルジフェニルホスフェート、ジエチレンエチルエステルホスフェート、ジヒドロキシプロピレンブチルエステルホスフェート、エチレンジナトリウムエステルホスフェート、t-ブチルフェニルジフェニルホスフェート、ビス-(t-ブチルフェニル)フェニルホスフェート、トリス-(t-ブチルフェニル)ホスフェート、イソプロピルフェニルジフェニルホスフェート、ビス-(イソプロピルフェニル)ジフェニルホスフェート、トリス-(イソプロピルフェニル)ジフェニルホスフェート、トリス-(イソプロピルフェニル)ホスフェート、トリス(2-エチルヘキシル)ホスフェート、トリス(ブトキシエチル)ホスフェート、トリスイソブチルホスフェート等のリン酸エステル;メチルホスホン酸、メチルホスホン酸ジメチル、メチルホスホン酸ジエチル、エチルホスホン酸、プロピルホスホン酸、ブチルホスホン酸、2-メチル-プロピルホスホン酸、t-ブチルホスホン酸、2,3-ジメチルブチルホスホン酸、オクチルホスホン酸、フェニルホスホン酸等のホスホン酸エステル;ジエチルホスフィン酸、メチルエチルホスフィン酸、フェニルホスフィン酸、ジエチルフェニルホスフィン酸、ジフェニルホスフィン酸等のホスフィン酸エステル;ジイソデジシルペンタエリスリトールジホスファイトや9,10-ジヒドロ-9オキサ-10-フォスファレナンスレン-10-オキサイド、三光株式会社製HCA-HQ、SANKO-220、M-Ester、BCAなどの環状有機リン化合物、ポリリン酸アンモニウム、リン酸メラミン、ポリリン酸メラミン、ピロリン酸メラミン、リン酸グアニル尿素、リン酸グアニジン、株式会社アデカより市販されているアデカスタブFP2100JあるいはアデカスタブFP2200、チバスペシャヤリティケミカルズ株式会社製FLMESTAB NOR116FFなどのリンと窒素の化合物が挙げられる。これらのリン系難燃剤は、1種又は2種以上混合して用いることができる。
 以上のようなリン系化合物は、メラミンやメラミンシアヌレート、脂肪酸、シランカップリング剤などで表面したものを使用してもよい。ベースポリマーとの混合時に、表面処理剤を配合するインテグラルブレンドにより、表面処理されてもよい。
Specifically, trimethyl phosphate, triethyl phosphate, triphenyl phosphate, tricresidyl phosphate, trixylenyl phosphate, cresyl phenyl phosphate, cresyl 2,6-xylenyl phosphate, 2-ethylhexyl diphenyl phosphate, 1,3- Phenylene bis (diphenyl phosphate), 1,3-phenylene bis (di2,6-xylenyl phosphate), 1,2-phenylene bis (di-2,6-xylenyl phosphate), bisphenol A bis (diphenyl phosphate) ), Resorcinol bisdiphenyl phosphate, octyl diphenyl phosphate, diethylene ethyl ester phosphate, dihydroxypropylene butyl ester phosphate, ethylene disodium ester phosphate Fate, t-butylphenyl diphenyl phosphate, bis- (t-butylphenyl) phenyl phosphate, tris- (t-butylphenyl) phosphate, isopropylphenyl diphenyl phosphate, bis- (isopropylphenyl) diphenyl phosphate, tris- (isopropylphenyl) Phosphoric acid esters such as diphenyl phosphate, tris- (isopropylphenyl) phosphate, tris (2-ethylhexyl) phosphate, tris (butoxyethyl) phosphate, trisisobutyl phosphate; methylphosphonic acid, dimethyl methylphosphonate, diethyl methylphosphonate, ethylphosphonic acid, Propylphosphonic acid, butylphosphonic acid, 2-methyl-propylphosphonic acid, t-butylphosphonic acid, 2,3-di Phosphonic acid esters such as butylbutylphosphonic acid, octylphosphonic acid, and phenylphosphonic acid; Phosphinic acid esters such as diethylphosphinic acid, methylethylphosphinic acid, phenylphosphinic acid, diethylphenylphosphinic acid, and diphenylphosphinic acid; diisodedecylpenta Cyclic organophosphorus compounds such as erythritol diphosphite, 9,10-dihydro-9oxa-10-phospharenanthrene-10-oxide, Sanko Co., Ltd. HCA-HQ, SANKO-220, M-Ester, BCA, polyphosphorus Ammonium phosphate, melamine phosphate, melamine polyphosphate, melamine pyrophosphate, guanyl urea phosphate, guanidine phosphate, ADK STAB FP2100J or ADK STAB FP2200 commercially available from Adeka Corporation, Examples thereof include phosphorus and nitrogen compounds such as FLMESTAB NOR116FF manufactured by Ciba Specialty Chemicals. These phosphorus flame retardants can be used alone or in combination.
The phosphorus compound as described above may be one that is surfaced with melamine, melamine cyanurate, fatty acid, silane coupling agent or the like. When mixed with the base polymer, the surface treatment may be performed by an integral blend containing a surface treatment agent.
 リン系難燃剤は、ベースポリマー100質量部あたり、5~100質量部含有される。5質量部未満では、難燃性の確保が困難となり、100質量部を超えると、耐熱変形性を満足できない。 The phosphorus flame retardant is contained in an amount of 5 to 100 parts by mass per 100 parts by mass of the base polymer. If it is less than 5 parts by mass, it is difficult to ensure flame retardancy, and if it exceeds 100 parts by mass, the heat distortion resistance cannot be satisfied.
(3)窒素系有機化合物
 窒素系有機化合物としては、シアヌル酸、メラミン、トリアジン等の誘導体又は付加物が好ましく用いられ、具体的には、メラミン樹脂、メラミンシアヌレート、イソシアヌル酸、イソシアヌレート誘導体、付加物等を用いることができる。これらのうち、分子内にアミノ基及び/又はイミド単位を含有しているメラミン、メラミンシアヌレートが好ましく用いられる。このような窒素系有機化合物は、機構はよくわからないが、リン系難燃剤との併用により、引張り特性の大幅な低下を招くことなく、UL規格のVW-1試験に合格できるレベルの難燃性を確保することが可能となる。
(3) Nitrogen-based organic compound As the nitrogen-based organic compound, derivatives or adducts such as cyanuric acid, melamine, and triazine are preferably used. Specifically, melamine resin, melamine cyanurate, isocyanuric acid, isocyanurate derivatives, An adduct or the like can be used. Of these, melamine and melamine cyanurate containing an amino group and / or an imide unit in the molecule are preferably used. The mechanism of such a nitrogen-based organic compound is not well understood, but when used in combination with a phosphorus-based flame retardant, the flame retardant is at a level that can pass the UL standard VW-1 test without causing a significant decrease in tensile properties. Can be secured.
 以上のような窒素系有機化合物は、アミノシランカップリング剤、ビニルシランカップリング剤、エポキシシランカップリング剤、メタクリロキシシランカップリング剤等のシランカップリング剤;ステアリン酸、オレイン酸等の高級脂肪酸で表面処理されていてもよい。予め表面処理されていてもよいし、ベースポリマー、他の成分との配合、混合時に表面処理剤を配合することにより、表面処理されてもよい。 Nitrogen-based organic compounds as described above are aminosilane coupling agents, vinyl silane coupling agents, epoxy silane coupling agents, silane coupling agents such as methacryloxy silane coupling agents; higher fatty acids such as stearic acid and oleic acid. It may be processed. The surface treatment may be carried out in advance, or the surface treatment may be carried out by blending the base polymer and other components, and blending the surface treatment agent during mixing.
 窒素系有機化合物は、ベースポリマー100質量部あたり、3~80質量部含有される。3質量部未満では、リン系化合物との併用による難燃効果が得られず、80質量部よりも多いと、引張破断伸びが低下して、初期の引張り特性も確保できなくなる。 The nitrogen-based organic compound is contained in an amount of 3 to 80 parts by mass per 100 parts by mass of the base polymer. If the amount is less than 3 parts by mass, the flame retardant effect due to the combined use with the phosphorus compound cannot be obtained, and if the amount is more than 80 parts by mass, the tensile elongation at break decreases and the initial tensile properties cannot be ensured.
(4)多官能性モノマー
 多官能性モノマーとしては、モノアクリレート系、ジアクリレート系、トリアクリレート系、モノメタクリレート系、ジメタクリレート系、トリメタクリレート系、トリアリルイソシアヌレート系、トリアリルシアヌレート系などの分子内に複数の炭素-炭素二重結合を持つモノマーが好ましく使用できる。架橋性の点から、トリメチロールプロパントリメタクリレート等のトリメタクリレート系モノマーが好ましく用いられる。このような多官能性モノマーは、電子線照射により、ベースポリマーに含まれるジエン部分とビニル重合反応することが可能であり、高温下での物性向上に役立つことが期待できる。
(4) Polyfunctional monomer Examples of the polyfunctional monomer include monoacrylate, diacrylate, triacrylate, monomethacrylate, dimethacrylate, trimethacrylate, triallyl isocyanurate, triallyl cyanurate, etc. Monomers having a plurality of carbon-carbon double bonds in the molecule can be preferably used. From the viewpoint of crosslinkability, trimethacrylate monomers such as trimethylolpropane trimethacrylate are preferably used. Such a polyfunctional monomer can undergo a vinyl polymerization reaction with a diene moiety contained in the base polymer by electron beam irradiation, and can be expected to be useful for improving physical properties at high temperatures.
 多官能性モノマーは、ベースポリマー100質量部あたり、1~20質量部含有される。1質量部未満では、架橋効果が得られず、高温下での引張り特性の低下が著しくなり、また高温下での熱変形も大きい。一方、20質量部を超えると、未反応のモノマーが残存するおそれがあり、難燃性低下の原因となり得る。 The polyfunctional monomer is contained in an amount of 1 to 20 parts by mass per 100 parts by mass of the base polymer. If the amount is less than 1 part by mass, the crosslinking effect cannot be obtained, the tensile properties at a high temperature are significantly lowered, and the thermal deformation at a high temperature is large. On the other hand, if it exceeds 20 parts by mass, unreacted monomers may remain, which may cause a reduction in flame retardancy.
(5)その他の成分
 難燃性、耐熱変形性、引張り特性、体積固有抵抗を損なわない範囲で、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムなどの金属水酸化物や三酸化アンチモン、スズ酸亜鉛、ヒドロキシスズ酸亜鉛、ホウ酸亜鉛、リン酸ホウ素などの難燃剤を添加してもよい。
(5) Other components Metal hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, antimony trioxide, stannic acid as long as flame retardancy, heat distortion resistance, tensile properties, and volume resistivity are not impaired. Flame retardants such as zinc, zinc hydroxystannate, zinc borate and boron phosphate may be added.
 本発明で用いられる難燃性樹脂組成物には、さらに、難燃性や機械的強度を損なわない範囲で、各種特性改善の目的で、ポリオレフィン熱可塑性エラストマー、ポリエステル熱可塑性エラストマー、ポリウレタン熱可塑性エラストマー等の他の熱可塑性エラストマー;耐衝撃性ポリスチレン、アクリロニトリル-スチレン樹脂、ABS樹脂などのスチレン系樹脂;EPDM、エチレンアクリルゴム、アクリルゴム、ニトリルゴム等のゴム;ナイロン、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンアフタレート、ポリフェニルスルフィド等の各種ポリマーをブレンドしてもよい。 The flame retardant resin composition used in the present invention further includes a polyolefin thermoplastic elastomer, a polyester thermoplastic elastomer, and a polyurethane thermoplastic elastomer for the purpose of improving various properties within a range that does not impair flame retardancy and mechanical strength. Other thermoplastic elastomers such as; impact-resistant polystyrene, styrene resin such as acrylonitrile-styrene resin, ABS resin; rubber such as EPDM, ethylene acrylic rubber, acrylic rubber, nitrile rubber; nylon, polybutylene terephthalate, polyethylene terephthalate, Various polymers such as polyethylene aphthalate and polyphenyl sulfide may be blended.
 また、酸化防止剤、滑剤、加工安定助剤、着色剤、発泡剤、補強剤、充填剤、加硫剤、金属不活性剤、シランカップリング剤等の各種添加剤を配合してもよい。 Further, various additives such as an antioxidant, a lubricant, a processing stabilizing aid, a colorant, a foaming agent, a reinforcing agent, a filler, a vulcanizing agent, a metal deactivator, and a silane coupling agent may be blended.
 以上のような成分を所定量ずつ配合し、単軸押出型混合機、加圧ニーダー、バンバリーミキサー等の既知の溶融混合機を用いて混合することにより調製できる。 It can be prepared by blending the above components in predetermined amounts and mixing them using a known melt mixer such as a single screw extruder, a pressure kneader, or a Banbury mixer.
<難燃性チューブ>
 本発明の難燃性チューブは、上記組成を有する難燃性樹脂組成物をチューブ状に押出成形してなるチューブ状成形品に電子線照射したものである。
<Flame retardant tube>
The flame-retardant tube of the present invention is obtained by irradiating a tube-shaped molded product obtained by extruding a flame-retardant resin composition having the above composition into a tube shape with an electron beam.
 電子線照射により、多官能性モノマーを介して、ベースポリマーが架橋されると考えられる。そして、架橋により熱可塑性エラストマーの高温でのエラストマー性の低下を抑制し、これにより、高温下での引張り特性を確保できるようになると考えられる。また、架橋による部分的網状構造化により、熱変形も抑制され、高温処理によっても溶融せず、形状保持することができる。 It is considered that the base polymer is cross-linked through the multifunctional monomer by electron beam irradiation. And it is thought that the fall of the elastomeric property at the high temperature of a thermoplastic elastomer is suppressed by bridge | crosslinking, and, thereby, the tensile characteristic under a high temperature can be ensured now. Further, the partial network structure by cross-linking suppresses thermal deformation, and the shape can be maintained without being melted even by high-temperature treatment.
 難燃性チューブのサイズは特に限定しないが、通常、肉厚1.0mm以下が好ましく、より好ましくは0.8mm以下である。 The size of the flame retardant tube is not particularly limited, but usually the wall thickness is preferably 1.0 mm or less, more preferably 0.8 mm or less.
 押出成形に際しては、一旦、難燃性樹脂組成物を調製し、所定の組成を有する樹脂ペレットを製造した後、その樹脂ペレットを押出成形機に供することが好ましい。
 押出機の種類は特に限定せず、スクリュー式、非スクリュー式のいずれもよいが、好ましくはスクリュー式である。スクリューの種類も特に限定しないが、全長Lとシリンダ孔径Dの比(L/D)は、通常24~28程度であることが好ましい。
In extrusion molding, it is preferable that a flame-retardant resin composition is once prepared, resin pellets having a predetermined composition are manufactured, and then the resin pellets are subjected to an extrusion molding machine.
The type of the extruder is not particularly limited, and any of a screw type and a non-screw type may be used, but a screw type is preferable. The type of screw is not particularly limited, but the ratio of the total length L to the cylinder bore diameter D (L / D) is usually preferably about 24 to 28.
 使用する電子線としては、加速電子線やγ線、X線、α線、紫外線などが挙げられる。線源利用の簡便さや電離放射線の透過厚み、架橋処理の速度等、工業的利用の観点から、加速電子線が最も好ましく利用できる。 Examples of electron beams used include accelerated electron beams, γ rays, X rays, α rays, and ultraviolet rays. Accelerated electron beams are most preferably used from the viewpoints of industrial use, such as ease of use of the radiation source, transmission thickness of ionizing radiation, and speed of crosslinking treatment.
 加速電子線の加速電圧は、チューブ層の肉厚、チューブ材料である樹脂組成物の組成によって適宜設定すればよい。例えば、厚み0.2mm~0.4mmの肉厚のチューブでは、加速電圧は300keV~3MeVの間で選定される。照射線量としては、特に限定しないが、通常、20~500kGyである。 The acceleration voltage of the accelerating electron beam may be appropriately set depending on the thickness of the tube layer and the composition of the resin composition that is the tube material. For example, in a tube having a thickness of 0.2 mm to 0.4 mm, the acceleration voltage is selected between 300 keV and 3 MeV. The irradiation dose is not particularly limited, but is usually 20 to 500 kGy.
<熱収縮チューブ>
 本発明の熱収縮チューブは、上記本発明の難燃性チューブを、加熱下で拡径後、冷却固定したものである。
 拡径処理は、上記チューブ状成形品をベースポリマーの軟化点以上の温度に加熱した状態で、チューブ内に圧縮空気を導入する等の方法により、所定の外径に膨張した後、冷却して形状を固定することにより得ることができる。拡径は、元の内径の2~4倍程度であることが好ましい。
 本発明のチューブは、耐熱性に優れ、高温下でも溶融せずに、拡径処理を行うことができ、拡径した形状保持することができる。
<Heat shrinkable tube>
The heat-shrinkable tube of the present invention is obtained by cooling and fixing the flame-retardant tube of the present invention after expanding the diameter under heating.
In the diameter expansion treatment, the tube-shaped molded product is heated to a temperature equal to or higher than the softening point of the base polymer, and then expanded to a predetermined outer diameter by a method such as introducing compressed air into the tube, and then cooled. It can be obtained by fixing the shape. The expanded diameter is preferably about 2 to 4 times the original inner diameter.
The tube of the present invention is excellent in heat resistance, can be expanded without melting even at high temperatures, and can retain the expanded shape.
 本発明の熱収縮チューブは、優れた耐熱性を有しているので、再度、軟化点程度、具体的には100~250℃の加熱処理によって、溶融することなく、元の形状に収縮することができる。したがって、保護、包装しようとする電子部品、ケーブル等の被包装物をチューブ内に挿入した状態で、100~250℃の加熱処理により、被包装物を密着包装することができる。 Since the heat-shrinkable tube of the present invention has excellent heat resistance, the heat-shrinkable tube can be shrunk to its original shape without melting again by a heat treatment at a softening point, specifically 100 to 250 ° C. Can do. Accordingly, the object to be packaged can be tightly packaged by heat treatment at 100 to 250 ° C. in a state where the object to be packaged such as electronic parts and cables to be protected and packaged is inserted into the tube.
 熱収縮処理により収縮したチューブは、拡径処理する前のチューブと同程度の引張り特性を有し、加熱条件下でもUL規格で求められる引張り特性を保持できる。従って、本発明の熱収縮性チューブは、電子部品やケーブル等の被包装物の防湿、防水、防塵、絶縁などを目的とする保護包装材として利用することができる。 The tube shrunk by the heat shrink treatment has the same tensile properties as the tube before the diameter expansion treatment, and can maintain the tensile properties required by the UL standard even under heating conditions. Therefore, the heat-shrinkable tube of the present invention can be used as a protective wrapping material for the purpose of moisture-proofing, waterproofing, dust-proofing, insulation, etc. of articles to be packaged such as electronic parts and cables.
 本発明を実施すための最良の形態を実施例により説明する。実施例は、本発明の範囲を限定するものではない。
 なお、以下の実施例において、「部」とあるのは、断りのない限り「質量部」を意味する。
The best mode for carrying out the present invention will be described with reference to examples. The examples are not intended to limit the scope of the invention.
In the following examples, “part” means “part by mass” unless otherwise specified.
〔測定評価方法〕
 はじめに、以下の実施例で行った測定評価の方法について説明する。
(1)引張特性
 チューブについて、引張り試験(引張速度=500mm/分、標線間距離=20mm)を行い、引張強度(MPa)と引張破断伸び(%)を各3点の試料で測定し、それらの平均値を求めた。引張強さが10.4MPa以上かつ引張破断伸び150%以上が合格レベルである。
[Measurement evaluation method]
First, the measurement evaluation method performed in the following examples will be described.
(1) Tensile properties The tube is subjected to a tensile test (tensile speed = 500 mm / min, distance between marked lines = 20 mm), and tensile strength (MPa) and tensile elongation at break (%) are measured with three samples each. Their average value was determined. A tensile strength of 10.4 MPa or more and a tensile elongation at break of 150% or more are acceptable levels.
(2)耐熱性
 チューブを、158℃に設定したギヤオーブン中で168時間(7日間)放置した後、(1)の引張り試験を行う。加熱処理後の引張強度7.3MPa以上、伸び100%以上であれば、合格レベルである。
(2) Heat resistance After leaving the tube in a gear oven set at 158 ° C. for 168 hours (7 days), the tensile test of (1) is performed. If the tensile strength after heat treatment is 7.3 MPa or more and the elongation is 100% or more, it is a pass level.
(3)難燃性
 UL規格224に記載のVW-1垂直難燃試験に5点の試料について行った。試験は、各試料に15秒着火を5回繰り返した場合に、60秒以内に消火し、下部に敷いた脱脂綿が燃焼落下物によって類焼せず、試料の上部に取り付けたクラフト紙が燃えたり、焦げたりしないものが合格レベルであり、「OK」とした。5点中、1点でも合格レベルにならなかった場合には、不合格「NG」とした。
(3) Flame retardancy The VW-1 vertical flame retardancy test described in UL standard 224 was performed on five samples. In the test, when each sample was ignited 15 seconds for 5 times, the fire extinguished within 60 seconds, the absorbent cotton laid on the bottom was not burned by burning fallen objects, the kraft paper attached to the top of the sample burned, Those that did not burn were acceptable levels and were marked “OK”. If one of the 5 points did not reach the pass level, it was judged as “NG”.
(4)耐加熱変形性
 JIS C3005に準じて行った。チューブ内に内径7.0mmの金属棒を挿入し、140℃に設定した恒温槽にいれて、1時間予熱した。1時間後、チューブにφ9.5mmの治具を押し当てて、500gの荷重を乗せた。荷重をかけた状態で1時間放置した後のチューブ層の厚みを測定し、変形前の厚みに対する残率を算出した。残率50%以上であれば、合格レベルである。
 なお、拡径-熱収縮処理を行った熱収縮チューブを評価する場合には、熱収縮処理の際に、予め内径7.0mmの金属棒を挿入して金属棒挿入チューブとし、この金属棒挿入チューブを恒温槽で予熱し、荷重をかけて1時間放置した後の厚みを測定した。
(4) Heat deformation resistance It carried out according to JIS C3005. A metal rod having an inner diameter of 7.0 mm was inserted into the tube, placed in a thermostat set at 140 ° C., and preheated for 1 hour. After 1 hour, a jig having a diameter of 9.5 mm was pressed against the tube, and a load of 500 g was applied. The thickness of the tube layer after being allowed to stand for 1 hour in a state where a load was applied was measured, and the remaining ratio relative to the thickness before deformation was calculated. If the remaining rate is 50% or more, it is an acceptable level.
When evaluating a heat-shrinkable tube that has been subjected to diameter expansion and heat-shrinkage treatment, a metal rod having an inner diameter of 7.0 mm is inserted in advance during the heat-shrinkage treatment to form a metal rod insertion tube. The tube was preheated in a thermostatic bath, and the thickness after being allowed to stand for 1 hour under load was measured.
(5)ヒートショック試験
 250℃に設定したギヤオーブン内で、チューブを4時間加熱した後、取り出し、チューブ外径と同径の金属棒に巻き付けて、チューブの外観を観察した。外観上、特に変化がなければ合格レベルであり、「OK」とした。
(5) Heat Shock Test After heating the tube for 4 hours in a gear oven set at 250 ° C., the tube was taken out and wrapped around a metal rod having the same diameter as the tube outer diameter, and the appearance of the tube was observed. If there was no particular change in appearance, it was an acceptable level and was set to “OK”.
〔難燃性樹脂組成物の調製及びチューブの作成〕
実施例チューブNo.1~15:
 表1に示すように、ポリフェニレンエーテル系樹脂1又は2、スチレン系熱可塑性エラストマー1又は2、オレフィン系ポリマー1~4、リン系化合物1~3、窒素系化合物1又は2、多官能性モノマー1又は2を、表1に示す量を配合した。さらにベースポリマー(ポリフェニレンエーテル系樹脂、スチレン系熱可塑性エラストマー及びオレフィン系ポリマーの合計)100部に対して、オレイン酸アミド0.5部、ペンタエリスリトール-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕3部を配合し、ダイス温度280℃に設定した二軸混合機で混練して得られた混練物のストランドをペレタイザーにて、各樹脂組成物No.1~15の樹脂ペレットを得た。
[Preparation of flame retardant resin composition and preparation of tube]
Example Tube No. 1-15:
As shown in Table 1, polyphenylene ether resin 1 or 2, styrene thermoplastic elastomer 1 or 2, olefin polymer 1 to 4, phosphorus compound 1 to 3, nitrogen compound 1 or 2, polyfunctional monomer 1 Alternatively, 2 was blended in the amounts shown in Table 1. Furthermore, for 100 parts of the base polymer (total of polyphenylene ether resin, styrene thermoplastic elastomer and olefin polymer), 0.5 part of oleic acid amide, pentaerythritol-tetrakis [3- (3,5-di-t -Butyl-4-hydroxyphenyl) propionate] 3 parts and kneaded in a twin-screw mixer set at a die temperature of 280 ° C. 1 to 15 resin pellets were obtained.
 調製した樹脂組成物No.1~15のペレットを用いて、溶融押出機(45mmφ、L/D=24、圧縮比2.5、フルフライトタイプ)にて、押出温度260℃で、内径7.0mm、肉厚0.3mmのチューブ状成形品を押出成形した。得られたチューブに加速電圧2.0MeVの電子線250kGyを照射し、さらに、No.7~15のチューブについては、拡径-熱収縮処理を行って、チューブNo.1~15を作製した。No.7~15は熱収縮チューブを熱収縮したものに該当する。 Prepared resin composition No. 1 to 15 pellets were used in a melt extruder (45 mmφ, L / D = 24, compression ratio 2.5, full flight type) at an extrusion temperature of 260 ° C., an inner diameter of 7.0 mm, and a wall thickness of 0.3 mm. The tube-shaped molded product was extruded. The obtained tube was irradiated with an electron beam of 250 kGy with an acceleration voltage of 2.0 MeV. For the tubes 7 to 15, the tube No. was subjected to diameter expansion-heat shrink treatment. 1 to 15 were produced. No. Nos. 7 to 15 correspond to heat-shrinkable tubes.
 ここで、拡径-熱収縮処理とは、160℃に設定した恒温槽に3分間放置して予熱した後、チューブ内に圧縮空気を送り込むことによって内径14mmまで拡径し、すぐさま恒温槽から取り出し、水冷して形状固定する。拡径処理により得られた熱収縮チューブを160℃で3分間加熱することにより、元のサイズ(内径7mm)にまで収縮させることにより行う。
 作製したチューブNo.1~15について、上記評価方法に基づいて、引張り特性、耐熱性、難燃性、耐熱変形性、ヒートショック試験を測定評価した。結果を、表1に示す。
Here, the diameter expansion-heat shrinkage treatment is preheated by standing in a thermostat set at 160 ° C. for 3 minutes, then expanded to 14 mm inner diameter by sending compressed air into the tube, and immediately taken out from the thermostat. Fix the shape by cooling with water. The heat shrinkable tube obtained by the diameter expansion treatment is heated at 160 ° C. for 3 minutes to shrink to the original size (inner diameter 7 mm).
The prepared tube No. For 1 to 15, tensile properties, heat resistance, flame retardancy, heat distortion resistance, and heat shock tests were measured and evaluated based on the above evaluation methods. The results are shown in Table 1.
比較例チューブNo.16~26:
 樹脂組成物の配合組成を、表2に示すように変更した以外は、上記実施例と同様にして調製した各樹脂組成物No.16~26の樹脂ペレットを、上記実施例と同様に押出成形して、内径7.0mm、肉厚0.3mmのチューブ状成形品を得た。No.16~21、23、26のチューブを、加速電圧2.0MeVの電子線を表2に示す量だけ照射し、さらに、No.16~21、23、26のチューブについては、上記実施例と同様の拡径-熱収縮処理を行った。
 以上のようにして作製したチューブNo.16~26について、上記評価方法に基づいて、引張り特性、耐熱性、難燃性、加熱変形性、ヒートショック試験を測定評価した。測定結果を、表2に示す。
Comparative tube No. 16-26:
Except having changed the compounding composition of the resin composition as shown in Table 2, each resin composition No. 16 to 26 resin pellets were extruded in the same manner as in the above examples to obtain a tubular molded product having an inner diameter of 7.0 mm and a wall thickness of 0.3 mm. No. Nos. 16 to 21, 23, and 26 were irradiated with an electron beam with an acceleration voltage of 2.0 MeV by the amount shown in Table 2. The tubes 16 to 21, 23, and 26 were subjected to the same diameter expansion-heat shrinkage treatment as in the above example.
Tube No. produced as described above was obtained. With respect to 16 to 26, tensile properties, heat resistance, flame retardancy, heat deformability, and heat shock tests were measured and evaluated based on the above evaluation methods. The measurement results are shown in Table 2.
 なお、表1及び表2中の化合物は、以下の通りである。
*1:ポリフェニレンエーテル1:三菱エンジニアリングプラスチックス株式会社製PX-100L
*2:ポリフェニレンエーテル2:旭化成ケミカルズ株式会社製のザイロンX9102
これは、ポリフェニレンエーテル樹脂とポリスチレン樹脂の完全相溶系ポリマーアロイである
*3:スチレン系エラストマー1:旭化成ケミカルズ株式会社製のタフテックH1041
これは、スチレン-エチレンブテン-スチレン共重合体で、スチレン含有率30質量%である。
*4:スチレン系エラストマー2:旭化成ケミカルズ株式会社製のSOE-SS9000
これは、水添SBRである。
*5:リン系化合物1:Ciba社製のMELAPUR200
これは、ポリリン酸メラミンで平均粒径4μm、リン含有率13質量%、窒素含有率43質量%である。
*6:リン系化合物2:大八化学工業株式会社のPX-200
これは、縮合リン酸エステルでリン含有率が9.0質量%である。
*7:リン系化合物3:三光株式会社製のBCA
これは、環状有機リン化合物である。
*8:窒素系化合物1:堺化学工業株式会社製のSTABIACE MC-5S
これは、メラミンシアヌレート(平均粒径0.5μm)である。
*9:窒素系化合物2:三菱化学社製のメラミン
*10:多官能性モノマー1:新中村化学工業株式会社製のNKエステルTMPT
トリメチロールプロパントリメタクリレート
*11:多官能性モノマー2:日本化成株式会社製のタイク(トリアリルイソシアヌレート)
*12:オレフィン系ポリマー1:日本ポリエチレン製のレクスパールA1150.これはエチレン-アクリル酸エチル共重合体(アクリル酸エチル含有率15質量%、MFR0.8(190℃,荷重2.16kg))。
*13:オレフィン系ポリマー2:デュポン株式会社製のエルバロイ1125AC。これはエチレン-アクリル酸メチル共重合体(アクリル酸メチル含有率27質量%、 MFR0.6(190℃,荷重2.16kg))。
*14:オレフィン系ポリマー3:JSR株式会社製のダイナロン4600P。これはスチレン-エチレンブチレン-オレフィン結晶ブロックコポリマー。
*15:オレフィン系ポリマー4:日本油脂株式会社製のモディパ-A1100。これは主鎖が低密度ポリエチレンでポリスチレンをグラフト化したポリマー。
In addition, the compound in Table 1 and Table 2 is as follows.
* 1: Polyphenylene ether 1: PX-100L manufactured by Mitsubishi Engineering Plastics Co., Ltd.
* 2: Polyphenylene ether 2: Xylon X9102 manufactured by Asahi Kasei Chemicals Corporation
This is a completely compatible polymer alloy of polyphenylene ether resin and polystyrene resin. * 3: Styrenic elastomer 1: Tuftec H1041 manufactured by Asahi Kasei Chemicals Corporation
This is a styrene-ethylenebutene-styrene copolymer having a styrene content of 30% by mass.
* 4: Styrene elastomer 2: SOE-SS9000 manufactured by Asahi Kasei Chemicals Corporation
This is a hydrogenated SBR.
* 5: Phosphorous compound 1: MELAPUR200 manufactured by Ciba
This is melamine polyphosphate having an average particle size of 4 μm, a phosphorus content of 13% by mass and a nitrogen content of 43% by mass.
* 6: Phosphorus compound 2: PX-200 from Daihachi Chemical Industry Co., Ltd.
This is a condensed phosphate ester with a phosphorus content of 9.0% by weight.
* 7: Phosphorus compound 3: BCA manufactured by Sanko Co., Ltd.
This is a cyclic organophosphorus compound.
* 8: Nitrogen-based compound 1: STABIACE MC-5S manufactured by Sakai Chemical Industry Co., Ltd.
This is melamine cyanurate (average particle size 0.5 μm).
* 9: Nitrogen compound 2: Melamine manufactured by Mitsubishi Chemical Corporation * 10: Multifunctional monomer 1: NK ester TMPT manufactured by Shin-Nakamura Chemical Co., Ltd.
Trimethylolpropane trimethacrylate * 11: Multifunctional monomer 2: Nippon Chemical Co., Ltd. Tyco (triallyl isocyanurate)
* 12: Olefin-based polymer 1: Lexpearl A1150 made by Nippon Polyethylene. This is an ethylene-ethyl acrylate copolymer (ethyl acrylate content 15 mass%, MFR 0.8 (190 ° C., load 2.16 kg)).
* 13: Olefin polymer 2: Elvalloy 1125AC manufactured by DuPont. This is an ethylene-methyl acrylate copolymer (methyl acrylate content 27 mass%, MFR 0.6 (190 ° C., load 2.16 kg)).
* 14: Olefin polymer 3: Dynalon 4600P manufactured by JSR Corporation. This is a styrene-ethylenebutylene-olefin crystal block copolymer.
* 15: Olefin polymer 4: MODIPA-A1100 manufactured by NOF Corporation. This is a polymer whose main chain is low density polyethylene and grafted with polystyrene.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
参考チューブNo.31、32:
 SABIC イノベーティブプラスチック合同会社製の柔軟ノリル樹脂コンパウンドを上記実施例と同様にして押出成形し、チューブ状成形品を得た。得られたチューブを実施例1と同様に電子線照射し、さらに拡径-熱収縮処理して、チューブNo.31、32を作製した。作成したチューブについて、上記評価方法に基づいて、引張り特性、耐熱性、難燃性、耐熱変形性、ヒートショックを測定評価した。結果を表3に示す。
Reference tube No. 31, 32:
A flexible Noryl resin compound manufactured by SABIC Innovative Plastics LLC was extruded in the same manner as in the above example to obtain a tubular molded product. The obtained tube was irradiated with an electron beam in the same manner as in Example 1, and further subjected to diameter expansion-heat shrinkage treatment. 31 and 32 were produced. The prepared tube was measured and evaluated for tensile properties, heat resistance, flame retardancy, heat distortion resistance, and heat shock based on the above evaluation methods. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 No.1~9は、いずれもポリフェニレンエーテル5~80質量%及びスチレン系熱可塑性エラストマー95~20質量%含有するベースポリマー100質量部あたり、リン系難燃剤5~100質量部、窒素系有機化合物3~80質量部、および多官能性モノマー1~20質量部を含有する難燃性樹脂組成物を材料として、電子線照射により架橋したチューブであり、引張り特性、難燃性、耐熱性、耐熱変形性、ヒートショック試験が合格レベルであった。また、No.10~15は、ベースポリマーとして、ポリフェニレンエーテル20~40質量%、スチレン系熱可塑性エラストマー20~30質量%、オレフィン系ポリマー40~50質量%のブレンドを用いた場合であり、いずれも、電子線照射により架橋したチューブの引張り特性、難燃性、耐熱性、耐熱変形性、ヒートショック試験が合格レベルであった。No.7、8,9は、それぞれNo.1、3、6のチューブと材料である樹脂組成物が同じである。それぞれ対応するチューブの評価結果を比べると、拡径-熱収縮処理によっても、特性がほとんど低下せず、処理前の特性が保持されていることがわかる。 No. 1 to 9 are 5 to 100 parts by weight of a phosphorus-based flame retardant and 3 to 3 parts by weight of a nitrogen-based organic compound per 100 parts by weight of a base polymer containing 5 to 80% by weight of polyphenylene ether and 95 to 20% by weight of a styrene thermoplastic elastomer. This is a tube crosslinked by electron beam irradiation using a flame retardant resin composition containing 80 parts by mass and 1 to 20 parts by mass of a polyfunctional monomer as a material, and has tensile properties, flame resistance, heat resistance, and heat distortion resistance. The heat shock test was acceptable. No. 10 to 15 are cases where a blend of 20 to 40% by mass of polyphenylene ether, 20 to 30% by mass of a styrene thermoplastic elastomer, and 40 to 50% by mass of an olefin polymer is used as a base polymer. The tensile properties, flame retardancy, heat resistance, heat distortion resistance, and heat shock test of the tube cross-linked by irradiation were acceptable levels. No. 7, 8, and 9 are No. 1, respectively. The tubes 1, 3, and 6 are the same resin composition as the material. Comparing the evaluation results of the corresponding tubes, it can be seen that the characteristics before the treatment are maintained, with the characteristics hardly deteriorated even by the diameter expansion-heat shrink treatment.
 No.24は電子線照射を行わなかったチューブであり、No.22は多官能性モノマーを含有しない樹脂組成物で構成されるチューブである。いずれも、耐熱性試験、ヒートショック試験でチューブが溶融して、形状を保持できなかった。これらは、電子線照射を行わないため、あるいは多官能性モノマーを含有しないために、電子線照射による架橋効果が得られず、高温加熱処理に耐えられなかった。従って、高温加熱処理を前提とする熱収縮チューブとしては、使用できない。 No. 24 is a tube which was not irradiated with an electron beam. Reference numeral 22 denotes a tube made of a resin composition that does not contain a polyfunctional monomer. In either case, the tube was melted in the heat resistance test and heat shock test, and the shape could not be maintained. Since these were not subjected to electron beam irradiation or contained no polyfunctional monomer, the crosslinking effect by electron beam irradiation was not obtained, and they could not withstand high-temperature heat treatment. Therefore, it cannot be used as a heat shrinkable tube premised on high-temperature heat treatment.
 多官能性モノマー含有量が多すぎたり(No.23)、ベースポリマーにおけるポリフェニレンエーテルの含有率が低すぎたり(No.17)、リン系難燃剤の含有量が少なすぎたり(No.18)、ポリオレフィン系樹脂が多すぎると(No.26)、難燃性を満足することができなかった。
 一方、ベースポリマーにおけるポリフェニレンエーテルとスチレン系熱可塑性エラストマーの含有比率が適正で、適量のリン系難燃剤、多官能性モノマーを含有し、電子線照射による架橋処理が行われても、窒素化合物を3質量部含有する場合(No.6)は難燃性を満足することができたが、窒素系化合物を1質量部しか含有しない場合(No.21)には難燃性を満足することができなかった。このことから、窒素化合物とリン系難燃剤の併用が、難燃性確保のためには有用であることがわかる。
The polyfunctional monomer content is too high (No. 23), the polyphenylene ether content in the base polymer is too low (No. 17), or the phosphorus flame retardant content is too low (No. 18). When there was too much polyolefin resin (No. 26), flame retardance could not be satisfied.
On the other hand, the content ratio of polyphenylene ether and styrene-based thermoplastic elastomer in the base polymer is appropriate, contains an appropriate amount of phosphorus-based flame retardant, polyfunctional monomer, and nitrogen compounds are not affected even when cross-linking treatment is performed by electron beam irradiation. When containing 3 parts by mass (No. 6), the flame retardancy could be satisfied, but when containing only 1 part by mass of the nitrogen compound (No. 21), the flame retardancy might be satisfied. could not. This shows that the combined use of a nitrogen compound and a phosphorus flame retardant is useful for ensuring flame retardancy.
 リン系難燃剤の含有量を大きくすることによって(No.19)、あるいはベースポリマーにおけるポリフェニレンエーテルの含有比率を高くすることによって(No.16)、窒素化合物を含有しなくても難燃性を満足させることは可能であるが、リン系化合物の含有量増大によって加熱処理による変形量が大きくなり(No.19)、ポリフェニレンエーテルの含有比率の増大により(No.16)、高温加熱により伸びが低下しすぎて耐熱性、ヒートショック試験の合格レベルを確保することができなかった。 By increasing the content of the phosphorus-based flame retardant (No. 19), or by increasing the content ratio of the polyphenylene ether in the base polymer (No. 16), flame retardancy can be achieved without containing a nitrogen compound. Although it can be satisfied, the amount of deformation due to heat treatment increases due to an increase in the content of the phosphorus compound (No. 19), and due to an increase in the content ratio of polyphenylene ether (No. 16), the elongation is increased due to heating at high temperature It was too low to secure the heat resistance and the pass level of the heat shock test.
 また、No.25では、ベースポリマーにおけるポリフェニレンエーテルとスチレン系熱可塑性エラストマーとの含有比率を本発明の範囲内とし、さらに窒素系化合物、多官能性モノマーを適正量配合して、架橋効果を得たものであるが、ヒートショック試験は合格であったが、高温下での伸び、耐熱変形性が劣っていた。一方、No.21は、窒素系化合物量を減らして、リン系化合物の含有量を増加させ、架橋効果を得たものである。いずれも難燃性を満足できないレベルであるが、高温下での伸び、耐熱変形性の確保のためには、100部以下のリン系化合物が有用であることがわかる。 No. 25, the content ratio of the polyphenylene ether and the styrene-based thermoplastic elastomer in the base polymer is within the scope of the present invention, and a nitrogen compound and a polyfunctional monomer are blended in appropriate amounts to obtain a crosslinking effect. However, although the heat shock test passed, it was inferior in elongation at high temperature and heat distortion resistance. On the other hand, no. No. 21 is obtained by reducing the amount of the nitrogen compound and increasing the content of the phosphorus compound to obtain a crosslinking effect. Although it is a level which cannot satisfy flame retardance in any case, it turns out that a phosphorus compound of 100 parts or less is useful for ensuring elongation under high temperature and heat deformation resistance.
 さらに、No.4とNo.19との比較から、オレフィン系ポリマーを含有しないベースポリマーを用いた場合、難燃性と耐熱性、高温での強度の保持のためには、ベースポリマーにおけるポリフェニレンエーテルとスチレン系エラストマーとの含有比率(ポリフェニレンンエーテル:スチレン系エラストマー)を5:95~80:20の範囲とし、さらに窒素系化合物とリン系化合物の併用により、難燃剤の含有量総量を抑制することが有効であることがわかる。 Furthermore, No. 4 and no. 19 shows that when a base polymer that does not contain an olefin-based polymer is used, the content ratio of polyphenylene ether and styrene-based elastomer in the base polymer is required to maintain flame retardancy, heat resistance, and strength at high temperatures. It can be seen that it is effective to control the total amount of flame retardant by using (polyphenylene ether: styrene-based elastomer) in the range of 5:95 to 80:20 and using a nitrogen compound and a phosphorus compound in combination. .
 No.20とNo.5との比較から、窒素系化合物の含有量が多くなると伸びが低下する傾向にあり、窒素系化合物の含有量が90質量部では初期の引張り特性も合格レベルを確保できなかった。引張り特性の点からも、リン系化合物と窒素系化合物の含有量バランスを考慮する必要があることがわかる。 No. 20 and no. From comparison with 5, the elongation tends to decrease as the content of the nitrogen-based compound increases. When the content of the nitrogen-based compound is 90 parts by mass, the initial tensile characteristics cannot be secured. From the point of tensile properties, it is understood that it is necessary to consider the content balance between the phosphorus compound and the nitrogen compound.
 なお、表3から、柔軟ノリルを用いた場合、チューブにおける難燃性を満足することができず、電子線照射をしても架橋効果が得られないためか、ヒートショック試験では溶融して、形状保持が困難な状態となり、高温処理後の変形も大きかった。 In addition, from Table 3, when soft noryl is used, the flame retardancy in the tube cannot be satisfied, and the crosslinking effect cannot be obtained even by electron beam irradiation. It was difficult to maintain the shape, and the deformation after high temperature treatment was large.
 本発明のチューブ、熱収縮チューブは、UL規格のVW-1試験の難燃性を満足することができるノンハロゲンタイプのチューブで、しかも、高温下でもUL規格の引張り特性、強度、耐熱変形を満足することができるので、電子機器、OA機器、オーディオ、ビデオ、DVD、ブルーレイ等の民生用電子機器類、車両、船舶等の内部配線や部品の保護に用いられるチューブ、さらに密着包装、保護用の熱収縮チューブとして用いることができる。 The tube of the present invention and the heat shrinkable tube are non-halogen type tubes that can satisfy the flame resistance of the UL standard VW-1 test, and also satisfy the UL standard tensile properties, strength, and heat deformation even at high temperatures. It can be used for electronic equipment, OA equipment, consumer electronic equipment such as audio, video, DVD, Blu-ray, tubes used for protecting internal wiring and parts of vehicles, ships, etc. It can be used as a heat shrinkable tube.

Claims (9)

  1. ポリフェニレンエーテル5~80質量%、スチレン系熱可塑性エラストマー20~95質量%、およびオレフィン系ポリマー0~70質量%のベースポリマー100質量部あたり、リン系難燃剤5~100質量部、窒素系有機化合物3~80質量部、および多官能性モノマー1~20質量部を含有する難燃性樹脂組成物を、チューブ状に成形した後、電子線照射してなる難燃性チューブ。 5-100 parts by mass of a phosphorus-based flame retardant per 100 parts by mass of a base polymer of 5-80% by mass of polyphenylene ether, 20-95% by mass of a styrene thermoplastic elastomer, and 0-70% by mass of an olefin polymer, a nitrogen-based organic compound A flame-retardant tube obtained by forming a flame-retardant resin composition containing 3 to 80 parts by mass and 1 to 20 parts by mass of a polyfunctional monomer into a tube shape and then irradiating it with an electron beam.
  2. 前記ベースポリマーは、ポリフェニレンエーテル5~80質量%、スチレン系熱可塑性エラストマー95~20質量%である請求項1に記載の難燃性チューブ。 The flame retardant tube according to claim 1, wherein the base polymer is 5 to 80% by mass of polyphenylene ether and 95 to 20% by mass of a styrene thermoplastic elastomer.
  3. 前記オレフィン系ポリマーは、オレフィンとエチレン性不飽和モノマーとの共重合体である請求項1に記載の難燃性チューブ。 The flame retardant tube according to claim 1, wherein the olefin polymer is a copolymer of an olefin and an ethylenically unsaturated monomer.
  4. 前記共重合体は、ポリオレフィンブロックと、エチレン性不飽和モノマーのポリマーブロックとを含むブロックコポリマーである請求項3に記載の難燃性チューブ。 The flame retardant tube according to claim 3, wherein the copolymer is a block copolymer including a polyolefin block and a polymer block of an ethylenically unsaturated monomer.
  5. 前記オレフィン系ポリマーは、オレフィンとエチレン性不飽和モノマーとの共重合体又はポリオレフィンの側鎖を、ビニル系ポリマー又はエチレン-αオレフィン共重合体でグラフト化したグラフトコポリマーである請求項3に記載の難燃性チューブ。 The olefin polymer is a copolymer of an olefin and an ethylenically unsaturated monomer or a graft copolymer obtained by grafting a side chain of a polyolefin with a vinyl polymer or an ethylene-α olefin copolymer. Flame retardant tube.
  6. 前記多官能性モノマーは、炭素-炭素二重結合を有するモノマーである請求項1~5のいずれか1項に記載の難燃性チューブ。 The flame retardant tube according to any one of claims 1 to 5, wherein the polyfunctional monomer is a monomer having a carbon-carbon double bond.
  7. 前記リン系難燃剤は、縮合リン酸のエステル又はアンモニウム塩である請求項1~6のいずれか1項に記載の難燃性チューブ。 The flame retardant tube according to any one of claims 1 to 6, wherein the phosphorus flame retardant is an ester or ammonium salt of condensed phosphoric acid.
  8. 前記窒素系有機化合物は、アミノ基及び/又はイミド単位含有化合物である請求項1~7のいずれか1項に記載の難燃性チューブ。 The flame retardant tube according to any one of claims 1 to 7, wherein the nitrogen-based organic compound is an amino group and / or imide unit-containing compound.
  9. 請求項1~8のいずれかに1項に記載のチューブを、加熱下で拡径した後、冷却固定してなる熱収縮チューブ。 A heat-shrinkable tube obtained by expanding the diameter of the tube according to any one of claims 1 to 8 under heating and then fixing by cooling.
PCT/JP2009/052886 2008-04-09 2009-02-19 Flame-retardant tube and heat-shrinkable tube made by using the same WO2009125623A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009800004245A CN101679720B (en) 2008-04-09 2009-02-19 Flame-retardant tube and heat-shrinkable tube made by using the same
JP2009524040A JP5172839B2 (en) 2008-04-09 2009-02-19 Flame retardant tube and heat shrink tube using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-100984 2008-04-09
JP2008100984 2008-04-09

Publications (1)

Publication Number Publication Date
WO2009125623A1 true WO2009125623A1 (en) 2009-10-15

Family

ID=41161759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052886 WO2009125623A1 (en) 2008-04-09 2009-02-19 Flame-retardant tube and heat-shrinkable tube made by using the same

Country Status (5)

Country Link
JP (1) JP5172839B2 (en)
KR (1) KR20110003435A (en)
CN (1) CN101679720B (en)
TW (1) TW200948895A (en)
WO (1) WO2009125623A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249552A (en) * 2008-04-09 2009-10-29 Sumitomo Electric Ind Ltd Flame-retardant resin composition, and insulated electric wire and flat cable using the same
WO2011043259A1 (en) * 2009-10-06 2011-04-14 住友電気工業株式会社 Flame-retardant resin composition, and insulated electric wire, flat cable, and molded article, which are made using same
JP2011116010A (en) * 2009-12-02 2011-06-16 Mitsubishi Plastics Inc Polyphenylene sulfide-based heat shrinkable tube and member coated therewith
WO2011129129A1 (en) * 2010-04-16 2011-10-20 住友電気工業株式会社 Non-halogen flame-retardant resin composition, and electric wire and cable which are made using same
CN102391637A (en) * 2011-09-14 2012-03-28 上海锦湖日丽塑料有限公司 Polyphenyl ether elastomer composition
WO2013114765A1 (en) * 2012-02-03 2013-08-08 住友電気工業株式会社 Halogen-free flame-retardant insulated electrical wire
WO2014171461A1 (en) * 2013-04-17 2014-10-23 旭化成ケミカルズ株式会社 Resin composition and molded article
JP2016222885A (en) * 2015-05-29 2016-12-28 三井化学株式会社 Resin composition and molded body containing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5569363B2 (en) * 2010-11-29 2014-08-13 住友電気工業株式会社 Insulated wire and manufacturing method thereof
CN102643462A (en) * 2012-03-31 2012-08-22 东莞三联热缩材料有限公司 Heat-shrinkable sleeve free of halogen and red phosphorus
CN103224825B (en) * 2013-04-09 2014-04-09 天津市联瑞阻燃材料有限公司 Medium-pressure anti-combustible oil with base oil of trixylenyl phosphate and production method thereof
CN103215106A (en) * 2013-04-09 2013-07-24 天津市联瑞阻燃材料有限公司 Aviation-grade high-pressure fire resistant oil taking trixylyl phosphate as base oil and production method thereof
CN103215105B (en) * 2013-04-09 2014-04-09 天津市联瑞阻燃材料有限公司 Middle-pressure fire resistant oil taking tricresyl phosphate as base oil and production method thereof
CN104403179B (en) * 2014-12-17 2017-01-04 天津金发新材料有限公司 A kind of polyethylene/nylon heat-shrink tube and preparation method thereof
JP7186312B2 (en) * 2019-11-29 2022-12-08 旭化成株式会社 Polyphenylene ether resin composition and molded article

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225149A (en) * 1985-07-25 1987-02-03 Asahi Chem Ind Co Ltd Highly elastic hydrogenated block copolymer composition
JPS63179956A (en) * 1987-01-22 1988-07-23 Asahi Chem Ind Co Ltd Shape memory resin composition
JPH0948883A (en) * 1995-08-07 1997-02-18 Asahi Chem Ind Co Ltd Fine particle-dispersed resin composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1239615C (en) * 2000-08-30 2006-02-01 旭化成株式会社 Curable resin composition
CN100509938C (en) * 2006-12-08 2009-07-08 潍坊乾元塑胶有限公司 Halogen-free flame-proof resin composition and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225149A (en) * 1985-07-25 1987-02-03 Asahi Chem Ind Co Ltd Highly elastic hydrogenated block copolymer composition
JPS63179956A (en) * 1987-01-22 1988-07-23 Asahi Chem Ind Co Ltd Shape memory resin composition
JPH0948883A (en) * 1995-08-07 1997-02-18 Asahi Chem Ind Co Ltd Fine particle-dispersed resin composition

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249552A (en) * 2008-04-09 2009-10-29 Sumitomo Electric Ind Ltd Flame-retardant resin composition, and insulated electric wire and flat cable using the same
WO2011043259A1 (en) * 2009-10-06 2011-04-14 住友電気工業株式会社 Flame-retardant resin composition, and insulated electric wire, flat cable, and molded article, which are made using same
CN102575106A (en) * 2009-10-06 2012-07-11 住友电气工业株式会社 Flame-retardant resin composition, and insulated electric wire, flat cable, and molded article, which are made using same
JP2011116010A (en) * 2009-12-02 2011-06-16 Mitsubishi Plastics Inc Polyphenylene sulfide-based heat shrinkable tube and member coated therewith
JP5549675B2 (en) * 2010-04-16 2014-07-16 住友電気工業株式会社 Non-halogen flame retardant resin composition and electric wire and cable using the same
WO2011129129A1 (en) * 2010-04-16 2011-10-20 住友電気工業株式会社 Non-halogen flame-retardant resin composition, and electric wire and cable which are made using same
CN102391637A (en) * 2011-09-14 2012-03-28 上海锦湖日丽塑料有限公司 Polyphenyl ether elastomer composition
JP2013161590A (en) * 2012-02-03 2013-08-19 Sumitomo Electric Ind Ltd Halogen-free fire-resistant insulation electric wire
WO2013114765A1 (en) * 2012-02-03 2013-08-08 住友電気工業株式会社 Halogen-free flame-retardant insulated electrical wire
EP2811489A4 (en) * 2012-02-03 2015-10-14 Sumitomo Electric Industries Halogen-free flame-retardant insulated electrical wire
WO2014171461A1 (en) * 2013-04-17 2014-10-23 旭化成ケミカルズ株式会社 Resin composition and molded article
JP6068622B2 (en) * 2013-04-17 2017-01-25 旭化成株式会社 Resin composition and molded product
JPWO2014171461A1 (en) * 2013-04-17 2017-02-23 旭化成株式会社 Resin composition and molded product
US9617419B2 (en) 2013-04-17 2017-04-11 Asahi Kasei Kabushiki Kaisha Resin composition and molded article
US10174196B2 (en) 2013-04-17 2019-01-08 Asahi Kasei Kabushiki Kaisha Resin composition and molded article
JP2016222885A (en) * 2015-05-29 2016-12-28 三井化学株式会社 Resin composition and molded body containing the same

Also Published As

Publication number Publication date
TW200948895A (en) 2009-12-01
KR20110003435A (en) 2011-01-12
CN101679720A (en) 2010-03-24
JPWO2009125623A1 (en) 2011-08-04
CN101679720B (en) 2013-10-09
JP5172839B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP5172839B2 (en) Flame retardant tube and heat shrink tube using the same
JP5529551B2 (en) Insulation tube and heat shrink tube
JP5825536B2 (en) Non-halogen flame retardant resin composition and insulated wire and tube using the same
JP5556183B2 (en) Flame retardant resin composition and insulated wire, flat cable, molded product using the same
JP5549675B2 (en) Non-halogen flame retardant resin composition and electric wire and cable using the same
KR101541491B1 (en) Halogen-free flame retardant
JP5569363B2 (en) Insulated wire and manufacturing method thereof
JP2013545858A (en) Halogen-free flame retardant composition for wire and cable applications
JP5105242B2 (en) Flame retardant resin composition, insulated wire and flat cable using the same
JPH11228748A (en) Flame-retardant polyolefin resin composition
JP2005200574A (en) Non-halogen flame-retardant resin composition and electric wire/cable using the same
JP2007197619A (en) Non-halogen flame-retardant resin composition and electric wire/cable using the same
JPH11171936A (en) Flame-retardant polyolefin resin
JP2011068717A (en) Flame retardant resin composition
JP3361616B2 (en) Polyolefin-based flame-retardant crosslinkable resin composition
JP2004182922A (en) Flame retardant resin composition
JP4038071B2 (en) Non-halogen flame retardant resin composition
JP2002265703A (en) Flame-retardant resin composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000424.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009524040

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20097024988

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09730088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09730088

Country of ref document: EP

Kind code of ref document: A1