JPS6387228A - Manufacture of composite body - Google Patents

Manufacture of composite body

Info

Publication number
JPS6387228A
JPS6387228A JP61231317A JP23131786A JPS6387228A JP S6387228 A JPS6387228 A JP S6387228A JP 61231317 A JP61231317 A JP 61231317A JP 23131786 A JP23131786 A JP 23131786A JP S6387228 A JPS6387228 A JP S6387228A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fibers
composite
fiber
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61231317A
Other languages
Japanese (ja)
Inventor
藤山 光美
幸雄 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP61231317A priority Critical patent/JPS6387228A/en
Publication of JPS6387228A publication Critical patent/JPS6387228A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱可塑性樹脂と補強用線維とからなる線維強化
樹脂複合体(以下、単に複合体と記す)の製造方法に関
する。詳しくは、熱可塑性樹脂繊維と補強用線維または
その混紡糸からなる織物(織布)と熱可塑性樹脂シート
とを積層し、特定な温度下で加熱加圧1−て成形する、
特に強度、剛性などの物性に優れた複合体を成形性よく
得るために好適な製造方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a fiber-reinforced resin composite (hereinafter simply referred to as composite) comprising a thermoplastic resin and reinforcing fibers. Specifically, a woven fabric (woven fabric) made of thermoplastic resin fibers, reinforcing fibers, or blended yarn thereof is laminated with a thermoplastic resin sheet, and is formed by heating and pressing at a specific temperature.
In particular, the present invention provides a manufacturing method suitable for obtaining a composite material having excellent physical properties such as strength and rigidity with good moldability.

(従来技術) 従来、複合体の製造方法としては、例えば補強用線維の
トウまたは織布忙熱硬化性樹脂を含浸させ硬化させる方
法、補強用線維またはその織物に樹脂粉末を塗布し、次
いで加圧下で該樹脂粉末を組織に溶融、含浸させる方法
等がある。しかしながら、これらの方法ではプレプレグ
中間体が粘着性であったり、得られる複合体を複雑な形
状に加工することが困難であろなど取扱いが容易でなか
った。これに対して最近では、例えば熱可塑性ポリマー
と非熱可塑性強化用繊維、特に炭素繊維との混合物を特
定割合で有する連続繊維トウを前記熱可塑性ポリマー線
維の融点より高温に加熱する方法(特開昭60−209
033号。
(Prior Art) Conventionally, methods for producing composites include, for example, a method in which reinforcing fiber tow or woven fabric is impregnated with a thermosetting resin and cured, or a reinforcing fiber or its woven fabric is coated with resin powder, and then processed. There is a method of melting and impregnating the tissue with the resin powder under pressure. However, these methods are not easy to handle because the prepreg intermediate is sticky and it is difficult to process the resulting composite into a complicated shape. On the other hand, recently, a method has been developed in which, for example, a continuous fiber tow containing a mixture of a thermoplastic polymer and a non-thermoplastic reinforcing fiber, particularly carbon fiber, in a specific proportion is heated to a temperature higher than the melting point of the thermoplastic polymer fiber (Japanese Patent Application Laid-open No. 1986-209
No. 033.

同60−209034号)等が提案されている。No. 60-209034), etc. have been proposed.

(発明が解決しようとする課題) しかしながら、上記の如き提案された製造方法により得
られる複合体も、その要求される全ての機能を満足する
ものでなく、特に強度が強く且つ熱可塑性樹脂による補
強用繊維の良好なぬれを有する複合体が要望されている
。したがって、本発明は上記した性能を有する複合体を
成形性良く得るために好適な製造方法を提供することを
目的とする。
(Problems to be Solved by the Invention) However, the composite obtained by the manufacturing method proposed above does not satisfy all of the required functions, and is particularly strong and reinforced with thermoplastic resin. There is a need for composites that have good wetting of fibers. Therefore, an object of the present invention is to provide a manufacturing method suitable for obtaining a composite having the above-mentioned performance with good moldability.

(課題を解決するための手段) 本発明者らは上記した課題に鑑み鋭意検討した結果、熱
可塑性樹脂繊維と補強用線維またはその混紡糸からなる
織物と熱可塑性樹脂シートとを積層し、特定温度下で加
熱加圧して成形することにより、良好な複合体h”−得
られることを見い出し、本発明を提案するに至った。即
ち、本発明は熱可塑性樹脂線維と補強用繊維またはその
混紡糸からなる織物と熱可塑性樹脂シートとを積層し、
該熱可塑性樹脂の溶融温度以上で補強用繊維の溶融温度
以下の温度で加熱加圧して成形することを特徴とする複
合体の製造方法である。
(Means for Solving the Problems) As a result of intensive studies in view of the above-mentioned problems, the present inventors have laminated a thermoplastic resin sheet and a fabric made of thermoplastic resin fibers and reinforcing fibers or their blended yarns, The present inventors have discovered that a good composite material h"- can be obtained by molding by heating and pressurizing at a high temperature, and have proposed the present invention. That is, the present invention proposes the present invention. A fabric made of yarn and a thermoplastic resin sheet are laminated,
This method of manufacturing a composite is characterized in that the composite is molded by heating and pressing at a temperature that is higher than the melting temperature of the thermoplastic resin and lower than the melting temperature of the reinforcing fiber.

本発明の熱可塑性樹脂としては、例えばポリプロピレン
、塩化ビニル樹脂、酢酸ビニル樹脂、ポリスチレン、A
BS樹脂、アクリル樹脂、ポリエチレン、フッ素樹脂、
ポリアミド樹脂、ポリエステル樹脂、アセタール樹脂。
Examples of the thermoplastic resin of the present invention include polypropylene, vinyl chloride resin, vinyl acetate resin, polystyrene, A
BS resin, acrylic resin, polyethylene, fluororesin,
Polyamide resin, polyester resin, acetal resin.

ポリカーボネート、ポリエーテルイミド、ポリエーテル
ケトン、ホリエーテルエーテルケトン、ホリエーテルサ
ルホン、ポリフェニレンサルファイド。液晶ポリマーお
よびこれらの混合物など公知のものが特に制限されない
が、一般にはポリプロピレンが用いられ、特に高性能を
要求される場合にポリエーテルエーテルケトンが好まし
く用いC)れる。
Polycarbonate, polyetherimide, polyetherketone, polyetheretherketone, polyethersulfone, polyphenylene sulfide. Although known liquid crystal polymers and mixtures thereof are not particularly limited, polypropylene is generally used, and polyether ether ketone is preferably used when particularly high performance is required.

上記した熱可塑性樹脂は、そのまま(未変性)で用いる
ことができるが、特にポリオレフィンに不飽和カルボン
酸類または不飽和シラン化合物類をグラフト反応せしめ
て得られろ変性ポリオレフィンを用いることが有効であ
る。即ち、そのような変性ポリオレフィンの線維及び/
又はシートとガラス線維とよりなる織物または該織物と
シートの積層物を加熱加圧して成形して得られる複合体
は、ポリオレフィン樹脂とガラス繊維の接着性が良好で
強度も大きくなるため好ましい。こ9ような変性ポリオ
レフィンは、従来公知の方法により得ることができる。
The above-mentioned thermoplastic resin can be used as it is (unmodified), but it is particularly effective to use a modified polyolefin obtained by grafting unsaturated carboxylic acids or unsaturated silane compounds to a polyolefin. That is, such modified polyolefin fibers and/or
Alternatively, a composite obtained by molding a fabric made of a sheet and glass fibers or a laminate of the fabric and sheet by heating and pressing is preferable because the adhesiveness between the polyolefin resin and the glass fibers is good and the strength is high. Such modified polyolefins can be obtained by conventionally known methods.

即ち、不飽和カルボン酸類により変性されたポリオレフ
ィンは、例えばアクリル酸、マレイン酸、イタコン酸。
That is, polyolefins modified with unsaturated carboxylic acids include, for example, acrylic acid, maleic acid, and itaconic acid.

無水マレイン酸、無水イタコン酸などの不飽和カルボン
酸モノマーを有機過酸化物などのようなラジカル発生剤
の存在下に溶液状態。
Unsaturated carboxylic acid monomers such as maleic anhydride and itaconic anhydride are dissolved in the presence of a radical generator such as an organic peroxide.

溶融状態あるいはスラリー状態など公知の方法でポリオ
レフィンにグラフト反応させることにより得られる。ま
た、不飽和シラン化合物類により変性されたポリオレフ
ィンは、例えばビニルトリメトキシシラン、ビニルトリ
エトキシシラン、γ−メタクリロイルオキシプロピルト
リメトキシシランなどの不飽和シラン化合物モノマーを
、有機過酸化物のようなラジカル発生剤の存在下に、溶
融状態でポリオレフィンにグラフト反応させる方法によ
り得られる。このようにしてポリオレフィンにグラフト
反応される不飽和カルボン酸類または不飽和シラン化合
物類の量は、一般に全樹脂の0.01〜1重量%が適当
である。なお。
It can be obtained by subjecting polyolefin to a graft reaction using a known method such as in a molten state or in a slurry state. In addition, polyolefins modified with unsaturated silane compounds can be treated with unsaturated silane compound monomers such as vinyltrimethoxysilane, vinyltriethoxysilane, and γ-methacryloyloxypropyltrimethoxysilane using radicals such as organic peroxides. It is obtained by a method of grafting polyolefin in a molten state in the presence of a generator. The amount of unsaturated carboxylic acids or unsaturated silane compounds grafted onto the polyolefin in this manner is generally 0.01 to 1% by weight based on the total resin. In addition.

これらの変性ポリオレフィンは、未変性のポリオレフィ
ンと混合して用いること本できる。
These modified polyolefins can be used in combination with unmodified polyolefins.

本発明に用いられる熱可塑性樹脂繊維は、上記したよう
な熱可塑性樹脂からなる延伸または未延伸のファイバー
、フィラメント、モノフィラメント、ヤーン、テープ、
ステーブル、リボンおよびこれらを撚り合わせたりサイ
ジング剤で集束したものなどを含む総称である。このよ
うな熱可塑性樹脂線維の製法は特に制限されず、例えば
紡口から溶融押出したフィラメントをドラフトをかけな
がら冷却固化して巻取り、その後必要に応じて延伸、熱
処理する方法、又、フィルムを成形後必要に応じて延伸
し、スリットあるいはスプリットする方法等である。線
維の太さは特に制限されないが、一般には10〜10.
000デニールのものが好適である。
The thermoplastic resin fibers used in the present invention include stretched or unstretched fibers, filaments, monofilaments, yarns, tapes, etc. made of the above-mentioned thermoplastic resins,
A general term that includes stables, ribbons, and those twisted together or bundled with a sizing agent. The method for producing such thermoplastic resin fibers is not particularly limited, and for example, a method may be used in which a filament melted and extruded from a spinneret is cooled and solidified while being drafted, then wound, and then stretched and heat-treated as necessary. After molding, the material is stretched and slit or split as necessary. The thickness of the fibers is not particularly limited, but is generally 10 to 10.
000 denier is preferred.

本発明に用いられる熱可塑性樹脂シートは、上記した熱
可塑性樹脂を押出成形、圧縮成形。
The thermoplastic resin sheet used in the present invention is obtained by extrusion molding or compression molding the above-mentioned thermoplastic resin.

射出成形などすることにより得られるもので、該シート
の厚さは、積層相手の織物の厚さや複合体中の最終的な
補強用繊維含量により異なるが、一般には0.1mm〜
10域の厚さのものが好ましく用いられる。
It is obtained by injection molding, etc., and the thickness of the sheet varies depending on the thickness of the fabric to be laminated and the final reinforcing fiber content in the composite, but it is generally 0.1 mm to 0.1 mm.
Thicknesses in the 10 range are preferably used.

本発明に用いられろ補強用線維は、使用する熱可塑性樹
脂の溶融温度より高い溶融温度を有する線維であり、例
えばガラス線維、炭素繊維、アラミド繊維、ボロン線維
、セラミック穢維、金属線維9合成樹脂繊維などが挙げ
られるが、一般にはガラス線維が用いられ特に高性能を
要求される用途には炭素繊維が好ましく使用される。線
維の形態としては単糸、ロービング、ヤーンなど任意の
モノカ用いられ、また線維の太さも特に制限されないが
、一般には繊維の径が10〜10.000デニールのも
のが好ましく用いられる。
The reinforcing fibers used in the present invention are fibers having a melting temperature higher than that of the thermoplastic resin used, such as glass fibers, carbon fibers, aramid fibers, boron fibers, ceramic fibers, and metal fibers. Examples include resin fibers, but glass fibers are generally used, and carbon fibers are preferably used for applications that require particularly high performance. The fibers may be in any form such as single filaments, rovings, or yarns, and the thickness of the fibers is not particularly limited, but generally fibers with a diameter of 10 to 10,000 deniers are preferably used.

本発明に用いる織物は、上記した熱可塑性樹脂線維と補
強用線維とを製織してなる混合繊物である。即ち、かか
る織物は各経糸単位および各緯糸単位がそれぞれ少くと
も1本以上の熱可塑性樹脂線維および補強用繊維、又は
熱可塑性樹脂線維と補強用線維との混紡糸からなる。各
経糸単位および各緯糸単位中の熱可塑性樹脂繊維および
補強用繊維の混合割合は、積層相手の熱可塑性樹脂シー
トの厚さおよび複合体の最終的な補強用繊維含量により
異なるが、通常は補強用線維の混入率として5〜95%
(容量、以下同じ)、好壕しくは30〜90%である。
The woven fabric used in the present invention is a mixed fiber obtained by weaving the above-mentioned thermoplastic resin fibers and reinforcing fibers. That is, in such a fabric, each warp unit and each weft unit is composed of at least one thermoplastic resin fiber and reinforcing fiber, or a blended yarn of thermoplastic resin fiber and reinforcing fiber. The mixing ratio of thermoplastic resin fibers and reinforcing fibers in each warp unit and each weft unit varies depending on the thickness of the thermoplastic resin sheet to be laminated and the final reinforcing fiber content of the composite, but usually reinforcement Contamination rate of fiber for use is 5-95%
(capacity, the same applies hereinafter), preferably 30 to 90%.

該補強用線維の混入率が5%よりルい場合、複合体の最
終的な補強用繊維含量が少くなり、補強効果が小さく、
逆に混入量が95%を越えると熱可塑性樹脂による補強
用線維のぬれ改良効果が低下する。
If the reinforcing fiber mixing rate is less than 5%, the final reinforcing fiber content of the composite will be small, and the reinforcing effect will be small.
On the other hand, if the mixing amount exceeds 95%, the effect of improving the wetting of reinforcing fibers by the thermoplastic resin decreases.

なお、経糸と緯糸の補強用繊維混入率を変えろこともで
きる。また、製織は手織機、自動織機など公知の織機を
用い、平織り、綾織り。
In addition, it is also possible to change the reinforcing fiber mixing ratio of the warp and weft. In addition, the weaving uses known looms such as hand looms and automatic looms, and uses plain and twill weaves.

朱子織りなど任意の組織に織ることができるが、自動織
機を用いろ場合、ルーム・クリール方式を採用するとよ
い。
It can be woven into any desired structure, such as satin weaving, but if an automatic loom is used, it is best to use the loom creel method.

次に、本発明においては上記した織物と熱可塑性樹脂シ
ートとを積層し、加熱加圧l−て成形することにより良
好な複合体が得られる。
Next, in the present invention, a good composite can be obtained by laminating the above-described woven fabric and a thermoplastic resin sheet and molding them under heat and pressure.

上記の織物と熱可塑性樹脂シートとを積層する態様は、
それぞれ1枚づつの積層、シート/織物/シート/織物
/シート・・・・・・のように織物とシートとをそれぞ
れ複数枚の積層、或いは織物を2層以上に用いる場合に
は、各織物を任意の角度で積層、ある−は各織物層に2
枚以上の織物を任意の角度で積層することができる。こ
の際、シート用の熱可塑性樹脂と織物中の熱可塑性樹脂
は、異種の樹脂でも使用できろか、同種の樹脂を使用す
る万が好ましい。なお、補強用HI維としてガラス繊維
かつ熱可塑性樹脂として不飽和カルゲン酸または不飽和
シラン化合物変性ポリオレフィンを用いる場合には、特
に織物を構成する熱可塑性樹脂繊維に変性ポリオレフィ
ンを用いることが望ましく、熱可塑性樹脂シートとして
は未変性ま九は変性ポリオレフィンのいずれでもよい。
The mode of laminating the above-mentioned fabric and thermoplastic resin sheet is as follows:
When using multiple layers of each fabric, such as sheet/fabric/sheet/fabric/sheet, or two or more layers of fabric, each fabric Laminated at any angle, there are 2 layers on each fabric layer.
More than one fabric can be stacked at any angle. At this time, the thermoplastic resin for the sheet and the thermoplastic resin in the fabric may be different types of resins, but it is preferable to use the same type of resin. In addition, when using glass fiber as the reinforcing HI fiber and polyolefin modified with unsaturated cargenic acid or unsaturated silane compound as the thermoplastic resin, it is particularly desirable to use the modified polyolefin for the thermoplastic resin fiber constituting the fabric. The plastic resin sheet may be either unmodified or modified polyolefin.

本発明忙おける加熱は、熱可塑性樹脂の溶融温度以上か
つ補強用繊維の溶融温度以下の温度で行うことが必要で
、この範囲外では本発明の良好な複合体は得られない。
Heating in the present invention must be carried out at a temperature above the melting temperature of the thermoplastic resin and below the melting temperature of the reinforcing fibers; outside this range, a good composite of the present invention cannot be obtained.

また、加圧成形は上記した温度下で、一般に圧縮成形法
や押出ラミネーション法により行なわれるが、特に熱可
塑性樹脂繊維の溶融温度以上に加熱された織物の両側に
2台のティ(T)−ダイ押出機から押出された熱可塑性
樹脂溶融シートを積層し、ニブブロールで加圧する方法
が好ましい。なお、加熱加圧して成形する際には、樹脂
の溶融忙伴う収縮を防止するために、織物の周辺を固定
するか張力を与えることが好ましく、このよう和して得
た複合体は特に強度的により優れたものを得ることが出
来る。
Pressure molding is generally carried out by compression molding or extrusion lamination at the above-mentioned temperature. A preferred method is to laminate molten thermoplastic resin sheets extruded from a die extruder and press them with a nib roll. In addition, when molding by heating and pressurizing, it is preferable to fix the periphery of the fabric or apply tension to prevent shrinkage caused by melting of the resin. You can get something even better.

(作用効果) 以上の記載から明らかなように、本発明によれば、補強
用線維に密着して熱可塑性樹脂繊維が存在する織物を用
いること和より、加熱加圧して成形する際に、該熱可塑
性樹脂による補強用線維の含浸が完全に達成され、ボイ
ドの発生がなく、ぬれが良好であるため、美観1強度を
兼ね備えた複合体が得られる。
(Function and Effect) As is clear from the above description, according to the present invention, by using a woven fabric in which thermoplastic resin fibers are present in close contact with reinforcing fibers, when molding by heating and pressurizing, Since the reinforcing fibers are completely impregnated with the thermoplastic resin, there are no voids, and the wetting is good, a composite that has both good appearance and strength can be obtained.

さらに、本発明は熱可塑性樹脂シートを積層するため、
得られる複合体は、以下のような効果も併せて発揮する
。aち、従来、織物そのものを加熱加圧して成形する場
合、成形性を高めるためにはかなり多量の熱可塑性樹脂
繊維が必要であったり、また、複合体の補強用繊維含量
を低く抑える場合には更に多量の熱可塑性樹脂繊維が必
要であった。このような配合の織物は、織った状標では
きれいな組織ができるが、これを加熱加圧成形した場合
には、溶融時に熱可塑性樹脂繊維間ですき間が出来ると
同時に、延伸された熱可塑性樹脂繊維を用いる場合には
、該繊維が収縮して補強用線維織物組織が非常に乱れた
ものとなり、外観が悪いと同時に補強効果が弱いものと
なる。これに対して、本発明では熱可塑性樹脂シートを
積層するので、補強用線維の含量が比較的高い複合繊物
を使って、熱可塑性樹脂シートの厚さを変えることによ
り、最終的に得られる複合体中の補強用繊維含量を任意
に変えることができ、しかも補強用繊維織物のX1織が
美麗で、熱可塑性樹脂による補強用繊維のぬれが良好で
あるため、ひいては外観および強度とも優れた複合体が
成形性よく得られろ。なお、本発明で得られ九複合体は
、ホットスタンピング成形などにより、種々(任意)の
形状の成形物を作ることができる。
Furthermore, since the present invention laminates thermoplastic resin sheets,
The resulting composite also exhibits the following effects. Conventionally, when molding the woven fabric itself by heating and pressing, a considerable amount of thermoplastic resin fiber was required to improve moldability, and when the reinforcing fiber content of the composite was kept low, required a larger amount of thermoplastic resin fibers. A woven fabric with this type of composition has a fine texture when woven, but when it is heated and pressure molded, gaps are created between the thermoplastic resin fibers when melted, and at the same time, the stretched thermoplastic resin When fibers are used, the fibers shrink and the reinforcing fiber fabric structure becomes extremely disordered, resulting in a poor appearance and a weak reinforcing effect. In contrast, in the present invention, thermoplastic resin sheets are laminated, so composite fibers with a relatively high content of reinforcing fibers are used, and the thickness of the thermoplastic resin sheets is varied to achieve the final result. The reinforcing fiber content in the composite can be changed arbitrarily, and the X1 weave of the reinforcing fiber fabric is beautiful and the reinforcing fibers are well wetted by the thermoplastic resin, resulting in excellent appearance and strength. A composite with good moldability can be obtained. Note that the composite obtained in the present invention can be molded into various (arbitrary) shapes by hot stamping molding or the like.

(実施例) 以下、本発明の実施例を示すが、本発明はこれらの実施
例に限定されるものでない。
(Examples) Examples of the present invention will be shown below, but the present invention is not limited to these Examples.

尚、以下の結果における強度は次の測定法に基づいて測
定した結果を示したものである。
In addition, the intensity in the following results shows the results measured based on the following measuring method.

即ち、複合体から経糸方向および緯糸方向にそれぞれ幅
2 cm 、長さ15画の円冊形の試験片を切りとり、
引張試験機をm−、チャック間距離5 cm *引張速
度10 w / mlnの条件で引張試験を行ない、経
糸方向および緯糸方向の引張強度を測定し、両者の平均
値を引張強度とした。
That is, a circular test piece with a width of 2 cm and a length of 15 strokes was cut out from the composite in the warp and weft directions, respectively.
A tensile test was conducted using a tensile tester under the conditions of m-, distance between chucks: 5 cm * tensile speed: 10 w/mln, the tensile strength in the warp direction and the weft direction was measured, and the average value of both was taken as the tensile strength.

比較例 1 4500デニールのガラス繊維ロービングを手織機で厚
さ約0.4a*、目付5201//rrlの平織りに織
った。一方、メルトフローインデックス(MFI )=
1.0.9/10分のポリプロピレンを用いT−ダイ押
出機で厚さ0.3日のシートを作った。2枚のポリプロ
ピレンシートの間にガラス繊維織物をはさみ一熱板の間
で200℃、10分間加熱後、圧縮成形機で加圧冷却し
て厚さ0.7tm、ガラス繊維含量30%(容量)の積
層板を成形した。ガラス線維織物の組織はきれいであっ
たが、ルーペで観察したところ多数のボイドが存在して
いた。このものの引張強度は1170Kf15!であっ
た。
Comparative Example 1 Glass fiber roving of 4500 denier was woven into a plain weave with a thickness of about 0.4a* and a basis weight of 5201//rrl using a hand loom. On the other hand, melt flow index (MFI) =
A 0.3 day thick sheet was made using a T-die extruder using 1.0.9/10 minute polypropylene. A glass fiber fabric is sandwiched between two polypropylene sheets, heated between two heating plates at 200°C for 10 minutes, and then cooled under pressure using a compression molding machine to form a laminate with a thickness of 0.7 t and a glass fiber content of 30% (volume). The board was formed. Although the structure of the glass fiber fabric was clean, when observed with a magnifying glass, there were many voids. The tensile strength of this thing is 1170Kf15! Met.

比較例 2 経糸および緯糸のそれぞれに、比較例1で用いたガラス
繊維ロービング1本および2000デニ一ルノホ137
’ロビレンスプリツトヤーン2本1合計3本を用いて手
織機で厚さ約1.2■、目付1050.9/イ、ガラス
繊維の混入率30%(容i1)の平織り混合繊布を織っ
た。
Comparative Example 2 One glass fiber roving used in Comparative Example 1 and 2000 denim Lunoho 137 were used for each of the warp and weft.
'A plain weave mixed fabric with a thickness of approximately 1.2cm, a basis weight of 1050.9/I, and a glass fiber content of 30% (volume i1) was woven using a hand loom using 2 Robirens sprit yarns (3 in total). Ta.

この混合繊布のみをポリプロピレンシートと積層するこ
となしに比較例1と同様に圧縮成形したところ、ガラス
線維織物の組織がぐにゃぐにゃに乱れた厚さ0.7鴫の
成形物が得られた。この成形物の引張強度は920Kv
/fflであった。
When this mixed fabric alone was compression molded in the same manner as in Comparative Example 1 without being laminated with a polypropylene sheet, a molded product with a thickness of 0.7 mm in which the structure of the glass fiber fabric was disorganized was obtained. The tensile strength of this molded product is 920Kv
/ffl.

実施例 1 経糸および緯糸のそれぞれに、比較例1で用いたガラス
繊維ロービング1本および400デニールのポリプロピ
レンフラットヤーン1本9合計2本を用いて手織機で厚
さ0.4wm。
Example 1 One glass fiber roving used in Comparative Example 1 and one 400 denier polypropylene flat yarn 9 (two in total) were used for the warp and weft respectively, and the thickness was 0.4 w on a hand loom.

目付600 j!/ぜ、ガラス繊維混入率81%(容量
)の平織り混合繊布を織った。この混合繊布を比較例1
で用いたポリプロピレンシート2枚の間にはさみ、比較
例1と同様に圧縮成形し、厚さ0−7m、ガラス繊維の
含量30%(容量)の複合体を得た。この複合体におけ
るガラス繊維織物の組織はきれいで、ボイドもほとんど
観察されなかった。この複合体の引張強度は1200K
g/−であった。
Eye weight 600j! A plain weave mixed fabric with a glass fiber content of 81% (volume) was woven. Comparative Example 1
The composite was sandwiched between the two polypropylene sheets used in Example 1 and compression molded in the same manner as in Comparative Example 1 to obtain a composite having a thickness of 0 to 7 m and a glass fiber content of 30% (volume). The structure of the glass fiber fabric in this composite was clean, and almost no voids were observed. The tensile strength of this composite is 1200K
g/-.

実施例 2 実施例1において、加熱、圧縮成形時に混合繊物の周囲
を固定して行なった以外は実施例1と同様に行ない、厚
さ0.7−、ガラス繊維含量50%(容量)の複合体を
得た。この複合体におけるガラス線維織物の組織は実施
例1で得られたものより更にきれいで、ボイドもほとん
ど観察されなかった。引張強度は1250に?/!であ
った。
Example 2 The same procedure as in Example 1 was carried out except that the surroundings of the mixed fibers were fixed during heating and compression molding. Obtained a complex. The structure of the glass fiber fabric in this composite was even clearer than that obtained in Example 1, and almost no voids were observed. Is the tensile strength 1250? /! Met.

実施例 3 MF x =o、6 g/l 0分のホモポリプロピレ
ン100重量部、無水マレイン酸0.5i[[置部、ベ
ンゾイルパーオキサイド0.1重量部。
Example 3 MF x =o, 6 g/l 100 parts by weight of 0 minute homopolypropylene, 0.5i part by weight of maleic anhydride, 0.1 part by weight of benzoyl peroxide.

ブチル化ヒドロキシトルエン(商品名BHT)0.1重
量部およびステアリン酸カルシウム0.1wm部をヘン
シェルミキサーで5分間混合し、L/D=24の40瓢
φ押出機により190℃で溶融混線ペレタイズを行ない
、MFI工4.5.lil/10分、グラフト反応無水
マレインe!量0.23重量%の変性ポリプロピレンを
得た。この変性ポリプロピレンを用い、厚さ1■のイン
フレーションフィルムラ製膜し、スリット後、加熱延伸
して400デニールのフラットヤーンを得た。経糸、緯
糸のそれツレに比較例1で用いたガラス線維ロービング
1本および上記の変性ポリプロピレンフラットヤーン1
本、計2本を用いて手織機で厚さ約0.4m、目付60
09/?、ガラス繊維混入率81%(容量)の平織り混
合繊物を織った。
0.1 part by weight of butylated hydroxytoluene (trade name BHT) and 0.1 wm part of calcium stearate were mixed in a Henschel mixer for 5 minutes, and melt-mixed pelletization was performed at 190°C using a 40 mm diameter extruder with L/D = 24. , MFI Engineering 4.5. lil/10 minutes, graft reaction anhydrous maleic e! A modified polypropylene having an amount of 0.23% by weight was obtained. Using this modified polypropylene, a blown film having a thickness of 1 inch was formed, and after slitting, it was heated and stretched to obtain a flat yarn of 400 denier. One glass fiber roving used in Comparative Example 1 and the above modified polypropylene flat yarn 1 were used to warp and weft.
A total of 2 books were used on a hand loom to a thickness of approximately 0.4m and a fabric weight of 60.
09/? A plain weave mixed fiber with a glass fiber content of 81% (volume) was woven.

比較例1で用いたポリプロピレンシート2枚の間にこの
混合繊物をはさみ、混合繊物の周囲を固定して加熱加圧
成形して、厚さ0.7wm。
This mixed fiber was sandwiched between two polypropylene sheets used in Comparative Example 1, the periphery of the mixed fiber was fixed, and molded under heat and pressure to a thickness of 0.7 wm.

ガラス線維含量30%(容量→の複合体を得た。この複
合体におけるガラス繊維織物の組織はきれいで、ボイド
もほとんど観察されなかった。この複合体の引張強度は
1380h/a4であった。
A composite with a glass fiber content of 30% (capacity →) was obtained. The structure of the glass fiber fabric in this composite was clean, and almost no voids were observed. The tensile strength of this composite was 1380 h/a4.

実施例 4 MF I =0.61/10分のホモポリプロピL/7
100重を部、r−メタクリロキシプロピルトリメトキ
シシラン0.5重量部、ジクミルパーオキサイド0.1
重量部、BHTo、1重量部、ステアリン酸カルシウム
0.1重量部をヘンシェルミキサーで5分間混合し、L
/D:24の40態φ押出機により200 ”Cで溶融
混線ペレタイズを行ない、MFI=5.4.9710分
の変性ポリプロピレンを得た。この変性ポリプロピレン
を用い、実施例6と同様に行ない厚さ0.7msガラス
Mi維含t30%(容t)の複合体を得た。この複合体
におけるガラス線維織物の組織はきれいで、ボイドはほ
とんど観察されなかった。この複合体の引張強度は14
20Kf/iであった。
Example 4 Homopolypropylene L/7 with MF I =0.61/10 min
100 parts by weight, 0.5 parts by weight of r-methacryloxypropyltrimethoxysilane, 0.1 part by weight of dicumyl peroxide.
Part by weight, 1 part by weight of BHTo, and 0.1 part by weight of calcium stearate were mixed in a Henschel mixer for 5 minutes, and L
/D:24 40-mode φ extruder was used to perform melt mixed wire pelletization at 200''C to obtain a modified polypropylene with an MFI of 5.4.9710 minutes. Using this modified polypropylene, the same procedure as in Example 6 was carried out to obtain a A composite with a 0.7 ms glass-Mi fiber content of 30% (volume t) was obtained.The structure of the glass fiber fabric in this composite was clean, and almost no voids were observed.The tensile strength of this composite was 14
It was 20Kf/i.

実施例 5 経糸および緯糸のそれぞれに、1800デニールの炭素
皇維ロービング1本および500デニールのポリエーテ
ルエーテルケトン繊維1本6合計2本を用い、厚さ0.
2m、  目付1709/n1.炭素線維含有率81%
(容量)の綾織り混合繊布を織った。この混合繊布を厚
さ0.2mのポリエーテルエーテルケトンシート2枚の
間忙はさみ、熱板により400℃。
Example 5 One 1800 denier carbon fiber roving and one 500 denier polyether ether ketone fiber were used for each of the warp and weft, and the thickness was 0.
2m, area weight 1709/n1. Carbon fiber content 81%
(capacity) of twill mixed fabric was woven. This mixed fabric was sandwiched between two 0.2 m thick polyether ether ketone sheets and heated to 400°C using a hot plate.

10分間予熱後、圧縮成形機により加圧冷却して厚さ0
.4m、炭素繊維含1120%(容量)の複合体を得た
。この複合体における炭素繊維織物の組織はきれいであ
り、ボイドもほとんど観察されなかった。この複合体を
赤外線加熱機で370℃に加熱溶融させ、スタンピング
金型によりホットスタンピングをして、直径50mφ、
深さ20■のカップを成形したところ、きれいな成形物
が得られた。この複合体の引張強度は2500Kg/c
11と実施例4で得られたものよりかなり大きいもので
あったO      特許出願人 徳山曹達株式会社
After preheating for 10 minutes, it is cooled under pressure with a compression molding machine to a thickness of 0.
.. A composite having a length of 4 m and a carbon fiber content of 1120% (capacity) was obtained. The structure of the carbon fiber fabric in this composite was clean, and almost no voids were observed. This composite was heated and melted at 370°C using an infrared heating machine, and hot stamped using a stamping mold to create a diameter of 50mφ.
When a cup with a depth of 20 cm was molded, a beautiful molded product was obtained. The tensile strength of this composite is 2500Kg/c
11 and O which was considerably larger than that obtained in Example 4. Patent applicant: Tokuyama Soda Co., Ltd.

Claims (1)

【特許請求の範囲】 1)熱可塑性樹脂繊維と補強用繊維またはその混紡糸か
らなる織物と熱可塑性樹脂シートとを積層し、該熱可塑
性樹脂の溶融温度以上かつ補強用繊維の溶融温度以下の
温度で加熱加圧して成形することを特徴とする複合体の
製造方法 2)熱可塑性樹脂がポリプロピレンまたはポリエーテル
エーテルケトンである特許請求の範囲第1項記載の製造
方法 3)補強用繊維がガラス繊維または炭素繊維である特許
請求の範囲第1項記載の製造方法 4)熱可塑性樹脂繊維及び/又は熱可塑性樹脂シートの
熱可塑性樹脂がポリオレフィンに不飽和カルボン酸類ま
たは不飽和シラン化合物類をグラフトした変性ポリオレ
フィンであり、補強用繊維がガラス繊維である特許請求
の範囲第1項記載の製造方法 5)織物の周辺を固定した状態で加熱加圧して成形する
特許請求の範囲第1項記載の製造方法
[Claims] 1) A fabric made of thermoplastic resin fibers and reinforcing fibers, or a blended yarn thereof, and a thermoplastic resin sheet are laminated, and a thermoplastic resin sheet is laminated, and 2) A method for manufacturing a composite, characterized in that the thermoplastic resin is polypropylene or polyether ether ketone. 3) The reinforcing fiber is glass. The manufacturing method according to claim 1, which is fiber or carbon fiber 4) The thermoplastic resin of the thermoplastic resin fiber and/or thermoplastic resin sheet is a polyolefin grafted with unsaturated carboxylic acids or unsaturated silane compounds. The manufacturing method according to claim 1, wherein the modified polyolefin is used and the reinforcing fiber is glass fiber. 5) The manufacturing method according to claim 1, in which the woven fabric is molded by heating and pressurizing with the periphery fixed. Method
JP61231317A 1986-10-01 1986-10-01 Manufacture of composite body Pending JPS6387228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61231317A JPS6387228A (en) 1986-10-01 1986-10-01 Manufacture of composite body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61231317A JPS6387228A (en) 1986-10-01 1986-10-01 Manufacture of composite body

Publications (1)

Publication Number Publication Date
JPS6387228A true JPS6387228A (en) 1988-04-18

Family

ID=16921738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61231317A Pending JPS6387228A (en) 1986-10-01 1986-10-01 Manufacture of composite body

Country Status (1)

Country Link
JP (1) JPS6387228A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049295A (en) * 2006-08-25 2008-03-06 Nippon Muki Co Ltd Coating-booth filter
JP2011208039A (en) * 2010-03-30 2011-10-20 Sanko Gosei Ltd Method for shape forming and fiber-reinforced resin molded article
JP2012006216A (en) * 2010-06-24 2012-01-12 Sanko Gosei Ltd Fiber-reinforced resin molded form and shaped form molding method
JP2012224016A (en) * 2011-04-21 2012-11-15 Sanko Gosei Ltd Shaping and molding method, and fiber-reinforced resin molded article
JP2014024969A (en) * 2012-07-27 2014-02-06 Mitsubishi Chemicals Corp Fiber-reinforced composite material
US9511550B2 (en) 2013-07-12 2016-12-06 Panasonic Intellectual Property Management Co., Ltd. Molding method for fiber reinforced composite material
JP2017520428A (en) * 2014-07-29 2017-07-27 ロッテ ケミカル コーポレーション Continuous fiber composite and process for producing continuous fiber composite
US10583617B2 (en) 2016-11-28 2020-03-10 General Electric Company Automatic systems and methods for stacking composite plies
WO2022050281A1 (en) * 2020-09-01 2022-03-10 帝人株式会社 Method for decomposing plastic-containing material, method for recovering inorganic material, recycled carbon fiber, method for producing recycled carbon fiber, blended yarn, carbon fiber-reinforced thermoplastic resin pellets containing said blended yarn and method for producing same, carbon fiber-reinforced thermoplastic resin strand and method for producing same, and carbon fiber-reinforced thermoplastic pellets

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233680B2 (en) * 1974-01-21 1977-08-30
JPS5935032B2 (en) * 1976-02-06 1984-08-25 ヤマハ株式会社 electronic musical instruments
JPS61177240A (en) * 1985-02-01 1986-08-08 平岡織染株式会社 Flame-retardant heat-resistant sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233680B2 (en) * 1974-01-21 1977-08-30
JPS5935032B2 (en) * 1976-02-06 1984-08-25 ヤマハ株式会社 electronic musical instruments
JPS61177240A (en) * 1985-02-01 1986-08-08 平岡織染株式会社 Flame-retardant heat-resistant sheet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049295A (en) * 2006-08-25 2008-03-06 Nippon Muki Co Ltd Coating-booth filter
JP2011208039A (en) * 2010-03-30 2011-10-20 Sanko Gosei Ltd Method for shape forming and fiber-reinforced resin molded article
JP2012006216A (en) * 2010-06-24 2012-01-12 Sanko Gosei Ltd Fiber-reinforced resin molded form and shaped form molding method
JP2012224016A (en) * 2011-04-21 2012-11-15 Sanko Gosei Ltd Shaping and molding method, and fiber-reinforced resin molded article
JP2014024969A (en) * 2012-07-27 2014-02-06 Mitsubishi Chemicals Corp Fiber-reinforced composite material
US9511550B2 (en) 2013-07-12 2016-12-06 Panasonic Intellectual Property Management Co., Ltd. Molding method for fiber reinforced composite material
JP2017520428A (en) * 2014-07-29 2017-07-27 ロッテ ケミカル コーポレーション Continuous fiber composite and process for producing continuous fiber composite
US10583617B2 (en) 2016-11-28 2020-03-10 General Electric Company Automatic systems and methods for stacking composite plies
WO2022050281A1 (en) * 2020-09-01 2022-03-10 帝人株式会社 Method for decomposing plastic-containing material, method for recovering inorganic material, recycled carbon fiber, method for producing recycled carbon fiber, blended yarn, carbon fiber-reinforced thermoplastic resin pellets containing said blended yarn and method for producing same, carbon fiber-reinforced thermoplastic resin strand and method for producing same, and carbon fiber-reinforced thermoplastic pellets
JPWO2022050281A1 (en) * 2020-09-01 2022-03-10

Similar Documents

Publication Publication Date Title
US3691000A (en) Glass fiber reinforced composite article exhibiting enhanced longitudinal tensile and compressive moduli
US5380477A (en) Process of making fiber reinforced laminates
EP1145841B1 (en) Method of fabrication of a multi-directional reinforcing fiber base for composite materials
US5085928A (en) Fiber reinforced composites comprising uni-directional fiber layers and aramid spunlaced fabric layers
Cabrera et al. Processing of all-polypropylene composites for ultimate recyclability
JP3991439B2 (en) Fiber reinforced plastic and method for molding fiber reinforced plastic
US5441590A (en) Method for the preparation of prepreg of thermoplastic composite resin
EP0417827A1 (en) Fabric of thermoplastic fibre and continuous reinforcing fibre
JP6719986B2 (en) Thermoplastic resin composite material and method for producing the same
JPS6387228A (en) Manufacture of composite body
JPS6395915A (en) Manufacture of composite material
JPH04353525A (en) Blended yarn for composite and formed product thereof
JPH02308824A (en) Material for thermoplastic composite
JPH06254848A (en) Thermoplastic prepreg fabric and laminate from the same
JPH08134757A (en) Reinforcing material and fiber-reinforced resin formed article using the material
JPH01111040A (en) Blended fabric and molded article thereof
JPH0238026A (en) Drawing method for fiber reinforced plastic
JPH02112916A (en) Molding method for fiber reinforced thermoplastic composite
KR960005469B1 (en) Conjugated for strand molding
JP2581107B2 (en) Knitted fabric for composite molding
JP6783882B2 (en) Manufacturing method of fiber reinforced resin molded body
JP2531326B2 (en) Sheet material for molding fiber reinforced polyamide resin
JPH02173122A (en) Precursor for thermoplastic composite
JP6783883B2 (en) Base plate for obtaining fiber reinforced plastic molded body
JPH06206223A (en) Thermoplastic prepreg unidirectional fabric and laminated molded object thereof