JP2008049295A - Coating-booth filter - Google Patents

Coating-booth filter Download PDF

Info

Publication number
JP2008049295A
JP2008049295A JP2006229548A JP2006229548A JP2008049295A JP 2008049295 A JP2008049295 A JP 2008049295A JP 2006229548 A JP2006229548 A JP 2006229548A JP 2006229548 A JP2006229548 A JP 2006229548A JP 2008049295 A JP2008049295 A JP 2008049295A
Authority
JP
Japan
Prior art keywords
heat
fiber
melting point
fiber sheet
fusible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006229548A
Other languages
Japanese (ja)
Other versions
JP4879676B2 (en
Inventor
Takahiro Obara
貴宏 小原
Makoto Kobayashi
誠 小林
Kinji Shioda
欽司 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Kurashiki Textile Manufacturing Co Ltd
Original Assignee
Nippon Muki Co Ltd
Kurashiki Textile Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd, Kurashiki Textile Manufacturing Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP2006229548A priority Critical patent/JP4879676B2/en
Publication of JP2008049295A publication Critical patent/JP2008049295A/en
Application granted granted Critical
Publication of JP4879676B2 publication Critical patent/JP4879676B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating-booth filter capable of simplifying a manufacturing step, preventing increase of pressure loss by a film-formation phenomenon of a molten resin, and preventing a waving of a filtering media by a thermal contraction ratio between fiber layers and formation of a wrinkle of a heat-bonding fiber sheet. <P>SOLUTION: The coating-booth filter 40 consists of a laminate of a short fiber layer 1 and a heat bonding fiber sheet 2 with a part of the respective fibers melted and thermally bonded. The short fiber layer 1 contains a mixed fiber of a high melting point fiber and the heat bonding fiber, and the heat-bonding fiber sheet 2 is a composite short fiber. Prior to thermal adhesion, a tension is given to the one having a small thermal contraction ratio of the short fiber layer 1 and the thermal bonding fiber sheet 2 to a degree of canceling a difference of the thermal contraction ratio. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、塗装ブースに供給される空気を清浄化するための塗装ブース用フィルタに関するものである。   The present invention relates to a paint booth filter for cleaning air supplied to a paint booth.

従来、塗装ブース用フィルタとしては、例えば、特許文献1に開示されたものが知られている。すなわち、短繊維層が単層あるいは複数層積層されてなる不織布の片面あるいは両面に熱融着性繊維シートが被覆され、少なくとも一部が融着し接着されるものであり、短繊維層を主材とする不織布を用いることにより、初期圧損が低く、濾過性能に優れ、塵埃を充分捕集し、供給空気による塗装表面の汚染を皆無ならしめると共に、熱融着性繊維シートの併用により、その一部融着による接着効果によって繊維の脱落を防止し、表面をフラットで滑らかとして取り扱い易く、かつ塗装ブース用に適した特性をもたせるようにしたものである。
特開2005−111346号公報
Conventionally, what was disclosed by patent document 1 as a filter for coating booths is known, for example. That is, a heat-fusible fiber sheet is coated on one side or both sides of a nonwoven fabric in which a short fiber layer is laminated in a single layer or a plurality of layers, and at least a part is fused and bonded. By using a non-woven fabric as the material, the initial pressure loss is low, the filtration performance is excellent, dust is collected sufficiently, the paint surface is not contaminated by the supply air, and the heat-fusible fiber sheet is used in combination. The adhesive effect by partial fusion prevents the fibers from falling off, and the surface is flat and smooth so that they can be handled easily and have characteristics suitable for painting booths.
JP 2005-111346 A

しかしながら、特許文献1の従来技術には次のような問題点があった。
(1)特許文献1に開示のものは、その実施例によれば、短繊維層は配合繊維を混合してカーディング加工、ニードリングパンチ加工後に熱処理して繊維同士を結着し、該短繊維層に熱融着性繊維シートを積層して熱処理して表面被覆するため、熱処理工程が2回必要となる問題があった。
(2)また、熱処理工程を1回として製造工程を簡略化しようとすると、特許文献1の熱融着性繊維シート、具体的には、くもの巣状の如き薄層の低融点ポリエステル繊維シートであるため、加熱ローラーにより熱接着する際に、短繊維層の繊維同士の結着と短繊維層と熱融着性繊維シート同士の接着を同時に行うこととなり、短繊維層と熱融着性繊維シート同士の接着にかかる熱エネルギー以上に熱融着性繊維シートを構成する全ての繊維に熱がかかることで、熱融着性繊維シートが溶融して繊維状でなくなってしまうことがあった。逆に、繊維状態を維持できる温度で熱処理を行うと、接着が充分でないことがあった。
(3)また、短繊維層と熱融着性繊維シートの熱収縮率が異なる場合、熱収縮率の大きい層の変化に熱収縮率の小さい層が追随できず、図3に示すように、短繊維層1の方が熱融着性繊維シート2より熱収縮率が小さければ、濾材が平坦とならず波を打ったように変形する問題があり、図4に示すように、短繊維層1の方が熱融着性繊維シート2より熱収縮率が大きければ、熱融着性繊維シートにしわが発生する問題があった。
なお、図3中、A’、B’で示される矢印は、それぞれ、短繊維層1、熱融着性繊維シート2の熱収縮率を、また、図4中、A’’、B’’で示される矢印は、それぞれ、短繊維層1、熱融着性繊維シート2の熱収縮率を模式的に表すものである。
However, the prior art of Patent Document 1 has the following problems.
(1) According to the example disclosed in Patent Document 1, the short fiber layer is obtained by mixing the blended fibers and performing a carding process, a needling punch process, and heat-treating the fibers to bind the short fibers. Since the heat-fusible fiber sheet is laminated on the fiber layer and heat-treated to coat the surface, there is a problem that the heat treatment step is required twice.
(2) Further, if the heat treatment process is performed once and the manufacturing process is simplified, the heat-fusible fiber sheet of Patent Document 1, specifically, a low-melting polyester fiber sheet having a thin layer such as a web-like shape. Therefore, when heat-bonding with a heating roller, the fibers of the short fiber layer are bonded together and the short fiber layer and the heat-fusible fiber sheet are bonded at the same time. When heat is applied to all the fibers constituting the heat-fusible fiber sheet more than the heat energy required for bonding the fiber sheets, the heat-fusible fiber sheet may melt and become non-fibrous. . Conversely, when heat treatment is performed at a temperature at which the fiber state can be maintained, adhesion may not be sufficient.
(3) In addition, when the heat shrinkage rate of the short fiber layer and the heat-fusible fiber sheet is different, the layer with a small heat shrinkage rate cannot follow the change in the layer with a large heat shrinkage rate, and as shown in FIG. If the heat shrinkage rate of the short fiber layer 1 is smaller than that of the heat-fusible fiber sheet 2, there is a problem that the filter medium does not become flat and deforms like a wave. As shown in FIG. If the thermal shrinkage rate of No. 1 was larger than that of the heat-fusible fiber sheet 2, there was a problem that wrinkles were generated in the heat-fusible fiber sheet.
In FIG. 3, arrows indicated by A ′ and B ′ indicate the thermal shrinkage rates of the short fiber layer 1 and the heat-fusible fiber sheet 2, respectively, and in FIG. 4, A ″ and B ″. The arrows indicated by indicate the thermal shrinkage rates of the short fiber layer 1 and the heat-fusible fiber sheet 2, respectively.

本発明は、熱処理工程を1回として製造工程を簡略化できて、溶けた樹脂の膜化現象による圧損向上を防止し、繊維層間の熱収縮率による濾材の波打ち及び熱融着性繊維シートのしわを防止した塗装ブース用フィルタを提供することを目的とする。   The present invention can simplify the manufacturing process with a single heat treatment step, prevent pressure loss improvement due to the melted resin film formation phenomenon, It aims at providing the filter for paint booths which prevented wrinkles.

かかる課題を解決すべく、本発明者らは鋭意検討の結果、以下の構成を見出した。すなわち、本発明の塗装ブース用フィルタは、請求項1の記載の通り、短繊維層と熱融着性繊維シートを積層して、それぞれの繊維の一部を溶融して熱接着した塗装ブース用フィルタであって、前記短繊維層が高融点繊維と熱融着性繊維の混繊であり、前記熱融着性繊維シートが複合短繊維であって、前記熱接着前に、これら短繊維層と熱融着性繊維シートの熱収縮率の小さな方に、熱収縮率の差を相殺する程度に張力を付与するようにしたものであることを特徴とする。
また、請求項2記載の塗装ブース用フィルタは、請求項1記載の塗装ブース用フィルタにおいて、前記短繊維層の熱収縮率と前記熱融着性繊維シートの熱収縮率の差が10%以下であることを特徴とする。
As a result of intensive studies, the present inventors have found the following configuration in order to solve this problem. That is, the filter for a painting booth according to the present invention is for a painting booth in which a short fiber layer and a heat-fusible fiber sheet are laminated and a part of each fiber is melted and thermally bonded as described in claim 1. A filter, wherein the short fiber layer is a mixed fiber of high-melting fiber and heat-fusible fiber, and the heat-fusible fiber sheet is a composite short fiber, and before the heat bonding, these short fiber layers And a heat-fusible fiber sheet having a smaller heat shrinkage rate, tension is applied so as to offset the difference in heat shrinkage rate.
The paint booth filter according to claim 2 is the paint booth filter according to claim 1, wherein the difference between the thermal shrinkage rate of the short fiber layer and the thermal shrinkage rate of the heat-fusible fiber sheet is 10% or less. It is characterized by being.

本発明の塗装ブース用フィルタは、短繊維層と熱融着性繊維シートを積層して、それぞれの繊維の一部を溶融して熱接着した塗装ブース用フィルタであって、前記短繊維層が高融点繊維と熱融着性繊維の混繊であり、前記熱融着性繊維シートが複合短繊維であって、前記熱接着前に、これら短繊維層と熱融着性繊維シートの熱収縮率の小さな方に、熱収縮率の差を相殺する程度に張力を付与するようにしたものであるため、短繊維層の繊維同士の接着、短繊維層と熱融着性繊維シートの層同士の接着を同時に行うことができるため、製造工程が簡略化できる。その結果、製品のコストダウンが図れる。
また、前記短繊維層の熱収縮率と前記熱融着性繊維シートの熱収縮率の差が10%以下とした場合、両方の層間に熱収縮率の差があるにもかかわらず前記熱収縮率差を相殺する程度熱収縮率の小さい方に予め張力を付与するため、加熱処理によるそれぞれの層の熱収縮率が異なることで発生する、濾材が平坦とならず波を打ったように変形する問題及び熱融着性繊維シートのしわの発生という問題が確実に起こらない。
The paint booth filter according to the present invention is a paint booth filter in which a short fiber layer and a heat-fusible fiber sheet are laminated and a part of each fiber is melted and thermally bonded. It is a mixed fiber of high melting point fiber and heat-fusible fiber, and the heat-fusible fiber sheet is a composite short fiber, and before the heat bonding, the heat-shrinkage of these short fiber layer and heat-fusible fiber sheet Because the tension is applied to the smaller ratio to offset the difference in thermal shrinkage, the fibers of the short fiber layer are bonded to each other, and the layers of the short fiber layer and the heat-fusible fiber sheet are bonded to each other. Since the bonding can be performed simultaneously, the manufacturing process can be simplified. As a result, the cost of the product can be reduced.
In addition, when the difference between the heat shrinkage rate of the short fiber layer and the heat shrinkage rate of the heat-fusible fiber sheet is 10% or less, the heat shrinkage is performed even though there is a difference in heat shrinkage rate between both layers. In order to offset the difference in rate, tension is applied in advance to the one with the smaller heat shrinkage rate, so the heat shrinkage rate of each layer due to heat treatment is different, and the filter medium deforms like a wave instead of being flat. And the problem of wrinkling of the heat-fusible fiber sheet do not occur reliably.

以下、本発明の実施の形態について詳述する。
本発明の短繊維層は、高融点繊維と熱融着性繊維、特に、熱融着性複合繊維との混繊が用いられる。
高融点繊維としては、ナイロン系樹脂、ポリエステル系樹脂、ポリプロピレン系樹脂等の合成繊維が含まれる。
熱融着性繊維、特に、熱融着性複合繊維としては、芯鞘型、サイドバイサイド型構造で、例えば、ポリエステル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリアミド系樹脂の何れかの熱可塑性樹脂の高融点成分と低融点成分からなる繊維が用いられる。
具体例としては、ポリエステル繊維(融点250〜270℃程度)と、低融点ポリエステル繊維(融点100〜180℃程度)の複合繊維、ポリエステル/ナイロン複合繊維、ポリエステル/ポリエチレン複合繊維、ポリプロピレン/ポリエチレン複合繊維などが挙げられ、特に、高融点ポリエステルと、低融点ポリエステルとの複合繊維は最も実用的である。
Hereinafter, embodiments of the present invention will be described in detail.
For the short fiber layer of the present invention, a mixed fiber of a high-melting fiber and a heat-fusible fiber, particularly a heat-fusible composite fiber is used.
Examples of the high melting point fiber include synthetic fibers such as nylon resin, polyester resin, and polypropylene resin.
The heat-fusible fiber, particularly the heat-fusible composite fiber, has a core-sheath type and side-by-side type structure, and is, for example, any one of a polyester resin, a polyethylene resin, a polypropylene resin, and a polyamide resin. A fiber composed of a high melting point component and a low melting point component is used.
Specific examples include composite fibers of polyester fibers (melting point of about 250 to 270 ° C.) and low melting point polyester fibers (melting point of about 100 to 180 ° C.), polyester / nylon composite fibers, polyester / polyethylene composite fibers, polypropylene / polyethylene composite fibers. In particular, a composite fiber of a high-melting polyester and a low-melting polyester is most practical.

この場合、複合繊維を構成する高融点成分の融点が低融点成分の融点より50℃以上高いこと、また、低融点成分の融点が100℃〜180℃の範囲にあることが好ましい。
高融点成分の融点が低融点成分の融点より50℃未満の温度差でしか高くないと、短繊維間の接着時に高融点繊維側も軟化して所望のフィルタを得ることができない。また、低融点成分の融点が100℃未満であると、繊維間の接着を実施する処理条件が難しく、耐熱性の点から好ましくない。また、低融点成分の融点が180℃を超えると、高融点繊維の熱特性に影響し、接着を実施することでフィルタ特性が変動するので好ましくない。
In this case, the melting point of the high melting point component constituting the composite fiber is preferably 50 ° C. or higher than the melting point of the low melting point component, and the melting point of the low melting point component is preferably in the range of 100 ° C. to 180 ° C.
If the melting point of the high melting point component is higher than the melting point of the low melting point component only by a temperature difference of less than 50 ° C., the high melting point fiber side is also softened when the short fibers are bonded, and a desired filter cannot be obtained. Moreover, when the melting point of the low melting point component is less than 100 ° C., the treatment conditions for carrying out adhesion between fibers are difficult, which is not preferable from the viewpoint of heat resistance. In addition, if the melting point of the low melting point component exceeds 180 ° C., it affects the thermal characteristics of the high melting point fiber, and the filter characteristics vary due to the bonding, which is not preferable.

また、繊度は1〜100dtexの範囲が好ましい。繊度が1dtex未満であると濾過性能を有する充分な嵩高性のあるフィルタを得ることができない。一方、繊度が100dtexを超えると繊維本数が減少し、繊維間接着点も減少して嵩高性は得られるが、所望の濾過性能を有するフィルタを得ることができない。   The fineness is preferably in the range of 1 to 100 dtex. If the fineness is less than 1 dtex, a sufficiently bulky filter having filtration performance cannot be obtained. On the other hand, when the fineness exceeds 100 dtex, the number of fibers is reduced and the inter-fiber adhesion point is also reduced to obtain bulkiness, but a filter having desired filtration performance cannot be obtained.

また、該短繊維層の目付質量が100g/m2〜500g/m2の範囲であり、かつ高融点繊維の構成が40〜85質量%(複合繊維の構成が60〜15質量%)であることが効果的である。
目付質量が100g/m2未満では満足する濾過性能を得ることができず、満足したものができても濾過寿命が短くなるので好ましくない。一方、500g/m2を超えると低初期圧損を得るのが難しい。
また、高融点繊維の構成が40質量%未満であると、すなわち、複合繊維が60質量%を超えると嵩高性(厚いものが得にくく)が乏しく、低初期圧損のフィルタが得にくい。逆に、85質量%を超えると複合繊維が少ないため、嵩高いフィルタを得てもすぐに型崩れし、へたってしまう。また、短繊維の抜けが生じ易くなり好ましくない。
そして、厚さを保持して嵩高のフィルタを得るには、厚さが15mm〜30mmの範囲がよく、この範囲で嵩高性を確保するには、単層の場合、高融点繊維と複合繊維の混繊で厚さと濾過性能を確保するために高融点繊維の繊度構成が太繊度と細繊度の組み合わせで達成し易く、太、細の繊度組み合わせによって低初期圧損で高濾過性能のフィルタを得るための条件を調整することができる。
Further, in the range basis weight mass of 100g / m 2 ~500g / m 2 of the short fiber layer, and in the configuration 40 to 85 wt% of the high melting point fibers (construction 60-15 wt% of the composite fiber) It is effective.
If the mass per unit area is less than 100 g / m 2 , satisfactory filtration performance cannot be obtained, and even if it is satisfactory, the filtration life is shortened. On the other hand, when it exceeds 500 g / m 2 , it is difficult to obtain a low initial pressure loss.
Further, when the composition of the high melting point fiber is less than 40% by mass, that is, when the composite fiber exceeds 60% by mass, the bulkiness (thickness is difficult to obtain) is poor, and it is difficult to obtain a filter with low initial pressure loss. On the contrary, when it exceeds 85 mass%, since there are few composite fibers, even if a bulky filter is obtained, it will lose shape immediately and will fall. Further, short fibers are likely to come off, which is not preferable.
In order to obtain a bulky filter while maintaining the thickness, the thickness is preferably in the range of 15 mm to 30 mm. To ensure bulkiness in this range, in the case of a single layer, the high melting point fiber and the composite fiber In order to ensure the thickness and filtration performance of mixed fibers, the fineness composition of high melting point fiber is easy to achieve with the combination of thick and fine, and to obtain a filter with high filtration performance with low initial pressure loss by combining thick and fine fineness The conditions can be adjusted.

なお、太、細繊維の混繊比率は厚さと濾過性能により適宜決められる。積層の場合は、太高融点繊維と熱融着性繊維の混繊層と、細高融点繊維と熱融着性繊維の混繊で、この太、細高融点繊維層を積層することで得られる。そして、積層にあたっては、太繊度側を粗層とし、細繊度側を密層とする。厚さと濾過性能を確保するためには太,細繊維層の比率を決めればよく、その繊度範囲は単層の場合と同じように決められる。なお、太、細繊維の積層比率は厚さと濾過性能により適宜決められる。   The mixing ratio of thick and fine fibers is appropriately determined depending on the thickness and filtration performance. In the case of lamination, it is obtained by laminating these thick and thin high-melting fiber layers with a mixed fiber layer of thick high-melting fibers and heat-fusible fibers, and a thin fiber mixture of high-melting-point fibers and heat-fusible fibers. It is done. And in lamination | stacking, let the fineness side be a rough layer, and let the fineness side be a dense layer. In order to ensure the thickness and filtration performance, the ratio of the thick and thin fiber layers may be determined, and the fineness range is determined in the same manner as in the case of a single layer. The lamination ratio of thick and fine fibers is appropriately determined depending on the thickness and filtration performance.

短繊維層に被覆される熱融着性繊維シートは、嵩高な短繊維層の表面に熱融着性繊維シートを接着し、短繊維層にある短繊維の抜けを防止するものであり、複合繊維としては、芯鞘型、サイドバイサイド型構造で、例えば、ポリエステル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリアミド系樹脂の何れかの熱可塑性樹脂の高融点成分と低融点成分からなる繊維が用いられる。具体例としては、ポリエステル繊維(融点250〜270℃程度)と、低融点ポリエステル繊維(融点100〜180℃程度)の複合繊維、ポリエステル/ナイロン複合繊維、ポリエステル/ポリエチレン複合繊維、ポリプロピレン/ポリエチレン複合繊維などが挙げられ、特に、高融点ポリエステルと、低融点ポリエステルとの複合繊維は最も実用的である。   The heat-fusible fiber sheet that is coated on the short fiber layer is a composite that adheres the heat-fusible fiber sheet to the surface of the bulky short fiber layer and prevents the short fibers in the short fiber layer from coming off. As the fiber, a core-sheath type or side-by-side type structure, for example, a fiber composed of a high melting point component and a low melting point component of any one of a polyester resin, a polyethylene resin, a polypropylene resin, and a polyamide resin is used. It is done. Specific examples include composite fibers of polyester fibers (melting point of about 250 to 270 ° C.) and low melting point polyester fibers (melting point of about 100 to 180 ° C.), polyester / nylon composite fibers, polyester / polyethylene composite fibers, polypropylene / polyethylene composite fibers. In particular, a composite fiber of a high-melting polyester and a low-melting polyester is most practical.

この場合、複合繊維を構成する高融点成分の融点が低融点成分の融点より50℃以上、高いこと、また、低融点成分の融点が100℃〜180℃の範囲にあることが好ましい。
高融点成分の融点が低融点成分の融点より50℃未満の範囲でしか高くないと、短繊維間の接着時に高融点繊維側も軟化して所望のフィルタを得ることができない。また、低融点成分の融点が100℃未満であると、短繊維層との接着を実施する処理条件が難しく、耐熱性の点から好ましくない。低融点成分の融点が180℃を超えると、短繊維層の表面の特性が変わり、接着を実施することでフィルタ特性の変動が大きくなる。
In this case, the melting point of the high melting point component constituting the composite fiber is preferably 50 ° C. or more higher than the melting point of the low melting point component, and the melting point of the low melting point component is preferably in the range of 100 ° C. to 180 ° C.
If the melting point of the high melting point component is higher than the melting point of the low melting point component only in the range of less than 50 ° C., the high melting point fiber side is softened at the time of bonding between the short fibers, and a desired filter cannot be obtained. Further, if the melting point of the low melting point component is less than 100 ° C., the treatment conditions for carrying out adhesion with the short fiber layer are difficult, which is not preferable from the viewpoint of heat resistance. When the melting point of the low melting point component exceeds 180 ° C., the characteristics of the surface of the short fiber layer change, and the fluctuation of the filter characteristics increases by performing the adhesion.

この熱融着性繊維シートの目付質量は、10g/m2〜100g/m2の範囲が好適であり、10g/m2未満では濾過性能を損なうことはないが、短繊維層の毛抜け防止(繊維飛散防止)を充分に防止することができないので好ましくない。また、100g/m2を超えると短繊維層の毛抜け防止は充分であるが、流出側の表面の抵抗が増加するために低初期圧損を得ることが難しくなる。 Basis weight mass of the heat-fusible fiber sheet is preferably in the range of 10g / m 2 ~100g / m 2 , although it is not impair the filtration performance is less than 10 g / m 2, the hair of the short fiber layer removal prevention This is not preferable because (fiber scattering prevention) cannot be sufficiently prevented. On the other hand, if it exceeds 100 g / m 2 , the hair loss of the short fiber layer is sufficient, but the resistance on the surface on the outflow side increases, so that it is difficult to obtain a low initial pressure loss.

あらかじめ熱融着性繊維シートを加熱しながらローラーで圧縮してやることにより、短繊維層と熱融着性繊維シートからなる濾材の表面平滑性を向上させることができる。また、短繊維層と熱融着性繊維シートの層同士の接着を行った後、熱融着性繊維シート表面を加熱ローラーや加熱板等によって加熱処理することによっても、表面平滑性を向上させることができる。
また、フィルタの難燃性を付与するため、フィルタ作製後に難燃剤を含有した樹脂液で被覆したり、繊維に窒素系、臭素系、塩素系、リン系等の難燃剤を練り込むことができる。但し、人体への影響、環境を配慮して非ハロゲン系の難燃剤を使用することが好ましい。
By preliminarily compressing the heat-fusible fiber sheet with a roller while heating, the surface smoothness of the filter medium comprising the short fiber layer and the heat-fusible fiber sheet can be improved. Further, after the short fiber layer and the heat-fusible fiber sheet are bonded to each other, the surface smoothness is also improved by heat-treating the surface of the heat-fusible fiber sheet with a heating roller or a heating plate. be able to.
Moreover, in order to impart the flame retardancy of the filter, it can be coated with a resin solution containing a flame retardant after the filter is produced, or a flame retardant such as nitrogen, bromine, chlorine or phosphorus can be kneaded into the fiber. . However, it is preferable to use a non-halogen flame retardant in consideration of the influence on the human body and the environment.

前記短繊維層の熱収縮率と前記熱融着性繊維シートの熱収縮率の差が10%以下であることが好ましい。熱収縮率の差が10%を超えると、熱収縮率の小さい方に予め張力を付与して前記熱収縮率差を相殺する調整が難しくなる。
熱収縮率の小さい方に予め張力を付与する方法としては、例えば、短繊維層の供給ラインと熱融着性繊維シートの供給ラインを分けて、熱収縮率の小さい方の供給ライン側のテンションを上げることで簡単に調整することができる。
例えば、前記熱融着性繊維シートの熱収縮率が小さい場合は、図1に示す通り、予め熱融着性繊維シート2に短繊維層1の熱収縮率と前記熱融着性繊維シート2の熱収縮率の差分の張力を付与することで、加熱した際に、熱収縮率の差と前記熱融着性繊維シートの復元による収縮とが相殺されて前記熱融着性繊維シートにしわが発生するのを防止できる。
なお、図1中、図4中、A、Bで示される矢印は、それぞれ、短繊維層1、熱融着性繊維シート2の熱収縮率を、また、A―Bは短繊維層1と熱融着性繊維シート2の熱収縮率の差を模式的に表すものである。
The difference between the heat shrinkage rate of the short fiber layer and the heat shrinkage rate of the heat-fusible fiber sheet is preferably 10% or less. If the difference in heat shrinkage rate exceeds 10%, it becomes difficult to adjust the offset of the heat shrinkage rate difference by previously applying tension to the smaller heat shrinkage rate.
As a method for applying tension in advance to the one having a smaller heat shrinkage rate, for example, the supply line for the short fiber layer and the heat fusible fiber sheet supply line are separated, and the tension on the supply line side having the smaller heat shrinkage rate is provided. Can be adjusted easily by raising
For example, when the heat shrinkage rate of the heat-fusible fiber sheet is small, as shown in FIG. 1, the heat shrinkage rate of the short fiber layer 1 and the heat-fusible fiber sheet 2 are previously set on the heat-fusible fiber sheet 2. By applying the tension of the difference in the heat shrinkage rate, the difference in the heat shrinkage rate and the shrinkage due to the restoration of the heat fusible fiber sheet are offset when heated, and the heat fusible fiber sheet is wrinkled. It can be prevented from occurring.
In FIG. 1 and FIG. 4, arrows indicated by A and B respectively indicate the thermal shrinkage rates of the short fiber layer 1 and the heat-fusible fiber sheet 2, and AB indicates the short fiber layer 1. The difference of the heat shrinkage rate of the heat-fusible fiber sheet 2 is typically represented.

以下、本発明の具体的実施例を説明する。   Hereinafter, specific examples of the present invention will be described.

(実施例1)
図2に示す通り、繊度17dtex、繊維長76mmの芯鞘ポリエステル複合繊維(芯部ポリエステルの融点:265℃、鞘部ポリエステルの融点:110℃)40質量%と、繊度4.4dtex、繊維長51mmの芯鞘ポリエステル複合繊維(芯部ポリエステルの融点:265℃、鞘部ポリエステルの融点:110℃)60質量%を均一混合して得た厚さ1mm、目付質量25g/m2、熱収縮率0%の熱融着性繊維シート2を供給ロール10から巻き戻すと共に巻き取りロール11に巻き取りながら、短繊維層の熱収縮率と熱融着性繊維シートの熱収縮率の差分の張力を付与しつつ、コンベア21、22で搬送するようにした。また、同時に、繊度6.6dtex、繊維長64mm、融点265℃の難燃性ポリエステル短繊維75質量%と、繊度2.2dtex、繊維長64mmの芯鞘ポリエステル複合繊維(芯部ポリエステルの融点:265℃、鞘部ポリエステルの融点:110℃)25質量%を均一混合したものを、カーディング加工機30でカーディング加工を施し、次いで、フィルタ使用時流出側から、ニードリング機31で、ニードルパンチ加工を施し流出側を密にし粗密構造とした熱収縮率6%の短繊維層1を、前記熱融着性繊維シート2上に重ねるようにして、コンベア20、21、22で搬送するようにした。これら短繊維層1と熱融着性繊維シート2を積層した濾材を連続して熱処理機( ホットエアースルー方式)32で温度160℃、滞留時間3分間の熱処理して前記短繊維層の繊維同士を結合すると共に前記短繊維層の表面を前記熱融着性繊維シートで被覆し、厚さ20mm、目付質量325g/m2の塗装ブース用フィルタ40を得た。
(Example 1)
As shown in FIG. 2, the core-sheath polyester composite fiber having a fineness of 17 dtex and a fiber length of 76 mm (melting point of the core polyester: 265 ° C., melting point of the sheath polyester: 110 ° C.) is 40% by mass, the fineness is 4.4 dtex, and the fiber length is 51 mm. 1 mm thickness obtained by uniformly mixing 60% by mass of the core-sheath polyester conjugate fiber (melting point of core polyester: 265 ° C., melting point of sheath polyester: 110 ° C.), weight per unit area 25 g / m 2 , heat shrinkage 0 % Of the heat-fusible fiber sheet 2 is unwound from the supply roll 10 and wound around the take-up roll 11 to give a difference in tension between the heat shrinkage rate of the short fiber layer and the heat shrinkage rate of the heat-fusible fiber sheet. However, it was conveyed by the conveyors 21 and 22. At the same time, 75% by mass of a flame-retardant polyester short fiber having a fineness of 6.6 dtex, a fiber length of 64 mm, and a melting point of 265 ° C., and a core-sheath polyester composite fiber having a fineness of 2.2 dtex and a fiber length of 64 mm (melting point of the core polyester: 265). The melting point of the polyester at the sheath and the melting point of the sheath polyester: 110 ° C.) is uniformly mixed with a carding machine 30 and then needle-punched with a needling machine 31 from the outflow side when the filter is used. The short fiber layer 1 having a heat shrinkage rate of 6%, which is processed to make the outflow side dense and have a coarse and dense structure, is stacked on the heat-fusible fiber sheet 2 and conveyed by the conveyors 20, 21, and 22. did. The filter medium obtained by laminating the short fiber layer 1 and the heat-fusible fiber sheet 2 is continuously heat-treated with a heat treatment machine (hot air through method) 32 at a temperature of 160 ° C. and a residence time of 3 minutes, and the fibers of the short fiber layer are bonded to each other. And the surface of the short fiber layer was covered with the heat-fusible fiber sheet to obtain a coating booth filter 40 having a thickness of 20 mm and a mass per unit area of 325 g / m 2 .

(実施例2)
繊度4.4dtex、繊維長51mmの芯鞘ポリエステル複合繊維(芯部ポリエステルの融点:265℃、鞘部ポリエステルの融点:150℃)を均一混合して厚さ1mm、目付質量20g/m2、熱収縮率0%の熱融着性繊維シート2を供給ロール10から巻き戻すと共に巻き取りロール11に巻き取りながら、短繊維層の熱収縮率と熱融着性繊維シートの熱収縮率の差分の張力を付与しつつ、コンベア21、22で搬送するようにした。また、同時に、繊度6.6dtex、繊維長64mm、融点265℃のポリエステル短繊維40質量%と、繊度1.45dtex、繊維長64mm、融点265℃のポリエステル短繊維35質量%と、繊度2.2dtex、繊維長64mmの芯鞘ポリエステル複合繊維(芯部ポリエステルの融点:265℃、鞘部ポリエステルの融点:110℃)25質量%を均一混合したものを、カーディング加工機30でカーディング加工を施し、次いで、フィルタ使用時流出側から、ニードリング機31で、ニードルパンチ加工を施し流出側を密にし粗密構造とした熱収縮率6%の短繊維層を、前記熱融着性繊維シート2上に重ねるようにして、コンベア20、21、22で搬送するようにした。これら短繊維層1と熱融着性繊維シート2を積層した濾材を連続して熱処理機( ホットエアースルー方式)33で温度180℃、滞留時間3分間の熱処理して前記短繊維層の繊維同士を結合すると共に前記短繊維層の表面を前記熱融着性繊維シートで被覆し、厚さ20mm、目付質量274g/m2の塗装ブース用フィルタ40を得た。
(Example 2)
A core-sheath polyester composite fiber having a fineness of 4.4 dtex and a fiber length of 51 mm (melting point of core polyester: 265 ° C., melting point of sheath polyester: 150 ° C.) is uniformly mixed to a thickness of 1 mm, weight per unit area of 20 g / m 2 , heat While rewinding the heat-fusible fiber sheet 2 having a shrinkage rate of 0% from the supply roll 10 and winding it on the take-up roll 11, the difference between the heat shrinkage rate of the short fiber layer and the heat shrinkage rate of the heat-fusible fiber sheet is calculated. It was made to convey with the conveyors 21 and 22, applying tension | tensile_strength. At the same time, 40% by mass of polyester short fibers having a fineness of 6.6 dtex, a fiber length of 64 mm, and a melting point of 265 ° C., a fineness of 1.45 dtex, a fiber length of 64 mm, and 35% by mass of polyester short fibers having a melting point of 265 ° C., and a fineness of 2.2 dtex. A carded processing machine 30 is used to uniformly mix 25% by mass of a core-sheath polyester composite fiber having a fiber length of 64 mm (melting point of core polyester: 265 ° C., melting point of sheath polyester: 110 ° C.). Next, a short fiber layer having a heat shrinkage rate of 6% is formed on the heat-fusible fiber sheet 2 from the outflow side when the filter is used by the needling machine 31 with a needle punching process to make the outflow side dense and have a dense structure. It was made to convey with conveyor 20,21,22. The filter medium obtained by laminating the short fiber layer 1 and the heat-fusible fiber sheet 2 is continuously heat-treated with a heat treatment machine (hot air through method) 33 at a temperature of 180 ° C. and a residence time of 3 minutes. And the surface of the short fiber layer was covered with the heat-fusible fiber sheet to obtain a coating booth filter 40 having a thickness of 20 mm and a weight per unit area of 274 g / m 2 .

(実施例3)
繊度4.4dtex、繊維長51mmの芯鞘ポリエステル複合繊維(芯部ポリエステルの融点:265℃、鞘部ポリエステルの融点:110℃)40質量%と、繊度13dtex、繊維長64mmの芯鞘ポリエステル複合繊維(芯部ポリエステルの融点:265℃、鞘部ポリエステルの融点:110℃)60質量%を均一混合して厚さ1mm、目付質量25g/m2、熱収縮率0%の熱融着性繊維シート2を供給ロール10から巻き戻すと共に巻き取りロール11に巻き取りながら、短繊維層の熱収縮率と熱融着性繊維シートの熱収縮率の差分の張力を付与しつつ、コンベア21、22で搬送するようにした。また、同時に、繊度33dtex、繊維長64mm、融点265℃のポリエステル短繊維30質量%と、繊度9dtex、繊維長64mm、融点265℃のポリエステル短繊維20質量%と、繊度22dtex、繊維長64mmの芯鞘ポリエステル複合繊維(芯部ポリエステルの融点:265℃、鞘部ポリエステルの融点:110℃)50質量%を均一混合したものを、カーディング加工機30でカーディング加工を施し、次いで、フィルタ使用時流出側から、ニードリング機31で、ニードルパンチ加工を施し流出側を密にし粗密構造とした熱収縮率6%の短繊維層を、前記熱融着性繊維シート2上に重ねるようにして、コンベア20、21、22で搬送するようにした。これら短繊維層1と熱融着性繊維シート2を積層した濾材を連続して熱処理機( ホットエアースルー方式)33で温度160℃、滞留時間3分間の熱処理して前記短繊維層の繊維同士を結合すると共に前記短繊維層の表面を前記熱融着性繊維シートで被覆し、厚さ18mm、目付質量430g/m2の塗装ブース用フィルタを得た。
Example 3
Core-sheath polyester composite fiber having a fineness of 4.4 dtex and a fiber length of 51 mm (melting point of core polyester: 265 ° C., melting point of sheath polyester: 110 ° C.) 40% by mass, core-sheath polyester composite fiber having a fineness of 13 dtex and fiber length of 64 mm (The melting point of the core polyester: 265 ° C., the melting point of the sheath polyester: 110 ° C.) 60% by mass uniformly mixed, a heat-fusible fiber sheet having a thickness of 1 mm, a mass per unit area of 25 g / m 2 , and a heat shrinkage rate of 0% 2 while rewinding 2 from the supply roll 10 and winding it around the take-up roll 11, while applying the tension of the difference between the heat shrinkage rate of the short fiber layer and the heat shrinkage rate of the heat-fusible fiber sheet, It was made to convey. At the same time, a polyester short fiber having a fineness of 33 dtex, a fiber length of 64 mm and a melting point of 265 ° C., 30% by mass, a fineness of 9 dtex, a fiber length of 64 mm, and a polyester short fiber of 20% by mass of a melting point of 265 ° C. 50% by mass of sheath polyester conjugate fiber (melting point of core polyester: 265 ° C., melting point of sheath polyester: 110 ° C.) of 50% by mass is subjected to carding with a carding machine 30 and then used as a filter. From the outflow side, a short fiber layer having a heat shrinkage ratio of 6%, which is subjected to needle punching by the needling machine 31 to make the outflow side dense and a coarse-dense structure, is overlaid on the heat-fusible fiber sheet 2, It was made to convey with the conveyors 20, 21, and 22. The filter media obtained by laminating the short fiber layer 1 and the heat-fusible fiber sheet 2 are continuously heat-treated with a heat treatment machine (hot air through method) 33 at a temperature of 160 ° C. and a residence time of 3 minutes. And the surface of the short fiber layer was coated with the heat-fusible fiber sheet to obtain a coating booth filter having a thickness of 18 mm and a mass per unit area of 430 g / m 2 .

(比較例1)
熱融着性繊維シートに短繊維層の熱収縮率と熱融着性繊維シートの熱収縮率の差分の張力を付与をしないことを除いて、実施例1と同様にして、厚さ20mm、目付質量311g/m2の塗装ブース用フィルタを得た。
(Comparative Example 1)
A thickness of 20 mm is obtained in the same manner as in Example 1 except that the heat-fusible fiber sheet is not imparted with the tension of the difference between the heat shrinkage rate of the short fiber layer and the heat shrinkage rate of the heat-fusible fiber sheet. A filter for a coating booth having a basis weight of 311 g / m 2 was obtained.

(従来例)
繊度6.6dtex、繊維長64mm、融点265℃のポリエステル短繊維80質量%と、繊度2.2dtex、繊維長64mmの芯鞘ポリエステル複合繊維(芯部ポリエステルの融点:265℃、鞘部ポリエステルの融点:110℃)20質量%を均一混合して、カーディング加工を施し、次いでフィルタ使用時流出側からニードルパンチ加工を施し流出側を密にし粗密構造とし熱収縮率6%の短繊維層を用意した。
また、くもの巣状融点115℃のスパンボンド不織布製の目付質量25g/m2のポリエステル繊維シートからなる熱融着性繊維シートを用意した。
次に、前記短繊維層の表面(ニードルパンチ加工時、針の進入した面)に前記熱融着性繊維シートを積層した濾材を連続して熱処理機( ホットエアースルー方式)で温度160℃、滞留時間3分間の熱処理して前記短繊維層の繊維同士を結合すると共に前記短繊維層の表面を前記熱融着性繊維シートで被覆し、厚さ20mm、目付質量320g/m2の塗装ブース用フィルタを得た。
(Conventional example)
80% by mass of polyester short fibers having a fineness of 6.6 dtex, fiber length of 64 mm and melting point of 265 ° C., core-sheath polyester composite fiber having a fineness of 2.2 dtex and fiber length of 64 mm (melting point of core polyester: 265 ° C., melting point of sheath polyester) : 110 ° C) 20% by mass is uniformly mixed and carded, then needle punched from the outflow side when using the filter to make the outflow side dense and a dense structure with a short fiber layer with a heat shrinkage of 6% did.
Further, a heat-fusible fiber sheet made of a spunbonded nonwoven fabric having a web-like melting point of 115 ° C. and a basis weight of 25 g / m 2 was prepared.
Next, a filter medium in which the heat-fusible fiber sheet is laminated on the surface of the short fiber layer (the surface into which the needle has entered during needle punching) is continuously heated at 160 ° C. with a heat treatment machine (hot air-through method). A coating booth having a thickness of 20 mm and a mass per unit area of 320 g / m 2 , wherein the fibers of the short fiber layer are bonded by heat treatment for a residence time of 3 minutes and the surface of the short fiber layer is coated with the heat-fusible fiber sheet. A filter was obtained.

以上の実施例、比較例及び従来例の短繊維層及び熱融着性繊維シートの特性を次の方法により測定した。すなわち、繊度はJIS L1015、繊維長はJIS L1015、融点はJIS L1015に従いそれぞれ測定し、厚さはJIS L1096の8.5.1記載方法に従い荷重0.13kPaで測定し、目付はJIS L1096の8.4.2記載方法に準拠して測定した。また、熱収縮率は、試料を熱処理と同温度のオーブン中に滞留時間と同じ時間静置した後、幅方向(生産時に幅方向となる方)の寸法を測定し、元の寸法に対する収縮による寸法変化の割合を求め、熱収縮率(%)とした。
以上の実施例、比較例及び従来例で得られたフィルタの濾材平滑性(しわ、波打ち現象の有無)は、目視により、熱処理後のしわ、波打ちの発生の有無により評価した。
The characteristics of the short fiber layer and the heat-fusible fiber sheet of the above examples, comparative examples and conventional examples were measured by the following method. That is, the fineness was measured according to JIS L1015, the fiber length was measured according to JIS L1015, the melting point was measured according to JIS L1015, the thickness was measured according to the method described in 8.5.1 of JIS L1096, and the basis weight was 8 according to JIS L1096. Measured according to the method described in 4.2. In addition, the thermal shrinkage ratio is determined by measuring the dimension in the width direction (the direction that becomes the width direction during production) after leaving the sample in the oven at the same temperature as the heat treatment for the same residence time as the shrinkage with respect to the original dimension. The ratio of dimensional change was determined and used as the heat shrinkage rate (%).
The filter media smoothness (whether wrinkles and undulations were present) of the filters obtained in the above Examples, Comparative Examples, and Conventional Examples was evaluated visually by the presence or absence of wrinkles and undulations after heat treatment.

実施例1〜3は、いずれも、しわ、波打ち現象が生じず、濾材平滑性に優れるものであった。これに対して、従来例は熱融着性繊維シートの繊維が全体的に溶けて繊維状でなくなってしまい、比較例は熱融着性繊維シートのしわが発生し、濾材平滑性に劣るものであった。   In all of Examples 1 to 3, no wrinkle or undulation phenomenon occurred, and the filter medium smoothness was excellent. On the other hand, in the conventional example, the fibers of the heat-fusible fiber sheet melt as a whole and become no longer fibrous, and in the comparative example, wrinkles of the heat-fusible fiber sheet occur and the filter medium smoothness is poor. Met.

本発明は、使用時に繊維脱落による繊維飛散が防止され、製造工程を簡略化してもしわ発生、波打ち変形等のフィルタの外観不良のないエアフィルタであるので、特に、塗装ブース等の自動車空調用に使用する際に利点を有する点で、産業上の利用可能性を有する。   Since the present invention is an air filter that prevents fiber scattering due to fiber dropping during use, and does not have a defective appearance of the filter such as wrinkle generation and wavy deformation even if the manufacturing process is simplified, it is particularly suitable for automobile air conditioning such as a painting booth. The present invention has industrial applicability in that it has advantages when used in the industry.

本発明のエアフィルタの加熱前後の状態を示す断面図Sectional drawing which shows the state before and behind the heating of the air filter of this invention 本発明のエアフィルタの製造工程を示す概要図Schematic diagram showing the manufacturing process of the air filter of the present invention 従来のエアフィルタの加熱前後の状態を示す断面図Sectional drawing which shows the state before and behind the heating of the conventional air filter 従来のエアフィルタの加熱前後の状態を示す断面図Sectional drawing which shows the state before and behind the heating of the conventional air filter

符号の説明Explanation of symbols

1 短繊維層
2 熱融着性繊維シート
10 供給ロール
11 巻き取りロール
20 コンベア
21 コンベア
22 コンベア
30 カーディング加工機
31 ニードリング機
32 熱処理機
40 塗装ブース用フィルタ
A 短繊維層の熱収縮率
B 熱融着性繊維シートの熱収縮率
A−B 短繊維層と熱融着性繊維シートの熱収縮率の差
DESCRIPTION OF SYMBOLS 1 Short fiber layer 2 Heat-fusible fiber sheet 10 Supply roll 11 Winding roll 20 Conveyor 21 Conveyor 22 Conveyor 30 Carding machine 31 Needling machine 32 Heat treatment machine 40 Filter for coating booth A Thermal contraction rate of short fiber layer B Thermal shrinkage ratio AB of heat-fusible fiber sheet Difference in thermal shrinkage ratio between short fiber layer and heat-fusible fiber sheet

Claims (2)

短繊維層と熱融着性繊維シートを積層して、それぞれの繊維の一部を溶融して熱接着した塗装ブース用フィルタであって、前記短繊維層が高融点繊維と熱融着性繊維の混繊であり、前記熱融着性繊維シートが複合短繊維であって、前記熱接着前に、これら短繊維層と熱融着性繊維シートの熱収縮率の小さな方に、熱収縮率の差を相殺する程度に張力を付与するようにしたものであることを特徴とする塗装ブース用フィルタ。   A filter for a coating booth in which a short fiber layer and a heat-fusible fiber sheet are laminated and a part of each fiber is melted and thermally bonded, and the short fiber layer is a high-melting fiber and a heat-fusible fiber. The heat-fusible fiber sheet is a composite short fiber, and before the heat bonding, the heat shrinkage rate is smaller in the smaller one of the heat shrinkage rate of the short fiber layer and the heat-fusible fiber sheet. A coating booth filter, wherein tension is applied so as to cancel out the difference between the two. 前記短繊維層の熱収縮率と前記熱融着性繊維シートの熱収縮率の差が10%以下であることを特徴とする請求項1に記載の塗装ブース用フィルタ。   The coating booth filter according to claim 1, wherein a difference between the thermal shrinkage rate of the short fiber layer and the thermal shrinkage rate of the heat-fusible fiber sheet is 10% or less.
JP2006229548A 2006-08-25 2006-08-25 Paint booth filter Active JP4879676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006229548A JP4879676B2 (en) 2006-08-25 2006-08-25 Paint booth filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006229548A JP4879676B2 (en) 2006-08-25 2006-08-25 Paint booth filter

Publications (2)

Publication Number Publication Date
JP2008049295A true JP2008049295A (en) 2008-03-06
JP4879676B2 JP4879676B2 (en) 2012-02-22

Family

ID=39233824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006229548A Active JP4879676B2 (en) 2006-08-25 2006-08-25 Paint booth filter

Country Status (1)

Country Link
JP (1) JP4879676B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017008475A (en) * 2010-10-14 2017-01-12 フェアテック インヴェストメント リミテッド Needle-punch felt fabric of nonwoven fabric, method for producing the same, and filter made by using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387228A (en) * 1986-10-01 1988-04-18 株式会社トクヤマ Manufacture of composite body
JPH0371829A (en) * 1989-08-10 1991-03-27 Toray Ind Inc Preparation of non-woven fabric structural body
JPH05287682A (en) * 1992-04-07 1993-11-02 Toray Ind Inc Laminated sheet, its production and filter
JPH06218899A (en) * 1993-01-25 1994-08-09 Daikin Ind Ltd Laminating method of air permeable sheet-like material
JPH0760886A (en) * 1990-03-30 1995-03-07 Kimberly Clark Corp Flat laminated material made of textile web and nonwoven elastic web
JP2000153221A (en) * 1998-11-19 2000-06-06 Toshiba Battery Co Ltd Treatment of collector and treating device for collector
JP2002066226A (en) * 2000-08-24 2002-03-05 Daikin Ind Ltd Air filter medium, air filter pack and air filter unit using the same, and manufacturing method for air filter medium
JP2005066921A (en) * 2003-08-21 2005-03-17 Teijin Techno Products Ltd Manufacturing method of composite sheet and composite sheet
JP2005111346A (en) * 2003-10-07 2005-04-28 Kureha Ltd Filter for coating booth

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387228A (en) * 1986-10-01 1988-04-18 株式会社トクヤマ Manufacture of composite body
JPH0371829A (en) * 1989-08-10 1991-03-27 Toray Ind Inc Preparation of non-woven fabric structural body
JPH0760886A (en) * 1990-03-30 1995-03-07 Kimberly Clark Corp Flat laminated material made of textile web and nonwoven elastic web
JPH05287682A (en) * 1992-04-07 1993-11-02 Toray Ind Inc Laminated sheet, its production and filter
JPH06218899A (en) * 1993-01-25 1994-08-09 Daikin Ind Ltd Laminating method of air permeable sheet-like material
JP2000153221A (en) * 1998-11-19 2000-06-06 Toshiba Battery Co Ltd Treatment of collector and treating device for collector
JP2002066226A (en) * 2000-08-24 2002-03-05 Daikin Ind Ltd Air filter medium, air filter pack and air filter unit using the same, and manufacturing method for air filter medium
JP2005066921A (en) * 2003-08-21 2005-03-17 Teijin Techno Products Ltd Manufacturing method of composite sheet and composite sheet
JP2005111346A (en) * 2003-10-07 2005-04-28 Kureha Ltd Filter for coating booth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017008475A (en) * 2010-10-14 2017-01-12 フェアテック インヴェストメント リミテッド Needle-punch felt fabric of nonwoven fabric, method for producing the same, and filter made by using the same

Also Published As

Publication number Publication date
JP4879676B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
US7094270B2 (en) Composite filter and method of making the same
US4302495A (en) Nonwoven fabric of netting and thermoplastic polymeric microfibers
JP5661879B1 (en) Lightweight felt material
EP3655576B1 (en) Nonwoven composite for high temperature applications requiring low flammability, smoke, and toxicity
JP4574262B2 (en) SOUND ABSORBING LAMINATE AND METHOD FOR PRODUCING THE SAME
JP2009000843A (en) Compound sound-absorbing material
US6814821B2 (en) Web with two outer layers and an adhesive middle layer as well as process to produce said web
JP4879676B2 (en) Paint booth filter
JP6646267B1 (en) Laminated sound absorbing material
CN112774326A (en) Filter medium, method for the production thereof and use of the filter medium in a filter element
JP6774042B2 (en) Laminated sound absorbing material
JPH03152255A (en) Nonwoven fabric cleaning material and production thereof
CA3090608A1 (en) Filter medium
JP2009136736A (en) Electret filter medium and filter unit
JP2005513286A (en) Moldable composite material and manufacturing method thereof
JP2018146942A (en) Laminated sound absorption material including ultrafine fiber
JP2012082539A (en) Flame retardant fiber structure
JP2010064361A (en) Sound absorbing material component, sound absorbing material and manufacturing method of sound absorbing material
JP3121671U (en) Roll filter for painting booth
JP4197280B2 (en) Interior skin material with excellent design and texture
KR101915809B1 (en) Heat welding low density polyethylene nonwovens and method for producing the same
JP5179157B2 (en) Insulated mat for folded plate, method for producing the same and insulated folded plate using the same
JP4421257B2 (en) Paint booth filter
JP3121106U (en) Paint booth filter
JP2010248672A (en) Filter for painting booth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111130

R150 Certificate of patent or registration of utility model

Ref document number: 4879676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250