WO1999033881A1 - Geträgertes katalysatorsystem zur polymerisation von olefinen - Google Patents

Geträgertes katalysatorsystem zur polymerisation von olefinen Download PDF

Info

Publication number
WO1999033881A1
WO1999033881A1 PCT/EP1998/008050 EP9808050W WO9933881A1 WO 1999033881 A1 WO1999033881 A1 WO 1999033881A1 EP 9808050 W EP9808050 W EP 9808050W WO 9933881 A1 WO9933881 A1 WO 9933881A1
Authority
WO
WIPO (PCT)
Prior art keywords
indenyl
phenyl
methyl
zirconium dichloride
butyl
Prior art date
Application number
PCT/EP1998/008050
Other languages
English (en)
French (fr)
Inventor
Cornelia Fritze
Hans Bohnen
Original Assignee
Targor Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Targor Gmbh filed Critical Targor Gmbh
Priority to JP2000526552A priority Critical patent/JP2001527135A/ja
Priority to DE59809824T priority patent/DE59809824D1/de
Priority to US09/581,999 priority patent/US7202190B1/en
Priority to BR9814410-3A priority patent/BR9814410A/pt
Priority to EP98965805A priority patent/EP1042371B1/de
Publication of WO1999033881A1 publication Critical patent/WO1999033881A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Definitions

  • the present invention relates to a supported catalyst system containing at least one metal, a cocatalyst, a support material, a Lewis base and an organometallic compound.
  • the catalyst system can advantageously be used for the polymerization of olefins.
  • aluminoxanes such as methylaluminoxane (MAO) as a cocatalyst is dispensed with, yet high catalyst activity and good polymer morphology are achieved.
  • MAO as an effective co-catalyst has the disadvantage of having to be used in a high excess.
  • the representation of cationic alkyl complexes opens the way to MAO-free catalysts with comparable activity, whereby the co-catalyst can be used almost stoichiometrically.
  • the synthesis of "cation-like" metallocene polymerization catalysts is described in J. Am. Chem. Soc. 1991, 1 13, 3623.
  • a process for the preparation of salts of the general form LMX + XA ' according to the principle described above is claimed in EP 520 732.
  • EP 558158 describes zwitterionic catalyst systems which consist of
  • Metaliocendialkyl compounds and salts of the form [R 3 NH] + [B (C 6 H 5 ) 4 ] " are shown.
  • the reaction of such a salt with, for example, Cp 2 ZrMe 2 provides an intermediate zirconocenemethyl cation by protolysis with elimination of methane. This reacts via CH activation to form the zwitterion Cp 2 Zr + - (mC 6 H 4 ) -BPh 3 -
  • the Zr atom is covalently bound to a carbon atom of the phenyl ring and is stabilized via agostic hydrogen bonds.
  • the support of cationic metallocene catalysts based on borate anions is described in WO 9109882.
  • the catalyst system is formed by applying a dialkyl metallocene compound and a Bronsted acid quaternary ammonium compound with a non-coordinating anion, such as tetrakispentafluorophenyl borate, on an inorganic support.
  • the carrier material is previously reacted with a trialkyl aluminum compound.
  • the disadvantage of this carrier process is that only a small part of the metallocene used is fixed to the carrier material by physisorption. When the catalyst system is metered into the reactor, the metallocene can easily be detached from the support surface. This leads to a partially homogeneous polymerization, which results in an unsatisfactory morphology of the polymer.
  • WO 96/04319 describes a catalyst system in which the cocatalyst is covalently bound to the support material.
  • the catalyst system has a low polymerization activity, and the high sensitivity of the supported cationic metallocene catalysts can lead to problems when it is introduced into the polymerization system.
  • the task was to provide a supported catalyst system provide, which avoids the disadvantages of the prior art and still guarantees high polymerization activities and a good polymer morphology.
  • the present invention thus relates to a supported catalyst system and a method for its production.
  • the catalyst system according to the invention contains a) a support b) a Lewis base of the formula I c) an organometallic compound of the formula II as cocatalyst d) at least one metallocene, e) an organometallic compound of the formula III, in which the organometallic compound of the formula II is covalently bound to the support is.
  • the catalyst system according to the invention can be obtained by a) reacting a Lewis base of the formula I and an organometallic compound of the formula II with a support and b) subsequently reacting the one obtained in step a)
  • Reaction product modified carrier material
  • a solution or suspension containing a metallocene compound and at least one organometallic compound of the formula III.
  • the activation of the metallocene by reaction with the reaction product obtained in step a) can either be carried out before it is introduced into the reactor or can only be carried out in the reactor.
  • a method for producing an olefin polymer is also described.
  • the addition of an additive, e.g. Antistatic agent, which is added to the polymerization system, can also be advantageous.
  • the carrier is a porous inorganic or organic solid.
  • the carrier preferably contains at least one inorganic oxide, such as silicon oxide, Aluminum oxide, aluminosilicates, zeolites, MgO, Zr0 2) Ti0 2 , B 2 0 3 , CaO, ZnO, Th0 2 , Na 2 C0 3l K 2 C0 3 , CaC0 3 , MgC0 3 , Na 2 S0 4) Al 2 (SO 4 ) 3 , BaS0 4 , KNO 3 , Mg (NO 3 ) 2 , Al (NO 3 ) 3 Na 2 0, K 2 0, or Li 2 0, in particular silicon oxide and / or aluminum oxide.
  • inorganic oxide such as silicon oxide, Aluminum oxide, aluminosilicates, zeolites, MgO, Zr0 2 2 , Ti0 2 , B 2 0 3 , CaO, ZnO, Th0 2 , Na 2 C0 3l K 2 C0 3 , CaC0 3
  • the carrier can also contain at least one polymer, for example a homo- or copolymer, a crosslinked polymer or polymer blends.
  • polymers are polyethylene, polypropylene, polybutene, polystyrene, polystyrene crosslinked with divinylbenzene, polyvinyl chloride, acrylic-butadiene-styrene copolymer, polyamide, polymethacrylate, polycarbonate, polyester, polyacetal or polyvinyl alcohol.
  • the support has a specific surface area ranging from 10 to 1000 m 2 / g, preferably from 150 to 500 m 2 / g
  • the average particle '.DELTA.E of the carrier is 1 to 500: m, preferably 5 to 350: m.
  • the carrier is preferably porous with a pore volume of the carrier of 0.5 to 4.0 ml / g, preferably 1.0 to 3.5 ml / g.
  • a porous support indicates a certain amount
  • Cavities pore volume
  • the shape of the pores is usually irregular, often spherical.
  • the pores can be interconnected by small pore openings.
  • the pore diameter is preferably about 2 to 50 nm.
  • the particle shape of the porous support can be irregular or spherical.
  • the particle '.DELTA.E of the carrier can, for. B. by cryogenic grinding and / or
  • the Lewis base corresponds to the general formula I, in which
  • R 3 , R 4 and R 5 are the same or different and are a hydrogen atom, a halogen atom, a CC 20 alkyl, C 6 -C 40 aryl, C 7 -C 40 alkylaryl or C 7 -C 40 - Arylalkyl group can be.
  • either two radicals or all three radicals R 3 , R 4 and R 5 can be connected to one another via C 2 -C 20 carbon units.
  • M 2 is an element of the 5th main group of the Periodic Table of the Elements, especially nitrogen or phosphorus.
  • organometallic compounds of the formula II are strong, neutral Lewis acids
  • M 3 an element of the IM.
  • Main group of the periodic table of the elements is, preferably boron and aluminum and
  • R 6 , R 7 and R 8 can be the same or different and a hydrogen atom, a halogen atom or a C r C 40 halogen-containing group, such as C 1 -C 40 haloalkyl, C 6 -C 40 haloaryl -, C 7 -C 40 -Halogen-alkyl-aryl- or C 7 -C 40 -halogen-aryl-alkyl-
  • Trispentafluorophenylborane and trispentafluorophenylalane Trispentafluorophenylborane and trispentafluorophenylalane.
  • organometallic compounds of the formula III are neutral
  • M 4 is an element of I., II. And III. Main group of the Periodic Table of the Elements is.
  • the elements magnesium and aluminum are preferred.
  • Aluminum is particularly preferred.
  • the R 9 radicals may be the same or different and are a hydrogen atom, a halogen atom, a C 1 -C 40 hydrocarbon group such as a 0, -0 20 -alkyl, C 6 -C 40 -aryl, C 7 - C 40 aryl alkyl or C 7 -C 40 alkyl aryl group.
  • j is an integer from 1 to 3 and k is an integer from 1 to 4.
  • Methyl aluminum sesquichloride ethyl aluminum sesquichloride Dimethyl aluminum hydride diethyl aluminum hydride diisopropyl aluminum hydride dimethyl aluminum (trimethylsiloxide) dimethyl aluminum (triethylsiloxide)
  • Metallocene compounds can e.g. bridged or unbridged
  • Biscyclopentadienyl complexes e.g. in EP 129 36 ⁇ , EP 561 479, EP 545 304 and EP 576 970, monocyclopentadienyl complexes such as bridged amidocyclopentadienyl complexes which e.g. are described in EP 416 815, polynuclear cyclopentadienyl complexes as described in EP 632 063, - ligand-substituted tetrahydropentalenes as described in EP 659 758 or -
  • Organometallic compounds can also be used in which the complexing ligand does not contain a cyclopentadienyl ligand. Examples of this are diamine complexes of III. and IV. subgroup of the periodic table of the
  • M 1 is a metal of III., IV., V. or VI. Subgroup of the periodic table of the
  • R ' are the same or different and are a hydrogen atom or SiR 3 , where R x is the same or different a hydrogen atom or a C r C 40 - carbon-containing group such as CC 20 alkyl, CC 10 - Fluoroalkyl, C ⁇ o-alkoxy,
  • C 6 -C 20 aryl, C 6 -C 10 fluoroaryl, C 6 -C 10 aryloxy, C 2 -C 10 alkenyl, C 7 -C 40 arylalkyl, C 7 -C 40 alkylaryl or C 8 -C 40 arylalkenyl, or R are a C r C 30 - carbon-containing group such as C 1 -C 25 alkyl, e.g. B.
  • radicals R ' may be linked to one another in such a way that the radicals R' and the atoms of the cyclopentadienyl ring which connect them form a C 4 -C 24 ring system, which in turn
  • Halogen atom or OR y , SR y , OSiR 3 y , SiR 3 y , PR 2 y or NR 2 y , wherein R y is a halogen atom, a C.-C 10 alkyl group, a halogenated C ⁇ C ⁇ - alkyl group, a C 6 -C 20 aryl group or a halogenated C 6 -C 20 aryl group, or L 1 are a toluenesulfonyl, trifluoroacetyl, trifluoroacetoxyl, trifluoromethanesulfonyl, nonafluorobutanesulfonyl or 2,2,2-trifluoroethanesulfonyl group, o is an integer from 1 to 4, preferably 2, Z is a bridging structural element between the two
  • Z is preferably CH 2 , CH 2 CH 2 , CH (CH 3 ) CH 2 , CH (C 4 H 9 ) C (CH 3 ) 2 , C (CH 3 ) 2) (CH 3 ) 2 Si, (CH 3 ) 2 Ge, (CH 3 ) 2 Sn, (C 6 H 5 ) 2 Si, (C 6 H 5 ) (CH 3 ) Si, (C 6 H 5 ) 2 Ge, (C 6 H 5 ) 2 Sn , (CH 2 ) 4 Si, CH 2 Si (CH 3 ) 2) oC 6 H 4 or 2,2 '- (C 6 H 4 ) 2 .
  • Z can also form a mono- or polycyclic ring system with one or more radicals R 'and / or R ".
  • Chiral bridged metallocene compounds of the formula IV are preferred, in particular those in which v is 1 and one or both cyclopentadienyl rings are substituted such that they represent an indenyl ring.
  • the indenyl ring is preferably substituted, in particular in the 2-, 4-, 2,4,5-, 2,4,6-, 2,4,7 or 2,4,5,6-position, with C r C 20 - carbon-containing groups, such as C 1 -C 10 alkyl or C 6 -C 20 aryl, where two or more substituents of the indenyl ring can together form a ring system.
  • metallocene compounds are: dimethylsilanediylb s (indenyl) zirconium dichloride
  • Dimethylsilanediylb s (4-naphthyl-indenyl) zirconium dichloride Dimethylsilanediylb s (2-methyl-benzo-indenyl) zirconium dichloride
  • Dimethylsilanediylb s (2-methyl-indenyl) zirconium dichloride Dimethylsilanediyldichloride (1-n-methyldiryldis) Dimethylsilanediylb s (2-methyl-4- (2-naphthyl) -indenyl) zirconium dichloride
  • Dimethylsilanediylb s (2-methyl-4-phenyl-indenyl) zirconium dichloride
  • Dimethylsilanediylb s (2-methyl-4-t-butyl-indenyl) zirconium dichloride
  • Dimethylsilanediylb s (2-methyl-4-isopropyl-indenyl) (zirconium di-dichloridyl) -4-ethyl-indenyI) zirconium dichloride
  • Dimethylsilanediylb s (2,4-dimethyl-indenyl) zirconium dichloride Dimethylsilanediylb s (2-ethyl-indenyl) zirconium dichloride
  • Dimethylsilanediylb s (2-methyl-4,6 diisopropyl-indenyl) zirconium dichloride Dimethylsilanediylb s (2-methyl-4,5 diisopropyl-indenyl) zirconium dichloride
  • Dimethylsilanediylb s (2-methyl-5-isobutyl-indenyl) zirconium dichloride Dimethylsilanediylbis (2-methyl-5-t-butyl-indenyl) zirconium dichloride methyl (phenyl) silanediylbis (2-methyl-4-phenyl-indenyl) zirconium dichloride methyl (phenyl) silanediylbis (2-methyl-4,6-diisopropyl-indenyl) zirconium dichloride Methyl (phenyl) silanediylbis (2-methyl-4-isopropyl-indenyl) zirconium dichloride Methyl (phenyl) silanediylbis (2-methyl-4,5-benzo-indenyl) zirconium dichloride
  • Methyl (phenyl) silanediylbis (2-methyl-5-isobutyl-indenyl) zirconium dichloride 1, 2-ethanediylbis (2-methyl-4-phenyl-indenyl) zirconium dichloride 1, 4-butanediylbis (2-methyl-4-phenyl-indenyl) zirconium dichloride 1,2-ethanediylbis (2-methyl-4,6-diisopropyl-indenyl) zirconium dichloride 1,4-butanediylbis (2-methyl-4-isopropyl-indenyl) zirconium dichloride
  • Dimethylsilanedibis (2-methyl-4,5-benzo-indenyl) zirconium dimethyl
  • Dimethylsilanediylbis (2-methyl-4,6 diisopropyl-indenyl) zirconiumdimethyl
  • Dimethylsilanediylbis (2-methyl-4,5-diisopropyl-indenyl) zirconiumdimethyl
  • Dimethylsilanediylbis (2 -trimethyl-indenyl) zirconiumdimethyldimethylsilanediylbis (2,5,6-trimethyl-indenyl) zirconiumdimethyl
  • Dimethylsilanediylbis (2-methyl-4- (4-trifluoromethyl-phenyl-indenyl) zirconium dichloride
  • Dimethylsilanediylbis (2-methyl-4- (4-methoxy-phenyl-indenyl) zirconium dichloride
  • Dimethylsilanediylbis (2-ethyl-4- (4-tert-butyl -phenyl-indenyl) zirconium dichloride dimethylsilanediylbis (2-ethyl-4- (4-methyl-phenyl-indenyl) zirconium dichloride dimethylsilanediylbis (2-ethyl-4- (4-ethylphenyl-indenyl) zirconium dichloride
  • Dimethylsilanediylbis (2-methyl-4- (4-methoxy-phenyl-indenyl) zirconium dimethyl Dimethylsilanediylbis (2-ethyl-4- (4-tert-butyl-phenyl-indenyl) zirconiumdimethyl Dimethylsilanediylbis (2-ethyl-4- (4-methyl -phenyl-indenyl) zirconiumdimethyldimethylsilanediylbis (2-ethyl-4- (4-ethyl-phenyl-indenyl) zirconiumdimethyldimethylsilanediylbis (2-ethyl-4- (4-trifluoromethyl-phenyl-indenyl) zirconiumdimethyl
  • Dimethylsilanediylbis (2-n-propyl-4- (4 '-n-butyl-phenyl) indenyl) zirconium dichloride Dimethyls landiylb s (2-n-propyl-4- (4 ' -hexyl-phenyl) -indenyl) zirconium dichloride Dimethyls landiylb s (2-n-propyl-4- (4 ' -cyclohexyl-phenyl) -indenyl) zirconium dichloride Dimethyls landiylb s (2-n-propyl-4- (4 ' -sec-butyl-phenyl) -indenyl) zirconium dichloride Dimethyls landiylb s (2-n-propyl-4- (4 ' -tert.-butyl-phenyl) -indenyl) zirconium dichloride Dimethyls landiylb s (2-n-but
  • Ethylidenebis (2-hexyl-4- (4 '-tert-butyl-phenyl) indenyl) zirconium dibenzyl ethylidenebis- (2-ethyl-4- (4' -tert-butyl-phenyl) -indenyl) hafniumdibenzyl ethylidenebis (2- methyl-4- (4 '-tert-butyl-phenyl) indenyl) titanium dibenzyl ethylidenebis- (2-methyl-4- (4' -tert-butyl-phenyl) indenyl) zirconium dichloride ethylidenebis (2-ethyl-4- (4 '-tert-butyl-phenyl) -indenyl) hafnium
  • corresponding zirconium dimethyl compounds and the corresponding zirconium- 4- butadiene compounds are also preferred, as well as the corresponding compounds with 1, 2- (1-methyl-ethanediyl) -, 1, 2- (1, 1-dimethyl-ethanediyl ) - and 1, 2- (1, 2-dimethyl-ethanediyl) fractions.
  • the support material is suspended in an organic solvent.
  • Suitable solvents are aromatic or aliphatic solvents, such as hexane, heptane, dodecane, toluene or xylene, or halogenated hydrocarbons, such as methylene chloride or halogenated aromatic hydrocarbons, such as o-
  • the carrier can previously with an organometallic compound Formula III are pretreated. Then one or more Lewis bases of the formula I are added to this suspension, the reaction time being between 1 minute and 4 ⁇ hours, a reaction time of 10 minutes and 2 hours being preferred.
  • the reaction solution can be isolated and then resuspended, or it can also be reacted directly with an organometallic compound of the formula II.
  • the reaction time is between 1 minute and 4 ⁇ hours, a reaction time of 10 minutes and 2 hours is preferred.
  • one or more Lewis bases of the formula I can be reacted in any stoichiometric ratio with one or more organometallic compounds of the formula II.
  • the amount of 1 to 4 equivalents of a Lewis base of the formula I with one equivalent of an organometallic compound of the formula II is preferred.
  • the amount of one equivalent of a Lewis base of the formula I with one equivalent of an organometallic compound of the is particularly preferred Formula II.
  • the reaction product of this reaction is a metallocenium-forming compound which is covalently fixed to the support material. It is referred to below as a modified carrier material.
  • the reaction solution is then filtered and washed with one of the solvents mentioned above.
  • the modified carrier material is then dried in vacuo.
  • reaction of the mixture of one or more metallocene compounds e.g. of formula IV and one or more organometallic compounds of formula IM with the modified carrier material is preferably carried out in such a way that one or more metallocene compounds e.g. of formula IV is dissolved or suspended in a solvent described above and then one or more
  • Organometallic compounds of the formula IM which is preferably also dissolved or suspended, are implemented.
  • the stoichiometric ratio of metallocene compound, for example of the formula IV and an organometallic compound of the formula III, is 100 1 to 10 " : 1.
  • the ratio is preferably 1: 1 to 10 " 2 : 1.
  • the modified support material can be reacted with a mixture of a metallocene compound of the formula IV and an organometallic compound of the formula I either directly in the polymerization reactor or, before being added to the polymerization reactor, in a reaction vessel.
  • the addition of an organometallic compound of the formula IM has a positive influence on the activity of the catalyst system.
  • Polymerization catalysts consisting of a modified support material as described above and a metallocene compound, for example of the formula IV, show significantly lower activities compared to the catalyst system according to the invention, which is a mixture of the modified support material described above, a metallocene compound, for example the
  • Formula IV and an organometallic compound of formula III contains.
  • the amount of modified support for a metallocene compound, for example of the formula IV is preferably 10 g: 1: mol to 10 "3 : 1: mol.
  • the stoichiometric ratio of metallocene compound, for example of the formula IV, to the organometallic compound of the formula II fixed on the support is 100 : 1 to 10 "4 : 1, preferably 1: 1 to 10 " 2 : 1.
  • the supported catalyst system can be used directly for the polymerization. However, it can also be used resuspended for the polymerization after removal of the solvent.
  • the advantage of this activation method is that it offers the option of letting the polymerization-active catalyst system arise only in the reactor. This prevents partial decomposition when the air-sensitive catalyst is introduced.
  • the polymerization can be a homo- or a copolymerization.
  • olefins examples include 1-olefins such as ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, styrene, cyclic olefins such as norbornene, vinylnorbornene, tetracyclododecene, ethylidene norbomene, dienes such as 1, 3-butadiene or 1, 4-hexadiene, biscyclopentadiene or methyl methacrylate.
  • 1-olefins such as ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, styrene, cyclic olefins such as norbornene, vinylnorbornene, tetracyclododecene, ethylidene norbomene, dienes such as 1, 3-butadiene or 1, 4-hexadiene
  • propylene or ethylene is homopolymerized, ethylene is copolymerized with one or more C 3 -C 20 -1-olefins, in particular propylene, and / or one or more C 4 -C 20 -dienes, in particular 1, 3-butadiene, or norbornene and Ethylene copolymerized.
  • the polymerization is preferably carried out at a temperature of from -60 to 300 / C, particularly preferably from 30 to 250 / C.
  • the pressure is 0.5 to 2500 bar, preferably 2 to 1500 bar.
  • the polymerization can be carried out continuously or batchwise, in one or more stages, in solution, in suspension, in the gas phase or in a supercritical medium.
  • the supported catalyst system can either be formed directly in the polymerization system or it can be resuspended as a powder or solvent, and metered into the polymerization system as a suspension in an inert suspension medium.
  • catalyst systems are preferably used which contain two or more different transition metal compounds, e.g. B. contain metallocenes.
  • an aluminum alkyl for example trimethylaluminium, triethylamine or Triisobutyl aluminum
  • This cleaning can take place both in the polymerization system itself or the olefin is brought into contact with the Al compound before the addition into the polymerization system and then separated again.
  • the total pressure in the polymerization system is 0.5 to 2500 bar, preferably 2 to 1500 bar.
  • the compound according to the invention is used in a concentration, based on the transition metal, of preferably 10 "3 to 10 " 8 , preferably 10 "4 to 10 7 mol
  • Suitable solvents for the preparation of both the supported chemical compound according to the invention and the catalyst system according to the invention are aliphatic or aromatic solvents such as hexane or toluene, ethereal solvents such as tetrahydrofuran or diethyl ether or halogenated hydrocarbons such as methylene chloride or halogenated aromatic hydrocarbons such as o- Dichlorobenzene.
  • Transition metal compound (such as a metal) can also be added to the reactor, another alkyl aluminum compound such as trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, trioctyl aluminum or isoprenyl aluminum to inert the polymerization system (e.g. to remove existing catalyst poisons in the olefin). This is added to the polymerization system in a concentration of 100 to 0.01 mmol AI per kg reactor content.
  • Triisobutylaluminum and triethylaluminum are preferably used in a concentration of 200 to 0.001 mmol Al per kg reactor content, so that in the synthesis of a supported catalyst system the molar Al / M
  • Ratio can be chosen small.
  • an additive such as an antistatic can be used in the process according to the invention, for example to improve the grain morphology of the olefin polymer.
  • all antistatic agents that are suitable for the polymerization can be used. Examples of these are salt mixtures of calcium salts of medialanic acid and chromium salts of N-stearylanthranilic acid, which are described in DE-A-3543360.
  • suitable antistatic agents are, for example, C 12 to C 22 fatty acid soaps of alkali or alkaline earth metals, salts of sulfonic acid esters, esters of polyethylene glycols with fatty acids, polyoxyethylene alkyl ethers, etc.
  • An overview of antistatic agents is given in EP-A 107127.
  • a mixture of a metal salt of medialanic acid, a metal salt of anthranilic acid and a polyamine can be used as an antistatic, as described in EP-A 636636.
  • the antistatic is preferably used as a solution, in the preferred case of
  • Stadis 7 450 are preferably 1 to 50 wt .-% of this solution, preferably 5 to 25 wt .-%, based on the mass of the supported catalyst used (support with covalently fixed metallocenium-forming compound and one or more metallocene compounds, for example of the formula IV).
  • the required amounts of antistatic can vary widely
  • the actual polymerization is preferably carried out in liquid monomer (bulk) or in the gas phase.
  • the antistatic can be added at any time for the polymerization.
  • a preferred practice is that the supported Catalyst system in an organic solvent, preferably alkanes such as heptane or isododecane, is resuspended. It is then added to the polymerization autoclave with stirring. Then the antistatic is added. The polymerization is carried out at temperatures in the range from 0 to 100 / C.
  • a further preferred procedure is that the antistatic agent is metered into the polymerization autoclave before the supported catalyst system is added. The resuspended supported catalyst system is then metered in with stirring at temperatures in the range from 0 to 100 ° C.
  • the polymerization time can range from 00.1 to 24 hours. A polymerization time in the range from 0.1 to 5 hours is preferred.
  • reaction mixture stirred for 1 h.
  • the reaction mixture was then mixed with 1.02 g of tris (pentafluorophenyl) borane and stirred for one hour.
  • the reaction mixture was filtered and washed three times with toluene. Residual solvents were removed from the residue in an oil pump vacuum.
  • Example 2 The catalyst from Example 2 was then resuspended in heptane and this suspension was added to the reactor. The reaction mixture was heated to the polymerization temperature of 65 / C (4 / C / min) and that
  • the result is 1.1 kg of polypropylene powder.
  • the reactor showed no deposits
  • the catalyst activity was 132 kg PP / g metallocene x h.
  • a dry 16 dm 3 reactor was first flushed with nitrogen and then with propylene and filled with 10 dm 3 of liquid propylene.
  • Example 4 The catalyst from Example 4 was then resuspended in heptane and this suspension was added to the reactor. The reaction mixture was on the
  • the result is 0.33 kg of polypropylene powder.
  • the reactor showed no deposits on the inner wall or stirrer.
  • the catalyst activity was 40 kg PP / g metallocene x h.
  • a dry 16 dm 3 'reactor was first flushed with nitrogen and then with propylene and filled with 10 dm 3 liquid propylene.
  • the result is 1.0 kg of polypropylene powder.
  • the reactor showed no deposits on the inner wall or stirrer.
  • the catalyst activity was 118 kg PP / g metallocene x h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

Die vorliegende Erfindung betrifft ein geträgertes Katalysatorsystem, enthaltend a) einen Träger, b) eine Lewis-Base der Formel (I), c) eine Organometallverbindung der Formel (II) als Cokatalysator, d) mindestens ein Metallocen, e) Organometallverbindung der Formel (III), worin die Organometallverbindung der Formel (II) kovalent an den Träger gebunden ist. Das geträgerte Katalysatorsystem kann zur Herstellung von Olefinpolymeren verwendet werden.

Description

Beschreibung
GETRÄGERTES KATALYSATORSYSTEM ZUR POLYMERISATION VON OLEFINEN
Die vorliegende Erfindung betrifft ein geträgertes Katalysatorsystem, enthaltend mindestens ein Metallen, einen Co-Katalysator, ein Trägermaterial, eine Lewis-Base und eine Organometallverbindung. Das Katalysatorsystem kann vorteilhaft zur Polymerisation von Olefinen eingesetzt werden. Hierbei wird auf die Verwendung von Aluminoxanen wie Methylaluminoxan (MAO) als Cokatalysator verzichtet und dennoch eine hohe Katalysatoraktivität und gute Polymermorphologie erzielt.
Die Rolle von kationischen Komplexen bei der Ziegler-Natta-Polymerisation mit Metallocenen ist allgemein anerkannt (H.H. Brintzinger, D. Fischer, R. Mülhaupt, R. Rieger, R. Waymouth, Angew. Chem. 1995, 107, 1255-1283).
MAO als wirksamer Co-Katalysator hat den Nachteil in hohem gberschuδ eingesetzt werden zu müssen. Die Darstellung katonischer Alkylkomplexe eröffnet den Weg MAO freier Katalysatoren mit vergleichbarer Aktivität, wobei der Co-Katalysator nahezu stöchiometrisch eingesetzt werden kann. Die Synthese von "Kationen-ähnlichen" Metallocen-Polymerisationskatalysatoren, wird im J. Am. Chem. Soc. 1991 , 1 13, 3623 beschrieben. Ein Verfahren zur Herstellung von Salzen der allgemeinen Form LMX+XA' nach dem oben beschriebenen Prinzip wird in EP 520 732 beansprucht.
EP 558158 beschreibt zwitterionische Katalysatorsysteme, die aus
Metaliocendialkyl-Verbindungen und Salzen der Form [R3NH]+[B(C6H5)4]" dargestellt werden. Die Umsetzung eines solchen Salzes mit z.B. Cp2ZrMe2 liefert durch Protolyse unter Methanabspaltung intermediär ein Zirkonocenmethyl-Kation. Dieses reagiert über C-H-Aktivierung zum Zwitterion Cp2Zr+-(m-C6H4)-BPh3- ab. Das Zr- Atom ist dabei kovalent an ein Kohlenstoffatom des Phenylrings gebunden und wird über agostische Wasserstoffbindungen stabilisiert. US 5, 348, 299 beschreibt zwitterionische Katalysatorsysteme, die aus Metaliocendialkyl-Verbindungen und Salzen der Form [R3NH]+[B(C6H5)4] durch Protolyse dargestellt werden. Die C-H-Aktivierung als Folgereaktion unterbleibt dabei. EP 426 637 beschreibt ein Verfahren in dem das Lewis-saure CPh3+ Kation zur Abstraktion der Methylgruppe vom Metallzentrum eingesetzt wird. Als schwach koordinierendes Anion fungiert ebenfalls B(C6F5)4-.
Für eine industrielle Nutzung von Metallocen-Katalysatoren ist eine Trägerung vorteilhaft, um die Morphologie des resultierenden Polymers zu beeinflussen. Die Trägerung von kationischen Metallocen-Katalysatoren auf Basis von Borat-Anionen ist in WO 9109882 beschrieben. Dabei wird das Katalysatorsystem, durch Aufbringen einer Dialkylmetallocen-Verbindung und einer Brönsted-sauren, quartären Ammonium Verbindung, mit einem nichtkoordinierenden Anion wie Tetrakispentafluorphenylborat, auf einem anorganischen Träger, gebildet. Das Trägermaterial wird zuvor mit einer Trialkylaluminium-Verbindung umgesetzt.
Nachteil dieses Trägerungsverfahren ist, daß nur ein geringer Teil des eingesetzten Metallocens durch Physisorption an dem Trägermaterial fixiert ist. Bei der Dosierung des Katalysatorsystems in den Reaktor kann das Metallocen leicht von der Trägeroberfläche abgelöst werden. Dies führt zu einer teilweise homogen verlaufenden Polymerisation, was eine unbefriedigende Morphologie des Polymers zur Folge hat.
In WO 96/04319 wird ein Katalysatorsystem beschrieben, in welchem der Cokatalysator kovalent an das Trägermaterial gebunden ist. Dieses
Katalysatorsystem weist jedoch eine geringe Polymerisationsaktivität auf, zudem kann die hohe Empfindlichkeit der geträgerten kationischen Metallocen- Katalysatoren zu Problemen bei der Einschleusung in das Polymerisationssystem führen.
Die Aufgabe bestand darin ein geträgertes Katalysatorsystem zur Verfügung zu stellen, welches die Nachteile des Standes der Technik vermeidet und trotzdem hohe Polymerisationsaktivitäten und eine gute Polymermorphologie garantiert. Zudem bestand die Aufgabe, ein Verfahren zur Herstellung eines Katalysatorsystems zu entwickeln, das es ermöglicht die Aktivierung des Katalysatorsystems wahlweise vor dem Einschleusen oder aber erst im
Polymerisationssystem durchzuführen.
Die vorliegende Erfindung betrifft somit ein geträgertes Katalysatorsystem und ein Verfahren zu dessen Herstellung. Das erfindungsgemäße Katalysatorsystem enthält a) einen Träger b) eine Lewis-Base der Formel I c) eine Organometallverbindung der Formel II als Cokatalysator d) mindestens ein Metallocen, e) Organometallverbindung der Formel III, worin die Organometallverbindung der Formel II kovalent an den Träger gebunden ist.
Das erfindungsgemäße Katalysatorsystem ist erhältlich durch a) Umsetzung einer Lewis-Base der Formel I und einer Organometallverbindung der Formel II mit einem Träger und b) anschließende Umsetzung des in Schritt a) erhaltenen
Reaktionsproduktes (modifiziertes Trägermaterial) mit einer Lösung oder Suspension, enthaltend eine Metallocen-Verbindung und mindestens eine Organometall-Verbindung der Formel III. Die Aktivierung des Metallocens durch Umsetzung mit dem in Schritt a) erhaltenen Reaktionsprodukt kann wahlweise vor dem Einschleusen in den Reaktor vorgenommen werden oder aber erst im Reaktor durchgeführt werden. Ferner wird ein Verfahren zur Herstellung eines Olefinpolymers beschrieben. Die Zugabe eines Additivs, z.B. Antistatikums, welches zum Polymerisationssystem zudosiert wird, kann zusätzlich von Vorteil sein.
Der Träger ist ein poröser anorganischer oder organischer Feststoff. Bevorzugt enthält der Träger mindestens ein anorganisches Oxid, wie Siliziumoxid, Aluminiumoxid, Aluminosilicate, Zeolithe, MgO, Zr02) Ti02, B203, CaO, ZnO, Th02, Na2C03l K2C03, CaC03, MgC03, Na2S04) AI2(SO4)3, BaS04, KNO3, Mg(NO3)2, AI(NO3)3 Na20, K20, oder Li20, insbesondere Siliziumoxid und/oder Aluminiumoxid. Der Träger kann auch mindestens ein Polymer enthalten, z.B. ein Homo- oder Copolymer, ein vernetztes Polymer oder Polymerblends. Beispiele für Polymere sind Polyethylen, Polypropylen, Polybuten, Polystyrol, mit Divinylbenzol vernetztes Polystyrol, Polyvinylchlorid, Acryl-Butadien-Styrol-Copolymer, Polyamid, Polymethacrylat, Polycarbonat, Polyester, Polyacetal oder Polyvinylalkohol.
Der Träger weist eine spezifische Oberfläche im Bereich von 10 bis 1 000 m2/g, bevorzugt von 150 bis 500 m2/g auf Die mittlere Partikelgr'δe des Trägers beträgt 1 bis 500 :m, bevorzugt 5 bis 350 :m.
Bevorzugt ist der Träger porös mit einem Porenvolumen des Trägers von 0,5 bis 4,0 ml/g, bevorzugt 1 ,0 bis 3,5 ml/g. Ein poröser Träger weist einen gewissen Anteil an
Hohlräumen (Porenvolumen) auf. Die Form der Poren ist meist unregelmäδig, häufig sphärisch ausgebildet. Die Poren Können durch kleine Porenöffnungen miteinander verbunden sein. Der Porendurchmesser beträgt vorzugsweise etwa 2 bis 50 nm. Die Partikelform des porösen Trägers kann irregulär oder sphärisch sein. Die Teilchengr'δe des Trägers kann z. B. durch kryogene Mahlung und/oder
Siebung beliebig eingestellt werden.
Die Lewis-Base entspricht der allgemeinen Formel I, worin
M2R3R R5 (I)
R3, R4 und R5 gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C C20-Alkyl-, C6-C40-Aryl-, C7-C40-Alkylaryl- oder C7-C40-Arylalkyl- Gruppe sein kann. Außerdem können entweder zwei Reste oder alle drei Reste R3, R4 und R5 über C2-C20- Kohlenstoffeinheiten miteinander verbunden sein.
M2 ist ein Element der V. Hauptgruppe des Periodensystems der Elemente, insbesondere Stickstoff oder Phosphor.
Beispiele für Verbindungen der Formel I sind:
Triethylamin Triisopropylamin
Triisobutylamin
Tri(n-butyl)amin
N,N-Dimethylanilin
N,N-Diethylanilin N, N-2,4,6-Pentamethylanili n
Dicyclohexylamin
Pyridin
Pyrazin
Triphenylphosphin Tri (methylphenyl)phosphin
Tri (dimethylphenyl)phosphin
Bei den Organometall-Verbindungen der Formel II handelt es sich um starke, neutrale Lewissäuren
M3R6R7R8 (II)
worin
M3 ein Element der IM. Hauptgruppe des Periodensystems der Elemente ist, bevorzugt Bor und Aluminium und
R6, R7 und R8 gleich oder verschieden sein kann und ein Wasserstoffatom, ein Halogenatom oder eine CrC40-halogenhaltige Gruppe, wie C1-C40-Halogen-Alkyl-, C6-C40-Halogen-Aryl-, C7-C40-Halogen-Alkyl-Aryl- oder C7-C40-Halogen-Aryl-Alkyl-
Gruppe bedeutet, wobei mindestens einer der Reste R6, R7 und R8 eine C,-C40- halogenhaltige Gruppe ist.
Beispiele für bevorzugte Organometall-Verbindungen der Formel II sind
Trispentafluorphenylboran und Trispentafluorphenylalan.
Bei den Organometallverbindungen der Formel III handelt es sich um neutrale
Lewissäuren, worin
Figure imgf000008_0001
M4 ein Element der I., II. und III. Hauptgruppe des Periodensystems der Elemente ist. Bevorzugt sind dabei die Elemente Magnesium und Aluminium. Besonders bevorzugt ist Aluminium. Die Reste R9 Können gleich oder verschieden sein und sind ein Wasserstoffatom, ein Halogenatom, eine C1-C40-Kohlenwasserstoff-Gruppe wie eine 0,-020- Alkyl-, C6- C40-Aryl-, C7-C40-Aryl-alkyl oder C7-C40-Alkyl-aryl-Gruppe. j ist eine ganze Zahl von 1 bis 3 und k ist eine ganze Zahl von 1 bis 4.
Beispiele für bevorzugte Organometall-Verbindungen der Formel III sind
Trimethylaluminium
Triethylaluminium
Triisopropylaluminium Trihexylaluminium
Trioctylaluminium
Tri-n-butylaluminium
Tri-n-propylaluminium
Triisoprenaluminium Dimethylaluminiummonochlorid
Diethylaluminiummonochlorid
Diisobutylaluminiummonochlorid
Methylaluminiumsesquichlorid Ethylaluminiumsesquichlorid Dimethylaluminiumhydrid Diethylaluminiumhydrid Diisopropylaluminiumhydrid Dimethylaluminium(trimethylsiloxid) Dimethylaluminium(triethylsiloxid)
Phenylalan Pentafluorphenylalan o-Tolylalan
Metallocenverbindungen können z.B. verbrückte oder unverbrückte
Biscyclopentadienylkomplexe sein, wie sie z.B. in EP 129 36δ, EP 561 479, EP 545 304 und EP 576 970 beschrieben sind, Monocyclopentadienylkomplexe, wie verbrückte Amidocyclopentadienylkomplexe die z.B. in EP 416 815 beschrieben sind, mehrkernige Cyclopentadienylkomplexe wie in EP 632 063 beschreiben, - Ligand substituierte Tetrahydropentalene wie in EP 659 758 beschrieben oder -
Ligand substituierte Tetrahydroindene wie in EP 661 300 beschrieben.
Außerdem können Organometallverbindungen eingesetzt werden in denen der komplexierende Ligand kein Cyclopentadienyl-Liganden enthält. Beispiele hierfür sind Diamin-Komplexe der III. und IV. Nebengruppe des Periodensystems der
Elemente, wie sie z.B. bei D.H. McConville, et al., Macromolecules, 1996, 29, 5241 und D.H. McConville, et al., J. Am. Chem. So., 1996, 118, 10008 beschrieben werden. Außerdem können Diimin-Komplexe der VIII. Nebengruppe des Periodensystems der Elemente (z.B. Ni2+ oder Pd2+ Komplexe), wie sie bei Brookhart et al., J. Am. Chem. So. 1995, 117, 6414 und, Brookhart et al., J. Am. Chem. So.,
1996, 118, 267 beschrieben werden, eingesetzt weden. Ferner lassen sich 2,6- bis(imino)pyridyl-Komplexe der VIII. Nebengruppe des Periodensystems der Elemente (z.B. Co2+ oder Fe2+ Komplexe), wie sie bei Brookhart et al., J. Am. Chem. So. 1998, 120, 4049 und Gibson et al., Chem. Commun. 1998, 849 beschrieben werden, einsetzen. Bevorzugte Metallocenverbindungen sind unverbrückte oder verbrückte Verbindungen der Formel IV,
Figure imgf000010_0001
worin
M1 ein Metall der III., IV., V. oder VI. Nebengruppe des Periodensystems der
Elemente ist, insbesondere Ti, Zr oder Hf, R' gleich oder verschieden sind und ein Wasserstoffatom oder SiR3 sind, worin Rx gleich oder verschieden ein Wasserstoffatom oder eine CrC40- kohlenstoffhaltige Gruppe wie C C20-Alkyl, C C10-Fluoralkyl, C^o-Alkoxy,
C6-C20-Aryl, C6-C10-Fluoraryl, C6-C10-Aryloxy, C2-C10-Alkenyl, C7-C40-Arylalkyl, C7-C40-Alkylaryl oder C8-C40-Arylalkenyl sind, oder R= sind eine CrC30 - kohlenstoffhaltige Gruppe wie C1-C25-Alkyl, z. B. Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder Octyl, C2-C25-Alkenyl, C3-C15-Alkylalkenyl, C6-C24-Aryl, C5-C24- Heteroaryl wie Pyridyl, Furyl oder Chinolyl, C7-C30-Arylalkyl, C7-C30-Alkylaryl, fluorhaltiges C1-C25-Alkyl, fluorhaltiges C6-C24-Aryl, fluorhaltiges C7-C30- Arylalkyl, fluorhaltiges C7-C30-Alkylaryl oder CrC12-Alkoxy ist, oder zwei oder mehrere Reste R' Können so miteinander verbunden sein, daß die Reste R' und die sie verbindenden Atome des Cyclopentadienylringes ein C4-C24- Ringsystem bilden, welches seinerseits substituiert sein kann,
R" gleich oder verschieden sind und ein Wasserstoffatom oder SiR3 x sind, worin Rx gleich oder verschieden ein Wasserstoffatom oder eine C,-C40- kohlenstoffhaltige Gruppe wie C C2o-Alkyl, C1-C10-Fluoralkyl, C C10-Alkoxy, C6-C14-Aryl, C6-C10-Fluoraryl, C6-C10-Aryloxy, C2-C10-Alkenyl, C7-C40-Arylalkyl, C7-C40-Alkylaryl oder C8-C40-Arylalkenyl sind, oder R" sind eine C1-C30 - kohlenstoffhaltige Gruppe wie C C^-Al yl, z. B. Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder Octyl, C2-C25-Alkenyl, C3-C15-Alkylalkenyl, C6-C24-Aryl, C5-C24- Heteroaryl, z. B. Pyridyl, Furyl oder Chinolyl, C7-C30-Arylalkyl, C7-C30-Alkylaryl, fluorhaltiges CrC25-Alkyl, fluorhaltiges C6-C24-Aryl, fluorhaltiges C7-C30-
Arylalkyl, fluorhaltiges C7-C30-Alkylaryl oder C C12-Alkoxy ist, oder zwei oder mehrere Reste R" Können so miteinander verbunden sein, daß die Reste R" und die sie verbindenden Atome des Cyclopentadienylringes ein C4-C24- Ringsystem bilden, welches seinerseits substituiert sein kann, I gleich 5 für v = 0, und I gleich 4 für v = 1 ist, m gleich 5 für v = 0, und m gleich 4 fr v = 1 ist, L1 gleich oder verschieden sein Können und ein Wasserstoffatom, ein
Halogenatom, oder ORy, SRy, OSiR3 y, SiR3 y, PR2 y oder NR2 y bedeuten, worin Ry ein Halogenatom, eine C.-C10 Alkylgruppe, eine halogenierte C^C^- Alkylgruppe, eine C6-C20 Arylgruppe oder eine halogenierte C6-C20 Arylgruppe sind, oder L1 sind eine Toluolsulfonyl-, Trifluoracetyl-, Trifluoracetoxyl-, Trifluormethansulfonyl-, Nonafluorbutansulfonyl- oder 2,2,2-Trifluorethan- sulfonyl-Gruppe, o eine ganze Zahl von 1 bis 4, bevorzugt 2 ist, Z ein verbrückendes Strukturelement zwischen den beiden
Cyclopentadienylringen bezeichnet und v ist 0 oder 1.
Beispiele für Z sind Gruppen M R2RZ=, worin M2 Kohlenstoff, Silizium, Germanium oder Zinn ist und Rz und Rz= gleich oder verschieden eine C.-C20- kohlenwasserstoffhaltige Gruppe wie C,-C10-Alkyl, C6-C14-Aryl oder Trimethylsilyl bedeuten. Bevorzugt ist Z gleich CH2, CH2CH2, CH(CH3)CH2, CH(C4H9)C(CH3)2, C(CH3)2) (CH3)2Si, (CH3)2Ge, (CH3)2Sn, (C6H5)2Si, (C6H5)(CH3)Si, (C6H5)2Ge, (C6H5)2Sn, (CH2)4Si, CH2Si(CH3)2) o-C6H4 oder 2,2'-(C6H4)2. Z kann auch mit einem oder mehreren Resten R' und/oder R" ein mono- oder polycyclisches Ringsystem bilden. Bevorzugt sind chirale verbrückte Metallocenverbindungen der Formel IV, insbesondere solche in denen v gleich 1 ist und einer oder beide Cyclopentadienylringe so substituiert sind, daß sie einen Indenylring darstellen. Der Indenylring ist bevorzugt substituiert, insbesondere in 2-, 4-, 2,4,5-, 2,4,6-, 2,4,7 oder 2,4,5,6-Stellung, mit CrC20-kohlenstoffhaltigen Gruppen, wie C1-C10-Alkyl oder C6-C20-Aryl, wobei auch zwei oder mehrere Substituenten des Indenylrings zusammen ein Ringsystem bilden Können.
Beispiele fr Metallocenverbindungen sind: Dimethylsilandiylb s(indenyl)zirkoniumdichlorid
Dimethylsilandiylb s(4-naphthyl-indenyl)zirkoniumdichlorid Dimethylsilandiylb s(2-methyl-benzo-indenyl)zirkoniumdichlorid Dimethylsilandiylb s(2-methyl-indenyl)zirkoniumdichlorid Dimethylsilandiylb s(2-methyl-4-(1-naphthyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylb s(2-methyl-4-(2-naphthyl)-indenyl)zirkoniumdichlorid
Dimethylsilandiylb s(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylb s(2-methyl-4-t-butyl-indenyl)zirkoniumdichlorid Dimethylsilandiylb s(2-methyl-4-isopropyl-indenyl)zirkoniumdichlorid Dimethylsilandiylb s(2-methyl-4-ethyl-indenyI)zirkoniumdichlorid Dimethylsilandiylb s(2-methyl-acenaphth-indenyl)zirkoniumdichlorid
Dimethylsilandiylb s(2,4-dimethyl-indenyl)zirkoniumdichlorid Dimethylsilandiylb s(2-ethyl-indenyl)zirkoniumdichlorid Dimethylsilandiylb s(2-ethyl-4-ethyl-indenyl)zirkoniumdichlorid Dimethylsilandiylb s(2-ethyl-4-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylb s(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid
Dimethylsilandiylb s(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdichlorid Dimethylsilandiylb s(2-methyl-4,5 diisopropyl-indenyl)zirkoniumdichlorid Dimethylsilandiylb s(2,4,6-trimethyl-indenyl)zirkoniumdichlorid Dimethylsilandiylb s(2,5,6-trimethyl-indenyl)zirkoniumdichlorid Dimethylsilandiylb s(2,4,7-trimethyl-indenyl)zirkoniumdichlorid
Dimethylsilandiylb s(2-methyl-5-isobutyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-5-t-butyl-indenyl)zirkoniumdichlorid Methyl(phenyl)silandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid Methyl(phenyl)silandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdichlorid Methyl(phenyl)silandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdichlorid Methyl(phenyl)silandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid
Methyl(phenyl)silandiylbis(2-methyl-4,5-(methylbenzo)-indenyl)zirkoniumdi-chlorid Methyl(phenyl)silandiylbis(2-methyl-4,5-(tetramethylbenzo)-indenyl)zirkonium- dichlorid Methyl(phenyl)siIandiylbis(2-methyl-4-acenaphth-indenyl)zirkoniumdichlorid Methyl(phenyl)silandiylbis(2-methyl-indenyl)zirkoniumdichlorid
Methyl(phenyl)silandiylbis(2-methyl-5-isobutyl-indenyl)zirkoniumdichlorid 1 ,2-Ethandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid 1 ,4-Butandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid 1 ,2-Ethandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdichlorid 1 ,4-Butandiylbis(2-methyl-4-isopropyl-indenyI)zirkoniumdichlorid
1 ,4-Butandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid 1 ,2-Ethandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid 1 ,2-Ethandiylbis(2,4J-trimethyl-indenyl)zirkoniumdichlorid 1 ,2-Ethandiylbis(2-methyl-indenyl)zirkoniumdichlorid 1 ,4-Butandiylbis(2-methyl-indenyl)zirkoniumdichlorid
[4-(05-Cyclopentadienyl)-4,6,6-trimethyl-(05-4,5-tetrahydropentalen)]- dichlorozirconium
[4-(05-3'-Trimethylsilyl-cyclopentadienyl)-4,6,6-trimethyl-(05-4,5-tetrahydropentalen)]- dichlorozirconium [4-(05-3'-lsopropyl-cyclopentadienyl)-4,6,6-trimethyl-(05-4,5-tetrahydropentalen)]- dichlorozirconium
[4-(05-Cyclopentadienyl)-4,7,7-trimethyl-(05-4,5,6J-tetrahydroindenyl)]-dichlorotitan [4-(05-Cyclopentadienyl)-4,7,7-trimethyl-(05-4,5,6,7-tetrahydroindenyl)]-dichloro- zirkonium [4-(05-Cyclopentadienyl)-4,7,7-trimethyl-(05-4,5,6,7-tetrahydroindenyl)]- dichlorohafnium [4-(05-3=-tert.Butyl-cyclopentadienyl)-4J,7-trimethyl-(05-4,5,6,7-tetrahydroindenyl)3- dichlorotitan
4-(05-3=-lsopropylcyclopentadienyl)-4,7J-trimethyl-(05-4,5,6,7-tetrahydroindenyl)]- dichlorotitan 4-(05-3=-Methylcyclopentadienyl)-4,7,7-trimethyl-(05-4,5,6,7-tetrahydroindenyl)]- dichlorotitan
4-(05-3=-Trimethylsilyl-cyclopentadienyl)-2-trimethylsilyl-4,7,7-trimethyl-(05-4, 5,6,7- tetrahydroindenyl)]-dichlorotitan
4-(05-3=-tert.Butyl-cyclopentadienyl)-4,7,7-trimethyl-(05-4,5,6,7-tetrahydroindenyl)]- dichlorozirkonium
(Tertbutylamido)-(tetramethyl-05-cyclopentadienyl)-dimethylsilyl-dichlorotitan
(Tertbutylamido)-(tetramethyl-05-cyclopentadienyl)-1 ,2-ethandiyl-dichlorotitan- dichlorotitan
(Methylamido)-(tetramethyl-05-cyclopentadienyl)-dimethylsilyl-dichlorotitan (Methylamido)-(tetramethyl-05-cyclopentadienyl)-1 ,2-ethandiyl-dichlorotitan
(Tertbutylamido)-(2,4-dimethyl-2,4-pentadien-1-yl)-dimethylsilyl-dichlorotitan
Bis-(cyclopentadienyl)-zirkoniumdichlorid
Bis-(n-butylcyclopentadienyl)-zirkoniumdichlorid
Bis-(1 ,3-dimethylcyclopentadienyl)-zirkoniumdichlorid Tetrachloro-[1-[bis(05-1H-inden-1-yliden)methylsilyl]-3-05-cyclopenta-2,4-dien-1- yliden)-3-05-9H-fluoren-9-yliden)butan]di-zirkonium
Tetrachloro-[2-[bis(05-2-methyl-1 H-inden-1-yliden)methoxysilyl]-5-(05-2,3,4,5- tetramethylcyclopenta-2,4-dien-1-yliden)-5-(05-9H-fluoren-9-yliden)hexan]di- zirkonium Tetrachloro-[1 -[bis(05-1 H-inden-1 -yliden)methylsilyl]-6-(05-cyclopenta-2,4-dien-1 - yliden)-6-(05-9H-fluoren-9-yliden)-3-oxaheptan]di-zirkonium
Dimethylsilandiylbis(indenyl)zirkoniumdimethyl
Dimethylsilandiylbis(4-naphthyl-indenyl)zirkoniumdimethyl
Dimethylsilandiylbis(2-methyl-benzo-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-indenyl)zirkoniumdimethyl
Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-(2-naphthyl)-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-t-butyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-ethyl-indenyl)zirkoniumdimethyl
Dimethylsilandiylbis(2-methyl-4-acenaphth-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2,4-dimethyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-4-ethyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-4-phenyl-indenyl)zirkoniumdimethyl
Dimethylsilandiybis(2-methyl-4,5-benzo-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4,5 diisopropyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2,4,6-trimethyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2,5,6-trimethyl-indenyl)zirkoniumdimethyl
Dimethylsilandiylbis(2,4,7-trimethyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-5-isobutyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-5-t-butyl-indenyl)zirkoniumdimethyl Methyl(phenyl)silandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdimethyl Methyl(phenyl)silandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdimethyl
Methyl(phenyl)silandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdimethyl Methyl(phenyl)silandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdimethyl Methyl(phenyl)silandiylbis(2-methyl-4,5-(methylbenzo)-indenyl)zirkoniumdi-methyl Methyl(phenyl)silandiylbis(2-methyl-4,5-(tetramethylbenzo)-indenyl)zirk- oniumdimethyl
Methyl(phenyl)silandiylbis(2-methyl-4-acenaphth-indenyl)zirkoniumdimethyl Methyl(phenyl)silandiylbis(2-methyl-indenyl)zirkoniumdimethyl Methyl(phenyl)silandiylbis(2-methyl-5-isobutyl-indenyl)zirkoniumdimethyl 1 ,2-Ethandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdimethyl 1 ,4-Butandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdimethyl
1 ,2-Ethandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdimethyl 1 ,4-Butandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdimethyl
1 ,4-Butandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdimethyl
1 ,2-Ethandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdimethyl
1 ,2-Ethandiylbis(2,4,7-trimethyl-indenyl)zirkoniumdimethyl 1 ,2-Ethandiylbis(2-methyl-indenyl)zirkoniumdimethyl
1 ,4-Butandiylbis(2-methyl-indenyl)zirkoniumdimethyl
[4-(05-Cyclopentadienyl)-4,6,6-trimethyl-(05-4,5-tetrahydropentalen)]- dimethylzirconium
[4-(05-3,-Trimethylsilyl-cyclopentadienyl)-4,6,6-trimethyl-(05-4,5-tetrahydropentalen)]- dimethylzirconium
[4-(05-3'-lsopropyl-cyclopentadienyl)-4,6,6-trimethyl-(05-4,5-tetrahydropentalen)]- dimethylzirconium
[4-(05-Cyclopentadienyl)-4,7J-trimethyl-(05-4,5,6,7-tetrahydroindenyl)]-dimethyltitan
[4-(05-Cyclopentadienyl)-4,7,7-trimethyl-(05-4,5,6,7-tetrahydroindenyl)]- dimethylzirkonium
[4-(05-Cyclopentadienyl)-4,7,7-trimethyl-(05-4,5,6,7-tetrahydroindenyl)]- dimethylhafnium
[4-(05-3=-tert.Butyl-cyclopentadienyl)-4,7,7-trimethyl-(05-4,5,6,7-tetrahydroindenyl)]- dimethyltitan 4-(05-3=-lsopropylcyclopentadienyl)-4,7,7-trimethyl-(05-4,5,6,7-tetrahydroindenyl)]- dimethyltitan
Dimethylsilandiylbis(2-methyl-4-(4-tert-butyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4-methyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4-ethyl-phenyl-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-4-(4-trifluormethyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4-methoxy-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4-tert-butyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4-methyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4-ethyl-phenyl-indenyl)zirkoniumdichlorid
Dimethyisilandiylbis(2-ethyl-4-(4-trifluormethyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4-methoxy-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4-tert-butyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-(4-methyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-(4-ethyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-(4-trifluormethyl-phenyl-indenyl)zirkoniumdimethyl
Dimethylsilandiylbis(2-methyl-4-(4-methoxy-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-4-(4-tert-butyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-4-(4-methyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-4-(4-ethyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-4-(4-trifluormethyl-phenyl-indenyl)zirkoniumdimethyl
Dimethylsilandiylbis(2-ethyl-4-(4-methoxy-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafnuimdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandichIorid Dimethylsilandiylbis(2-methyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-ethyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-pentyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-n-propyl-4-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-n-propyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiylb s(2-n-propyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiylb s(2-n-propyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiylb s(2-n-propyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiylb s(2-n-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiylb s(2-n-butyl-4-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiylb s(2-n-butyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiylb s(2-n-butyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiylb s(2-n-butyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiylb s(2-n-butyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiylb s(2-n-butyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiylb s(2-n-butyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiylb s(2-n-butyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiylb s(2-n-butyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiylb s(2-n-butyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiylb s(2-hexyl-4-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiylb s(2-hexyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiylb s(2-hexyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiylb s(2-hexyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiylb s(2-hexyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiylb s(2-hexyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiylb s(2-hexyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiylb s(2-hexyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiylb s(2-hexyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiylb s(2-hexyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethyls landiyl s(2-methyl-4-(4'-tert.-butyl-phenyl)- indenyl)zirkoniumbis(dimethylamid)
Dimethylsilandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdibenzyl Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdimethyl Dimethylgermandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyI)zirkoniumdichIorid Dimethylgermandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdichlorid Dimethylgermandiylbis(2-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandichlorid Dimethylgermandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Ethylidenbis(2-ethyl-4-phenyl)-indenyl)zirkoniumdichlorid Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Ethylidenbis(2-n-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Ethylidenbis(2-n-butyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandichlorid
Ethylidenbis(2-hexyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdibenzyl Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdibenzyl Ethylidenbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandibenzyl Ethylidenbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdimethyl
Ethylidenbis(2-n-propyl-4--phenyl)-indenyl)titandimethyl Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumbis(dimethylamid) Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumbis(dimethylamid) Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)titanbis(dimethylamid) Methylethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid
Methylethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdichlorid Phenylphosphandiyl(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Phenylphosphandiyl(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl) zirkoniumdichlorid Phenylphosphandiyl(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl) zirkoniumdichlorid
Weiterhin bevorzugt sind die entsprechenden Zirkondimethyl-Verbindungen und die entsprechenden Zirkon-η4-Butadien-Verbindungen, sowie die entsprechenden Verbindungen mit 1 ,2-(1-methyl-ethandiyl)-, 1 ,2-(1 ,1-dimethyl-ethandiyl)- und 1 ,2-(1 ,2-dimethyl-ethandiyl)-Brüche.
Zur Herstellung des erfindungsgemäßen Katalysatorsystems wird das Trägermaterial in einem organischen Lösemittel suspendiert. Geeignete Lösemittel sind aromatische oder aliphatische Lösemittel, wie beispielsweise Hexan, Heptan, Dodecan, Toluol oder Xylol oder halogenierte Kohlenwasserstoffe, wie Methylenchlorid oder halogenierte aromatische Kohlenwasserstoffe, wie o-
Dichlorbenzol. Der Träger kann zuvor mit einer Organometall-Verbindung der Formel III vorbehandelt werden. Anschließend wird eine oder mehrere Lewis- Basen der Formel I zu dieser Suspension gegeben, wobei die Reaktionszeit zwischen 1 Minute und 4δ Stunden liegen kann, bevorzugt ist eine Reaktionszeit von 10 Minuten und 2 Stunden. Die Reaktionslösung kann isoliert und anschließend resuspendiert werden oder aber auch direkt weiter mit einer Organometallverbindung der Formel II umgesetzt werden. Die Reaktionszeit liegt zwischen 1 Minute und 4δ Stunden, bevorzugt ist eine Reaktionszeit von 10 Minuten und 2 Stunden. Zur Herstellung des erfindungsgemäßen Katalysatorsystems kann eine oder mehrere Lewis-Basen der Formel I in jedem beliebigen stöchiometrischen Verhältnis mit einer oder mehreren Organometall-Verbindungen der Formel II umgesetzt werden. Bevorzugt ist die Menge von 1 bis 4 Äquivalenten einer Lewis- Base der Formel I mit einem äquivalent einer Organometall-Verbindung der Formel II. Besonders bevorzugt ist die Menge von einem Äquivalent einer Lewis-Base der Formel I mit einem Äquivalent einer Organometall-Verbindung der Formel II. Das Reaktionsprodukt dieser Umsetzung ist eine metalloceniumbildende Verbindung, die kovalent an das Trägermaterial fixiert ist. Es wird nachfolgend als modifiziertes Trägermaterial bezeichnet. Die Reaktionslösung wird anschließend filtriert und mit einem der oben genannten Lösemittel gewaschen. Danach wird das modifizierte Trägermaterial im Vakuum getrocknet.
Die Umsetzung der Mischung einer oder mehrerer Metallocenverbindungen z.B. der Formel IV und einer oder mehrerer Organometallverbindungen der Formel IM mit dem modifizierten Trägermaterial geht vorzugsweise so vonstatten, daß eine oder mehrere Metallocenverbindung z.B. der Formel IV in einem oben beschriebenen Lösemittel gelöst bzw. suspendiert wird und anschließend eine oder mehrere
Organometall-Verbindungen der Formel IM, die vorzugsweise ebenfalls gelöst bzw. suspendiert ist, umgesetzt werden. Das stöchiometrische Verhältnis an Metallocenverbindung z.B. der Formel IV und einer Organometallverbindung der Formel IM beträgt 100 1 bis 10" : 1. Vorzugsweise beträgt das Verhältnis 1 :1 bis 10"2:1. Das modifizierte Trägermaterial kann entweder direkt im Polymerisationsreaktor oder vor der Zugabe zum Polymerisationsreaktor in einem Reaktionsgefäδ mit einer Mischung aus einer Metallocenverbindung der Formel IV und einer Organometallverbindung der Formel I umgesetzt werden. Die Zugabe einer Organometallverbindung der Formel IM hat einen positiven Einfluδ auf die Aktivität des Katalysatorsystems. Polymerisationskatalysatoren bestehend aus einem wie oben beschriebenen modifizierten Trägermaterial und einer Metallocenverbindung z.B. der Formel IV zeigen deutlich niedrigere Aktivitäten verglichen mit dem erfindungsgemäßen Katalysatorsystem, das eine Mischung aus dem oben beschriebenen modifizierten Trägermaterial, einer Metallocenverbindung z.B. der
Formel IV und einer Organometallverbindung der Formel III enthält. Die Menge an modifiziertem Träger zu einer Metallocenverbindung z.B. der Formel IV beträgt vorzugsweise 10 g : 1 :mol bis 10"3 : 1 :mol. Das stöchiometrische Verhältnis an Metallocenverbindung z.B. der Formel IV zu der auf dem Träger fixierten Organometallverbindung der Formel II beträgt 100 : 1 bis 10"4 : 1 , vorzugsweise 1 : 1 bis 10"2 : 1.
Das geträgerte Katalysatorsystem kann direkt zur Polymerisation eingesetzt werden. Es kann aber auch nach Entfernen des Lösemittels resuspendiert zur Polymerisation eingesetzt werden. Der Vorteil dieser Aktivierungsmethode liegt darin, daß es die Option bietet das polymerisationsaktive Katalysatorsystem erst im Reaktor entstehen zu lassen. Dadurch wird verhindert, daß beim Einschleusen des luftempfindlichen Katalysators zum Teil Zersetzung eintritt.
Weiterhin wird ein Verfahren zur Herstellung eines Olefinpolymers durch
Polymerisation eines oder mehrerer Olefine, in Gegenwart des erfindungsgemäßen Katalysatorsystems beschrieben. Die Polymerisation kann eine Homo- oder eine Copolymerisation sein.
Bevorzugt werden Olefine der Formel R"-CH=CH-R$ polymerisiert, worin R'und R$ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine Alkoxy-, Hydroxy-, Alkylhydroxy-, Aldehyd, Carbonsäure- oder Carbonsäureestergruppe oder einen gesättigten oder ungesättigten Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, insbesondere 1 bis 10 C-Atomen bedeuten, der mit einer Alkoxy-, Hydroxy-, Alkylhydroxy-, Aldehyd-, Carbonsäure- oder Carbonsäureestergruppe substituiert sein kann, oder R'und R$ mit den sie verbindenden Atomen einen oder mehrere Ringe bilden. Beispiele fr solche Olefine sind 1-Olefine wie Ethylen, Propylen, 1-Buten, 1-Hexen, 4-Methyl-1-penten, 1- Octen, Styrol, cyclische Olefine wie Norbornen, Vinylnorbornen, Tetracyclododecen, Ethylidennorbomen, Diene wie 1 ,3-Butadien oder 1 ,4-Hexadien, Biscyclopentadien oder Methacrylsäuremethylester.
Insbesondere werden Propylen oder Ethylen homopolymerisiert, Ethylen mit einem oder mehreren C3-C20-1-Olefinen, insbesondere Propylen, und /oder einem oder mehreren C4-C20-Diene, insbesondere 1 ,3-Butadien, copolymerisiert oder Norbornen und Ethylen copolymerisiert.
Die Polymerisation wird bevorzugt bei einer Temperatur von - 60 bis 300 /C, besonders bevorzugt 30 bis 250 /C, durchgeführt. Der Druck beträgt 0,5 bis 2500 bar, bevorzugt 2 bis 1500 bar. Die Polymerisation kann kontinuierlich oder diskontinuierlich, ein- oder mehrstufig, in Lösung, in Suspension, in der Gasphase oder in einem überkritischem Medium durchgeführt werden.
Das geträgerte Katalysatorsystem kann entweder direkt im Polymerisationssystem gebildet werden oder es kann als Pulver oder noch Lösemittel behaftet wieder resuspendiert und als Suspension in einem inerten Suspensionsmittel in das Polymerisationssystem eindosiert werden.
Zur Herstellung von Olefinpolymeren mit breiter Molekulargewichtsverteilung werden bevorzugt Katalysatorsysteme verwendet, die zwei oder mehr verschiedene Übergangsmetallverbindungen, z. B. Metallocene enthalten.
Zur Entfernung von im Olefin vorhandenen Katalysatorgiften ist eine Reinigung mit einem Aluminiumalkyl, beispielsweise Trimethylaluminium, Triethylaiuminium oder Triisobutylaluminium vorteilhaft. Diese Reinigung kann sowohl im Polymerisationssystem selbst erfolgen oder das Olefin wird vor der Zugabe in das Polymerisationssystem mit der AI-Verbindung in Kontakt gebracht und anschließend wieder getrennt.
Als Molmassenregler und/oder zur Steigerung der Aktivität wird, falls erforderlich, Wasserstoff zugegeben. Der Gesamtdruck im Polymerisationssystem beträgt 0,5 bis 2500 bar, bevorzugt 2 bis 1500 bar. Dabei wird die erfindungsgemäße Verbindung in einer Konzentration, bezogen auf das Übergangsmetall von bevorzugt 10"3 bis 10"8, vorzugsweise 10"4 bis 107 mol
Übergangsmetall pro dm3 Lösemittel bzw. pro dm3 Reaktorvolumen angewendet. Geeignete Lösemittel zur Darstellung sowohl der erfindungsgemäßen geträgerten chemischen Verbindung als auch des erfindungsgemäßen Katalysatorsystems sind aliphatische oder aromatische Lösemittel, wie beispielsweise Hexan oder Toluol, etherische Lösemittel, wie beispielsweise Tetrahydrofuran oder Diethylether oder halogenierte Kohlenwasserstoffe, wie beispielsweise Methylenchlorid oder halogenierte aromatische Kohlenwasserstoffe wie beispielsweise o-Dichlorbenzol.
Vor Zugabe des Katalysatorsystems enthaltend mindestens eine erfindungsgemäße geträgerte chemische Verbindung, und mindestens eine
Übergangsmetallverbindung (wie ein Metallen) kann zusätzlich eine andere Alkylaluminiumverbindung wie beispielsweise Trimethylaluminium, Triethylaluminium, Triisobutylaluminium, Trioctylaluminium oder Isoprenylaluminium zur Inertisierung des Polymerisationssystems (beispielsweise zur Abtrennung vorhandener Katalysatorgifte im Olefin) in den Reaktor gegeben werden. Diese wird in einer Konzentration von 100 bis 0,01 mmol AI pro kg Reaktorinhalt dem Polymerisationssystem zugesetzt.
Bevorzugt werden Triisobutylaluminium und Triethylaluminium in einer Konzentration von 200 bis 0,001 mmol AI pro kg Reaktorinhalt eingesetzt, dadurch kann bei der Synthese eines geträgerten Katalysatorsystems das molare Al/M-
Verhältnis klein gewählt werden. Weiterhin kann bei dem erfindungsgemäßen Verfahren ein Additiv wie ein Antistatikum verwendet werden z.B. zur Verbesserung der Kornmorphologie des Olefinpolymers. Generell Können alle Antistatika, die fr die Polymerisation geeignet sind, verwendet werden. Beispiele hierfür sind Salzgemische aus Caiciumsalzen der Medialansäure und Chromsalze der N-Stearylanthranilsäure, die in DE-A-3543360 beschrieben werden. Weitere geeignete Antistatika sind z.B. C12- bis C22- Fettsäureseifen von Alkali- oder Erdalkalimetallen, Salze von Sulfonsäureestern, Ester von Polyethylenglycolen mit Fettsäuren, Polyoxyethylenalkylether usw. Eine Übersicht über Antistatika wird in EP-A 107127 angegeben.
Außerdem kann als Antistatikum eine Mischung aus einem Metallsalz der Medialansäure, einem Metallsalz der Anthranilsäure und einem Polyamin eingesetzt werden, wie in EP-A 636636 beschrieben.
Kommerziell erhältliche Produkte wie Stadis7 450 der Fa. DuPont, eine Mischung aus Toluol, Isopropanol, Dodecylbenzolsulfonsäure, einem Polyamin, einem Copolymer aus Dec-1-en und SO2 sowie Dec-1-en oder ASA7-3 der Fa. Shell und ARU5R7 163 der Firma ICI Können ebenfalls verwendet werden.
Vorzugsweise wird das Antistatikum als Lösung eingesetzt, im bevorzugten Fall von
Stadis7 450 werden bevorzugt 1 bis 50 Gew.-% dieser Lösung, vorzugsweise 5 bis 25 Gew.-%, bezogen auf die Masse des eingesetzten Trägerkatalysators (Träger mit kovalent fixierter metalloceniumbildende Verbindung und eine oder mehrere Metallocenverbindungen z.B. der Formel IV) eingesetzt. Die benötigten Mengen an Antistatikum Können jedoch, je nach Art des eingesetzten Antistatikums, in weiten
Bereichen schwanken.
Die eigentliche Polymerisation wird vorzugsweise in flüssigen Monomer (bulk) oder in der Gasphase durchgeführt.
Das Antistatikum kann zu jedem beliebigen Zeitpunkt zur Polymerisation zudosiert werden. Zum Beispiel ist eine bevorzugte Verfahrensweise die, daß das geträgerte Katalysatorsystem in einem organischen Lösemittel, bevorzugt Alkane wie Heptan oder Isododekan, resuspendiert wird. Anschließend wird es unter Rühren in den Polymerisationsautoklav zugegeben. Danach wird das Antistatikum zudosiert. Die Polymerisation wird bei Temperaturen im Bereich von 0 bis 100/C durchgeführt. Eine weitere bevorzugte Verfahrensweise ist, daß das Antistatikum vor Zugabe des geträgerten Katalysatorsystems in den Polymerisationsautoklav zudosiert wird. Anschließend wird das resuspendierte geträgerte Katalysatorsystem unter Rühren bei Temperaturen im Bereich von 0 bis 100/C zudosiert. Die Polymerisationszeit kann im Bereich von 00.1 bis 24 Stunden. Bevorzugt ist eine Polymerisationszeit im Bereich von 0.1 bis 5 Stunden.
Bei dem erfindungsgemäßen Verfahren treten keine Reaktorbeläge auf, es bilden sich keine Agglomerate und die Produktivität des eingesetzten Katalysatorsystems ist hoch. Die mit dem erfindungsgemäßen Verfahren hergestellten Polymere zeichnen sich durch eine enge Molekulargewichtsverteilung und gute
Kornmorphologie aus.
Die nachfolgenden Beispiele dienen zur näheren Erläuterung der Erfindung haben jedoch keinen limitierenden Charakter.
Beispiel 1
Darstellung modifizierter Träger
5 g SiO2 (PQ MS 3030, vorbehandelt bei 140/C, 10 mbar, 10 h) wurden in 30 ml Toluol suspendiert. Dazu wurden 0,25 ml N,N-Dimethylanilin gegeben und die
Reaktionsmischung 1 h gerührt. Danach wurde die Reaktionsmischung mit 1 ,02 g Tris(pentafluorophenyl)boran versetzt und eine Stunde gerührt. Die Reaktionsmischung wurde filtriert und dreimal mit Toluol gewaschen. Lösemittelreste wurden vom Rückstand im Ölpumpenvakuum entfernt. Beispiel 2
Darstellung des Katalysators A
In 3 ml Toluol wurden δ,3 mg Dimethylsilylenbis(2-methylindenyl)zirkoniumdimethyl gelöst und mit 1 ml 20%iger Trimethylaluminiumlösung in Varsol versetzt. Dazu gab man 1 g des modifizierten Trägers, rührte eine Stunde und entfernte Lösemittelreste im Ölpumpenvakuum. Man erhielt 1 ,15 g eines freifließenden geträgerten Katalysators.
Beispiel 3
Polymerisation von Propen
Ein trockener 16-dm3-Reaktor wurde zunächst mit Stickstoff und anschließend mit
Propylen gespült und mit 10 dm3 flüssigem Propylen befüllt. Dann wurden 4 cm3 einer 20 %igen Triisobutylaluminiumlösung in Varsol mit 30 cm3
Heptan verdünnt in den Reaktor gegeben und der Ansatz bei 30/C 15 Minuten gerührt.
Anschließend wurde der Katalysator aus Beispiel 2 in Heptan resuspendiert und diese Suspension in den Reaktor gegeben. Das Reaktionsgemisch wurde auf die Polymerisationstemperatur von 65/C aufgehetzt (4/C/min) und das
Polymerisationssystem 1 h durch Kühlung bei 65/C gehalten. Gestoppt wurde die
Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wurde im
Vakuumtrockenschrank getrocknet.
Es resultieren 1 ,1 kg Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an
Innenwand oder Rührer. Die Katalysatoraktivität betrug 132 kg PP/g Metallocen x h.
Beispiel 4
Darstellung des Katalysators B
3 ml Toluol wurden 8,3 mg Dimethylsilylenbis(2-methylindenyl)zirkoniumdimethyl. Dazu gab man 1 g des modifizierten Trägers, rührte eine Stunde und entfernte Lösemittelreste im ölpumpenvakuum. Man erhielt 1 ,05 g eines freifließenden geträgerten Katalysators.
Beispiel 5
Polymerisation von Propen
Ein trockener 16-dm3 -Reaktor wurde zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 10 dm3 flüssigem Propylen befüllt.
Dann wurden 4 cm3 einer 20 %igen Triisobutylaluminiumlösung in Varsol mit 30 cm3 Heptan verdünnt in den Reaktor gegeben und der Ansatz bei 30/C 15 Minuten gerührt.
Anschließend wurde der Katalysator aus Beispiel 4 in Heptan resuspendiert und diese Suspension in den Reaktor gegeben. Das Reaktionsgemisch wurde auf die
Polymerisationstemperatur von 65/C aufgehetzt (40/C/min) und das Polymerisationssystem 1 h durch Kühlung bei 65/C gehalten. Gestoppt wurde die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wurde im Vakuumtrockenschrank getrocknet.
Es resultieren 0,33 kg Polypropylen-Pulver, Der Reaktor zeigte keine Beläge an Innenwand oder Rührer. Die Katalysatoraktivität betrug 40 kg PP/g Metallocen x h.
Beispiel 6 Darstellung des Katalysators C
3 ml Toluol wurden 9,1 mg Dimethylsilylenbis(2-methylindenyl)zirkoniumdichlorid gelöst und mit 1 ml 20%iger Trimethylaluminiumlösung in Varsol versetzt. Dazu gab man 1 g des modifizierten Trägers, rührte eine Stunde und entfernte Lösemittelreste im Ölpumpenvakuum. Man erhielt 1 ,16 g eines freifließenden geträgerten
Katalysators. Beispiel 7
Polymerisation von Propen
Ein trockener 16-dm3'-Reaktor wurde zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 10 dm3 flüssigem Propylen befüllt.
Dann wurden 4 cm3 einer 20 %igen Triisobutylaluminiumlösung in Varsol mit 30 cm3 Heptan verdünnt in den Reaktor gegeben und der Ansatz bei 30/C 15 Minuten gerührt. Anschließend wurde der Katalysator aus Beispiel 6 in Heptan resuspendiert und diese Suspension in den Reaktor gegeben. Das Reaktionsgemisch wurde auf die Polymerisationstemperatur von 65/C aufgehetzt (4/C/min) und das Polymerisationssystem 1 h durch Kühlung bei 65/C gehalten. Gestoppt wurde die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wurde im Vakuumtrockenschrank getrocknet.
Es resultieren 1 ,0 kg Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an Innenwand oder Rührer. Die Katalysatoraktivität betrug 118 kg PP/g Metallocen x h.

Claims

Patentansprüche:
1. Geträgertes Katalysatorsystem, enthaltend a) einen Träger b) eine Lewis-Base der Formel I c) eine Organometallverbindung der Formel II als Cokatalysator d) mindestens ein Metallocen, e) Organometallverbindung der Formel IM, worin die Organometallverbindung der Formel II kovalent an den Träger gebunden ist.
2. Verwendung eines geträgerten Katalysatorsystems gemäß Anspruch 1 zur Herstellung eines Olefinpolymers.
3. Verfahren zur Herstellung eines Olefinpolymers in Gegenwart eines geträgerten Katalysatorsystems gemäß Anspruch 1.
4. Verfahren zur Herstellung eines geträgerten Katalysatorsystems gemäß Anspruch 1 , enthaltend als Verfahrensschritte a) die Umsetzung einer Lewis-Base der Formel I und einer
Organometallverbindung der Formel II mit einem Träger und b) anschließende Umsetzung mit einer Lösung oder Suspension enthaltend eine Metallocen-Verbindung und mindestens eine Organometall-Verbindung der Formel IM.
PCT/EP1998/008050 1997-12-23 1998-12-10 Geträgertes katalysatorsystem zur polymerisation von olefinen WO1999033881A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000526552A JP2001527135A (ja) 1997-12-23 1998-12-10 オレフィン重合用担持触媒系
DE59809824T DE59809824D1 (de) 1997-12-23 1998-12-10 Geträgertes katalysatorsystem zur polymerisation von olefinen
US09/581,999 US7202190B1 (en) 1997-12-23 1998-12-10 Supported catalyst system for the polymerization of olefins
BR9814410-3A BR9814410A (pt) 1997-12-23 1998-12-10 Sistema catalisador suportado, uso do mesmo, e, processos para preparar um polìmero de olefina e, um sistema catalisador suportado.
EP98965805A EP1042371B1 (de) 1997-12-23 1998-12-10 Geträgertes katalysatorsystem zur polymerisation von olefinen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19757540A DE19757540A1 (de) 1997-12-23 1997-12-23 Geträgertes Katalysatorsystem zur Polymerisation von Olefinen
DE19757540.4 1997-12-23

Publications (1)

Publication Number Publication Date
WO1999033881A1 true WO1999033881A1 (de) 1999-07-08

Family

ID=7853188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/008050 WO1999033881A1 (de) 1997-12-23 1998-12-10 Geträgertes katalysatorsystem zur polymerisation von olefinen

Country Status (7)

Country Link
US (1) US7202190B1 (de)
EP (1) EP1042371B1 (de)
JP (1) JP2001527135A (de)
BR (1) BR9814410A (de)
DE (2) DE19757540A1 (de)
ES (1) ES2210860T3 (de)
WO (1) WO1999033881A1 (de)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036499A1 (en) * 1999-11-19 2001-05-25 Exxon Chemical Patents Inc. Preparation of supported polymerization catalysts
US6376408B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6376627B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6376412B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6376410B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6376413B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6376409B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6376411B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6376407B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380124B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380121B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380120B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380330B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380123B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380334B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380331B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380122B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6395847B2 (en) 1999-11-19 2002-05-28 Exxonmobil Chemical Patents Inc. Supported organometallic catalysts and their use in olefin polymerization
US6399723B1 (en) 2000-06-30 2002-06-04 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6414095B1 (en) 2000-06-30 2002-07-02 Exxon Mobil Chemical Patents Inc. Metallocene compositions
US6870016B1 (en) 2000-06-30 2005-03-22 Exxonmobil Chemical Patents Inc. Polymerization process and polymer composition
US7122498B2 (en) 2000-06-30 2006-10-17 Exxonmobil Chemical Patents Inc. Metallocenes and catalyst compositions derived therefrom
US7442667B2 (en) 2003-12-23 2008-10-28 Bosell Polyolefine Gmbh Preparation of supported cocatalysts
US7618912B2 (en) 2002-07-15 2009-11-17 Basell Polyolefine Gmbh Preparation of supported catalyst systems

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19828271A1 (de) * 1998-06-25 1999-12-30 Elenac Gmbh Verfahren zur Herstellung eines geträgerten Katalysatorsystems
WO2000020466A1 (de) * 1998-10-01 2000-04-13 Targor Gmbh Katalysatorsystem
JP4731017B2 (ja) * 1998-12-30 2011-07-20 イネオス ユーロープ リミテッド 減少量の溶剤を用いる支持重合触媒の製造方法および重合方法
DE19917985A1 (de) 1999-04-21 2000-10-26 Targor Gmbh Katalysatorsystem
DE19962910A1 (de) 1999-12-23 2001-07-05 Targor Gmbh Chemische Verbindung, Verfahren zu deren Herstellung und deren Verwendung in Katalysatorsystemen zur Herstellung von Polyolefinen
EP1650231A1 (de) * 2004-10-21 2006-04-26 Total Petrochemicals Research Feluy Polyolefine hergestellt mit Metallocen- und neuen Single-Site-Katalysatorkomponenten in einem Reaktor
JP2019156896A (ja) * 2018-03-08 2019-09-19 日本ポリエチレン株式会社 オレフィン重合触媒及びオレフィン重合体の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996004319A1 (en) * 1994-08-03 1996-02-15 Exxon Chemical Patents Inc. Supported ionic catalyst composition
WO1996023005A1 (en) * 1995-01-25 1996-08-01 W.R. Grace & Co.-Conn. A supported catalytic activator
EP0727443A1 (de) * 1995-02-20 1996-08-21 Tosoh Corporation Katalysator für die Polymerisation von Olefinen und Verfahren zur Herstellung von Olefinpolymerisaten
WO1997019959A1 (en) * 1995-11-27 1997-06-05 The Dow Chemical Company Supported catalyst containing tethered cation forming activator

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964604A (ja) 1982-10-06 1984-04-12 Sumitomo Chem Co Ltd ポリオレフインの製造方法
IL85097A (en) 1987-01-30 1992-02-16 Exxon Chemical Patents Inc Catalysts based on derivatives of a bis(cyclopentadienyl)group ivb metal compound,their preparation and their use in polymerization processes
US5017714A (en) * 1988-03-21 1991-05-21 Exxon Chemical Patents Inc. Silicon-bridged transition metal compounds
NZ235032A (en) 1989-08-31 1993-04-28 Dow Chemical Co Constrained geometry complexes of titanium, zirconium or hafnium comprising a substituted cyclopentadiene ligand; use as olefin polymerisation catalyst component
ES2072598T3 (es) 1990-01-02 1995-07-16 Exxon Chemical Patents Inc Catalizadores ionicos de metaloceno soportados para la polimerizacion de olefinas.
EP0516458B2 (de) * 1991-05-31 2007-12-19 Mitsui Chemicals, Inc. Fester Katalysatorbestandteil, Katalysator und Verfahren für Olefinpolymerisation
DE4120009A1 (de) * 1991-06-18 1992-12-24 Basf Ag Loesliche katalysatorsysteme zur herstellung von polyalk-1-enen mit hohen molmassen
US5721185A (en) 1991-06-24 1998-02-24 The Dow Chemical Company Homogeneous olefin polymerization catalyst by abstraction with lewis acids
DE69222700T2 (de) * 1991-07-11 1998-03-26 Idemitsu Kosan Co Verfahren zur Herstellung von Polymeren auf Olefinbasis und Olefin-Polymerisationskatalysatoren
TW309523B (de) 1991-11-30 1997-07-01 Hoechst Ag
JP3194438B2 (ja) * 1992-01-08 2001-07-30 出光興産株式会社 スチレン系重合体の製造方法及びその触媒
TW294669B (de) 1992-06-27 1997-01-01 Hoechst Ag
US5372980A (en) 1993-06-03 1994-12-13 Polysar Bimetallic metallocene alumoxane catalyst system and its use in the preparation of ethylene-alpha olefin and ethylene-alpha olefin-non-conjugated diolefin elastomers
DE4325824A1 (de) 1993-07-31 1995-02-02 Basf Ag Verfahren zur Herstellung von Homopolymerisaten des Ethylens oder Copolymerisaten des Ethylens
FI945958A (fi) 1993-12-21 1995-06-22 Hoechst Ag Menetelmä polyolefiinien valmistamiseksi
FI945959A (fi) 1993-12-21 1995-06-22 Hoechst Ag Metalloseenejä ja niiden käyttö katalyytteinä
JP3219277B2 (ja) * 1993-12-28 2001-10-15 出光興産株式会社 オレフィン系重合体の製造方法及びエチレン系重合
DE69500763T2 (de) * 1994-10-13 1998-03-26 Japan Polyolefins Co Ltd Katalysatorkomponent zur Olefinpolymerisation, dieses enthaltenden Katalysator und Verfahren zur Olefinpolymerisation in Gegenwart dieses Katalysators
IT1275777B1 (it) * 1995-07-06 1997-10-17 Enichem Spa Catalizzatore metallocenico per la (co)polimerizzazione delle olefine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996004319A1 (en) * 1994-08-03 1996-02-15 Exxon Chemical Patents Inc. Supported ionic catalyst composition
WO1996023005A1 (en) * 1995-01-25 1996-08-01 W.R. Grace & Co.-Conn. A supported catalytic activator
EP0727443A1 (de) * 1995-02-20 1996-08-21 Tosoh Corporation Katalysator für die Polymerisation von Olefinen und Verfahren zur Herstellung von Olefinpolymerisaten
WO1997019959A1 (en) * 1995-11-27 1997-06-05 The Dow Chemical Company Supported catalyst containing tethered cation forming activator

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036499A1 (en) * 1999-11-19 2001-05-25 Exxon Chemical Patents Inc. Preparation of supported polymerization catalysts
US6395847B2 (en) 1999-11-19 2002-05-28 Exxonmobil Chemical Patents Inc. Supported organometallic catalysts and their use in olefin polymerization
US6380334B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6376410B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380331B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380122B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6376409B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6376411B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6376407B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380124B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380121B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380120B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380330B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6380123B1 (en) 2000-06-30 2002-04-30 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6376627B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6376412B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6376413B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6376408B1 (en) 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6399723B1 (en) 2000-06-30 2002-06-04 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6414095B1 (en) 2000-06-30 2002-07-02 Exxon Mobil Chemical Patents Inc. Metallocene compositions
US6870016B1 (en) 2000-06-30 2005-03-22 Exxonmobil Chemical Patents Inc. Polymerization process and polymer composition
US6888017B2 (en) 2000-06-30 2005-05-03 Exxonmobil Chemical Patents Inc. Metallocene compositions
US6894179B2 (en) 2000-06-30 2005-05-17 Exxon Mobil Chemical Patents Inc. Metallocene compositions
US6903229B2 (en) 2000-06-30 2005-06-07 Exxonmobil Chemical Patents Inc. Metallocene compositions
US7122498B2 (en) 2000-06-30 2006-10-17 Exxonmobil Chemical Patents Inc. Metallocenes and catalyst compositions derived therefrom
US7297747B2 (en) 2000-06-30 2007-11-20 Exxonmobil Chemical Patents Inc. Polymerization process and polymer composition
US7618912B2 (en) 2002-07-15 2009-11-17 Basell Polyolefine Gmbh Preparation of supported catalyst systems
US7442667B2 (en) 2003-12-23 2008-10-28 Bosell Polyolefine Gmbh Preparation of supported cocatalysts

Also Published As

Publication number Publication date
EP1042371B1 (de) 2003-10-01
ES2210860T3 (es) 2004-07-01
EP1042371A1 (de) 2000-10-11
JP2001527135A (ja) 2001-12-25
DE59809824D1 (de) 2003-11-06
US7202190B1 (en) 2007-04-10
DE19757540A1 (de) 1999-06-24
BR9814410A (pt) 2000-10-10

Similar Documents

Publication Publication Date Title
EP1042371B1 (de) Geträgertes katalysatorsystem zur polymerisation von olefinen
EP1175262B1 (de) Katalysatorsystem
EP1053263B1 (de) Katalysatorsystem
EP1023334B1 (de) Katalysatorsystem
EP1250363B1 (de) Chemische verbindung, verfahren zu deren herstellung und deren verwendung in katalysatorsystemen zur herstellung von polyolefinen
EP1280600B1 (de) Geträgertes katalysatorsystem enthaltend ein metallocen, eine lewis-base und eine elementorganische verbindung der iii. hauptgruppe, sowie dessen verwendung
EP0824113B2 (de) Geträgertes Katalysatorsystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen
EP0811627B1 (de) Chemische Verbindung, neutral oder ionisch aufgebaut, geeignet als Katalysatorkomponente für die Olefinpolymerisation
EP1058694B1 (de) Katalysatorsystem, verfahren zu seiner herstellung und seine verwendung zur polymerisation von olefinen
EP1290002B1 (de) Als cokatalysator geeignete chemische produkte, verfahren zu ihrer herstellung und ihre verwendung in katalysator-systemen zur herstellung von polyolefinen
DE19733017A1 (de) Chemische Verbindung
EP0687682A1 (de) Übergangsmetallverbindungen
DE19823168A1 (de) Katalysatorsystem
EP1054914B1 (de) Zwitterionische, neutrale übergansmetallverbindung
EP1084159B1 (de) Katalysatorsystem mit metallocenen mit fluorhaltigen substituenten
WO2000020466A1 (de) Katalysatorsystem
WO2000064906A1 (de) Chemische verbindung, verfahren zu deren herstellung und deren verwendung in katalysatorsystem zur herstellung von polyolefinen
DE19632557A1 (de) Chemische Verbindung
DE19845240A1 (de) Katalysatorsystem
WO2000018773A1 (de) Chemische verbindung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1998965805

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09581999

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: KR

WWP Wipo information: published in national office

Ref document number: 1998965805

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998965805

Country of ref document: EP