JPS6395915A - Manufacture of composite material - Google Patents

Manufacture of composite material

Info

Publication number
JPS6395915A
JPS6395915A JP61241267A JP24126786A JPS6395915A JP S6395915 A JPS6395915 A JP S6395915A JP 61241267 A JP61241267 A JP 61241267A JP 24126786 A JP24126786 A JP 24126786A JP S6395915 A JPS6395915 A JP S6395915A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fabric
composite
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61241267A
Other languages
Japanese (ja)
Other versions
JPH0617027B2 (en
Inventor
Mitsuyoshi Fujiyama
藤山 光美
Yukio Mizutani
幸雄 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP61241267A priority Critical patent/JPH0617027B2/en
Publication of JPS6395915A publication Critical patent/JPS6395915A/en
Publication of JPH0617027B2 publication Critical patent/JPH0617027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Woven Fabrics (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To produce the composite material in which reinforcing fibers are uniformly orientated by heating and pressurizing the fabric composed of the yarn made of thermoplastic resin and the yarn of reinforcing fiber at the melting temperature of said thermoplastic resin or higher. CONSTITUTION:Glass fiber rovings are used for warps, and polypropylene strip yarns are used for wefts, and thus the fabric mixing a plain cloth therewith is woven, using a manual weaving machine. The fabric is pressurized by a compression molding machine, after the fabric has been heated between hot plates, while fixing the direction of the longitudinal yarn of the fabric. After cooling, a composite material is obtained. Thus, the composite material in which the glass fibers are arranged equidistantly and finely in parallel may be abtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱可塑性樹脂と補強用繊維とからなる繊維強化
樹脂複合体(以下、単に複合体と記す)の製造方法に関
する。詳しくは、緯糸と経糸とが熱可塑性樹脂繊維また
は補強用繊維の互に異なる繊維で構成された織物を加熱
加圧して成形する複合体の製造方法を提供するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a fiber-reinforced resin composite (hereinafter simply referred to as composite) comprising a thermoplastic resin and reinforcing fibers. Specifically, the present invention provides a method for manufacturing a composite body in which a woven fabric in which the weft and warp yarns are composed of different thermoplastic resin fibers or reinforcing fibers is heated and pressurized to form the fabric.

〔従来技術〕[Prior art]

従来、複合体の製造方法としては、例えば補強用繊維の
トウまたは織布に熱硬化性樹脂を含浸させ硬化させる方
法、補強用繊維またはその織物に樹脂粉末を塗布し、次
いで加圧下で該樹脂粉末を組織に溶融、含浸させる方法
等が提案されている。しかしながら、これらの方法では
プレプレグ中間体が粘着性であったり、得られる複合体
を複雑な形状に加工することが困難であるなど取扱い上
に問題があった。
Conventionally, methods for producing composites include, for example, a method in which reinforcing fiber tow or woven fabric is impregnated with a thermosetting resin and cured, or a reinforcing fiber or its woven fabric is coated with resin powder, and then the resin is applied under pressure. Methods have been proposed in which powder is melted and impregnated into tissue. However, these methods have problems in handling, such as the prepreg intermediate being sticky and the resulting composite being difficult to process into a complex shape.

これに対して最近では、熱可塑性ポリマーの紡糸繊維と
、非熱可塑性強化用繊維、特に炭素繊維との混合物を特
定割合で有する連続繊維トウな熱可塑性ポリマー繊維の
融点より高温に加熱する方法(特開昭60−20903
3号、特開昭60−209034号)、経糸が非炭素繊
維であり緯糸が炭素繊維で構成された織物をプレプレグ
の構成要素である熱硬化性樹脂層と貼合せる方法(特開
昭58−201824号)等が提案されている。
On the other hand, recently, a method has been proposed in which continuous fiber tow containing a mixture of spun thermoplastic polymer fibers and non-thermoplastic reinforcing fibers, particularly carbon fibers, is heated to a temperature higher than the melting point of the thermoplastic polymer fiber, which is a continuous fiber tow. JP-A-60-20903
No. 3, JP-A No. 60-209034), a method of laminating a woven fabric whose warp is made of non-carbon fibers and whose weft is made of carbon fiber with a thermosetting resin layer which is a constituent element of prepreg (JP-A No. 58-2003) No. 201824) etc. have been proposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記の如き提案された製造方法により得
られる複合体も、その要求される全ての機能を満足する
ものではなく、特に補強用繊維の配向が均一(繊維を引
揃え品<)でクリンプ(屈曲)による強度の低下がなく
、また熱可塑性樹脂による補強用繊維の良好なぬれを有
する加工性に優れた性能が要望されている。したがって
、本発明は上記した性能を付与した複合体を容易に得る
ために好適な製造方法を提供することを目的とする。
However, the composite obtained by the above-proposed manufacturing method does not satisfy all the required functions, especially when the orientation of the reinforcing fibers is uniform (the fibers are aligned <) and the composite is not crimped ( There is a demand for excellent performance in processability, with no decrease in strength due to bending, and good wetting of reinforcing fibers with thermoplastic resin. Therefore, an object of the present invention is to provide a suitable manufacturing method for easily obtaining a composite material having the above-mentioned properties.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは上記した課題に鑑み鋭意検討した結果、緯
糸または経糸がそれぞれ熱可塑性樹脂繊維または補強用
繊維の互に異なる繊維で構成された織物を特定な湯度下
で加熱加圧して成形することにより、補強用繊維の配向
が均一でクリンプによる強度の低下がなく、また、粘着
性を有さず加工性に優れる複合体が容易に得られること
を見い出し、本発明を提案するに至った。即ち、本発明
によれば緯糸(又は経糸)が熱可塑性樹脂繊維で経糸■
は緯糸)が補強用繊維で構成した織物な該熱可塑性樹脂
の溶融温度以上かつ補強用繊維の溶融温度以上の温度で
加熱加圧して成形することを特徴とする複合体の製造方
法が提供される。特に、本発明においては上記した織物
の2枚以上を積層した状態または織物に熱可塑性樹脂シ
ートを積層した状態で加熱加圧して成形することにより
、特に強度が強く、熱可塑性樹脂による補強用繊維の良
好なぬれを有する複合体が得られる。
As a result of intensive studies in view of the above-mentioned problems, the present inventors found that a fabric whose weft or warp is composed of different thermoplastic resin fibers or reinforcing fibers, respectively, is heated and pressurized at a specific hot water temperature to form the fabric. The inventors have discovered that by doing this, it is possible to easily obtain a composite with uniform orientation of the reinforcing fibers, no decrease in strength due to crimping, and no tackiness and excellent workability, leading to the proposal of the present invention. Ta. That is, according to the present invention, the weft (or warp) is made of thermoplastic resin fiber and the warp
Provided is a method for producing a composite, which is a woven fabric whose weft yarns are composed of reinforcing fibers, and is formed by heating and pressing at a temperature higher than the melting temperature of the thermoplastic resin and higher than the melting temperature of the reinforcing fibers. Ru. In particular, in the present invention, two or more of the above-mentioned fabrics are laminated, or a thermoplastic resin sheet is laminated on the fabric, and the fabric is heated and pressurized to form the fabric. A composite with good wetting is obtained.

本発明の熱可塑性樹脂としては、例えばポリプロピレン
、塩化ビニル樹脂、酢酸ビニル樹脂、ポリスチレン、A
BS樹脂、アクリル樹脂、ポリエチレン、フッ素樹脂、
ポリアミド樹脂、ポリエステル樹脂、アセタール樹脂。
Examples of the thermoplastic resin of the present invention include polypropylene, vinyl chloride resin, vinyl acetate resin, polystyrene, A
BS resin, acrylic resin, polyethylene, fluororesin,
Polyamide resin, polyester resin, acetal resin.

ポリカーボネート、ポリエーテルイミド、ポリエーテル
ケトン、ポリエーテルエーテルケトン、ポリサルホン、
ポリエーテルサルホン。
polycarbonate, polyetherimide, polyetherketone, polyetheretherketone, polysulfone,
polyether sulfone.

ポリフェニレンサルファイド、液晶ポリマーおよびこれ
らの混合物など公知のものが特に制限されないが、一般
にはポリプロブレンが用いられ、特に高強度を必要とす
る用途に対してはポリエーテルエーテルケトンが好まし
くは用いられる。
Known materials such as polyphenylene sulfide, liquid crystal polymers, and mixtures thereof are not particularly limited, but polyprobrene is generally used, and polyether ether ketone is preferably used for applications requiring particularly high strength.

上記した熱可塑性樹脂は、そのまま(未変性)で用いる
ことができるが、特にポリオレフィンに不飽和カルボン
酸類または不飽和シラン化合物類をグラフトして得られ
る変性ポリオレフィンを用いることが有効である。即ち
、そのような変性ポリオレフィンの繊維とガラス繊維と
よりなる織物、または該織物とシートの積層物を加熱加
圧して成形して得られる複合体は、ポリオレフィン樹脂
とガラス繊維の接着性が良好で強度も大きくなるため好
ましい。このような変性ポリオレフィンは、従来公知の
方法により得ることができる。即ち、不飽和カルボン酸
類をグラフトした変性ポリオレフィンは、例えばアクリ
ル酸、マレイン酸、イタコン酸、無水マレイン醗、無水
イタコン酸などの不飽和カルボン酸類モノマーを有機過
酸化物などのようなラジカル発生剤の存在下に、溶液状
態、溶融状態あるいはスラリー状態など公知の方法でポ
リオレフィンにグラフト反応させることにより得られる
The above-mentioned thermoplastic resins can be used as they are (unmodified), but it is particularly effective to use modified polyolefins obtained by grafting unsaturated carboxylic acids or unsaturated silane compounds onto polyolefins. In other words, a woven fabric made of such modified polyolefin fibers and glass fibers, or a composite obtained by heating and pressurizing and molding a laminate of the woven fabric and a sheet, has good adhesion between the polyolefin resin and the glass fibers. This is preferable because the strength is also increased. Such modified polyolefins can be obtained by conventionally known methods. That is, modified polyolefins grafted with unsaturated carboxylic acids can be prepared by combining unsaturated carboxylic acid monomers such as acrylic acid, maleic acid, itaconic acid, maleic anhydride, and itaconic anhydride with a radical generator such as an organic peroxide. It can be obtained by grafting onto a polyolefin by a known method such as a solution state, melt state or slurry state in the presence of the polyolefin.

また、不飽和シラン化合物類をグラフトとした変性ポリ
オレフィンは、ポリオレフィンと例えばビニルトリメト
キシシラン、ビニルトリエトキシシラン、γ−メタクリ
ロイルオキシプロピルトリメトキシシランなどの不飽和
シラン化合物類モノマーを有機過酸化物のようなラジカ
ル発生剤の存在下に、溶融状態で反応させる方法により
製造することができる。
In addition, modified polyolefins grafted with unsaturated silane compounds can be produced by combining polyolefins with monomers of unsaturated silane compounds such as vinyltrimethoxysilane, vinyltriethoxysilane, and γ-methacryloyloxypropyltrimethoxysilane using organic peroxides. It can be produced by a method of reacting in a molten state in the presence of such a radical generator.

尚、これらの変性ポリオレフィンは未変性のポリオレフ
ィンと混合して用いることもできる。また、グラフト反
応した不飽和カルボン酸類または不飽和シラン化合物類
の置け、一般に全樹脂の0.01〜1重殖%が適当であ
る。
Incidentally, these modified polyolefins can also be used in combination with unmodified polyolefins. In addition, it is generally appropriate to place the graft-reacted unsaturated carboxylic acids or unsaturated silane compounds in an amount of 0.01 to 1 percent by grafting based on the total resin.

本発明に用いられる熱可塑性樹脂繊維は、上記したよう
な熱可塑性樹脂からなる延伸または未延伸のファイバー
、フィラメント、モノフィラメント、ヤーン、テープ、
ステーブル、リボン、およびこれらを り合わせたり、
サイジング剤で集束したものなどを含も総称である。こ
のような熱可塑性樹脂繊維の製法は特に制限されず、例
えば紡口から溶融押出したフィラメントをドラフトをか
けながら冷却固化して巻取り、その後必要に応じて延伸
The thermoplastic resin fibers used in the present invention include stretched or unstretched fibers, filaments, monofilaments, yarns, tapes, etc. made of the above-mentioned thermoplastic resins,
Stables, ribbons, and combining them,
This is a general term that also includes those bound with sizing agents. The method for producing such thermoplastic resin fibers is not particularly limited, and for example, a filament may be melted and extruded from a spinneret, cooled and solidified while being drafted, and then wound up, and then stretched as necessary.

熱処理する方法、フィルムを成形後必要に応じて延伸し
、スリットあるいはスプリットする方法等である。この
ようにして得られる繊維の太さは特に制限されないが、
一般には10〜10.000デニールが好適である。
The method includes a method of heat treatment, a method of stretching the film as necessary after molding, and a method of slitting or splitting the film. The thickness of the fibers obtained in this way is not particularly limited, but
Generally, a denier of 10 to 10,000 is suitable.

本発明に用いられる熱可塑性樹脂シートは、上記した如
き熱可塑性樹脂な押出成形、圧縮成形、射出成形などす
ることにより得られるもので、該シートの厚さは、積層
相手の織物の厚さや複合体中の最終的な補強用繊維同志
により変化するが、一般には0.1〜101mの厚さの
シートが好ましく用いられる。
The thermoplastic resin sheet used in the present invention is obtained by extrusion molding, compression molding, injection molding, etc. of the thermoplastic resin as described above, and the thickness of the sheet is determined by the thickness of the fabric to be laminated and the composite material. Generally, a sheet with a thickness of 0.1 to 101 m is preferably used, although it varies depending on the final reinforcing fibers in the body.

本発明に用いられる補強用繊維は、使用する熱可塑性樹
脂の溶融温度より高い溶融温度を有する強化繊維であり
、例えばガラス繊維。
The reinforcing fibers used in the present invention are reinforcing fibers having a melting temperature higher than the melting temperature of the thermoplastic resin used, such as glass fibers.

炭素繊維、アラミド繊維、ポロン繊維、セラミック繊維
、金属繊維2合成樹脂繊維などが挙げられるが、上記し
た変性ポリオレフィンと併用する場合にはガラス繊維が
好適であり、また特に高強度を要求される用途に対して
は炭素繊維が好ましい。繊維の形態としては単糸、ロー
ビング、ヤーンなと任意のものが用いられ、また、繊維
の太さも特に制限されないが、一般には繊維の径が10
〜io、oo。
Examples include carbon fiber, aramid fiber, poron fiber, ceramic fiber, metal fiber 2 synthetic resin fiber, etc., but glass fiber is suitable when used in combination with the above-mentioned modified polyolefin, and especially for applications requiring high strength. Carbon fiber is preferred. Any form of fiber can be used, such as single yarn, roving, or yarn, and the thickness of the fiber is not particularly limited, but generally the diameter of the fiber is 10
~io,oo.

デニールのものが好ましく用いられる。Denier ones are preferably used.

本発明に用いる織物(織布を含む総称)は、上記した熱
可塑性樹脂繊維と補強用繊維とを特定な構成に製織した
ものであることが重要である。即ち、緯糸(又は経糸)
が熱可塑性樹脂繊維で経糸(又は緯糸)が補強用繊維で
構成されることが必要で、緯糸(又は経糸)に熱可塑性
樹脂繊維と補強用繊維又はその混紡糸を用いた場合には
、製織時に補強用繊維同志がクリンプすることにより、
加熱加圧して、成形後の複合体の強度が低下したり、あ
るいは加熱加圧する成形時に織物中における熱可塑性樹
脂繊維の溶融により繊維の配向が乱れるため、成形性や
得られる複合体の加工性が低下する、など本発明の所期
の目的が達成されない。
It is important that the woven fabric (general term including woven fabric) used in the present invention is one in which the above-mentioned thermoplastic resin fibers and reinforcing fibers are woven into a specific configuration. That is, weft (or warp)
is thermoplastic resin fiber and the warp (or weft) is composed of reinforcing fiber.If the weft (or warp) is made of thermoplastic resin fiber, reinforcing fiber, or a blend thereof, weaving is not possible. Sometimes the reinforcing fibers crimp together,
When heated and pressurized, the strength of the composite after molding may decrease, or the orientation of the fibers may be disturbed due to melting of the thermoplastic resin fibers in the fabric during heating and pressurizing molding, resulting in poor moldability and processability of the resulting composite. The intended purpose of the present invention, such as a decrease in

上記した織物における熱可塑性樹脂繊維と補強用繊維と
の混合割合は、複合体の用途。
The mixing ratio of thermoplastic resin fibers and reinforcing fibers in the fabric described above depends on the use of the composite.

熱可塑性樹脂シートの積層の有無、また熱可塑性樹脂シ
ートを積層する場合には積層相手の熱可塑性樹脂シート
の厚さなどにより適宜逸走される。熱可塑性樹脂シート
を積層しない場合は、一般に織物全体に対して補強用繊
維が5〜70容1%(701%)、特に10〜50 v
o1%が好ましい。該補強用繊維の混合(含有)wLが
5v01%より少なくなると補強効果が小さく、混合量
が70 vo1%を越えると加熱加圧成形時の熱可塑性
樹脂の含浸が不十分となる。また、熱可塑性樹脂シート
を積層する場合は、補強用繊維の混合量を織物全体に対
して5〜95 vo1%が一般的で、特に30〜90v
O1%が好ましい。該混合量が5vo1%より少なくな
ると補強効果が小さく、95 vo1%を越えると熱可
塑性樹脂による補強用繊維のぬれ改良効果が低下する。
The deviation is determined as appropriate depending on whether thermoplastic resin sheets are laminated or not, and when thermoplastic resin sheets are laminated, the thickness of the thermoplastic resin sheets to be laminated. When thermoplastic resin sheets are not laminated, reinforcing fibers generally account for 5 to 70 vol 1% (701%) of the entire fabric, particularly 10 to 50 vol.
o1% is preferred. If the mixing (containing) wL of the reinforcing fibers is less than 5v01%, the reinforcing effect will be small, and if the mixing amount exceeds 70v1%, impregnation of the thermoplastic resin during hot-press molding will be insufficient. In addition, when laminating thermoplastic resin sheets, the amount of reinforcing fiber mixed is generally 5 to 95 vol% of the entire fabric, especially 30 to 90 vol.
O1% is preferred. If the mixing amount is less than 5 vol%, the reinforcing effect will be small, and if it exceeds 95 vol%, the effect of improving the wetting of the reinforcing fibers by the thermoplastic resin will be reduced.

なお、緯糸又は経糸の目の粗さは必要に応じて任意に変
えることができる。
Note that the coarseness of the weft or warp can be arbitrarily changed as necessary.

製織は手織機、自動織機など公知の織機を用い、平織り
、綾織り、朱子織りなどの組織に織ることができる。ま
た、自動織機を用いる場合は、ルームクリール方式を採
用するのも好ましい。
Weaving can be carried out using a known loom such as a hand loom or an automatic loom, and can be woven into a plain weave, twill weave, satin weave, or the like. Furthermore, when using an automatic loom, it is also preferable to adopt a room creel system.

次に、本発明においては上記した織物または必要に応じ
て織物と熱可塑性樹脂シートを積層し、加熱加圧して成
形することにより良好な複合体が得られる。
Next, in the present invention, a good composite can be obtained by laminating the above-described woven fabric or, if necessary, a woven fabric and a thermoplastic resin sheet, and molding the woven fabric by heating and pressing.

織物を加熱加圧して成形する場合、1枚の織物または複
数の織物を積層した状部で行うことのいづれも可能であ
るが、特に2枚以上の織物を任意の角度特に好ましくは
直交に積層して行うことが得られる複合体の強度を増す
ために好ましい。他方、織物と熱可塑性樹脂シートとを
積層して加熱加圧して成形する場合の織物と熱可塑性樹
脂シートとを積層する態様は、それぞれ1枚ずつの積層
、シート/織物/シート/織物/シート・・・・のよう
に織物とシートとをそれぞれ複数枚の積層或いは織物を
2層以上に用いる場合には、各織物を任意の角度で積層
、あるいは各織物層に2枚以上の織物を任意の角度で積
層することができる。この際、シート用の熱可塑性樹脂
と織物中の熱可塑性樹脂は、異種の樹脂でも使用できる
が、同種の樹脂を使用する方が好ましい。なお、補強用
繊維がガラス繊維で、熱可塑性樹脂か不飽和カルボン酸
または不飽和シラン化合物をグラフトした変性ポリオレ
フィンを用いる場合には、特に織物を構成する熱可塑性
樹脂繊維に該変性ポリオレフィンを用いることが望まし
く、熱可塑性樹脂シートとしては、未変性または変性ポ
リオレフィンのいずれでもよい。
When forming a woven fabric by heating and pressing, it is possible to form a single woven fabric or a laminated body of multiple woven fabrics, but in particular two or more woven fabrics may be laminated at any angle, preferably at right angles. It is preferred to increase the strength of the resulting composite. On the other hand, in the case of laminating a textile and a thermoplastic resin sheet and molding them by heating and pressing, the method of laminating the textile and the thermoplastic resin sheet is lamination of one sheet, sheet/fabric/sheet/fabric/sheet. When using a plurality of laminated fabrics and sheets, or two or more layers of fabrics, as in... Can be stacked at an angle of At this time, although different types of resins can be used as the thermoplastic resin for the sheet and the thermoplastic resin in the fabric, it is preferable to use the same type of resin. In addition, when the reinforcing fibers are glass fibers and a modified polyolefin grafted with a thermoplastic resin, an unsaturated carboxylic acid, or an unsaturated silane compound is used, the modified polyolefin must be used especially for the thermoplastic resin fibers constituting the fabric. is desirable, and the thermoplastic resin sheet may be either unmodified or modified polyolefin.

本発明における加熱は、熱可塑性樹脂の溶融温度以上で
補強用繊維の溶融温度以下の温度で行うことが必要で、
該瀉範囲外では本発明の良好な複合体は得られない。ま
た、加圧成形法は、例えば圧縮成形機を用いる圧縮成形
法、或いは押出ラミネーション法等、公知の方法が特に
制限なく用いられる。特に織物と熱可塑性樹脂シートと
を積層して加熱加圧して成形する場合には、熱可塑性樹
脂繊維の溶融温度以上に加熱された織物の両側に2台の
ティ(T)−ダイ押出機から押出された熱可塑性樹脂溶
融シートを積層し、ニップ四−ルで加圧する方法が好ま
しい。なお、加熱加圧して成形する際には、樹脂の溶融
に伴う収縮を防止するために、織物の周辺を固定するが
張力を与えることが好ましく、このようにして得た複合
体は、特に補強用繊維の並びが良好で外観が良く、また
強度的にもより優れたものを得ることが出来る。
Heating in the present invention needs to be carried out at a temperature above the melting temperature of the thermoplastic resin and below the melting temperature of the reinforcing fibers,
A good composite of the present invention cannot be obtained outside this range. Further, as the pressure molding method, a known method such as a compression molding method using a compression molding machine or an extrusion lamination method can be used without particular limitation. In particular, when fabric and thermoplastic resin sheets are laminated and molded by heating and pressurizing, two T-die extruders are placed on both sides of the fabric heated above the melting temperature of the thermoplastic resin fibers. A preferred method is to laminate extruded molten thermoplastic resin sheets and press them using a nip ring. In addition, when molding by heating and pressurizing, it is preferable to fix the periphery of the fabric and apply tension in order to prevent shrinkage due to melting of the resin. It is possible to obtain a product with good alignment of the fibers, good appearance, and superior strength.

〔作用効果〕[Effect]

一般に熱可塑性樹脂の中に補強用繊維を均一に引き揃え
て充填することは非常に困難である。ところが、本発明
によれば、緯糸(又は経糸)か熱可塑性樹脂繊維で、経
糸(又は緯糸)が補強用繊維で構成された織物、又は織
物と熱可塑性樹脂シートとの積層物を加熱加圧して成形
することにより、補強用繊維が均一に並んだまま熱可塑
性樹脂繊維および熱可塑性樹脂シートが溶融し、補強用
繊維が均一に配向した複合体を容易に作ることができる
。また、特に2枚以上の織物を任意の角度で積層して加
熱加圧して成形する場合、補強用繊維は織られていない
ので、各方向の補強用繊維は均一に配向するとともに、
クリンプ(屈曲)が小さく、美観1強度とも優れた複合
体を得ることができる。なお、本発明で得られた複合体
はホットスタンピング成形などにより種々の形状の成形
物を作ることもできる。
Generally, it is very difficult to uniformly align and fill reinforcing fibers into a thermoplastic resin. However, according to the present invention, a fabric in which the weft (or warp) is a thermoplastic resin fiber and the warp (or weft) is a reinforcing fiber, or a laminate of a fabric and a thermoplastic resin sheet is heated and pressurized. By molding, the thermoplastic resin fibers and thermoplastic resin sheet are melted while the reinforcing fibers are uniformly arranged, and a composite in which the reinforcing fibers are uniformly oriented can be easily produced. In addition, especially when two or more fabrics are laminated at any angle and molded by heating and pressing, the reinforcing fibers are not woven, so the reinforcing fibers in each direction are uniformly oriented, and
A composite with small crimp (bending) and excellent appearance and strength can be obtained. Note that the composite obtained by the present invention can also be molded into various shapes by hot stamping molding or the like.

〔実施例〕〔Example〕

以下、本発明の実施例を示すが、本発明はかかる実施例
に限定されるものでない。
Examples of the present invention will be shown below, but the present invention is not limited to these examples.

尚、以下の結果における強度は、次の方法に基づいて測
定した結果を示したものである。
In addition, the strength in the following results shows the results measured based on the following method.

即ち、複合体から縦および横方向にそれぞれ幅2 cI
IL+長さ15cmの号器形の試験片を切りとり、引張
試験材を用い、チャック間距離5α、引張速度10m/
Imの条件で引張試験を行ない、縦方向および横方向の
引張強度を測定し、特に断わらない限り両者の平均値を
引張強度とした。
i.e. width 2 cI in the longitudinal and transverse directions from the composite.
Cut out a test piece in the shape of IL + 15 cm, and use a tensile test material with a distance between chucks of 5α and a tensile speed of 10 m/
A tensile test was conducted under the conditions of Im, and the tensile strength in the longitudinal direction and the transverse direction was measured, and the average value of both was taken as the tensile strength unless otherwise specified.

実施例 1 経糸に4500デニールのガラス繊維ロービングを、緯
糸に4000デニールのポリプロピレンスプリットヤー
ンを用い、手織機で厚さ約1.2 tm 、目付110
01/ぜ、ガラス繊維混入率30 vo1%の平織り混
合繊物を織った。この織物を経糸方向を固定して熱板の
間で200℃、10分間加熱後、圧縮成形機で加圧冷却
して厚さ0.7nの複合体を得た。
Example 1 Using 4500 denier glass fiber roving for the warp and 4000 denier polypropylene split yarn for the weft, the fabric was woven on a hand loom to a thickness of about 1.2 tm and a basis weight of 110.
01/Ze, a plain weave mixed fiber with a glass fiber content of 30 vol. 1% was woven. This woven fabric was heated between hot plates at 200° C. for 10 minutes with the warp direction fixed, and then cooled under pressure using a compression molding machine to obtain a composite with a thickness of 0.7 nm.

この複合体中のガラス繊維は等間隔できれいに平行に並
んでいた。この複合体のガラス繊維配向方向の引張強度
は、1350Vであった。
The glass fibers in this composite were arranged neatly in parallel at equal intervals. The tensile strength of this composite in the glass fiber orientation direction was 1350V.

実施例 2 実施例1で用いた混合繊物2枚を直交して重ね、周囲を
固定して実施例1と同様にして加熱加圧して成形し、厚
さ1.4sotの複合体を得た。この複合体中のガラス
繊維は縦、横方向に等間隔で均一に並んでいた。この複
合体の引張強度は、1370%であった。
Example 2 Two sheets of the mixed fibers used in Example 1 were stacked orthogonally, the periphery was fixed, and molded under heat and pressure in the same manner as in Example 1 to obtain a composite with a thickness of 1.4 sots. . The glass fibers in this composite were uniformly arranged at equal intervals in the vertical and horizontal directions. The tensile strength of this composite was 1370%.

比較例 1 4500デニールのガラス繊維ロービングを手織機で厚
さ約0.4 tx 、目付5201/ピの平織りに織っ
た。このガラス繊維織物な厚さ0,3絽の2枚のポリプ
ロピレンシートの間にはさみ、熱板の間で200℃、1
0分間加熱後、圧縮成形機で加圧冷却して厚さ0.7 
jlml +ガラス繊維含量30 vo1%の複合体を
成形した。このものの引張強度は1170〜であった。
Comparative Example 1 A 4500 denier glass fiber roving was woven on a hand loom into a plain weave with a thickness of about 0.4 tx and a basis weight of 5201/pi. This glass fiber fabric was sandwiched between two polypropylene sheets with a thickness of 0.3 rugs, and heated at 200℃ between hot plates for 1 hour.
After heating for 0 minutes, it is cooled under pressure with a compression molding machine to a thickness of 0.7
A composite of jlml + glass fiber content of 30 vol% was molded. The tensile strength of this product was 1170~.

比較例 2 経糸および緯糸のそれぞれに比較例1で用いたガラス繊
維ロービング1本および実施例1で用いたポリプルピレ
ンスプリットカー21本の合計2本を用いて手織機で厚
さ約12n、目付1050y、/m’ 、ガラス繊維混
入率30 vo1%の平織り混合繊物を織った。この混
合繊物を実施例2で同様に圧縮成形したところ、厚さ0
.7uの複合体が得られ、引張強度は1200製であっ
た。
Comparative Example 2 A total of two fiberglass rovings, one glass fiber roving used in Comparative Example 1 and 21 polypropylene split cars used in Example 1, were used for each of the warp and weft yarns, and a hand loom with a thickness of about 12 nm and a fabric weight was used. A plain weave mixed fiber of 1050 y/m' and a glass fiber content of 30 vol 1% was woven. When this mixed fiber was compression molded in the same manner as in Example 2, the thickness was 0.
.. A composite of 7u was obtained with a tensile strength of 1200.

実施例 3 メルトフローインデックス(MFI)=o、6I/10
分のホモポリプロピレン1ooi1を部、無水マレイン
酸0.5重量部、ベンゾイルパーオキサイド0.1重量
部、ブチル化ヒドロキシトルエン(商品名BHT)0.
1重量部およびステアリン酸カルシウム0.1重量部を
ヘンシェルミキサーで5分間混合し、L/D =24の
40mp押出機により190℃で溶融混練ペレタイズを
行ない、MF I = 4.L9/10分、グラフト反
応無水マレイン酸量0,23重蓋%の変性ポリプロピレ
ンを得た。この変性ポリプロピレンを用い、厚さ1uの
インフレーションフィルムを製膜し、スリット後、加熱
延伸して1000デニールのフラットヤーンを得た。経
糸に実施例1で用いたガラス繊維ロービング、緯糸に前
記フラットヤーン4本を用いて手に4@で厚さ約1.3
11131 + 目付1050g/m’ 、ガラス繊維
混入率30 vo1%の平織り混合線物を織った。この
混合繊物2枚を直交してlね、周囲を固定して実施例1
と同様に加熱加圧成形し、厚さ1.4絽の複合体を得た
。この複合体中のガラス繊維は縦、横方向に等間隔で均
一に並んでいた。この複合体の引張強度は、1530%
であった。
Example 3 Melt flow index (MFI) = o, 6I/10
100 parts of homopolypropylene, 0.5 parts by weight of maleic anhydride, 0.1 parts by weight of benzoyl peroxide, 0.0 parts of butylated hydroxytoluene (trade name BHT).
1 part by weight and 0.1 part by weight of calcium stearate were mixed in a Henschel mixer for 5 minutes, and melt-kneaded and pelletized at 190°C using a 40mp extruder with L/D = 24, resulting in MFI = 4. At L9/10 minutes, a modified polypropylene having a graft reaction of 0.23% by weight of maleic anhydride was obtained. Using this modified polypropylene, a blown film with a thickness of 1 U was formed, and after slitting, it was heated and stretched to obtain a flat yarn of 1000 denier. The glass fiber roving used in Example 1 was used for the warp, and the four flat yarns were used for the weft, and the thickness was approximately 1.3 at 4@ in the hand.
11131+ A plain weave mixed wire material with a basis weight of 1050 g/m' and a glass fiber content of 30 vol. Example 1 Two pieces of this mixed fiber were laid at right angles and the surroundings were fixed.
The composite was molded under heat and pressure in the same manner as above to obtain a composite with a thickness of 1.4 rugs. The glass fibers in this composite were uniformly arranged at equal intervals in the vertical and horizontal directions. The tensile strength of this composite is 1530%
Met.

実施例 4 MF I =0.611/10分のホモポリプロピレン
100 重1 部#  γ−メタクリロ午ジプロピルト
リメトキシシラン0.5重置部、ジクミルパーオキサイ
ド0.1重量部、BHTo、1重量部およびステアリン
酸カルシウム0.1重量部をヘンシェルミキサーで5分
間混合し、L/D=24の40m、$押出機により20
0℃で溶融混線ベレタイズヲ行ナイ、M F I =5
.4I/10分の変性ポリプロピレンを得た。この変性
ポリプロピレンを用い、実施例3と同様に行ない、厚さ
14絽の複合体を得た。この複合体中のガラス繊維は縦
、横方向に等間隔で均一に並んでいた。この複合体の引
張強度は1570〜であった。
Example 4 MF I =0.611/10 min homopolypropylene 100 parts by weight # γ-methacrylic acid dipropyltrimethoxysilane 0.5 parts by weight, dicumyl peroxide 0.1 parts by weight, BHTo, 1 part by weight and 0.1 part by weight of calcium stearate were mixed in a Henschel mixer for 5 minutes, and then mixed in a 40 m, $ extruder with L/D = 24 for 20 min.
Do not perform melt cross-wire beletization at 0°C, M F I =5
.. A modified polypropylene of 4 I/10 min was obtained. Using this modified polypropylene, the same procedure as in Example 3 was carried out to obtain a composite having a thickness of 14 rugs. The glass fibers in this composite were uniformly arranged at equal intervals in the vertical and horizontal directions. The tensile strength of this composite was 1570~.

実施例 5 経糸に1800デニールの炭素繊維ロービング、緯糸に
3000デニールのポリエーテルエーテルケトン繊維を
用い、厚さ約0.6w+目付600g/m′、炭素繊維
含量30 vo1%の平織り混合識別を織った。この混
合繊物2枚を直交して重ね、熱板により400℃、10
分間予熱後、圧縮成形機により加圧冷却して厚さ0.7
1111ms炭素繊維含量30 vo1%の複合体を得
た。この複合体中の炭素繊維は縦、横方向に等間隔で均
一に並んでおり、引張強度は3500%であった。この
複合体を赤外線加熱材で370℃に加熱溶融させ、スタ
ンピング 型によりホットスタンピングをして、直径5
0txlp深さ20mのカップを成形したところ、きれ
いな成形物が得られた。
Example 5 Using 1800 denier carbon fiber roving for the warp and 3000 denier polyetheretherketone fiber for the weft, a plain weave mixed fabric with a thickness of approximately 0.6 W + basis weight 600 g/m' and a carbon fiber content of 30 VO1% was woven. . Two sheets of this mixed fiber were stacked perpendicularly and heated to 400°C for 10 minutes on a hot plate.
After preheating for minutes, it is cooled under pressure by a compression molding machine to a thickness of 0.7
A composite with a carbon fiber content of 30 vol. 1% was obtained. The carbon fibers in this composite were uniformly arranged at equal intervals in the vertical and horizontal directions, and the tensile strength was 3500%. This composite was heated and melted to 370℃ using an infrared heating material, and hot stamped using a stamping mold to form a mold with a diameter of 5 mm.
When a cup with a depth of 20 m was molded, a beautiful molded product was obtained.

実施例 6 経糸に実施例1で用いたガラス繊維p−ピングを、緯糸
に1000デニールのポリブ四ピレンフラットヤーンを
用い、手織機で厚さ約Q、 8 m + 目付7801
1 / 11 *ガラス繊維混入率62 vo1%の平
織り混合繊物を織った。
Example 6 The glass fiber p-ping used in Example 1 was used for the warp, and the 1000 denier polypyrene flat yarn was used for the weft, and the thickness was approximately Q, 8 m + basis weight 7801 using a hand loom.
1/11 *A plain weave mixed fiber with a glass fiber content of 62 vo1% was woven.

この織物2枚を直交して重ね、その両側に厚さ0.2諺
の2枚のポリプロピレンシートを置き、織物の周辺を固
定して、熱板の間で200’cllo分間予熱後、圧縮
成形機で加圧冷却して厚さ0.7難の複合体を得た。こ
の複合体中のガラス繊維は縦、横方向に等間隔で均一に
並んでいた。この複合体の引張強度は、1430%であ
った。
Two sheets of this fabric are stacked orthogonally, two polypropylene sheets with a thickness of 0.2 are placed on both sides, the periphery of the fabric is fixed, and after preheating between hot plates for 200'clo, it is molded in a compression molding machine. A composite with a thickness of 0.7 mm was obtained by cooling under pressure. The glass fibers in this composite were uniformly arranged at equal intervals in the vertical and horizontal directions. The tensile strength of this composite was 1430%.

Claims (1)

【特許請求の範囲】 1)緯糸(又は経糸)が熱可塑性樹脂繊維で経糸(又は
緯糸)が補強用繊維で構成した織物を、該熱可塑性樹脂
の溶融温度以上かつ該補強用繊維の溶融濃度以下の温度
で加熱加圧して成形することを特徴とする複合体の製造
方法 2)熱可塑性樹脂がポリプロピレンまたはポリエーテル
エーテルケトンである特許請求の範囲第1項記載の製造
方法 3)補強用繊維がガラス繊維または炭素繊維である特許
請求の範囲第1項記載の製造方法 4)熱可塑性樹脂がポリオレフィンに不飽和カルボン酸
類または不飽和シラン化合物類をグラフトした変性ポリ
オレフィンであり、かつ補強用繊維がガラス繊維である
特許請求の範囲第1項記載の製造方法 5)2枚以上の織物を直交に積層して加熱加圧して成形
する特許請求の範囲第1項記載の製造方法 6)織物の周辺を固定した状態で加熱加圧して成形する
特許請求の範囲第1項記載の製造方法 7)織物に熱可塑性樹脂シートを積層して加熱加圧して
成形する特許請求の範囲第1項記載の製造方法
[Scope of Claims] 1) A woven fabric in which the weft (or warp) is a thermoplastic resin fiber and the warp (or weft) is a reinforcing fiber is prepared at a temperature higher than the melting temperature of the thermoplastic resin and at a melt concentration of the reinforcing fiber. 2) A method for manufacturing a composite, characterized in that the composite is molded by heating and pressurizing at the following temperature. 2) A method for manufacturing a composite according to claim 1, wherein the thermoplastic resin is polypropylene or polyether ether ketone. 3) Reinforcing fibers. 4) The thermoplastic resin is a modified polyolefin obtained by grafting unsaturated carboxylic acids or unsaturated silane compounds onto a polyolefin, and the reinforcing fiber is a glass fiber or a carbon fiber. 5) The manufacturing method according to claim 1, in which two or more woven fabrics are orthogonally laminated and heated and pressurized to form glass fibers. 6) The periphery of the woven fabric. 7) Manufacturing method according to claim 1, in which a thermoplastic resin sheet is laminated on a woven fabric and molded by heating and pressing in a fixed state. Method
JP61241267A 1986-10-13 1986-10-13 Method for producing composite Expired - Lifetime JPH0617027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61241267A JPH0617027B2 (en) 1986-10-13 1986-10-13 Method for producing composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61241267A JPH0617027B2 (en) 1986-10-13 1986-10-13 Method for producing composite

Publications (2)

Publication Number Publication Date
JPS6395915A true JPS6395915A (en) 1988-04-26
JPH0617027B2 JPH0617027B2 (en) 1994-03-09

Family

ID=17071711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61241267A Expired - Lifetime JPH0617027B2 (en) 1986-10-13 1986-10-13 Method for producing composite

Country Status (1)

Country Link
JP (1) JPH0617027B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329567A (en) * 2004-05-18 2005-12-02 Calsonic Kansei Corp Resin panel and its manufacturing method
JP2011218559A (en) * 2010-04-02 2011-11-04 Toyoda Gosei Co Ltd Composite member and method of manufacturing the same
JP2014024969A (en) * 2012-07-27 2014-02-06 Mitsubishi Chemicals Corp Fiber-reinforced composite material
WO2014132775A1 (en) * 2013-02-28 2014-09-04 三菱瓦斯化学株式会社 Fabric and molded article formed by molding same
JP2016101736A (en) * 2014-11-28 2016-06-02 宇部エクシモ株式会社 Method for producing fabric-reinforced resin molded body, and the fabric-reinforced resin molded body
WO2017023225A3 (en) * 2015-08-03 2017-03-16 Kordsa Global Endustriyel Iplik Ve Kord Bezi Sanayi Ve Ticaret Anonim Sirketi Thermoplastic prepreg production method
JP2017074697A (en) * 2015-10-14 2017-04-20 株式会社タカギセイコー Composite material molding system
JP2021046657A (en) * 2019-04-17 2021-03-25 日東紡績株式会社 Composite yarn woven fabric and method for producing fiber-reinforced resin molded article comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915467A (en) * 1972-05-19 1974-02-09
JPS5829653A (en) * 1981-08-13 1983-02-21 三菱レイヨン株式会社 Intermediate for molding
JPS58217532A (en) * 1982-06-11 1983-12-17 Unitika Ltd Production of glass fiber-reinforced polyolefin
JPS6028543A (en) * 1983-07-27 1985-02-13 東レ株式会社 Fiber reinforced thermoplastic resin molding material
JPS6045632A (en) * 1983-08-19 1985-03-12 帝人株式会社 Composite fiber structure for thermal molding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915467A (en) * 1972-05-19 1974-02-09
JPS5829653A (en) * 1981-08-13 1983-02-21 三菱レイヨン株式会社 Intermediate for molding
JPS58217532A (en) * 1982-06-11 1983-12-17 Unitika Ltd Production of glass fiber-reinforced polyolefin
JPS6028543A (en) * 1983-07-27 1985-02-13 東レ株式会社 Fiber reinforced thermoplastic resin molding material
JPS6045632A (en) * 1983-08-19 1985-03-12 帝人株式会社 Composite fiber structure for thermal molding

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329567A (en) * 2004-05-18 2005-12-02 Calsonic Kansei Corp Resin panel and its manufacturing method
JP2011218559A (en) * 2010-04-02 2011-11-04 Toyoda Gosei Co Ltd Composite member and method of manufacturing the same
JP2014024969A (en) * 2012-07-27 2014-02-06 Mitsubishi Chemicals Corp Fiber-reinforced composite material
WO2014132775A1 (en) * 2013-02-28 2014-09-04 三菱瓦斯化学株式会社 Fabric and molded article formed by molding same
CN105026631A (en) * 2013-02-28 2015-11-04 三菱瓦斯化学株式会社 Fabric and molded article formed by molding same
JPWO2014132775A1 (en) * 2013-02-28 2017-02-02 三菱瓦斯化学株式会社 Woven fabric and molded product formed by molding the same
JP2016101736A (en) * 2014-11-28 2016-06-02 宇部エクシモ株式会社 Method for producing fabric-reinforced resin molded body, and the fabric-reinforced resin molded body
WO2017023225A3 (en) * 2015-08-03 2017-03-16 Kordsa Global Endustriyel Iplik Ve Kord Bezi Sanayi Ve Ticaret Anonim Sirketi Thermoplastic prepreg production method
JP2017074697A (en) * 2015-10-14 2017-04-20 株式会社タカギセイコー Composite material molding system
JP2021046657A (en) * 2019-04-17 2021-03-25 日東紡績株式会社 Composite yarn woven fabric and method for producing fiber-reinforced resin molded article comprising the same

Also Published As

Publication number Publication date
JPH0617027B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
JP3991439B2 (en) Fiber reinforced plastic and method for molding fiber reinforced plastic
EP0138294A2 (en) method and apparatus for producing blends of resinuous thermoplastic fiber and laminated structures produced therefrom
CA2775053A1 (en) Thermoplastic composites and methods of making and using same
EP0417827A1 (en) Fabric of thermoplastic fibre and continuous reinforcing fibre
EP0630736A2 (en) Reinforcing composite items with composite fibrous thermoplastics
JP6719986B2 (en) Thermoplastic resin composite material and method for producing the same
KR20140005409A (en) Thermoplastic prepreg and method for producing the same
JP2921327B2 (en) Prepreg ribbon and prepreg for fiber reinforced thermoplastic resin
JPS6395915A (en) Manufacture of composite material
JPS6387228A (en) Manufacture of composite body
US20060065352A1 (en) Stabilized fibrous structures and methods for their production
JP3991440B2 (en) Fiber reinforced plastic and method for molding fiber reinforced plastic
US3489639A (en) Polypropylene/glass fibre laminate
JPS63270834A (en) Composite molding sheet and its production
JPH02308824A (en) Material for thermoplastic composite
JPH06254848A (en) Thermoplastic prepreg fabric and laminate from the same
JPH0238026A (en) Drawing method for fiber reinforced plastic
JP3317358B2 (en) Composite reinforcing fiber material impregnated with thermoplastic resin
JP2581107B2 (en) Knitted fabric for composite molding
JP3882274B2 (en) Molding materials for fiber reinforced thermoplastic composites
JP6783882B2 (en) Manufacturing method of fiber reinforced resin molded body
JP6783883B2 (en) Base plate for obtaining fiber reinforced plastic molded body
KR960005469B1 (en) Conjugated for strand molding
JP3288302B2 (en) Continuous fiber reinforced thermoplastic prepreg sheet and molded product thereof
JP2531326B2 (en) Sheet material for molding fiber reinforced polyamide resin