WO1999032278A1 - Thermoplastic resin sheet structure reinforced with continuous fibers - Google Patents

Thermoplastic resin sheet structure reinforced with continuous fibers Download PDF

Info

Publication number
WO1999032278A1
WO1999032278A1 PCT/JP1998/005146 JP9805146W WO9932278A1 WO 1999032278 A1 WO1999032278 A1 WO 1999032278A1 JP 9805146 W JP9805146 W JP 9805146W WO 9932278 A1 WO9932278 A1 WO 9932278A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
continuous fiber
layer
material layer
skin
Prior art date
Application number
PCT/JP1998/005146
Other languages
French (fr)
Japanese (ja)
Inventor
Susumu Arase
Rikio Yonaiyama
Takao Nakamura
Masanori Ishikawa
Original Assignee
Chisso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corporation filed Critical Chisso Corporation
Publication of WO1999032278A1 publication Critical patent/WO1999032278A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/20Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of continuous webs only
    • B32B37/203One or more of the layers being plastic
    • B32B37/206Laminating a continuous layer between two continuous plastic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/504Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules

Definitions

  • the present invention is mainly obtained by laminating a core material layer containing a thermoplastic resin and a continuous fiber reinforcement and a skin material layer made of thermoplastic resin (hereinafter referred to as a skin material layer).
  • the present invention relates to a continuous fiber reinforced thermoplastic resin sheet-like structure (hereinafter, referred to as a structure or a laminated band).
  • the structure of the present invention is particularly useful for a heavy-duty band, a transport band such as a conveyor belt, a driving belt such as a transmission belt, and the like. It has much better performance than the belt and belt.
  • Resin bands are widely used for packaging various products because of their ease of handling, but have sufficient strength to be used for heavy packaging bands that require excellent mechanical strength. Absent. There are also methods of using resin bands as conveyor bands and transmission belts.However, such applications require more excellent mechanical strength, and are therefore difficult to use. It was extremely difficult to use this resin band.
  • the continuous fiber reinforced resin is formed by impregnating the resin with a continuous fiber reinforced material, and a resin band using such a continuous fiber reinforced resin is a resin band not using a continuous fiber reinforced resin.
  • the mechanical strength such as tensile strength, is extremely superior to that of metal.
  • a resin band using a continuous fiber reinforced resin is not connected to the band surface.
  • the end portion of the continuous fiber reinforcing material protrudes, so that the continuous fiber reinforcing material and the resin are easily separated, and the tensile strength of the band is significantly reduced, and the band is easily cut. It has the disadvantage of becoming
  • the protruding end portion of the continuous fiber reinforced material has a high risk of being pierced by an operator's hand or the like during packaging and injuring the operator or damaging the packaged object.
  • fluffing occurs on the surface of the belt, resulting in insufficient surface gloss and smoothness, thereby lowering the commercial value. Disclosure of the invention
  • An object of the present invention is to provide a structure that is excellent in mechanical strength represented by tensile strength and bending strength, handling safety, workability, and has high commercial value.
  • the structure is particularly useful as a heavy packaging band, a transport band, and a drive belt.
  • FIG. 1 is a schematic view showing an example of a series of apparatuses for manufacturing the structure of the present invention.
  • a continuous fiber reinforcing material (2) using a long fiber bundle of glass roving is introduced into an opening and impregnating device (1) to which molten resin is supplied, and a continuous fiber reinforcing material (2) is used.
  • molten resin adheres to and impregnates between the fibers and on the fiber surface (hereinafter collectively referred to as impregnation)
  • the core layer (71) which is a narrow continuous fiber-reinforced thermoplastic resin.
  • the upstream side is the upstream side and the downstream side is the downstream side.
  • the open fiber impregnation tank (1) basically consists of a top plate (lwT), an upstream end wall (lw), a downstream end wall (lwR), a bottom plate (1wB) and two side plates (1wB). (Illustration omitted).
  • the molten resin is continuously supplied to the inside of the opening-impregnation tank (1) via a resin inlet (5) formed in the bottom plate (1 wB).
  • a method of supplying the molten resin there is a method of supplying the molten resin melt-kneaded by an extruder or the like (not shown) through a pipe or the like connecting the extruder and the resin inlet (5). It is valid.
  • the continuous fiber reinforcing material (2) is introduced substantially horizontally into the opening and impregnating device (1) ⁇ through the fiber inlet (3) drilled in the upstream end wall (1 wL), and the continuous fiber reinforcing material ( The fabric is unwound by passing through the middle of the spread pin (4u) and the spread pin (4d), which sandwiches 2) from above and below, so as not to contact any of the spread pins (4). While the molten resin is impregnated in the continuous fiber reinforcing material (2), the continuous fiber reinforcing material (2) is drawn out of the opening and impregnating tank (1) through the shaping nozzle 6 formed in the downstream end wall (1 wR).
  • the spreading pins (4) form a pair substantially horizontally toward the downstream side, or substantially vertically up and down.
  • Each of the weaving pins (4 ul and 4 dl, 4 u2 and 4 d2, and 4u3 and 4 d3) is referred to as an opening pin pair.
  • the core layer (71) drawn out of the open fiber impregnation tank (1) has a skin layer (72u) on the upper surface and a skin layer (72d) on the lower surface. It becomes a structure (7).
  • the skin layer (72 u) located on the upper surface is laminated on the upper surface of the core layer (71) by the upper pressing roll (8u), and the skin layer (72 d) located on the lower surface. ) Is laminated on the lower surface of the core layer (71) by the lower pressing roll (8d).
  • the structure (7) is wound by a take-up reel (10) located at the downstream end while being sandwiched between a pair of upper and lower nip rolls (9).
  • the structure of the present invention preferably has one or more of the following.
  • thermoplastic resin which is a constituent component of the core material layer, has at least a partial affinity for continuous fiber reinforcement.
  • the thermoplastic resin that is a component of the core material layer is polypropylene.
  • the continuous fiber reinforcement is glass fiber. Glass fiber is useful because it has excellent mechanical strength and sufficient economical price. For applications where the balance between lightness and strength, that is, having a high specific strength, is the most important condition, replace glass fiber with carbon fiber.
  • thermoplastic resin that is a component of the core layer and the skin layer is of the same type.
  • the total thickness of the skin material layer is usually in the range of 0.1 to 2 ⁇ , preferably in the range of 0.2 to 1 mm.
  • the structure of the present invention comprises a sheet-like core layer formed of a continuous fiber reinforcement arranged substantially parallel to the longitudinal direction and a thermoplastic resin bonding (adhering) the continuous fiber reinforcement to each other.
  • the core layer is made of a thermoplastic resin skin layer laminated on at least one side.
  • a relatively narrow one is referred to as a sheet for convenience.
  • the core material layer will be described below.
  • the core material layer constituting the structure of the present invention is mainly composed of a continuous fiber reinforcing material arranged substantially parallel to the longitudinal direction and a thermoplastic resin that bonds the continuous fiber reinforcing materials to each other.
  • Any thermoplastic resin may be used as long as it can be impregnated into the continuous fiber reinforcement, but a thermoplastic resin modified to have an affinity for the continuous fiber reinforcement is preferable.
  • glass fiber when glass fiber is used as the continuous fiber reinforcing material, it is desirable to use a modified thermoplastic resin having a strong bond with glass fiber.
  • thermoplastic resin along with the modifier, organic peroxide, and other additives described below, is uniformly dispersed in a mixing device such as a Henschel mixer (trade name), and then melt-kneaded in an extruder and melted. It is impregnated into continuous fiber reinforcement as resin.
  • a mixing device such as a Henschel mixer (trade name)
  • Henschel mixer trade name
  • thermoplastic resin which is a constituent component of the core material layer, includes polyolefin (PO), which is a homopolymer or copolymer of a 1-olefin monomer containing usually 2 to 10 carbon atoms,
  • PO polyolefin
  • polyethylene PE
  • polypropylene PP
  • propylene-ethylene copolymer propylene-1-butene copolymer
  • polyhalogenated vinyl ⁇ preferably polychlorinated vinyl (PVC) ⁇
  • polyamide resin NL
  • 6-nylon, 6,6-nylon, 6 10-Nylon, 6,12-Nylon and Nylon MXD6 (co-condensate resin of m-xylylenediamine and adipic acid) etc.
  • wholly aromatic polyamides saturated polyesters ⁇ eg PET And PBT, etc.
  • wholly aromatic polyesters AS (acrylonitrile-styrene copolymer) resin, ABS (acrylonitrile) resin, poly (methyl methacrylate) (PMMA), polyacetal, polyca One bone (PC), fluororesin, polyphenylene sulfide (PPS), polysulfone (
  • crystalline polypropylene particularly crystalline polypropylene, is preferable because of its excellent versatility and mechanical strength.
  • thermoplastic resin contains a force-modified thermoplastic resin which is a modified thermoplastic resin modified with a modifier or the like described later.
  • Examples of the modifier for giving the thermoplastic resin an affinity with the continuous fiber reinforcing material include an organic silane compound, an unsaturated carboxylic acid, and an unsaturated carboxylic anhydride.
  • unsaturated carboxylic anhydrides eg, maleic anhydride, itaconic anhydride, tetrahydrophthalic anhydride, and norbornene dicarboxylic anhydride
  • maleic anhydride is most preferred.
  • Examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, and itaconic acid.
  • Examples of the unsaturated carboxylic acid effective in the present invention include derivatives such as acid halides of unsaturated carboxylic acids in which one OH of a carboxyl group (—COOH) contained in the unsaturated carboxylic acid is substituted with a halogen atom or the like.
  • These unsaturated carboxylic acids or unsaturated carboxylic anhydrides may be used alone or in combination of two or more.
  • organic silane compound examples include aminosilane, epoxysilane, bursilane, and methacryloxysilane. These organic silane compounds may be used alone or in combination of a plurality of types.
  • an organic peroxide may be used in combination as necessary.
  • organic peroxides that are effective in combination with organosilane compounds include 2,5-dimethyl (t-butylperoxy) hexane, 1,3-bis (t-butylperoxyisopropyl) benzene, Dicumyl peroxide (DCP) and benzoyl peroxide (BPO).
  • Functional additives such as antioxidants, ultraviolet stabilizers, coloring agents, weathering agents, flame retardants, lubricants, antiblocking agents, copper anti-static agents and antistatic agents are appropriately added to the core material layer and the skin material layer. Can be blended.
  • the continuous fiber reinforcing material which is a component of the core material layer, has a bundle of about 500 to 400 single fibers having an average diameter of 3 to 21 ⁇ , preferably 9 to 21 ⁇ m.
  • roving When the average diameter of a single fiber is 1 / zm or less, the fiber is easily broken at the time of forming the structure, and the impact strength of the structure is easily reduced.
  • single fiber When the average diameter is 25 ⁇ m or more, the appearance of the structure tends to be deteriorated, and the mechanical strength of the structure tends to decrease.
  • the average length of the continuous fiber reinforcing material is preferably substantially equal to the average length of the structure.
  • the structure has extremely improved tensile strength and bending resistance in the longitudinal direction.
  • continuous fiber reinforcements include inorganic fibers and organic fibers.
  • the inorganic fibers include artificial fibers such as glass fibers, carbon fibers, and metal fibers.
  • glass fiber is preferably used because of its excellent physical properties and economy. Hard glass is preferable as the glass fiber, and E glass or borosilicate glass (porosilicate glass), which is non-alkali glass, is particularly preferable.
  • Inorganic fiber is, for example, a silane coupling agent or a titanate coupling agent.
  • thermoplastic resin is easily impregnated between the fibers of the continuous fiber reinforcement. Become.
  • organic fibers examples include polyolefin fibers ⁇ eg, polyethylene fibers, polypropylene fibers and poly- 4 -methyl-1-pentene fibers ⁇ , polyamide fibers ⁇ eg, 6-polyamide (6-nylon), 7-polyamide. , 11-polyamide, 12-polyamide, 6,6-polyamide, 6,7-polyamide, 6,10-polyamide, 6,12-polyamide ⁇ , semi-aromatic polyamide fiber ⁇ e.g.
  • Ron MXD 6 co-condensate of m-xylylene diamine and adipic acid
  • wholly aromatic polyamide fiber [aramid fiber (trade name: Kepler)]
  • thermoplastic polyester fiber for example, PET (polyethylene terephthalate) Rate) fiber, PBT (poly-1,4-butylene terephthalate) fiber ⁇ and wholly aromatic polyester Fiber and the like.
  • PET polyethylene terephthalate
  • PBT poly-1,4-butylene terephthalate
  • the inorganic fiber and the organic fiber may be used alone, or two or more kinds may be used in combination.
  • the core layer is basically obtained by impregnating a continuous fiber reinforcement with a molten thermoplastic resin. It is desirable to spread the continuous fiber reinforcing material as evenly as possible in a planar shape and to impregnate the spreaded material uniformly with a thermoplastic resin.
  • the core material layer obtained in this manner is used for the structure of the present invention. When used, the mechanical strength is significantly improved.
  • the method of impregnating the continuous fiber reinforcement with the thermoplastic resin may be any method as long as the continuous fiber reinforcement can be impregnated with the thermoplastic resin.
  • the impregnation method disclosed in Japanese Patent Application Laid-Open Publication No. Hei 4-418886 and Japanese Patent Application Laid-Open No. Sho 61-229354 is desirable.
  • the continuous fiber reinforcing material which is a component of the core material layer, is contained in the core material layer in an amount of 10 to 80% by weight, preferably 30 to 70% by weight.
  • the continuous fiber reinforcement is sufficiently impregnated with the thermoplastic resin, so that the continuous fiber reinforcement and the thermoplastic resin are excellent in mutual integration. If the content of the continuous fiber reinforcing material is 5% by weight or less, mechanical properties such as tensile strength may not be sufficiently exhibited. On the other hand, the content of continuous fiber reinforcement is 90% by weight. If the ratio is / 0 or more, sufficient mechanical properties may not be exhibited. It is understood that the cause is that the thermoplastic resin does not sufficiently impregnate the continuous fiber reinforcement.
  • the skin material layer is a thermoplastic resin film or sheet layer laminated on at least one side of the core material layer.
  • the thermoplastic resin that is a constituent component of the skin material layer may be different from the thermoplastic resin used for the core material layer, but is preferably the same. Is good.
  • thermoplastic resin which is a component of the skin material layer include polyolefin (PO) (for example, polyethylene (PE), polypropylene (PP), propylene-ethylene copolymer, etc.), Ethylene vinyl monoxide copolymer (EVA), thermoplastic polyamide resin (NY) ⁇ For example, 6-polyamide (6-nylon), 7-polyamide, 1-polyamide, 12-polyamide, 6,6-polyamide, 6,7-polyamide, 6,10-polyamide, 6,12-polyamide ⁇ , semi-aromatic polyamide fiber ⁇ e.g., Nylon MXD 6 (m-xylylenediamine and Thermoplastic condensed polyester (eg PET (polyethylene terephthalate) fiber, PBT, etc.), wholly aromatic polyamide fiber [alamide fiber (trade name: Kepler)], etc. (Poly-1,4-butylene terephthalate) fiber ⁇ And wholly aromatic polyester fibers.
  • PO polyolefin
  • crystalline polyolefins particularly crystalline polypropylene
  • properties such as versatility, mechanical strength, surface gloss, and moderate heat resistance (thermal strain temperature). Due to these advantages, the use of crystalline polyolefin, especially crystalline polypropylene, makes it possible to obtain an inexpensive structure that is excellent in strength and commercial value.
  • a modified thermoplastic resin treated with a modifier or the like particularly a modified thermoplastic resin obtained by blending an organic peroxide at the time of reforming, is desirable.
  • the modifier, organic peroxide and other additives used for the skin layer may be of the same type as those used for the core layer.
  • the skin material layer may be made of the thermoplastic resin alone or a composition of two or more types, but is preferably made of a modified thermoplastic resin alone or a composition containing an appropriate amount of the modified thermoplastic resin, It is particularly preferable to use a thermoplastic resin of the same type as the core material layer or a material having compatibility with the thermoplastic resin used for the core material layer. If the thermoplastic resins used for the skin material layer and the core material layer are the same type of resin or are compatible with each other, a high bonding force is generated at the interface between the skin material layer and the core material layer. Get It is.
  • the skin layer is usually formed on both sides of the core layer, and sometimes on one side, but the total thickness of the skin layer is usually 0.1 to 2 nun, preferably 0.2 to 1 mm. Set within.
  • the core layer cannot be satisfactorily reinforced, and the mechanical strength tends to decrease.
  • it is more than 1.5 ⁇ , the bending strength does not improve in accordance with the amount used, and the skin layer becomes too thick, which makes handling inconvenient. In other words, the bending rigidity (bending strength) of the obtained structure becomes too large, and it becomes difficult to perform secondary forming.
  • the skin material layer may be laminated on one surface of the core material layer, but is more preferably laminated on both surfaces of the core material layer.
  • Examples of the method for producing the skin material layer include a method in which a thermoplastic resin composition is formed into a film in advance, and then the film is laminated on the surface of the core material layer, or a thermoplastic resin in a molten state.
  • Examples of the method include a method of tinting the composition on the surface of the core material layer.
  • the laminating method it is desirable to laminate the skin material layer while keeping the surface of the core material layer in a semi-molten (semi-softened) state, but it is not necessarily required to be in a semi-molten state, and the lamination is performed using an adhesive. May be.
  • the coating method it is desirable to laminate the melt-extruded skin layer on the surface of the core layer while maintaining the surface of the core layer in a semi-molten (semi-softened) state, but it is not necessary to be in a semi-molten state.
  • the structure can be manufactured with good procedure.
  • the outer shape of the structure manufactured in this way to, for example, a sheet having a width of 5 to 200 mm and a thickness of 0.1 to 2 mm, a heavy packing band, It can be used for transmission belts and the like.
  • the structure of the present invention has the following effects.
  • the structure of the present invention is excellent in all of tensile strength, bending strength, surface smoothness, safety and workability.
  • modified PP Maleic anhydride-modified thermoplastic polypropylene [Crystal melting point by DSC measurement: 160 ° C; MFR under conditions of 230 ° C and 21.18 N g / 1 Omin] is melted and kneaded in a melt kneading apparatus (not shown) set at 270 ° C, and the obtained molten resin is placed in the fiber impregnation tank (1) shown in Fig. 1 as described above. Provided in accordance with.
  • 6 continuous fiber reinforcements (2) which are long glass fiber bundles, in which 40000 single fibers are bundled from the upstream side, are introduced into the open fiber impregnation tank (1) at the same time horizontally and in parallel.
  • the fiber opening and impregnation in which the fiber is opened inside the fiber-opening impregnation tank (1) and the molten material is impregnated between the fiber-opened and impregnated tanks (1) shown in FIG.
  • a pair of upper and lower rod-shaped fixed opening bins (4) installed between the inner wall and the inner wall of the right plate (4)
  • Two or more opening pins constituting each pair (4) The continuous fiber reinforcement (2) was opened without passing through any of the opening pins (4) without contact, and was impregnated with the molten resin.
  • a slit-shaped shaping die (6) consisting of 3 Omiu width and 0.5 mm thickness, drilled in the downstream end wall (1 wR) of the opening impregnation tank (1), A core material layer (71) having a semi-molten surface was drawn out.
  • Both surfaces of the core material layer (71) are made of polypropylene [MFR under the conditions of a crystalline melting point of 160 ° C, 230 ° C and 21.18 N by DSC measurement is 2.0 min]
  • MFR polypropylene
  • the two skin layers (72) are supplied from the respective webs.
  • One of them is a web (72u) located above the core layer (71), and the other is a web (72d) located below the core layer (71).
  • the average thickness of the core layer (71) was 0.44 mm, and the average thickness of the skin layer (72) was 0.3 nun per side.
  • Table 1 also shows the configurations of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
  • Example 1 except that the average thickness of the skin layer (72) laminated on both surfaces of the core layer (71) is changed to 0.1 mm per one side, A structure (7) having an average width of 33 mm and an average thickness of 0.64 mm, in which the skin material layers (72) were laminated on both surfaces, was obtained.
  • the average thickness of the core layer (71) was 0.44 mm, and the average thickness of the skin layer (72) was 0.1 mm per side.
  • Table 1 also shows the configurations of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
  • Example 1 except that the average thickness of the skin layer (72) laminated on both surfaces of the core layer (71) was changed to 0.5 mm on each side. Thus, a structure (7) having a width of 33 mm and an average thickness of 1.44 was obtained, in which both surfaces were laminated with the skin material layer (72).
  • the average thickness of the core layer (7 1) is 0. 4 4m m
  • the average thickness of the skin layer (7 2) on one surface was per 0. 5 mm.
  • Table 1 also shows the configurations of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
  • Table 1 also shows the configurations of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
  • the obtained structure (7) was excellent in tensile strength, but inferior in bending resistance and surface gloss.
  • the melting point of the crystal was determined by melting and kneading a melt melting and kneading apparatus (not shown) with an MFR of 2.0 gZ 10 min under the conditions of a crystal melting point of 16.0; 2300 ° C, and 2.18 N.
  • the melted resin is extruded at 250 ° C from a T-die mounted at the downstream end of the extrusion molding device to form a semi-molten (sintered) core layer (71) without continuous fiber reinforcement. did.
  • both surfaces of the core layer (71) were polished with polypropylene [crystal melting point of 160 ° C. by DSC measurement; 230 ° C .; ⁇ l O min], and then wrapped with a 0.3 mm skin layer (72) with an average thickness, then passed between nip rolls (8u and 8d) sandwiched from both sides to obtain an average width of 3mm.
  • the average thickness of the core material layer (71) was 0.4 mm, and the average thickness of the skin material layer (72) was 0.3 mm per side.
  • Table 1 also shows the configurations of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
  • the obtained structure (7) was excellent in surface gloss, but was inferior in tensile strength and bending resistance.
  • Both surfaces of the core layer (71) are made of polypropylene [crystal melting point of 160 ° C. by DSC measurement; MFR of 2.0 g 10 under the condition of 230 ° C. and 2.1.18 N]. min] using a 0.3 mm thick skin material layer (72), and then passing between two nip rolls (8u and 8d) sandwiched from both sides to laminate, with an average width of 200mm The structure (7) having an average thickness of 1.04 mm was obtained.
  • the average thickness of the core layer (71) was 0.44 ⁇ !
  • the average thickness of the skin material layer (72) was 0.3 ⁇ per side.
  • Table 1 also shows the structures of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
  • Example 4 except that the skin material layer (72) was not laminated on any surface of the core material layer (71), the width was 200 mm, and the average thickness was 0.44 mm. (7) was obtained.
  • Table 1 also shows the configurations of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
  • the obtained structure (7) was excellent in tensile strength, but inferior in bending resistance and surface gloss.
  • Polypropylene [crystal melting point (DSC): 160 ° C; MFR under conditions of 230 ° C and 2.1.18 N was 2.0 gZ 10 min] was melted in a melt-kneading apparatus (not shown).
  • the molten resin obtained by extrusion is extruded at 250 ° C from a T-die attached to the downstream end of the extrusion molding device, and the surface of the core material layer is not semi-molten and contains continuous fiber reinforcement (71).
  • both surfaces of the core material layer (71) were coated with polypropylene [crystal melting point by DSC measurement].
  • the average thickness of the core layer (71) was 0.4 min, and the average thickness of the skin layer (72) was 0.3 mm per side.
  • Table 1 also shows the configurations of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
  • the structure (7) was excellent in surface gloss, but was inferior in tensile strength and bending resistance.
  • Modified PP [Crystal melting point 16.0 ° ⁇ from 03 ⁇ measurement; 230 ° ⁇ , MFR under conditions of 2.1.18 N is 130 g / 10 min] at 270 ° C
  • the melted resin was melted and kneaded by a melt-kneading device (not shown) set in the above, and the obtained molten resin was supplied to the opening and impregnating tank (1) shown in FIG. 1 according to the above description.
  • 36 continuous fiber reinforcing materials (2) which are glass long fiber bundles, in which 400 single fibers are bundled from the upstream side in the open fiber impregnation tank (1), are arranged in a horizontal line.
  • the fibers were simultaneously introduced through the fiber introduction holes (3) drilled in the upstream wall, opened in the opening and impregnating tank (1), and the molten resin was impregnated between the opened materials.
  • the surface was semi-molten from a shaping die (6>) with a width of 195 mm and a thickness of 0.5 mm drilled in the downstream end wall (1 wR) of the opening and impregnating tank (1).
  • the core layer (71) was drawn out.
  • a 0.3 mm thick skin material layer (72) is layered, and then passed between the nipples (8u and 8d) sandwiched from both sides to form an average width 2
  • a structure (7) having a thickness of 0.0 mm and an average thickness of 0.74 mm was obtained.
  • the average thickness of the core layer (71) was 0.444 mm, and the average thickness of the skin layer (72) was 0.3 mm.
  • Table 1 also shows the configurations of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
  • the obtained molten resin is extruded at 250 ° C from a T-die attached to the downstream end of the extrusion molding device, and the continuous fiber reinforcement with a semi-molten surface is not blended.
  • a core material layer (71) was produced.
  • one side of the core material layer (71) was polished with polypropylene [crystal melting point of 160 ° C; DSC measurement, 230 ° C; 0 min] and a layer of skin material (72) with an average thickness of 0.3 mm, and then laminated between the nipples (8u and 8d) sandwiched from both sides to form an average width of 2
  • the average thickness of the core layer (71) was 0.4 mm, and the average thickness of the skin layer (72) was 0.3 mm.
  • Table 1 also shows the structures of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
  • the structure (7) was excellent in surface gloss, but was inferior in tensile strength and bending resistance.
  • both surfaces of the core material layer (71) were coated with polypropylene [crystal melting point of 160 ° C by DSC measurement; 230].
  • C Nippers sandwiched from both sides after layering on a skin layer (72) with an average thickness of 0.2 mm using an MFR of 2.10 min] (8u and 8d) to obtain a structure (7) having an average width of 20 2 ⁇ and an average thickness of 0.62 mm.
  • the average thickness of the core layer (71) was 0.22nnn, and the average thickness of the skin layer (72) was 0.2 ⁇ per side.
  • Table 1 also shows the configurations of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
  • the width was 200 mm and the average thickness was 0.22 mm according to Example 6. (7) was obtained.
  • Table 1 also shows the configurations of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
  • the obtained structure (7) was excellent in tensile strength, but inferior in bending resistance and surface gloss.
  • both surfaces of the core material layer (71) were polished with polypropylene [having a crystal melting point of 160; 230 ° C by DSC measurement, and an MFR of -2.0 under the condition of 2.1.18N. g / 10 min] and a layer of skin material (72) with an average thickness of 0.2 mm, and then passed between the nipples (8 u and 8 d) sandwiched from both sides, and laminated.
  • the average thickness of the core layer (71) was 0.2 mm, and the average thickness of the skin layer (72) was 0.2 mm per side.
  • Table 1 also shows the configurations of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
  • the structure (7) was excellent in surface gloss, but was inferior in tensile strength and bending resistance.

Abstract

A thermoplastic resin sheet structure reinforced with continuous fibers, which is constituted of a sheet-form core layer consisting mainly of continuous reinforcement fibers arranged approximately in parallel to the machine direction and a thermoplastic resin bonding the fibers to each other, especially one having an affinity for the fibers and a skin layer made of a thermoplastic resin and laminated to at least one side of the core layer. Due to the constitution, the structure has various advantages that it is excellent in all of tensile strength, bending strength, safety, and workability and is suitable for use in producing products of high value, e.g., a band for packing weighty objects.

Description

明細書  Specification
連続繊維強化熱可塑性樹脂シー ト状構造物 技術分野 Continuous fiber reinforced thermoplastic resin sheet-like structure
本発明は、 主と して、 熱可塑性樹脂と連続繊維強化材とを含む芯材層と熱可塑 性榭脂製の表皮材層 (以下、 表皮材層という) とを積層することによって得られ る連続繊維強化熱可塑性樹脂シー ト状構造物(以下、 構造物も しく は積層パンドと いう)に関する。  The present invention is mainly obtained by laminating a core material layer containing a thermoplastic resin and a continuous fiber reinforcement and a skin material layer made of thermoplastic resin (hereinafter referred to as a skin material layer). The present invention relates to a continuous fiber reinforced thermoplastic resin sheet-like structure (hereinafter, referred to as a structure or a laminated band).
本発明の構造物は、 重量物を捆包する重梱包用パン ド、 コンベヤー用ベルトの ような搬送用バン ド及び伝動用ベルトのよ うな駆動用ベルト等に特に有用であり 、 従来品のバン ドやベル トよ り も格段に優れた性能を有している。 背景技術  INDUSTRIAL APPLICABILITY The structure of the present invention is particularly useful for a heavy-duty band, a transport band such as a conveyor belt, a driving belt such as a transmission belt, and the like. It has much better performance than the belt and belt. Background art
樹脂製バン ドは、 扱い易い点から各種製品の捆包用途に広く使用されているが 、 優れた機械的強度が要求される重梱包用バン ドに使用するには充分な強度を有 していない。 また、 樹脂製バン ドには、 搬送用バン ドや伝動用ベルトと しての使 用方法も存在するが、 この様な用途には、 更に優れた機械的強度が要求されるた め、 従来の榭脂製パン ドでは使用が極めて困難であった。  Resin bands are widely used for packaging various products because of their ease of handling, but have sufficient strength to be used for heavy packaging bands that require excellent mechanical strength. Absent. There are also methods of using resin bands as conveyor bands and transmission belts.However, such applications require more excellent mechanical strength, and are therefore difficult to use. It was extremely difficult to use this resin band.
そこで、 樹脂製パン ドに機械的強度の高い連続繊維強化榭脂を使用する試みが なされている。 連続繊維強化樹脂とは、 連続繊維強化材を樹脂に含浸させて形成 したものであり、 この様な連続繊維強化樹脂を用いた樹脂製バン ドは連続繊維強 化榭脂を用いない樹脂製バン ドに比べて、 引張強度等の機械的強度が極めて優れ ている。  Therefore, attempts have been made to use a continuous fiber reinforced resin having high mechanical strength for a resin band. The continuous fiber reinforced resin is formed by impregnating the resin with a continuous fiber reinforced material, and a resin band using such a continuous fiber reinforced resin is a resin band not using a continuous fiber reinforced resin. The mechanical strength, such as tensile strength, is extremely superior to that of metal.
しかしながら、 連続繊維強化樹脂を用いた樹脂製パン ドは、 該バン ド表面に連 続繊維強化材末端部が突出する場合が多々あり 、 これにより連続繊維強化材と榭 脂とが分離し易くなつて、 該バン ドの引張強度が大幅に低下し、 該バン ドが切断 し易く なる という欠点を有している。 However, a resin band using a continuous fiber reinforced resin is not connected to the band surface. In many cases, the end portion of the continuous fiber reinforcing material protrudes, so that the continuous fiber reinforcing material and the resin are easily separated, and the tensile strength of the band is significantly reduced, and the band is easily cut. It has the disadvantage of becoming
また、 突出した連続繊維強化材末端部は、 梱包作業の際に、 作業者の手等に刺 さ り作業者に傷を負わせたり、 被梱包物に損傷を与える という危険性が高い上、 該ベルト表面に毛羽立ちが起こり、 表面光沢性及び平滑性不足を来たして商品価 値を低下させる という問題点があった。 発明の開示  In addition, the protruding end portion of the continuous fiber reinforced material has a high risk of being pierced by an operator's hand or the like during packaging and injuring the operator or damaging the packaged object. There has been a problem that fluffing occurs on the surface of the belt, resulting in insufficient surface gloss and smoothness, thereby lowering the commercial value. Disclosure of the invention
本発明の目的は、 引張強度や折曲げ強度に代表される機械的強度、 取扱い安全 性、 作業性に優れ、 なおかつ商品価値の高い構造物を提供するこ とである。 該構 造物は、 重梱包用バン ド、 搬送用バン ド及び駆動用ベル トと して特に有用である  An object of the present invention is to provide a structure that is excellent in mechanical strength represented by tensile strength and bending strength, handling safety, workability, and has high commercial value. The structure is particularly useful as a heavy packaging band, a transport band, and a drive belt.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明の構造物を製造する為の一連の装置の例を示す模式図である。 発明を実施するための最良の形態  FIG. 1 is a schematic view showing an example of a series of apparatuses for manufacturing the structure of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の構造物の製造手順を図 1 に沿って具体的に説明する。 図の説明におけ る Γ上下左右手前又は奥 J等は、 説明の便宜上の表現である。  The manufacturing procedure of the structure of the present invention will be specifically described with reference to FIG. In the explanation of the figure, ΓUp, down, left, right, front or back J etc. are expressions for convenience of explanation.
図 1 において、 ガラスロービングの長繊維集束体を用いた連続繊維強化材(2 ) は、 溶融樹脂が供給されている開繊含浸装置( 1 )内部に導入され、 連続繊維強化 材(2 )の繊維間および繊維表面に溶融樹脂が付着 · 含浸 (以下、 総称して含浸と いう) された後、 外部に引き出され細幅の連続繊維強化熱可塑性樹脂である芯材 層(7 1 ) となる。 便宜上、 導入側を上流、 引き出し側を下流とする。 開繊含浸槽(1 )は、 基本的には、 天板( l wT)、 上流側端壁( l wし)、 下流側端壁 ( l wR)、 底板( 1 wB)および 2枚の側板 (図省略) から構成されている。 In FIG. 1, a continuous fiber reinforcing material (2) using a long fiber bundle of glass roving is introduced into an opening and impregnating device (1) to which molten resin is supplied, and a continuous fiber reinforcing material (2) is used. After the molten resin adheres to and impregnates between the fibers and on the fiber surface (hereinafter collectively referred to as impregnation), it is drawn out and becomes the core layer (71), which is a narrow continuous fiber-reinforced thermoplastic resin. . For convenience, the upstream side is the upstream side and the downstream side is the downstream side. The open fiber impregnation tank (1) basically consists of a top plate (lwT), an upstream end wall (lw), a downstream end wall (lwR), a bottom plate (1wB) and two side plates (1wB). (Illustration omitted).
また、 開繊-含浸槽(1 )内部には、 底板(1 wB)に穿設ざれた榭脂導入口 (5 )経由 で溶融樹脂が継続的に供給されている。 溶融樹脂の供給方法と しては、 押出機等 (図省略) で溶融混練された溶融樹脂を、 押出機と樹脂導入口(5 )とを連結した 管路等を介して供給する という手段が有効である。  The molten resin is continuously supplied to the inside of the opening-impregnation tank (1) via a resin inlet (5) formed in the bottom plate (1 wB). As a method of supplying the molten resin, there is a method of supplying the molten resin melt-kneaded by an extruder or the like (not shown) through a pipe or the like connecting the extruder and the resin inlet (5). It is valid.
連続繊維強化材(2 )は、 上流側端壁(1 wL)に穿設された繊維導入口(3)経由で 開繊含浸装置( 1 )內部へ略水平に導入され、 連続繊維強化材(2)を上下から挟ん で位置する開繊ピン( 4 u)および開繊ピン( 4 d)の中間を、 該開繊ピン( 4 )の何れ にも接触しないよう に通過することによって開織され、 連続繊維強化材(2 )に溶 融樹脂が含浸されながら、 下流端壁(1 wR)に穿設された賦形ノズル 6経由で開繊 含浸槽( 1 )外部に引き出される。 開繊ピン(4)は、 下流側へ向けて略水平に、 し かも上下に略平行に対を成している。 それぞれの開織ピン(4 ulと 4 dl、 4 u2と 4 d2及び 4u3と 4 d3)を開繊ピン対と称する。  The continuous fiber reinforcing material (2) is introduced substantially horizontally into the opening and impregnating device (1) 內 through the fiber inlet (3) drilled in the upstream end wall (1 wL), and the continuous fiber reinforcing material ( The fabric is unwound by passing through the middle of the spread pin (4u) and the spread pin (4d), which sandwiches 2) from above and below, so as not to contact any of the spread pins (4). While the molten resin is impregnated in the continuous fiber reinforcing material (2), the continuous fiber reinforcing material (2) is drawn out of the opening and impregnating tank (1) through the shaping nozzle 6 formed in the downstream end wall (1 wR). The spreading pins (4) form a pair substantially horizontally toward the downstream side, or substantially vertically up and down. Each of the weaving pins (4 ul and 4 dl, 4 u2 and 4 d2, and 4u3 and 4 d3) is referred to as an opening pin pair.
開繊含浸槽( 1 )の外部へ引き出された芯材層(7 1 )は、 表皮材層(7 2u)が上面 に、 表皮材層(7 2 d)が下面に積層され、 本発明の構造物(7 )となる。  The core layer (71) drawn out of the open fiber impregnation tank (1) has a skin layer (72u) on the upper surface and a skin layer (72d) on the lower surface. It becomes a structure (7).
該積層は、 上面に位置する表皮材層(7 2 u)を上段圧接ロール(8 u)によって芯 材層(7 1 )の上面に積層する と共に、 下面に位置する表皮材層(7 2 d)を下段圧接 ロール(8 d)によって芯材層(7 1 )の下面に積層するという手順で行なわれる。 最後に、 構造物(7 )は、 上下一対のニップロール(9 )に挟まれながら、 下流端 に位置する引取り リール(1 0 )によって卷取られる。  In the lamination, the skin layer (72 u) located on the upper surface is laminated on the upper surface of the core layer (71) by the upper pressing roll (8u), and the skin layer (72 d) located on the lower surface. ) Is laminated on the lower surface of the core layer (71) by the lower pressing roll (8d). Finally, the structure (7) is wound by a take-up reel (10) located at the downstream end while being sandwiched between a pair of upper and lower nip rolls (9).
また、 本発明の構造物は、 下掲の 1以上を備えていることが好ま しい。  Further, the structure of the present invention preferably has one or more of the following.
①芯材層の構成成分である熱可塑性樹脂は、 少なく とも部分的には連続繊維強化 材に対して親和性を示す。  (1) The thermoplastic resin, which is a constituent component of the core material layer, has at least a partial affinity for continuous fiber reinforcement.
②芯材層の構成成分である熱可塑性樹脂はポリプロ ピレンである。 ③連続繊維強化材はガラス繊維である。 ガラス繊維は、 機械的強度に優れ、 価格 的にも十分な経済性を備えているので有用である。 軽量性と強度との均衡即ち、 大きな比強度を備えていることが最重要条件である用途には、 ガラス繊維を炭素 繊維に代える。 (2) The thermoplastic resin that is a component of the core material layer is polypropylene. (3) The continuous fiber reinforcement is glass fiber. Glass fiber is useful because it has excellent mechanical strength and sufficient economical price. For applications where the balance between lightness and strength, that is, having a high specific strength, is the most important condition, replace glass fiber with carbon fiber.
④芯材層および表皮材層の構成成分である熱可塑性樹脂は、 同種のものである。 熱 The thermoplastic resin that is a component of the core layer and the skin layer is of the same type.
⑤表皮材層の厚みの合計は、 通常 0 · 1〜 2 ππη、 好ま しく は 0 . 2 ~ 1 mmの範囲内 である。 合計 The total thickness of the skin material layer is usually in the range of 0.1 to 2ππη, preferably in the range of 0.2 to 1 mm.
ぐ構造物 >  Structure>
次に、 本発明の構造物について具体的に説明する。  Next, the structure of the present invention will be specifically described.
本発明の構造物は長手方向に略平行に配列された連続繊維強化材とこの連続繊 維強化材を相互に結合(接着)する熱可塑性樹脂とから形成されたシー ト状の芯材 層と、 この芯材層の少なく と も片面に積層される熱可塑性樹脂製の表皮材層とか らなっている。 本発明では、 比較的幅の狭いものでも便宜上シー ト状物という。 まず、 芯材層について以下に説明する。  The structure of the present invention comprises a sheet-like core layer formed of a continuous fiber reinforcement arranged substantially parallel to the longitudinal direction and a thermoplastic resin bonding (adhering) the continuous fiber reinforcement to each other. The core layer is made of a thermoplastic resin skin layer laminated on at least one side. In the present invention, a relatively narrow one is referred to as a sheet for convenience. First, the core material layer will be described below.
ぐ芯材層 >  Core layer>
本発明の構造物を構成する芯材層は、 長手方向に略平行に配列された連続繊維 強化材と、 この連続繊維強化材を相互に結合する熱可塑性樹脂を主成分とする。 熱可塑性榭脂は、 連続繊維強化材に含浸され得るものであれば如何なるものでも 差し支えないが、 連続繊維強化材と親和性を有するように改質されたものが好ま しい。  The core material layer constituting the structure of the present invention is mainly composed of a continuous fiber reinforcing material arranged substantially parallel to the longitudinal direction and a thermoplastic resin that bonds the continuous fiber reinforcing materials to each other. Any thermoplastic resin may be used as long as it can be impregnated into the continuous fiber reinforcement, but a thermoplastic resin modified to have an affinity for the continuous fiber reinforcement is preferable.
例えば、 連続繊維強化材と してガラス繊維を用いる場合は、 ガラス繊維との強 固な結合を有する改質熱可塑性榭脂を用いることが望ましい。  For example, when glass fiber is used as the continuous fiber reinforcing material, it is desirable to use a modified thermoplastic resin having a strong bond with glass fiber.
熱可塑性樹脂は、 後掲の改質剤、 有機過酸化物およびその他添加剤と共に、 へ ンシェルミキサー (商品名) 等の混合装置で均一分散された後、 押出機で溶融混 練され、 溶融樹脂と して連続繊維強化材に含浸される。 <熱可塑性樹脂 > The thermoplastic resin, along with the modifier, organic peroxide, and other additives described below, is uniformly dispersed in a mixing device such as a Henschel mixer (trade name), and then melt-kneaded in an extruder and melted. It is impregnated into continuous fiber reinforcement as resin. <Thermoplastic resin>
芯材層の構成成分である熱可塑性樹脂は、 通常炭素原子 2〜 1 0個を含有する 1 -ォレフィンモノマーの単独重合体又は共重合体であるポリオレフ イ ン(P O)、 The thermoplastic resin, which is a constituent component of the core material layer, includes polyolefin (PO), which is a homopolymer or copolymer of a 1-olefin monomer containing usually 2 to 10 carbon atoms,
{例えば、 ポリエチレン(P E)、 ポリ プロ ピレン(P P)、 プロピレン一エチレン 共重合体、 プロ ピレン一 1-ブテン共重合体及びプロ ピレン一 4-メチル -1-ペンテン 共重合体の少なく とも何れか並びにそれらの 2種以上の組成物等 } 、 ポリハロゲ ン化ビュル、 {好ましく はポリ塩化ビュル(P V C)} 、 ポリアミ ド榭脂(N L) { 例えば、 6-ナイ ロン、 6,6-ナイロン、 6, 10-ナイ ロン、 6, 12-ナイ ロン及びナイ口 ン MX D 6 (m -キシリ レンジアミンとアジピン酸との共縮合体樹脂)等) 並びに全 芳香族ポリアミ ド、 飽和ポリエステル {例えば、 P E T及び P B T等 } 、 全芳香 族ポリエステル、 A S (アク リ ロニ ト リル一スチレン共重合体)樹脂、 A B S (ァク リ ロ二 ト リル)樹脂、 ポリ メチルメタク リ レー ト(PMMA)、 ポリアセタール、 ポ リカ一ボネー ト(P C)、 フッ素樹脂、 ポリ フエ二レンスルフィ ド(P P S)、 ポリ スルホン(P S O)、 ポリエーテルスルフォン、 ポリエーテルケ トン、 ポリェ一テ ルエーテルケ トン(P E E K)、 ポリイ ミ ド、 ポリアリ レー ト等を挙げることがで さる。 {For example, at least one of polyethylene (PE), polypropylene (PP), propylene-ethylene copolymer, propylene-1-butene copolymer, and propylene-1-methyl-1-pentene copolymer And polyhalogenated vinyl, {preferably polychlorinated vinyl (PVC)}, polyamide resin (NL) {eg, 6-nylon, 6,6-nylon, 6 , 10-Nylon, 6,12-Nylon and Nylon MXD6 (co-condensate resin of m-xylylenediamine and adipic acid) etc.) and wholly aromatic polyamides, saturated polyesters {eg PET And PBT, etc.), wholly aromatic polyesters, AS (acrylonitrile-styrene copolymer) resin, ABS (acrylonitrile) resin, poly (methyl methacrylate) (PMMA), polyacetal, polyca One bone (PC), fluororesin, polyphenylene sulfide (PPS), polysulfone (PSO), polyether sulfone, polyether ketone, polyester ether ketone (PEEK), polyimide, polyarylate, etc. It is a thing.
これらの中では、 汎用性及び機械的強度等に優れている点から、 結晶性ポリオ レフイ ン、 特に結晶性ポリプロ ピレンが好ましい。  Among these, crystalline polypropylene, particularly crystalline polypropylene, is preferable because of its excellent versatility and mechanical strength.
また、 熱可塑性樹脂は、 後掲の改質剤等で改質された改質熱可塑性樹脂である 力 改質熱可塑性樹脂が配合されたものであることが望ましい。  Further, it is desirable that the thermoplastic resin contains a force-modified thermoplastic resin which is a modified thermoplastic resin modified with a modifier or the like described later.
ぐ改質剤 >  Modifier>
熱可塑性樹脂に連続繊維強化材と親和性を持たせるための改質剤と しては、 有 機シラン化合物、 不飽和カルボン酸及び不飽和カルボン酸無水物を挙げることが できる。 中でも不飽和カルボン酸無水物 (例えば、 マレイン酸無水物、 ィタコン 酸無水物、 テ トラヒ ドロフタル酸無水物及びノルボルネンジカルボン酸無水物 } が好ましく 、 マレイン酸無水物が最も好ましい。 Examples of the modifier for giving the thermoplastic resin an affinity with the continuous fiber reinforcing material include an organic silane compound, an unsaturated carboxylic acid, and an unsaturated carboxylic anhydride. Among them, unsaturated carboxylic anhydrides (eg, maleic anhydride, itaconic anhydride, tetrahydrophthalic anhydride, and norbornene dicarboxylic anhydride) Is preferred, and maleic anhydride is most preferred.
不飽和カルボン酸と しては、 アク リル酸、 メタク リル酸、 ィタコン酸等を挙げ ることができる。 本発明において有効な不飽和カルボン酸と しては、 例えば含有 カルボキシル基(― C O O H )の一 O Hがハロゲン原子等で置換された不飽和カル ボン酸の酸ハライ ド等の誘導体を挙げられる。  Examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, and itaconic acid. Examples of the unsaturated carboxylic acid effective in the present invention include derivatives such as acid halides of unsaturated carboxylic acids in which one OH of a carboxyl group (—COOH) contained in the unsaturated carboxylic acid is substituted with a halogen atom or the like.
これらの不飽和カルボン酸又は不飽和カルボン酸無水物はそれぞれ単独でも、 複数の種類を組合せて用いても良い。  These unsaturated carboxylic acids or unsaturated carboxylic anhydrides may be used alone or in combination of two or more.
有機シラン化合物の例と しては、 アミ ノシラン、 エポキシシラン、 ビュルシラ ン及びメタク リ 口キシシラン等を挙げることができる。 これらの有機シラン化合 物は単独でも、 複数の種類の組合わせで用いても良い。  Examples of the organic silane compound include aminosilane, epoxysilane, bursilane, and methacryloxysilane. These organic silane compounds may be used alone or in combination of a plurality of types.
ぐ有機過酸化物 >  Organic peroxide>
本発明においては、 上記の様な改質剤を用いる際に、 必要に応じて有機過酸化 物を組合せて用いても良い。 有機シラン化合物との組合せに有効な有機過酸化物 の例と して、 2, 5-ジメチル(t-ブチルパーォキシ)へキサン、 1, 3-ビス(t-ブチルパ ーォキシィソプロピル)ベンゼン、 ジク ミルパ一ォキサイ ド(D C P )及びべンゾィ ルバ一ォキサイ ド(B P O )等を挙げることができる。  In the present invention, when the above-described modifier is used, an organic peroxide may be used in combination as necessary. Examples of organic peroxides that are effective in combination with organosilane compounds include 2,5-dimethyl (t-butylperoxy) hexane, 1,3-bis (t-butylperoxyisopropyl) benzene, Dicumyl peroxide (DCP) and benzoyl peroxide (BPO).
くその他の添加剤 >  Other additives>
芯材層及び表皮材層には、 適宜に酸化防止剤、 紫外線安定剤、 着色剤、 耐候剤 、 難燃剤、 滑剤、 アンチブロック剤、 銅害防止剤及び帯電防止剤等の機能性添加 剤を配合することができる。  Functional additives such as antioxidants, ultraviolet stabilizers, coloring agents, weathering agents, flame retardants, lubricants, antiblocking agents, copper anti-static agents and antistatic agents are appropriately added to the core material layer and the skin material layer. Can be blended.
ぐ連続繊維強化材>  Continuous fiber reinforcement>
芯材層の構成成分である連続繊維強化材は、 平均直径が 3〜 2 1 μ ιη、 好ましく は 9〜 2 1 μ mの単一繊維 5 0 0〜 4 0 0 0本程度の集束体(以下、 ロービングと いう ことがある)である。 単一繊維の平均直径が 1 /z m以下である と、 構造物の成 形時に繊維が破損し易く 、 該構造物の衝撃強度が低下し易い。 一方、 単一繊維の 平均直径が 2 5 μ m以上では、 該構造物の外観低下を来たし易くなる と共に該構造 物の機械的強度が低下し易い。 The continuous fiber reinforcing material, which is a component of the core material layer, has a bundle of about 500 to 400 single fibers having an average diameter of 3 to 21 μιη, preferably 9 to 21 μm. Hereinafter, it may be referred to as roving). When the average diameter of a single fiber is 1 / zm or less, the fiber is easily broken at the time of forming the structure, and the impact strength of the structure is easily reduced. On the other hand, single fiber When the average diameter is 25 μm or more, the appearance of the structure tends to be deteriorated, and the mechanical strength of the structure tends to decrease.
また、 連綠繊維強化材の平均長は、 該構造物の平均長と略同等の長さにするこ とが好ましい。 連続繊維強化材が、 該構造物の長手方向に連続して延びていると 、 該構造物は長手方向に対しての引張強度及び耐折曲げ性が極めて向上する。 連続繊維強化材の例と しては、 無機繊維又は有機繊維を挙げることができる。 無機繊維と しては、 例えばガラス繊維、 炭素繊維及び金属繊維の様な人工繊維 を挙げることができる。 中でもガラス繊維が、 物性、 経済性に優れているので好 ましく用いられる。 ガラス繊維と しては、 硬質ガラスが好ましく、 特に、 無アル カ リガラスである Eガラスや硼珪酸ガラス (ポロシリケー トガラス) が好ましい また、 無機繊維は、 例えばシラン系カップリ ング剤、 チタネー ト系カップリン グ剤、 ボロン系カップリ ング剤、 アルミネー ト系カップリング剤及びジルコアル ミネー ト系カツプリ ング剤等で表面処理された状態で用いてもよい。 無機繊維に 表面処理が施される と、 ポリプロピレンの様な疎水性熱可塑性樹脂に対しても親 和性を高めることができ、 連続繊維強化材の繊維間に熱可塑性榭脂が含浸され易 く なる。  The average length of the continuous fiber reinforcing material is preferably substantially equal to the average length of the structure. When the continuous fiber reinforcement continuously extends in the longitudinal direction of the structure, the structure has extremely improved tensile strength and bending resistance in the longitudinal direction. Examples of continuous fiber reinforcements include inorganic fibers and organic fibers. Examples of the inorganic fibers include artificial fibers such as glass fibers, carbon fibers, and metal fibers. Among them, glass fiber is preferably used because of its excellent physical properties and economy. Hard glass is preferable as the glass fiber, and E glass or borosilicate glass (porosilicate glass), which is non-alkali glass, is particularly preferable. Inorganic fiber is, for example, a silane coupling agent or a titanate coupling agent. It may be used after being surface-treated with a chemical agent, a boron-based coupling agent, an alumina-based coupling agent, a zirco-aluminate-based coupling agent, or the like. When surface treatment is applied to inorganic fibers, compatibility with hydrophobic thermoplastic resins such as polypropylene can be enhanced, and the thermoplastic resin is easily impregnated between the fibers of the continuous fiber reinforcement. Become.
有機繊維と しては、 ポリオレフイ ン繊維 {例えば、 ポリエチレン繊維、 ポリプ ロピレン繊維及びポリ-4-メチル - 1-ペンテン繊維 } 、 ポリアミ ド繊維 {例えば 6 - ポリアミ ド(6-ナイロン)、 7-ポリアミ ド、 11-ポリアミ ド、 12-ポリアミ ド、 6, 6- ポリアミ ド、 6, 7-ポリアミ ド、 6, 10-ポリアミ ド、 6, 12-ポリアミ ド} 、 半芳香族 ポリアミ ド繊維 {例えばナイ ロン M X D 6 (m-キシリ レンジァミ ンとァジピン酸と の共縮合体) } 、 全芳香族ポリァミ ド繊維 [ァラミ ド繊維 (商品名 : ケプラー) ] 、 熱可塑性ポリエステル繊維 {例えば、 P E T (ポリエチレンテレフタ レー ト)繊 維、 P B T (ポリ - 1 , 4-ブチレンテ レフタ レー ト) 繊維 } 及び全芳香族ポリエステ ル繊維等を挙げることができる。 これらは、 高融点及び機械的強度に優れている 点で好ましい。 Examples of the organic fibers include polyolefin fibers {eg, polyethylene fibers, polypropylene fibers and poly- 4 -methyl-1-pentene fibers}, polyamide fibers {eg, 6-polyamide (6-nylon), 7-polyamide. , 11-polyamide, 12-polyamide, 6,6-polyamide, 6,7-polyamide, 6,10-polyamide, 6,12-polyamide}, semi-aromatic polyamide fiber {e.g. Ron MXD 6 (co-condensate of m-xylylene diamine and adipic acid)}, wholly aromatic polyamide fiber [aramid fiber (trade name: Kepler)], thermoplastic polyester fiber {for example, PET (polyethylene terephthalate) Rate) fiber, PBT (poly-1,4-butylene terephthalate) fiber} and wholly aromatic polyester Fiber and the like. These are preferred in that they have a high melting point and excellent mechanical strength.
無機繊維及び有機繊維は単独で用いてもよく 、 また 2種以上を組み合わせて用 いてもよい。  The inorganic fiber and the organic fiber may be used alone, or two or more kinds may be used in combination.
ぐ芯材層の作製 >  Preparation of core material layer>
芯材層は、 基本的には、 溶融された熱可塑性榭脂を連続繊維強化材に含浸させ ることによって得られる。 連続繊維強化材を平面状に可能な限り均一に開繊し、 その開繊物に熱可塑性樹脂を均一に含浸させることが望ましく、 この様にして得 られる芯材層を本発明の構造物に用いると、 機械的強度が著しく 向上する。  The core layer is basically obtained by impregnating a continuous fiber reinforcement with a molten thermoplastic resin. It is desirable to spread the continuous fiber reinforcing material as evenly as possible in a planar shape and to impregnate the spreaded material uniformly with a thermoplastic resin. The core material layer obtained in this manner is used for the structure of the present invention. When used, the mechanical strength is significantly improved.
連続繊維強化材に熱可塑性樹脂を含浸させる方法は、 連続繊維強化材に熱可塑 性樹脂を含浸させ得る方法であれば如何なる方法であってもよいが、 特公昭 6 3 - 3 7 6 9 4号公報、 特公平 4 - 4 1 8 8 6号公報及び特開昭 6 1 — 2 2 9 5 3 4号公報等に開示されている含浸方法が望ましい。  The method of impregnating the continuous fiber reinforcement with the thermoplastic resin may be any method as long as the continuous fiber reinforcement can be impregnated with the thermoplastic resin. The impregnation method disclosed in Japanese Patent Application Laid-Open Publication No. Hei 4-418886 and Japanese Patent Application Laid-Open No. Sho 61-229354 is desirable.
芯材層の構成成分である連続繊維強化材は、 芯材層中 1 0〜 8 0重量%、 好ま しくは 3 0〜 7 0重量%の範囲で含まれていることが望ましい。 この含有量で連 続繊維強化材を使用する と、 連続繊維強化材に熱可塑性樹脂が充分に含浸される ので、 連続繊維強化材と熱可塑性樹脂との相互一体性に優れる。 また、 連続繊維 強化材の含有量が 5重量%以下であると、 引張強度等の機械的特性が充分に発現 しない場合がある。 他方、 連続繊維強化材の含有量が 9 0重量。/0以上である と、 却って十分な機械的特性が発現されない場合がある。 その原因は熱可塑性樹脂が 連続繊維強化材に充分に含浸しないことにある と解される。 It is desirable that the continuous fiber reinforcing material, which is a component of the core material layer, is contained in the core material layer in an amount of 10 to 80% by weight, preferably 30 to 70% by weight. When the continuous fiber reinforcement is used at this content, the continuous fiber reinforcement is sufficiently impregnated with the thermoplastic resin, so that the continuous fiber reinforcement and the thermoplastic resin are excellent in mutual integration. If the content of the continuous fiber reinforcing material is 5% by weight or less, mechanical properties such as tensile strength may not be sufficiently exhibited. On the other hand, the content of continuous fiber reinforcement is 90% by weight. If the ratio is / 0 or more, sufficient mechanical properties may not be exhibited. It is understood that the cause is that the thermoplastic resin does not sufficiently impregnate the continuous fiber reinforcement.
<表皮材層 >  <Skin material layer>
表皮材層とは、 芯材層の少なく とも片面に積層される熱可塑性榭脂製のフィル ムもしくはシー トの層である。 表皮材層の構成成分である熱可塑性樹脂は、 前記 の芯材層に用いられる熱可塑性樹脂と別異種のものでもよいが、 好ましくは同種 のものが良い。 表皮材層の構成成分である熱可塑性樹脂の好適例と しては、 ポリ ォレフィ ン(P O ) (例えば、 ポリエチレン(P E )、 ポリ プロ ピレン(P P )、 プロ ピレン一エチレン共重合体等 } 、 エチレン一齚酸ビニル共重合体(E V A )、 熱可 塑性ポリアミ ド榭脂(N Y ) {例えば、 6-ポリアミ ド(6-ナイロン)、 7-ポリアミ ド 、 1卜ポリアミ ド、 12-ポリアミ ド、 6, 6-ポリアミ ド、 6, 7-ポリアミ ド、 6, 10-ポリ アミ ド、 6, 12-ポリアミ ド} 、 半芳香族ポリァミ ド繊維 {例えば、 ナイ ロン M X D 6 (m -キシリ レンジアミ ンとアジピン酸との共縮合体) } 、 全芳香族ポリ アミ ド繊 維 [ァラミ ド繊維 (商品名 : ケプラー) ] 等、 熱可塑性飽和ポリエステル (例え ば、 P E T (ポリエチレンテレフタ レー ト)繊維、 P B T (ポリ - 1, 4-ブチレンテレ フタ レー ト) 繊維 } 、 全芳香族ポリエステル繊維を挙げるこ とができる。 The skin material layer is a thermoplastic resin film or sheet layer laminated on at least one side of the core material layer. The thermoplastic resin that is a constituent component of the skin material layer may be different from the thermoplastic resin used for the core material layer, but is preferably the same. Is good. Preferable examples of the thermoplastic resin which is a component of the skin material layer include polyolefin (PO) (for example, polyethylene (PE), polypropylene (PP), propylene-ethylene copolymer, etc.), Ethylene vinyl monoxide copolymer (EVA), thermoplastic polyamide resin (NY) {For example, 6-polyamide (6-nylon), 7-polyamide, 1-polyamide, 12-polyamide, 6,6-polyamide, 6,7-polyamide, 6,10-polyamide, 6,12-polyamide}, semi-aromatic polyamide fiber {e.g., Nylon MXD 6 (m-xylylenediamine and Thermoplastic condensed polyester (eg PET (polyethylene terephthalate) fiber, PBT, etc.), wholly aromatic polyamide fiber [alamide fiber (trade name: Kepler)], etc. (Poly-1,4-butylene terephthalate) fiber} And wholly aromatic polyester fibers.
中でも結晶性ポリオレフイ ン、 特に結晶性ポリプロピレンは汎用性、 機械的強 度、 表面光沢及び中程度の耐熱性(熱歪み温度)等の特性の点で優れている。 それ らの長所により 、 結晶性ポリオレフイ ン、 特に結晶性ポリプロピレンを用いれば 、 強度及び商品性に優れる と共に、 安価な構造物を得ることができる。  Among them, crystalline polyolefins, particularly crystalline polypropylene, are excellent in properties such as versatility, mechanical strength, surface gloss, and moderate heat resistance (thermal strain temperature). Due to these advantages, the use of crystalline polyolefin, especially crystalline polypropylene, makes it possible to obtain an inexpensive structure that is excellent in strength and commercial value.
最も好ましく は、 改質剤等で処理された改質熱可塑性樹脂、 特に改質の際に有 機過酸化物を配合して得られた改質熱可塑性樹脂が望ましい。 表皮材層に用いる 改質剤、 有機過酸化物およびその他添加剤は、 芯材層に用いるものと同じ種類の もので差し支えない。  Most preferably, a modified thermoplastic resin treated with a modifier or the like, particularly a modified thermoplastic resin obtained by blending an organic peroxide at the time of reforming, is desirable. The modifier, organic peroxide and other additives used for the skin layer may be of the same type as those used for the core layer.
ぐ皮材層の作製 >  Preparation of skin layer>
表皮材層は、 前記熱可塑性樹脂単独もしくは 2種類以上の組成物で作製して良 いが、 改質熱可塑性樹脂単独もしくは改質熱可塑性樹脂を適量配合した組成物で 作製するのが好ましく、 芯材層と同種類の熱可塑性榭脂であるか、 芯材層に用い られた熱可塑性榭脂に対して相溶性を有するもので作製するのが特に好ましい。 表皮材層と芯材層に用いられる熱可塑性樹脂が、 相互に同種類の樹脂であるか又 は相溶性を有していると、 表皮材層と芯材層との界面において高い結合力が得ら れる。 The skin material layer may be made of the thermoplastic resin alone or a composition of two or more types, but is preferably made of a modified thermoplastic resin alone or a composition containing an appropriate amount of the modified thermoplastic resin, It is particularly preferable to use a thermoplastic resin of the same type as the core material layer or a material having compatibility with the thermoplastic resin used for the core material layer. If the thermoplastic resins used for the skin material layer and the core material layer are the same type of resin or are compatible with each other, a high bonding force is generated at the interface between the skin material layer and the core material layer. Get It is.
表皮材層は、 通常芯材層の両面、 場合によっては片面に形成されるが、 表皮材 層の厚さの合計は通常は 0 . l ~ 2 nun、 好ましく は 0 . 2 ~ 1 mmの範囲内に設定さ れる。  The skin layer is usually formed on both sides of the core layer, and sometimes on one side, but the total thickness of the skin layer is usually 0.1 to 2 nun, preferably 0.2 to 1 mm. Set within.
表皮材層の厚さの合計が 0 . 0 5 以下の場合は、 芯材層を充分に補強できない ので、 機械的強度の低下が起こり易い。 他方、 1 . 5 ππη以上の場合は、 折曲げ強度 が使用量に対応して向上しなくなると共に、 表皮材層が厚く なり過ぎて、 取り扱 いが不便になる。 つまり、 得られる構造物の曲げ剛性 (曲げ強度) が大きく なり 過ぎて、 2次成形加工し難く なる。  If the total thickness of the skin layer is less than 0.05, the core layer cannot be satisfactorily reinforced, and the mechanical strength tends to decrease. On the other hand, if it is more than 1.5 ππη, the bending strength does not improve in accordance with the amount used, and the skin layer becomes too thick, which makes handling inconvenient. In other words, the bending rigidity (bending strength) of the obtained structure becomes too large, and it becomes difficult to perform secondary forming.
表皮材層は、 芯材層の片面に積層されていても良いが、 芯材層の両面に積層さ れていることが一層好ま しい。 芯材層の両面に表皮材層を積層すると、 構造物の 表面方向又は裏面方向(表面に垂直な方向)への耐折曲げ性を良好に保つことがで きると共に、 構造物の両面に表面光沢や保護を与え商品価値を高めることができ る。  The skin material layer may be laminated on one surface of the core material layer, but is more preferably laminated on both surfaces of the core material layer. By laminating skin layers on both sides of the core layer, it is possible to maintain good bending resistance in the surface direction or the back side direction (perpendicular to the surface) of the structure, and also to provide the surface on both sides of the structure. Gloss and protection can be given to increase the commercial value.
表皮材層を作製する方法と しては、 例えば熱可塑性榭脂組成物を予めフィルム 状に成形した後に、 このフィルムを芯材層の表面にラミネー トする方法、 溶融状 態の熱可塑性榭脂組成物を芯材層の表面に ティ ングする方法等を挙げること ができる。  Examples of the method for producing the skin material layer include a method in which a thermoplastic resin composition is formed into a film in advance, and then the film is laminated on the surface of the core material layer, or a thermoplastic resin in a molten state. Examples of the method include a method of tinting the composition on the surface of the core material layer.
ラミネー ト法では、 芯材層の表面を半溶融(半軟化)状態に保ちながら表皮材層 を積層するのが望ま しいが、 必ずしも半溶融状態である必要はなく、 接着剤を用 いながら積層してもよい。  In the laminating method, it is desirable to laminate the skin material layer while keeping the surface of the core material layer in a semi-molten (semi-softened) state, but it is not necessarily required to be in a semi-molten state, and the lamination is performed using an adhesive. May be.
コーティング法では、 芯材層の表面を半溶融(半軟化)状態に保ちながら、 その 表面上に溶融押出しされた表皮材層を積層するのが望ましいが、 必ずしも半溶融 状態である必要はない。  In the coating method, it is desirable to laminate the melt-extruded skin layer on the surface of the core layer while maintaining the surface of the core layer in a semi-molten (semi-softened) state, but it is not necessary to be in a semi-molten state.
以上の様にして、 芯材層表面に表皮材層を積層させることによって、 本発明の 構造物を手順良く製造することができる。 この様にして製造された構造物の外形 を、 例えば幅 5 ~ 2 0 0 Ommであり、 厚さ 0. 1 ~ 2 mmのシー ト状物に設定するこ とにより、 重梱包用バン ド、 伝動用ベル ト等に使用することができる。 By laminating the skin material layer on the surface of the core material layer as described above, The structure can be manufactured with good procedure. By setting the outer shape of the structure manufactured in this way to, for example, a sheet having a width of 5 to 200 mm and a thickness of 0.1 to 2 mm, a heavy packing band, It can be used for transmission belts and the like.
本発明の構造物を重梱包用バン ド等に使用すると、 引張強度、 折曲げ強度、 表 面平滑性、 安全性及び作業性等が良好である。 発明の効果  When the structure of the present invention is used for a heavy packaging band or the like, tensile strength, bending strength, surface smoothness, safety, workability, and the like are good. The invention's effect
本発明の構造物は下記の諸効果を奏する。  The structure of the present invention has the following effects.
( 1 )本発明の構造物は、 引張強度、 折曲げ強度、 表面平滑性、 安全性及び作業性 の何れにも優れている。  (1) The structure of the present invention is excellent in all of tensile strength, bending strength, surface smoothness, safety and workability.
(2 )本発明の構造物を用いて得られる重梱包用バン ドは高い商品価値を備えてい る。 実施例  (2) The heavy packaging band obtained by using the structure of the present invention has high commercial value. Example
以下の実施例に基づいて、 本発明を更に具体的に説明するが、 本発明はこれら の実施例により限定されるものではない。  The present invention will be described more specifically based on the following examples, but the present invention is not limited to these examples.
<評価方法 >  <Evaluation method>
下記の実施各例及び比較各例によって得られた構造物(7 )の引張強度、 耐折曲 げ性及び表面光沢を、 以下に示す条件で評価した。  The tensile strength, bending resistance and surface gloss of the structure (7) obtained by each of the following Examples and Comparative Examples were evaluated under the following conditions.
(1 )引張強度 : 得られた構造物の連続繊維強化材方向に沿って、 幅 3 3 mmの短冊 状の試料を取り、 J I S Z— 1 5 2 7— 1 9 7 6に準じてその引張強度を測定し た。 (1) Tensile strength: along a continuous fiber reinforcement direction of the resultant structure, taking the strip wide samples 3 3 mm, its tensile according to JISZ- 1 5 2 7- 1 9 7 6 Strength Was measured.
(2 )耐折曲げ性 : 得られた構造物の連続繊維強化材方向に沿って、 幅 3 3 nunの短 冊状の試料を取り、 該試料の長手方向に直角に折曲げた後、 平板状に戻した試料 を T I S Z— 1 5 2 7— 1 9 7 6 に準じてその引張強度を測定した。 ( 3 )表面光沢 : 得られた構造物を試料と し、 その試料表面を A S TM D 5 2 3 に準じて光沢度を測定した。 (2) Bending resistance: Take a rectangular sample with a width of 33 nun along the direction of the continuous fiber reinforcement of the obtained structure, and bend it at right angles to the longitudinal direction of the sample. The tensile strength of the returned sample was measured in accordance with TISZ-152-197-76. (3) Surface gloss: The obtained structure was used as a sample, and the surface of the sample was measured for gloss according to ASTM D523.
[実施例 1 ]  [Example 1]
<構造物の製造 > , <Manufacture of structures>,
無水マレイン酸改質熱可塑性ポリプロ ピレン (以下、 改質 P P という) [D S C測定による結晶融点 1 6 0 °C ; 2 3 0 °C、 2 1. 1 8 N条件下の MF Rが 1 3 0 g/ 1 Omin] を 2 7 0 °Cに設定された溶融混練装置(不図示)で溶融および混練 し、 得られた溶融樹脂を図 1 に示される開繊含浸槽(1 )に前述の説明に則って供 し 。  Maleic anhydride-modified thermoplastic polypropylene (hereinafter referred to as “modified PP”) [Crystal melting point by DSC measurement: 160 ° C; MFR under conditions of 230 ° C and 21.18 N g / 1 Omin] is melted and kneaded in a melt kneading apparatus (not shown) set at 270 ° C, and the obtained molten resin is placed in the fiber impregnation tank (1) shown in Fig. 1 as described above. Provided in accordance with.
次いで、 この開繊含浸槽( 1 )內部に上流側から単繊維 4 0 0 0本が集束された ガラス長繊維束である連続繊維強化材(2) 6本を水平に並列状態で一斉に導入し て、 開繊含浸槽( 1 )内部で開繊すると共に該開繊物の間に溶融樹脂を含浸させた 開繊及び含浸は、 図 1 に示される開繊含浸槽(1 )の左側板内壁と右側板内壁と の間に架装された上下一対の棒状の固定開繊ビン(4) 3対における、 それぞれの 対を構成する 2本以上の開繊ピン(4)相互間隔の間隙に連続繊維強化材(2 )をそ の何れの開繊ピン(4 )に接触させずに通過させながら開繊し、 溶融樹脂を含浸さ せた。  Next, 6 continuous fiber reinforcements (2), which are long glass fiber bundles, in which 40000 single fibers are bundled from the upstream side, are introduced into the open fiber impregnation tank (1) at the same time horizontally and in parallel. The fiber opening and impregnation in which the fiber is opened inside the fiber-opening impregnation tank (1) and the molten material is impregnated between the fiber-opened and impregnated tanks (1) shown in FIG. In a pair of upper and lower rod-shaped fixed opening bins (4) installed between the inner wall and the inner wall of the right plate (4) Two or more opening pins constituting each pair (4) The continuous fiber reinforcement (2) was opened without passing through any of the opening pins (4) without contact, and was impregnated with the molten resin.
次に、 開繊含浸槽( 1 )の下流端壁( 1 wR)に穿設された幅 3 Omiu、 厚さ 0. 5 mm力、 らなるスリ ッ ト型の賦形ダイス(6 )から、 表面が半溶融状態の芯材層(7 1 )を引 出した。  Next, a slit-shaped shaping die (6) consisting of 3 Omiu width and 0.5 mm thickness, drilled in the downstream end wall (1 wR) of the opening impregnation tank (1), A core material layer (71) having a semi-molten surface was drawn out.
芯材層(7 1 )の両表面を、 ポリ プロ ピレン [D S C測定による結晶融点 1 6 0 °C 2 3 0 °C、 2 1. 1 8 N条件下の M F Rが 2. 0 1 0 min] を用いた厚さ 0 . 3 mmの表皮材層(7 2 )で重ねた後に、 両方から挟みつけるニップロ—ル(8 u及び 8 d)間に通して積層し、 平均幅 3 3 平均厚さ 1 · 0 4 の構造物(7 を得た。 この際、 2枚の表皮材層(7 2 )はそれぞれの原反から供給される。 その一方は 芯材層(7 1 )の上側に位置する原反(7 2 u)であり、 他方は芯材層(7 1 )の下側に 位置する原反(7 2 d)である。 Both surfaces of the core material layer (71) are made of polypropylene [MFR under the conditions of a crystalline melting point of 160 ° C, 230 ° C and 21.18 N by DSC measurement is 2.0 min] After layering with a 0.3 mm thick skin layer (7 2) using Nippon, it is laminated between nipples (8 u and 8 d) sandwiched from both sides, with an average width of 33 average thickness 1 · 0 4 structures (7 were obtained. At this time, the two skin layers (72) are supplied from the respective webs. One of them is a web (72u) located above the core layer (71), and the other is a web (72d) located below the core layer (71).
芯材層(7 1 )の平均厚さは 0. 4 4 mm, 表皮材層(7 2 )の平均厚さは片面当り 0 . 3 nunであった。 芯材層(7 1 )及び表皮材層(7 2 )の構成並びに該構造物( 7 )の評 価結果を表 1 に併せ示す。  The average thickness of the core layer (71) was 0.44 mm, and the average thickness of the skin layer (72) was 0.3 nun per side. Table 1 also shows the configurations of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
[実施例 2 ]  [Example 2]
芯材層(7 1 )の両表面に積層される表皮材層(7 2 ) の平均厚さを、 片面当りそ れぞれ 0. 1 mmに変える以外には実施例 1 に準拠して、 両表面に表皮材層(7 2 )が 積層された平均幅 3 3 mm. 平均厚さ 0. 6 4 mmの構造物( 7 )を得た。  According to Example 1, except that the average thickness of the skin layer (72) laminated on both surfaces of the core layer (71) is changed to 0.1 mm per one side, A structure (7) having an average width of 33 mm and an average thickness of 0.64 mm, in which the skin material layers (72) were laminated on both surfaces, was obtained.
芯材層(7 1 )の平均厚さは 0. 4 4mm、 表皮材層(7 2 )の平均厚さは片面当り 0 . 1 mmであった。 芯材層(7 1 )及び表皮材層(7 2 )の構成並びに該構造物( 7 )の評 価結果を表 1 に併せ示す。  The average thickness of the core layer (71) was 0.44 mm, and the average thickness of the skin layer (72) was 0.1 mm per side. Table 1 also shows the configurations of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
[実施例 3 ]  [Example 3]
芯材層(7 1 )の両表面に積層される表皮材層(7 2 )の平均厚さを、 片面当 りそ れぞれ 0. 5 mmに変えた以外には実施例 1 に準拠して、 両表面が表皮材層(7 2 )で 積層された幅 3 3 mm, 平均厚さ 1 . 4 4匪の構造物( 7 )を得た。  According to Example 1, except that the average thickness of the skin layer (72) laminated on both surfaces of the core layer (71) was changed to 0.5 mm on each side. Thus, a structure (7) having a width of 33 mm and an average thickness of 1.44 was obtained, in which both surfaces were laminated with the skin material layer (72).
芯材層(7 1 )の平均厚さは 0. 4 4mm、 表皮材層(7 2 )の平均厚さは片面当り 0 . 5 mmであった。 芯材層(7 1 )及び表皮材層(7 2 )の構成並びに該構造物( 7 )の評 価結果を表 1 に併せ示す。 The average thickness of the core layer (7 1) is 0. 4 4m m, the average thickness of the skin layer (7 2) on one surface was per 0. 5 mm. Table 1 also shows the configurations of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
[比較例 1 ]  [Comparative Example 1]
芯材層(7 1 )の何れの表面にも表皮材層(7 2 )を積層しない以外には実施例 1 に準拠して、 平均幅 3 3 mni、 平均厚さ 0. 4 4 ηπαの構造物( 7 )を得た。  A structure having an average width of 33 mni and an average thickness of 0.44 ηπα according to Example 1 except that the skin material layer (7 2) is not laminated on any surface of the core material layer (71). A product (7) was obtained.
芯材層(7 1 )及び表皮材層(7 2 )の構成並びに該構造物(7 )の評価結果を表 1 に併せ示す。 得られた構造物(7 )は引張強度には優れるものの、 耐折曲げ性及び表面光沢に は劣っていた。 Table 1 also shows the configurations of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7). The obtained structure (7) was excellent in tensile strength, but inferior in bending resistance and surface gloss.
[比較例 2 ]  [Comparative Example 2]
ポリ プロ ピレン [03 。測定にょる結晶融点 1 6 0 ; 2 3 0 °〇、 2 1. 1 8 N条件下の MF Rが 2. 0 gZ 1 0 min] を溶融混練装置(不図示)で溶融および混練 し、 得られた溶融樹脂を押出成形装置の下流端に装着された Tダイから 2 5 0°C で押出し、 半溶融状態(シンター状態)の連続繊維強化材を含まない芯材層(7 1 ) を形成した。  Polypropylene [03. The melting point of the crystal was determined by melting and kneading a melt melting and kneading apparatus (not shown) with an MFR of 2.0 gZ 10 min under the conditions of a crystal melting point of 16.0; 2300 ° C, and 2.18 N. The melted resin is extruded at 250 ° C from a T-die mounted at the downstream end of the extrusion molding device to form a semi-molten (sintered) core layer (71) without continuous fiber reinforcement. did.
次いで、 芯材層(7 1 )の両表面をポリプロ ピレン [D S C測定による結晶融点 1 6 0 °C ; 2 3 0 °C、 2 1. 1 8 N条件下のMF RカS 2. 0 g< l O min] を用いた 平均厚さ 0. 3 mmの表皮材層(7 2 )で重ねた後に、 その両側から挟みつけるニップ ロール(8 u及び 8 d)間に通して、 平均幅 3 3 mm, 平均厚さ 1. 0 mmの構造物( 7 )を 得た。 Then, both surfaces of the core layer (71) were polished with polypropylene [crystal melting point of 160 ° C. by DSC measurement; 230 ° C .; < l O min], and then wrapped with a 0.3 mm skin layer (72) with an average thickness, then passed between nip rolls (8u and 8d) sandwiched from both sides to obtain an average width of 3mm. A structure (7) with a thickness of 3 mm and an average thickness of 1.0 mm was obtained.
芯材層(7 1 )の平均厚さは 0. 4 mmであり、 表皮材層(7 2 )の平均厚さは片面当 り 0. 3mmであった。 芯材層(7 1 )及び表皮材層(7 2 )の構成並びに該構造物( 7 )の評価結果を表 1 に併せ示す。  The average thickness of the core material layer (71) was 0.4 mm, and the average thickness of the skin material layer (72) was 0.3 mm per side. Table 1 also shows the configurations of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
得られた該構造物(7)は表面光沢には優れるものの、 引張強度及び耐折曲げ性 に劣っていた。  The obtained structure (7) was excellent in surface gloss, but was inferior in tensile strength and bending resistance.
[実施例 4 ]  [Example 4]
改質?? [05〇測定にょる結晶融点 1 6 0°じ ; 2 3 0°〇、 2 1. 1 8 N条件 下の MF Rが 1 3 O g/ 1 0 min] を 2 7 0 °Cに設定された溶融混練装置(不図示) で溶融および混練し、 得られた溶融樹脂を図 1 に示される開繊含浸槽( 1 )に前述 の説明に則って供給した。  Modification? ? [The crystal melting point in the measurement at 05 ° 1600 °; 2300 ° 〇, MFR under the condition of 2.1.8 N is 13 Og / 10 min] is set to 270 ° C. The melted resin was melted and kneaded by a melt-kneading apparatus (not shown), and the obtained molten resin was supplied to the opening and impregnating tank (1) shown in FIG. 1 according to the above description.
次いで、 この開繊含浸槽( 1 )内部に上流側から単繊維 4 0 0 0本が集束された ガラス長繊維束である連続繊維強化材(2) 3 6本を、 上流壁に穿設された繊維導 入孔(3 )経由で導入して、 開繊含浸槽( 1 )内部で開繊すると共に該開繊物の間に 溶融樹脂を含浸させた。 次に、 開繊含浸槽( 1 )の下流端壁( 1 wR)に穿設された幅 1 9 5 mm, 犟さ 0 . 5 mmの賦形ダイス( 6 )から、 表面が—半溶融状態の芯材層( 7 1 )を引出した。 Next, 36 continuous fiber reinforcements (2), which are long glass fiber bundles, in which 400 single fibers are bundled from the upstream side, are bored into the upstream wall inside the open fiber impregnation tank (1). Fiber guide The fiber was introduced through the inlet (3) and opened in the opening and impregnating tank (1), and the molten resin was impregnated between the opened products. Next, from a shaping die (6) with a width of 195 mm and a length of 0.5 mm drilled in the downstream end wall (1 wR) of the opening and impregnating tank (1), the surface is in a semi-molten state. The core material layer (71) was drawn out.
芯材層(7 1 )の両表面を、 ポリ プロ ピレン [ D S C測定による結晶融点 1 6 0 °C ; 2 3 0 °C、 2 1 . 1 8 N条件下の M F Rが 2 . 0 g 1 0 min] を用いた厚さ 0 . 3 mmの表皮材層(7 2 )で重ねた後に、 両側から挟みつける二ップロール( 8 u及び 8 d)間に通して積層し、 平均幅 2 0 0 mm、 平均厚さ 1 . 0 4 mmの構造物( 7 )を得た 芯材層(7 1 )の平均厚さは 0. 4 4 ηιπ!、 表皮材層( 7 2 )の平均厚さは片面当り 0 . 3 πιπιであった。 芯材層(7 1 )及び表皮材層(7 2 )の構成並びに該構造物(7 )の評 価結果を表 1 に併せ示す。 Both surfaces of the core layer (71) are made of polypropylene [crystal melting point of 160 ° C. by DSC measurement; MFR of 2.0 g 10 under the condition of 230 ° C. and 2.1.18 N]. min] using a 0.3 mm thick skin material layer (72), and then passing between two nip rolls (8u and 8d) sandwiched from both sides to laminate, with an average width of 200mm The structure (7) having an average thickness of 1.04 mm was obtained. The average thickness of the core layer (71) was 0.44 ηιπ! The average thickness of the skin material layer (72) was 0.3 πιπι per side. Table 1 also shows the structures of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
[比較例 3 ]  [Comparative Example 3]
芯材層(7 1 )の何れの面にも表皮材層(7 2 )を積層しなかった以外には実施例 4に準拠にして、 幅 2 0 0 mm、 平均厚さ 0 . 4 4 mmの構造物( 7 )を得た。  According to Example 4, except that the skin material layer (72) was not laminated on any surface of the core material layer (71), the width was 200 mm, and the average thickness was 0.44 mm. (7) was obtained.
芯材層(7 1 )及び表皮材層(7 2 )の構成並びに該構造物(7 )の評価結果を表 1 に併せ示す。  Table 1 also shows the configurations of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
得られた構造物(7 )は引張強度には優れるものの、 耐折曲げ性及び表面光沢に は劣っていた。  The obtained structure (7) was excellent in tensile strength, but inferior in bending resistance and surface gloss.
[比較例 4 ]  [Comparative Example 4]
ポリプロピレン [結晶融点(D S C ) 1 6 0 °C ; 2 3 0 °C、 2 1 . 1 8 N条件下 の M F Rが 2 . 0 gZ 1 0 min] を溶融混練装置(不図示)中で溶融して得られた溶融 樹脂を押出成形装置の下流端に付設された Tダイから 2 5 0 °Cで押出して表面が 半溶融状態の連続繊維強化材の配合されていない芯材層(7 1 ) を作製した。 次いで、 芯材層(7 1 )の両表面をポリプロピレン [D S C測定による結晶融点 1 6 0 °C ; 2 3 0 °C、 2 1. 1 8 1^条件下の\4 1¾;^ 2. 08/ 1 0 min] を用いた 平均厚さ 0. 3 mmの表皮材層(7 2 )で重ねた後に、 両側から挟みつけるニップロ一 ル(8 u及び 8 d)間に通して積層し、 平均幅 2 0 0min、 平均厚さ 1. Ommの構造物 (7 )を得た。 Polypropylene [crystal melting point (DSC): 160 ° C; MFR under conditions of 230 ° C and 2.1.18 N was 2.0 gZ 10 min] was melted in a melt-kneading apparatus (not shown). The molten resin obtained by extrusion is extruded at 250 ° C from a T-die attached to the downstream end of the extrusion molding device, and the surface of the core material layer is not semi-molten and contains continuous fiber reinforcement (71). Was prepared. Next, both surfaces of the core material layer (71) were coated with polypropylene [crystal melting point by DSC measurement]. Skin layer with an average thickness of 0.3 mm using a temperature of 160 ° C; 230 ° C and 21.1 8 1 ^ After stacking in 7 2), the stack is passed between the nipples (8 u and 8 d) sandwiched from both sides and stacked to obtain a structure (7) with an average width of 200 min and an average thickness of 1. Omm .
芯材層(7 1 )の平均厚さは 0. 4min、 表皮材層(7 2 )の平均厚さは片面当 り 0. 3 mmであった。 芯材層(7 1 )及び表皮材層(7 2 )の構成並びに構造物( 7 )の評価 結果を表 1 に併せ示す。  The average thickness of the core layer (71) was 0.4 min, and the average thickness of the skin layer (72) was 0.3 mm per side. Table 1 also shows the configurations of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
該構造物(7 )は、 表面光沢には優れるものの、 引張強度及び耐折曲げ性には劣 つていた。  The structure (7) was excellent in surface gloss, but was inferior in tensile strength and bending resistance.
[実施例 5 ]  [Example 5]
改質 P P [03〇測定にょる結晶融点 1 6 0 °〇 ; 2 3 0 °〇、 2 1 . 1 8 N条件 下の MF Rが 1 3 0 g/ 1 0 min] を 2 7 0 °Cに設定された溶融混練装置(不図示) で溶融および混練し、 得られた溶融樹脂を図 1 に示される開繊含浸槽( 1 )に前述 の説明に則って供給した。  Modified PP [Crystal melting point 16.0 ° 〇 from 03〇 measurement; 230 ° 〇, MFR under conditions of 2.1.18 N is 130 g / 10 min] at 270 ° C The melted resin was melted and kneaded by a melt-kneading device (not shown) set in the above, and the obtained molten resin was supplied to the opening and impregnating tank (1) shown in FIG. 1 according to the above description.
次いで、 この開繊含浸槽( 1 )内部に上流側から単繊維 4 0 0 0本が集束された ガラス長繊維束である連続繊維強化材(2) 3 6本を、 水平に並列させた状態で一 斉に上流壁に穿設された繊維導入孔(3 )経由で導入して、 開繊含浸槽( 1 )内部で 開繊すると共に該開繊物の間に溶融樹脂を含浸させた。 次に、 開繊含浸槽( 1 )の 下流端壁( 1 wR)に穿設された幅 1 9 5 mm、 厚さ 0. 5 mmの賦形ダイス(6〉から、 表 面が半溶融状態の芯材層(7 1 )を引出した。  Next, 36 continuous fiber reinforcing materials (2), which are glass long fiber bundles, in which 400 single fibers are bundled from the upstream side in the open fiber impregnation tank (1), are arranged in a horizontal line. Then, the fibers were simultaneously introduced through the fiber introduction holes (3) drilled in the upstream wall, opened in the opening and impregnating tank (1), and the molten resin was impregnated between the opened materials. Next, the surface was semi-molten from a shaping die (6>) with a width of 195 mm and a thickness of 0.5 mm drilled in the downstream end wall (1 wR) of the opening and impregnating tank (1). The core layer (71) was drawn out.
次に、 芯材層(7 1 )の片面に、 ポリ プロ ピレン [D S C測定による結晶融点 1 6 0°C ; 2 3 0 °C、 2 1 . 1 8 N条件下の MF Rが 2. 0 gZ l Omin] を用いた厚 さ 0. 3 mmの表皮材層(7 2 )を重ねた後に、 両側から挟みつけるニップロ—ル( 8 u及び 8 d)間に通して積層し、 平均幅 2 0 0mm、 平均厚さ 0. 7 4mmの構造物(7 )を得た。 芯材層(7 1 )の平均厚さは 0 · 4 4mm、 表皮材層(7 2 )の平均厚さは 0. 3 mmで あった。 芯材層(7 1 )及び表皮材層(7 2)の構成並びに該構造物(7)の評価結果 を表 1 に併せ示す。 Next, on one surface of the core material layer (71), propylene [having a crystal melting point of 160 ° C by DSC measurement; 230 ° C; gZl Omin], a 0.3 mm thick skin material layer (72) is layered, and then passed between the nipples (8u and 8d) sandwiched from both sides to form an average width 2 A structure (7) having a thickness of 0.0 mm and an average thickness of 0.74 mm was obtained. The average thickness of the core layer (71) was 0.444 mm, and the average thickness of the skin layer (72) was 0.3 mm. Table 1 also shows the configurations of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
[比較例 5 ]  [Comparative Example 5]
ポリプロ ピレン [結晶融点(D S C) 1 6 0 °C ; 2 3 0 °C、 2 1. 1 8 N条件下 の MF Rが 2. 0 g/ l 0 min] を溶融混練装置(不図示)中で溶融および混練し、 得 られた溶融榭脂を押出成形装置の下流端に付設された Tダイから 2 5 0 °Cで押出 して表面が半溶融状態の連続繊維強化材の配合されていない芯材層(7 1 ) を作製 した。  Polypropylene [Crystal melting point (DSC): 160 ° C; MFR under the condition of 230 ° C and 21.18 N is 2.0 g / l 0 min] in a melt-kneading apparatus (not shown) The obtained molten resin is extruded at 250 ° C from a T-die attached to the downstream end of the extrusion molding device, and the continuous fiber reinforcement with a semi-molten surface is not blended. A core material layer (71) was produced.
次いで、 芯材層(7 1 )の片面を、 ポリ プロ ピレン [D S C測定による結晶融点 1 6 0°C ; 2 3 0 °C、 2 1. 1 8 N条件下の M F Rカ 2. 0 gZ 1 0 min] を用いた 平均厚さ 0. 3 mmの表皮材層( 7 2 )で重ねた後に、 両側から挟みつけるニップロ— ル(8 u及び 8 d)間に通して積層し、 平均幅 2 0 0mm、 平均厚さ 0. 7mmの構造物 (7 )を得た。  Then, one side of the core material layer (71) was polished with polypropylene [crystal melting point of 160 ° C; DSC measurement, 230 ° C; 0 min] and a layer of skin material (72) with an average thickness of 0.3 mm, and then laminated between the nipples (8u and 8d) sandwiched from both sides to form an average width of 2 A structure (7) having a thickness of 0.0 mm and an average thickness of 0.7 mm was obtained.
芯材層(7 1 )の平均厚さは 0. 4mm、 表皮材層(7 2 )の平均厚さは 0 · 3 mmであ つた。 芯材層(7 1 )及び表皮材層(7 2 )の構成並びに構造物(7 )の評価結果を表 1 に併せ示す。  The average thickness of the core layer (71) was 0.4 mm, and the average thickness of the skin layer (72) was 0.3 mm. Table 1 also shows the structures of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
該構造物(7)は、 表面光沢には優れるものの、 引張強度及び耐折曲げ性には劣 つていた。  The structure (7) was excellent in surface gloss, but was inferior in tensile strength and bending resistance.
[実施例 6 ]  [Example 6]
改質 P P [03 ( 測定にょる結晶融点 1 6 0 ; 2 3 0 、 2 1 . 1 8 N条件 下の MF Rが 1 30 gZ l Omin] を 2 7 0 °Cに設定された溶融混練装置(不図示) で溶融および混練し、 得られた溶融樹脂を図 1 に示される開繊含浸槽( 1 )に前述 の説明に則って供給した。  Melt kneader with modified PP [03 (crystal melting point 16.0; 2300, 21.1, 18 M NFR under measurement conditions of 130 gZl Omin) at 270 ° C] (Not shown), and the obtained molten resin was supplied to the opening and impregnating tank (1) shown in FIG. 1 according to the above description.
次いで、 この開繊含浸槽( 1 )内部に上流側から単繊維 4 0 0 0本が集束された ガラス長繊維束である連続繊維強化材(2 ) 1 8本を、 水平に並列させた状態で一 斉に上流壁に穿設された繊維導入孔(3 )経由で導入して、 開繊含浸槽( 1 )内部で 開繊すると共に該開繊物の間に溶融樹脂を含浸させた。 次に、 開繊含浸槽( 1 )の 下流端壁(1 wR)に穿設された幅 1 9 5mm、 厚さ 0. 2 5 nunの賦形ダイス(6 )から、 表面が半溶融状態の芯材層(7 1 )を引出した。 Next, 400 pieces of single fibers were bundled from the upstream side into the open fiber impregnation tank (1). Eighteen continuous fiber reinforcements (2), which are long glass fiber bundles, are introduced simultaneously through the fiber introduction holes (3) drilled in the upstream wall in a state where they are arranged horizontally in parallel, and they are impregnated. The fiber was opened inside the tank (1) and a molten resin was impregnated between the opened materials. Next, from a shaping die (6) with a width of 195 mm and a thickness of 0.25 nun drilled on the downstream end wall (1 wR) of the opening and impregnating tank (1), a semi-molten surface was obtained. The core material layer (71) was drawn out.
次に、 芯材層(7 1 )の両表面を、 ポリプロピレン [D S C測定による結晶融点 1 6 0 °C ; 2 3 0。C、 2 1. 1 8 N条件下の M F Rが 2. 0 1 0 min] を用いた 平均厚さ 0. 2 mmの表皮材層(7 2 )で重ねた後に、 両側から挟みつけるニップロ— ル(8 u及び 8 d)間に通して積層し、 平均幅 2 0 Οπηιι、 平均厚さ 0. 6 2 mmの構造 物(7)を得た。  Next, both surfaces of the core material layer (71) were coated with polypropylene [crystal melting point of 160 ° C by DSC measurement; 230]. C, Nippers sandwiched from both sides after layering on a skin layer (72) with an average thickness of 0.2 mm using an MFR of 2.10 min] (8u and 8d) to obtain a structure (7) having an average width of 20 2πηιι and an average thickness of 0.62 mm.
芯材層(7 1 )の平均厚さは 0. 2 2nnn、 表皮材層( 7 2 )の平均厚さは片面当り 0 . 2ιηπιであった。 芯材層(7 1 )及び表皮材層(7 2 )の構成並びに該構造物(7 )の評 価結果を表 1 に併せ示す。  The average thickness of the core layer (71) was 0.22nnn, and the average thickness of the skin layer (72) was 0.2ιηπι per side. Table 1 also shows the configurations of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
[比較例 6 ]  [Comparative Example 6]
芯材層(7 1 )の何れの面にも表皮材層(7 2 )を積層しなかった以外には実施例 6に準拠にして、 幅 2 0 0 mm、 平均厚さ 0. 2 2 mmの構造物( 7 )を得た。  Except that the skin material layer (72) was not laminated on any surface of the core material layer (71), the width was 200 mm and the average thickness was 0.22 mm according to Example 6. (7) was obtained.
芯材層(7 1 )及び表皮材層(7 2 )の構成並びに該構造物(7 )の評価結果を表 1 に併せ示す。  Table 1 also shows the configurations of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
得られた構造物(7 )は引張強度には優れるものの、 耐折曲げ性及び表面光沢に は劣っていた。  The obtained structure (7) was excellent in tensile strength, but inferior in bending resistance and surface gloss.
[比較例 7 ]  [Comparative Example 7]
ポリ プロ ピレン [結晶融点(D S C) 1 6 0°C ; 2 3 0 °C、 2 1. 1 8 N条件下 の MF Rが 2. 0 g/ 1 Omin] を溶融混練装置(不図示)中で溶融および混練し、 得 られた溶融榭脂を押出成形装置の下流端に付設された Tダイから 2 5 0 °Cで押出 して表面が半溶融状態の連続繊維強化材の配合されていない芯材層(7 1 ) を作製 した。 Polypropylene [Crystal melting point (DSC) of 160 ° C; MFR under conditions of 230 ° C and 21.18 N is 2.0 g / 1 Omin] in a melt-kneading apparatus (not shown) The obtained molten resin is extruded at 250 ° C from a T-die attached to the downstream end of the extrusion molding device, and the continuous fiber reinforcement with a semi-molten surface is not blended. Preparation of core material layer (7 1) did.
次いで、 芯材層(7 1 )の両表面を、 ポリ プロ ピレン [D S C測定による結晶融 点 1 6 0 ; 2 3 0 °じ、 2 1 . 1 8 N条件下の MF Rがー 2. 0 g/ 1 0 min] を用い た平均厚さ 0 · 2 mmの表皮材層(7 2 )で重ねた後に、 両側から挟みつけるニップロ —ル(8 u及び 8 d)間に通して積層し、 平均幅 2 0 0mm、 平均厚さ 0. 6 mmの構造 物(7)を得た。  Then, both surfaces of the core material layer (71) were polished with polypropylene [having a crystal melting point of 160; 230 ° C by DSC measurement, and an MFR of -2.0 under the condition of 2.1.18N. g / 10 min] and a layer of skin material (72) with an average thickness of 0.2 mm, and then passed between the nipples (8 u and 8 d) sandwiched from both sides, and laminated. A structure (7) having an average width of 200 mm and an average thickness of 0.6 mm was obtained.
芯材層(7 1 )の平均厚さは 0. 2mm、 表皮材層(7 2 )の平均厚さは片面当たり 0 . 2 mmであった。 芯材層(7 1 )及び表皮材層(7 2 )の構成並びに構造物( 7 )の評価 結果を表 1 に併せ示す。  The average thickness of the core layer (71) was 0.2 mm, and the average thickness of the skin layer (72) was 0.2 mm per side. Table 1 also shows the configurations of the core layer (71) and the skin layer (72) and the evaluation results of the structure (7).
該構造物(7 )は、 表面光沢には優れるものの、 引張強度及び耐折曲げ性には劣 つていた。 The structure (7) was excellent in surface gloss, but was inferior in tensile strength and bending resistance.
Figure imgf000022_0001
Figure imgf000022_0001
01 01

Claims

請求の範囲 The scope of the claims
1 . 長手方向に略平行に整列した連続繊維強化材と熱可塑性樹脂からなる芯材 層と、 該芯材層の少なく とも片面に積層された熱可塑性樹脂からなる表皮材層と で構成されていることを特徴とする連続繊維強化熱可塑性榭脂シ一ト状構造物。 1. Consists of a core layer made of a continuous fiber reinforcement and a thermoplastic resin arranged substantially parallel to the longitudinal direction, and a skin layer made of a thermoplastic resin laminated on at least one side of the core material layer. A continuous fiber reinforced thermoplastic resin sheet-like structure.
2 . 芯材層における連続繊維強化材の配合量が 1 0〜 8 0重量%の範囲にある 請求項 1 に記載の連続繊維強化熱可塑性樹脂シート状構造物。 2. The continuous fiber-reinforced thermoplastic resin sheet-like structure according to claim 1, wherein the amount of the continuous fiber-reinforced material in the core material layer is in the range of 10 to 80% by weight.
3 . 芯材層における熱可塑性樹脂が少なく と も部分的には連続繊維強化材に対 して親和性を示すものである請求項 1又は 2に記載の連続繊維強化熱可塑性樹脂 シー ト状構造物。 3. The continuous fiber reinforced thermoplastic resin sheet-like structure according to claim 1 or 2, wherein the thermoplastic resin in the core layer at least partially shows an affinity for the continuous fiber reinforced material. object.
4 . 芯材層に用いる熱可塑性樹脂がポリプロピレンである請求項 1乃至 3 の何 れかに 1項記載の連続繊維強化熱可塑性樹脂シ一 ト状構造物。 4. The continuous fiber-reinforced thermoplastic resin sheet-like structure according to any one of claims 1 to 3, wherein the thermoplastic resin used for the core material layer is polypropylene.
5 . 連続繊維強化材がガラス長繊維である請求項 1乃至 4の何れかに 1項記载 の連続繊維強化熱可塑性樹脂シー ト状構造物。 5. The continuous fiber reinforced thermoplastic resin sheet-like structure according to any one of claims 1 to 4, wherein the continuous fiber reinforced material is a long glass fiber.
6 . 表皮材層の平均厚さが 0 . 2〜 1 . O mmの範囲內にある請求項 1乃至 5の何 れかに 1項記載の連続繊維強化熱可塑性樹脂シー ト状構造物。 6. The continuous fiber-reinforced thermoplastic resin sheet-like structure according to any one of claims 1 to 5, wherein the average thickness of the skin material layer is in the range of 0.2 to 1.0 mm.
7 . 表皮材層に用いる熱可塑性樹脂がポリプロピレンである請求項 1乃至 6の 何れかに 1項記載の連続繊維強化熱可塑性榭脂シ一ト状構造物。 7. The continuous fiber-reinforced thermoplastic resin sheet-like structure according to any one of claims 1 to 6, wherein the thermoplastic resin used for the skin material layer is polypropylene.
PCT/JP1998/005146 1997-12-19 1998-11-16 Thermoplastic resin sheet structure reinforced with continuous fibers WO1999032278A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/365017 1997-12-19
JP36501797 1997-12-19

Publications (1)

Publication Number Publication Date
WO1999032278A1 true WO1999032278A1 (en) 1999-07-01

Family

ID=18483229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005146 WO1999032278A1 (en) 1997-12-19 1998-11-16 Thermoplastic resin sheet structure reinforced with continuous fibers

Country Status (1)

Country Link
WO (1) WO1999032278A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021111A1 (en) * 2014-08-07 2016-02-11 パナソニックIpマネジメント株式会社 Resin structure and electric vacuum cleaner using same
JP2017520428A (en) * 2014-07-29 2017-07-27 ロッテ ケミカル コーポレーション Continuous fiber composite and process for producing continuous fiber composite
WO2021177158A1 (en) * 2020-03-02 2021-09-10 三井化学株式会社 Unidirectional fiber-reinforced thermoplastic resin sheet and method for manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5577525A (en) * 1978-12-04 1980-06-11 Ppg Industries Inc Method of laminating glass fiber reinforcing thermal plastic resin
JPH07100829A (en) * 1993-10-01 1995-04-18 Sumitomo Metal Ind Ltd Manufacture of long fiber-reinforced thermoplastic resin sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5577525A (en) * 1978-12-04 1980-06-11 Ppg Industries Inc Method of laminating glass fiber reinforcing thermal plastic resin
JPH07100829A (en) * 1993-10-01 1995-04-18 Sumitomo Metal Ind Ltd Manufacture of long fiber-reinforced thermoplastic resin sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017520428A (en) * 2014-07-29 2017-07-27 ロッテ ケミカル コーポレーション Continuous fiber composite and process for producing continuous fiber composite
WO2016021111A1 (en) * 2014-08-07 2016-02-11 パナソニックIpマネジメント株式会社 Resin structure and electric vacuum cleaner using same
WO2021177158A1 (en) * 2020-03-02 2021-09-10 三井化学株式会社 Unidirectional fiber-reinforced thermoplastic resin sheet and method for manufacturing same

Similar Documents

Publication Publication Date Title
WO2017126477A1 (en) Method for producing three-dimensional structures
JP4813654B2 (en) Method of prepreg with resin and novel prepreg produced by the method
JP2021191915A (en) Opener element for producing unidirectional fiber reinforced tape
CN102387923B (en) For the obstruct multi-functional coatings of the enhancing of nylon film
WO2013118689A1 (en) Carbon fiber composite material
US9394430B2 (en) Continuous fiber reinforced polyarylene sulfide
ES2834980T3 (en) Manufacture and use of a composite material comprising fibers and at least one vinyl chloride polymer
EP2752293B1 (en) Multilayered resin molding body and method for manufacturing same
CN109070390B (en) Reinforcing fiber bundle and molding material
JP2006289714A (en) Method and apparatus for producing fiber-reinforced resin molding material
WO2008056646A1 (en) Organic fiber-reinforced composite resin composition and organic fiber-reinforced composite resin molding
JPWO2018143068A1 (en) Fiber reinforced resin molding material
JP6453575B2 (en) Fiber reinforced resin composition
CN112172209A (en) System for producing chopped roving thermoplastic composite sheets
WO1999032278A1 (en) Thermoplastic resin sheet structure reinforced with continuous fibers
FI84843C (en) Process for producing fiber-reinforced raw material for plastics
JPS6036136A (en) Manufacture of long-sized product of thermoplastic resin reinforced with fiber
CN113811439A (en) Fiber-reinforced resin base material, integrated molded article, and method for producing fiber-reinforced resin base material
JPH0580341B2 (en)
JPS6387228A (en) Manufacture of composite body
MXPA05004599A (en) Polyolefin resin composition and processes for the production thereof.
JPS6395915A (en) Manufacture of composite material
WO2020235488A1 (en) Method for producing fiber-reinforced resin substrate, fiber-reinforced resin substrate, and molded article integrated therewith
JP4338241B2 (en) Plastic bundling tie and manufacturing method thereof
EP3597388B1 (en) Material, method for producing the material, partially welded material, composite material, and method of producing molded product

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR