WO1999032835A1 - Kältegerät - Google Patents

Kältegerät Download PDF

Info

Publication number
WO1999032835A1
WO1999032835A1 PCT/EP1998/008276 EP9808276W WO9932835A1 WO 1999032835 A1 WO1999032835 A1 WO 1999032835A1 EP 9808276 W EP9808276 W EP 9808276W WO 9932835 A1 WO9932835 A1 WO 9932835A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
refrigerant
injection points
compartments
appliance according
Prior art date
Application number
PCT/EP1998/008276
Other languages
English (en)
French (fr)
Inventor
Wolfgang Nuiding
Walter Holz
Original Assignee
BSH Bosch und Siemens Hausgeräte GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeräte GmbH filed Critical BSH Bosch und Siemens Hausgeräte GmbH
Priority to SI9830640T priority Critical patent/SI1040303T1/xx
Priority to DE59811550T priority patent/DE59811550D1/de
Priority to EP98966354A priority patent/EP1040303B1/de
Publication of WO1999032835A1 publication Critical patent/WO1999032835A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/04Refrigerators with a horizontal mullion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/16Convertible refrigerators

Definitions

  • the invention relates to a refrigeration device with a heat-insulating housing, within which at least two thermally separated refrigeration compartments of different temperature are arranged, each of which is cooled by an evaporator equipped with a corresponding cooling capacity, the evaporators serving to cool the compartments being connected together in series in a refrigeration cycle arranged one behind the other and acted upon by a compressor located in the refrigeration circuit with refrigerant.
  • a two-temperature refrigerator is proposed in DE-OS 35 08 805, the thermally separated compartments of different temperatures are cooled by one evaporator each.
  • the evaporators are located in a refrigeration circuit with a single compressor, which, controlled by regulating bodies designed as heatable throttles, either applies the evaporators individually one after the other or simultaneously with liquid refrigerant, depending on the cooling requirement in the compartments.
  • a compressor is connected downstream of the compressor, which has a heating element for expelling the liquid refrigerant stored in its collecting space.
  • the heating element assigned to the collector is activated with a lead time before the compressor is started up, in order then to feed the stored liquid refrigerant to the refrigerant circuit.
  • the thermally separated refrigeration compartments of different temperatures are connected in series within a refrigeration circuit equipped with a single compressor and, depending on the cooling demand, controlled by lockable throttle elements, each individually or can be acted upon together with refrigerant, the amount of refrigerant being matched to the charge of the two evaporators.
  • the amount of refrigerant available in the entire refrigeration circuit in order to avoid overfilling an individual evaporator to be operated, is divided by a tap of the condenser which can be shut off by means of a throttle element, according to the capacity of this evaporator.
  • the tapping of the condenser only the section lying in front of this tapping is flowed through by the refrigerant which is forcibly circulated by the compressor.
  • the invention has for its object to provide a possibility for regulating the temperature in the warmer refrigeration compartment in a refrigerator according to the preamble of claim 1 with simple structural measures while avoiding the disadvantages of the prior art.
  • This object is achieved according to the invention in that on the evaporator for generating the lower temperature at least two spaced apart in the flow direction of the driven refrigerant, a portion of the refrigerant channel arrangement of the evaporator between injection points are provided, each of the injection points upstream a throttle device and each the injection points can be optionally controlled by deflection means.
  • the flow path for the refrigerant is shortened or lengthened, depending on the injection point in which the refrigerant is supplied, in the former case the evaporator located at the end of the series connection of the refrigerant circuit, for example, when the regulator is in the "warm” position, the refrigerant no longer flows through it, as a result of which the temperature in the compartment cooled by this evaporator can be regulated.
  • the flow path of the refrigerant is shortened in a second operating mode, for example for the "cold" control position, the evaporator located in the end in series connection of the evaporators is charged with refrigerant so that the temperature in this compartment drops.
  • the evaporator is designed to produce the lower temperature as an essentially C-shaped (in the form of a lying "U") freezer compartment evaporator with an evaporator ceiling, an evaporator rear wall and an evaporator bottom, one of the injection points being one in the evaporator ceiling and the other is in the evaporator bottom, which means that in both operating modes the refrigerant that accumulates in the evaporator bottom while the compressor is idle is available for refrigeration when the compressor starts up.
  • one of the refrigerant injection points is arranged in the vicinity of the outflow-side end of the evaporator in order to generate the lower temperature.
  • a substantial portion of the entire refrigerant channel length of the evaporator for generating the lower temperature is arranged between them, so that depending on which of the refrigerant injection points is used for injecting the refrigerant, a significant shortening or lengthening of the refrigerant flow path is effected , which produces a particularly clearly appealing temperature control for the compartment cooled by the evaporator connected in series at the end.
  • the evaporators are particularly easy to manufacture from a production point of view if, according to a next preferred embodiment of the object of the invention, it is provided that the throttle elements have the same flow resistance upstream of the injection points.
  • the spaced-apart injection points on the evaporator used to generate the lower temperature can be used particularly efficiently if, according to a further preferred embodiment of the object of the invention, it is provided that the evaporator for generating the lower temperature is designed as a c-shaped freezer compartment evaporator, which in its Cover one of the injection points and have the other injection point in its base.
  • the control range of the evaporator located at the end in the series connection of the evaporators can be increased in a particularly simple manner if, according to a next preferred embodiment of the subject of the invention, it is provided that throttle elements with different flow resistance are connected upstream of the injection points on the evaporator in order to generate the lower temperature.
  • the amount of refrigerant required to optimize the temperature for cooling the compartments in the different controller positions of the temperature controller is particularly precisely tunable if, according to a further preferred embodiment of the subject of the invention, it is provided that the refrigerant channel arrangement located after the respective injection point has essentially the same receiving volume having.
  • a deflection member can be controlled particularly simply and reliably, for example using temperature sensors, if, according to a last preferred embodiment of the subject of the invention, it is provided that the deflection member is designed as an electrically operated 3/2-way solenoid valve.
  • FIG. 1 shows a simplified, schematic illustration of a refrigeration device having three refrigeration compartments, the freezer compartment evaporator of which has two spaced-apart, optionally controllable refrigerant injection points, of which the one located at the beginning of the refrigerant channel arrangement is actuated in a first actuation type,
  • Fig. 3 in a simplified schematic representation of a two-temperature refrigeration device provided on the evaporator of his fresh cooling compartment, arranged at a distance from each other, optionally controllable injection points.
  • a refrigeration device 10 having three temperature zones is shown with a heat-insulating housing 11, within which three refrigeration compartments arranged one above the other and thermally separated by heat-insulating intermediate floors 12 are provided.
  • the one below is nem temperature range from, for example, + 0.5 ° C. to + 3 ° C., fresh storage compartment 13 with an evaporator 14, the normal cooling compartment 15 with an evaporator 16, which is arranged directly above the fresh storage compartment 13 and has a temperature range from + 5 ° C. to + 8 ° C. educated.
  • a freezer compartment 17 which is in a temperature range of ⁇ 18 ° C., for the cooling of which an evaporator 18 with a cross section which is essentially C-shaped is provided with a ceiling section, a rear wall and a floor section.
  • the evaporator 18 is equipped with a refrigerant channel arrangement 19 which extends continuously over its ceiling section, its rear wall and its bottom section.
  • the evaporator 18 has a first injection point 20 in its ceiling section and a second injection point 21 in its bottom section, so that between the two injection points 20 and 21 there is a certain length section of the refrigerant channel arrangement 19, the injection point 21 being a connection point 21.1 for the Coupling of the sections formed by the arrangement of the injection points 20 and 21 is arranged downstream of the channel arrangement 19.
  • a throttle device 22 or 23, which serves to reduce the pressure, is connected upstream of the two injection points 20 and 21, the throttle device 22 being connected on the output side to the injection point 20 and the throttle device 23 on the output side being connected to the injection point 21.
  • the input sides of the throttle devices 22 and 23 are connected to a deflection member 24 designed as an electrically operable 3/2-way solenoid valve, the input side of the throttle device 22 being connected by the deflection member 24 in a valve position I and the input side of the throttle device 23 in a valve position II Refrigerant can be applied.
  • the deflection member 24 is connected on the input side via a refrigerant line 25 to a condenser 26, which is connected on the inlet side to the pressure side of a refrigerant compressor 27, which is connected on the intake side in terms of flow technology to the refrigerator compartment evaporator 16, which at the end of the evaporator arranged in series connection 14, 16 and 18 is provided.
  • the temperatures prevailing in the individual refrigeration compartments 13, 15 and 17 of the refrigeration device 10 are determined by a regulating device which is arranged in the normal refrigeration compartment and is not shown in the present case and which, depending on the regulator position, switches the solenoid valve 24 into its operating position I or into its operating position II. If the refrigeration device 10 is operated, for example, in the "warm” controller position, the solenoid valve 24 is in its operating position I shown in FIG. 1. In this operating position, the refrigerant which is forcibly conveyed by the refrigerant compressor 27 is Tel according to the reinforced lines shown in Fig.
  • the amount of refrigerant circulated by the refrigerant compressor 27 in the refrigeration circuit is dimensioned such that in the "warm" control position, in which the solenoid valve 24 is in its operating position I, the amount of refrigerant is no longer used to cool the evaporator in series connection lying evaporator 16 is sufficient so that the normal cooling compartment 15 is no longer charged with liquid refrigerant in this regulator position and is therefore no longer cooled.
  • the solenoid valve 24 is switched to its operating position II shown in FIG. 2.
  • the refrigerant forcedly circulated by the refrigerant compressor 27 is fed via the throttling device 23 to the injection point 21 arranged in the bottom of the freezer compartment evaporator 18 (see reinforced lines), as a result of which a certain length of the refrigerant channel arrangement of the evaporator 18 is hidden from the refrigeration cycle.
  • the liquid refrigerant then flows over the rear wall and the ceiling of this evaporator into the evaporator 14 of the fresh storage compartment 13 immediately downstream in the series connection, from where it is fed via the outlet thereof to the evaporator 16 for cooling the normal cooling compartment 15 is.
  • the channel length through which liquid refrigerant flows in both operating modes is to be dimensioned with respect to its length such that in the respective operating case, refrigerant channel sections of liquid refrigerant are at least approximately the same length are flowed through.
  • refrigerant canal routes of the same length it is also possible to measure them in different lengths but with an almost identical intake volume.
  • FIG. 3 shows a further possible application of the invention using a two-temperature cooling device 30.
  • This has a heat-insulating housing 31 within which there is an overhead normal cooling compartment 32 with an evaporator 33 serving to cool it and a fresh storage compartment 35 separated from the normal cooling compartment 32 in a heat-insulating manner by an intermediate floor 34.
  • the fresh storage compartment is equipped with an evaporator 36, the refrigerant channel arrangement 37 of which can be acted upon by two refrigerant injection points 38 and 39, the refrigerant injection point 38 being provided at the beginning of the refrigerant channel arrangement 37 and the refrigerant injection point 39 approximately in the middle of the refrigerant channel arrangement 37, so that a certain channel length of the refrigerant channel arrangement 37 remains between the two refrigerant injection points 38 and 39.
  • the injection point 39 is followed by a connection point 39.1 for coupling the sections of the channel arrangement 37 formed by the arrangement of the injection points 38 and 39.
  • the refrigerant injection points 38 and 39 are each preceded by a throttle device 40 or 41, both of which have the same flow resistance and which are connected with their inflow side to the outputs of an electrically operated 3/2-way solenoid valve 42.
  • the solenoid valve 42 is fluidly connected on the input side to a condenser 43, which is connected on the inflow side to the pressure side of a refrigerant compressor 44, the suction side of which is connected in terms of flow technology to the outlet of the evaporator 33 connected in series with the evaporator 36 in the normal cooling compartment 32.
  • Both the temperature in the normal cooling compartment 32 and that in the fresh storage compartment 35 is determined by a control device 45 which is arranged in the normal cooling compartment 32 and is not shown in the present case. If the control device 45 is in its "cold" control position, for example, the solenoid valve 42 is switched to its operating position II (refrigerant flow corresponding to the reinforced line), in which the refrigerant forcedly circulated by the refrigerant compressor 44 via the throttle device 41 of the injection point 39 of the evaporator 36 is supplied, from where it flows over the remaining part of its refrigerant channel arrangement 37 into the evaporator 33 for cooling the normal cooling compartment 32.
  • position II refrigerant flow corresponding to the reinforced line
  • the solenoid valve 42 is switched into its operating position I, whereby the injection point 38 at the beginning of the refrigerant channel arrangement 37 of the evaporator 36 is supplied with liquid refrigerant via the throttle device 40 is.
  • the evaporator 33 connected downstream of the evaporator 36 is no longer loaded with liquid refrigerant and the normal cooling compartment 32 is therefore no longer cooled.
  • the injection point 39 downstream of the injection point 38 is to be arranged on the evaporator 36 such that the refrigerant channel length between the two injection points essentially corresponds to the refrigerant channel length of the evaporator 33 corresponds.
  • one of the refrigeration compartments is exposed to a temperature load due to a considerable amount of freshly stored refrigerated goods, e.g. an electronically controlled forced switchover of the refrigerant flow to the evaporator takes place in the temperature-loaded refrigeration compartment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

Bei einem Kältegerät (10) mit einem wärmeisolierenden Gehäuse (11), innerhalb welchem wenigstens zwei thermisch voneinander getrennte Kältefächer unterschiedlicher Temperatur angeordnet sind, von denen jedes von einem mit entsprechender Kälteleistung ausgestatteten Verdampfer (14, 16, 18) gekühlt ist, wobei die zur Kühlung der Fächer dienenden Verdampfer zusammen in einem Kältekreislauf in Reihenschaltung hintereinander angeordnet und von einem im Kältekreislauf befindlichen Verdichter (27) mit Kältemittel beaufschlagt sind, sind am Verdampfer (18) zur Erzeugung der tieferliegenden Temperatur wenigstens zwei in Flußrichtung des angetriebenen Kältemittels voneinander beabstandete, einen Abschnitt der Kältemittelkanalanordnung des Verdampfers zwischen sich aufnehmende Einspritzstellen (20, 21) vorgesehen, wobei jeder der Einspritzstellen (20, 21) zuflußseitig eine Drosseleinrichtung (22, 23) vorgeschaltet und jede der Einspritzstellen (20, 21) durch Umlenkmittel (24) wahlweise ansteuerbar ist.

Description

Kältegerät
Die Erfindung betrifft ein Kältegerät mit einem wärmeisolierenden Gehäuse, innerhalb welchem wenigstens zwei thermisch voneinander getrennte Kältefächer unterschiedlicher Temperatur angeordnet sind, von denen jedes von einem mit entsprechender Kälteleistung ausgestatteten Verdampfer gekühlt ist, wobei die zur Kühlung der Fächer dienenden Verdampfer zusammen in einem Kältekreislauf in Reihenschaltung hintereinander angeordnet und von einem im Kältekreisiauf befindlichen Verdichter mit Kältemittel beaufschlagt sind.
Bei Kältegeräten mit mehreren thermisch voneinander getrennten Temperaturzonen, deren Verdampfer von einem einzigen Kältemittelverdichter mit Kältemittel versorgt sind, ist man bestrebt, die von einem Temperaturfühler erfaßte Temperatur in den einzelnen
Temperaturzonen in dem temperaturzonenspezifischen Bereich aufrecht zu erhalten, ohne dabei für den Fall daß nur eine der Temperaturzonen eine Kälteanforderung signalisiert, Gefahr zu laufen, daß der zur Kühlung dieser Temperaturzone dienende Verdampfer mit flüssigem Kältemittel überflutet wird.
Zu dieser Problemstellung ist in der DE-OS 35 08 805 ein Zweitemperaturen-Kühlschrank vorgeschlagen, dessen thermisch voneinander getrennte Fächer unterschiedlicher Temperatur von je einem Verdampfer gekühlt sind. Hierbei liegen die Verdampfer in einem Kältekreis mit einem einzigen Verdichter, welcher gesteuert über als beheizbare Drosseln ausgebildete Regelorgane je nach Kälteanforderung in den Fächern entweder die Verdampfer einzeln nacheinander oder gleichzeitig mit flüssigem Kältemittel beaufschlagt. Um eine ausreichende Kältemittelmenge für den Fall, daß beide Fächer eine Kälteanforderung signalisieren, zur Verfügung stellen zu können, aber gleichzeitig eine Kältemittelüberfüllung eines Verdampfers bei einer Kälteanforderung eines einzelnen Faches zu vermeiden, ist dem Verdichter druckseitig ein Sammler nachgeschaltet, welcher ein Heizelement zum Austreiben des in seinem Sammelraum gespeicherten flüssigen Kältemittels aufweist. Für den Fall, daß für beide Fächer Kältebedarf signalisiert ist, wird mit einem zeitlichen Vorlauf vor der Inbetriebnahme des Verdichters das dem Sammler zu- geordnete Heizelement aktiviert, um daraufhin das gespeicherte flüssige Kältemittel dem Kältemitteikreislauf zuzuführen.
Ferner ist aus der DE-OS 40 20 537 ein Zweitemperaturen-Kühlgerät bekannt, dessen thermisch voneinander getrennte Kältefächer unterschiedlicher Temperatur in Reihen- Schaltung innerhalb eines mit einem einzigen Verdichter ausgestatteten Kältekreises liegen und je nach Kältebedarf, gesteuert durch absperrbare Drossseiorgane, jedes einzeln für sich oder gemeinsam mit Kältemittel beaufschlagbar sind, wobei die Kältemittelmenge auf die Füllmenge der beiden Verdampfer abgestimmt ist. Für den Fall, daß nur eines der beiden Kältefächer Kältebedarf signalisiert, wird die im gesamten Kältkreis zur Verfügung stehende Kältemitteimenge, um eine Überfüllung eines einzelnen zu betreibenden Verdampfers zu vermeiden, durch eine über ein Drosselorgan absperrbare Anzapfung des Verflüssiger entsprechend dem Fassungsvermögen dieses Verdampfers aufgeteilt. Infolge der Anzapfung des Verflüssigers wird nur sein vor dieser Anzapfung liegender Abschnitt von dem durch den Verdichter zwangsweise umgewälzten Kältemittel durchströmt.
Beide aus dem Stand der Technik bekanntgewordenen Kältekreise erlauben zwar eine bedarfsgemäße, auf den jeweiligen Verdampfer zugeschnittene Steuerung der Kältemittelmenge, jedoch haftet dem aus der DE-OS 35 08 805 bekannten System der Nachteil an, daß bei einer Kälteanforderung für beide Fächer ein energieaufwendiger zeitlicher Vorhalt zum Beheizen des Sammlers vor dem Anlauf des Verdichters notwendig ist, um das flüssige Kältemittel aus dem Sammler auszutreiben und dem Kältekreis zur Verfügung zu stellen. Die aus der DE-OS 40 20 537 bekannte Technik ist dahingehend nachteilig, daß der Verflüssiger bei einer Kälteanforderung von einem der Kühlfächer stets nur anteilsmäßig von Kältemittel durchströmt wird, und somit seine zum Wärmeaustausch notwendige Oberfläche deutlich reduziert ist, wodurch sich die Verdichterlaufzeiten und somit der Energieverbrauch des Gerätes deutlich erhöhen.
Der Erfindung liegt die Aufgabe zugrunde, bei einem Kältegerät gemäß dem Oberbegriff des Anspruches 1 mit einfachen konstruktiven Maßnahmen unter Vermeidung der Nach- teile des Standes der Technik, eine Möglichkeit zur Regulierung der Temperatur im wärmeren Kältefach zu schaffen. Diese Aufgabe wird gemäß der Erfindung dadurch gelöst, daß am Verdampfer zur Erzeugung der tieferen Temperatur wenigstens zwei in Flußrichtung des angetriebenen Kältemittels voneinander beabstandete, einen Abschnitt der Kaltemittelkanalanordnung des Verdampfers zwischen sich aufnehmende Einspritzstellen vorgesehen sind, wobei jeder der Einspritzstellen zuflußseitig eine Drosseleinrichtung vorgeschaltet und jede der Einspritzstellen durch Umlenkmittel wahlweise ansteuerbar ist.
Durch eine derartige Ansteuerung des Verdampfers zur Erzeugung der tieferen Tempera- tur wird der Fließweg für das Kältemittel, je nachdem in welcher der Einspritzstellen das Kältemittel zugeführt wird, verkürzt bzw. verlängert, wobei im ersteren Fall der am Ende der Reihenschaltung des Kältemittelkreisiaufes liegende Verdampfer, beispielsweise bei einer Reglerstellung "warm" nicht mehr vom Kältemittel durchströmt wird, wodurch die Temperatur in den von diesem Verdampfer gekühlten Fach regelbar ist. Für den Fall, daß der Fließmittelweg des-Kältemittels bei einer zweiten Betriebsart, beispielsweise für die Reglerstellung "kalt", verkürzt ist, wird der in der Reihenschaltung der Verdampfer am Ende befindliche Verdampfer mit Kältemittel beaufschlagt, so daß die Temperatur in diesem Fach abfällt. Durch eine derartige Regelmöglichkeit der Temperatur für den in der Reihenschaltung am Ende befindlichen Verdampfer sind demzufolge einerseits aufwen- dige Anzapfstellen am Verflüssiger vermieden und andererseits steht jeweils die gesamte Wärmetauschfläche des Verflüssigers zur Wärmeabgabe zur Verfügung.
Darüber hinaus ist in beiden Betriebsarten sichergestellt, daß jeweils die gesamte, im Kältemittelkreislauf befindliche Kältemittelmenge umgewälzt wird. Besonders vorteilhaft einsetzbar ist eine derartige Temperaturregelung, wenn der Verdampfer zur Erzeugung der tieferen Temperatur als im wesentlichen c-förmig (in Form eines liegenden "U") geformter Gefrierfachverdampfer mit einer Verdampferdecke, einer Verdampferrückwand und einem Verdampferboden ausgebildet ist, wobei eine der Einspritzstellen sich in der Verdampferdecke und die andere sich im Verdampferboden befindet, wodurch in beiden Betriebsarten das sich während der Stehzeit des Verdichters im Verdampferboden sammelnde Kältemittel bei Anlaufen des Verdichters zur Kälteerzeugung zur Verfügung steht.
Nach einer bevorzugten Ausführungsform des Gegenstandes der Erfindung ist vorgese- hen, daß eine der Kältemitteleinspritzstellen im Nahbereich des ausflußseitigen Endes des Verdampfers zur Erzeugung der tieferen Temperatur angeordnet ist. Durch eine derartige Beabstandung der Kältemitteleinspritzstellen ist zwischen diesen ein wesentlicher Abschnitt der gesamten Kältemittelkanaliänge des Verdampfers zur Erzeugung der tieferen Temperatur angeordnet, so daß je nachdem welche der Käitemittelein- spritzstellen zum Einspritzen des Kältemittels benutzt wird, eine deutliche Verkürzung bzw. Verlängerung des Käitemittelfließweges bewirkt ist, wodurch eine besonders deutlich ansprechende Temperaturregelung für das von dem in Reihenschaltung am Ende liegenden Verdampfer gekühlten Faches erzeugt ist.
Fertigungstechnisch besonders einfach herstellbar sind die Verdampfer, wenn nach einer nächsten bevorzugten Ausführungsform des Gegenstandes der Erfindung vorgesehen ist, daß die Drosselelemente vor den Einspritzstellen den gleichen Durchflußwiderstand aufweisen.
Besonders effizient anwendbar sind die zueinander beabstandeten Einspritzstellen an den zur Erzeugung der tieferen Temperatur dienenden Verdampfer, wenn gemäß einer weiteren bevorzugten Ausführungsform des Gegenstandes der Erfindung vorgesehen ist, daß der Verdampfer zur Erzeugung der tieferen Temperatur als c-förmiger Gefrierfachverdampfer ausgebildet ist, welcher in seiner Decke eine der Einspritzstellen und in seinem Boden die andere Einspritzstelle aufweist.
Hierdurch ergibt sich nicht nur eine besonders intensiv auf die Temperaturregelung Einfluß zu nehmen vermögende Kältemittel-Wegdifferenz sondern auch der Vorteil, daß sowohl beim Betrieb der einen als auch der anderen Einspritzstelle sichergestellt ist, daß die gesamte Kältemittelmenge sich im Kältekreislauf befindet, da stets der Boden des Ge- frierfachverdampfers durchströmt wird, in welcher sich das Kältemittel während der Stehzeit des Verdichters sammelt. Dabei wird unmittelbar nach dem Anlauf des Verdichters das Kältemittel aus dem Gefrierfachboden abgesaugt, so daß die beispielsweise in der Gefrierfachdecke befindliche restliche Kältemittelmenge nachströmen kann.
Auf besonders einfache Weise läßt sich der Regelbereich des in der Reihenschaltung der Verdampfer am Ende befindlichen Verdampfers vergrößern, wenn nach einer nächsten bevorzugten Ausführungsform des Gegenstandes der Erfindung vorgesehen ist, daß den Einspritzstellen am Verdampfer zur Erzeugung der tieferen Temperatur Drosselelemente mit unterschiedlichem Durchflußwiderstand vorgeschaltet sind. Besonders genau abstimmbar ist die verdampferspezifisch zur Temperaturoptimierung notwendige Kältemittelmenge zum Kühlen der Fächer in den unterschiedlichen Reglerstellungen des Temperaturreglers, wenn nach einer weiteren bevorzugten Ausführungsform des Gegenstandes der Erfindung vorgesehen ist, daß die nach der jeweiligen Ein- spritzstelle liegende Kältemittel-Kanalanordnung im wesentlichen gleiches Aufnahmevolumen aufweist.
Besonders einfach und sicher steuern, beispielsweise anhand von Temperatursensoren, läßt sich ein Umlenkorgan, wenn gemäß einer letzten bevorzugten Ausführungsform des Gegenstandes der Erfindung vorgesehen ist, daß das Umlenkorgan als elektrisch betreibbares 3/2-Wege-Magnetventil ausgebildet ist.
Die Erfindung ist in der nachfolgenden Beschreibung anhand von zwei in der beigefügten Zeichnung vereinfacht dargestellten Ausführungsbeispielen erläutert.
Es zeigen:
Fig. 1 in vereinfachter, schematischer Darstellung ein drei Kältefächer aufweisendes Kältegerät, dessen Gefrierfachverdampfer zwei voneinander beabstandete, wahlweise ansteuerbare Kältemittel-Einspritzstellen aufweist, von denen in einer ersten Ansteuerart die am Anfang der Kältemittel-Kanalanordnung liegende angesteuert ist,
Fig. 2 das Kältegerät gemäß Fig. 1 , betrieben in seiner zweiten Ansteuermög- lichkeit, in welcher die zweite, ausgangsseitg des Gefrierfachverdampfers liegende Einspritzstelle angesteuert ist und
Fig. 3 in vereinfachter schematischer Darstellung ein Zweitemperaturen-Kältegerät mit am Verdampfer seines Frischkühlfaches vorgesehenen, mit Abstand zueinander angeordneten, wahlweise ansteuerbaren Einspritzstellen.
Gemäß Fig. 1 ist ein drei Temperaturzonen aufweisendes Kältegerät 10 mit einem wärmeisolierenden Gehäuse 11 gezeigt, innerhalb welchem drei übereinander ange- ordnete, durch wärmeisolierende Zwischenböden 12 thermisch voneinander getrennte Kältefächer vorgesehen sind. Von diesen Kältefächem ist das untenliegende als in ei- nem Temperaturbereich von beispielsweise + 0,5° C bis + 3° C liegendes Frischlagerfach 13 mit einem Verdampfer 14, das unmittelbar über dem Frischlagerfach 13 angeordnete, einen Temperaturbereich von + 5° C bis + 8° C aufweisendes Normalkühlfach 15 mit einem Verdampfer 16 ausgebildet. Über dem Normalkühlfach 15 ist ein in ei- nem Temperaturbereich von - 18° C liegendes Gefrierfach 17 vorgesehen, zu dessen Kühlung ein im Querschnitt im wesentlichen c-förmiger Verdampfer 18 mit einem Deckenabschnitt, einer Rückwand und einem Bodenabschnitt vorgesehen ist. Der Verdampfer 18 ist mit einer durchgehend über seinen Deckenabschnitt, seiner Rückwand und seinem Bodenabschnitt sich erstreckenden Kältemittel-Kanalanordnung 19 ausgestattet. Femer weist der Verdampfer 18 in seinem Deckenabschnitt eine erste Einspritzstelle 20 und in seinem Bodenabschnitt eine zweite Einspritzstelle 21 auf, so daß zwischen den beiden Einspritzstellen 20 und 21 ein bestimmter Längenabschnitt der Kaltemittelkanalanordnung 19 liegt, wobei der Einspritzstelle 21 eine Anbin- dungsstelle 21.1 für die Ankopplung der durch die Anordnung der Einspritzstellen 20 und 21 gebildeten Abschnitte der Kanalanordnung 19 nachgeordnet ist. Den beiden Einspritzstellen 20 und 21 ist je eine zur Druckreduzierung dienende Drosseleinrichtung 22 bzw. 23 vorgeschaltet, wobei die Drosseleinrichtung 22 ausgangsseitig mit der Einspritzstelle 20 und die Drosseleinrichtung 23 ausgangsseitig mit der Einspritzstelle 21 verbunden ist. Die Eingangsseiten der Drosseleinrichtungen 22 und 23 sind mit einem als elektrisch betreibbares 3/2-Wege-Magnetventil ausgebildeten Umlenkorgan 24 verbunden, wobei die Eingangsseite der Drosseleinrichtung 22 durch das Umlenkorgan 24 in einer Ventilstellung I und die Eingangsseite der Drosseleinrichtung 23 in einer Ventilstellung II mit Kältemittel beaufschlagbar ist. Das Umlenkorgan 24 ist eingangsseitig über eine Kältemittelleitung 25 mit einem Verflüssiger 26 strömungs- technisch verbunden, welcher eingangsseitig an die Druckseite eines Kältemitteiver- dichters 27 angeschlossen ist, welcher saugseitig strömungstechnisch mit dem Kühlfachverdampfer 16 verbunden ist, welcher am Ende der in Reihenschaltung hintereinander angeordneten Verdampfer 14, 16 und 18 vorgesehen ist.
Die in den einzelnen Kältefächem 13, 15 und 17 des Kältegerätes 10 herrschenden Temperaturen werden von einer im Normalkühlfach angeordneten, im vorliegenden Fall nicht dargestellten Regeleinrichtung bestimmt, welche je nach Reglerstellung das Magnetventil 24 in seine Betriebsstellung I bzw. in seine Betriebsstellung II schaltet. Wird das Kältegerät 10 z.B. in der Reglerstellung "warm" betrieben, so befindet sich das Magnetventil 24 in seiner in Fig. 1 dargestellten Betriebsstellung I. In dieser Betriebsstellung wird das vom Kältemittelverdichter 27 zwangsweise geförderte Kältemit- tel entsprechend der in Fig. 1 dargestellten verstärkten Linien über die Drosseleinrichtung 22 der Kältemitteleinspritzstelle 20 in der Decke des Verdampfers 18 zugeführt, von wo es über dessen Rückwand und über dessen Boden erneut seiner Decke zugeführt und von dort in den Verdampfer 14 gefördert ist. Die im Kältekreislauf vom Käl- temittelverdichter 27 umgewälzte Kältemittelmenge ist dabei so bemessen, daß in der Reglerstellung "warm", in welcher sich das Magnetventil 24 in seiner Betriebsstellung I befindet, die Kältemitteimenge nicht mehr zur Kühlung des in der Reihenschaltung der Verdampfer an letzter Stelle liegenden Verdampfers 16 ausreicht, so daß das Normalkühlfach 15 in dieser Reglerstellung nicht mehr mit flüssigem Kältemittel beauf- schlagt und somit nicht mehr gekühlt wird.
Befindet sich die Regeleinrichtung z.B. in ihrer Reglerstellung "kalt", so ist das Magnetventil 24 in seine in Fig. 2 dargestellte Betriebsstellung II umgeschaltet. In dieser Betriebsstellung wird das vom Kältemittel Verdichter 27 zwangsweise umgewälzte Kälte- mittel über die Drosseteinrichtung 23 der im Boden des Gefrierfachverdampfers 18 angeordneten Einspritzstelle 21 zugeführt (siehe verstärkte Linienführung), wodurch eine bestimmte Länge der Kaltemittelkanalanordnung des Verdampfers 18 aus dem Kältekreislauf ausgeblendet ist. Von der Einspritzstelle 21 im Boden des Gefrierfachverdampfers 18 strömt das flüssige Kältemittel dann über die Rückwand und die Decke dieses Verdampfers in den in der Reihenschaltung unmittelbar nachgeordneten Verdampfer 14 des Frischlagerfaches 13, von wo es über dessen Ausgang dem Verdampfer 16 zur Kühlung des Normalkühlfaches 15 zugeführt ist.
Zur Erreichung eines optimalen Füllgrades des durch die Reihenschaltung der drei Verdampfer 14, 16 und 18 gebildeten Verdampfersystems mit flüssigem Kältemittel ist die in beiden Betriebsarten von flüssigem Kältemittel durchströmte Kanallänge hinsichtlich ihrer Länge so zu bemessen, daß im jeweiligen Betriebsfall zumindest annähernd gleichlange Kältemittelkanalstrecken von flüssigem Kältemittel durchströmt sind. Anstelle von gleichlang ausgeführten Kältemittelkanaistrecken ist es auch möglich, diese unterschiedlich lang aber mit nahezu identischem Aufnahmevolumen zu bemessen.
Femer ist es entgegen dem in Fig. 1 und Fig. 2 gezeigten Ausführungsbeispiel auch möglich, die im vorliegenden Fall mit gleichem Durchflußwiderstand ausgestatteten Drosseleinrichtungen 22 und 23 mit einem unterschiedlichen Durchflußwiderstand ver- sehen, wodurch sich die Temperaturregelung in den einzelnen Kältefächem 13, 15 und 17 noch deutlich verfeinem läßt.
In Fig. 3 ist eine weitere Anwendungsmögiichkeit der Erfindung anhand eines Zwei- temperaturen-Kühlgerätes 30 dargestellt. Dieses weist ein wärmeisoiierendes Gehäuse 31 auf, innerhalb welchem ein obeniiegendes Normalkühlfach 32 mit einem zu dessen Kühlung dienenden Verdampfer 33 und ein von den Normalkühlfach 32 wärmeisolierend durch einen Zwischenboden 34 getrenntes Frischlagerfach 35 vorgesehen ist. Das Frischlagerfach ist zu seiner Kühlung mit einem Verdampfer 36 ausgestattet, dessen Kaltemittelkanalanordnung 37 über zwei Kältemitteleinspritzstellen 38 und 39 mit Kältemittel beaufschlagbar ist, wobei die Kältemitteleinspritzstelle 38 am Anfang der Kaltemittelkanalanordnung 37 und die Kältemitteleinspritzstelle 39 in etwa in der Mitte der Kaltemittelkanalanordnung 37 vorgesehen ist, so daß zwischen den beiden Kältemitteleinspritzstellen 38 und 39 eine gewisse Kanallänge der Kältemittelkanalan- Ordnung 37 verbleibt. Von den Kältemitteieinspritzstellen 38 und 39 ist der Einspritzstelle 39 eine Anbindungsstelle 39.1 für die Ankoppelung der durch die Anordnung der Enspritzstellen 38 und 39 gebildeten Abschnitte der Kanalanordnung 37 nachgeordnet. Den Kältemitteieinspritzstellen 38 und 39 ist jeweils eine Drosseleinrichtung 40 bzw. 41 vorgelagert, welche beide einen gleichen Durchflußwiderstand aufweisen und welche mit ihrer Zuflußseite an die Ausgänge eines elektrisch betreibbaren 3/2-Wege- Magnetventiles 42 angeschlossen sind. Das Magnetventil 42 ist eingangsseitig mit einem Verflüssiger 43 strömungstechnisch verbunden, welcher zuflußseitig mit der Druckseite eines Kältemittelverdichters 44 verbunden ist, dessen Saugseite mit dem Ausgang des in Reihenschaltung dem Verdampfer 36 nachgeordneten Verdampfer 33 im Normalkühlfach 32 strömungstechnisch verbunden ist.
Sowohl die Temperatur im Normalkühlfach 32 als auch die im Frischlagerfach 35 wird durch eine im Normalkühlfach 32 angeordnete, im vorliegenden Fall nicht dargestellte Regeleinrichtung 45 bestimmt. Befindet sich die Regeleinrichtung 45 beispielsweise in ihrer Regelstellung "kalt", so ist das Magnetventil 42 in seine Betriebsstellung II umgeschaltet (Kältemittelfluß entsprechend der verstärkten Linie), in welcher das vom Kältemittelverdichter 44 zwangsweise umgewälzte Kältemittel über die Drosseleinrichtung 41 der Einspritzstelle 39 des Verdampfers 36 zugeführt ist, von wo es über den verbleibenden Teil seiner Kaltemittelkanalanordnung 37 in den Verdampfer 33 zur Kühlung des Normalkühlfaches 32 strömt. Für den Fall, daß die im Normalkühlfach 32 angeordnete Regeleinrichtung sich in ihrer Reglersteliung "warm" befindet, wird das Magnetventil 42 in seine Betriebsstellung I umgeschaltet, wodurch über die Drosseleinrichtung 40 die Einspritzstelle 38 am Anfang der Kaltemittelkanalanordnung 37 des Verdampfers 36 mit flüssigem Kältemittel beaufschlagt ist. In dieser Betriebsart wird der dem Verdampfer 36 nachgeschaltete Verdampfer 33 gerade nicht mehr mit flüssigem Kältemittel beaufschlagt und somit das Normalkühlfach 32 nicht mehr gekühlt.
Um in beiden möglichen Betriebsarten einen optimierten Füllgrad des durch die Rei- henschaltung der beiden Verdampfer 33 und 36 gebildeten Verdampfersystems zu erreichen, ist die der Einspritzstelle 38 nachgeiagerte Einspritzstelle 39 so am Verdampfer 36 anzuordnen, daß die Kältemittelkanallänge zwischen den beiden Einspritzstellen im wesentlichen der Kältemittelkanallänge des Verdampfers 33 entspricht.
Durch einen unterschiedlichen Durchflußwiderstand für die Drosseleinrichtungen 40 und 41 läßt sich zusätzlich eine deutliche Verfeinerung des Temperaturregelbereiches für beide Kältefächer erreichen.
Für den Fall, daß in beiden Ausführungsbeispielen eines der Kältefächer aufgrund einer erheblichen Menge frisch eingelagerten Kühlgutes einer temperaturmäßigen Belastung ausgesetzt ist, findet z.B. eine elektronisch gesteuerte Zwangsumschaltung des Kältemittelflusses auf den Verdampfer in dem temperaturbelasteten Kältefach statt.

Claims

Patentansprüche
1. Kältegerät mit einem wärmeisolierenden Gehäuse, innerhalb welchem wenigstens zwei thermisch voneinander getrennte Kältefächer unterschiedlicher Temperatur angeordnet sind, von denen jedes von einem mit entsprechender
Kälteleistung ausgestatteten Verdampfer gekühlt ist, wobei die zur Kühlung der Fächer dienende Verdampfer zusammen in einem Kältekreislauf in Reihenschaltung hintereinander angeordnet sind und von einem im Kältekreislauf befindlichen Verdichter mit Kältemittel beaufschlagt sind, d a d u r c h g e - k e n n z e i c h n e t , daß am Verdampfer (18, 36) zur Erzeugung der tieferen Temperatur wenigstens zwei in Flußrichtung des angetriebenen Kältemittels voneinander beabstandete, einen Abschnitt der Kaltemittelkanalanordnung (19, 37) des Verdampfers (18, 36) zwischen sich aufnehmende Ein- pritzstellen (20, 21 , 38, 39) vorgesehen sind, wobei jeder der Einspritzstellen (20, 21 , 38 39) zuflußseitig eine Drossel (22, 23, 40, 41 ) vorgeschaltet und jede der Einspritzstellen (20, 21 , 38, 39) durch ein Umlenkmittel (24, 42) wahlweise ansteuerbar ansteuerbar ist.
2. Kältegerät nach Anspruch 1 , dadurch gekennzeichnet, daß eine der Käl- temitteleinspritzstellen (21 , 39) im Nahbereich des ausflußseitigen Endes des
Verdampfers (18, 36) zur Erzeugung der tieferen Temperatur angeordnet ist.
3. Kältegerät nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Drosseielemente (22, 23, 40, 41 ) vor dem Einspritzstellen (20, 21 , 38, 39) gleichen Durchflußwiderstand aufweisen.
4. Kältegerät nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Verdampfer (18) zur Erzeugung der tieferen Temperatur als c-förmiger Gefrierfachverdampfer ausgebildet ist, welcher in seiner Decke eine der Ein- spritzstelien (20) und in seinem Boden die andere Einspritzstelle (21 ) aufweist.
5. Kältegerät nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß den Einspritzstellen (20, 21 , 38, 39) am Verdampfer (18, 36) zur Erzeugung der tieferen Temperatur Drosselelemente unterschiedlichem Durch- flußwiderstand vorgeschaltet sind.
6. Kältegerät nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die nach der jeweiligen Einspritzstelle liegende Kältemittel-Kanalanordnung im wesentlichen gleiches Aufnahmevoiumen aufweist.
7. Kältegerät nach einem der Ansprüche 1 , dadurch gekennzeichnet, daß das Umlenkorgan als elektrisch betreibbares 3/2-Wege-Magnetventil (24, 42) ausgebildet ist.
PCT/EP1998/008276 1997-12-19 1998-12-17 Kältegerät WO1999032835A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SI9830640T SI1040303T1 (en) 1997-12-19 1998-12-17 Refrigerating device
DE59811550T DE59811550D1 (de) 1997-12-19 1998-12-17 Kältegerät
EP98966354A EP1040303B1 (de) 1997-12-19 1998-12-17 Kältegerät

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19756860A DE19756860A1 (de) 1997-12-19 1997-12-19 Kältegerät
DE19756860.2 1997-12-19

Publications (1)

Publication Number Publication Date
WO1999032835A1 true WO1999032835A1 (de) 1999-07-01

Family

ID=7852735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/008276 WO1999032835A1 (de) 1997-12-19 1998-12-17 Kältegerät

Country Status (6)

Country Link
EP (1) EP1040303B1 (de)
CN (1) CN1165720C (de)
DE (2) DE19756860A1 (de)
ES (1) ES2222622T3 (de)
TR (1) TR200001666T2 (de)
WO (1) WO1999032835A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266968B1 (en) * 2000-07-14 2001-07-31 Robert Walter Redlich Multiple evaporator refrigerator with expansion valve
DE10140005A1 (de) * 2001-08-16 2003-02-27 Bsh Bosch Siemens Hausgeraete Kombinations-Kältegerät und Verdampferanordnung dafür
US6931870B2 (en) * 2002-12-04 2005-08-23 Samsung Electronics Co., Ltd. Time division multi-cycle type cooling apparatus and method for controlling the same
DE102004014926A1 (de) 2004-03-26 2005-10-13 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät mit zwei Lagerfächern
CN100339665C (zh) * 2004-05-11 2007-09-26 梁嘉麟 由单只压缩机支持的变温和定温组合式冰箱的调控方法
CN100458317C (zh) * 2004-09-07 2009-02-04 乐金电子(天津)电器有限公司 直冷式电冰箱用制冷循环装置
CN1323267C (zh) * 2004-12-31 2007-06-27 广东科龙电器股份有限公司 多级蒸发式空调器
WO2007074094A1 (en) * 2005-12-29 2007-07-05 Arcelik Anonim Sirketi A cooling device
DE102006061091A1 (de) * 2006-12-22 2008-06-26 BSH Bosch und Siemens Hausgeräte GmbH Kühlmöbel mit wenigstens zwei thermisch voneinander getrennten Fächern
DE102009000840A1 (de) 2009-02-13 2010-08-19 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät mit vergleichmäßiger Temperaturverteilung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2016128A (en) * 1978-02-23 1979-09-19 Tokyo Shibaura Electric Co Freezer unit
US4513581A (en) * 1983-03-09 1985-04-30 Tokyo Shibaura Denki Kabushiki Kaisha Refrigerator cooling and freezing system
DE3508805A1 (de) 1985-03-12 1986-09-18 Bosch Siemens Hausgeraete Kuehlmoebel, insbesondere zweitemperaturen-kuehlschrank
DE4020537A1 (de) 1990-06-28 1992-01-02 Bauknecht Hausgeraete Mehrtemperaturen-kuehlmoebel, z.b. kuehl-gefrierkombination
US5209073A (en) * 1990-11-01 1993-05-11 Fisher & Paykel Limited Cooling device and method with multiple cooled chambers and multiple expansion means
DE19535144A1 (de) * 1995-09-21 1997-03-27 Bosch Siemens Hausgeraete Kältegerät

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2016128A (en) * 1978-02-23 1979-09-19 Tokyo Shibaura Electric Co Freezer unit
US4513581A (en) * 1983-03-09 1985-04-30 Tokyo Shibaura Denki Kabushiki Kaisha Refrigerator cooling and freezing system
DE3508805A1 (de) 1985-03-12 1986-09-18 Bosch Siemens Hausgeraete Kuehlmoebel, insbesondere zweitemperaturen-kuehlschrank
DE4020537A1 (de) 1990-06-28 1992-01-02 Bauknecht Hausgeraete Mehrtemperaturen-kuehlmoebel, z.b. kuehl-gefrierkombination
US5209073A (en) * 1990-11-01 1993-05-11 Fisher & Paykel Limited Cooling device and method with multiple cooled chambers and multiple expansion means
DE19535144A1 (de) * 1995-09-21 1997-03-27 Bosch Siemens Hausgeraete Kältegerät

Also Published As

Publication number Publication date
DE19756860A1 (de) 1999-06-24
CN1165720C (zh) 2004-09-08
EP1040303B1 (de) 2004-06-09
DE59811550D1 (de) 2004-07-15
ES2222622T3 (es) 2005-02-01
EP1040303A1 (de) 2000-10-04
CN1282409A (zh) 2001-01-31
TR200001666T2 (tr) 2000-11-21

Similar Documents

Publication Publication Date Title
EP1240466B1 (de) Kältegerät
DE69921262T2 (de) Kühlschrankregler
DE69313066T2 (de) Kühlsystem mit sequentiellem Betrieb mehrerer Verdampfer
DE102006061091A1 (de) Kühlmöbel mit wenigstens zwei thermisch voneinander getrennten Fächern
WO2007115879A1 (de) Verfahren zum betreiben eines kältegeräts mit parallel geschalteten verdampfern und kältegerät dafür
EP1040303B1 (de) Kältegerät
EP3601906A1 (de) Kältegerät und betriebsverfahren dafür
EP0173034B1 (de) Schaltungsanordnung zum Steuern von Kühlkreisläufen für zumindest zwei Kühlbereiche
EP0789206B1 (de) Kältegerät
EP0703421B1 (de) Kühlmöbel mit wenigstens zwei Fächern unterschiedlicher Temperatur
EP1040302B1 (de) Kältegerät
EP0602371B1 (de) Kühlgerät mit einem wärmeisolierten Gehäuse
EP0732553B1 (de) Verdampferanordnung, insbesondere für verdichterbetriebene Haushalts-Kältegeräte
DE3314056A1 (de) Kuehlgeraet, insbesondere gefrierschrank oder dgl.
DE19843484A1 (de) Einkreiskältesystem
EP0752563B1 (de) Verdampferanordnung für Haushalts-Kältegeräte
DE19818288B4 (de) Kühlgerät
DE102008044130A1 (de) Kältegerät mit mehreren Lagerfächern
DE3508805A1 (de) Kuehlmoebel, insbesondere zweitemperaturen-kuehlschrank
DE102018202008A1 (de) Kombinationskältegerät
EP0732554B1 (de) Verdampfer, insbesondere für verdichterbetriebene Haushalts-Kältegeräte
EP0789207B1 (de) Gefriergerät
EP0902244B1 (de) Kühlgerät mit einem Normalkühlraum und einem Tiefkühlfach
DE3430154A1 (de) Kuehlschrank oder dergleichen
DE970225C (de) Mehrverdampferkaelteanlage

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98812357.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN SI TR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000/01666

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 1998966354

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998966354

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998966354

Country of ref document: EP