WO2012077580A1 - Centrifugal turbomachine - Google Patents

Centrifugal turbomachine Download PDF

Info

Publication number
WO2012077580A1
WO2012077580A1 PCT/JP2011/077863 JP2011077863W WO2012077580A1 WO 2012077580 A1 WO2012077580 A1 WO 2012077580A1 JP 2011077863 W JP2011077863 W JP 2011077863W WO 2012077580 A1 WO2012077580 A1 WO 2012077580A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffuser
blade
hub
distribution
blades
Prior art date
Application number
PCT/JP2011/077863
Other languages
French (fr)
Japanese (ja)
Inventor
和之 杉村
秀夫 西田
小林 博美
俊雄 伊藤
Original Assignee
株式会社日立プラントテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立プラントテクノロジー filed Critical 株式会社日立プラントテクノロジー
Priority to CN201180058898.2A priority Critical patent/CN103314218B/en
Priority to US13/992,457 priority patent/US20130309082A1/en
Priority to EP11847208.3A priority patent/EP2650546A1/en
Publication of WO2012077580A1 publication Critical patent/WO2012077580A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/06Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially radially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

In a centrifugal fluid machine (300), one or more impellers are attached to an identical rotation shaft. On a downstream of at least any one of the impellers, a blade-attached diffuser is provided. A plurality of blade-attached diffusers are disposed on a concentric plate (309a) at intervals in a circumferential direction thereof, and each of the diffusers is a curvilinear element three-dimensional diffuser having wings (309c) which are extended from a hub side of the impeller to a shroud side thereof. The wings are formed in a form in which a wing serving as a reference is stacked in a direction of the height of the wing, which is a direction of a gap between the hub and the shroud. A dihedral distribution in which moving in a direction perpendicular to a chord direction linking a leading edge of the wing as the reference with a tailing edge thereof, which is an opposite direction of the rotation direction of the impeller, is set as a positive movement is non-uniform from an end portion on the hub side to an intermediate portion of the height of the wing.

Description

遠心型ターボ機械Centrifugal turbomachine
 本発明は遠心圧縮機や遠心ブロア、遠心ファン、遠心ポンプなどの遠心羽根車を備えた遠心型ターボ機械に関する。 The present invention relates to a centrifugal turbomachine equipped with a centrifugal impeller such as a centrifugal compressor, a centrifugal blower, a centrifugal fan, or a centrifugal pump.
 遠心型ターボ機械の一種である多段遠心圧縮機では、同一軸に多数の羽根車が取り付けられ、各羽根車の下流側には、ディフューザおよびリターンガイドベーンが併設されている。羽根車およびディフューザ、リターンガイドベーンは、段落を構成する。ここで、ディフューザとしては、ベーンレスディフューザと羽根付きディフューザ、羽根付きディフューザの一種である小弦節比ディフューザ等が、その目的および用途により用いられている。 In a multistage centrifugal compressor, which is a type of centrifugal turbomachine, a large number of impellers are attached to the same shaft, and a diffuser and a return guide vane are provided downstream of each impeller. The impeller, diffuser, and return guide vane constitute a paragraph. Here, as the diffuser, a vaneless diffuser, a vaned diffuser, a low string ratio diffuser which is a kind of vaned diffuser, and the like are used depending on the purpose and application.
 これらディフューザの中で小弦節比ディフューザは、幾何学的なスロートを有していないので、大流量側の作動範囲であるチョークマージンを拡大できるという特性を有する。それとともに、小流量域においては、2次流れによる翼面上の境界層掃き出し効果により翼面剥離を抑制するので、小流量側の作動範囲であるサージマージンも十分に確保することができるという利点を有している。そのため、小弦節比ディフューザが多用されている。 Among these diffusers, the low chord ratio ratio diffuser does not have a geometric throat, and therefore has a characteristic that the choke margin, which is the operating range on the large flow rate side, can be expanded. At the same time, in the small flow rate region, the blade surface separation is suppressed by the boundary layer sweeping effect on the blade surface due to the secondary flow, so that the surge margin that is the operating range on the small flow rate side can be sufficiently secured. have. For this reason, a low-string ratio diffuser is frequently used.
 小弦節比ディフューザに代表される遠心型ターボ機械向け羽根付きディフューザには、同じ翼型を翼の高さ方向に積層した2次元翼が一般的に用いられる。しかしさらなる性能改善の要求から、3次元翼化も試みられており、例えば特許文献1に記載の遠心圧縮機では、ディフューザの翼高さ方向にディフューザ翼断面の食い違い角を徐々に変えて3次元翼とし、非一様分布の流入流れに対して無衝突流入を実現して高効率化と広作動範囲の両立を図っている。 As a diffuser with blades for centrifugal turbomachines typified by a low chord joint ratio diffuser, a two-dimensional blade in which the same airfoil is stacked in the height direction of the blade is generally used. However, due to the demand for further performance improvement, three-dimensional blades have also been attempted. For example, in the centrifugal compressor described in Patent Document 1, the difference angle of the cross section of the diffuser blades is gradually changed in the height direction of the diffuser. The wing is designed to achieve both high efficiency and a wide operating range by realizing collisionless inflow for non-uniformly distributed inflow.
 また特許文献2に記載の遠心圧縮機では、ディフューザの前縁部において、翼高さ中央部分を下流方向に湾曲させ、ディフューザ入口径を変更している。これにより、非一様分布の流入流れに対して無衝突流入を実現して、高効率化と広作動範囲の両立を図っている。 Further, in the centrifugal compressor described in Patent Document 2, the central portion of the blade height is curved in the downstream direction at the front edge portion of the diffuser to change the diffuser inlet diameter. This realizes collisionless inflow with respect to the non-uniformly distributed inflow, thereby achieving both high efficiency and a wide operating range.
特表2009-504974号公報Special table 2009-504974 特開2004-92482号公報JP 2004-92482 A
 上記特許文献1に記載の遠心圧縮機用の翼型ディフューザでは、3次元のディフューザ翼を形成する際に、ディフューザ翼を仮想的に軸方向(ハブ面からシュラウド面に向かう方向)に複数に分割して積み重ねて構成することが記載されている。その際、翼の積み重ね方向がハブ面またはシュラウド面に直角な方向に対してなす角度であるリーン角を、ディフューザ翼のスパンに沿って変化させるバウディフューザ翼についての示唆もなされている。 In the blade type diffuser for a centrifugal compressor described in Patent Document 1, when forming a three-dimensional diffuser blade, the diffuser blade is virtually divided into a plurality of axial directions (directions from the hub surface toward the shroud surface). It is described that they are stacked. At that time, a bow diffuser blade has been suggested in which the lean angle, which is the angle formed by the blade stacking direction with respect to the direction perpendicular to the hub surface or the shroud surface, is changed along the span of the diffuser blade.
 しかし、曲線要素羽根では選択肢が多く、筆者らの考察では必ずしも十分な改良となるわけではない。つまり、リーン分布を翼に付与する場合、その与え方によっては2次流れが増長され、かえって性能悪化を招くことがあるので、性能向上に結びつく分割した翼の積み重ねパターンの解明が求められている。 However, there are many choices for curved element blades, and it is not always a sufficient improvement according to the authors' consideration. In other words, when applying a lean distribution to a wing, the secondary flow may be increased depending on how it is given, which may lead to performance degradation. Therefore, there is a need to clarify the stacking pattern of the divided wings, which leads to improved performance. .
 また特許文献2に開示された遠心圧縮機では、ディフューザ前縁という局所的な部位にリーンを付与して流入角のマッチングを図っているが、曲線要素ディフューザの構成を採用しておらず、曲線要素ディフューザを採用したときに顕著になるディフューザ翼間流路の2次流れを制御することについての考慮もない。 Further, in the centrifugal compressor disclosed in Patent Document 2, the inflow angle is matched by applying a lean to a local portion called the diffuser leading edge, but the configuration of the curve element diffuser is not adopted, and the curve There is no consideration for controlling the secondary flow of the flow path between the diffuser blades that becomes noticeable when the element diffuser is employed.
 本発明は上記従来技術の課題に鑑みなされたものであり、その目的は遠心型ターボ機械に用いられる羽根付きディフューザにおいて、曲線要素ディフューザを用いて効率向上を図ったときに翼間の2次流れを効果的に抑制して性能を向上させることにある。本発明の他の目的は、遠心圧縮機に用いられるこのような曲線要素ディフューザにおいて、性能向上に結びつく分割した翼の積み重ねパターンを得ることにある。 SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems of the prior art, and the object thereof is a secondary flow between blades in a bladed diffuser used in a centrifugal turbomachine when a curved element diffuser is used to improve efficiency. Is to effectively suppress the performance and improve the performance. Another object of the present invention is to obtain a stacking pattern of divided blades for improving performance in such a curved element diffuser used in a centrifugal compressor.
 初めに本明細書で使用するいくつかの用語を、図1、2を参照して、以下のように定義する。図1は翼型の移動を説明するためのディフューザ翼1枚の平面図であり、図2は、羽根付きディフューザの翼1枚を取り出して示した斜視図であり、基準となる翼型をZ方向に積み重ねる様子を示す図である。座標系は、羽根車の半径方向をR、羽根車の回転方向をθ、回転軸の軸方向をZとする円筒座標系(R,θ、Z)である。Zは、シュラウド102側からハブ101側に向かう方向を正とする。 First, some terms used in this specification are defined as follows with reference to FIGS. FIG. 1 is a plan view of one diffuser blade for explaining the movement of an airfoil, and FIG. 2 is a perspective view showing one blade of a diffuser with blades taken out. It is a figure which shows a mode that it accumulates in a direction. The coordinate system is a cylindrical coordinate system (R, θ, Z) in which the radial direction of the impeller is R, the rotational direction of the impeller is θ, and the axial direction of the rotation shaft is Z. Z is positive in the direction from the shroud 102 side toward the hub 101 side.
 翼弦(C):ディフューザ翼103の基準となる翼型104において、前縁208と後縁209とを結ぶ線。 
 リーン:ディフューザ翼103のハブ101面に対する傾き度合いであり、以下に述べるスイープとダイヘドラルの複合とみなせる。 
 食い違い角(θSG):翼弦Cが半径方向(R方向)となす角(tanθSG=dC/
dR)。 
 スイープ(Δσ):図1中で一点鎖線で表した場合で、ディフューザ翼103の翼型104を、翼弦C方向へ平行移動させることで、下流側へ移動させる場合を正とする。 
 ダイヘドラル(Δδ):図1中で破線で表した場合で、ディフューザ翼103の翼型104を、翼弦Cに垂直な方向へ移動させることである。羽根車の回転方向とは逆方向へ移動させる場合を、正とする。
Chord (C): A line connecting the leading edge 208 and the trailing edge 209 in the airfoil 104 as a reference of the diffuser blade 103.
Lean: Degree of inclination of the diffuser blade 103 with respect to the hub 101 surface, which can be regarded as a combination of sweep and dihedral described below.
Misalignment angle (θ SG ): Angle formed by the chord C and the radial direction (R direction) (tan θ SG = dC /
dR).
Sweep (Δσ): In the case represented by the one-dot chain line in FIG. 1, the case where the airfoil 104 of the diffuser blade 103 is moved in the chord C direction and moved downstream is defined as positive.
Dihedral (Δδ): In the case represented by a broken line in FIG. 1, the airfoil 104 of the diffuser blade 103 is moved in a direction perpendicular to the chord C. The case where the impeller is moved in the direction opposite to the rotation direction is positive.
 翼高さ(h):ディフューザ翼の高さで、ハブ面側から測った高さである。ハブ面とシュラウド面が軸に垂直な平行壁の場合には、-Z方向の高さになる。ハブ面とシュラウド面の少なくともいずれかが傾斜面であれば、ディフューザ翼のハブ側における前縁と後縁を結ぶ線からの高さとする。ディフューザ翼のハブ側とシュラウド側の前縁を結ぶ線と、ディフューザ翼のハブ側とシュラウド側の後縁を結ぶ線とを基準にして、前縁と後縁の流れ方向中間の点の高さを決定する。翼の全高さは、Hで表す。 Blade height (h): The height of the diffuser blade measured from the hub surface side. When the hub surface and the shroud surface are parallel walls perpendicular to the axis, the height is in the −Z direction. If at least one of the hub surface and the shroud surface is an inclined surface, the height from the line connecting the leading edge and the trailing edge on the hub side of the diffuser blade is set. The height of the middle point in the flow direction between the leading edge and trailing edge, with reference to the line connecting the hub edge of the diffuser blade and the leading edge of the shroud and the line connecting the hub edge of the diffuser blade and the trailing edge of the shroud To decide. The total height of the wing is represented by H.
 このような定義を用いて、本発明では上記課題を解決するために、同一の回転軸に、ハブとシュラウドとこれらハブとシュラウド間に周方向に間隔をおいて配置した複数の羽根とからなる少なくとも1個以上の羽根車を取り付け、この少なくとも1個の羽根車の少なくともいずれかの下流に羽根付きディフューザを備えた遠心型ターボ機械において、羽根付きディフューザは、羽根車の下流側に形成される流路に複数の翼を周方向に間隔をおいて配置されて形成されたものであり、各々の翼は、基準となる翼を回転軸の軸方向である翼高さ方向に積み重ねた形状で形成されており、基準となる翼の前縁と後縁とを結ぶ翼弦方向に垂直な方向であって羽根車の回転方向とは逆の方向に移動させるのを正の移動とするダイヘドラル分布を、ハブ壁面側でハブ側端部から翼高さの中間部に向けて非一様としたことを特徴とするものである。 In order to solve the above problems, the present invention uses such a definition to include a hub, a shroud, and a plurality of blades arranged at intervals in the circumferential direction between the hub and the shroud on the same rotating shaft. In a centrifugal turbomachine equipped with at least one impeller and having a vaned diffuser downstream of at least one of the at least one impeller, the vaned diffuser is formed on the downstream side of the impeller. A plurality of blades are arranged in the flow path at intervals in the circumferential direction, and each blade has a shape in which the reference blades are stacked in the blade height direction, which is the axial direction of the rotating shaft. Dihedral distribution with positive movement to move in the direction perpendicular to the chord direction connecting the leading edge and trailing edge of the reference wing and opposite to the rotation direction of the impeller The hub It is characterized in that it has a non-uniform towards the intermediate portion of the blade height from the hub-side end portion in the side.
 そしてこの特徴において、ディフューザ翼の各々のダイヘドラル分布が、ハブ側端部から翼高さの中間部にむけて増大させる分布とし、ディフューザ翼の各々を、その前縁部であってハブ側端部に仮想的に形成される平面とディフューザ翼の負圧面とが鈍角をなすようにするのが好ましい。 In this feature, the dihedral distribution of each of the diffuser blades is a distribution that increases from the hub side end portion toward the middle portion of the blade height, and each of the diffuser blades is the leading edge portion of the hub side end portion. It is preferable that an imaginary plane and the suction surface of the diffuser blade form an obtuse angle.
 また、ダイヘドラル分布をシュラウド側端部から翼高さの中間部に向けて増大する分布とし、ディフューザ翼の各々を、その前縁部であってシュラウド側端部に仮想的に形成される平面とディフューザ翼の負圧面とが鈍角をなすようにするのが好ましい。 Further, the dihedral distribution is a distribution that increases from the shroud side end toward the middle part of the blade height, and each of the diffuser blades is a plane that is virtually formed at the front edge of the shroud side end. It is preferable to make an obtuse angle with the suction surface of the diffuser blade.
 上記特徴において、ディフューザ翼の各々のダイヘドラル分布が、ハブ側端部から翼高さの中間部にむけて減少する分布とし、基準となる翼の翼弦方向に平行な方向であって下流側に移動させるのを正の移動とするスイープ分布を、ハブ側端部から翼高さの中間部にむけて減少させる分布としてもよい。 In the above feature, the dihedral distribution of each diffuser blade is a distribution that decreases from the end on the hub side to the middle portion of the blade height, and is parallel to the chord direction of the reference blade and downstream. The sweep distribution in which the movement is a positive movement may be a distribution that decreases from the hub side end toward the middle of the blade height.
 なお、上記いずれの特徴においても、ディフューザ翼の各々は、少なくともその翼の流れ方向前半部に前記ダイヘドラル分布と前記スイープ分布の少なくともいずれかが適用されているのが望ましい。 In any of the above features, each of the diffuser blades preferably has at least one of the dihedral distribution and the sweep distribution applied to at least the first half of the flow direction of the blade.
 本発明によれば、遠心型ターボ機械に用いられる羽根付きディフューザにおいて、曲線要素3次元羽根をディフューザ翼に適用し、スイープ分布とダイヘドラル分布を与えるようにしてディフューザ翼への流れの衝突損失を低減し、さらに翼中間部の流れを制御可能にしたので、翼間の2次流れを効果的に抑制してディフューザ性能および圧縮機性能を向上できる。本発明ではさらに、遠心圧縮機に用いられるこのような曲線要素ディフューザにおいて、性能向上に結びつく分割した翼の積み重ねパターンを得ることができた。 According to the present invention, in a diffuser with blades used in a centrifugal turbomachine, a curved element three-dimensional blade is applied to a diffuser blade, and a flow distribution loss to the diffuser blade is reduced by giving a sweep distribution and a dihedral distribution. In addition, since the flow in the blade intermediate part can be controlled, the secondary flow between the blades can be effectively suppressed, and the diffuser performance and the compressor performance can be improved. Furthermore, in the present invention, in such a curved element diffuser used for a centrifugal compressor, it was possible to obtain a stacking pattern of divided blades that led to an improvement in performance.
羽根付きディフューザにおける傾きを説明する図である。It is a figure explaining the inclination in a diffuser with a blade | wing. 羽根付きディフューザが有する翼の3次元化を説明する図である。It is a figure explaining three-dimensionalization of the wing | blade which a diffuser with a blade | wing has. 本発明に係る遠心型ターボ機械の一実施例の縦断面図である。1 is a longitudinal sectional view of an embodiment of a centrifugal turbomachine according to the present invention. 羽根付きディフューザの分類を説明する図である。It is a figure explaining the classification | category of a diffuser with a blade | wing. 図3に示した圧縮機が有するディフューザの一実施例のダイヘドラル分布を示す図である。It is a figure which shows the dihedral distribution of one Example of the diffuser which the compressor shown in FIG. 3 has. 図5に示したダイヘドラル分布を有するディフューザの斜視図およびその部分拡大図である。FIG. 6 is a perspective view and a partially enlarged view of a diffuser having a dihedral distribution shown in FIG. 5. 図3に示した圧縮機が有するディフューザの他の実施例のダイヘドラル分布を示す図である。It is a figure which shows the dihedral distribution of the other Example of the diffuser which the compressor shown in FIG. 3 has. 図7に示したダイヘドラル分布を有するディフューザの斜視図およびその部分拡大図ある。FIG. 8 is a perspective view of a diffuser having a dihedral distribution shown in FIG. 7 and a partially enlarged view thereof. 図3に示した圧縮機が有するディフューザのさらに他の実施例のダイヘドラル分布とスイープ分布を示す図である。It is a figure which shows the dihedral distribution and sweep distribution of further another Example of the diffuser which the compressor shown in FIG. 3 has. 図9に示したダイヘドラル分布とスイープ分布を有するディフューザの斜視図およびその部分拡大図である。FIG. 10 is a perspective view of a diffuser having a dihedral distribution and a sweep distribution shown in FIG. 9 and a partially enlarged view thereof. 本発明に係るディフューザを備えた遠心圧縮機における性能線図の一例を示す図である。It is a figure which shows an example of the performance diagram in the centrifugal compressor provided with the diffuser which concerns on this invention.
 以下、本発明のいくつかの実施例を図面を用いて説明する。初めに、図3の縦断面図を用いて、遠心型ターボ機械の一例としての多段遠心圧縮機300について説明する。本多段遠心圧縮機300は2段の遠心圧縮機である。なお本発明の対象は単段または多段の遠心型ターボ機械であればよく、特に2段圧縮機に限定するものではない。 Hereinafter, some embodiments of the present invention will be described with reference to the drawings. First, a multistage centrifugal compressor 300 as an example of a centrifugal turbomachine will be described with reference to a longitudinal sectional view of FIG. The multistage centrifugal compressor 300 is a two-stage centrifugal compressor. The subject of the present invention may be a single-stage or multi-stage centrifugal turbomachine, and is not particularly limited to a two-stage compressor.
 図3に示した多段の遠心圧縮機300は、初段301と第2段302とからなる2段圧縮機である。初段羽根車308および第2段羽根車311は同一の回転軸303に取り付けられて、回転体を構成する。回転軸303は、回転軸303や羽根車308,311を収容する圧縮機ケーシング306に取り付けられたジャーナルベアリング304やスラストベアリング305により、回転自在に支持されている。 The multistage centrifugal compressor 300 shown in FIG. 3 is a two-stage compressor including a first stage 301 and a second stage 302. The first stage impeller 308 and the second stage impeller 311 are attached to the same rotating shaft 303 to constitute a rotating body. The rotary shaft 303 is rotatably supported by a journal bearing 304 and a thrust bearing 305 attached to a compressor casing 306 that houses the rotary shaft 303 and the impellers 308 and 311.
 初段羽根車308の下流側には、羽根車308で圧縮された作動ガスの圧力を回復し半径方向外向きの流れを形成するディフューザ309と、このディフューザ309で半径方向外向きにされた作動ガスの流れを半径方向内向きにして第2段羽根車311に導くリターンガイドベーン310とが配置されている。2段羽根車311の下流には同様にディフューザ312と、2段ディフューザ312で圧力上昇した作動ガスをまとめて機外へ送り出すためのコレクタまたはスクロールと呼ばれる回収手段313が配置されている。 On the downstream side of the first stage impeller 308, a diffuser 309 that recovers the pressure of the working gas compressed by the impeller 308 to form a radially outward flow, and a working gas that is made radially outward by the diffuser 309. A return guide vane 310 is arranged to guide the second flow impeller 311 inward in the radial direction. Similarly, downstream of the two-stage impeller 311, a diffuser 312 and a collecting means 313 called a collector or a scroll for collectively sending the working gas whose pressure has been increased by the two-stage diffuser 312 to the outside of the apparatus are arranged.
 各段の羽根車308、311は、心板308a、311aと側板308b、311bと心板308a、311aと側板308b、311bとの間に周方向ほぼ等間隔に複数枚配置された羽根308c、311cとを有している。羽根車308、311の入り口側であって側板308b、311b側の外周部には吸込みラビリンスシール315が、心板308a、311aの背面側にはシャフトシール316、317が配置されている。吸込ノズル307から流入した作動ガスが、初段の羽根車308、羽根付きディフューザ309、リターンガイドベーン310、第2段の羽根車311、羽根付きディフューザ312の順に通過して、コレクタやスクロールといった回収手段313に漏れることなく導かれる。 The impellers 308 and 311 at each stage have a plurality of blades 308c and 311c arranged at substantially equal intervals in the circumferential direction between the core plates 308a and 311a and the side plates 308b and 311b and the core plates 308a and 311a and the side plates 308b and 311b. And have. A suction labyrinth seal 315 is disposed on the outer peripheral portion of the impellers 308 and 311 on the side plate 308b and 311b side, and shaft seals 316 and 317 are disposed on the back side of the core plates 308a and 311a. The working gas flowing in from the suction nozzle 307 passes through the first stage impeller 308, the vaned diffuser 309, the return guide vane 310, the second stage impeller 311, and the vaned diffuser 312 in this order, and a collecting means such as a collector and a scroll. Guided to 313 without leaking.
 このように構成した遠心圧縮機300に用いるディフューザ309、312について、以下に詳述する。なお、ディフューザは309は、圧縮機ケーシング306の一部を構成するダイヤフラムに取り付けられ、流路面が羽根車308の流路面とほぼ同じ軸方向位置にあるハブ309aと、このハブ309の表面に周方向間隔を置いて立設された複数の翼309cとを有している。そして、圧縮機ケーシング306の一部を構成するインナーケーシングの壁面が、シュラウド面として流路を形成する。説明を省略するが、ディフューザ312も同様の構成である。なお、本実施例では、上記構成について説明するが、ディフューザの構成はこれに限るものではなく、ディフューザをダイヤフラムとは別体にする構成等ももちろん、本発明に含まれる。 The diffusers 309 and 312 used in the centrifugal compressor 300 configured as described above will be described in detail below. The diffuser 309 is attached to a diaphragm constituting a part of the compressor casing 306, and a hub 309 a whose flow path surface is substantially in the same axial position as the flow path surface of the impeller 308, and a surface around the hub 309. And a plurality of wings 309c erected at intervals in the direction. And the wall surface of the inner casing which comprises a part of compressor casing 306 forms a flow path as a shroud surface. Although explanation is omitted, the diffuser 312 has the same configuration. In the present embodiment, the above configuration will be described. However, the configuration of the diffuser is not limited to this, and a configuration in which the diffuser is separated from the diaphragm is included in the present invention.
 図4に、以下の説明に用いる羽根付きディフューザ400を、分類して示す。図4(a)は、ディフューザ400の横断面図である。ハブ板410a上に、周方向にほぼ等間隔で複数のディフューザ翼420aが立設されている。図示しない羽根車を出た流れが、図で矢印FLのように、内周側から翼420aに沿って流れるように導かれる。このとき図示しない羽根車の回転方向は矢印Rの方向となっている。 FIG. 4 shows the vaned diffuser 400 used for the following description in a classified manner. FIG. 4A is a cross-sectional view of the diffuser 400. A plurality of diffuser blades 420a are erected on the hub plate 410a at substantially equal intervals in the circumferential direction. A flow exiting an impeller (not shown) is guided to flow along the blade 420a from the inner peripheral side as indicated by an arrow FL in the figure. Rotational direction of the impeller (not shown) this time is the direction of the arrow R N.
 ディフューザの形状は、従来から使用されている2次元ディフューザ(図4(b))、リーンを有する直線要素3次元ディフューザ(図4(c))、同じくリーンを有する曲線要素の集合で表される曲線要素3次元ディフューザ(図4(d))に分類される。ここで、各ディフューザ翼420b~420dは、ハブ板側断面421b~421dの輪郭とシュラウド側断面422b~422dの輪郭間を、線素423b~423dで結んだ形状として表されている。これら各ディフューザ翼420b~420dへは、羽根車から同一の流れが吐出され、ディフューザ入り口流れ402を形成する。 The shape of the diffuser is represented by a conventionally used two-dimensional diffuser (FIG. 4 (b)), a linear element having a lean three-dimensional diffuser (FIG. 4 (c)), and a set of curved elements having the same lean. The curved element is classified into a three-dimensional diffuser (FIG. 4D). Here, each of the diffuser blades 420b to 420d is represented as a shape in which the contours of the hub plate side cross sections 421b to 421d and the contours of the shroud side cross sections 422b to 422d are connected by line elements 423b to 423d. The same flow is discharged from the impeller to each of the diffuser blades 420b to 420d to form a diffuser inlet flow 402.
 図4(b)に示した直線要素2次元ディフューザ翼420bは、翼420bの高さ方向に同一の翼型をまっすぐに積み上げる傾斜していない直線要素423bからなる2次元ディフューザである。つまり、直線要素423bは、ハブ板410aに垂直である。このような翼420bを有するディフューザでは、流入流れ402が分布しているときに、翼420bの前縁のどの高さ方向(h方向)位置でも流れを翼420bに衝突させないようにすることはできず、高性能化に限界がある。 The linear element two-dimensional diffuser blade 420b shown in FIG. 4B is a two-dimensional diffuser composed of non-inclined linear elements 423b that stack the same airfoil straight in the height direction of the blade 420b. That is, the linear element 423b is perpendicular to the hub plate 410a. In a diffuser having such a blade 420b, it is possible to prevent the flow from colliding with the blade 420b at any height direction (h direction) position of the leading edge of the blade 420b when the inflow flow 402 is distributed. However, there is a limit to high performance.
 図4(c)に示した直線要素3次元ディフューザでは、食い違い角(θSG)を変化させてディフューザ翼420cにひねりを与えている。これにより、羽根車を出た流れがディフューザ翼420cに衝突することなく流入することが可能になる。つまり、非一様な流れが羽根車から吐出されても、ディフューザ翼420cの前縁部では流入流れ402に応じた翼420c形状とすることができる。 In the linear element three-dimensional diffuser shown in FIG. 4C, the difference angle (θ SG ) is changed to give a twist to the diffuser blade 420c. As a result, the flow exiting the impeller can flow in without colliding with the diffuser blade 420c. That is, even if a non-uniform flow is discharged from the impeller, the front edge portion of the diffuser blade 420c can have a blade 420c shape corresponding to the inflow flow 402.
 この直線要素3次元ディフューザ翼420cでは、ハブ板側断面421cの輪郭とシュラウド側断面422cの輪郭とを結ぶ直線要素423cは直線であり、翼420cの高さ方向(h方向)のリーン分布も直線的である。ただし、ハブ面410aに対しては線素423cは必ずしも垂直ではない。流れが翼420c、420c間に流入した後は、翼420cの翼型は基本的な例えばNACA翼等で形成されているので、流れ角に対応した値に変更することができない。そのため、2次元ディフューザよりは効率向上が期待できるが、十分な流れの制御が困難である。 In this linear element three-dimensional diffuser blade 420c, the linear element 423c that connects the contour of the hub plate side section 421c and the contour of the shroud side section 422c is a straight line, and the lean distribution in the height direction (h direction) of the blade 420c is also a straight line. Is. However, the line element 423c is not necessarily perpendicular to the hub surface 410a. After the flow flows between the blades 420c and 420c, the airfoil shape of the blade 420c is basically formed by, for example, a NACA blade, and therefore cannot be changed to a value corresponding to the flow angle. Therefore, although an improvement in efficiency can be expected as compared with the two-dimensional diffuser, it is difficult to sufficiently control the flow.
 図4(d)に示した曲線要素3次元ディフューザでは、任意の曲線要素423dに沿って翼型を積み上げている。すなわち、ハブ板側断面421dの輪郭とシュラウド側断面422dの輪郭とを結ぶ曲線要素423dは曲線である。このディフューザでは、リーン角を翼420dの高さ方向(h方向)に一定ではなく変化させている。そのため、曲線要素3次元ディフューザは、翼420dの前縁部で単に無衝突流入を実現できるのみでなく、翼420dの流路面を湾曲させて翼力の作用方向を変えることができる。 In the curved element three-dimensional diffuser shown in FIG. 4D, the airfoils are stacked along an arbitrary curved element 423d. That is, the curved element 423d that connects the outline of the hub plate side section 421d and the outline of the shroud side section 422d is a curve. In this diffuser, the lean angle is varied in the height direction (h direction) of the blade 420d. Therefore, the curved element three-dimensional diffuser can not only realize collisionless inflow at the leading edge of the blade 420d, but also can change the direction of operation of the blade force by curving the flow path surface of the blade 420d.
 したがって、翼420d、420d間の流路内において流れを制御することが可能となる。そこで、本発明では、図3に示すように、羽根車308、311の出口の動圧を静圧として回収する羽根付きディフューザ309、312を、曲線要素3次元ディフューザ化している。 Therefore, it is possible to control the flow in the flow path between the blades 420d and 420d. Therefore, in the present invention, as shown in FIG. 3, the vaned diffusers 309 and 312 that collect the dynamic pressure at the outlets of the impellers 308 and 311 as static pressures are formed into a three-dimensional curved element.
 ところで、ディフューザを3次元化するためには種々の方法が考えられるが、上述したダイヘドラルとスイープを用いると、3次元化を系統的に取り扱うことが可能になる。そこで、ダイヘドラルとスイープとを用いて表した曲線要素3次元ディフューザの具体的例を、図5~図11を用いて説明する。以下の説明においては、初段のディフューザ309を例にとり説明するが、第2段以降のディフューザでも、同様に取り扱える。 By the way, various methods are conceivable for making the diffuser three-dimensional, but if the above-described dihedral and sweep are used, the three-dimensionalization can be handled systematically. Therefore, a specific example of a curved element three-dimensional diffuser represented by using a dihedral and a sweep will be described with reference to FIGS. In the following description, the first-stage diffuser 309 will be described as an example, but the second-stage and subsequent diffusers can be handled in the same manner.
 図5および図6を用いて、曲線要素3次元ディフューザの一実施例を説明する。ダイヘドラル分布だけを示している。図5は、翼620の翼高さ方向(h方向)に対するダイヘドラル分布を示す図で、ダイヘドラル(Δδ)量は翼弦長(C)で無次元化し、翼高さは全高さHで無次元化されている。図6は、図5のダイヘドラル分布を有するディフューザ600の斜視図であり、同図(a)は全体斜視図、同図(b)は(a)図のC部詳細図、同図(c)は(a)図のD部詳細図図である。ディフューザ板610は、羽根車のハブ側に取り付けられる。 An embodiment of a curved element three-dimensional diffuser will be described with reference to FIGS. Only the dihedral distribution is shown. FIG. 5 is a diagram showing a dihedral distribution with respect to the blade height direction (h direction) of the blade 620. The amount of the die helical (Δδ) is dimensionless by the chord length (C), and the blade height is dimensionless at the total height H. It has become. 6A and 6B are perspective views of the diffuser 600 having the dihedral distribution of FIG. 5, in which FIG. 6A is an overall perspective view, FIG. 6B is a detailed view of a portion C of FIG. 5A, and FIG. (A) is the D section detailed drawing of figure (a). The diffuser plate 610 is attached to the hub side of the impeller.
 図5に示すように本実施例では、ハブ側端面(h=0)近傍で翼高さ方向にダイヘドラルが増加している(丸囲み501参照)。つまり、ディフューザ翼620の負圧面601は、ハブ面603と鈍角を形成している。なお、ディフューザ翼620の負圧面は、羽根車の回転方向に対して背面側になる翼面である。 As shown in FIG. 5, in this embodiment, the die heddle increases in the blade height direction in the vicinity of the hub side end face (h = 0) (see a circle 501). That is, the negative pressure surface 601 of the diffuser blade 620 forms an obtuse angle with the hub surface 603. The negative pressure surface of the diffuser blade 620 is a blade surface on the back side with respect to the rotation direction of the impeller.
 本発明者らの研究によれば、図5に示したダイヘドラル分布においては、丸囲み部501すなわちハブ側端面近傍501以外の部分では、一般にはダイヘドラル分布やスイープ分布が性能に及ぼす影響は小さかった。したがって、ハブ側端面近傍501以外の部分は、翼309cの加工性や取り扱い性を考慮してダイヘドラル分布およびスイープ分布を設定可能である。 According to the studies by the present inventors, in the dihedral distribution shown in FIG. 5, the influence of the dihedral distribution and the sweep distribution on the performance is generally small in a portion other than the rounded portion 501, that is, the vicinity of the hub side end surface 501. . Therefore, the part other than the hub side end face vicinity 501 can set the die-hedra distribution and the sweep distribution in consideration of the workability and handleability of the blade 309c.
 図6(b)に示すように、本実施例のディフューザ600では、翼高さ方向に翼力成分602が生じる。この翼力成分602は、ハブ面603上の境界層がハブ側負圧面601に回りこもうとする2次流れと逆方向であるので、2次流れを押し戻す効果がある。したがって、本実施例によれば、2次流れが抑制されて翼間流れ分布が一様化し、ディフューザ性能が向上する。 As shown in FIG. 6B, in the diffuser 600 of this embodiment, a blade force component 602 is generated in the blade height direction. The blade force component 602 has an effect of pushing back the secondary flow because the boundary layer on the hub surface 603 is in the opposite direction to the secondary flow that tries to go around the hub-side negative pressure surface 601. Therefore, according to the present embodiment, the secondary flow is suppressed, the flow distribution between the blades is made uniform, and the diffuser performance is improved.
 本発明の他の実施例を、図7と図8を用いて説明する。これらの図は上記実施例と同様の図であり、図7がダイヘドラル分布図であり、図8は図7に示したダイヘドラル分布を有するディフューザ800の斜視図である。図8(a)はディフューザ800全体の斜視図であり、図8(b)は図8(a)のE部詳細図、図8(c)は図8(a)のF部詳細図である。このディフューザ800でも、ディフューザ板810は羽根車のハブ側に取り付けられる。上記実施例とはシュラウド側端面近傍(丸囲み702)で、翼高さ方向にダイヘドラルを減少させている点が相違する。 Another embodiment of the present invention will be described with reference to FIGS. These drawings are the same as those in the above embodiment, FIG. 7 is a dihedral distribution diagram, and FIG. 8 is a perspective view of the diffuser 800 having the dihedral distribution shown in FIG. 8A is a perspective view of the entire diffuser 800, FIG. 8B is a detailed view of an E portion of FIG. 8A, and FIG. 8C is a detailed view of an F portion of FIG. 8A. . Also in this diffuser 800, the diffuser plate 810 is attached to the hub side of the impeller. It differs from the above embodiment in that the die heddle is reduced in the blade height direction in the vicinity of the shroud side end face (circled 702).
 上記実施例ではダイヘドラル分布の影響がハブ面側で大きかったが、シュラウド面側のダイヘドラル分布も、羽根車から流出する流れによってはディフューザへ影響を与えていることが判明した。なお、この場合でも、シュラウド側のダイヘドラル分布は、上記実施例と同様にする必要がある。この具体例を、以下に説明する。 In the above embodiment, the influence of the dihedral distribution was large on the hub surface side, but it was found that the dihedral distribution on the shroud surface side also affected the diffuser depending on the flow flowing out of the impeller. Even in this case, the shroud-side dihedral distribution needs to be the same as in the above embodiment. A specific example will be described below.
 ハブ側端面では、上記実施例と同様に、翼高さ方向(h方向)にダイヘドラル量(Δδ)を増加させている(丸囲み701参照)。また本実施例においても、ハブ側端面近傍及びシュラウド側端面近傍の2つの領域を除いた翼高さ方向中央領域のダイヘドラル分布やスイープ分布が性能に与える感度は小さかった。つまり、ハブ側とシュラウド側の両端面近傍においては、ディフューザ翼820の負圧面801、802とハブ端面およびシュラウド端面とのなす角が鈍角となるので、上記実施例と同様な作用効果で2次流れを抑制できる。 At the hub-side end face, the dihedral amount (Δδ) is increased in the blade height direction (h direction) in the same manner as in the above embodiment (see circle 701). Also in this embodiment, the sensitivity given to the performance by the dihedral distribution and the sweep distribution in the center region in the blade height direction excluding the two regions near the hub side end surface and the shroud side end surface was small. That is, in the vicinity of both end surfaces on the hub side and the shroud side, the angle formed between the suction surfaces 801 and 802 of the diffuser blade 820 and the hub end surface and the shroud end surface is an obtuse angle. The flow can be suppressed.
 なお、羽根車出口流れが比較的一様な場合には図7に示した分布を用いるのがよく、一方、非一様性が強い場合には図5に示した分布を用いるのがよい。これは、羽根車出口流れの一様性の影響をディフューザ翼820が受けるためである。すなわち、羽根車出口流れの非一様性が強い場合には、主流が存在するハブ面側の流れを重点的に制御すれば、流れにおけるエネルギーの大きい部位を制御するので流れ全体を効果的に制御できる。 When the impeller outlet flow is relatively uniform, the distribution shown in FIG. 7 should be used. On the other hand, when the non-uniformity is strong, the distribution shown in FIG. 5 should be used. This is because the diffuser blade 820 is affected by the uniformity of the impeller exit flow. In other words, if the non-uniformity of the impeller exit flow is strong, if the flow on the hub surface side where the main flow exists is controlled intensively, the high-energy part in the flow is controlled, so the entire flow is effectively Can be controlled.
 本発明のさらに他の実施例を、図9と図10を用いて説明する。図9(a)はダイヘドラル分布図であり、図9(b)は翼弦長で無次元化したスイープ分布図である。図10は図9に示した分布を有するディフューザ309の斜視図であり、同図(a)はディフューザの全体図、同図(b)は図9(a)のG部詳細図、同図(c)は図9(a)のH部詳細図である。上記各実施例と同様、ハブ板1010は、羽根車のハブ側に取り付けられる。 Still another embodiment of the present invention will be described with reference to FIGS. FIG. 9A is a dihedral distribution diagram, and FIG. 9B is a sweep distribution diagram that is dimensionless by the chord length. 10 is a perspective view of the diffuser 309 having the distribution shown in FIG. 9, where FIG. 10A is an overall view of the diffuser, FIG. 10B is a detailed view of the G portion of FIG. 9A, and FIG. c) is a detailed view of a portion H in FIG. As in the above embodiments, the hub plate 1010 is attached to the hub side of the impeller.
 上記2つの実施例では、ハブ側のダイヘドラル分布が重要であり、しかも翼高さ方向に増加させるのが流れの制御の観点から効果的であったが、翼高さ方向にダイヘドラル分布を減少させる場合でも、スイープと組み合わせることにより、効果を得る場合のあることが判明した。この具体例を、以下に説明する。 In the above two embodiments, the hub-side dihedral distribution is important, and increasing in the blade height direction is effective from the viewpoint of flow control, but the dihedral distribution in the blade height direction is reduced. Even in this case, it has been found that the effect may be obtained by combining with the sweep. A specific example will be described below.
 図9に示すように、本実施例ではハブ側端面近傍(丸囲み901参照)において、翼高さ方向にダイヘドラルを減少させており、さらにスイープは、同じハブ側端面近傍(丸囲み902参照)で減少させている。つまり、ダイヘドラルとスイープの複合したリーンであり、曲線要素3次元が用いられたディフューザ1000になっている。ハブ側端面近傍以外の領域では性能への感度が小さかったので、ダイヘドラルおよびスイープのいずれについても、極端な変化の生じない範囲で任意に定めることができる。 As shown in FIG. 9, in this embodiment, the die heddle is reduced in the blade height direction in the vicinity of the hub side end surface (see the circled box 901), and the sweep is performed in the vicinity of the same hub side end surface (see the circled box 902). It is decreased by. That is, the diffuser 1000 is a lean combined with a dihedral and a sweep, and uses a three-dimensional curve element. Since the sensitivity to performance was small in a region other than the vicinity of the hub side end face, any of the dihedral and the sweep can be arbitrarily determined within a range where no extreme change occurs.
 本実施例では、上述各実施例とはハブ側端面におけるダイヘドラルの向きを逆向きにしている。その結果、ハブ板1010表面とディフューザ負圧面1001とのなす角が鋭角となり、図6に示した翼力601とは逆向きの翼力が発生する。この逆向きの翼力は、一見2次流れを増長するようであるが、実際は2次流れを抑制するように働く。その理由は以下のとおりである。 In this embodiment, the direction of the dihedral at the hub side end face is opposite to that of each of the above-described embodiments. As a result, the angle formed by the surface of the hub plate 1010 and the diffuser negative pressure surface 1001 becomes an acute angle, and a blade force opposite to the blade force 601 shown in FIG. 6 is generated. The reverse wing force seems to increase the secondary flow at first glance, but actually acts to suppress the secondary flow. The reason is as follows.
 本実施例では、ダイヘドラルとスイープを組合せてディフューザ翼1020を構成している。ディフューザ翼1020がスイープ1002を有しているので、ディフューザ翼1020の前縁1005とハブ板1010の表面との間に切り欠き状の間隙1003が形成される。この切り欠き状の間隙1003部において、ディフューザ翼1020の圧力面から負圧面へ回りこむ流れが生じ縦渦1004を発生する。ディフューザ翼1020の負圧面とハブ板1010表面とで形成される角部では、2次流れを抑制する渦度1006を生じる。それと共に、周囲流体との攪拌促進や渦中心の負圧効果によりディフューザ翼1020での翼面剥離が抑制される。このように、縦渦の作用により2次流れが抑制され、流れ場が一様化され曲線要素3次元ディフューザの性能が向上する。 In this embodiment, the diffuser blade 1020 is configured by combining a die heddle and a sweep. Since the diffuser blade 1020 has the sweep 1002, a notch-shaped gap 1003 is formed between the front edge 1005 of the diffuser blade 1020 and the surface of the hub plate 1010. In this notch-shaped gap 1003, a flow that wraps around from the pressure surface of the diffuser blade 1020 to the suction surface is generated, and a vertical vortex 1004 is generated. At the corner portion formed by the suction surface of the diffuser blade 1020 and the surface of the hub plate 1010, a vorticity 1006 that suppresses the secondary flow is generated. At the same time, the blade surface separation at the diffuser blade 1020 is suppressed by the promotion of stirring with the surrounding fluid and the negative pressure effect at the center of the vortex. Thus, the secondary flow is suppressed by the action of the vertical vortex, the flow field is made uniform, and the performance of the curved element three-dimensional diffuser is improved.
 図11に、直線要素2次元ディフューザを用いた圧縮機に対して、本実施例に示した曲線要素3次元ディフューザを用いた場合に、圧縮機が性能向上している様子を示す。グラフの横軸は設計点流量Qdesで無次元化した流量Qであり、縦軸は二次元ディフューザにおける断熱効率η2DIMで無次元化した圧縮機段の断熱効率ηと二次元ディフューザにおける圧力係数ψ2DIMで無次元化した圧力係数ψである。 FIG. 11 shows how the performance of the compressor is improved when the curved element three-dimensional diffuser shown in the present embodiment is used for the compressor using the linear element two-dimensional diffuser. The horizontal axis of the graph is the flow rate Q made dimensionless by the design point flow rate Qdes, and the vertical axis is the adiabatic efficiency η of the compressor stage made dimensionless by 2DIM and the pressure coefficient ψ of the two-dimensional diffuser. This is the pressure coefficient ψ made dimensionless by 2DIM .
 設計流量においてはもちろんのこと、広い流量範囲において断熱効率ηと圧力係数ψが向上している。また設計点流量(Q=1.0)から離れるにしたがって、性能向上量が増加しているので、本発明に羽根付きディフューザは非設計点(Q≠1.0)における性能に優れている。すなわち、圧縮機の作動範囲が改善されている。 The heat insulation efficiency η and pressure coefficient ψ are improved in the wide flow rate range as well as the design flow rate. Further, since the performance improvement amount increases with increasing distance from the design point flow rate (Q = 1.0), the vaned diffuser according to the present invention is superior in performance at the non-design point (Q ≠ 1.0). That is, the operating range of the compressor is improved.
 上記各実施例では、ディフューザ翼がスイープ分布とダイヘドラル分布の少なくともいずれかを有することで、曲線要素3次元ディフューザを実現している。そして、これらのディフューザ翼を傾かせる方法により、ディフューザのハブ壁面近傍とシュラウド壁面近傍での2次流れ、及びディフューザ翼の前縁付近での衝突流れを制御している。その結果、ディフューザの性能を向上できる。なお、上記各実施例で示したスイープ分布およびダイヘドラル分布はあくまで例示的なものであり、性能への感度が小さいとして形状を限定しなかった部位についての両分布についても例示的に示したものに過ぎない。 In each of the above-described embodiments, the diffuser blade has at least one of a sweep distribution and a dihedral distribution, thereby realizing a curved element three-dimensional diffuser. The secondary flow near the hub wall surface and shroud wall surface of the diffuser and the collision flow near the front edge of the diffuser blade are controlled by the method of tilting these diffuser blades. As a result, the performance of the diffuser can be improved. In addition, the sweep distribution and the dihedral distribution shown in each of the above-described examples are merely exemplary, and both distributions regarding a part that is not limited in shape because the sensitivity to performance is small are also illustrated. Not too much.
 さらに、各実施例に示された形状の特徴が翼全体にあることが望ましいが、ディフューザ翼の前半部分(上流側)の形状が性能に与える影響が相対的に大きいことから、特にディフューザの流れ方向前半部分においてだけ上述した形状を有していても本発明の効果は得られる。したがって、流れ方向の後半部分には、従来多用される直線要素2次元ディフューザ等を用いることも可能である。 Furthermore, it is desirable that the characteristics of the shape shown in each embodiment be in the entire blade. However, since the shape of the first half (upstream side) of the diffuser blade has a relatively large influence on the performance, the flow of the diffuser is particularly important. Even if it has the shape described above only in the first half of the direction, the effect of the present invention can be obtained. Therefore, it is possible to use a linear element two-dimensional diffuser or the like frequently used in the latter half of the flow direction.
 上記各実施例では、ハブ板にディフューザ翼を設けていたが、ハブ板に対向する面側、すなわちシュラウド面側の板にディフューザ翼を設けてよいことは言うまでもない。いずれにしろ組み立てのし易さ等でハブ側かシュラウド側のいずれかに取り付ける。また、多段機のすべてに羽根付きディフューザを設ける必要もなく、少なくとも1段の圧縮機段に羽根付きディフューザを設け、そのディフューザに本発明を適用すれば、本発明の効果は得られる。 In each of the above embodiments, the diffuser blades are provided on the hub plate. However, it goes without saying that the diffuser blades may be provided on the plate facing the hub plate, that is, on the shroud surface side. In any case, it is attached to either the hub side or the shroud side for ease of assembly. Further, it is not necessary to provide a vaned diffuser in all of the multistage machines, and if the vaned diffuser is provided in at least one compressor stage and the present invention is applied to the diffuser, the effects of the present invention can be obtained.
 101…ハブ、102…シュラウド、103…ディフューザ翼、104…翼型、105…ディフューザ板、208…前縁、209…後縁、300…遠心型ターボ機械(多段遠心圧縮機)、301…初段、302…第2段、303…回転軸、304…ジャーナルベアリング、305…スラストベアリング、306…圧縮機ケーシング、307…吸込ノズル、308…初段羽根車、308a…ハブ、308b…シュラウド、308c…羽根、309…羽根付きディフューザ、309a…ハブ、309c…翼、310…リターンガイドベーン、311…第2段羽根車、311a…ハブ、311b…シュラウド、311c…羽根、312…羽根付きディフューザ、313…回収手段(スクロールまたはコレクタ)、315…ラビリンスシール、316、317…シャフトシール、400…羽根付きディフューザ、401…直線要素、402…流入流れ、403…ハブ側翼断面、404…シュラウド側翼断面、405…直線要素、407…ハブ側翼断面、408…シュラウド側翼断面、409…曲線要素、410…ハブ板、411…ハブ側翼断面、412…シュラウド側翼断面、420a~420d…ディフューザ翼、421b~421d…ハブ面、422b~422d…シュラウド面、423b~423d…線素、501…ダイヘドラル分布、600…羽根付きディフューザ、601…ハブ側負圧面、602…翼力成分、603…ハブ面、610…ハブ板、620…翼、701…ダイヘドラル分布、702…ダイヘドラル分布、800…羽根付きディフューザ、801…ハブ側負圧面、802…シュラウド側負圧面、810…ハブ面、820…翼、901…ダイヘドラル分布、902…スイープ分布、1000…羽根付きディフューザ、1001…ハブ側負圧面、1002…スイープ、1003…切り欠き、1004…縦渦、1005…ディフューザ前縁、1006…渦度、1010…ハブ板、1020…翼、C…翼弦、FL…流入流れ、h…ディフューザ翼高さ、H…ディフューザ翼全高さ、R…羽根車の回転方向、Δδ…ダイヘドラル量、Δσ…スイープ量、Q…流量、Qdes…設計点流量、η…断熱効率、η2DIM…二次元翼ディフューザの効率、ψ…圧力係数、ψ2DIM…二次元翼ディフューザの圧力係数。 DESCRIPTION OF SYMBOLS 101 ... Hub, 102 ... Shroud, 103 ... Diffuser blade | wing, 104 ... Airfoil type, 105 ... Diffuser board, 208 ... Leading edge, 209 ... Trailing edge, 300 ... Centrifugal turbomachine (multistage centrifugal compressor), 301 ... First stage, 302 ... Second stage, 303 ... Rotating shaft, 304 ... Journal bearing, 305 ... Thrust bearing, 306 ... Compressor casing, 307 ... Suction nozzle, 308 ... First stage impeller, 308a ... Hub, 308b ... Shroud, 308c ... Blade, 309 ... Diffuser with blade, 309a ... Hub, 309c ... Wing, 310 ... Return guide vane, 311 ... Second stage impeller, 311a ... Hub, 311b ... Shroud, 311c ... Blade, 312 ... Diffuser with blade, 313 ... Recovery means (Scroll or collector), 315 ... labyrinth seal, 316 317: Shaft seal, 400 ... Diffuser with blades, 401 ... Linear element, 402 ... Inflow, 403 ... Hub side blade cross section, 404 ... Shroud side blade cross section, 405 ... Linear element, 407 ... Hub side blade cross section, 408 ... Shroud side blade cross section, 409 ... curve element, 410 ... hub plate, 411 ... hub side blade cross section, 412 ... shroud side blade cross section, 420a to 420d ... diffuser blade, 421b to 421d ... hub surface, 422b to 422d ... shroud surface, 423b to 423d ... wire element, 501: Dihedral distribution, 600: Diffuser with blade, 601 ... Hub-side negative pressure surface, 602 ... Blade force component, 603 ... Hub surface, 610 ... Hub plate, 620 ... Blade, 701 ... Dihedral distribution, 702 ... Dihedral distribution, 800 ... Diffuser with blades, 801 ... Hub side negative pressure surface, 80 ... Shroud side suction surface, 810 ... Hub surface, 820 ... Wings, 901 ... Dihedral distribution, 902 ... Sweep distribution, 1000 ... Diffener with blades, 1001 ... Hub side suction surface, 1002 ... Sweep, 1003 ... Notch, 1004 ... Vertical eddy, 1005 ... diffuser leading edge, 1006 ... vorticity, 1010 ... hub plate, 1020 ... wing, C ... chord, FL ... incoming flows, h ... diffuser blade height, H ... diffuser vanes full height, R N ... blade Rotating direction of the vehicle, Δδ: Dihedral amount, Δσ ... Sweep amount, Q ... Flow rate, Qdes ... Design point flow rate, η ... Adiabatic efficiency, η2DIM ... Efficiency of two-dimensional blade diffuser, ψ ... Pressure coefficient, ψ2DIM ... Two-dimensional The pressure coefficient of the wing diffuser.

Claims (7)

  1.  同一の回転軸に、ハブとシュラウドとこれらハブとシュラウド間に周方向に間隔をおいて配置した複数の羽根とからなる少なくとも1個以上の羽根車を取り付け、この少なくとも1個の羽根車の少なくともいずれかの下流に羽根付きディフューザを備えた遠心型ターボ機械において、
     前記羽根付きディフューザは、前記羽根車の下流側に形成される流路に複数の翼を周方向に間隔をおいて配置されたものであり、各々の前記翼は、基準となる翼を前記回転軸の軸方向である翼高さ方向に積み重ねた形状で形成されており、基準となる翼の前縁と後縁とを結ぶ翼弦方向に垂直な方向であって羽根車の回転方向とは逆の方向に移動させるのを正の移動とするダイヘドラル分布を、ハブ壁面側でハブ側端部から翼高さの中間部に向けて非一様としたことを特徴とする遠心型ターボ機械。
    At least one impeller comprising a hub, a shroud, and a plurality of blades spaced circumferentially between the hub and the shroud is attached to the same rotating shaft, and at least one of the at least one impeller In a centrifugal turbomachine with a vaned diffuser on either downstream,
    The vaned diffuser is configured such that a plurality of blades are arranged at intervals in a circumferential direction in a flow path formed on the downstream side of the impeller, and each of the blades rotates a reference blade. It is formed in a shape stacked in the blade height direction which is the axial direction of the shaft, and is the direction perpendicular to the chord direction connecting the leading edge and the trailing edge of the reference blade, and the rotation direction of the impeller A centrifugal turbomachine characterized in that a dihedral distribution in which the movement in the opposite direction is a positive movement is non-uniform from the hub side end toward the middle of the blade height on the hub wall surface side.
  2.  前記ディフューザ翼の各々のダイヘドラル分布が、ハブ側端部から翼高さの中間部にむけて増大させる分布としたことを特徴とする請求項1に記載の遠心型ターボ機械。 The centrifugal turbomachine according to claim 1, wherein the dihedral distribution of each of the diffuser blades is a distribution that increases from a hub side end portion toward an intermediate portion of the blade height.
  3.  前記ディフューザ翼の各々は、その前縁部であってハブ側端部に仮想的に形成される平面とディフューザ翼の負圧面とが鈍角をなすことを特徴とする請求項2に記載の遠心型ターボ機械。 3. The centrifugal mold according to claim 2, wherein each of the diffuser blades has an obtuse angle between a plane virtually formed at a front end portion of the diffuser blade and at a hub side end portion and a suction surface of the diffuser blade. Turbo machine.
  4.  前記ダイヘドラル分布が、シュラウド側端部から翼高さの中間部に向けておよびハブ側端部から翼高さの中間部に向けて増大する分布であることを特徴とする請求項3に記載の遠心型ターボ機械。 4. The distribution according to claim 3, wherein the dihedral distribution is a distribution that increases from a shroud side end toward an intermediate portion of the blade height and from a hub side end toward an intermediate portion of the blade height. Centrifugal turbomachine.
  5.  前記ディフューザ翼の各々においては、その前縁部であってシュラウド側端部に仮想的に形成される平面とディフューザ翼の負圧面がなす角度およびハブ板とディフューザ翼の負圧面とがなす角度が鈍角であることを特徴とする請求項4に記載の遠心型ターボ機械。 In each of the diffuser blades, the angle formed by the plane formed virtually at the leading edge of the shroud side end and the suction surface of the diffuser blade and the angle formed by the hub plate and the suction surface of the diffuser blade are 5. The centrifugal turbomachine according to claim 4, wherein the centrifugal turbomachine has an obtuse angle.
  6.  前記ディフューザ翼の各々のダイヘドラル分布が、ハブ側端部から翼高さの中間部にむけて減少する分布とし、前記基準となる翼の翼弦方向に平行な方向であって下流側に移動させるのを正の移動とするスイープ分布を、ハブ側端部から翼高さの中間部にむけて減少させる分布としたことを特徴とする請求項1に記載の遠心型ターボ機械。 The dihedral distribution of each of the diffuser blades is a distribution that decreases from the hub side end portion toward the middle portion of the blade height, and is moved in a direction parallel to the chord direction of the reference blade and moved downstream. 2. The centrifugal turbomachine according to claim 1, wherein a sweep distribution with a positive movement is reduced from the hub side end toward an intermediate portion of the blade height.
  7.  前記ディフューザ翼の各々は、少なくともその翼の流れ方向前半部に前記ダイヘドラル分布と前記スイープ分布の少なくともいずれかが適用されていることを特徴とする請求項1ないし6のいずれか1項に記載の遠心型ターボ機械。 7. The diffuser blade according to claim 1, wherein at least one of the dihedral distribution and the sweep distribution is applied to at least a first half portion in the flow direction of the blade. 8. Centrifugal turbomachine.
PCT/JP2011/077863 2010-12-10 2011-12-01 Centrifugal turbomachine WO2012077580A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180058898.2A CN103314218B (en) 2010-12-10 2011-12-01 Centrifugal turbomachine
US13/992,457 US20130309082A1 (en) 2010-12-10 2011-12-01 Centrifugal turbomachine
EP11847208.3A EP2650546A1 (en) 2010-12-10 2011-12-01 Centrifugal turbomachine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-275839 2010-12-10
JP2010275839A JP5608062B2 (en) 2010-12-10 2010-12-10 Centrifugal turbomachine

Publications (1)

Publication Number Publication Date
WO2012077580A1 true WO2012077580A1 (en) 2012-06-14

Family

ID=46207070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077863 WO2012077580A1 (en) 2010-12-10 2011-12-01 Centrifugal turbomachine

Country Status (5)

Country Link
US (1) US20130309082A1 (en)
EP (1) EP2650546A1 (en)
JP (1) JP5608062B2 (en)
CN (1) CN103314218B (en)
WO (1) WO2012077580A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10233758B2 (en) 2013-10-08 2019-03-19 United Technologies Corporation Detuning trailing edge compound lean contour

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10527059B2 (en) 2013-10-21 2020-01-07 Williams International Co., L.L.C. Turbomachine diffuser
EP3412892B1 (en) 2016-03-31 2020-03-18 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Rotary machine blade, supercharger, and method for forming flow field of same
EP3564537B1 (en) * 2017-03-28 2021-03-10 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Centrifugal compressor and turbocharger
FR3065023B1 (en) * 2017-04-07 2019-04-12 Safran Aircraft Engines REINFORCED AXIAL DIFFUSER
US10760587B2 (en) * 2017-06-06 2020-09-01 Elliott Company Extended sculpted twisted return channel vane arrangement
EP3460255A1 (en) 2017-09-20 2019-03-27 Siemens Aktiengesellschaft Throughflow assembly
EP3460257A1 (en) 2017-09-20 2019-03-27 Siemens Aktiengesellschaft Throughflow assembly
EP3460256A1 (en) * 2017-09-20 2019-03-27 Siemens Aktiengesellschaft Throughflow assembly
WO2019073551A1 (en) 2017-10-11 2019-04-18 三菱重工エンジン&ターボチャージャ株式会社 Impeller for centrifugal rotating machine, and centrifugal rotating machine
JP7005393B2 (en) * 2018-03-09 2022-01-21 三菱重工業株式会社 Diffuser vane and centrifugal compressor
US11098730B2 (en) * 2019-04-12 2021-08-24 Rolls-Royce Corporation Deswirler assembly for a centrifugal compressor
EP3760871A1 (en) 2019-07-04 2021-01-06 Siemens Aktiengesellschaft Diffuser for a turbomachine
EP3760876A1 (en) 2019-07-04 2021-01-06 Siemens Aktiengesellschaft Diffuser for a turbomachine
EP3805572A1 (en) 2019-10-07 2021-04-14 Siemens Aktiengesellschaft Diffuser, radial turbocompressor
KR20210071373A (en) * 2019-12-06 2021-06-16 엘지전자 주식회사 apparatus for both humidification and air cleaning

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004092482A (en) 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd Centrifugal compressor, diffuser blade and its manufacturing method
US20070053779A1 (en) * 2005-09-05 2007-03-08 Volker Guemmer Blade of a turbomachine with block-wise defined profile skeleton line
US20070140837A1 (en) * 2005-12-19 2007-06-21 Volker Guemmer Turbomachine with variable stator
JP2008138679A (en) * 2006-11-30 2008-06-19 General Electric Co <Ge> Advanced booster system
JP2009504974A (en) 2005-08-09 2009-02-05 プラクスエア・テクノロジー・インコーポレイテッド Lean type centrifugal compressor airfoil diffuser

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3482668B2 (en) * 1993-10-18 2003-12-22 株式会社日立製作所 Centrifugal fluid machine
EP1873402A1 (en) * 2006-06-26 2008-01-02 Siemens Aktiengesellschaft Compressor in particular for turbocharger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004092482A (en) 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd Centrifugal compressor, diffuser blade and its manufacturing method
JP2009504974A (en) 2005-08-09 2009-02-05 プラクスエア・テクノロジー・インコーポレイテッド Lean type centrifugal compressor airfoil diffuser
US20070053779A1 (en) * 2005-09-05 2007-03-08 Volker Guemmer Blade of a turbomachine with block-wise defined profile skeleton line
US20070140837A1 (en) * 2005-12-19 2007-06-21 Volker Guemmer Turbomachine with variable stator
JP2008138679A (en) * 2006-11-30 2008-06-19 General Electric Co <Ge> Advanced booster system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10233758B2 (en) 2013-10-08 2019-03-19 United Technologies Corporation Detuning trailing edge compound lean contour

Also Published As

Publication number Publication date
CN103314218A (en) 2013-09-18
EP2650546A1 (en) 2013-10-16
JP5608062B2 (en) 2014-10-15
JP2012122443A (en) 2012-06-28
US20130309082A1 (en) 2013-11-21
CN103314218B (en) 2016-03-09

Similar Documents

Publication Publication Date Title
JP5608062B2 (en) Centrifugal turbomachine
JP5316365B2 (en) Turbo fluid machine
US8308420B2 (en) Centrifugal compressor, impeller and operating method of the same
JP3356510B2 (en) Centrifugal or mixed flow pump vaned diffuser
EP2456984B1 (en) Centrifugal compressor diffuser
JP5233436B2 (en) Centrifugal compressor with vaneless diffuser and vaneless diffuser
JP6367917B2 (en) Radial or mixed flow compressor diffuser with vanes
US11408439B2 (en) Centrifugal compressor and turbocharger
CN109790853B (en) Centrifugal compressor and turbocharger
JP5351941B2 (en) Centrifugal compressor, its impeller, its operating method, and impeller design method
JP6034162B2 (en) Centrifugal fluid machine
US8425186B2 (en) Centrifugal compressor
JP2013124624A (en) Centrifugal turbomachine
WO2008075467A1 (en) Cascade of axial compressor
JP6854687B2 (en) Multi-stage fluid machine
JP6651404B2 (en) Turbo machinery
JP7374078B2 (en) Diffuser for centrifugal compressor
JP6785623B2 (en) Fluid machine
CN106662119B (en) Improved scroll for a turbomachine, turbomachine comprising said scroll and method of operation
CN112177949A (en) Multistage centrifugal compressor
WO2022064751A1 (en) Centrifugal compressor
WO2022180902A1 (en) Multistage centrifugal compressor
KR102376903B1 (en) Blade, compressor and gas turbine having the same
WO2017170285A1 (en) Centrifugal impeller, and centrifugal fluid machine provided with same
WO2021215471A1 (en) Impeller and centrifugal compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180058898.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011847208

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011847208

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13992457

Country of ref document: US