WO1999032852A1 - Etalonnage automatique rapide d'une mesure d'un vecteur de vitesse, effectuee de maniere autonome a bord d'un vehicule - Google Patents

Etalonnage automatique rapide d'une mesure d'un vecteur de vitesse, effectuee de maniere autonome a bord d'un vehicule Download PDF

Info

Publication number
WO1999032852A1
WO1999032852A1 PCT/EP1998/008389 EP9808389W WO9932852A1 WO 1999032852 A1 WO1999032852 A1 WO 1999032852A1 EP 9808389 W EP9808389 W EP 9808389W WO 9932852 A1 WO9932852 A1 WO 9932852A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
speed vector
independent
speed
board
Prior art date
Application number
PCT/EP1998/008389
Other languages
German (de)
English (en)
Inventor
Detlev Wick
Ulrich Mangold
Original Assignee
Litef Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Litef Gmbh filed Critical Litef Gmbh
Publication of WO1999032852A1 publication Critical patent/WO1999032852A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/183Compensation of inertial measurements, e.g. for temperature effects
    • G01C21/188Compensation of inertial measurements, e.g. for temperature effects for accumulated errors, e.g. by coupling inertial systems with absolute positioning systems

Definitions

  • the invention relates to methods for calibrating on-board autonomous speed measurements in navigation systems with inertial sensors.
  • on-board autonomous navigation and orientation systems often also use on-board autonomous speed measurement.
  • suitable sensors are attached to the carrier vehicle, which enable speed measurement depending on the ambient conditions of the carrier.
  • the invention has for its object to provide a method with which the on-board autonomous measurement of the speed vector, which is subject to gross errors, can be calibrated automatically, quickly and reliably using external and independent, but noisy and only limitedly available speed measurements.
  • the method according to the invention for calibrating an on-board measurement of a speed vector in a navigation system with an inertial measuring unit is characterized in that the on-board measurement of the speed vector is compared with an external and independent measurement of the speed vector of an independent speed sensor, and by means of the comparison calibration parameters for the on-board autonomous measurements of the speed vector are calculated.
  • the method is characterized in particular by the fact that no previous knowledge of the approximation values or of the approximation values of the calibration values is required.
  • the method according to the invention can be used particularly advantageously if its results are used to initialize a downstream optimal filter which requires a linear working area and ascertains very precise navigation results.
  • the output variables of the method according to the invention are at least the starting heading angle of the vehicle as the dominant source of error for the on-board autonomous speed measurement and the synchronization error between the on-board autonomous and the independent, external measurement of the speed vector.
  • a preferred application of the invention is e.g. Dead reckoning systems in land vehicles, which have a measurement that is proportional to the vehicle's longitudinal speed through a displacement sensor and which detect the change in the direction of speed with inertial sensors.
  • the calibration task also includes determining the scale factor of the travel sensor in addition to determining the initial value of the heading angle (initial alignment) and the synchronization error between the on-board autonomous and the independent external measurement.
  • An exact external, independent speed measurement for this purpose e.g. Satellite navigation receiver.
  • the aim of the calibration of the measurement of the on-board autonomous speed vector is then, also in the case of intermittent disturbances and falsifications of the external speed measurement, as e.g. When using a satellite navigation receiver, it is often the case to ensure a fast, reliable and automatic calculation of the calibration values.
  • the estimation method according to the invention described below does not constitute any restrictive requirements regarding prior knowledge of the calibration of the on-board autonomous speed vector. Rather, the estimation filter is designed in such a way that the calibration is carried out quickly, reliably and with sufficient accuracy, so that the estimated calibration parameters are suitable as reliable initialization values for a downstream linear optimal filter which delivers the highest possible navigation accuracy.
  • the following error sources are when using the measurement of a speed vector by e.g. to consider a satellite navigation receiver as an external independent measurement:
  • Time reference error between the two speed measurements can refer to different reference points of the vehicle.
  • the distance between the two reference points of the speed vector is referred to below as the "lever arm”.
  • the estimation filter according to the invention described uses speed measurements which are transformed to a common reference point within the required calibration accuracy.
  • the time reference error is taken into account as a model parameter and thus as a variable to be estimated. Because in many applications there is a requirement to avoid the interface effort for the integration of the synchronization signal.
  • FIG. 1 shows an on-board autonomous inertial measuring unit 1.
  • the most widespread sensor configurations consist of three orthogonally arranged accelerometers and gyros, which are either arranged on spatially stabilized platforms or mounted fixed to the housing. The latter embodiment is known as a strapdown system. If the carrier vehicle's dynamics are known a priori, often only a reduced number of sensors is required. In certain applications for land vehicles For example, only two accelerometers are used in the horizontal vehicle plane and a gyroscope with a measuring axis around the vehicle vertical axis.
  • the inertial measuring unit provides changes in the orientation of the carrier vehicle on which the inertial measuring unit is mounted.
  • the on-board autonomous speed sensor 2 measures the speed vector of the carrier vehicle in vehicle-fixed coordinates.
  • the navigation equations 3 continuously integrate the changes in the orientation of the carrier vehicle to orientation angles provided by the inertial measuring unit 1, often referred to as course and position angles, the relationship of which to the true reference coordinate system has deviations.
  • the orientation angles calculated in this way thus relate to an incorrect reference coordinate system which is referred to as a pseudo reference coordinate system.
  • the navigation equations 3 continuously calculate the on-board autonomous speed vector in the pseudo reference coordinate system on the basis of the speed vector supplied by the on-board autonomous speed sensor 2.
  • the navigation equations 3 use the orientation angles for this.
  • This calculated on-board autonomous speed vector, which is present in the pseudo reference coordinate system is output to an estimation algorithm 4.
  • the estimation algorithm 4 uses as inputs the on-board autonomous speed vector shown in the pseudo reference coordinate system and the independent speed vector of an independent speed sensor 5 determined in the actual reference coordinate system, e.g. of a satellite navigation receiver.
  • a preferred embodiment of the estimation algorithm 4 is implemented by means of an optimal estimation filter 6, an abort test 8 and a stochastic compatibility test 7.
  • the optimal estimation filter 6 contains a mathematical model that describes the dynamic behavior of the difference between the on-board autonomous and the external, independent measurement of the speed vector.
  • This mathematical model contains at least the error of the Starting course angle as the dominant error of the on-board autonomous speed measurement and the synchronization error between the on-board autonomous and the external, independent speed sensor as unknowns.
  • the optimal estimation filter 6 uses the mathematical model, the continuously measured independent speed vector and the updated on-board autonomous speed vector to estimate the unknowns of the mathematical model.
  • the optimal estimation filter 6 calculates numerical values which represent dimensions for the estimation accuracies as well as dependencies between the calibration parameters.
  • the abort test 8 uses the measures for the estimation accuracy of the calibration parameters in order to verify whether individual calibration parameters are estimated with the respectively required accuracy. In the statistical sense, this is fulfilled if the corresponding measures are smaller than the specified threshold values. The reliability of the estimate is increased by taking minimum calibration times into account.
  • the estimation algorithm 4 is designed such that when individual calibration parameters are estimated sufficiently accurately and reliably, the estimation filter 6 only determines the remaining calibration parameters and does not take into account the components of the external, independent and on-board autonomous speed vector that are no longer required for this.
  • the stochastic compatibility test 7 checks whether the previously available estimated values for the calibration parameters match the difference between the independent, external and the on-board autonomous speed vector. This takes place on the basis of the quality measures output by the independent speed sensor 5 and the dimensions for the estimation accuracies calculated in the optimal estimation filter 6 as well as dependencies between the calibration parameters.
  • the optimal estimation filter 6 is partially or completely reinitialized in accordance with the test results. The optimal estimation filter 6 thus has the opportunity to learn again by probably rejecting previously incorrectly estimated calibration parameters.
  • the estimated values for the calibration parameters are improved and the estimated accuracy is increased.
  • the optimal estimation filter 6 has the property of automatically or automatically recognizing missing or ambiguous observabilities of the calibration parameters. These are expressed by the fact that the corresponding measures for the estimation accuracies and dependencies between the calibration parameters are not reduced or the specified threshold values are not undershot.
  • the optimal estimation filter 6 is also distinguished by the fact that it automatically determines the times required for individual calibration parameters to be estimated with a predetermined accuracy.
  • the estimation algorithm 4 works with any possible movement states of the carrier vehicle with the exception of the vehicle standstill, which is automatically recognized by the estimation algorithm.
  • the optimal estimation filter 6 is stopped during such phases. This also applies if the external, independent speed sensor temporarily does not provide any valid measured values or those of poor quality.
  • inertial navigation systems are often used which have only two accelerometers in the horizontal vehicle plane and a gyroscope with a measuring axis around the vehicle vertical axis.
  • a travel sensor which measures a signal proportional to the longitudinal vehicle speed, serves as an on-board autonomous speed sensor.
  • the calibration parameters consist of the scale factor of the odometer, the synchronization error between the on-board autonomous and the external, independent measurement of the speed vector, and the initial heading angle error, which is the difference between the actual neuter and the pseudo-reference coordinate system.
  • a special case of this case arises from the different necessities of calibrating the initial heading angle error and the scale factor of the displacement sensor. While it is often necessary to determine the initial direction (e.g. after vehicle transports or trips with the navigation system switched off, i.e. potentially every time the system is switched on), the calibration of the scale factor only makes sense when the vehicle is started up for the first time. This means that one and the same navigation system can easily be used in a variety of vehicle types that have displacement sensors with very different scale factors.
  • the estimation algorithm 4 is then broken down into two parts, one part taking over the estimation of the scale factor of the odometer and the other one having the task of determining the starting heading angle and the synchronization error.
  • the estimation algorithm 4 requires information as to whether the vehicle is moving forwards or backwards. This information can be obtained as follows:

Abstract

L'invention concerne un procédé permettant d'étalonner de manière automatique, rapide et fiable, les mesures du vecteur de vitesse d'un véhicule effectuées de manière autonome à bord dudit véhicule et exposées au risque d'erreurs majeures, à l'aide de mesures indépendantes et néanmoins altérées par le bruit, qui ne sont disponibles que de manière limitée. Outre la mesure indépendante effectuée à bord du vecteur de vitesse du véhicule, le procédé fait appel à des mesures d'un système de navigation autonome de bord avec des détecteurs inertiels. Le procédé mis au point selon l'invention ne requiert pas de connaissances préalables sur les valeurs approchées des paramètres d'étalonnage, voire pas de valeurs approchées. Les paramètres d'étalonnage sont calculés sur la base d'un filtre d'évaluation optimal. Le procédé comprend l'évaluation de l'erreur de synchronisation entre la mesure du vecteur de vitesse effectuée de manière autonome à bord du véhicule et la mesure extérieure indépendante dudit vecteur de vitesse. Les résultats de l'étalonnage dudit procédé s'utilisent de préférence pour initialiser un filtre optimal monté en aval, linéarisé autour d'un point de travail et étudié en vue de résultats de navigation précis.
PCT/EP1998/008389 1997-12-22 1998-12-21 Etalonnage automatique rapide d'une mesure d'un vecteur de vitesse, effectuee de maniere autonome a bord d'un vehicule WO1999032852A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19757333A DE19757333C1 (de) 1997-12-22 1997-12-22 Selbsttätige, schnelle Kalibrierung einer bordautonomen Messung eines Geschwindigkeitsvektors
DE19757333.9 1997-12-22

Publications (1)

Publication Number Publication Date
WO1999032852A1 true WO1999032852A1 (fr) 1999-07-01

Family

ID=7853061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/008389 WO1999032852A1 (fr) 1997-12-22 1998-12-21 Etalonnage automatique rapide d'une mesure d'un vecteur de vitesse, effectuee de maniere autonome a bord d'un vehicule

Country Status (2)

Country Link
DE (1) DE19757333C1 (fr)
WO (1) WO1999032852A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6778924B2 (en) * 2001-11-06 2004-08-17 Honeywell International Inc. Self-calibrating inertial measurement system method and apparatus
CN113484542A (zh) * 2021-07-06 2021-10-08 中国人民解放军国防科技大学 一种用于三维测速仪的单点快速标定方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006029148B4 (de) 2006-06-24 2010-08-05 Lfk-Lenkflugkörpersysteme Gmbh Verfahren zur Überprüfung einer inertialen Messeinheit von Fahrzeugen, insbesondere von Luftfahrzeugen, im stationären Zustand
US8508590B2 (en) 2010-03-02 2013-08-13 Crown Equipment Limited Method and apparatus for simulating a physical environment to facilitate vehicle operation and task completion
US8538577B2 (en) 2010-03-05 2013-09-17 Crown Equipment Limited Method and apparatus for sensing object load engagement, transportation and disengagement by automated vehicles
CN103608740B (zh) * 2011-04-11 2017-06-30 克朗设备公司 使用经协调路径规划器有效调度多个自动非完整车辆的方法和设备
US8655588B2 (en) 2011-05-26 2014-02-18 Crown Equipment Limited Method and apparatus for providing accurate localization for an industrial vehicle
US8548671B2 (en) * 2011-06-06 2013-10-01 Crown Equipment Limited Method and apparatus for automatically calibrating vehicle parameters
US8589012B2 (en) 2011-06-14 2013-11-19 Crown Equipment Limited Method and apparatus for facilitating map data processing for industrial vehicle navigation
US8594923B2 (en) 2011-06-14 2013-11-26 Crown Equipment Limited Method and apparatus for sharing map data associated with automated industrial vehicles
US20140058634A1 (en) 2012-08-24 2014-02-27 Crown Equipment Limited Method and apparatus for using unique landmarks to locate industrial vehicles at start-up
US9056754B2 (en) 2011-09-07 2015-06-16 Crown Equipment Limited Method and apparatus for using pre-positioned objects to localize an industrial vehicle
DE102017213806A1 (de) * 2017-08-08 2019-02-14 Siemens Aktiengesellschaft Kalibration von Fahrzeugsensoren

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0161668A2 (fr) * 1984-05-16 1985-11-21 TELDIX GmbH Procédé de navigation pour véhicules, en particulier pour véhicules terrestres
WO1994028435A1 (fr) * 1993-05-28 1994-12-08 Trimble Navigation Limited Systeme de navigation pour ponderation adaptative des informations relatives au mode gps et au mode de navigation a l'estime
EP0629877A1 (fr) * 1993-06-21 1994-12-21 State Of Israel Ministry Of Defence Rafael Armament Development Authority Navigation à l'estime assisté par GPS
US5570304A (en) * 1994-07-27 1996-10-29 Litton Systems, Inc. Method for thermal modeling and updating of bias errors in inertial navigation instrument outputs
WO1997024583A1 (fr) * 1995-12-28 1997-07-10 Magellan Dis Inc. Systeme et procede de navigation amelioree pour vehicule utilisant des donnees de vitesse fournies par gps

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09196691A (ja) * 1996-01-19 1997-07-31 Matsushita Electric Ind Co Ltd ナビゲーション装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0161668A2 (fr) * 1984-05-16 1985-11-21 TELDIX GmbH Procédé de navigation pour véhicules, en particulier pour véhicules terrestres
WO1994028435A1 (fr) * 1993-05-28 1994-12-08 Trimble Navigation Limited Systeme de navigation pour ponderation adaptative des informations relatives au mode gps et au mode de navigation a l'estime
EP0629877A1 (fr) * 1993-06-21 1994-12-21 State Of Israel Ministry Of Defence Rafael Armament Development Authority Navigation à l'estime assisté par GPS
US5570304A (en) * 1994-07-27 1996-10-29 Litton Systems, Inc. Method for thermal modeling and updating of bias errors in inertial navigation instrument outputs
WO1997024583A1 (fr) * 1995-12-28 1997-07-10 Magellan Dis Inc. Systeme et procede de navigation amelioree pour vehicule utilisant des donnees de vitesse fournies par gps

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6778924B2 (en) * 2001-11-06 2004-08-17 Honeywell International Inc. Self-calibrating inertial measurement system method and apparatus
US6968281B2 (en) 2001-11-06 2005-11-22 Honeywell International, Inc. Method for calibrating an inertial measurement unit
CN113484542A (zh) * 2021-07-06 2021-10-08 中国人民解放军国防科技大学 一种用于三维测速仪的单点快速标定方法
CN113484542B (zh) * 2021-07-06 2023-09-19 中国人民解放军国防科技大学 一种用于三维测速仪的单点快速标定方法

Also Published As

Publication number Publication date
DE19757333C1 (de) 1999-09-16

Similar Documents

Publication Publication Date Title
EP3155377B1 (fr) Procédé et système de vérification de données de mesure
DE102015010340B4 (de) Positionsbestimmungsvorrichtung
DE102008030071B4 (de) System zum Ermitteln der Fahrtrichtung eines Fahrzeugs
WO1999032852A1 (fr) Etalonnage automatique rapide d'une mesure d'un vecteur de vitesse, effectuee de maniere autonome a bord d'un vehicule
EP1474315B1 (fr) Dispositif de reconnaissance d'un risque de renversement
DE102014211175A1 (de) Verfahren und System zur Initialisierung eines Sensorfusionssystems
DE102013213067B4 (de) Verfahren und Vorrichtung zur Bestimmung mindestens einer Zustandsgröße einer Eigenposition eines Fahrzeugs
WO2010003437A1 (fr) Dispositif et procédé de détermination de l’état de conduite d’un véhicule
DE102014211176A1 (de) Verfahren und System zur Korrektur von Messdaten und/oder Navigationsdaten eines Sensorbasissystems
WO2015189180A1 (fr) Procédé et système d'adaptation d'un système de navigation
DE102014211180A1 (de) Verfahren und System zur verbesserten Erkennung und/oder Kompensation von Fehlerwerten
DE102017121017A1 (de) Verfahren zum Bestimmen einer aktuellen Position eines Kraftfahrzeugs, Steuereinrichtung, Fahrzeugmodul, Positionsbestimmungssystem sowie Kraftfahrzeug
EP0942855B1 (fr) Procede et dispositif pour determiner la position inertielle d'un vehicule
DE102014211178A1 (de) Verfahren und System zur Korrektur von Messdaten eines ersten Sensorsystems
DE102017218487A1 (de) Verfahren zum Betrieb eines Inertialsensorsystems, Inertialsystem und Fahrzeug mit Inertialsystem
DE60300435T2 (de) Bewegungszustandsbestimmung
WO2015189181A1 (fr) Procédé et système d'obtention en temps réel de valeurs d'erreur dynamiques de valeurs de mesure dynamiques
EP3155454B1 (fr) Procédé et système d'adaptation d'un système de navigation
EP2678207B1 (fr) Procédé et dispositif de détermination de la position inclinée d'un véhicule
EP3155371A1 (fr) Procédé et système pour corriger des données de sortie d'un système de base de capteur
DE102015010173B3 (de) Verfahren zur Schwimmwinkelmessung in Fahrzeugen
EP3088845A1 (fr) Determination d'un itineraire selectionne par un utilisateur d'un systeme de navigation
DE19837905B4 (de) Vorrichtung zum Korrigieren der Fahrzeugrichtung
WO2023102585A1 (fr) Procédé de détermination de la vitesse et/ou de la direction de déplacement d'un véhicule
DE19812426A1 (de) Einstellung von Sensoren mit dem Geschwindigkeitsvektor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): IL IN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WA Withdrawal of international application