JPH0580341B2 - - Google Patents

Info

Publication number
JPH0580341B2
JPH0580341B2 JP87219352A JP21935287A JPH0580341B2 JP H0580341 B2 JPH0580341 B2 JP H0580341B2 JP 87219352 A JP87219352 A JP 87219352A JP 21935287 A JP21935287 A JP 21935287A JP H0580341 B2 JPH0580341 B2 JP H0580341B2
Authority
JP
Japan
Prior art keywords
film
fibers
laminate
laminated
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP87219352A
Other languages
Japanese (ja)
Other versions
JPS63183836A (en
Inventor
Shiro Yamamoto
Haruo Negishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP62219352A priority Critical patent/JPS63183836A/en
Publication of JPS63183836A publication Critical patent/JPS63183836A/en
Publication of JPH0580341B2 publication Critical patent/JPH0580341B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、複合体及びその製造方法に関し、更
に詳しくは、長繊維とフイルムとから成り、少な
くとも一部に曲面を有する複合体及びその製造方
法に関する。 (従来の技術) 近年の科学及び工業の進歩に伴い、各分野で用
いられる従来の材料では、物性が不十分で、満足
な機能を発揮できないという事態がしばしば現れ
るようになつて来た。例えば、航空機において
は、材料の重量当りの強度及び弾性率を向上させ
ることが要求されており、宇宙機器の分野では、
コスト低減のために比強度、比弾性率の高い素材
の開発が望まれている。また、自動車を軽量化す
るために外板をプラスチツク製とするに際し、剛
性の高いプラスチツク素材が要求されている。 一方、最近の繊維技術の発展により重量当りの
強度及び弾性率が鉄よりも大きい繊維が開発され
ている。例えば、炭素繊維、SiC繊維・ほう素繊
維等の無機繊維やパラ系全芳香族ポリアミド繊維
(例えばデユポン社:ケプラー )・全芳香族ポリ
エーテルアミド繊維(帝人:テクノーラ )・高
密度ポリエチレン繊維(例えば三井石油化学:テ
クミロン )等の有機繊維である。 かかる高性能繊維を樹脂で固めて新しい素材と
したり、既存の樹脂や金属などにこれら繊維を加
えて補強する等の方法が考えられ、一部実用化さ
れている。例えばFRP(Fiber Reinforced
Plastic)、FRM(Fiber Reinforced Metal)であ
りCC(Carbon−Carbon)コンポジツト等であ
る。 理論的には長繊維の方が短繊維より複合材料と
しての補強効果が優れている。従つてFRPの場
合、最も進んだ複合材料(一般にAdvanced
Compositeと呼ばれる)では、長繊維にBステー
ジの熱硬化性樹脂を組み合わせたものを用い製品
が造られる。熱可塑性樹脂を用いてFRP製品を
造る場合、補強繊維としては短繊維を用いるのが
一般的である。しかしながら、補強繊維として短
繊維を用いた場合は物性の点で限度があり、更に
製品表面に短繊維が露出して粗くなり、外観が劣
つたものになること、また樹脂としてBステージ
の熱硬化性樹脂を用いた場合は経時変化が大き
く、保存も含めた加工性の問題があり、且つ工程
としてキユア(熱処理による硬化)を必要とする
こと等の問題がある。そのため、最近になつて、
長繊維と熱可塑性樹脂を組み合わせた複合材料が
考えられるようになつて来た。しかし、このよう
な複合材料は、硬いために、取扱性に劣るという
問題がある。この解決策として溶融しマトリツク
ス樹脂化すべき熱可塑性樹脂と同じ樹脂からなる
繊維で織物を作り、該熱可塑性樹脂と組み合わせ
て複合材料とすることも考えられている。また、
補強繊維の織物とマトリツクス樹脂のフイルムを
別個に作り、成型に際してこれらを交互に積層し
てフイルムを溶かす方法も考えられている。これ
らの方法による複合材料は積層して成形する場
合、一般には織物が伸縮性を欠き成形物形態に制
約を受け、曲面特に球面に成形するのが困難であ
り、また、繊維の接着も必ずしも良くないという
問題がある。又、重要な事実として、長繊維織物
で補強した複合材料を曲面を有するように成形す
る場合には、成形時に長繊維織物が破断して、短
繊維を補強繊維として用いた場合と同等の補強効
果しか得られないことが多く、場合によつては、
複合材料自体が破れてしまうこともある。また、
長繊維を、そのまま一方向配列で補強用に使用し
ても、繊維に十分な張力をかけないで成形する
と、引張繊維や弾性率が思うように上がらなかつ
たり、あるいはバラついたりし易く、満足な結果
が得られない。 更に、米国特許第3664909号明細書、米国特許
第3713962号明細書、及び米国特許第3850723号明
細書には、繊維ストランドマツトに樹脂を含浸さ
せた圧縮成形用複合マツト構造物及びその製造方
法が記載されているが、この複合材料では、曲
面、特に球面に成形するのが前述の補強織物の場
合よりは容易であるが、機械的性質が劣り、かつ
表面が粗くなり易い。 (発明が解決しようとする問題点) 本発明は、上述の如き従来技術の問題点を解消
し、強度低下や破損を損なうことなく曲面に成形
することが可能であり、しかも製品表面の平滑
性、外観に優れており、十分な強度を有する複合
体及びその製造方法を提供することを目的とす
る。 (問題点を解決するための手段) 本発明者等は、上記目的を達成すべく鋭意検討
を重ねた結果、一定方向に引き揃えた長繊維層と
伸張可能なフイルムとを積層させればよいことを
見出し本発明に到達した。 即ち、本発明は、一定方向に引き揃えた長繊維
層と伸張可能なフイルムとを積層せしめた積層体
から成り、該積層体の少なくとも一部が曲面を形
成していることを特徴とする複合体及び張繊維を
一定方向に引き揃えて、伸張可能なフイルムに積
層せしめ、積層体として後、該積層体の少なくと
も一部に曲面を形成させる如く成形することを特
徴とする複合体の製造方法である。 本発明で使用する長繊維は、比較的耐熱性のあ
る繊維であればよく、例えば炭素繊維、SiC繊
維、ガラス繊維、アラミド繊維、芳香族ポリエー
テルアミド繊維、アリレート繊維、ポリエステル
繊維、ポリアミド繊維等でありフイルムにする熱
可塑性ポリマーによつてはポリオレフイン繊維等
でも良いし、場合によれば麻等の天然繊維でも良
い。但し、強度と弾性率の大きな繊維が好まし
い。 一方、本発明で用いられる伸張可能なフイルム
は、任意の樹脂で構成することができ、複合材料
のマトリツクス樹脂となるものでフイルム化可能
なものなら特に対象を問はない。例えばポリアミ
ド(ナイロン等)、ポリオレフイン(ポリエチレ
ン、ポリプロピレン等)ポリエステル(ポリエチ
レンテレフタレート、ポリブチレンテレフタレー
ト等)、ポリカーボネート、ポリビニル化合物
(ポリスチレン)、ポリ塩化ビニル、ポリアクリル
ニトリル、ポリエーテル、ポリスルフオン等の熱
可塑性樹脂を挙げることができる。一般には耐熱
性で非晶性であるか、あるいは結晶性でも経時的
変化の少ないものの方が好ましいが、溶融粘度が
低いものがより好ましい。従つて光学的異方性高
分子も用いられる。また、エポキシ樹脂、アクリ
ル酸系樹脂、不飽和ポリエステル樹脂等の熱硬化
性樹脂からなるフイルムも用いることができる。 更に、熱可塑性樹脂フイルムと熱硬化性樹脂フ
イルムとを併用してもよい。例えば、熱可塑性樹
脂フイルム上に熱硬化性樹脂フイルムを積層さ
せ、その上に長繊維を積層させてもよく、また、
熱可塑性樹脂フイルム上に長繊維を積層させ、そ
の上に熱硬化性樹脂フイルムを積層させてもよ
い。これらの樹脂は、フイルム化した場合に伸展
性が優れており、更にマトリツクス樹脂を加えて
成形する場合には樹脂間の接着性、相溶性が良好
であることが望ましいため、エラステイツクポリ
マーなどを混合して、ポリマーブレンド、モレキ
ユラーコンポジツト等により改質することも有効
である。繊維との接着、成型後の樹脂特性の改善
等を目的として、ポリマーの橋架けのための熱硬
化性樹脂等を加えることも出来る。繊維とフイル
ムの組み合わせは、場合によつては同一のポリマ
ーであつても良い。例えばポリメタフエニレンイ
ソフタルアミドの繊維とフイルムを組み合わせる
ことも出来る。 本発明の複合体は、上記長繊維を一定方向に引
き揃えて、上記伸張可能なフイルムに積層させた
積層体から成つている。第1図及び第2図は、本
発明で用いる積層体の例を示す縦断面図であり、
第1図では、伸張可能なフイルム1に、一定方法
に引き揃えた長繊維層2が接着剤3によつて接着
されている。また、第2図では、伸張可能なフイ
ルム1に、一定方法に引き揃えた長繊維層2が融
着されている。この積層体に、更に樹脂層を加え
ることも可能である。例えば、熱可塑性樹脂をフ
イルムにして、長繊維層2の上に接着させてもよ
いし、あるいは長繊維層2の上に熱可塑性樹脂の
溶液又は溶融物を塗布してもよい。フイルムの形
で樹脂層を付加させる場合は、該フイルムと伸張
可能なフイルム1との間で、フイルムの強さ、弾
性率が異なつているのが、加工に際して取り扱い
易いので好ましい。長繊維層2には、熱融着バイ
ンダー繊維を加えておくこともできる。 長繊維層2を伸張可能なフイルム1へ積層させ
るには、例えば、伸張可能なフイルムを製膜装置
から連続的に送り出し、一方、長繊維を開繊し、
引き揃えながら供給して、両者を積層させればよ
い。この際、長繊維は、繊維軸と直角方向に伸展
可能な程度に、他のエラステイツクな繊維等で拘
束しておくのが取り扱い易くて好ましい。フイル
ムを送り出すに当り、予め熱可塑性樹脂からフイ
ルムを作り、これを繰り出す事も出来る。但し、
この場合は製膜後長時間を経て居ないものが好ま
しく、かつ、予熱することが好ましい。熱可塑性
樹脂は一般に成形後結晶化し、結晶化は経時的に
進むが、本発明の場合には、フイルムの結晶化は
進んでいない方が好ましい。複合材料に柔軟性が
要求される場合には、フイルムは薄い方が好まし
く、従つて製膜後延伸をしても良いが結晶・配向
が進み過ぎないよう注意する必要がある。 第3図は、長繊維層とフイルムとの積層体にお
いて、長繊維層の上に更にフイルムを付加せしめ
たものを製造する装置の一例を示す概略図であ
る。2台の製膜機11,12から押出成形したフ
イルム1,1′を冷却ドラム13,13′及び冷却
ローラ14,14′で冷却固化した後、引揃機1
5で重ね合わせる。この場合、一方のフイルム
1′は、加熱ドラム16で予想される。フイルム
の予熱は熱可塑性樹脂の種類、製膜方法によつて
は実施した方が良い事がある。又、二枚のフイル
ムを用いるときは一方のフイルムのみ融解させ、
他方を原型のまま融着させるに留めることが好ま
しく、従つて一方の結晶化・配向化を他の一方よ
り高めたり、熱圧前の予熱を調節したりすること
が好ましい。第3図には、このような操作を行う
方法として、一方のフイルムを予熱する例を示し
たものである。 一方、パツケージ17から解舒した補強用長繊
維2を開繊機18で開繊し、スクリーン19で引
き揃えた後、浸漬槽20で樹脂などの接着剤やフ
イルム1,1′と同じ樹脂を付与し、予熱機21
で予熱して、引揃機15で、フイルム1,1′の
間にはさみ込む。補強用長繊維2の接着剤や樹脂
による処理、予熱機21による予熱は、フイルム
1,1′への接着性を高める効果がある。 引揃機15で重ね合わせたフイルム1,1′及
び補強用長繊維2を、予熱ドラム22で予熱す
る。予熱は、実質的に重ね合わせシートの両面か
ら行うのが好ましい。前述の如く、熱可塑性樹脂
フイルムと熱硬化性樹脂フイルムとを組み合わせ
たような場合には、両面からの予熱温度をそれぞ
れ異ならせしめるのが望ましい。次いで、このシ
ートをカレンダーロール等の熱圧機23にて、高
温、高圧で圧接し、積層体にする。この熱圧機2
3の条件は、使用する熱可塑性樹脂に応じて、適
当な条件を選ぶ。かくして得られた積層体を巻取
機24で巻取る。 かくして得られた積層体をそのまま、あるいは
更に該積層体を複数個積層し、熱圧着、接着、融
着又は溶融してプレス成形等により少なくとも一
部に曲面、特に球面を有する複合体に成形する。 補強用長繊維とフイルムとからなる積層体を更
に積層成形するに際しては、フイルム、繊維の種
類によつては、接着剤、接着フイルムなどを挟み
込むのが好ましい。また、最外層に化粧用フイル
ムを用いることもできる。化粧用フイルムは、表
面硬度の高いものが好ましい。第4図は、伸張可
能なフイルム1に、一定方向に引き揃えた長繊維
層2が接着剤3によつて接着された積層体が複数
層に積層されている例を示すものである。この場
合、各積層体の長繊維は、いずれも実質的に同一
方向に配列されている。 また、各積層体の長繊維配列方向が、互いに角
度を有するように、積層体を複数層に積層させる
と、任意の方向に均一な強度を有する成形品を得
ることができるので好ましい。 第5図及び第6図は、伸張可能なフイルム1と
一定方向に引き揃えた長繊維層2とを積層せしめ
た積層体を複数個積層せしめたもので、各積層体
の長繊維2の配列方向が互いに角度を有している
例を示すものである。尚、4は接着フイルム、5
は化粧用フイルムである。積層体の少なくとも一
部に曲面を形成するには、曲面を有する金型に積
層体を入れて加熱プレスすればよい。本発明にお
いて用いられる積層体は、一定方向に引き揃えら
れた長繊維層と伸張可能なフイルムとで構成され
ているから、これをプレス成形等によつて曲面に
成形した場合、その曲面に応じて長繊維間隔が拡
がり、フイルムは伸張する。従つて成形時に補強
用長繊維が切断して複合体の強度が低下するよう
なことがなく、また複合体自体が破れてしまうよ
うなこともない。更に、一方向に引き揃えられた
長繊維が伸張可能なフイルムに積層固定されてい
るから、成形時に長繊維に十分な張力をかけなく
ても、引張強度、弾性率が上らなかつたり、バラ
ついたりするようなことがない。また、補強用繊
維として長繊維を使用しているので、短繊維を用
いた場合よりも十分な補強効果が得られ、短繊維
が表面に露出して製品表面が粗くなり外観が劣つ
たものになるということもない。 (実施例) 以下、実施例により本発明を更に詳細に説明す
る。 実施例 1 テレフタル酸ジメチルとエチレングリコールか
ら縮重合したη=0.79のポリエチレンテレフタレ
ートをエクストルーダーから290℃で押し出して
厚さ0.05mmのフイルム(未延伸フイルム)を得
た。 一方、上記ポリエチレンテレフタレートをオル
ソクロルフエノールに溶かした溶液を、ポリアク
リロニトリルから造られた炭素繊維(東レ株式会
社製商標名トレカT−300)に塗布した。この繊
維を、溶媒を半乾燥状態にして上記のポリエチレ
ンテレフタレートのフイルムの上に一方向に引き
揃えて並べた。この試験片を板の間に狭んで乾燥
させた。かくして、炭素繊維を一方向に引き揃え
てポリエステルフイルムに接着させた薄葉物が得
られた。この薄葉物を各薄葉物の炭素繊維配列方
向が順次互いに45°の角度をなすように8枚重ね
て、半径200mmの部分球面金型に入れ、プレスし
た。金型は予め約150℃に加熱しておいた。また、
重ねた薄葉物は、温度300℃、圧搾荷重5トンで
プレスした。300℃に到達後、3分間その温度に
保持し、氷を入れた水に金型を投入して冷却し、
厚さ1mmの試料片を得た。この成型物の密度は約
1.5g/cm3、繊維体積率(Vf)約30%、繊維軸方
向の引張強度58Kg/mm2、引張弾性率3500Kg/mm2
あつた。また、成形物の表面は滑らかで良好な外
観を呈していた。 実施例 2 ガラス繊維(10μ径)にアロンアルフア (東
亜合成株式会社製接着剤)を塗布し、半乾燥時に
ポリプロピレンフイルム(20μ)の上に一定方向
に引き揃えて並べ密着させ、複合材料前駆体とし
ての薄葉物を得た。 得られた薄葉物をそのまま実施例1で用いた球
面を具えた金型でプレスし、ほぼ対称に繊維が広
がることを確かめた。 また、この得られた薄葉物を5枚重ねて、実施
例1で用いた球面を具えた金型で成形した。金型
は予め加熱(推定温度70℃)して置き、薄葉物設
置後180℃まで上げた。冷却後、部分球面を持つ
た成形物が得られた。 実施例 3 ポリメタフエニレンイソフタルアミドのポリマ
ー(η=1.3)を塩化カルシウムと共にN−メチ
ル−2−ピロリドンに溶かして40%の溶液とし
た。これをN−メチル−2−ピロリドン水溶液に
押し出してフイルム状とし、延伸及び水洗してフ
イルム(10μ)とした。 一方、芳香族ポリアミド繊維テクノーラ (帝
人株式会社製・引張破断伸度約2%)(6μ径)を
一方向に引き揃えてこれにポリメタフエニレンイ
ソフタルアミドのN−メチル−2−ピロリドン溶
液を塗布し、この半乾燥時に上記のポリメタフエ
ニレンイソフタルアミドのフイルムを圧着して薄
葉物を得た。 この薄葉物を、薄葉物の繊維配列方向が順次互
いに90°の角度をなすように8枚を重ねて実施例
1の部分球面を具えた金型で成形した。金型は予
め360℃に昇温しておき、プレス温度は360℃、プ
レス荷重は10トンであつた。得られた成形物は、
密度1.35g/cm3、体積繊維率約20%、繊維方向の
引張強度26Kg/mm2、引張弾性率760Kg/mm2であつ
た。また、成形物の表面は滑らかで良好な外観を
呈していた。 実施例 4 ビスフエノールAのポリカーボネートをメチレ
ンクロライドに溶かして炭素繊維に塗布し、乾燥
して芯鞘繊維とした。得られた芯鞘繊維を加熱し
てポリカーボネートフイルムの上に一方向に引き
揃えて並べて圧着させた。 冷却後、繊維側に前記のポリカーボネートのメ
チレンクロライド溶液を塗布して乾燥させた。 得られた薄葉物を、各薄葉物の繊維配列方向が
順次互いに90°の角度をなすように8枚を重ねて
実施例1の球面を具えた金型で成形した。この成
形物の引張強度は54Kg/mm2、引張弾性率は1120
Kg/mm2であつた。また、成形物の表面は平滑で良
好な外観を呈していた。 実施例 5 ε−カプロラクタムに少量(約0.3%)の水を
加え、窒素置換して250℃に保持して重合物を得
た。 このポリマーを十分に水洗し、乾燥した後に、
エクストルーダーで270℃で押し出してフイルム
(20μ)を得た。 市販のテクノーラ 繊維をポリメタフエニレン
イソフタルアミドのN−メチル−2−ピロリドン
の溶液に浸して引き上げ、ほぐして乾燥した。こ
の繊維を半乾燥時に市販のナイロン6の未延伸フ
イルム上に一方向に引き揃えて並べて180℃、250
Kg/mm2で熱圧してサンプルを得た。 このサンプルは、実施例1で用いた部分球面を
持つた金型で成形可能であり、表面が平滑で良好
な外観を有するものであつた。 実施例 6 接着剤層を含む方法で繊維とフイルムの複合体
を作つた。 市販の炭素繊維(東レ(株)製:T−400炭素繊維)
とポリエチレンテレフタレートの複合材料の試料
を作つた。 即ち、エステル交換法でつくつたポリエチレン
テレフタレートを溶融押出法で厚さ50μのフイル
ムとした。特別に延伸は行わなかつた。 上記の炭素繊維を開繊して一方向に引き揃え、
金枠に巻き付け、ポリエチレンテレフタレートフ
イルムを添わせて、180℃でプレスした。この炭
素繊維・ポリエチレンテレフタレートフイルム接
着物はポリエチレンテレフタレート分68g/m2
炭素繊維分36g/m2であつた。この補強繊維−フ
イルム接着物を、各接着物の繊維配列方向が順次
互いに90°の角度をなすように10層重ね、その外
側両サイドに50μのポリエチレンテレフタレート
フイルムを重ね、それらの各シートの間にポリエ
チレン系フイルム状熱硬化型ホツトメルト接着剤
を挟み、実施例1で用いた金型に入れ、全体を
150℃、100Kg/cm2でプレスした。各層の炭素繊維
の方向は同一とした。 得られた球面を有する成形物のデータは次の通
りであつた。 密度 1.45g/cm3 平均体積繊維率 20.5% 平均引張強度 37.6Kg/mm2 平均引張弾性率 690Kg/mm2 また、成形物の表面は滑らかで、外観も良好であ
つた。 実施例 7 第3図に示す装置で積層体を造つた。11及び
12の製膜装置でポリエチレンテレフタレートを
フイルム化(約5μ厚)した。用いたポリマーの
ηは0.65、装置中の押出機の温度は300℃である。 長繊維としては、約10μ径の炭素繊維を用い
た。市販の引張強度300Kg/mm2、引張弾性率25000
Kg/mm2の炭素繊維である。この繊維をトウ開繊式
長繊維不織布を造る場合のトウ開繊機を用いて開
繊し、引き揃え、加熱ローラで予熱した。開繊ト
ウの温度は表面温度計のセンサー部を滑らせて測
つて150℃であつた。 上記11,12の製膜装置から送られるフイル
ムで炭素繊維を挟み、揃えて、ローラ式予熱機で
150℃まで昇温した。次いで、これを熱圧ローラ
でローラの線圧、温度を50Kg/cm、200℃の条件
で処理して積層体を得た。 得られた積層体は冷却後、体積繊維率(Vf)
51%、引張強度151Kg/mm2、引張弾性率13000Kg/
mm2であつた。 この積層体を、繊維の配列方向が順次互いに
90°の角度をなすようにして8枚重ね合わせて実
施例1で使用した金型に入れ、100Kg/mm2、280℃
で熱圧して球面を有する複合体材料成形物とし
た。得られた成形物の引張強度は70Kg/mm2、引張
弾性率は675Kg/mm2であつた。また、成形物の表
面は滑らかで、外観も良好であつた。 実施例 8 実施例7と同様にしてポリエチレンテレフタレ
ート樹脂の積層体を得た。ただし、11の押出機
を用いず、長繊維層に対してフイルム層は一層の
積層体とした。 この積層体は曲面を成形するに当つて実施例7
の積層体より扱い易かつた。得られた成形物の物
性は実施例7とほぼ同様であり、外観も良好であ
つた。 実施例 9 実施例7と同様にしてポリブチレンテレフタレ
ート樹脂の積層体を得た。 11,12の製膜装置でポリブチレンテレフタ
レートをフイルム化した。用いたポリマーのηは
0.72、製膜装置中の押出機の温度は290℃であつ
た。 長繊維としては炭素繊維を用いた。市販の引張
強度300Kg/mm2、引張弾性率25000Kg/mm2の炭素繊
維である。この繊維をトウ開繊式長繊維不織布を
造る場合のトウ開繊機を用いて開繊し、引き揃
え、加熱ローラで加熱した。開繊トウの温度は表
面温度計のセンサー部を滑らせて測つて150℃で
あつた。 得られたフイルムで炭素繊維を挟み、揃えて、
ローラ式予熱機で180℃まで昇温し、熱圧ローラ
でローラの線圧50Kg/cm、温度200℃の条件で処
理して積層体を得た。 得られた積層体は冷却後、体積繊維率(Vf)
50%、引張強度145Kg/mm2、引張弾性率11000Kg/
mm2であつた。 この積層体を、繊維の配列方向が順次互いに
90°の角度をなすようにして8枚重ね合わせて実
施例1で用いた金型に入れ、100Kg/mm2、280℃で
熱圧して球面を有する複合材料成形物とした。得
られた成形物の引張強度は72Kg/mm2、引張弾性率
は600Kg/mm2であつた。また、成形物の表面は滑
らかで、外観も良好であつた。 実施例 10 第3図の装置を変形して積層体を造つた。 11及び12の装置を、高分子溶液をダイから
凝固浴に押し出してフイルム化する装置にした。
ポリメタフエニレンイソフタルアミド(η=
1.28)を塩化カルシウムと共にN−メチル−2−
ピロリドンに溶かして42%の溶液とした。 この溶液をN−メチル−2−ピロリドンと塩化
カルシウムの水溶液である凝固浴に押し出して
後、水で洗浄し塩化カルシウムを除き、次いで乾
燥した。 ポリメタフエニレンイソフタルアミド繊維(商
標:コーネツクス)を実施例7と同様の開繊機で
開繊し、引き揃えた。 このフイルムと繊維を積層して、予熱機(加熱
ドラム)で昇温した。ドラムの温度は280℃であ
つた。引き続いてこの積層物を熱圧した。熱圧カ
レンダーの温度は320℃、圧力は100Kg/cm2であつ
た。 得られた積層体を切断し、更に8枚合わせて、
実施例1で用いた金型に入れ、100Kg/cm2、360℃
で熱圧した。得られた成形物の表面は平滑で外観
も良好であつた。 実施例 11 第3図において、製膜装置のみを用いてポリエ
チレンテレフタレートのフイルムを作つた。ポリ
マーのηは0.64である。 炭素繊維を開繊後、ポリエチレンテレフタレー
トをオルソクロルフエノールに溶かした溶液の中
を通した。得られた炭素繊維を乾燥して樹脂量を
測定したところ、炭素繊維に対して24%であつ
た。 樹脂被覆炭素繊維を180℃まで昇温し、フイル
ムと重ね合わせ、更に200℃まで昇温し、カレン
ダーロールで線圧100Kg/cm、温度240℃で熱圧し
た。 得られた積層体は体積繊維率49%、引張強度は
138Kg/mm2、引張弾性率1280Kg/mm2であつた。 この積層体を、繊維の配列方向が互いに45°の
角度をなすようにして8枚重ね合わせて実施例1
で用いた金型に入れ100Kg/cm2、290℃で熱圧して
球面を有する複合材料成形物とした。得られた成
形物の引張強度は74Kg/mm2、引張弾性率650Kg/
mm2であつた。また、成形物の表面は平滑で、外観
も良好であつた。 実施例 12 市販の炭素繊維(東レ(株)製:T−300炭素繊維)
とポリエーテルエーテルケトンの複合材料の試料
を作つた。 即ち、市販のポリエーテルエーテルケトン(以
下ではPEEKと略称す)を溶融押出法で厚さ約
50μのフイルムとした。特別に延伸は行わなかつ
た。上記の炭素繊維を開繊して引き揃え金枠に巻
き付けた後、PEEKフイルムに重ね合わせ、280
℃でプレスした。この炭素繊維・PEEKフイルム
接着物はPEEK分95g/m2、炭素繊維分5g/m2
あつた。得られた炭素繊維接着PEEKフイルムを
250mm×250mmの正方形に切り、各接着物の補強繊
維配列方向が互いに90°の角度をなすように順次
12層重ねて、280℃、100Kg/cm2で熱圧した。得ら
れた補強板は測定の結果、次の通りであつた。 平均引張強度 25Kg/mm2 破断引張弾性率 680Kg/mm2 同様に、この複合材料中間素材を290℃の熱風
乾燥機の中に30分保存し、取り出して直ちに250
℃に保たれているトレイ状の金型でプレス成形
し、金型ごと冷水に投入して冷却し取り出した。
得られた成形物の物性の測定結果は中間素材とし
て用いた複合材料板とほぼ同じである下記の値を
示した。 引張強度 18.2Kg/mm2 引張弾性率 528Kg/mm2 尚、繊維を入れずに、他の条件は実施例通りと
してPEEKのみで成形したものは以下の通りであ
つた。 引張強度 6.2Kg/mm2 引張弾性率 203Kg/mm2 実施例 13
(Industrial Application Field) The present invention relates to a composite and a method for manufacturing the same, and more particularly to a composite comprising long fibers and a film and having a curved surface at least in part, and a method for manufacturing the same. (Prior Art) With the progress of science and industry in recent years, it has become common for conventional materials used in various fields to have insufficient physical properties and not be able to exhibit satisfactory functions. For example, in aircraft, it is required to improve the strength and elastic modulus per weight of materials, and in the field of space equipment,
In order to reduce costs, it is desired to develop materials with high specific strength and specific modulus. Furthermore, when making the outer panel of an automobile from plastic in order to reduce its weight, a highly rigid plastic material is required. On the other hand, recent developments in fiber technology have led to the development of fibers with greater strength per weight and elastic modulus than iron. For example, inorganic fibers such as carbon fibers, SiC fibers, and boron fibers, para-based wholly aromatic polyamide fibers (e.g., Dupont: Kepler), fully aromatic polyetheramide fibers (Teijin: Technora), and high-density polyethylene fibers (e.g., Mitsui Petrochemicals: Techmilon) and other organic fibers. Methods such as hardening such high-performance fibers with resin to create new materials, or adding these fibers to existing resins or metals to reinforce them have been considered, and some of them have been put into practical use. For example, FRP (Fiber Reinforced
Plastic), FRM (Fiber Reinforced Metal), and CC (Carbon-Carbon) composites. Theoretically, long fibers have a better reinforcing effect as a composite material than short fibers. Therefore, in the case of FRP, the most advanced composite material (generally Advanced
(called Composite), products are made using a combination of long fibers and B-stage thermosetting resin. When making FRP products using thermoplastic resin, short fibers are generally used as reinforcing fibers. However, when short fibers are used as reinforcing fibers, there are limitations in terms of physical properties.Furthermore, the short fibers are exposed on the product surface and become rough, resulting in an inferior appearance. When a synthetic resin is used, there are problems such as large changes over time, problems with processability including storage, and the need for curing (hardening by heat treatment) as a process. Therefore, recently,
Composite materials that combine long fibers and thermoplastic resins have begun to be considered. However, such composite materials have a problem in that they are difficult to handle because they are hard. As a solution to this problem, it has been considered to make a woven fabric from fibers made of the same resin as the thermoplastic resin that is to be melted and turned into a matrix resin, and to combine it with the thermoplastic resin to form a composite material. Also,
Another method has been considered in which a reinforcing fiber fabric and a matrix resin film are made separately, and then they are alternately laminated during molding and the films are melted. When composite materials made by these methods are laminated and molded, the fabric generally lacks elasticity and the shape of the molded product is restricted, making it difficult to mold into curved surfaces, especially spherical surfaces, and the adhesion of fibers is not always good. The problem is that there is no. Also, an important fact is that when a composite material reinforced with long fiber fabric is molded to have a curved surface, the long fiber fabric breaks during molding, resulting in the same reinforcement as when short fibers are used as reinforcing fibers. It is often only effective, and in some cases,
The composite material itself may also tear. Also,
Even if long fibers are used for reinforcement in a unidirectional arrangement, if they are molded without applying sufficient tension to the fibers, the tensile fibers and elastic modulus may not increase as expected or may easily vary, making it unsatisfactory. I can't get any results. Further, U.S. Patent No. 3,664,909, U.S. Pat. No. 3,713,962, and U.S. Pat. No. 3,850,723 disclose a composite mat structure for compression molding in which fiber strand mat is impregnated with resin, and a method for manufacturing the same. As described above, this composite material is easier to form into a curved surface, especially a spherical surface, than the reinforcing fabric described above, but its mechanical properties are inferior and the surface tends to be rough. (Problems to be Solved by the Invention) The present invention solves the problems of the prior art as described above, and can be molded into a curved surface without reducing strength or damaging the product, and also improves the smoothness of the product surface. The object of the present invention is to provide a composite material having excellent appearance and sufficient strength, and a method for producing the same. (Means for Solving the Problem) As a result of intensive studies to achieve the above object, the present inventors found that it is sufficient to laminate a long fiber layer aligned in a certain direction and a stretchable film. This discovery led to the present invention. That is, the present invention provides a composite material comprising a laminate in which long fiber layers aligned in a certain direction and a stretchable film are laminated, and at least a portion of the laminate forms a curved surface. A method for manufacturing a composite, which comprises aligning the body and tension fibers in a certain direction, laminating them on a stretchable film, forming a laminate, and then shaping the laminate so that at least a portion of the laminate forms a curved surface. It is. The long fibers used in the present invention may be relatively heat-resistant fibers, such as carbon fibers, SiC fibers, glass fibers, aramid fibers, aromatic polyetheramide fibers, arylate fibers, polyester fibers, polyamide fibers, etc. Depending on the thermoplastic polymer used to form the film, polyolefin fibers may be used, or natural fibers such as hemp may be used depending on the case. However, fibers with high strength and elastic modulus are preferred. On the other hand, the stretchable film used in the present invention can be made of any resin, and there is no particular limitation on the material as long as it serves as a matrix resin for a composite material and can be made into a film. For example, thermoplastic resins such as polyamide (nylon, etc.), polyolefin (polyethylene, polypropylene, etc.), polyester (polyethylene terephthalate, polybutylene terephthalate, etc.), polycarbonate, polyvinyl compound (polystyrene), polyvinyl chloride, polyacrylonitrile, polyether, polysulfon, etc. can be mentioned. In general, it is preferable that the material is heat resistant and amorphous, or even crystalline but shows little change over time, but it is more preferable that the material has a low melt viscosity. Therefore, optically anisotropic polymers are also used. Furthermore, films made of thermosetting resins such as epoxy resins, acrylic acid resins, and unsaturated polyester resins can also be used. Furthermore, a thermoplastic resin film and a thermosetting resin film may be used together. For example, a thermosetting resin film may be laminated on a thermoplastic resin film, and long fibers may be laminated thereon;
Long fibers may be laminated on a thermoplastic resin film, and a thermosetting resin film may be laminated thereon. These resins have excellent extensibility when made into a film, and when molded with a matrix resin, it is desirable to have good adhesion and compatibility between the resins, so elastic polymers etc. It is also effective to mix and modify with polymer blends, molecular composites, etc. For the purpose of adhesion to fibers, improvement of resin properties after molding, etc., a thermosetting resin or the like can be added to bridge the polymer. The fiber and film combination may optionally be of the same polymer. For example, polymetaphenylene isophthalamide fibers and films can be combined. The composite of the present invention consists of a laminate in which the long fibers are aligned in a certain direction and laminated on the stretchable film. FIGS. 1 and 2 are longitudinal cross-sectional views showing examples of the laminate used in the present invention,
In FIG. 1, a layer of long fibers 2 aligned in a uniform manner is adhered to a stretchable film 1 by means of an adhesive 3. Further, in FIG. 2, a long fiber layer 2 aligned in a certain manner is fused to an extensible film 1. It is also possible to further add a resin layer to this laminate. For example, a film made of thermoplastic resin may be adhered onto the long fiber layer 2, or a solution or melt of the thermoplastic resin may be applied onto the long fiber layer 2. When the resin layer is added in the form of a film, it is preferable that the film and the stretchable film 1 have different strengths and elastic moduli, since this facilitates handling during processing. Heat-fusible binder fibers can also be added to the long fiber layer 2. In order to laminate the long fiber layer 2 onto the stretchable film 1, for example, the stretchable film is continuously fed out from the film forming device, while the long fibers are opened,
The two may be stacked by supplying them while aligning them. At this time, it is preferable to restrain the long fibers with other elastic fibers to such an extent that they can be stretched in a direction perpendicular to the fiber axis, for ease of handling. When sending out the film, it is also possible to make the film in advance from thermoplastic resin and then pay it out. however,
In this case, it is preferable that the film has not been used for a long time after being formed, and it is also preferable to preheat it. Thermoplastic resins generally crystallize after molding, and crystallization progresses over time, but in the case of the present invention, it is preferable that crystallization of the film does not progress. When flexibility is required for the composite material, it is preferable that the film be thin, and therefore stretching may be performed after film formation, but care must be taken to prevent excessive crystallization and orientation. FIG. 3 is a schematic view showing an example of an apparatus for manufacturing a laminate of a long fiber layer and a film in which a film is further added on top of the long fiber layer. After the films 1 and 1' extruded from the two film forming machines 11 and 12 are cooled and solidified by cooling drums 13 and 13' and cooling rollers 14 and 14', they are transferred to the pulling machine 1.
Overlap with 5. In this case, one film 1' is expected on the heated drum 16. It may be better to preheat the film depending on the type of thermoplastic resin and film forming method. Also, when using two films, melt only one film,
It is preferable to just fuse the other one in its original form, and therefore it is preferable to increase the crystallization and orientation of one of them than the other, or to adjust the preheating before hot pressing. FIG. 3 shows an example of a method for performing such an operation in which one of the films is preheated. On the other hand, the reinforcing long fibers 2 unwound from the package 17 are opened by a fiber opening machine 18 and aligned by a screen 19, and then an adhesive such as resin or the same resin as the films 1, 1' is applied in a dipping tank 20. and preheater 21
The film is preheated with a temperature control device, and then inserted between films 1 and 1' using a pulling machine 15. Treatment of the reinforcing long fibers 2 with an adhesive or resin and preheating with the preheater 21 have the effect of increasing adhesiveness to the films 1 and 1'. The films 1, 1' and the reinforcing long fibers 2, which are superimposed on each other by a pulling machine 15, are preheated by a preheating drum 22. Preferably, the preheating is performed from substantially both sides of the laminated sheet. As mentioned above, when a thermoplastic resin film and a thermosetting resin film are combined, it is desirable that the preheating temperatures for both sides be different. Next, this sheet is pressed at high temperature and pressure using a hot press machine 23 such as a calender roll to form a laminate. This heat pressure machine 2
Conditions 3 are appropriately selected depending on the thermoplastic resin used. The thus obtained laminate is wound up by a winding machine 24. The thus obtained laminate may be used as it is, or a plurality of such laminates may be further laminated and formed into a composite body having at least a partially curved surface, particularly a spherical surface, by thermocompression bonding, adhesion, fusing, or melting by press molding or the like. . When the laminate consisting of the reinforcing long fibers and the film is further laminated and molded, it is preferable to sandwich an adhesive, an adhesive film, etc. depending on the type of film or fiber. Moreover, a cosmetic film can also be used as the outermost layer. The cosmetic film preferably has a high surface hardness. FIG. 4 shows an example in which a plurality of laminates are laminated on a stretchable film 1, in which long fiber layers 2 aligned in a certain direction are adhered by an adhesive 3. In this case, the long fibers of each laminate are arranged in substantially the same direction. Furthermore, it is preferable to laminate a plurality of laminates so that the long fiber arrangement directions of each laminate form an angle with respect to each other, since a molded product having uniform strength in any direction can be obtained. Figures 5 and 6 show a plurality of laminates in which a stretchable film 1 and long fiber layers 2 aligned in a certain direction are laminated, and the arrangement of the long fibers 2 in each laminate. It shows an example where the directions are at an angle to each other. In addition, 4 is an adhesive film, 5
is a cosmetic film. In order to form a curved surface on at least a portion of the laminate, the laminate may be placed in a mold having a curved surface and heated and pressed. The laminate used in the present invention is composed of long fiber layers aligned in a certain direction and a stretchable film, so when it is formed into a curved surface by press molding etc. As a result, the distance between long fibers increases, and the film stretches. Therefore, the reinforcing long fibers will not be cut during molding and the strength of the composite will not decrease, and the composite itself will not be torn. Furthermore, since the long fibers aligned in one direction are laminated and fixed on a stretchable film, even if sufficient tension is not applied to the long fibers during molding, the tensile strength and elastic modulus may not increase or variations may occur. I never get stuck. In addition, since long fibers are used as reinforcing fibers, a more sufficient reinforcing effect can be obtained than when short fibers are used. There is no such thing as becoming. (Example) Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 Polyethylene terephthalate with η=0.79, which was polycondensed from dimethyl terephthalate and ethylene glycol, was extruded from an extruder at 290°C to obtain a film (unstretched film) with a thickness of 0.05 mm. On the other hand, a solution of polyethylene terephthalate dissolved in orthochlorophenol was applied to carbon fiber made from polyacrylonitrile (trade name: Torayca T-300, manufactured by Toray Industries, Inc.). The fibers were placed in a semi-dry state on the polyethylene terephthalate film in one direction. The specimen was sandwiched between plates to dry. In this way, a thin sheet material was obtained in which carbon fibers were aligned in one direction and adhered to a polyester film. Eight sheets of this thin sheet were stacked one on top of the other so that the carbon fiber arrangement directions of each thin sheet made an angle of 45° with respect to each other, and the sheets were placed in a partially spherical mold with a radius of 200 mm and pressed. The mold was preheated to approximately 150°C. Also,
The stacked thin sheets were pressed at a temperature of 300°C and a compression load of 5 tons. After reaching 300℃, hold at that temperature for 3 minutes, then cool the mold by placing it in water containing ice.
A sample piece with a thickness of 1 mm was obtained. The density of this molded product is approximately
The fiber volume fraction (Vf) was approximately 30%, the tensile strength in the fiber axis direction was 58 Kg/mm 2 , and the tensile modulus was 3500 Kg/mm 2 . Moreover, the surface of the molded product was smooth and had a good appearance. Example 2 Glass fibers (10μ diameter) were coated with Aron Alpha (adhesive manufactured by Toagosei Co., Ltd.), and when semi-dry, they were aligned in a certain direction on a polypropylene film (20μ) and adhered tightly, and used as a composite material precursor. of thin leaves were obtained. The obtained thin material was pressed as it was using the mold with the spherical surface used in Example 1, and it was confirmed that the fibers spread almost symmetrically. Furthermore, five sheets of the obtained thin leaf material were stacked and molded using the same mold with a spherical surface used in Example 1. The mold was preheated (estimated temperature: 70°C) and heated to 180°C after the thin material was installed. After cooling, a molded product with a partially spherical surface was obtained. Example 3 A polymer of polymetaphenylene isophthalamide (η=1.3) was dissolved in N-methyl-2-pyrrolidone with calcium chloride to form a 40% solution. This was extruded into a N-methyl-2-pyrrolidone aqueous solution to form a film, stretched and washed with water to form a film (10μ). On the other hand, the aromatic polyamide fiber Technora (manufactured by Teijin Ltd., tensile elongation at break of about 2%) (6μ diameter) was pulled in one direction and a solution of polymetaphenylene isophthalamide in N-methyl-2-pyrrolidone was added to it. When the film was semi-dry, the above-mentioned polymetaphenylene isophthalamide film was pressed to obtain a thin film. Eight sheets of this thin sheet were stacked one on top of the other so that the fiber arrangement directions of the thin sheet sequentially formed an angle of 90° to each other, and the mold was molded using the mold provided with the partially spherical surface of Example 1. The mold was heated to 360°C in advance, the press temperature was 360°C, and the press load was 10 tons. The obtained molded product is
It had a density of 1.35 g/cm 3 , a volume fiber ratio of about 20%, a tensile strength in the fiber direction of 26 Kg/mm 2 , and a tensile modulus of 760 Kg/mm 2 . Moreover, the surface of the molded product was smooth and had a good appearance. Example 4 Bisphenol A polycarbonate was dissolved in methylene chloride, applied to carbon fibers, and dried to obtain core-sheath fibers. The obtained core-sheath fibers were heated, aligned in one direction, and pressed onto a polycarbonate film. After cooling, the aforementioned methylene chloride solution of polycarbonate was applied to the fiber side and dried. Eight of the obtained thin sheets were stacked one on top of the other so that the fiber arrangement directions of each thin sheet made an angle of 90° with respect to each other, and molded using the spherical mold of Example 1. The tensile strength of this molded product is 54Kg/mm 2 and the tensile modulus is 1120.
It was Kg/ mm2 . Moreover, the surface of the molded product was smooth and had a good appearance. Example 5 A small amount (about 0.3%) of water was added to ε-caprolactam, the atmosphere was replaced with nitrogen, and the temperature was maintained at 250°C to obtain a polymer. After thoroughly washing this polymer with water and drying it,
A film (20μ) was obtained by extrusion at 270°C using an extruder. Commercially available Technora fibers were soaked in a solution of polymetaphenylene isophthalamide in N-methyl-2-pyrrolidone, pulled up, loosened, and dried. When semi-dried, these fibers were arranged in one direction on a commercially available unstretched nylon 6 film at 180°C and 250°C.
Samples were obtained by hot pressing at Kg/ mm2 . This sample could be molded using the partially spherical mold used in Example 1, and had a smooth surface and good appearance. Example 6 A fiber and film composite was made by a method that included an adhesive layer. Commercially available carbon fiber (manufactured by Toray Industries, Inc.: T-400 carbon fiber)
and polyethylene terephthalate composite material samples were made. That is, polyethylene terephthalate produced by a transesterification method was made into a film with a thickness of 50 μm by a melt extrusion method. No special stretching was performed. The above carbon fibers are opened and aligned in one direction,
It was wrapped around a metal frame, attached with polyethylene terephthalate film, and pressed at 180°C. This carbon fiber/polyethylene terephthalate film adhesive has a polyethylene terephthalate content of 68g/m 2 ,
The carbon fiber content was 36g/ m2 . This reinforcing fiber-film adhesive is stacked in 10 layers so that the fiber arrangement direction of each adhesive makes an angle of 90° with respect to each other, and a 50 μm polyethylene terephthalate film is stacked on both outer sides, and between each of these sheets. A polyethylene film thermosetting hot melt adhesive was sandwiched between the two, and the whole was placed in the mold used in Example 1.
Pressed at 150°C and 100Kg/cm 2 . The direction of the carbon fibers in each layer was the same. The data of the obtained molded product having a spherical surface were as follows. Density 1.45 g/cm 3 Average volume fiber ratio 20.5% Average tensile strength 37.6 Kg/mm 2 Average tensile modulus 690 Kg/mm 2 The molded product had a smooth surface and good appearance. Example 7 A laminate was produced using the apparatus shown in FIG. Polyethylene terephthalate was formed into a film (approximately 5μ thick) using film forming apparatuses No. 11 and 12. The η of the polymer used was 0.65, and the temperature of the extruder in the apparatus was 300°C. Carbon fibers with a diameter of about 10 μm were used as the long fibers. Commercially available tensile strength 300Kg/mm 2 , tensile modulus 25000
Kg/mm 2 carbon fiber. The fibers were spread using a tow spreader used to produce long fiber nonwoven fabrics, drawn and preheated using a heating roller. The temperature of the opened tow was measured by sliding the sensor part of a surface thermometer and was 150°C. The carbon fibers are sandwiched between the films sent from the film forming apparatuses 11 and 12 above, aligned, and then heated using a roller preheater.
The temperature was raised to 150℃. Next, this was processed using a hot pressure roller at a roller linear pressure of 50 Kg/cm and a temperature of 200° C. to obtain a laminate. After cooling, the obtained laminate has a volumetric fiber ratio (Vf)
51%, tensile strength 151Kg/mm 2 , tensile modulus 13000Kg/
It was warm in mm2 . This laminate is made so that the fibers are aligned in the same direction as each other.
Stack 8 sheets at a 90° angle and place them in the mold used in Example 1, 100Kg/mm 2 , 280℃
The composite material was molded into a spherical composite material by hot pressing. The resulting molded product had a tensile strength of 70 Kg/mm 2 and a tensile modulus of 675 Kg/mm 2 . Moreover, the surface of the molded product was smooth and the appearance was good. Example 8 A laminate of polyethylene terephthalate resin was obtained in the same manner as in Example 7. However, the extruder No. 11 was not used, and the film layer was a single layer laminate with respect to the long fiber layer. This laminate was used in Example 7 when molding a curved surface.
It was easier to handle than the laminate. The physical properties of the obtained molded product were almost the same as those of Example 7, and the appearance was also good. Example 9 A polybutylene terephthalate resin laminate was obtained in the same manner as in Example 7. Polybutylene terephthalate was formed into a film using film forming apparatus Nos. 11 and 12. The η of the polymer used is
0.72, and the temperature of the extruder in the film forming apparatus was 290°C. Carbon fiber was used as the long fiber. It is a commercially available carbon fiber with a tensile strength of 300 Kg/mm 2 and a tensile modulus of 25000 Kg/mm 2 . The fibers were opened using a tow opening machine used for producing long-fiber nonwoven fabrics, drawn in alignment, and heated with a heating roller. The temperature of the opened tow was measured by sliding the sensor part of a surface thermometer and was 150°C. Sandwich the carbon fibers between the obtained films, align them,
The temperature was raised to 180°C using a roller preheater, and a laminate was obtained by processing with a hot pressure roller at a linear pressure of 50 kg/cm and a temperature of 200°C. After cooling, the obtained laminate has a volumetric fiber ratio (Vf)
50%, tensile strength 145Kg/mm 2 , tensile modulus 11000Kg/
It was warm in mm2 . This laminate is made so that the fibers are aligned in the same direction as each other.
Eight sheets were stacked at an angle of 90°, placed in the mold used in Example 1, and hot-pressed at 100 kg/mm 2 and 280° C. to form a composite material molded product having a spherical surface. The resulting molded product had a tensile strength of 72 Kg/mm 2 and a tensile modulus of 600 Kg/mm 2 . Moreover, the surface of the molded product was smooth and the appearance was good. Example 10 A laminate was produced by modifying the apparatus shown in FIG. The devices Nos. 11 and 12 were used to extrude a polymer solution from a die into a coagulation bath to form a film.
Polymetaphenylene isophthalamide (η=
1.28) with calcium chloride and N-methyl-2-
It was dissolved in pyrrolidone to make a 42% solution. This solution was extruded into a coagulation bath consisting of an aqueous solution of N-methyl-2-pyrrolidone and calcium chloride, washed with water to remove calcium chloride, and then dried. Polymetaphenylene isophthalamide fibers (trademark: Konex) were opened using the same opening machine as in Example 7 and aligned. This film and fibers were laminated and heated using a preheater (heating drum). The temperature of the drum was 280°C. This laminate was subsequently hot pressed. The temperature of the thermopressure calendar was 320°C and the pressure was 100Kg/cm 2 . The obtained laminate was cut and eight more sheets were combined.
Placed in the mold used in Example 1, 100Kg/cm 2 , 360℃
It was heated and pressed. The surface of the obtained molded product was smooth and had a good appearance. Example 11 In FIG. 3, a polyethylene terephthalate film was produced using only a film forming apparatus. The η of the polymer is 0.64. After opening the carbon fibers, they were passed through a solution of polyethylene terephthalate dissolved in orthochlorophenol. When the obtained carbon fibers were dried and the amount of resin was measured, it was found to be 24% based on the carbon fibers. The resin-coated carbon fibers were heated to 180°C, overlapped with a film, further heated to 200°C, and hot-pressed using a calendar roll at a linear pressure of 100 kg/cm and a temperature of 240°C. The obtained laminate has a volume fiber ratio of 49% and a tensile strength of
The tensile modulus was 138Kg/mm 2 and the tensile modulus was 1280Kg/mm 2 . Example 1: Eight sheets of this laminate were stacked so that the fiber arrangement directions made an angle of 45° to each other.
It was placed in the mold used in 2003 and hot-pressed at 100 kg/cm 2 at 290°C to form a composite material molded product with a spherical surface. The resulting molded product had a tensile strength of 74 Kg/mm 2 and a tensile modulus of 650 Kg/mm 2 .
It was warm in mm2 . Moreover, the surface of the molded product was smooth and had a good appearance. Example 12 Commercially available carbon fiber (T-300 carbon fiber manufactured by Toray Industries, Inc.)
and polyetheretherketone composite samples were made. That is, commercially available polyetheretherketone (hereinafter abbreviated as PEEK) was melt-extruded to a thickness of approximately
It was made into a 50μ film. No special stretching was performed. After opening the above carbon fiber and wrapping it around a metal frame, it is layered on a PEEK film,
Pressed at ℃. This carbon fiber/PEEK film adhesive had a PEEK content of 95 g/m 2 and a carbon fiber content of 5 g/m 2 . The resulting carbon fiber bonded PEEK film
Cut into squares of 250mm x 250mm and arrange them one after another so that the reinforcing fibers of each adhesive are arranged at a 90° angle to each other.
Twelve layers were stacked and hot pressed at 280°C and 100Kg/cm 2 . The results of measurement of the obtained reinforcing plate were as follows. Average tensile strength: 25Kg/mm 2 Tensile modulus at break: 680Kg/mm 2Similarly , this composite intermediate material was stored in a hot air dryer at 290℃ for 30 minutes, and then removed and immediately heated to 250℃.
It was press-molded in a tray-shaped mold kept at ℃, and the mold was placed in cold water to cool and taken out.
The measurement results of the physical properties of the obtained molded product showed the following values, which are almost the same as those of the composite material plate used as the intermediate material. Tensile strength: 18.2 Kg/mm 2 Tensile modulus: 528 Kg/mm 2 The molding made only of PEEK without adding fibers and with other conditions as in the example was as follows. Tensile strength 6.2Kg/mm 2Tensile modulus 203Kg/ mm 2Example 13

【式】と[Formula] and

【式】とから成る光学 的異方性ポリエステルを、溶融、押出法で厚さ
200μのフイルムとした。 一方、炭素繊維T−300を引き揃えて金枠に巻
き付けた後、該ポリエステルフイルムに重ね合わ
せ、280℃、50Kg/cm2でプレスして接着させた。
この際、フイルム成形時の押し出し方向と繊維の
方向は同一とした。この薄葉素材を繊維の配列方
向が交互に直角になるように12層重ねて290℃の
乾燥機で加熱し、プレスして300℃で完了して曲
面を成形した。得られた成形物の物性は次の通り
であつた。 引張強度 20.1Kg/mm2 引張弾性率 399Kg/mm2 尚、繊維を入れずに、他の条件は実施例通りと
して該ポリエステルのみで成形したものは以下の
通りであつた。 引張強度 17.5Kg/mm2 引張弾性率 225Kg/mm2 実施例 14 実施例13で使用して光学的異方性ポリエステル
を、溶融、押出法で厚さ60μのフイルムとした。 一方、炭素繊維T−300を引き揃えて金枠に巻
き付けた後、該ポリエステルフイルムに重ね合わ
せ、280℃、50Kg/cm2でプレスして接着させた。
この際、フイルム成形時の押し出し方向と繊維の
方向は同一とした。この薄葉素材を繊維の配列方
向が交互に直角になるように12層重ねて290℃の
乾燥機で加熱し、プレスして300℃で完了して曲
面を成形した。得られた成形物の物性は次の通り
であつた。 引張強度 53.5Kg/mm2 引張弾性率 1304Kg/mm2 尚、繊維を入れずに、他の条件は実施例通りと
して該ポリエステルのみで成形したものは以下の
通りであつた。 引張強度 20.9Kg/mm2 引張弾性率 700Kg/mm2 (発明の効果) 本発明によれば、強度低下や破損を伴うことな
く、補強用繊維とフイルムとからなる積層体を曲
面に成形することができ、表面の平滑性、外観に
優れ、十分な強度を有する曲面複合体を提供する
ことができる。本発明の複合体は、特に自動車な
どの各種車両用ホデイー、各種容器、いす、ベン
チ等として有効に利用することができる。
Optically anisotropic polyester consisting of [formula] is melted and extruded to a thickness of
It was made into a 200μ film. On the other hand, carbon fiber T-300 was aligned and wound around a metal frame, and then superimposed on the polyester film and bonded by pressing at 280° C. and 50 kg/cm 2 .
At this time, the extrusion direction during film molding and the direction of the fibers were the same. Twelve layers of this thin sheet material were stacked so that the fibers were arranged in alternating directions at right angles, heated in a dryer at 290°C, and pressed at 300°C to form a curved surface. The physical properties of the obtained molded product were as follows. Tensile strength: 20.1 Kg/mm 2 Tensile modulus: 399 Kg/mm 2 The following moldings were made using only the polyester without adding fibers and with other conditions as in the example. Tensile strength: 17.5 Kg/mm 2 Tensile modulus: 225 Kg/mm 2 Example 14 The optically anisotropic polyester used in Example 13 was made into a 60 μm thick film by melting and extrusion. On the other hand, carbon fiber T-300 was aligned and wound around a metal frame, and then superimposed on the polyester film and bonded by pressing at 280° C. and 50 kg/cm 2 .
At this time, the extrusion direction during film molding and the direction of the fibers were the same. Twelve layers of this thin sheet material were stacked so that the fibers were arranged in alternating directions at right angles, heated in a dryer at 290°C, and pressed at 300°C to form a curved surface. The physical properties of the obtained molded product were as follows. Tensile strength: 53.5 Kg/mm 2 Tensile modulus: 1304 Kg/mm 2 The following moldings were made only of the polyester without adding fibers and with other conditions as in the example. Tensile strength: 20.9 Kg/mm 2 Tensile modulus: 700 Kg/mm 2 (Effects of the invention) According to the present invention, a laminate made of reinforcing fibers and a film can be formed into a curved surface without a decrease in strength or damage. It is possible to provide a curved composite with excellent surface smoothness and appearance and sufficient strength. The composite of the present invention can be effectively used, particularly as bodies for various vehicles such as automobiles, various containers, chairs, benches, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明で用いる積層体の
例を示す縦断面図、第3図は、本発明方法を実施
する装置の一例を示す概略図、第4図は本発明で
用いる積層体を更に複数層に積層した例を示す縦
断面図、第5図及び第6図は、積層体を複数層に
積層した他の例を示す斜視図である。 1……伸張可能なフイルム、2……長繊維層、
3……接着剤、11,12……製膜機、15……
引揃機、18……開繊機、19……スクリーン、
23……熱圧機。
1 and 2 are longitudinal cross-sectional views showing an example of a laminate used in the present invention, FIG. 3 is a schematic diagram showing an example of an apparatus for carrying out the method of the present invention, and FIG. 4 is a longitudinal sectional view showing an example of a laminate used in the present invention. A vertical cross-sectional view showing an example in which the laminate is further laminated into a plurality of layers, and FIGS. 5 and 6 are perspective views showing other examples in which the laminate is further laminated in a plurality of layers. 1...Stretchable film, 2...Long fiber layer,
3... Adhesive, 11, 12... Film forming machine, 15...
Pulling machine, 18... Spreading machine, 19... Screen,
23...Heat pressure machine.

Claims (1)

【特許請求の範囲】 1 一定方向に引き揃えた長繊維層と伸張可能な
フイルムとを積層せしめた積層体から成り、該積
層体の少なくとも一部が曲面を形成していること
を特徴とする複合体。 2 該積層体の長繊維層側に樹脂層を形成せしめ
た特許請求の範囲第1項記載の複合体。 3 該樹脂層が伸張可能なフイルムである特許請
求の範囲第2項記載の複合体。 4 該積層体を更に複数個積層せしめた特許請求
の範囲第1項記載の複合体。 5 各積層体における長繊維の引き揃え方向が、
互いに角度を有している特許請求の範囲第4項記
載の複合体。 6 長繊維を一定方向に引き揃えて、伸張可能な
フイルムに積層せしめ、積層体とした後、該積層
体の少なくとも一部に曲面を形成せしめる如く成
形することを特徴とする複合体の製造方法。 7 製膜装置から送り出された伸張可能なフイル
ムに、開繊し引き揃えた長繊維を積層せしめる特
許請求の範囲第6項記載の複合体の製造方法。 8 2枚の伸張可能なフイルムの間に、一定方向
に引き揃えた長繊維を積層させる特許請求の範囲
第6項記載の複合体の製造方法。 9 2つの製膜装置から送り出された伸張可能な
フイルムの間に、開繊し引き揃えた長繊維を積層
せしめる特許請求の範囲第8項記載の複合体の製
造方法。 10 長繊維をフイルムに固着させる特許請求の
範囲第6項〜第9項のうちのいずれか1項記載の
複合体の製造方法。 11 積層体を更に複数個積層せしめる特許請求
の範囲第6項〜第10のうちのいずれか1項記載
の複合体の製造方法。 12 各積層体における長繊維の引き揃え方向
が、互いに角度を有するように積層せしめる特許
請求の範囲第11項記載の複合体の製造方法。
[Claims] 1. Consisting of a laminate in which long fiber layers aligned in a certain direction and a stretchable film are laminated, at least a part of the laminate forms a curved surface. complex. 2. The composite according to claim 1, wherein a resin layer is formed on the long fiber layer side of the laminate. 3. The composite according to claim 2, wherein the resin layer is a stretchable film. 4. The composite according to claim 1, wherein a plurality of the laminates are further laminated. 5 The alignment direction of the long fibers in each laminate is
5. A composite body according to claim 4, which is angled with respect to one another. 6. A method for producing a composite, which comprises aligning long fibers in a certain direction, laminating them on a stretchable film to form a laminate, and then shaping the laminate so that at least a portion of the laminate forms a curved surface. . 7. The method for manufacturing a composite according to claim 6, wherein opened and aligned long fibers are laminated on a stretchable film sent out from a film forming device. 8. The method for producing a composite according to claim 6, wherein long fibers aligned in a certain direction are laminated between two stretchable films. 9. The method for manufacturing a composite according to claim 8, wherein opened and aligned long fibers are laminated between stretchable films sent out from two film forming apparatuses. 10. The method for producing a composite according to any one of claims 6 to 9, which comprises fixing long fibers to a film. 11. The method for manufacturing a composite according to any one of claims 6 to 10, which further comprises laminating a plurality of laminates. 12. The method for manufacturing a composite according to claim 11, wherein the laminated bodies are laminated so that the alignment directions of the long fibers in each laminate form an angle with each other.
JP62219352A 1986-09-11 1987-09-01 Composite body and manufacture thereof Granted JPS63183836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62219352A JPS63183836A (en) 1986-09-11 1987-09-01 Composite body and manufacture thereof

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP61-212777 1986-09-11
JP21277786 1986-09-11
JP21600486 1986-09-16
JP61-216004 1986-09-16
JP22840486 1986-09-29
JP61-228404 1986-09-29
JP62219352A JPS63183836A (en) 1986-09-11 1987-09-01 Composite body and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS63183836A JPS63183836A (en) 1988-07-29
JPH0580341B2 true JPH0580341B2 (en) 1993-11-08

Family

ID=27476606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62219352A Granted JPS63183836A (en) 1986-09-11 1987-09-01 Composite body and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63183836A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8822521D0 (en) * 1988-09-26 1988-11-02 Tech Textiles Ltd Method of producing formable composite material
US5264060A (en) * 1992-01-22 1993-11-23 Aluminum Company Of America Method for pultruding fiber-reinforced thermoplastic stock
US5665450A (en) * 1992-08-21 1997-09-09 The Curators Of The University Of Missouri Optically transparent composite material and process for preparing same
JP4756933B2 (en) * 2005-06-28 2011-08-24 呉羽テック株式会社 Thick adhesive product with excellent adhesiveness and manufacturing method thereof
US20100215887A1 (en) * 2006-11-22 2010-08-26 Fukui Prefectural Government Reinforced thermoplastic-resin multilayer sheet material, process for producing the same, and method of forming molded thermoplastic-resin composite material
JP5417631B2 (en) * 2007-11-07 2014-02-19 福井県 Molding method of thermoplastic resin composite material molded product
JP5076053B2 (en) * 2006-11-22 2012-11-21 福井県 Thermoplastic resin multilayer reinforced sheet material, method for producing the same, and thermoplastic resin multilayer reinforced molded article
JP5223130B2 (en) * 2007-02-15 2013-06-26 福井県 Thermoplastic resin reinforced sheet material, production method thereof, and thermoplastic resin multilayer reinforced sheet material
JP5920690B2 (en) * 2011-05-30 2016-05-18 福井県 Pre-preg sheet material and manufacturing method thereof
JP5614384B2 (en) * 2011-07-26 2014-10-29 株式会社豊田自動織機 Reinforcing fiber sheet, fiber-reinforced composite material, method for producing reinforcing fiber sheet, and method for producing fiber-reinforced composite material
JP6696354B2 (en) * 2016-08-26 2020-05-20 Agc株式会社 Method for manufacturing image projection laminated plate

Also Published As

Publication number Publication date
JPS63183836A (en) 1988-07-29

Similar Documents

Publication Publication Date Title
US3472730A (en) Heat-curable filament-reinforced resinous sheeting and laminating process using same
KR101411169B1 (en) Reinforced thermoplastic-resin sheet material, reinforced thermoplastic-resin multilayer sheet material, process for producing the same, and reinforced thermoplastic-resin multilayer molded article
US20120302118A1 (en) Sheet for fiber-reinforced resin and fiber-reinforced resin molded article using the same
US8114507B2 (en) Multi-layered fiber
JPH0657407B2 (en) Fiber reinforced pellet structure
JP2006525141A (en) Nonwoven composite element
JPH0580341B2 (en)
JP2007526375A (en) Processing cyclic oligomers to form thermoplastic PBT plastic materials
WO2008020628A1 (en) Multiaxially reinforced laminated moldings and process for production thereof
JP5995150B2 (en) Carbon fiber composite material
CN103806357B (en) A kind of temporary pavement plate and preparation method thereof
US5665185A (en) Process for preparing glass fiber containing polymer sheet
USH1162H (en) Molded composite article and process for producing the same
US3255875A (en) Composite reinforced resin sheet
JPS5914924A (en) Manufacture of prepreg
JPH0724830A (en) Production of thermoplastic unidirectional prepreg sheet
JP2016172322A (en) Method for producing fiber-reinforced thermoplastic resin-molded article
WO2021124977A1 (en) Fiber-reinforced resin hollow molded body and method for producing same
JPH10272699A (en) Manufacture of fiber reinforced resin tubular body
JPH05230230A (en) Production of fiber-reinforced thermoplastic resin
JP4135180B2 (en) Multi-directional fiber reinforced thermoplastic resin plate, manufacturing method thereof, manufacturing system and pressure molding apparatus
JP2869931B2 (en) Unidirectionally reinforced fiber sheet and method for producing the same
JP2021530627A (en) Ballistic conversion efficiency of high-performance fibers
JPH09174547A (en) Composite sheet of carbon fiber reinforced thermoplastic resin, manufacture thereof, and manufacture of molded piece using the sheet
JPS6072707A (en) Preparation of prepreg