WO1999036701A1 - Centrifugal turbomachinery - Google Patents

Centrifugal turbomachinery Download PDF

Info

Publication number
WO1999036701A1
WO1999036701A1 PCT/JP1999/000077 JP9900077W WO9936701A1 WO 1999036701 A1 WO1999036701 A1 WO 1999036701A1 JP 9900077 W JP9900077 W JP 9900077W WO 9936701 A1 WO9936701 A1 WO 9936701A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
impeller
outlet
inlet
hub
Prior art date
Application number
PCT/JP1999/000077
Other languages
French (fr)
Japanese (ja)
Inventor
Hideomi Harada
Shin Konomi
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to DE69932408T priority Critical patent/DE69932408T2/en
Priority to EP99900291A priority patent/EP1048850B1/en
Priority to US09/600,237 priority patent/US6338610B1/en
Publication of WO1999036701A1 publication Critical patent/WO1999036701A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/24Vanes
    • F04D29/242Geometry, shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes

Definitions

  • the present invention relates to an improvement of an impeller of a machine generally called a "turbo machine” such as a centrifugal liquid pump for pumping a liquid and a blower and a compressor for pumping a gas.
  • aturbo machine such as a centrifugal liquid pump for pumping a liquid and a blower and a compressor for pumping a gas.
  • FIGS. 9A to 10B show a typical turbomachine, in which a casing (not shown) having required piping is provided with a hub 2, a shroud 4, and an impeller 6 including a plurality of blades 3 therebetween. And a rotary shaft 1 connected to a rotary drive source.
  • the upper end 3a of the blade 3 is covered with a shroud surface 4a, and a space surrounded by two adjacent blades 3, a hub surface 2a and a shroud surface 4a flows.
  • the road is constructed.
  • the impeller 6 rotates at the rotational angular velocity ⁇ about the rotation axis 1, so that the fluid flowing into the flow path from the impeller inlet 6 a via the suction pipe and the like to the impeller outlet 6 b Transported to the outside of the machine via a discharge pipe.
  • the surface facing the rotating direction of the blade 3 is the pressure surface 3b.
  • the opposite surface is the suction surface 3c.
  • the three-dimensional shape of the closed impeller is schematically shown with most of the shroud surface broken.
  • a separate part for forming the shoulder surface 4 Although there is no material, the casing outside the figure surrounding the impeller 6 mechanically also serves as the shroud surface 4, and there is no difference in the basic structure of the fluid dynamics from the closed impeller. The following description proceeds with an example of a closed impeller.
  • the low-energy fluid in the boundary layer that is accumulated in a specific area of the flow channel due to the action of the secondary flow induces large-scale flow separation, causing a rising characteristic to the right, resulting in a stable turbomachine. It is known to cause inconvenience such as hindering driving.
  • the secondary flow in the impeller is roughly classified into a secondary flow between blades generated along the shroud surface or hub surface, and a secondary flow in the meridian plane generated along the pressure surface or suction surface of the blade. It is known that secondary flow between blades can be suppressed by curving the blade shape backward.
  • the other secondary flow on the meridian plane requires detailed optimization of the three-dimensional shape of the flow channel and cannot be easily weakened or canceled.
  • the distribution of the relative pressure field p * is high on the hub side and low on the shroud side so as to balance the centrifugal force W 2 ZR toward the hub side and the corerica 2 ⁇ W ⁇ in FIG. 9B. Distribution. In the boundary layer along the blade surface, the relative velocity W decreases due to the effect of the wall surface, so the centrifugal force W 2 / R and the corioliser 2 w W 6 acting on the fluid inside the boundary layer are small. Therefore, it cannot be balanced with the mainstream pressure field p * described above.
  • the low-energy fluid in the boundary layer moves toward the region with a small relative pressure p *, and on the pressure surface 3 b or the suction surface 3 c of the blade 3, along the blade surface from the hub side to the shroud side.
  • Meridian secondary flow toward. are indicated in FIG. 9A by dashed arrows on pressure surface 3b of blade 3 and solid arrows on suction surface 3c.
  • the secondary flow on the meridional surface can occur on both the suction surface 3c and the pressure surface 3b of the blade 3, but since the boundary layer on the suction surface 3c is generally thicker, the secondary flow on the suction surface 3c It is known that the generation of the next flow greatly affects the performance characteristics of turbomachines.
  • a circumferential blade inclination is formed so as to precede the rotation direction of the impeller, so that a force having a component directed toward the shroud surface 4 acts on the fluid, and
  • the relative pressure field in the road generates a high relative pressure P * on the shroud surface side and a low relative pressure p * on the hub surface 2 side in order to balance against the force component going to the shroud surface.
  • the blade inclination angle is configured to exhibit a small inclination as the dimensionless meridian length m increases, the blade inclination is simply shifted in the circumferential direction by the blade on the side of the circle. As compared with the case, the effect of the inclination of the blade can be made higher.
  • the root of such a blade is a welded structure when the impeller is welded, and it is easy to cause welding problems if the blade is inclined, and if the blade is insufficient, it is rotated. This may cause cracks in that area, leading to destruction. Also, high stresses in this area affect the service life of the impeller, and therefore place high demands on welding techniques and materials, which in turn increases production costs. Also, in the case of manufacturing by machine cutting, complicated machining must be performed, resulting in an increase in manufacturing cost. Disclosure of the invention
  • the present invention effectively reduces the secondary flow in the impeller flow path without causing an excessive increase in manufacturing cost, thereby reducing the loss.
  • the objective is to provide an efficient centrifugal turbomachine by minimizing wastewater.
  • a plurality of blades are provided between an inlet on the center side and an outlet on the outer peripheral side, and a flow path for sending a fluid from the inlet to the outlet is formed between the blades by rotation of the impeller.
  • the blade inclination angle defined as the angle the blade makes with respect to the plane perpendicular to the hub surface, has a decreasing tendency from the inlet to the outlet, and therefore, when viewed from the front of the blade inlet.
  • An impeller characterized in that the center lines of the blades on the shroud side and the hub side intersect in a dimensionless radius position indicated by a ratio with respect to the exit radius of the impeller in a range of 0.8 to 0.95. is there.
  • an impeller rotatably accommodated in the casing is provided, and a plurality of blades are provided between an inlet on the center side and an outlet on the outer peripheral side of the impeller, and the impeller rotates between these blades.
  • a flow path for sending fluid from the inlet to the outlet is formed by the blade, the blade has a circumferential blade inclination such that the hub side precedes the shroud side of the blade in the rotation direction of the impeller.
  • the blade inclination angle defined as the angle formed by the blade with respect to the plane perpendicular to the hub surface shows a decreasing tendency from the inlet to the outlet.
  • FIGS 1A and 1B are diagrams schematically showing the shapes of the blades of the turbomachine according to the embodiment of the present invention.
  • FIG. 1A is a meridional view
  • FIG. 1B is a front view
  • 2A and 2B are diagrams schematically showing the shapes of the blades of a turbo machine according to another embodiment of the present invention.
  • FIG. 2A is a meridional view
  • FIG. 2B is a front view.
  • FIG. 3A and 3B are diagrams schematically showing the shapes of the blades of a turbomachine according to another embodiment of the present invention.
  • FIG. 3A is a meridional view
  • FIG. 3B is a front view.
  • FIG. 4A and 4B are diagrams schematically showing the shapes of the blades of a turbomachine according to another embodiment of the present invention, wherein FIG. 4A is a meridional view and FIG. 4B is a front view.
  • Fig. 5 is a diagram showing the relationship between the lean angle ⁇ at the tip of the blade at the entrance of the closed impeller and the stress generated at the root of the blade on the exit side of the impeller.
  • Fig. 6 shows the relationship between the rake angle y of the closed impeller and the stress at the root of the blade at the entrance of the impeller.
  • FIG. 7A and 7B are diagrams showing the shape of an impeller as a simulation model for advancing the analysis.
  • FIG. 7A is a meridional view
  • FIG. 7B is a front view.
  • FIG. 8 is a graph showing a result of a test in which an impeller having a shape according to the present invention was attached to a stage of a compressor.
  • FIGS. 9A and 9B are views showing the shape of an impeller of a conventional centrifugal turbomachine, FIG. 9A is a perspective view, and FIG. 9B is a meridional view.
  • FIG. 1OA and 1OB are diagrams showing the shape of the blades of the impeller of the conventional centrifugal turbomachine, FIG. 1OA is a cross-sectional view, and FIG. 10B is a front view.
  • Figures 11A and 11B also show other impellers of a conventional centrifugal turbomachine. It is a figure which shows the shape of a blade
  • FIGS. 12A and 12B are views showing the shape of the blades of another impeller of the conventional centrifugal turbomachine.
  • FIG. 12A is a sectional view
  • FIG. 12B is a front view. It is. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIGS. 1A to 4B Embodiments of the impeller having such a shape are shown in FIGS. 1A to 4B.
  • FIGS. 1A and 1B show a specific speed of 500
  • FIGS. 2A and 2B show a specific speed of 400
  • FIGS. 3A and 3B show a specific speed of 350
  • 4A and FIG. 4B show a specific speed of 250.
  • These impellers are designed based on the following ideas.
  • the inventor of the present invention has a circumferential blade inclination such that the hub side of the blade precedes the rotating direction of the impeller with respect to the blade side of the blade as shown in FIGS. 11A and 11B, As the dimensionless meridian length m increases, the blade inclination angle, defined as the angle formed by the center line of the blade cross section with respect to the plane perpendicular to the hub surface, decreases on the impeller flow path cross section. Based on the impeller with a tendency to show a shape, we simulated it by changing several parameters with the aim of suppressing excessive inclination. As a guideline for such a maximum value of the inclination angle, 110% of the stress acting when there is no inclination was considered appropriate.
  • Figure 5 shows the angle (lean angle) between the line connecting the center of the blade on the shroud side and the hub, and the line connecting the center of the blade on the hub side and the center of the impeller at the tip of the blade at the entrance of the closed impeller.
  • is plotted on the horizontal axis, and the stress generated at the root of the blade on the exit side of the impeller is calculated. It is shown on the basis of the time. From this figure, it can be seen that the stress increases as the lean angle increases. In this figure, if the allowable stress of the slat is defined as 110% of the stress when the lean angle is 0 degree, the limit angle at that time is 25 degrees.
  • Fig. 6 shows the angle between the line connecting the shroud side of the closed impeller and the center of the blade on the hub side and the plane perpendicular to the hub surface (rake angle ⁇ ) on the horizontal axis.
  • the ordinate shows the stress at the root of the blade, and it can be seen that the stress increases as the rake angle increases. In this figure, if the allowable stress of the blade is defined as 110% of the stress at a rake angle of 0 degree, the limit angle at that time is 20 degrees.
  • Figures 7 7 and 7 ⁇ show the shape of the impeller as a simulation model for further analysis.
  • Fig. 7A shows a meridional view
  • Fig. 7B shows a front view.
  • a straight line is connected between the inlet and the outlet on the hub side and the chassis side of the impeller.
  • the shape of the blade is slightly different from this shape because it is composed of curves.
  • FIG. 1A to 4B show a front view and a meridional view of impellers developed by the inventors, each having a different specific speed.
  • the center lines of the blades on the shroud side and the hub side intersect near the exit of the impeller, and the intersection is defined by the ratio to the exit radius of the impeller. It can be seen that the dimensional radius position is in the range of 0.8 to 0.95.
  • Fig. 8 shows an example of the result of a test in which the impeller according to the present invention was attached to a stage of a compressor, and it was found that the performance was significantly better than that of a stage having a conventional shape of an impeller. I will.
  • the secondary flow in the impeller flow path is effectively reduced without causing an excessive increase in the manufacturing cost, and the loss due to the secondary flow is minimized.
  • An efficient centrifugal turbomachine can be provided.
  • the present invention has industrial application by being used for an impeller of a machine generally called a "turbo machine” such as a centrifugal liquid pump and a blower and a compressor for pumping gas.
  • a Turbo machine such as a centrifugal liquid pump and a blower and a compressor for pumping gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A centrifugal turbomachinery capable of preventing an excessive increase in the manufacturing cost, adapted to effectively reduce a secondary flow in a vane wheel flow passage and reduce a loss, which is ascribed to the secondary flow, to a minimum level, and having a high efficiency, comprising a vane wheel provided with a plurality of vanes (3) between a central inlet (6a) and an outer circumferential outlet (6b), and a flow passage formed between these vanes and used to send a fluid from the inlet to the outlet by the rotation of the vane wheel, the portions of the vanes (3) which are on the side of a hub (2) having a circumferential inclination preceding in the rotational direction of the vane wheel with respect to the portions of the vanes which are on the side of a shroud (4), the angle of inclination of the vanes which is defined as an angle of the vanes formed in a plane viewed from the outlet of the flow passage with respect to a plane perpendicular to a hub surface having a tendency to decrease from the inlet toward the outlet, whereby the center lines of a shroud-side portion and a hub-side portion viewed from a front part of a vane inlet cross each other in a position where a ratio of dimensionless radius to a radius of the outlet is 0.8-0.95.

Description

明 細 書 遠心ターボ機械 技術分野  Description Centrifugal turbomachinery Technical field
この発明は、 液体を圧送するための遠心形の液体ポンプや気体を圧送 するためのブロワ及びコンプレッサーなど、 一般に 「ターボ機械」 と称 される機械の羽根車の改良に関するものである。 背景技術  The present invention relates to an improvement of an impeller of a machine generally called a "turbo machine" such as a centrifugal liquid pump for pumping a liquid and a blower and a compressor for pumping a gas. Background art
図 9 A乃至図 1 0 Bは典型的なターボ機械を示すもので、 所要の配管 を有するケーシング (図示略) に、 ハブ 2、 シュラウ ド 4及びその間の 複数個の羽根 3からなる羽根車 6を収容し、 これに回転駆動源に連結さ れた回転軸 1 を連結して構成されている。 このよ うな羽根車においては、 羽根 3の上端 3 aはシュラウ ド面 4 a で覆われ、 隣接する 2枚の羽根 3、 ハブ面 2 a及びシュラウ ド面 4 a とで囲まれた空間が流路を構成してい る。  FIGS. 9A to 10B show a typical turbomachine, in which a casing (not shown) having required piping is provided with a hub 2, a shroud 4, and an impeller 6 including a plurality of blades 3 therebetween. And a rotary shaft 1 connected to a rotary drive source. In such an impeller, the upper end 3a of the blade 3 is covered with a shroud surface 4a, and a space surrounded by two adjacent blades 3, a hub surface 2a and a shroud surface 4a flows. The road is constructed.
これにより、 羽根車 6が回転軸 1 を中心に回転角速度 ωで回転するこ とで、 吸込管などを経由して羽根車入口 6 aから流路に流入した流体が- 羽根車出口 6 bに向けて移送され、 吐出管などを経由して機外に導出す るよ うになっている。 羽根 3の回転方向に向かう面が圧力面 3 b となり . これと反対の面が負圧面 3 c となる。  As a result, the impeller 6 rotates at the rotational angular velocity ω about the rotation axis 1, so that the fluid flowing into the flow path from the impeller inlet 6 a via the suction pipe and the like to the impeller outlet 6 b Transported to the outside of the machine via a discharge pipe. The surface facing the rotating direction of the blade 3 is the pressure surface 3b. The opposite surface is the suction surface 3c.
これらの図では、 羽根の一例と して、 クローズド形羽根車の 3次元形 状がシュラウ ド面の大部分を破断した状態で模式的に示されている。 ォ 一プン形羽根車の場合には、 シユラゥ ド面 4を形成するための独立の部 材は存在していないが、 羽根車 6を囲む図外のケーシングが機械的にシ ユラウ ド面 4を兼ねていて、 流体力学的な基本構成において、 クローズ ド形羽根車と差異がないので、 以降の説明は、 クローズド形羽根車の例 示の下で進める。 In these figures, as an example of the blade, the three-dimensional shape of the closed impeller is schematically shown with most of the shroud surface broken. In the case of open impellers, a separate part for forming the shoulder surface 4 Although there is no material, the casing outside the figure surrounding the impeller 6 mechanically also serves as the shroud surface 4, and there is no difference in the basic structure of the fluid dynamics from the closed impeller. The following description proceeds with an example of a closed impeller.
このよ うな遠心ターボ機械の羽根車流路内の流れにおいては、 ほぼ流 路に沿って流れる主流に加え、 流路内の圧力勾配等に起因して、 壁面の 境界層内の低エネルギー流体が移動したために発生する 2次流れ (主流 に直交する速度成分を持つ流れ) が生成される。 この 2次流れは主流に 対して複雑に影響して、 流路内に渦や速度の不均一を形成し、 それが羽 根車内ばかりでなくその下流部 (ディフューザ、 ガイ ドべーン等) での 大きな損失を引き起こす原因となっていた。 この 2次流れによって引き 起こされる損失全体が 2次流れ損失と呼ばれている。 また、 2次流れの 作用により流路の特定領域に集積された境界層内の低エネルギー流体は、 大規模な流れの剥離を誘起し、 右上がり揚程特性を生じさせてターボ機 械の安定な運転を妨げるなどの不都合を生じることが知られている。 羽根車内の 2次流れは、 シュラゥ ド面あるいはハブ面に沿って生じる 翼間 2次流れと、 羽根の圧力面あるいは負圧面に沿って生じる子午面 2 次流れに大別される。 翼間 2次流れは羽根の形状を後方に湾曲させるこ とで抑制可能であることが知られている。 も う一方の子午面 2次流れは、 流路の 3次元形状の詳細な最適化が必要であり、 容易に弱めたり打ち消 したりすることができない。  In the flow in the impeller flow path of such a centrifugal turbomachine, the low-energy fluid in the boundary layer on the wall moves due to the pressure gradient in the flow path, in addition to the main flow flowing substantially along the flow path. A secondary flow (a flow having a velocity component orthogonal to the main flow) generated due to this is generated. This secondary flow has a complicated effect on the main flow, and forms vortices and non-uniform velocity in the flow channel, which are not only in the impeller but also in the downstream part (diffuser, guide vane, etc.) Was causing significant losses in The total loss caused by this secondary flow is called secondary flow loss. In addition, the low-energy fluid in the boundary layer that is accumulated in a specific area of the flow channel due to the action of the secondary flow induces large-scale flow separation, causing a rising characteristic to the right, resulting in a stable turbomachine. It is known to cause inconvenience such as hindering driving. The secondary flow in the impeller is roughly classified into a secondary flow between blades generated along the shroud surface or hub surface, and a secondary flow in the meridian plane generated along the pressure surface or suction surface of the blade. It is known that secondary flow between blades can be suppressed by curving the blade shape backward. The other secondary flow on the meridian plane requires detailed optimization of the three-dimensional shape of the flow channel and cannot be easily weakened or canceled.
子午面 2次流れの発生メ力二ズムは以下のよ うに説明されている。 図 9 Bに示されるように、 羽根流路内の相対流れに関しては、 主流に対す る流線の曲率による遠心力 W 2 / Rの作用と、 羽根車の回転により コ リオ リカ 2 ω W Θ の作用とにより、 相対圧力場 (reduce d s tat i c pres sure) p * ( = p - 0 . 5 p u 2 ) が定まる。 ここに、 Wは流れの相対速度、 Rは 流線の曲率半径、 ωは羽根車の回転角速度、 \Υ Θ は Wの回転軸 1 に対す る周方向の速度成分である。 そして、 pは静圧、 pは流体の密度、 uは 回転軸 1からの所定の半径位置における周速度である。 The mechanism of occurrence of the secondary flow on the meridian plane is explained as follows. As shown in FIG. 9 B, with respect to the relative flow in the blade channel, and the centrifugal force W 2 / R by the curvature of the streamlines against the mainstream, co Rio Rica 2 omega W theta by rotation of the impeller The relative pressure field (reduce ds tat ic pres sure) p * (= p-0.5 pu 2 ) is determined. Here, W is the relative velocity of the flow, R is the radius of curvature of the streamline, ω is the rotational angular velocity of the impeller, and \ Υ Θ is the velocity component of W in the circumferential direction with respect to the rotation axis 1. And p is the static pressure, p is the density of the fluid, and u is the peripheral velocity at a predetermined radial position from the rotation axis 1.
相対圧力場 p *の分布は、 図 9 B中のハブ側へと向かう遠心力 W 2 Z R とコ リオリカ 2 ω W Θ とに対してバランスするように、 ハブ側で高く、 シュラウ ド側で低い分布となる。 羽根面に沿う境界層内部では、 相対速 度 Wが壁面の影響によ り減少しているので、 境界層内部の流体に作用す る遠心力 W 2 / Rとコ リオリカ 2 w W 6が小さく なり、 上述の主流の圧力 場 p *とバランスすることができない。 その結果、 境界層内の低エネルギ 一流体は相対圧力 p *の小さな領域へと向かい、 羽根 3の圧力面 3 bない し負圧面 3 c上で、 羽根面に沿ってハブ側からシュラウ ド側に向かう子 午面 2次流れを生ずる。 これらは、 図 9 A中で、 羽根 3 の圧力面 3 b上 の破線矢印及び負圧面 3 c上の実線矢印にて示されている。 The distribution of the relative pressure field p * is high on the hub side and low on the shroud side so as to balance the centrifugal force W 2 ZR toward the hub side and the corerica 2 ω W 図 in FIG. 9B. Distribution. In the boundary layer along the blade surface, the relative velocity W decreases due to the effect of the wall surface, so the centrifugal force W 2 / R and the corioliser 2 w W 6 acting on the fluid inside the boundary layer are small. Therefore, it cannot be balanced with the mainstream pressure field p * described above. As a result, the low-energy fluid in the boundary layer moves toward the region with a small relative pressure p *, and on the pressure surface 3 b or the suction surface 3 c of the blade 3, along the blade surface from the hub side to the shroud side. Meridian secondary flow toward. These are indicated in FIG. 9A by dashed arrows on pressure surface 3b of blade 3 and solid arrows on suction surface 3c.
子午面 2次流れは、 羽根 3の負圧面 3 c と圧力面 3 bの両壁面で生じ うるが、 一般に負圧面 3 c 上の境界層の方が厚いので、 負圧面 3 c上で の 2次流れの発生がターボ機械の性能特性に与える影響が大きいことが 知られている。  The secondary flow on the meridional surface can occur on both the suction surface 3c and the pressure surface 3b of the blade 3, but since the boundary layer on the suction surface 3c is generally thicker, the secondary flow on the suction surface 3c It is known that the generation of the next flow greatly affects the performance characteristics of turbomachines.
このようにして、 境界層内の低エネルギー流体がハブ側からシュラウ ド側に移動すると、 これに応じて、 その移動による流量を補う ように翼 間の中央部では逆にシュラウ ド側からハブ側に向かって流れが生じる。 その結果、 図 1 0 Aに模式的に示されるように、 羽根間の流路内に、 2 次渦と呼ばれる旋回方向の異なる 1対の渦が形成される。 この渦によつ て流路内の低エネルギー流体が、 羽根車内のある特定の場所 (相対圧力 P * の低い領域) に蓄積され、 これが流路内で正常に流れている流体と 混合して大きな損失を生ずる原因となる。 In this way, when the low-energy fluid in the boundary layer moves from the hub side to the shroud side, the center part between the blades conversely moves from the shroud side to the hub side so as to compensate for the flow caused by the movement. There is a flow towards. As a result, as schematically shown in FIG. 10A, a pair of vortices having different swirling directions called secondary vortices are formed in the flow path between the blades. This vortex causes the low-energy fluid in the flow path to accumulate at a specific location in the impeller (region where the relative pressure P * is low). Mixing causes large losses.
また、 相対速度が低くエネルギーも低い流体と、 相対速度が高くエネ ルギーも高い流体とが十分に混合せずに生じた不均一な流れが、 羽根の 下流の流路に放出されると、 これらが混合する際に、 大きな損失を生ず る原因となる。 こ う した不均一な羽根車出口流れは、 ディフューザ入口 部での速度三角形を不適切なものと し、 下流に位置する羽根付きディフ ユーザとのミスマッチングや、 羽根無しディフューザにおける逆流を生 じ、 ターボ機械全体の性能を著しく低下させる原因となる。  In addition, when a non-uniform flow created by insufficient mixing of a fluid with a low relative velocity and low energy and a fluid with a high relative velocity and high energy is released into the flow path downstream of the blade, Can cause significant losses when mixed. Such non-uniform impeller outlet flow makes the velocity triangle at the diffuser inlet inappropriate, causing mismatching with downstream vaned diff users and backflow in vaneless diffusers. This may cause the performance of the entire turbomachine to be significantly reduced.
そこで、 図 1 1 A及び図 1 1 Bに示すように、 羽根車内部の相対圧力 P * の分布の適正化を図るべく、 無次元子午面長さ m = 0の羽根位置 (羽根入口) と無次元子午面長さ m == 1 . 0の羽根位置 (羽根出口) と の間において、 羽根のハブ側が羽根のシュラウ ド側に対して、 羽根車の 回転方向に先行するよ うな周方向の羽根傾斜を形成し、 無次元子午面長 さ mの増加につれて、 羽根車の流路断面上において、 羽根の翼断面の中 心線がハブ面と垂直な面に対してなす角度と して定義される羽根傾斜角 度が減少傾向を呈するよ うに構成することが考えられる。  Therefore, as shown in Fig. 11A and Fig. 11B, in order to optimize the distribution of the relative pressure P * inside the impeller, the blade position (blade inlet) with dimensionless meridional plane length m = 0 and Between the dimensionless meridian length m == 1.0 and the blade position (blade exit), the circumferential direction is such that the hub side of the blade precedes the rotation direction of the impeller with respect to the shroud side of the blade. Defined as the angle formed by the center line of the blade cross section of the impeller with respect to the plane perpendicular to the hub surface on the cross section of the flow path of the impeller as the dimension of the dimensionless meridional plane m increases, forming the blade inclination It is conceivable to configure the blade inclination angle to show a decreasing tendency.
このように構成した羽根車においては、 羽根車の回転方向に先行する よ うな周方向の羽根傾斜を形成したので、 流体にシユラウ ド面 4へと向 かう成分を持った力が作用し、 流路内の相対圧力場は、 かかるシュラウ ド面へと向かう力の成分に対してバランスすべく、 シュラウ ド面側で高 い相対圧力 P * を生じ、 ハブ面 2側で低い相対圧力 p * を生じるよ うに なる。 また、 無次元子午面長さ mの増加につれて羽根傾斜角度が减少傾 向を呈するよ うに構成されているので、 単にシユラゥ ド側の羽根を円周 方向にずらしただけの羽根傾斜が施された場合と比較して、 羽根の傾斜 の効果をより高いものとすることができる。 しかしながら、 このよ うな構成の従来の技術においては、 図 1 1 Aに 示すよ うに、 羽根の出口方向から見て、 シュラウ ド側とハブ側の羽根中 心を結んだ線と、 ハブ面と垂直な面のなす角度 (レーク角 γ ) が極端に 大き く なつており、 この羽根車を回転させた場合には、 回転によって羽 根が立ち上がるよ うに変形するため、 羽根の付け根部に大きな曲げ応力 が生じる。 In the impeller configured as described above, a circumferential blade inclination is formed so as to precede the rotation direction of the impeller, so that a force having a component directed toward the shroud surface 4 acts on the fluid, and The relative pressure field in the road generates a high relative pressure P * on the shroud surface side and a low relative pressure p * on the hub surface 2 side in order to balance against the force component going to the shroud surface. Will occur. Also, as the blade inclination angle is configured to exhibit a small inclination as the dimensionless meridian length m increases, the blade inclination is simply shifted in the circumferential direction by the blade on the side of the circle. As compared with the case, the effect of the inclination of the blade can be made higher. However, in the conventional technology having such a configuration, as shown in FIG. 11A, when viewed from the blade exit direction, a line connecting the shroud side and the hub center of the blade is perpendicular to the hub surface. When the impeller is rotated, the blade deforms so that it rises, causing a large bending stress at the root of the blade. Occurs.
また、 同図に示すよ うに、 羽根車入口部でも羽根先端においてシユラ ゥ ド側とハブ側の羽根の中心を結んだ線と、 ハブ側の羽根の中心と羽根 車の中心を結ぶ線に角度 (リーン角 δ ) がっく ために、 回転によって入 口部で羽根が起き上がり、 羽根の付け根部に大きな曲げ応力が生じる。 さ らに、 羽根車のシュラウ ド側にカバーが取付けられるクローズド羽根 車の場合には、 リーン角と レーク角によって羽根の各部に複雑な応力が 発生する。  Also, as shown in the figure, the line connecting the center of the blade on the hub side and the center of the blade on the hub side at the blade tip and the line connecting the center of the blade on the hub side and the center of the impeller at the blade impeller entrance. (Lean angle δ) Due to the rotation, the blade rises at the entrance due to the rotation, and a large bending stress is generated at the root of the blade. Furthermore, in the case of a closed impeller in which a cover is attached to the shroud side of the impeller, complex stress is generated in each part of the blade depending on the lean angle and the rake angle.
このよ うな羽根の付け根部は、 羽根車を溶接して作成する場合には溶 接構造部であり、 羽根が傾いていると溶接に不具合が生じ易く、 溶接が 不十分である場合には回転によってその部分からクラックが発生し、 破 壊につながる場合もあり うる。 また、 この部分に高い応力が発生するこ とは羽根車の耐用性に影響し、 従って、 溶接技術や素材に対して高い要 求がなされ、 結果と して製造コス トを上昇させる。 また、 機械切削によ り製造する場合においても、 複雑な加工を行わなければならない結果、 製造コス トを上昇させることになる。 発明の開示  The root of such a blade is a welded structure when the impeller is welded, and it is easy to cause welding problems if the blade is inclined, and if the blade is insufficient, it is rotated. This may cause cracks in that area, leading to destruction. Also, high stresses in this area affect the service life of the impeller, and therefore place high demands on welding techniques and materials, which in turn increases production costs. Also, in the case of manufacturing by machine cutting, complicated machining must be performed, resulting in an increase in manufacturing cost. Disclosure of the invention
この発明は、 上述した課題に鑑み、 製造コス トの過度の上昇を招く こ となく、 羽根車流路内の 2次流れを効果的に減少させてそれによる損失 を最小限に抑制し、 効率の良い遠心ターボ機械を提供することを目的と する。 In view of the above-mentioned problems, the present invention effectively reduces the secondary flow in the impeller flow path without causing an excessive increase in manufacturing cost, thereby reducing the loss. The objective is to provide an efficient centrifugal turbomachine by minimizing wastewater.
この発明は、 中央側の入口 と外周側の出口の問に複数の羽根が設けら れ、 これらの羽根の間に羽根車の回転によって入口から出口へ流体を送 る流路が形成された羽根車であって、 前記羽根は、 ハブ側が羽根のシュ ラゥ ド側に対し、 羽根車の回転方向に先行するよ うな周方向の羽根傾斜 を有し、 かつ、 前記流路の出口側から見た面において、 羽根がハブ面と 垂直な面に対してなす角度と して定義される羽根傾斜角度が、 入口から 出口に向かうに従い減少傾向を呈し、 それによつて、 羽根入口正面から 見たときのシュラウ ド側とハブ側の羽根中心線が、 羽根車の出口半径と の比で示した無次元半径位置で 0 . 8から 0 . 9 5の範囲において交差す ることを特徴とする羽根車である。  According to the present invention, a plurality of blades are provided between an inlet on the center side and an outlet on the outer peripheral side, and a flow path for sending a fluid from the inlet to the outlet is formed between the blades by rotation of the impeller. A wheel having a circumferential blade inclination such that a hub side precedes a rotating direction of the impeller with respect to a blade side of the blade, and viewed from an outlet side of the flow path. Surface, the blade inclination angle, defined as the angle the blade makes with respect to the plane perpendicular to the hub surface, has a decreasing tendency from the inlet to the outlet, and therefore, when viewed from the front of the blade inlet. An impeller characterized in that the center lines of the blades on the shroud side and the hub side intersect in a dimensionless radius position indicated by a ratio with respect to the exit radius of the impeller in a range of 0.8 to 0.95. is there.
また、 ケーシング中に回転自在に収容された羽根車を有し、 該羽根車 の中央側の入口と外周側の出口の間に複数の羽根が設けられ、 これらの 羽根の間に羽根車の回転によって入口から出口へ流体を送る流路が形成 された遠心ターボ機械において、 前記羽根は、 ハブ側が羽根のシュラウ ド側に対し、 羽根車の回転方向に先行するよ うな周方向の羽根傾斜を有 し、 かつ、 前記流路の出口側から見た面において、 羽根がハブ面と垂直 な面に対してなす角度と して定義される羽根傾斜角度が、 入口から出口 に向かうに従い減少傾向を呈し、 それによつて、 羽根入口正面から見た ときのシュラウ ド側とハブ側の羽根中心線が、 羽根車の出口半径との比 で示した無次元半径位置で 0 . 8から 0 . 9 5の範囲において交差するこ とを特徴とする遠心ターボ機械である。 図面の簡単な説明 図 1 A及び図 1 Bはこの発明の実施の形態のターボ機械の羽根の形状 を模式的に示す図であり、 図 1 Aは子午面図、 図 1 Bは正面図である。 図 2 A及び図 2 Bはこの発明の他の実施の形態のターボ機械の羽根の 形状を模式的に示す図であり、 図 2 Aは子午面図、 図 2 Bは正面図であ る。 Further, an impeller rotatably accommodated in the casing is provided, and a plurality of blades are provided between an inlet on the center side and an outlet on the outer peripheral side of the impeller, and the impeller rotates between these blades. In the centrifugal turbomachine, a flow path for sending fluid from the inlet to the outlet is formed by the blade, the blade has a circumferential blade inclination such that the hub side precedes the shroud side of the blade in the rotation direction of the impeller. And, on the surface viewed from the outlet side of the flow passage, the blade inclination angle defined as the angle formed by the blade with respect to the plane perpendicular to the hub surface shows a decreasing tendency from the inlet to the outlet. Thus, the center line of the blades on the shroud side and the hub side when viewed from the front of the blade entrance is 0.8 to 0.95 at the dimensionless radius position indicated by the ratio to the exit radius of the impeller. Intersecting in a range It is a centrifugal turbo machine. BRIEF DESCRIPTION OF THE FIGURES 1A and 1B are diagrams schematically showing the shapes of the blades of the turbomachine according to the embodiment of the present invention. FIG. 1A is a meridional view, and FIG. 1B is a front view. 2A and 2B are diagrams schematically showing the shapes of the blades of a turbo machine according to another embodiment of the present invention. FIG. 2A is a meridional view, and FIG. 2B is a front view.
図 3 A及び図 3 Bは同じく この発明の他の実施の形態のターボ機械の 羽根の形状を模式的に示す図であり、 図 3 Aは子午面図、 図 3 Bは正面 図である。  3A and 3B are diagrams schematically showing the shapes of the blades of a turbomachine according to another embodiment of the present invention. FIG. 3A is a meridional view, and FIG. 3B is a front view.
図 4 A及び図 4 Bは同じく この発明の他の実施の形態のターボ機械の 羽根の形状を模式的に示す図であり、 図 4 Aは子午面図、 図 4 Bは正面 図である。  4A and 4B are diagrams schematically showing the shapes of the blades of a turbomachine according to another embodiment of the present invention, wherein FIG. 4A is a meridional view and FIG. 4B is a front view.
図 5はクローズド羽根車入口部の羽根先端における リ ーン角 δ と羽根 車の出口側の羽根の付け根部に生じる応力との関係を示す図である。 図 6はクローズド羽根車のレーク角 y と羽根車入口部の羽根付け根部 の応力との関係を示す図である。  Fig. 5 is a diagram showing the relationship between the lean angle δ at the tip of the blade at the entrance of the closed impeller and the stress generated at the root of the blade on the exit side of the impeller. Fig. 6 shows the relationship between the rake angle y of the closed impeller and the stress at the root of the blade at the entrance of the impeller.
図 7 A及び図 7 Bは解析を進めるためのシミ ュ レ一ショ ンモデルと し ての羽根車の形状を示す図であり、 図 7 Aは子午面図、 図 7 Bは正面図 である。  7A and 7B are diagrams showing the shape of an impeller as a simulation model for advancing the analysis. FIG. 7A is a meridional view, and FIG. 7B is a front view.
図 8は本発明による形状の羽根車を圧縮機の段落に取り付けて試験し た結果を示すグラフである。  FIG. 8 is a graph showing a result of a test in which an impeller having a shape according to the present invention was attached to a stage of a compressor.
図 9 A及び図 9 Bは従来の遠心ターボ機械の羽根車の形状を示す図で あり、 図 9 Aは斜視図、 図 9 Bは子午面図である。  9A and 9B are views showing the shape of an impeller of a conventional centrifugal turbomachine, FIG. 9A is a perspective view, and FIG. 9B is a meridional view.
図 1 O A及び図 1 O Bは従来の遠心ターボ機械の羽根車の羽根の形状 を示す図であり、 図 1 O Aは断面図、 図 1 0 Bは正面図である。  1OA and 1OB are diagrams showing the shape of the blades of the impeller of the conventional centrifugal turbomachine, FIG. 1OA is a cross-sectional view, and FIG. 10B is a front view.
図 1 1 A及び図 1 1 Bは同じく従来の遠心ターボ機械の他の羽根車の 羽根の形状を示す図であり、 図 1 1 Aは断面図、 図 1 1 Bは正面図であ る。 Figures 11A and 11B also show other impellers of a conventional centrifugal turbomachine. It is a figure which shows the shape of a blade | wing, FIG. 11A is sectional drawing, FIG. 11B is a front view.
図 1 2 A及び図 1 2 Bは同じく従来の遠心ターボ機械のさ らなる他の 羽根車の羽根の形状を示す図であり、 図 1 2 Aは断面図、 図 1 2 Bは正 面図である。 発明を実施するための最良の形態  FIGS. 12A and 12B are views showing the shape of the blades of another impeller of the conventional centrifugal turbomachine. FIG. 12A is a sectional view, and FIG. 12B is a front view. It is. BEST MODE FOR CARRYING OUT THE INVENTION
このよ うな形状の羽根車の実施の形態を、 図 1 Aないし図 4 Bに示す。 これらの図において、 図 1 A及び図 1 Bは比速度 5 0 0であり、 図 2 A 及び図 2 Bは比速度 4 0 0、 図 3 A及び図 3 Bは比速度 3 5 0、 図 4 A 及び図 4 Bは比速度 2 5 0である。 これらの羽根車は、 以下のよ うな考 え方に基づいて設計されている。  Embodiments of the impeller having such a shape are shown in FIGS. 1A to 4B. In these figures, FIGS. 1A and 1B show a specific speed of 500, FIGS. 2A and 2B show a specific speed of 400, and FIGS. 3A and 3B show a specific speed of 350. 4A and FIG. 4B show a specific speed of 250. These impellers are designed based on the following ideas.
本発明者は、 図 1 1 A及び図 1 1 Bにおいて示すような、 羽根のハブ 側が羽根のシユラゥ ド側に対して羽根車の回転方向に先行するよ うな周 方向の羽根傾斜を有し、 無次元子午面長さ mの増加につれて、 羽根車の 流路断面上において、 羽根の翼断面の中心線がハブ面と垂直な面に対し てなす角度と して定義される羽根傾斜角度が減少傾向を呈すような形状 の羽根車をベース と して、 過度な傾斜を抑制することを目的と して、 い くつかのパラメータを変えてシミ ュ レーショ ンを行った。 なお、 このよ うな傾斜角度の最大値の目安と しては、 傾斜が無い場合に作用する応力 の 1 1 0 %が妥当であると考えた。  The inventor of the present invention has a circumferential blade inclination such that the hub side of the blade precedes the rotating direction of the impeller with respect to the blade side of the blade as shown in FIGS. 11A and 11B, As the dimensionless meridian length m increases, the blade inclination angle, defined as the angle formed by the center line of the blade cross section with respect to the plane perpendicular to the hub surface, decreases on the impeller flow path cross section. Based on the impeller with a tendency to show a shape, we simulated it by changing several parameters with the aim of suppressing excessive inclination. As a guideline for such a maximum value of the inclination angle, 110% of the stress acting when there is no inclination was considered appropriate.
図 5は、 クローズド羽根車入口部の羽根先端において、 シュラウ ド側 とハブ側の羽根の中心を結んだ線と、 ハブ側の羽根の中心と羽根車の中 心を結ぶ線に角度 (リーン角 δ ) を横軸に取って、 羽根車の出口側の羽 根の付け根部に生じる応力を計算によって求めた結果をリーン角が 0度 のときを基準にして示すものである。 この図から、 リーン角を大きくす ると応力も増大することが分かる。 この図において羽根板の許容応力を リーン角 0度のときの応力の 1 1 0 %を規定するとその時の限界角度は 2 5度となる。 Figure 5 shows the angle (lean angle) between the line connecting the center of the blade on the shroud side and the hub, and the line connecting the center of the blade on the hub side and the center of the impeller at the tip of the blade at the entrance of the closed impeller. δ) is plotted on the horizontal axis, and the stress generated at the root of the blade on the exit side of the impeller is calculated. It is shown on the basis of the time. From this figure, it can be seen that the stress increases as the lean angle increases. In this figure, if the allowable stress of the slat is defined as 110% of the stress when the lean angle is 0 degree, the limit angle at that time is 25 degrees.
図 6は、 ク ローズド羽根車のシュラウ ド側とハブ側の羽根中心を結ん だ線と、 ハブ面と垂直な面とのなす角度 (レーク角 γ ) を横軸に取って、 羽根車入口部の羽根付け根部の応力を縦軸に取って示したもので、 レー ク角度が大き く なるにしたがって応力が大きく なることが分かる。 この 図において、 羽根板の許容応力をレーク角 0度のときの応力の 1 1 0 % と規定すると、 その時の限界角度は 2 0度となる。  Fig. 6 shows the angle between the line connecting the shroud side of the closed impeller and the center of the blade on the hub side and the plane perpendicular to the hub surface (rake angle γ) on the horizontal axis. The ordinate shows the stress at the root of the blade, and it can be seen that the stress increases as the rake angle increases. In this figure, if the allowable stress of the blade is defined as 110% of the stress at a rake angle of 0 degree, the limit angle at that time is 20 degrees.
このよ うにして、 羽根のレーク角と リーン角が決まると羽根の概略形 状が決まることになる。 図 7 Α及び図 7 Βは、 さらなる解析を進めるた めのシミ ュ レーショ ンモデルと しての羽根車の形状を示す図で、 図 7 A が子午面図、 図 7 Bが正面図を示す。 正面図では簡単のため、 羽根車の ハブ側とシユラゥ ド側において入口と出口の間は直線で結んである。 実 際には羽根は曲線で構成されるのでこの形状とは多少異なったものとな る。  Thus, when the rake angle and the lean angle of the blade are determined, the general shape of the blade is determined. Figures 7 7 and 7Β show the shape of the impeller as a simulation model for further analysis. Fig. 7A shows a meridional view and Fig. 7B shows a front view. For simplicity in the front view, a straight line is connected between the inlet and the outlet on the hub side and the chassis side of the impeller. Actually, the shape of the blade is slightly different from this shape because it is composed of curves.
この図から明らかな様に、 羽根出口においてハブがシユラゥ ド側より も回転方向に先行する形状をもつ羽根車では、 ハブ側とシユラゥ ド側に おいて入口と出口の羽根中心線を結んだ線は一箇所で交わる。  As is clear from this figure, in the impeller where the hub has a shape that precedes the shaft side in the rotation direction at the blade outlet, the line connecting the inlet and outlet blade center lines on the hub side and the shaft side. Meet at one place.
この交点の位置は、 上述した説明から、 角度が大きいと羽根車の出口 から入口に近い位置にすることが推定される。 発明者らは、  From the above description, it is presumed that the position of this intersection is closer to the entrance from the exit of the impeller if the angle is large. The inventors have
δ < 2 5 , y < 2 0  δ <25, y <20
を前提条件と して、 いくつかの各々比速度の異なる羽根車を作成し、 そ の内、 効率が高いものの形状 · 寸法を測定して解析した。 図 1 A乃至図 4 Bは、 発明者らが開発した各々比速度の異なる羽根車 の正面図及び子午面図を示す。 この図から明らかな様に、 羽根車の正面 図においてシュラウ ド側とハブ側の羽根中心線は羽根車の出口付近で交 差し、 その交点は、 羽根車の出口半径との比で示した無次元半径位置が 0 . 8から 0 . 9 5の範囲にあることが分かる。 図 8は、 本発明による形 状の羽根車を圧縮機の段落に取り付けて試験した結果の一例で、 従来の 形状の羽根車をもつ段落の性能よ り格段に優れた性能となることが分か る。 As a prerequisite, several impellers with different specific velocities were created, and the shape and dimensions of those with high efficiency were measured and analyzed. 1A to 4B show a front view and a meridional view of impellers developed by the inventors, each having a different specific speed. As is clear from this figure, in the front view of the impeller, the center lines of the blades on the shroud side and the hub side intersect near the exit of the impeller, and the intersection is defined by the ratio to the exit radius of the impeller. It can be seen that the dimensional radius position is in the range of 0.8 to 0.95. Fig. 8 shows an example of the result of a test in which the impeller according to the present invention was attached to a stage of a compressor, and it was found that the performance was significantly better than that of a stage having a conventional shape of an impeller. I will.
以上説明したよ うに、 この発明によれば、 製造コス トの過度の上昇を 招く ことなく、 羽根車流路内の 2次流れを効果的に減少させてそれによ る損失を最小限に抑制し、 効率の良い遠心ターボ機械を提供することが できる。 産業上の利用の可能性  As described above, according to the present invention, the secondary flow in the impeller flow path is effectively reduced without causing an excessive increase in the manufacturing cost, and the loss due to the secondary flow is minimized. An efficient centrifugal turbomachine can be provided. Industrial applicability
本発明は、 遠心形の液体ポンプや気体を圧送するためのブロヮ及びコ ンプレッサーなど、 一般に 「ターボ機械」 と称される機械の羽根車に用 いることによ り産業上の利用を有する。  INDUSTRIAL APPLICABILITY The present invention has industrial application by being used for an impeller of a machine generally called a "turbo machine" such as a centrifugal liquid pump and a blower and a compressor for pumping gas.

Claims

請求の範囲 The scope of the claims
1 . 中央側の入口 と外周側の出口の間に複数の羽根が設けられ、 これら の羽根の間に羽根車の回転によつて入口から出口へ流体を送る流路が形 成された羽根車であって、  1. An impeller in which a plurality of blades are provided between the center-side inlet and the outer-peripheral outlet, and a flow path is formed between these blades for sending fluid from the inlet to the outlet by rotation of the impeller. And
前記羽根は、 ハブ側が羽根のシュラウ ド側に対し、 羽根車の回転方向 に先行するよ うな周方向の羽根傾斜を有し、  The blade has a circumferential blade inclination such that the hub side precedes the shroud side of the blade in the rotation direction of the impeller,
かつ、 前記流路の出口側から見た面において、 羽根がハブ面と垂直な 面に対してなす角度と して定義される羽根傾斜角度が、 入口から出口に 向かうに従い減少傾向を呈し、 それによつて、 羽根入口正面から見たと きのシュラウ ド側とハブ側の羽根中心線が、 羽根車の出口半径との比で 示した無次元半径位置で 0 . 8から 0 . 9 5の範囲において交差すること を特徴とする羽根車。  And, on the surface viewed from the outlet side of the flow passage, the blade inclination angle defined as the angle formed by the blade with respect to the plane perpendicular to the hub surface shows a decreasing tendency from the inlet to the outlet, and Therefore, the center line of the blades on the shroud side and the hub side when viewed from the front of the blade inlet is in the range of 0.8 to 0.95 at the dimensionless radius position indicated by the ratio of the exit radius of the impeller. An impeller characterized by crossing.
2 . ケーシング中に回転自在に収容された羽根車を有し、 該羽根車の中 央側の入口と外周側の出口の間に複数の羽根が設けられ、 これらの羽根 の間に羽根車の回転によって入口から出口へ流体を送る流路が形成され た遠心タ一ボ機械において、  2. It has an impeller rotatably housed in a casing, and a plurality of impellers are provided between an inlet on the center side of the impeller and an outlet on the outer peripheral side, and the impeller is disposed between these impellers. In a centrifugal turbomachine having a flow path for sending a fluid from an inlet to an outlet by rotation,
前記羽根は、 ハブ側が羽根のシュラウ ド側に対し、 羽根車の回転方向 に先行するよ うな周方向の羽根傾斜を有し、  The blade has a circumferential blade inclination such that the hub side precedes the shroud side of the blade in the rotation direction of the impeller,
かつ、 前記流路の出口側から見た面において、 羽根がハブ面と垂直な 面に対してなす角度と して定義される羽根傾斜角度が、 入口から出口に 向かうに従い減少傾向を呈し、 それによつて、 羽根入口正面から見たと きのシユラゥ ド側とハブ側の羽根中心線が、 羽根車の出口半径との比で 示した無次元半径位置で 0 . 8から 0 . 9 5の範囲において交差すること を特徴とする遠心ターボ機械。  And, on the surface viewed from the outlet side of the flow passage, the blade inclination angle defined as the angle formed by the blade with respect to the plane perpendicular to the hub surface shows a decreasing tendency from the inlet to the outlet, and Therefore, when viewed from the front of the blade entrance, the center line of the blades on the shaft side and the hub side is in a dimensionless radius position shown by a ratio of the exit radius of the impeller in a range of 0.8 to 0.95. A centrifugal turbomachine characterized by crossing.
PCT/JP1999/000077 1998-01-14 1999-01-13 Centrifugal turbomachinery WO1999036701A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69932408T DE69932408T2 (en) 1998-01-14 1999-01-13 RADIAL FLOW MACHINE
EP99900291A EP1048850B1 (en) 1998-01-14 1999-01-13 Centrifugal turbomachinery
US09/600,237 US6338610B1 (en) 1998-01-14 1999-01-13 Centrifugal turbomachinery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1017898 1998-01-14
JP10/17898 1998-01-14

Publications (1)

Publication Number Publication Date
WO1999036701A1 true WO1999036701A1 (en) 1999-07-22

Family

ID=11743043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000077 WO1999036701A1 (en) 1998-01-14 1999-01-13 Centrifugal turbomachinery

Country Status (1)

Country Link
WO (1) WO1999036701A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057959A (en) * 2007-08-03 2009-03-19 Hitachi Plant Technologies Ltd Centrifugal compressor, its impeller, and its operating method
CN102472293A (en) * 2009-07-29 2012-05-23 三菱重工业株式会社 Impeller of centrifugal compressor
WO2013073469A1 (en) * 2011-11-17 2013-05-23 株式会社日立プラントテクノロジー Centrifugal fluid machine
JP2015071972A (en) * 2013-10-03 2015-04-16 株式会社Ihi Centrifugal compressor
WO2016157584A1 (en) * 2015-03-30 2016-10-06 三菱重工業株式会社 Impeller and centrifugal compressor
RU2661801C1 (en) * 2017-07-10 2018-07-19 Общество с ограниченной ответственностью Научно-производственная фирма "АДЕС" Rotary pump impeller
JP2020518761A (en) * 2017-07-03 2020-06-25 ▲広▼▲東▼威▲靈▼▲電▼机制造有限公司 Impeller, fan and motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784394U (en) * 1980-11-12 1982-05-25
JPS6029840B2 (en) * 1980-12-19 1985-07-12 株式会社日軽技研 Impeller manufacturing method
JPS6133963B2 (en) * 1981-04-13 1986-08-05 Nitsukei Giken Kk
JPS6235100A (en) * 1985-08-07 1987-02-16 Matsushita Electric Ind Co Ltd Blower device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784394U (en) * 1980-11-12 1982-05-25
JPS6029840B2 (en) * 1980-12-19 1985-07-12 株式会社日軽技研 Impeller manufacturing method
JPS6133963B2 (en) * 1981-04-13 1986-08-05 Nitsukei Giken Kk
JPS6235100A (en) * 1985-08-07 1987-02-16 Matsushita Electric Ind Co Ltd Blower device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057959A (en) * 2007-08-03 2009-03-19 Hitachi Plant Technologies Ltd Centrifugal compressor, its impeller, and its operating method
CN102472293A (en) * 2009-07-29 2012-05-23 三菱重工业株式会社 Impeller of centrifugal compressor
US8956118B2 (en) 2009-07-29 2015-02-17 Mitsubishi Heavy Industries, Ltd. Impeller of centrifugal compressor
WO2013073469A1 (en) * 2011-11-17 2013-05-23 株式会社日立プラントテクノロジー Centrifugal fluid machine
JP2013104417A (en) * 2011-11-17 2013-05-30 Hitachi Plant Technologies Ltd Centrifugal fluid machine
US10125773B2 (en) 2011-11-17 2018-11-13 Hitachi, Ltd. Centrifugal fluid machine
JP2015071972A (en) * 2013-10-03 2015-04-16 株式会社Ihi Centrifugal compressor
WO2016157584A1 (en) * 2015-03-30 2016-10-06 三菱重工業株式会社 Impeller and centrifugal compressor
US10947988B2 (en) 2015-03-30 2021-03-16 Mitsubishi Heavy Industries Compressor Corporation Impeller and centrifugal compressor
JP2020518761A (en) * 2017-07-03 2020-06-25 ▲広▼▲東▼威▲靈▼▲電▼机制造有限公司 Impeller, fan and motor
RU2661801C1 (en) * 2017-07-10 2018-07-19 Общество с ограниченной ответственностью Научно-производственная фирма "АДЕС" Rotary pump impeller
WO2019013672A1 (en) * 2017-07-10 2019-01-17 Общество с ограниченной ответственностью Научно-производственная фирма "АДЕС" Centrifugal pump impeller

Similar Documents

Publication Publication Date Title
JP5316365B2 (en) Turbo fluid machine
US8308420B2 (en) Centrifugal compressor, impeller and operating method of the same
US6338610B1 (en) Centrifugal turbomachinery
RU2581686C2 (en) Radial diffuser blade for centrifugal compressors
JP5233436B2 (en) Centrifugal compressor with vaneless diffuser and vaneless diffuser
EP2948632B1 (en) Structures and methods for forcing coupling of flow fields of adjacent bladed elements of turbomachines, and turbomachines incorporating the same
EP1979623B1 (en) Improved impeller and fan
US20080019826A1 (en) Blower
EP0040534A1 (en) Compressor diffuser
WO2012077580A1 (en) Centrifugal turbomachine
JPWO2008075747A1 (en) Compressor
JP4663259B2 (en) Blower and vacuum cleaner
WO1999036701A1 (en) Centrifugal turbomachinery
JP6606613B2 (en) Turbocharger and turbocharger nozzle vanes and turbines
JP3461661B2 (en) Blower
JP2005337076A (en) Centrifugal type blower
JP2018080653A (en) Fluid machinery
JP6605147B2 (en) Turbocharger and turbocharger nozzle vanes and turbines
JP4402503B2 (en) Wind machine diffusers and diffusers
EP4273408A1 (en) Centrifugal acceleration stabilizer
JPS6144000Y2 (en)
JP6758924B2 (en) Impeller
JP3124188B2 (en) Mixed flow turbine nozzle
JP6758923B2 (en) Impeller
KR20020084613A (en) Centrifugal compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99802146.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09600237

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 1999900291

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999900291

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999900291

Country of ref document: EP