WO1999031607A1 - Method for developing semiconductor integrated circuit device - Google Patents

Method for developing semiconductor integrated circuit device Download PDF

Info

Publication number
WO1999031607A1
WO1999031607A1 PCT/JP1997/004619 JP9704619W WO9931607A1 WO 1999031607 A1 WO1999031607 A1 WO 1999031607A1 JP 9704619 W JP9704619 W JP 9704619W WO 9931607 A1 WO9931607 A1 WO 9931607A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
semiconductor integrated
integrated circuit
design
circuit device
Prior art date
Application number
PCT/JP1997/004619
Other languages
French (fr)
Japanese (ja)
Inventor
Isao Shimizu
Masayuki Satou
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2000539433A priority Critical patent/JP3971104B2/en
Priority to PCT/JP1997/004619 priority patent/WO1999031607A1/en
Publication of WO1999031607A1 publication Critical patent/WO1999031607A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3183Generation of test inputs, e.g. test vectors, patterns or sequences
    • G01R31/318342Generation of test inputs, e.g. test vectors, patterns or sequences by preliminary fault modelling, e.g. analysis, simulation
    • G01R31/318357Simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3183Generation of test inputs, e.g. test vectors, patterns or sequences
    • G01R31/318307Generation of test inputs, e.g. test vectors, patterns or sequences computer-aided, e.g. automatic test program generator [ATPG], program translations, test program debugging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/32Circuit design at the digital level
    • G06F30/33Design verification, e.g. functional simulation or model checking

Definitions

  • the present invention relates to a semiconductor integrated circuit device design and test design technique, and more particularly to a technique that enables a test design to be started from an upstream side of a semiconductor integrated circuit device design process.
  • the target specification (the target specification may mean the final specification of the product depending on the product manufactured using the present invention) is determined, and the logic design and the circuit design are performed. And layout design etc. At this time, if there are past design assets, they are used. In the design process, a logic simulation or a circuit simulation is performed to verify whether or not the design target specification is satisfied.
  • a prototype of the semiconductor integrated circuit device is next produced, and the function of the prototyped semiconductor integrated circuit device is actually verified using a tester. According to the terminal arrangement and the number of terminals of the semiconductor integrated circuit device, the device and the test device are connected via a test board. If the design target specification has not been achieved in the device test, modify the circuit design of the semiconductor integrated circuit device to achieve the target specification. After that, mass production of the semiconductor integrated circuit device starts.
  • test design it is necessary to design the test board and design a test program for operating the test.
  • test process for test design starts after a device designer creates a test specification.
  • a test process has not been performed in parallel with a semiconductor integrated circuit device design process.
  • test specifications were created after the circuit design of the device was completed, and test board / test program design was started based on the test specifications.
  • the mainstream of the series design work is to start the test design after completing the circuit design, so in the test design process, the designer decided on the test that was decided for mass production testing.
  • a test engineer prepares a test board for the specifications by creating a test program and debugging the software. It was common practice to debug a program on a test screen. In other words, along with the evaluation of the prototype device, the evaluation of the test program and the test board were also performed using the test equipment.
  • the defect was either the prototype device, test program, or test board.
  • the present inventor has clarified that there is a case where it is difficult to identify whether the problem is caused by the problem or not, and that the development period of the semiconductor integrated circuit device including the test design cannot be shortened.
  • the present inventor has proposed a semiconductor integration by parallelizing test design and device design. I found a new idea to shorten the development period of integrated circuit devices overall and improve development efficiency.
  • An object of the present invention is to provide a method for developing a semiconductor integrated circuit device capable of shortening the entire development period of a semiconductor integrated circuit device and improving development efficiency by parallelizing a test design and a device design. To do so.
  • Another object of the present invention is to provide a semiconductor integrated circuit device development system capable of shortening the development period of a semiconductor integrated circuit device as a whole from the viewpoint of a test design process.
  • a method for developing a semiconductor integrated circuit device is based on a first process for generating a device model in which functions of a semiconductor integrated circuit device are modeled in a function description language so as to satisfy a target specification, and based on the device model.
  • a second process for designing a circuit of a semiconductor integrated circuit device and in parallel with the second process, a device model is simulated together with a test model in which test items corresponding to the target specifications are modeled.
  • a third process of performing the design The device model whose function is described satisfies the target specification of the semiconductor integrated circuit device to be developed.This device model is simulated together with the test model, and based on the simulation result, it is determined whether the device model satisfies the target specification.
  • the validity of the test model for example, the validity of the test program or the test board design for connecting the test device and the semiconductor device can be verified. Before completing, proceed with the test design. It becomes possible.
  • the first processing includes: a first step of defining an input / output state of each external terminal corresponding to each external terminal of the semiconductor integrated circuit device so as to satisfy a target specification of the semiconductor integrated circuit device; A second step of dividing the device into a plurality of functional modules, defining the internal terminals of each functional module, and defining the input / output state of each internal terminal so that each functional module satisfies the target specification;
  • the input / output state of the external terminal defined in the first step is given, the coupling state of the internal terminal between the respective functional modules is defined so as to satisfy the target specification of the semiconductor integrated circuit device, and the device Generating a model.
  • the size of the division of the functional module is related to the simulation time when verifying whether the divided functional module satisfies the target specification. The larger the larger, the shorter the time required for verification, and the smaller the smaller, the more detailed the function. Can be defined. Which one to use can be determined according to whether the semiconductor integrated circuit device is a digital circuit, an analog circuit, a digital / analog mixed circuit, or depending on the degree of attention. .
  • the first processing in a more detailed aspect is performed by an eye of the semiconductor integrated circuit device.
  • the functional module A third step of verifying whether the target specification is satisfied, and a step of repeating the adjustment of the target specification and the third step for the functional module that does not satisfy the target specification in the third step until the target specification is satisfied.
  • the definition of the function module, the definition of the input / output state of the external terminal and the internal terminal, and the coupling between the internal terminals The device model can be generated based on the definition.
  • the device model includes a chip function description data relating to a function to be realized in a chip of a semiconductor integrated circuit device and an electric characteristic of a package which accommodates the chip and forms an electrical connection with the chip. It can be formed by both package function description data and the former. For example, when the inductance component, the capacitance component, and the like parasitic on the bonding wires of the package are considered in advance, the device model is described by both the chip function description data and the package function description data. To form
  • the test setup model includes test setup function description data specifying a test setup hardware by a function description, a test program for determining the operation of the tester for each test item, a test setup and a semiconductor integrated circuit. It can be formed based on the test board design data that specifies the test board circuit configuration for realizing the connection with the device. At this time, as described above, in the test design, the test program and the test board are designed by reflecting the simulation result in the test model.
  • the method for developing a semiconductor integrated circuit device further includes a fourth process for generating a date and time for specifying a layout of the semiconductor integrated circuit device based on the circuit description data, and a process for generating the date and time based on the date and time.
  • a fifth process of mounting the manufactured semiconductor integrated circuit device on the test board through the test board, operating the test board using the test program, and performing an actual test. Can be included.
  • a development system for a semiconductor integrated circuit device generates a device model in which functions of the semiconductor integrated circuit device are modeled by a function description language so as to satisfy a target specification, and furthermore, the semiconductor integrated circuit device is developed based on the device model.
  • Device design means for designing the circuit; and test design means for performing a test design for testing the semiconductor integrated circuit device.
  • the test design means functions as a first data processing means for inputting the device model and supporting circuit design of a test board for connecting a tester to a semiconductor integrated circuit device, and a hardware unique to a test board.
  • Second data processing means for supporting the design of a test program for verifying necessary test items based on the test function description data specified by the description and the device model, and the test function description Based on the data, the test program, and the design data of the test board, a test item model that models test items corresponding to the target specification is configured, and the test item model and the device model are integrated to perform simulation. And a third data processing means for performing the above-mentioned, and before completing the circuit design by the test design means, verifying whether or not the device model satisfies a target specification based on the simulation result. This enables verification of test board design data and test programs.
  • FIG. 1 is an explanation schematically showing a method of developing a semiconductor integrated circuit device according to the present invention.
  • FIG. 2 is a flowchart showing an example of a method for developing a semiconductor integrated circuit device.
  • FIG. 3 is a flowchart showing a comparative example in which design of a test board and a test program is started after circuit design of a semiconductor integrated circuit device is completed.
  • FIG. 4 is an explanatory diagram showing an example of a divided functional module and an example of a hardware description of the functional module in HDL.
  • FIG. 5 is a conceptual diagram showing a state in which a semiconductor integrated circuit device is mounted on a test board.
  • FIG. 6 is an explanatory diagram showing a virtual test setup which is an example of the test design means.
  • Fig. 7 is an explanatory diagram of an example of data flow in system design and function design.
  • FIG. 8 is an explanatory diagram of an example of a data flow in circuit design.
  • FIG. 9 is an explanatory diagram of an example of a data flow when designing a test program and a test board while performing a virtual test using the virtual test server.
  • FIG. 10 is an explanatory diagram of an example of a data flow accompanying the design of the user board.
  • Fig. 11 is an explanatory diagram of an example of a test board design method using a virtual test board.
  • FIG. 12 is an explanatory diagram of an example of a user board design method using a device model.
  • FIG. 13 is an explanatory diagram of an example of a method of verifying a semiconductor integrated circuit device in which a part of the semiconductor integrated circuit device on a user board is subjected to circuit simulation.
  • a computer system such as a workstation is used.
  • a device design means 1 and a test design means 2 are constituted by the operation program.
  • the device design means 1 and the test design means 2 are configured by separate combination systems.
  • the device design means 1 performs system design, function design, circuit design, and rate design of a semiconductor integrated circuit device based on target specifications.
  • system design a semiconductor integrated circuit device is divided into functional modules of an appropriate size.
  • function design the functions of a semiconductor integrated circuit device are described as a set of function modules in a function description language (for example, HDL Description Language): Generates a device model modeled in the hardware description language).
  • a prototype of the wafer is produced by the wafer process, and a probe test (P test) is performed on the prototype, followed by an assembly process to assemble (package) the prototype device.
  • This prototype device is subjected to product debugging (final inspection), the results of the debugging are fed back to the device design, and finally, mass production of semiconductor integrated circuit devices is started.
  • the mass-produced semiconductor integrated circuit devices are tested at mass production test 3 and shipped.
  • the test design means 2 performs test design for testing a semiconductor integrated circuit device.
  • a test board that supports the design of a test program for debugging for P inspection and final inspection, a test program for mass production testing for mass production testing, and a connection between the testing and semiconductor integrated circuit devices. Used for design.
  • the result of the functional design of the semiconductor integrated circuit device is given to the test design means 2. That is, function description data of a semiconductor integrated circuit device represented by the device model is given. Based on this, the test design means 2 generates a test model that models test items corresponding to the target specification, and simulates a device model together with the test model to perform test design. Do. The device model in which the function is described satisfies the target specification of the semiconductor integrated circuit device to be developed.This device model is simulated together with the test model, and based on the simulation results, it is determined whether the device model satisfies the target specification.
  • test model By determining the validity of the test model, the validity of the test model, for example, whether the design of the test program or the test board is valid, can be verified, and the test design can proceed from the functional design stage. As shown in Fig. 1, test design can be completed by the P test stage. Therefore, The development period of the semiconductor integrated circuit device can be shortened as a whole, and the development efficiency can be improved.
  • the function description data of the semiconductor integrated circuit device represented by the device model as a result of the function design can be provided to the user of the semiconductor integrated circuit device.
  • the device model is a model of the functions of a semiconductor integrated circuit device as a set of the above-mentioned functional modules in a function description language, and satisfies the target specifications.
  • the user can use the device model to design a system board or a circuit board (referred to as a user board) using the semiconductor integrated circuit device before the device is completed.
  • a device model that satisfies the target specification is simulated together with a model of the required user board, and it is verified whether the device model satisfies the target specification. I do.
  • the user board design can be advanced from an early stage while evaluating the user board. . Further, as described later with reference to FIG. 13, the user can request a design change for the semiconductor device at an early stage so as to optimize the user board.
  • FIG. 2 is a flowchart illustrating an example of a method for developing a semiconductor integrated circuit device.
  • steps S1 to S5 are a first process for generating a device model in which the functions of the semiconductor integrated circuit device are modeled in a function description language so as to satisfy a target specification.
  • steps S6 to S8 are a second process for performing circuit design of the semiconductor integrated circuit device based on the device model.
  • steps S20 to S23 a test design is performed by simulating a device model together with a test model that models test items corresponding to the target specifications in parallel with the second processing. This is the third process.
  • Steps S30 to S37 are a board design process by the user.
  • Steps S1 and S2 are not particularly limited, but fall under the category of system design.
  • the target specification of the semiconductor integrated circuit device (hereinafter, also simply referred to as IC) is determined.
  • the input / output state of each external terminal is defined corresponding to each external terminal of the semiconductor integrated circuit device so as to satisfy the target specification of the semiconductor integrated circuit device.
  • the semiconductor integrated circuit device is divided into a plurality of functional modules. The size of the functional module division is related to the simulation time when verifying whether the divided functional modules satisfy the target specifications.The larger the size, the shorter the verification time, and the smaller the size, the more detailed the function. Can be defined. Which one to use can be determined depending on whether the semiconductor integrated circuit device is a digital circuit, an analog circuit, a digital / analog mixed circuit, or the like, or depending on the degree of attention.
  • steps S3 and S4 the internal terminals of each functional module are defined, and the input / output state of each internal terminal is defined so that each functional module satisfies the target specification.
  • the device model is generated by defining the coupling state of the internal terminals between the functional modules so as to satisfy the target specification of the semiconductor integrated circuit device when the input / output state of the external terminal is given.
  • step S2 input / output of each external terminal is made corresponding to each external terminal of the semiconductor integrated circuit device so as to satisfy the target specification of the semiconductor integrated circuit device.
  • the state is defined, and the semiconductor integrated circuit device is defined by dividing it into a plurality of functional modules.
  • the input / output status of the internal terminals of each function module Is defined, and a functional simulation of the functional module is performed using the defined input / output state to verify whether the functional module satisfies the target specification (S4).
  • S3 target specification of the functional module until each functional module satisfies the target specification
  • S4 perform simulation
  • the connection of the internal terminals between the function modules is defined, the input / output state of the external terminals defined in step S2 is given, and the simulation is performed. Verify whether the target specifications of the integrated circuit device are satisfied (S4). If the target specification of the semiconductor integrated circuit device is not satisfied, the simulation is repeated by adjusting the target specification of the desired functional module until the target specification of the semiconductor integrated circuit device is satisfied (S4).
  • a device model is generated based on the definition of the function module, the definition of the input / output state of the external and internal terminals, and the definition of the connection between the internal terminals.
  • the device model includes a chip function description data relating to a function to be realized in a chip of a semiconductor integrated circuit device and an electric characteristic of a package which accommodates the chip and forms an electrical connection with the chip. It can be formed by both the package function description data and the former. For example, when the inductance component, the capacitance component, and the like that are parasitic on the bonding wires of the package are considered in advance, the device model is determined by both the chip function description data and the package function description data. Form.
  • Such a definition of the device model satisfies the target specification of the semiconductor integrated circuit device in terms of the input / output state of the external terminal and the internal terminal. Specifications or test items will be given.
  • Such a device model is given to the test design means 2, and design of a test board test program is started based on the description of the device model (S21). Note that the number of terminals and the terminal functions are specified from the target specifications of the semiconductor integrated circuit device, and these often do not depend on the simulation result of step S4.
  • These basic target specifications are given to the test design means 2 in advance, and the test board element constants, that is, the number of used terminals and their terminal functions are extracted from the given target specifications (S20). The obtained data is given to the process of step S21 as a basic test board design data.
  • test design can proceed in parallel with circuit design in step S5 and subsequent steps.
  • the above device model is simulated together with the test model, and whether or not the device model satisfies the target specification is determined from the simulation results.
  • Validity for example, the validity of the test program or test board design can be verified from the functional design stage.
  • the test setup model includes a test setup function description data that specifies a test setup hardware by a function description, a test program for determining a test setup operation for each test item, and a circuit configuration of a test board. It can be formed based on the specified test board design data.
  • the test design means 2 proceeds with the design of the test program and the test board by reflecting the simulation results in the test model.
  • circuit design the design target specifications are satisfied at the circuit level by repeating circuit design 'modification (S6) and circuit simulation (S7).
  • circuit design is completed (S8), the result is reflected in the test design (S22). For example, if the driving capability of the external output buffer circuit of a semiconductor integrated circuit device is changed to be smaller than the original, it is necessary to change the driving capability of the relay amplifier for driving relatively long wiring on the test board. Because it becomes. In some cases, it is necessary to eliminate dynamic characteristic changes such as voltage reflection.
  • the test board is prototyped (S23).
  • the layout design of the semiconductor integrated circuit device is performed, and the semiconductor integrated circuit device is prototyped (S9).
  • the prototyped semiconductor integrated circuit device is connected to the test board via the test board thus prepared, and the test board is operated using the test program generated in the test design.
  • the verification is performed by operating the semiconductor integrated circuit device (S10).
  • the test board and the test program are in a state of high perfection because the virtual test is performed in step S21 and the correction is performed in step S22. Therefore, in the device test stage of step S10, if there is any inconvenience in the test results, the cause of the failure of the device can be pointed out first, thereby improving the test reliability.
  • it is most effective to verify the dynamic characteristics such as voltage reflection in step S10, which is the final verification for the test design.
  • the device model is also provided to a user.
  • the user can design the board of the user's actual system based on the description of the device model (S31).
  • the number of terminals and their functions are specified from the target specifications of the semiconductor integrated circuit device, and they often do not depend on the simulation result of step S4. Therefore, in this description, these basic target specifications are used. Is also given to the user, and from the given target specification, semiconductor integration
  • the number of terminals used for mounting the circuit device on the user board and their terminal functions are extracted (S30), and the extracted data is given to the process of step S31 as a basic design of the user board.
  • the user can proceed with the user board design in parallel with the circuit design by the semiconductor manufacturer.
  • the device model is simulated together with the model of the user board, and whether or not the device model satisfies the target specification is determined based on the simulation result.
  • the validity of the model can be verified from the functional design stage. Therefore, the user can proceed with the design of the user board by reflecting the verification result from the function design stage of the semiconductor integrated circuit device based on the user's skill.
  • the result is provided to the user.
  • the user can reflect the result of the circuit design on the design of the user board (S32). For example, when the driving capability of the external output buffer circuit of the semiconductor integrated circuit device is changed to be smaller than the initial one, it is also possible to make a correction to insert a relay amplifier or the like in the middle of the signal wiring on the user board. In some cases, it is necessary to eliminate dynamic characteristic changes such as voltage reflection.
  • the user can start designing the user board before providing the prototype of the semiconductor integrated circuit device. After the design of the user board is completed, a prototype of the user board is manufactured. As is clear from Fig. 2, the prototype of the user board can be completed almost at the same time as the acquisition of the prototype of the semiconductor integrated circuit device. Therefore, the user can obtain a prototype of the semiconductor integrated circuit device immediately after producing the prototype of the user board, incorporate the prototype into the user board, and determine whether the semiconductor integrated circuit device achieves the target specification of the user system. It can be verified (S35). By referring to the verification result, if necessary, tuning such as adjustment of circuit elements on the user board can be performed (S36).
  • the user board is in a highly completed state because the virtual test in step S31 and the correction in step S32 are performed. Therefore, the verification in step S35 can be performed efficiently, and the period until mass production (S37) of the user board can be shortened.
  • test design in the method of starting test design such as a test board and a test program after circuit design of a semiconductor integrated circuit device is completed, test design must be performed from the upstream side of the circuit design. Cannot be done. Therefore, when verifying the achievement of the target specifications using a prototyped semiconductor integrated circuit device, there is not enough time to complete the design of the test board test program. Test program and test board cannot be verified.
  • FIG. 4 shows an example of the functional module divided in step S2 and an example of a hardware functional description of the functional module by HDL.
  • FIG. 5 shows a conceptual diagram of a state in which a semiconductor integrated circuit device is mounted on a test board.
  • 5 is a test board and 6 is a semiconductor package. It is an integrated circuit device. Terminals for connection to the test board are arranged on the periphery of the test board 5, and the terminals of the semiconductor integrated circuit device 6 are connected to corresponding terminals of the test board via wiring and circuit elements according to their input / output functions. Is done.
  • the circuit elements are a relay amplifier for driving the wiring load of the test board, a capacitance element for preventing oscillation, and a resistance element for preventing voltage reflection.
  • FIG. 6 shows a virtual test evening (hereinafter referred to as virtual test evening 2) which is an example of the test designing means 2.
  • the virtual test system 2 is configured on a convenience store system such as a workstation, and includes a simulator 14, a design environment tool 13, a virtual test environment tool 11, a test board design environment module 10, and Has test pattern processing and conversion tool 15 According to this example, each tool constitutes a data processing means by hardware of the contribution system and an application program.
  • For virtual test 2 input the test specifications selected in the system design and the function description data of the device obtained by the device design means 1.
  • the test board design environment tool 10 supports a circuit design of a test board for connecting a test board and a semiconductor integrated circuit device based on the device model and the like.
  • the virtual test environment tool 11 includes a plurality of modules 12 that generate test function specific hardware function description codes such as device power supply, DC measurement system, pin electronics, arbitrary waveform generation, and frequency measurement. Inserted.
  • the virtual test environment tool 11 supports the design of a test program based on the information generated by the module 12, the device model, the test specifications, and the like. That is, it supports the design of a test program for verifying necessary test items based on test function description data that specifies the hardware specific to the test based on the function description and the device model.
  • the design environment tool 13 is a tool for realizing a software test, and includes a device specified by a device model and a circuit of a test board obtained by the test board design environment tool 10.
  • the test board specified from the design day and the tester are integrated in the function description, in other words, integrated in software, to construct a test environment. That is, based on the test setup function description data, the test program and the design data of the test board, a test setup model that models test items corresponding to the target specifications is constructed, and the tester model is configured. And the device model.
  • Simulate overnight 14 Simulate test items in the built test environment.
  • the test pattern processing / conversion tool 15 is a tool that converts or corrects event pattern test pattern data on a simulation into patterns on the time axis that can be used in testing.
  • a test program, a circuit design data of a test board, and a test pattern are generated by the virtual test 2.
  • the virtual tester 2 completes the test board design, test program, and test program to some extent in parallel with the circuit design, in other words, before the device prototype is completed. Can be.
  • Fig. 7 shows an example of the data flow in system design and functional design.
  • reference numeral 20 denotes a tool for functional design and circuit design operated on a computer system such as a workstation, and a semiconductor integrated circuit is drawn by drawing a diagram combining symbols on a screen.
  • a large number of symbols are stored in the symbol library 21, and graphics predefined using the symbols are stored in the graphic library 22.
  • Netlist 23 stores connection information for each figure.
  • the function design and circuit design tools 20 are provided with package element constants such as the number of external terminals of the semiconductor integrated circuit device package, target specifications of the semiconductor integrated circuit device, and the like.
  • a functional model (device model) 24 of the entire semiconductor integrated circuit device can be generated as a set of functional modules.
  • FIG. 8 shows an example of a data flow in circuit design.
  • the functional design and circuit design tool 20 receives the device model 24 and the target specification, performs circuit design and simulation based on this, and repeats the operation until the target specification is satisfied. As a result, circuit design data 25 is obtained.
  • FIG. 9 shows an example of a data flow when a test program and a test board are designed while performing a virtual test using the virtual test server 2.
  • the virtual test environment 2 test board design environment tool and virtual test environment tool, etc. enable test design by drawing a figure that combines symbols on the screen. A large number of symbols are stored in the symbol library 21, and graphics predefined using the symbols are stored in the graphics library 22.
  • Netlist 23 stores connection information for each figure. For virtual test 2, test board element constants, device model 24, target specifications, etc. are input, and basic design data for the test board is generated based on these.
  • test program and test board design data 28 in which bugs are corrected are obtained.
  • FIG. 10 shows an example of a data flow accompanying the design of the user board.
  • Reference numeral 30 denotes a design tool used for designing a user board.
  • the design tool 30 enables functional design and circuit design by drawing a figure combining symbols on the screen. A large number of symbols are stored in the symbol library 31, and graphics predefined using the symbols are stored in the graphics library 32. Net list 33 stores connection information of each figure.
  • the design tool 30 inputs the device constants of the user board, the device model, the target specifications of the user board, etc., constructs a test environment integrating the user board model and the device model, and executes simulation of the device and the test board by simulation. Is evaluated.
  • Figure 11 shows an example of a test board design method using virtual test equipment 2.
  • the semiconductor integrated circuit device As a DUT (Device Under Test), but also the circuit of the input / output interface circuit of the test board between the test device and the semiconductor integrated circuit device Device constants (inductance, capacitance, etc.) must be taken into account.
  • the above-mentioned element constant is assumed. Making such an assumption, the input board of the test board coupled to the input of the semiconductor integrated circuit device as the DUT and the test board coupled to the output of the semiconductor integrated circuit device as the DUT A circuit simulation is performed for the output interface circuit, and a functional simulation is performed for the semiconductor integrated circuit device as the DUT.
  • FIG. 12 shows an example of a user board design method using a device model.
  • the circuit element constants inductance, capacitance, etc.
  • the above circuit element constants are assumed. With such assumptions, circuit simulation is performed on the input peripheral circuit coupled to the input of the semiconductor integrated circuit device and the output peripheral circuit coupled to the output of the semiconductor integrated circuit device. A function simulation will be performed for this.
  • the device constant is corrected, and the design of the input peripheral circuit and the output peripheral circuit on the user board is changed.
  • Fig. 13 shows an example of a method of verifying a semiconductor integrated circuit device in which a part of the semiconductor integrated circuit device on a user board is subjected to circuit simulation. Contrary to FIG. 12, the input circuit and the output circuit of the semiconductor integrated circuit device are subjected to circuit simulation, and the other parts of the semiconductor integrated circuit device are subjected to functional simulation. If the simulation waveforms of the input circuit and output circuit of the semiconductor integrated circuit device deviate significantly from the ideal waveform, it is necessary to change the element constants of the transistors constituting the input circuit inside the semiconductor integrated circuit device become. Such a simulation is performed at the circuit design stage using device capabilities. Because it can be clarified, it is easy to change the design inside the semiconductor integrated circuit device in order to obtain good compatibility with the user system.
  • the tools that make up the virtual test are not limited to the above description, and can be changed as appropriate.
  • the circuit scale of the semiconductor integrated circuit device is small, or when the circuit configuration is simple, it is possible to generate a device model without dividing into a plurality of functional modules.
  • the method for developing a semiconductor integrated circuit device of the present invention can be applied not only to the development of a new device, but also to the improvement or extension of functions of an existing device. In this case, it goes without saying that the method of the present invention can be applied by diverting design resources accumulated in the past. Industrial applicability
  • the present invention is also applicable to logic LSIs, analog LSIs, analogs such as memories and microcomputers, etc. '' Widely applicable to the development of various types of semiconductor integrated circuit devices that are not limited to functions such as digital mixed LSI, shorten the overall development period of semiconductor integrated circuit devices, improve development efficiency, and are effective can do.

Abstract

A method for developing a semiconductor integrated circuit device comprising the first processing steps (S1 to S5) for generating a device model in which the functions of a semiconductor integrated circuit device to be developed are modeled using a function describing language in such a way as to meet the target specifications, the second processing steps (S6 to S8) for designing the circuit of the circuit device based on the device model, and the third processing steps (S21 to S22) for generating a tester model in which the test items corresponding to the target specifications are modeled in parallel with the second processing and for making test design by simulating the tester model and the device model. Since the device model in which the functions of the circuit device are described meets the target specifications of the circuit device, the appropriateness of the tester model, for example, the appropriateness of a test program or the design of a test board for connecting a tester to a semiconductor device can be verified by simulating both the device model and tester model and judging whether or not the device model meets the target specifications from the results of the simulation. Therefore, test design can be carried out before the circuit of the circuit device is designed.

Description

明 細 半導体集積回路デバイスの開発方法  Method of developing semiconductor integrated circuit device
技術分野 Technical field
本発明は、半導体集積回路デバイスの設計及びテス ト設計技術に係り、 半導体集積回路デバイスの設計工程の上流側からテス ト設計を開始可 能にする技術に関するものである。 背景技術  The present invention relates to a semiconductor integrated circuit device design and test design technique, and more particularly to a technique that enables a test design to be started from an upstream side of a semiconductor integrated circuit device design process. Background art
半導体集積回路デバイスを開発する場合、 目標仕様(目標仕様とは、 本発明を用いて製造された製品によってはその製品の最終仕様を意味 することもある。 ) を決定し、 論理設計、 回路設計及びレイァゥ ト設計 などを順次進めていく。 このとき、 過去の設計資産がある場合にはそれ を流用する。設計工程では、 論理シミユレーシヨンや回路シミユレ一シ ヨンを行なって、設計目標仕様を満足するかの検証が適宜行なわれる。 半導体集積回路デバイスの回路設計を一応完了すると、次に半導体集積 回路デバイスの試作を行ない、試作された半導体集積回路デバイスはテ ス夕を用いて実際に機能検証が行なわれる。半導体集積回路デバイスの 端子配列や端子数に応じて当該デバイスとテス夕とはテス トボ一ドを 介して接続される。デバイステス 卜において設計目標仕様が達成されて いない場合には半導体集積回路デバイスの回路設計を修正し、目標仕様 を達成させる。 その後、 当該半導体集積回路デバイスの量産が開始され る  When developing a semiconductor integrated circuit device, the target specification (the target specification may mean the final specification of the product depending on the product manufactured using the present invention) is determined, and the logic design and the circuit design are performed. And layout design etc. At this time, if there are past design assets, they are used. In the design process, a logic simulation or a circuit simulation is performed to verify whether or not the design target specification is satisfied. Once the circuit design of the semiconductor integrated circuit device is completed, a prototype of the semiconductor integrated circuit device is next produced, and the function of the prototyped semiconductor integrated circuit device is actually verified using a tester. According to the terminal arrangement and the number of terminals of the semiconductor integrated circuit device, the device and the test device are connected via a test board. If the design target specification has not been achieved in the device test, modify the circuit design of the semiconductor integrated circuit device to achieve the target specification. After that, mass production of the semiconductor integrated circuit device starts.
半導体集積回路デバイスを開発する場合、デバイスそれ自体の設計だ けでなく、デバイステストのためのテスト設計も行なわれなければなら ない。 テス ト設計では、 前記テス トボ一ドの設計、 そして、 テス夕を動 作させるためのテス トプログラムの設計などが必要である。 When developing a semiconductor integrated circuit device, not only the device itself must be designed, but also test design for device testing must be performed. Absent. In test design, it is necessary to design the test board and design a test program for operating the test.
一般に、 テス ト設計のためのテス ト工程は、 デバイス設計者がテス ト 仕様を作成してから開始されている。従来は、 半導体集積回路デバイス の設計工程に並行してテス ト工程を進めることは行なわれていなかつ た。 通常、 デバイスの回路設計を完了してから、 テス ト仕様が作成され、 それに基づいてテス トボードゃテス トプログラムの設計が開始されて いた。 このように、 回路設計を済ませてからテス ト設計に着手するとい う、 直列的な設計作業の進め方が主流であるから、 テス ト設計工程では、 設計者が量産テス夕用に決定したテス ト仕様に対し、テス ト技術者がテ ス トプログラムの作成とそのソフ トウエアデバッグを行うと共にテス トボ一ドを作成し、 試作デバィスとテス トボード (フィクチャ一ボ一ド とも称する)を含めてテス トプログラムのデバッグをテス夕一上で行う というのが一般的な手法であった。 すなわち、 試作デバイスの評価と共 に、 テス トプログラム、 及びテス トボ一ドの評価も、 テス夕を用いて併 せて行なわれていた。  In general, a test process for test design starts after a device designer creates a test specification. Conventionally, a test process has not been performed in parallel with a semiconductor integrated circuit device design process. Normally, test specifications were created after the circuit design of the device was completed, and test board / test program design was started based on the test specifications. In this way, the mainstream of the series design work is to start the test design after completing the circuit design, so in the test design process, the designer decided on the test that was decided for mass production testing. A test engineer prepares a test board for the specifications by creating a test program and debugging the software. It was common practice to debug a program on a test screen. In other words, along with the evaluation of the prototype device, the evaluation of the test program and the test board were also performed using the test equipment.
しかしながら、 試作デバイス、 テストプログラム、 及びテストボ一ド をテス夕を用いて一緒に評価していたのでは、不具合いがあった場合、 その不具合いが、 試作デバイス、 テストプログラム、 又はテストボード の何れに起因するかを特定するのが困難な場合も生じ、テスト設計を含 めて、半導体集積回路デバイスの開発期間を短縮できないという問題点 の有ることが本発明者によって明らかにされた。  However, if the prototype device, test program, and test board were evaluated together using a tester, if there was a defect, the defect was either the prototype device, test program, or test board. The present inventor has clarified that there is a case where it is difficult to identify whether the problem is caused by the problem or not, and that the development period of the semiconductor integrated circuit device including the test design cannot be shortened.
半導体集積回路デバイスの開発期間の短縮をテス ト設計の観点から 試みる場合、テス ト工程のみに注目して期間短縮と効率向上を図ろうと すれば、 部分改良に偏り大きな効果を期待できない。  When trying to shorten the development period of a semiconductor integrated circuit device from the viewpoint of test design, if only the testing process is focused on to reduce the period and improve efficiency, a large effect cannot be expected due to partial improvement.
本発明者は、テス ト設計とデバイス設計との並列化によって半導体集 積回路デバイスの開発期間を全体的に短縮すると共に開発効率を向上 させるという、 新規な着想を見出した。 The present inventor has proposed a semiconductor integration by parallelizing test design and device design. I found a new idea to shorten the development period of integrated circuit devices overall and improve development efficiency.
本発明の目的は、テス ト設計とデバイス設計との並列化によって半導 体集積回路デバイスの開発期間を全体的に短縮すると共に開発効率を 向上させることができる半導体集積回路デバイスの開発方法を提供す ることにある。  SUMMARY OF THE INVENTION An object of the present invention is to provide a method for developing a semiconductor integrated circuit device capable of shortening the entire development period of a semiconductor integrated circuit device and improving development efficiency by parallelizing a test design and a device design. To do so.
本発明の別の目的は、テスト設計工程の観点より半導体集積回路デバ イスの開発期間を全体的に短縮する事ができる半導体集積回路デバイ スの開発システムを提供することにある。  Another object of the present invention is to provide a semiconductor integrated circuit device development system capable of shortening the development period of a semiconductor integrated circuit device as a whole from the viewpoint of a test design process.
本発明の上記並びにその他の目的と新規な特徴は本明細書の以下の 記述と添付図面から明らかにされるであろう。 発明の開示  The above and other objects and novel features of the present invention will become apparent from the following description of the present specification and the accompanying drawings. Disclosure of the invention
本発明に係る半導体集積回路デバイスの開発方法は、目標仕様を満足 させるように半導体集積回路デバイスの機能を機能記述言語でモデル 化したデバイスモデルを生成する第 1処理と、前記デバイスモデルに基 づいて半導体集積回路デバイスの回路設計を行なう第 2処理と、前記第 2処理と並列的に、前記目標仕様に対応したテス ト項目をモデル化した テス夕モデルと共にデバイスモデルをシミュレ一シヨンしてテス ト設 計を行なう第 3処理とを含む。機能記述されたデバイスモデルは開発す べき半導体集積回路デバイスの目標仕様を満足しており、このデバイス モデルをテス夕モデルと共にシミュレーシヨンし、シミュレーション結 果からデバイスモデルが目標仕様を満足するか否かを判定することに より、 例えば、 テス夕モデルの妥当性、 すなわち、 テストプログラム、 或いはテス夕と半導体デバイスを接続するためのテス トボ一ドの設計 が妥当であるかを検証でき、 回路設計が完了する前に、 テス ト設計を進 めることが可能になる。 A method for developing a semiconductor integrated circuit device according to the present invention is based on a first process for generating a device model in which functions of a semiconductor integrated circuit device are modeled in a function description language so as to satisfy a target specification, and based on the device model. A second process for designing a circuit of a semiconductor integrated circuit device, and in parallel with the second process, a device model is simulated together with a test model in which test items corresponding to the target specifications are modeled. And a third process of performing the design. The device model whose function is described satisfies the target specification of the semiconductor integrated circuit device to be developed.This device model is simulated together with the test model, and based on the simulation result, it is determined whether the device model satisfies the target specification. By judging the validity of the test model, for example, the validity of the test program or the test board design for connecting the test device and the semiconductor device can be verified. Before completing, proceed with the test design. It becomes possible.
前記第 1処理は、前記半導体集積回路デバイスの目標仕様を満足する ように半導体集積回路デバイスの各外部端子に対応させて夫々の外部 端子の入出力状態を定義する第 1ステツプと、半導体集積回路デバイス を複数個の機能モジュールに分割すると共に個々の機能モジュールの 内部端子を定義して各機能モジュールが目標仕様を満足するように 夫々の内部端子の入出力状態を定義する第 2ステツプと、前記第 1ステ ップで定義された外部端子の入出力状態を与えたとき半導体集積回路 デバイスの目標仕様を満足するように前記夫々の機能モジュール相互 間の内部端子の結合状態を定義して前記デバイスモデルを生成する第 3ステップとを含むことができる。  The first processing includes: a first step of defining an input / output state of each external terminal corresponding to each external terminal of the semiconductor integrated circuit device so as to satisfy a target specification of the semiconductor integrated circuit device; A second step of dividing the device into a plurality of functional modules, defining the internal terminals of each functional module, and defining the input / output state of each internal terminal so that each functional module satisfies the target specification; When the input / output state of the external terminal defined in the first step is given, the coupling state of the internal terminal between the respective functional modules is defined so as to satisfy the target specification of the semiconductor integrated circuit device, and the device Generating a model.
このようなデバイスモデルの定義は、前記外部端子及び内部端子に関 する入出力状態という点で半導体集積回路デバイスの目標仕様を満足 し、 これは、 取りも直さず、 半導体集積回路デバイスに対するテスト仕 様若しくはテス ト項目を与えることになる。 したがって、前述のように、 このデバイスモデルをテス夕モデルと共にシミュレ一シヨンし、シミュ レーション結果からデバイスモデルが目標仕様を満足するか否かを判 定することにより、 前述の通り例えば、 テス トプログラムやテストボー ドの設計が妥当であるかを、 機能設計段階から検証できる。  The definition of such a device model satisfies the target specification of the semiconductor integrated circuit device in terms of the input / output state of the external terminal and the internal terminal. Or test items. Therefore, as described above, this device model is simulated together with the test model, and it is determined whether or not the device model satisfies the target specification from the simulation results. It is possible to verify whether the design of a test board or test board is appropriate from the functional design stage.
前記機能モジュールの分割の大きさは、分割された機能モジュールが 目標仕様を満足するかを検証するときのシミユレ一シヨン時間に関係 し、 大きいほど検証に要する時間は短く、 小さいほど詳細に機能を定義 できる。何れを採用するかは、 半導体集積回路デバイスがディジ夕ル回 路か、 アナログ回路か、 ディジタル 'アナログ混在回路か等に応じて決 定し、 或いは着目度合いの多少に応じて決定することができる。  The size of the division of the functional module is related to the simulation time when verifying whether the divided functional module satisfies the target specification.The larger the larger, the shorter the time required for verification, and the smaller the smaller, the more detailed the function. Can be defined. Which one to use can be determined according to whether the semiconductor integrated circuit device is a digital circuit, an analog circuit, a digital / analog mixed circuit, or depending on the degree of attention. .
更に詳しい態様の前記第 1処理は、前記半導体集積回路デバイスの目 標仕様を満足するように半導体集積回路デバイスの各外部端子に対応 させて夫々の外部端子の入出力状態を定義する第 1ステップと、半導体 集積回路デバイスを複数個の機能モジュールに分割して定義すると共 に個々の機能モジュールの内部端子の入出力状態を定義する第 2ステ ップと、第 2ステップで定義された入出力状態を用いて機能モジュール の機能シミュレ一ションを行なって機能モジュールが目標仕様を満足 するかを検証する第 3ステップと、第 3ステップで目標仕様を満足しな い機能モジュールに対してその目標仕様の調整と前記第 3ステップと を目標仕様を満足するまで繰り返す第 4ステップと、目標仕様が満足さ れた機能モジュール相互間の内部端子の結合を定義し前記ステップ 1 で定義された外部端子の入出力状態を与えてシミュレ一シヨンを行な い半導体集積回路デバイスの目標仕様を満足するか否かを検証する第The first processing in a more detailed aspect is performed by an eye of the semiconductor integrated circuit device. First step of defining the input / output state of each external terminal corresponding to each external terminal of the semiconductor integrated circuit device so as to satisfy the standard specifications, and defining the semiconductor integrated circuit device by dividing it into multiple functional modules Then, together with the second step of defining the input / output state of the internal terminal of each functional module, and performing the function simulation of the functional module using the input / output state defined in the second step, the functional module A third step of verifying whether the target specification is satisfied, and a step of repeating the adjustment of the target specification and the third step for the functional module that does not satisfy the target specification in the third step until the target specification is satisfied. Define the connection of the internal terminals between the four steps and the functional modules that satisfy the target specifications, and give the input / output status of the external terminals defined in step 1 above The verifying whether or not satisfy the target specifications of simulators one Chillon rows gastric semiconductor integrated circuit device Te
5ステップと、第 5ステップで目標仕様を満足しない場合に所望の機能 モジュールに対する目標仕様の調整と前記第 5ステップとを半導体集 積回路デバイス全体の目標仕様を満足するまで繰り返す第 6ステップ とを含むことができ、前記第 5ステツプにおいて目標仕様が満足された とき又は第 6ステップを経たとき、 機能モジュールの定義、 外部端子及 び内部端子の入出力状態に対する定義、及び内部端子相互間の結合定義 に基づいて前記デバイスモデルを生成することができる。 The fifth step and the sixth step of adjusting the target specification for a desired functional module when the target specification is not satisfied in the fifth step and repeating the fifth step until the target specification of the entire semiconductor integrated circuit device is satisfied. When the target specification is satisfied in the fifth step or after the sixth step, the definition of the function module, the definition of the input / output state of the external terminal and the internal terminal, and the coupling between the internal terminals The device model can be generated based on the definition.
前記デバイスモデルは、半導体集積回路デバイスのチップに実現すベ き機能に関するチップ機能記述デ一夕と、前記チップを収容して該チッ プと電気的な接続が形成されるパッケージの電気的特性に関するパッ ケージ機能記述デ一夕との双方又は前者によって形成することができ る。例えば、 パッケージのボンディングワイヤなどに寄生するィンダク タンス成分や容量成分等を予め問題視する場合には、前記チップ機能記 述デ一夕とパッケージ機能記述デ一夕との双方によってデバイスモデ ルを形成する。 The device model includes a chip function description data relating to a function to be realized in a chip of a semiconductor integrated circuit device and an electric characteristic of a package which accommodates the chip and forms an electrical connection with the chip. It can be formed by both package function description data and the former. For example, when the inductance component, the capacitance component, and the like parasitic on the bonding wires of the package are considered in advance, the device model is described by both the chip function description data and the package function description data. To form
前記テス夕モデルは、テス夕のハ一ドウヱァを機能記述によって特定 したテス夕機能記述データと、前記テス ト項目毎にテスタの動作を決定 するためのテス トプログラムと、テス夕と半導体集積回路デバイスとの 接続を実現するためのテス トボ一ドの回路構成を特定するテス トボー ド設計デ一夕とに基づいて形成することができる。 このとき、 前述のよ うに、 前記テスト設計では、 前記シミュレーション結果を前記テス夕モ デルに反映して前記テス トプログラム及びテス トボ一ドを設計するこ とになる。  The test setup model includes test setup function description data specifying a test setup hardware by a function description, a test program for determining the operation of the tester for each test item, a test setup and a semiconductor integrated circuit. It can be formed based on the test board design data that specifies the test board circuit configuration for realizing the connection with the device. At this time, as described above, in the test design, the test program and the test board are designed by reflecting the simulation result in the test model.
半導体集積回路デバイスの開発方法は更に、前記回路記述データに基 づいて半導体集積回路デバイスのレイァゥ トを特定するためのレイァ ゥトデ一夕を生成する第 4処理と、前記レイァゥ トデ一夕に基づいて製 造された半導体集積回路デバイスを前記テス トボ一ドを介して前記テ ス夕に装着し、該テス夕を前記テストプログラムを利用して動作させて、 実テス トを行なう第 5処理とを含むことができる。  The method for developing a semiconductor integrated circuit device further includes a fourth process for generating a date and time for specifying a layout of the semiconductor integrated circuit device based on the circuit description data, and a process for generating the date and time based on the date and time. A fifth process of mounting the manufactured semiconductor integrated circuit device on the test board through the test board, operating the test board using the test program, and performing an actual test. Can be included.
本発明による半導体集積回路デバイスの開発システムは、目標仕様を 満足するように半導体集積回路デバイスの機能を機能記述言語でモデ ル化したデバイスモデルを生成すると共に、デバイスモデルに基づいて 半導体集積回路デバイスの回路設計を行なうデバイス設計手段と、前記 半導体集積回路デバイスをテス 卜するためのテス ト設計を行なうテス ト設計手段とを有する。前記テスト設計手段は、 前記デバイスモデルを 入力し、テスタと半導体集積回路デバイスとを接続するためのテス トボ ―ドの回路設計を支援する第 1データ処理手段と、テス夕固有のハード ウェアを機能記述によって特定するテス夕機能記述データ及び前記デ バイスモデルに基づいて、必要なテス ト項目を検証するためのテストプ ログラムの設計を支援する第 2データ処理手段と、前記テス夕機能記述 データ、前記テストプログラム及び前記テストボードの設計データに基 づいて目標仕様に対応したテス ト項目をモデル化したテス夕モデルを 構成し、当該テス夕モデルと前記デバイスモデルとを統合してシミュレ ーシヨンを行う第 3データ処理手段とを含み、前記テスト設計手段によ る回路設計の完了前に、前記シミュレーション結果に基づいて前記デバ イスモデルが目標仕様を満足するか否かを検証することにより前記テ ス トボ一ドの設計データ及びテス トプログラムを検証可能にするもの である。 図面の簡単な説明 A development system for a semiconductor integrated circuit device according to the present invention generates a device model in which functions of the semiconductor integrated circuit device are modeled by a function description language so as to satisfy a target specification, and furthermore, the semiconductor integrated circuit device is developed based on the device model. Device design means for designing the circuit; and test design means for performing a test design for testing the semiconductor integrated circuit device. The test design means functions as a first data processing means for inputting the device model and supporting circuit design of a test board for connecting a tester to a semiconductor integrated circuit device, and a hardware unique to a test board. Second data processing means for supporting the design of a test program for verifying necessary test items based on the test function description data specified by the description and the device model, and the test function description Based on the data, the test program, and the design data of the test board, a test item model that models test items corresponding to the target specification is configured, and the test item model and the device model are integrated to perform simulation. And a third data processing means for performing the above-mentioned, and before completing the circuit design by the test design means, verifying whether or not the device model satisfies a target specification based on the simulation result. This enables verification of test board design data and test programs. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明に係る半導体集積回路デバイスの開発方法を概略的 に示す説明である。  FIG. 1 is an explanation schematically showing a method of developing a semiconductor integrated circuit device according to the present invention.
第 2図は半導体集回路デバイスの開発方法の一例を示すフローチヤ —トである。  FIG. 2 is a flowchart showing an example of a method for developing a semiconductor integrated circuit device.
第 3図は半導体集積回路デバイスの回路設計完了後にテス トボ一ド 及びテス トプログラムの設計を開始する比較例を示すフローチヤ一ト である。  FIG. 3 is a flowchart showing a comparative example in which design of a test board and a test program is started after circuit design of a semiconductor integrated circuit device is completed.
第 4図は分割された機能モジュールの一例と当該機能モジュールに 対する H D Lによるハードウェア記述の一例を示す説明図である。 第 5図はテス トボードに半導体集積回路デバイスを搭載した状態の 概念図である。  FIG. 4 is an explanatory diagram showing an example of a divided functional module and an example of a hardware description of the functional module in HDL. FIG. 5 is a conceptual diagram showing a state in which a semiconductor integrated circuit device is mounted on a test board.
第 6図はテス ト設計手段の一例である仮想テス夕を示す説明図であ る。  FIG. 6 is an explanatory diagram showing a virtual test setup which is an example of the test design means.
第 7図はシステム設計及び機能設計におけるデータフローの一例説 明図である。  Fig. 7 is an explanatory diagram of an example of data flow in system design and function design.
第 8図は回路設計におけるデータフローの一例説明図である。 第 9図は仮想テス夕を用いて仮想テス トを行ないながらテス トプロ グラムとテス トボードを設計するときのデータフローの一例説明図で ある。 FIG. 8 is an explanatory diagram of an example of a data flow in circuit design. FIG. 9 is an explanatory diagram of an example of a data flow when designing a test program and a test board while performing a virtual test using the virtual test server.
第 1 0図はユーザボ一ドの設計に伴うデータフローの一例説明図で ある。  FIG. 10 is an explanatory diagram of an example of a data flow accompanying the design of the user board.
第 1 1図は仮想テス夕を用いたテス トボードの設計手法の一例説明 図である。  Fig. 11 is an explanatory diagram of an example of a test board design method using a virtual test board.
第 1 2図はデバイスモデルを利用したユーザボ一ドの設計手法の一 例説明図である。  FIG. 12 is an explanatory diagram of an example of a user board design method using a device model.
第 1 3図はユーザボード上での半導体集積回路デバイスの一部を回 路シミユレーシヨンの対象とした半導体集積回路デバイスの検証方法 の一例説明図である。 発明を実施するための最良の形態  FIG. 13 is an explanatory diagram of an example of a method of verifying a semiconductor integrated circuit device in which a part of the semiconductor integrated circuit device on a user board is subjected to circuit simulation. BEST MODE FOR CARRYING OUT THE INVENTION
先ず、第 1図に基づいて本発明に係る半導体集積回路デバイスの開発 方法を概略的に説明する。  First, a method for developing a semiconductor integrated circuit device according to the present invention will be schematically described with reference to FIG.
半導体集積回路デバイスの開発には例えばワークステーションなど のコンピュータシステムを用いる。 このコンビュ一夕システムは、 その 動作プログラムによってデバイス設計手段 1 とテス ト設計手段 2を構 成する。デバイス設計手段 1とテスト設計手段 2とを別々のコンビユー 夕システムで構成することは当然可能である。  For the development of semiconductor integrated circuit devices, for example, a computer system such as a workstation is used. In this viewing system, a device design means 1 and a test design means 2 are constituted by the operation program. Naturally, it is possible to configure the device design means 1 and the test design means 2 by separate combination systems.
デバイス設計手段 1は、目標仕様に基づいて半導体集積回路デバイス のシステム設計、 機能設計、 回路設計、 及びレイァゥ ト設計を行なう。 システム設計では半導体集積回路デバイスを適当な大きさで機能モジ ユールに分割する。機能設計では、機能モジュールの集合として半導体 集積回路デバイスの機能を機能記述言語 (例えば H D L ( Hardware Description Language) :ハ一ドウエア記述言語) でモデル化したデバ イスモデルを生成する。 レイァゥト設計後、 ゥエーハプロセスによって ゥエーハが試作され、 それに対するプローブ検査 (P検) の後、 組立ェ 程を経て試作デバイスの組み立て (パッケージ) が行なわれる。 この試 作デバイスには製品デバッグ (終検) が施され、 デバッグの結果がデバ ィス設計にフィードバックされ、最後に半導体集積回路デバイスの量産 に移行される。量産された半導体集積回路デバイスは量産テス夕 3にて テストされ、 出荷される。 The device design means 1 performs system design, function design, circuit design, and rate design of a semiconductor integrated circuit device based on target specifications. In system design, a semiconductor integrated circuit device is divided into functional modules of an appropriate size. In function design, the functions of a semiconductor integrated circuit device are described as a set of function modules in a function description language (for example, HDL Description Language): Generates a device model modeled in the hardware description language). After the layout design, a prototype of the wafer is produced by the wafer process, and a probe test (P test) is performed on the prototype, followed by an assembly process to assemble (package) the prototype device. This prototype device is subjected to product debugging (final inspection), the results of the debugging are fed back to the device design, and finally, mass production of semiconductor integrated circuit devices is started. The mass-produced semiconductor integrated circuit devices are tested at mass production test 3 and shipped.
テス ト設計手段 2は、半導体集積回路デバイスをテス 卜するためのテ ス ト設計を行なう。例えば、 P検、 終検のためのデバッグ用のテストプ ログラムや、量産テス夕に対する量産テスト用のテストプログラムの設 計を支援し、 また、 テス夕と半導体集積回路デバイスとの接続を行なう テス トボードの設計に利用される。  The test design means 2 performs test design for testing a semiconductor integrated circuit device. For example, a test board that supports the design of a test program for debugging for P inspection and final inspection, a test program for mass production testing for mass production testing, and a connection between the testing and semiconductor integrated circuit devices. Used for design.
第 1図から明らかなように、テス ト設計手段 2には半導体集積回路デ バイスの機能設計の結果が与えられている。 すなわち、 前記デバイスモ デルで代表される半導体集積回路デバイスの機能記述データが与えら れている。 これを元に、 テスト設計手段 2は、 前記目標仕様に対応した テス ト項目をモデル化したテス夕モデルを生成し、該テス夕モデルと共 にデバイスモデルをシミユレ一シヨンしてテス ト設計を行なう。機能記 述されたデバイスモデルは開発すべき半導体集積回路デバイスの目標 仕様を満足しており、このデバイスモデルをテス夕モデルと共にシミュ レーシヨンし、シミュレーション結果からデバイスモデルが目標仕様を 満足するか否かを判定することにより、 テス夕モデルの妥当性、例えば、 テストプログラム、或いはテス トボ一ドの設計が妥当であるかを検証で き、 機能設計の段階からテス ト設計を進めることができる。図 1に示さ れるように、 P検段階までにテスト設計を一応完了できる。 したがって、 半導体集積回路デバイスの開発期間を全体的に短縮できると共に開発 効率を向上させることができる。 As is clear from FIG. 1, the result of the functional design of the semiconductor integrated circuit device is given to the test design means 2. That is, function description data of a semiconductor integrated circuit device represented by the device model is given. Based on this, the test design means 2 generates a test model that models test items corresponding to the target specification, and simulates a device model together with the test model to perform test design. Do. The device model in which the function is described satisfies the target specification of the semiconductor integrated circuit device to be developed.This device model is simulated together with the test model, and based on the simulation results, it is determined whether the device model satisfies the target specification. By determining the validity of the test model, the validity of the test model, for example, whether the design of the test program or the test board is valid, can be verified, and the test design can proceed from the functional design stage. As shown in Fig. 1, test design can be completed by the P test stage. Therefore, The development period of the semiconductor integrated circuit device can be shortened as a whole, and the development efficiency can be improved.
更に、機能設計の結果である前記デバイスモデルに代表される半導体 集積回路デバイスの機能記述デ一夕は、当該半導体集積回路デバイスの ユーザにも提供することができる。前述のようにデバイスモデルは、 前 記機能モジュールの集合として半導体集積回路デバイスの機能を機能 記述言語でモデル化したものであり、 目標仕様を満足している。ユーザ は、 当該デバイスモデルを用いて、 その半導体集積回路デバイスを用い るシステムボード若しくは回路ボード (ユーザボードと称する)の設計 を、 デバイス完成前に、 先行して進めることができる。 例えば、 前述の テスト設計の場合と同様に、所要のユーザボードをモデル化したものと 一緒に、 目標仕様を満足したデバイスモデルをシミユレ一シヨンし、 デ バイスモデルが目標仕様を満足するかを検証する。目標仕様を満足して いなければ、 ュ一ザボードのモデルに不都合が有り、 このようにしてュ —ザボードの評価を進めながらユーザボ一ドの設計を、早い段階から進 めることが可能になる。 更に、 ユーザは、 第 1 3図に基づいて後述する ように、ユーザボードに最適化できるように半導体デバイスに対する設 計変更の要求も早い段階で可能になる。  Further, the function description data of the semiconductor integrated circuit device represented by the device model as a result of the function design can be provided to the user of the semiconductor integrated circuit device. As described above, the device model is a model of the functions of a semiconductor integrated circuit device as a set of the above-mentioned functional modules in a function description language, and satisfies the target specifications. The user can use the device model to design a system board or a circuit board (referred to as a user board) using the semiconductor integrated circuit device before the device is completed. For example, similar to the test design described above, a device model that satisfies the target specification is simulated together with a model of the required user board, and it is verified whether the device model satisfies the target specification. I do. If the target specifications are not satisfied, there is a problem with the user board model, and thus the user board design can be advanced from an early stage while evaluating the user board. . Further, as described later with reference to FIG. 13, the user can request a design change for the semiconductor device at an early stage so as to optimize the user board.
第 2図には半導体集回路デバイスの開発方法の一例がフローチヤ一 トで示される。第 2図において、 ステップ S 1〜 S 5は、 目標仕様を満 足させるように半導体集積回路デバイスの機能を機能記述言語でモデ ル化したデバイスモデルを生成する第 1処理である。ステップ S 6〜 S 8は、前記デバイスモデルに基づいて半導体集積回路デバイスの回路設 計を行なう第 2処理である。ステップ S 2 0〜S 2 3は、 前記第 2処理 と並列的に、前記目標仕様に対応したテス ト項目をモデル化したテス夕 モデルと共にデバイスモデルをシミュレーションしてテス ト設計を行 なう第 3処理である。ステップ S 3 0〜 S 3 7は、 ユーザによるボ一ド 設計処理である。 FIG. 2 is a flowchart illustrating an example of a method for developing a semiconductor integrated circuit device. In FIG. 2, steps S1 to S5 are a first process for generating a device model in which the functions of the semiconductor integrated circuit device are modeled in a function description language so as to satisfy a target specification. Steps S6 to S8 are a second process for performing circuit design of the semiconductor integrated circuit device based on the device model. In steps S20 to S23, a test design is performed by simulating a device model together with a test model that models test items corresponding to the target specifications in parallel with the second processing. This is the third process. Steps S30 to S37 are a board design process by the user.
ステップ S 1, S 2は、 特に制限されないが、 システム設計の範疇に 属し、 ステップ S 1では、 半導体集積回路デバイス (以下単に I Cとも 記す) の目標仕様を決定する。 特に制限されないが、 ここでは、 前記半 導体集積回路デバイスの目標仕様を満足するように半導体集積回路デ バイスの各外部端子に対応させて夫々の外部端子の入出力状態を定義 する。ステップ S 2では半導体集積回路デバイスを複数個の機能モジュ —ルに分割する。機能モジュールの分割の大きさは、 分割された機能モ ジュールが目標仕様を満足するかを検証するときのシミユレ一ション 時間に関係し、 大きいほど検証に要する時間は短く、 小さいほど詳細に 機能を定義できる。何れを採用するかは、 半導体集積回路デバイスがデ イジタル回路か、 アナログ回路か、 ディジタル 'アナログ混在回路か等 に応じて決定し、或いは着目度合いの多少に応じて決定することができ る。  Steps S1 and S2 are not particularly limited, but fall under the category of system design. In step S1, the target specification of the semiconductor integrated circuit device (hereinafter, also simply referred to as IC) is determined. Although not particularly limited, here, the input / output state of each external terminal is defined corresponding to each external terminal of the semiconductor integrated circuit device so as to satisfy the target specification of the semiconductor integrated circuit device. In step S2, the semiconductor integrated circuit device is divided into a plurality of functional modules. The size of the functional module division is related to the simulation time when verifying whether the divided functional modules satisfy the target specifications.The larger the size, the shorter the verification time, and the smaller the size, the more detailed the function. Can be defined. Which one to use can be determined depending on whether the semiconductor integrated circuit device is a digital circuit, an analog circuit, a digital / analog mixed circuit, or the like, or depending on the degree of attention.
ステップ S 3、 S 4では、個々の機能モジュールの内部端子を定義し て各機能モジュールが目標仕様を満足するように夫々の内部端子の入 出力状態を定義すると共に、前記ステップ S 2で定義された外部端子の 入出力状態を与えたとき半導体集積回路デバイスの目標仕様を満足す るように前記夫々の機能モジュール相互間の内部端子の結合状態を定 義して、 前記デバイスモデルを生成する。  In steps S3 and S4, the internal terminals of each functional module are defined, and the input / output state of each internal terminal is defined so that each functional module satisfies the target specification. The device model is generated by defining the coupling state of the internal terminals between the functional modules so as to satisfy the target specification of the semiconductor integrated circuit device when the input / output state of the external terminal is given.
デバイスモデル生成工程を更に詳述すれば、 ステップ S 2で、 前記半 導体集積回路デバイスの目標仕様を満足するように半導体集積回路デ バイスの各外部端子に対応させて夫々の外部端子の入出力状態を定義 すると共に、半導体集積回路デバイスを複数個の機能モジュールに分割 して定義する。次いで、個々の機能モジュールの内部端子の入出力状態 を定義し、定義された入出力状態を用いて機能モジュールの機能シミュ レ一シヨンを行なって機能モジュールが目標仕様を満足するかを検証 する (S 4 ) 。 ステップ S 4で目標仕様を満足しない機能モジュールに 対して、 個々の機能モジュールが目標仕様を満足するまで、機能モジュ —ルの目標仕様を調整し ( S 3 ) 、 更にシミュレーションを行なう (S 4 ) 。個々の機能モジュールの目標仕様が満足さた後、 機能モジュール 相互間の内部端子の結合を定義し前記ステツプ S 2で定義された外部 端子の入出力状態を与えてシミュレーシヨンを行ない、今度は半導体集 積回路デバイスの目標仕様を満足するか否かを検証する ( S 4 ) 。 半導 体集積回路デバイスの目標仕様を満足しない場合に、半導体集積回路デ バイスの目標仕様を満足するまで、所望の機能モジュールの目標仕様を 調整してシミュレーションを繰り返す (S 4 ) 。 半導体集積回路デバイ スの目標仕様が満足されたとき、機能モジュールの定義、 外部端子及び 内部端子の入出力状態に対する定義、及び内部端子相互間の結合定義に 基づいてデバイスモデルが生成される。 The device model generation process will be described in more detail. In step S2, input / output of each external terminal is made corresponding to each external terminal of the semiconductor integrated circuit device so as to satisfy the target specification of the semiconductor integrated circuit device. The state is defined, and the semiconductor integrated circuit device is defined by dividing it into a plurality of functional modules. Next, the input / output status of the internal terminals of each function module Is defined, and a functional simulation of the functional module is performed using the defined input / output state to verify whether the functional module satisfies the target specification (S4). For the functional module that does not satisfy the target specification in step S4, adjust the target specification of the functional module until each functional module satisfies the target specification (S3), and perform simulation (S4). . After the target specifications of the individual function modules are satisfied, the connection of the internal terminals between the function modules is defined, the input / output state of the external terminals defined in step S2 is given, and the simulation is performed. Verify whether the target specifications of the integrated circuit device are satisfied (S4). If the target specification of the semiconductor integrated circuit device is not satisfied, the simulation is repeated by adjusting the target specification of the desired functional module until the target specification of the semiconductor integrated circuit device is satisfied (S4). When the target specification of the semiconductor integrated circuit device is satisfied, a device model is generated based on the definition of the function module, the definition of the input / output state of the external and internal terminals, and the definition of the connection between the internal terminals.
前記デバイスモデルは、半導体集積回路デバイスのチップに実現すベ き機能に関するチップ機能記述デ一夕と、前記チップを収容して該チッ プと電気的な接続が形成されるパッケージの電気的特性に関するパッ ケージ機能記述データとの双方又は前者によって形成することができ る。例えば、 パッケージのボンディングワイヤなどに寄生するィンダク 夕ンス成分や容量成分等を予め問題視する場合には、前記チップ機能記 述デ一夕とパッケージ機能記述デ一夕との双方によってデバイスモデ ルを形成する。  The device model includes a chip function description data relating to a function to be realized in a chip of a semiconductor integrated circuit device and an electric characteristic of a package which accommodates the chip and forms an electrical connection with the chip. It can be formed by both the package function description data and the former. For example, when the inductance component, the capacitance component, and the like that are parasitic on the bonding wires of the package are considered in advance, the device model is determined by both the chip function description data and the package function description data. Form.
このようなデバイスモデルの定義は、前記外部端子及び内部端子に関 する入出力状態という点では半導体集積回路デバイスの目標仕様を満 足し、 これは、 取りも直さず、 半導体集積回路デバイスに対するテスト 仕様若しくはテス ト項目を与えることになる。斯かるデバイスモデルは テス ト設計手段 2に与えられ、 デバイスモデルの記述を元に、 テストボ —ドゃテス トプログラムの設計が開始される ( S 2 1 ) 。 尚、 半導体集 積回路デバイスの目標仕様からその端子数及び端子機能が特定され、そ れらは、ステツプ S 4のシミユレ一ション結果には依存しない場合が多 いから、 ここでの説明では、 それら基本的な目標仕様は予めテスト設計 手段 2に与えられ、与えられた目標仕様からテス トボ一ドの素子定数、 すなわち、 使用端子数やそれらの端子機能が抽出され ( S 2 0 ) 、 抽出 されたデータはテス トボード設計基本デ一夕としてステツプ S 2 1の 処理に与えられる。 Such a definition of the device model satisfies the target specification of the semiconductor integrated circuit device in terms of the input / output state of the external terminal and the internal terminal. Specifications or test items will be given. Such a device model is given to the test design means 2, and design of a test board test program is started based on the description of the device model (S21). Note that the number of terminals and the terminal functions are specified from the target specifications of the semiconductor integrated circuit device, and these often do not depend on the simulation result of step S4. These basic target specifications are given to the test design means 2 in advance, and the test board element constants, that is, the number of used terminals and their terminal functions are extracted from the given target specifications (S20). The obtained data is given to the process of step S21 as a basic test board design data.
テスト設計手段 2では、ステップ S 5以降の回路設計に並行してテス ト設計を進めることができる。 テス ト設計では、 前述のように、 上記デ バイスモデルをテス夕モデルと共にシミユレ一シヨンし、シミユレーシ ョン結果からデバイスモデルが目標仕様を満足するか否かを判定する ことにより、 テス夕モデルの妥当性、 例えば、 テス トプログラムやテス トボ一ドの設計が妥当であるかを、 機能設計段階から検証できる。  In the test design means 2, test design can proceed in parallel with circuit design in step S5 and subsequent steps. In the test design, as described above, the above device model is simulated together with the test model, and whether or not the device model satisfies the target specification is determined from the simulation results. Validity, for example, the validity of the test program or test board design can be verified from the functional design stage.
前記テス夕モデルは、テス夕のハ一ドウヱァを機能記述によって特定 したテス夕機能記述データと、前記テス ト項目毎にテス夕の動作を決定 するためのテストプログラムと、テストボードの回路構成を特定するテ ストボード設計データとに基づいて形成することができる。このとき、 前述のように、 前記テスト設計手段 2では、 前記シミュレーション結果 を前記テス夕モデルに反映して前記テス トプログラム及びテス トボー ドの設計を進めていくことになる。  The test setup model includes a test setup function description data that specifies a test setup hardware by a function description, a test program for determining a test setup operation for each test item, and a circuit configuration of a test board. It can be formed based on the specified test board design data. At this time, as described above, the test design means 2 proceeds with the design of the test program and the test board by reflecting the simulation results in the test model.
回路設計では、 回路設計 '修正 ( S 6 ) と回路シミュレーション ( S 7 ) とを繰り返すことにより、 回路レベルで設計目標仕様を満足させる。 回路設計が完了すると (S 8 ) 、 その結果はテスト設計に反映される ( S 2 2 ) 。 例えば、 半導体集積回路デバイスの外部出力バッファ回路 の駆動能力が当初よりも小さく変更された場合、テス トボード上の比較 的長い配線を駆動するための中継アンプの駆動能力を変更したりする ことが必要になるからである。 また、 電圧反射などの動的な特性変化を 排除することが必要な場合も有る。 In circuit design, the design target specifications are satisfied at the circuit level by repeating circuit design 'modification (S6) and circuit simulation (S7). When the circuit design is completed (S8), the result is reflected in the test design (S22). For example, if the driving capability of the external output buffer circuit of a semiconductor integrated circuit device is changed to be smaller than the original, it is necessary to change the driving capability of the relay amplifier for driving relatively long wiring on the test board. Because it becomes. In some cases, it is necessary to eliminate dynamic characteristic changes such as voltage reflection.
テス トボードやテストプログラムの設計が完了されると ( S 2 2 )、 テストボードの試作が行なわれる ( S 2 3 ) 。 この間、 半導体集積回路 デバイスのレイァゥト設計が行なわれ、半導体集積回路デバイスが試作 される ( S 9 ) 。 試作された半導体集積回路デバイスは、 前記作成され たテストボ一ドを介してテス夕に接続され、前記テス ト設計で生成され たテス トプログラムを用いてテス夕を動作させ、 実際に、 試作された半 導体集積回路デバイスを動作させて検証が行なわれる ( S 1 0 ) 。 この 段階において、 テストボード及びテストプログラムに関しては、 ステツ プ S 2 1による仮想的なテス トゃステツプ S 2 2による修正が施され ているから、 完成度の高い状態にされている。 したがって、 ステップ S 1 0のデバイステストの段階では、 テス ト結果に不都合がある場合、 そ の原因としてデバイスの不良を真っ先に指摘でき、テストの信頼性向上 が達成される。 尚、 テストボードに関しては電圧反射等の動的特性に関 し、 ステップ S 1 0で検証することが最も効果的であり、 テス ト設計に 対する最終的な検証となる。  When the design of the test board and the test program is completed (S22), the test board is prototyped (S23). During this time, the layout design of the semiconductor integrated circuit device is performed, and the semiconductor integrated circuit device is prototyped (S9). The prototyped semiconductor integrated circuit device is connected to the test board via the test board thus prepared, and the test board is operated using the test program generated in the test design. The verification is performed by operating the semiconductor integrated circuit device (S10). At this stage, the test board and the test program are in a state of high perfection because the virtual test is performed in step S21 and the correction is performed in step S22. Therefore, in the device test stage of step S10, if there is any inconvenience in the test results, the cause of the failure of the device can be pointed out first, thereby improving the test reliability. For the test board, it is most effective to verify the dynamic characteristics such as voltage reflection in step S10, which is the final verification for the test design.
前記デバイスモデルはユーザにも提供される。ュ一ザは、 デバイスモ デルの記述を元に、ユーザの実システムのボード設計をすることができ る (S 3 1 ) 。 尚、 半導体集積回路デバイスの目標仕様からその端子数 及び端子機能が特定され、 それらは、 ステップ S 4のシミュレーション 結果には依存しない場合が多いから、 ここでの説明では、 それら基本的 な目標仕様もユーザに与えられ、 与えられた目標仕様から、 半導体集積 回路デバイスをユーザボードに搭載するための使用端子数やそれらの 端子機能が抽出され (S 3 0 ) 、 抽出されたデータはユーザボード設計 基本デ一夕としてステップ S 3 1の処理に与えられる。 The device model is also provided to a user. The user can design the board of the user's actual system based on the description of the device model (S31). The number of terminals and their functions are specified from the target specifications of the semiconductor integrated circuit device, and they often do not depend on the simulation result of step S4. Therefore, in this description, these basic target specifications are used. Is also given to the user, and from the given target specification, semiconductor integration The number of terminals used for mounting the circuit device on the user board and their terminal functions are extracted (S30), and the extracted data is given to the process of step S31 as a basic design of the user board.
第 2図より明らかなように、 ユーザは、 半導体メーカによる回路設計 に並行してユーザボードの設計を進めることができる。ユーザボード設 計では、 前述のように、 前記デバイスモデルをユーザボードのモデルと 共にシミユレ一ションし、シミユレーション結果からデバイスモデルが 目標仕様を満足するか否かを判定することにより、ユーザボードモデル の妥当性を機能設計段階から検証できる。 したがって、 ユーザは、 メ一 力による半導体集積回路デバイスの機能設計段階から、その検証結果を 反映してユーザボードの設計を進めることができる。  As is clear from FIG. 2, the user can proceed with the user board design in parallel with the circuit design by the semiconductor manufacturer. In the user board design, as described above, the device model is simulated together with the model of the user board, and whether or not the device model satisfies the target specification is determined based on the simulation result. The validity of the model can be verified from the functional design stage. Therefore, the user can proceed with the design of the user board by reflecting the verification result from the function design stage of the semiconductor integrated circuit device based on the user's skill.
回路設計が完了されると ( S 8 )、 その結果はユーザにも提供される。 ユーザは、回路設計結果をユーザボードの設計に反映することができる ( S 3 2 ) 。例えば、 半導体集積回路デバイスの外部出力バッファ回路 の駆動能力が当初よりも小さく変更された場合、ユーザボード上の信号 配線途中に中継アンプなどを挿入する修正を行なうことも可能である。 また、電圧反射などの動的な特性変化を排除することが必要な場合も有 る。  When the circuit design is completed (S8), the result is provided to the user. The user can reflect the result of the circuit design on the design of the user board (S32). For example, when the driving capability of the external output buffer circuit of the semiconductor integrated circuit device is changed to be smaller than the initial one, it is also possible to make a correction to insert a relay amplifier or the like in the middle of the signal wiring on the user board. In some cases, it is necessary to eliminate dynamic characteristic changes such as voltage reflection.
このように、 ユーザは、 半導体集積回路デバイスの試作品の提供に先 立って、ユーザボードの設計を開始できる。ユーザボ一ドの設計完了後、 ユーザボードの試作が行なわれる。第 2図より明らかなように、 ユーザ ボードの試作は、半導体集積回路デバイスの試作品の入手とほぼ同時期 に完了させることも可能になる。 したがって、 ユーザは、 ユーザボード の試作品を製作して直ぐに、半導体集積回路デバイスの試作品を入手で き、 これをユーザボードに組み込み、 半導体集積回路デバイスがユーザ システムの目標仕様を達成するかを検証することができる ( S 3 5 )。 検証結果を参照し、必要な場合にはユーザボードの回路素子の調整など のチューニングを行なうことができる ( S 3 6 ) 。 この段階において、 ユーザボードは、ステップ S 3 1による仮想的なテス トゃステップ S 3 2による修正が施されているから、 完成度の高い状態にされている。 し たがって、 ステップ S 3 5の検証を能率的に行なうことができ、 また、 ユーザボードの量産 (S 3 7 ) までの期間を短縮することができる。 第 3図の比較例に示されるように半導体集積回路デバイスの回路設 計完了後にテス トボード及びテス トプログラム等のテス ト設計を開始 する手法では、回路設計の上流側からテス ト設計を行なうことはできな い。 したがって、 試作された半導体集積回路デバイスを用いて目標仕様 の達成を検証するとき、テストボ一ドゃテストプログラムの設計を完了 させるには十分な時間がなく、 これによつて試作デバイスを用いて、 テ ストプログラム及びテストボ一ドを検証する事ができない。そのまま、 量産を開始し、前記テストボ一ドゃテス トプログラムを量産デバイスの テス 卜に用いれば、 不都合が生じたとき、 その原因がデバイスに有るの かテス トボードゃテス トプログラムに有るのかを一義的に判断できな くなり、 量産に支障を生ずることになる。 また、 試作デバイスを用いて テストボード及びテストプログラムの検証を行なおうとすれば、量産に 移行する時期が遅れてしまう。 同様に、 第 3図の手法では、 ユーザボー ドの設計も回路設計の完了後でなければ開始する事ができない。 Thus, the user can start designing the user board before providing the prototype of the semiconductor integrated circuit device. After the design of the user board is completed, a prototype of the user board is manufactured. As is clear from Fig. 2, the prototype of the user board can be completed almost at the same time as the acquisition of the prototype of the semiconductor integrated circuit device. Therefore, the user can obtain a prototype of the semiconductor integrated circuit device immediately after producing the prototype of the user board, incorporate the prototype into the user board, and determine whether the semiconductor integrated circuit device achieves the target specification of the user system. It can be verified (S35). By referring to the verification result, if necessary, tuning such as adjustment of circuit elements on the user board can be performed (S36). At this stage, the user board is in a highly completed state because the virtual test in step S31 and the correction in step S32 are performed. Therefore, the verification in step S35 can be performed efficiently, and the period until mass production (S37) of the user board can be shortened. As shown in the comparative example of Fig. 3, in the method of starting test design such as a test board and a test program after circuit design of a semiconductor integrated circuit device is completed, test design must be performed from the upstream side of the circuit design. Cannot be done. Therefore, when verifying the achievement of the target specifications using a prototyped semiconductor integrated circuit device, there is not enough time to complete the design of the test board test program. Test program and test board cannot be verified. If mass production is started as it is and the test board test program is used for mass production device tests, when an inconvenience occurs, it is unambiguous whether the cause is in the device or in the test board test program. This makes it difficult to judge the situation, which may hinder mass production. In addition, if a test device and test program are verified using a prototype device, the time to shift to mass production will be delayed. Similarly, in the method of Fig. 3, the design of the user board can only be started after the circuit design is completed.
第 4図には前記ステップ S 2で分割された機能モジュールの一例と、 その機能モジュールに対する H D Lによるハードウエアの機能記述の 一例が示される。同図に代表的に示された機能モジュールは分周回路 4 である。  FIG. 4 shows an example of the functional module divided in step S2 and an example of a hardware functional description of the functional module by HDL. The functional module typically shown in FIG.
第 5図にはテス トボードに半導体集積回路デバイスを搭載した状態 の概念図画示される。第 5図において 5はテストボード、 6は半導体集 積回路デバイスである。テス トボ一ド 5の周縁部分にはテス夕との接続 端子が配置され、半導体集積回路デバイス 6の端子はその入出力機能に 応じて、 テス夕の対応端子に配線や回路素子を介して結合される。 回路 素子は、 テス トボ一ドの配線負荷を駆動するための中継アンプ、 発振防 止用の容量素子、 電圧反射防止用の抵抗素子などとされる。 FIG. 5 shows a conceptual diagram of a state in which a semiconductor integrated circuit device is mounted on a test board. In Fig. 5, 5 is a test board and 6 is a semiconductor package. It is an integrated circuit device. Terminals for connection to the test board are arranged on the periphery of the test board 5, and the terminals of the semiconductor integrated circuit device 6 are connected to corresponding terminals of the test board via wiring and circuit elements according to their input / output functions. Is done. The circuit elements are a relay amplifier for driving the wiring load of the test board, a capacitance element for preventing oscillation, and a resistance element for preventing voltage reflection.
第 6図には前記テス ト設計手段 2の一例である仮想テス夕(仮想テス 夕 2と記す) が示される。 仮想テス夕 2は、 例えばワークステーション のようなコンビュ一夕システム上に構成され、 シミュレータ 1 4、 設計 環境ツール 1 3、 仮想テス ト環境ツール 1 1、 テス トボード設計環境ヅ —ル 1 0、 及びテス トパターン加工 ·変換ツール 1 5を有する。 この例 に従えば、 各ツールは、 コンビュー夕システムのハードウェアとアプリ ケーシヨンプログラムとによってデータ処理手段を構成する。仮想テス 夕 2は、システム設計で選られたテスト仕様及びデバイス設計手段 1で 得られたデバイスの機能記述データ等を入力する。  FIG. 6 shows a virtual test evening (hereinafter referred to as virtual test evening 2) which is an example of the test designing means 2. The virtual test system 2 is configured on a convenience store system such as a workstation, and includes a simulator 14, a design environment tool 13, a virtual test environment tool 11, a test board design environment module 10, and Has test pattern processing and conversion tool 15 According to this example, each tool constitutes a data processing means by hardware of the contribution system and an application program. For virtual test 2, input the test specifications selected in the system design and the function description data of the device obtained by the device design means 1.
前記テストボード設計環境ツール 1 0は、前記デバイスモデル等に基 づいて、テス夕と半導体集積回路デバイスとを接続するためのテス トボ 一ドの回路設計を支援する。  The test board design environment tool 10 supports a circuit design of a test board for connecting a test board and a semiconductor integrated circuit device based on the device model and the like.
前記仮想テスト環境ツール 1 1には、 デバイス電源、 D C計測系、 ピ ンエレク トロ二クス、 任意波形発生、 周波数測定等のテス夕固有のハー ドウエアの機能記述コードを発生する複数のモジュール 1 2が挿入さ れる。仮想テス ト環境ツール 1 1は前記モジュール 1 2で生成される情 報、前記デバイスモデル及びテス ト仕様等に基づいてテス トプログラム の設計を支援する。 すなわち、 テス夕固有のハードウエアを機能記述に よって特定するテス夕機能記述データ及び前記デバイスモデルに基づ いて、必要なテス ト項目を検証するためのテストプログラムの設計を支 援する。 設計環境ツール 1 3は、テス夕をソフ トウエア的に実現するためのヅ —ルであり、 デバイスモデルによって特定されるデバイスと、 テス トボ 一ド設計環境ツール 1 0で得られたテス トボードの回路設計デ一夕か ら特定されるテストボードと、 テスタとを機能記述で統合し、 換言すれ ばソフ トウエア的に統合し、 テス ト環境を構築する。 すなわち、 前記テ ス夕機能記述デ一夕、前記テス トプログラム及び前記テストボードの設 計データに基づいて目標仕様に対応したテス ト項目をモデル化したテ ス夕モデルを構成し、当該テスタモデルと前記デバイスモデルとを統合 する。 The virtual test environment tool 11 includes a plurality of modules 12 that generate test function specific hardware function description codes such as device power supply, DC measurement system, pin electronics, arbitrary waveform generation, and frequency measurement. Inserted. The virtual test environment tool 11 supports the design of a test program based on the information generated by the module 12, the device model, the test specifications, and the like. That is, it supports the design of a test program for verifying necessary test items based on test function description data that specifies the hardware specific to the test based on the function description and the device model. The design environment tool 13 is a tool for realizing a software test, and includes a device specified by a device model and a circuit of a test board obtained by the test board design environment tool 10. The test board specified from the design day and the tester are integrated in the function description, in other words, integrated in software, to construct a test environment. That is, based on the test setup function description data, the test program and the design data of the test board, a test setup model that models test items corresponding to the target specifications is constructed, and the tester model is configured. And the device model.
シミュレ一夕 1 4は、構築されたテスト環境でテス ト項目のシミュレ Simulate overnight 14: Simulate test items in the built test environment.
—シヨンを行う。 これによつて、 テス トプログラムの妥当性、 テス トボ 一ドによるデバイスとテス夕との物理的な接続関係の妥当性やテス ト ボードの配線負荷などについて評価を行なう。評価結果に不都合があれ ば、 テス トプログラムやテストボ一ドに関する修正を行なう。 —I'll do the show. In this way, the validity of the test program, the validity of the physical connection between the device and the test board by the test board, and the wiring load of the test board are evaluated. If the evaluation result is inconvenient, correct the test program or test board.
テストパターン加工 ·変換ツール 1 5は、 シミュレ一ション上のィベ ント形式のテストパターンデータを、テス夕で利用できる時間軸上のパ ターンに変換したり修正を行なうツールである。  The test pattern processing / conversion tool 15 is a tool that converts or corrects event pattern test pattern data on a simulation into patterns on the time axis that can be used in testing.
この仮想テス夕 2によって、 テス トプログラム、 テストボ一ドの回路 設計デ一夕、 及びテストパターンが生成される。  A test program, a circuit design data of a test board, and a test pattern are generated by the virtual test 2.
このようにして、 仮想テスタ 2は、 回路設計に並行して、 換言すれば、 デバイスの試作が完了する前に、 テストボードの設計デ一夕、 テストプ ログラム及びテストパ夕一ンをある程度完成させることができる。  In this way, the virtual tester 2 completes the test board design, test program, and test program to some extent in parallel with the circuit design, in other words, before the device prototype is completed. Can be.
第 7図にはシステム設計及び機能設計におけるデータフローの一例 が示される。第 7図において 2 0は、 ワークステーションのようなコン ピュー夕システム上で動作される機能設計及び回路設計用ツールであ り、シンボルを組合わせた図を画面上に描くことによって半導体集積回 路デバイスの機能設計や回路設計などを可能にする。シンボルライブラ リ 2 1には多数のシンボルが記憶され、シンボルを用いて予め定義され た図形は図形ライブラリ 2 2に格納されている。ネッ トリス ト 2 3は各 図形の接続情報を格納する。機能設計及び回路設計用ヅ一ル 2 0には、 半導体集積回路デバイスのパッケージの外部端子数等のパッケージの 素子定数、 半導体集積回路デバイスの目標仕様などが与えられる。 それ らを利用して、機能モジュールの分割、端子の割り当てなどが行なわれ、 前記ステツプ S 3, S 4で説明した機能シミユレ一シヨンが繰り返し行 なわれる。 これにより、機能モジュールの集合として半導体集積回路デ バイス全体の機能モデル (デバイスモデル) 2 4を生成することができ る。 Fig. 7 shows an example of the data flow in system design and functional design. In FIG. 7, reference numeral 20 denotes a tool for functional design and circuit design operated on a computer system such as a workstation, and a semiconductor integrated circuit is drawn by drawing a diagram combining symbols on a screen. Enables functional design of circuit devices and circuit design. A large number of symbols are stored in the symbol library 21, and graphics predefined using the symbols are stored in the graphic library 22. Netlist 23 stores connection information for each figure. The function design and circuit design tools 20 are provided with package element constants such as the number of external terminals of the semiconductor integrated circuit device package, target specifications of the semiconductor integrated circuit device, and the like. Utilizing them, division of functional modules, assignment of terminals, and the like are performed, and the functional simulation described in steps S3 and S4 is repeatedly performed. As a result, a functional model (device model) 24 of the entire semiconductor integrated circuit device can be generated as a set of functional modules.
第 8図には回路設計におけるデータフローの一例が示される。機能設 計及び回路設計ツール 2 0はデバイスモデル 2 4及び目標仕様を受け 取り、 これに基づいて回路設計とシミュレーションを行い、 目標仕様を 満足するまでその動作を繰り返す。これによつて回路設計デ一夕 2 5を 得る。  FIG. 8 shows an example of a data flow in circuit design. The functional design and circuit design tool 20 receives the device model 24 and the target specification, performs circuit design and simulation based on this, and repeats the operation until the target specification is satisfied. As a result, circuit design data 25 is obtained.
第 9図には前記仮想テス夕 2を用いて仮想テス トを行ないながらテ ス トプログラムとテス トボ一ドを設計するときのデ一夕フローの一例 が示される。仮想テス夕 2のテストボード設計環境ツール及び仮想テス ト環境ツールなどはシンボルを組合わせた図を画面上に描くことによ つてテス ト設計などを可能にする。シンボルライブラリ 2 1には多数の シンボルが記憶され、シンボルを用いて予め定義された図形は図形ライ ブラリ 2 2に格納されている。ネッ トリス ト 2 3は各図形の接続情報を 格納する。 仮想テス夕 2は、 テス トボードの素子定数、 デバイスモデル 2 4、 目標仕様などを入力し、 これに基づいてテス トボ一ドの基本設計 データが生成される。 そして、 テストボ一ドの基本設計デ一夕、 デバイ スモデル、 テス夕機能記述デ一夕に基づいて、 目標仕様に対応したテス ト項目をモデル化したテスタモデル 2 7を構成し、当該テス夕モデルと 前記デバイスモデルとを統合したテスト環境を構築する。このテスト環 境を用いたシミュレーションによってテス トプログラムやテス トボ一 ドの評価を行なう。評価の結果がテストプログラムやテス トボードの設 計データに反映され、バグなどが修正されたテストプログラムやテス ト ボ一ドの設計データ 2 8が得られる。 FIG. 9 shows an example of a data flow when a test program and a test board are designed while performing a virtual test using the virtual test server 2. The virtual test environment 2 test board design environment tool and virtual test environment tool, etc. enable test design by drawing a figure that combines symbols on the screen. A large number of symbols are stored in the symbol library 21, and graphics predefined using the symbols are stored in the graphics library 22. Netlist 23 stores connection information for each figure. For virtual test 2, test board element constants, device model 24, target specifications, etc. are input, and basic design data for the test board is generated based on these. Then, the basic design data of the test board, A tester model 27 that models test items corresponding to the target specifications is constructed based on the test model and the test function description, and a test environment that integrates the test model and the device model is constructed. . Test programs and test boards are evaluated by simulation using this test environment. The result of the evaluation is reflected in the design data of the test program and the test board, and the test program and test board design data 28 in which bugs are corrected are obtained.
第 1 0図にはユーザボードの設計に伴うデータフローの一例が示さ れる。 3 0はュ一ザボードの設計に用いられる設計ツールである。設計 ツール 3 0はシンボルを組合わせた図を画面上に描くことによって機 能設計や回路設計などを可能にする。シンボルライブラリ 3 1には多数 のシンボルが記憶され、シンボルを用いて予め定義された図形は図形ラ ィブラリ 3 2に格納されている。ネヅ トリス ト 3 3は各図形の接続情報 を格納する。 設計ツール 3 0は、 ユーザボードの素子定数、 デバイスモ デル、 ユーザボ一ドの目標仕様などを入力し、 ユーザボードのモデルと デバイスモデルを統合したテスト環境を構築し、シミュレーションによ つてデバイスやテストボードの評価を行なう。  FIG. 10 shows an example of a data flow accompanying the design of the user board. Reference numeral 30 denotes a design tool used for designing a user board. The design tool 30 enables functional design and circuit design by drawing a figure combining symbols on the screen. A large number of symbols are stored in the symbol library 31, and graphics predefined using the symbols are stored in the graphics library 32. Net list 33 stores connection information of each figure. The design tool 30 inputs the device constants of the user board, the device model, the target specifications of the user board, etc., constructs a test environment integrating the user board model and the device model, and executes simulation of the device and the test board by simulation. Is evaluated.
第 1 1図には仮想テス夕 2を用いたテス トボードの設計手法の一例 が示される。 実際のデバイステス トを模擬するには、 D U T ( Device Under Test) としての半導体集積回路デバイスだけでなく、 テス夕と半 導体集積回路デバイスとの間のテス トボードの入出力イン夕フェース 回路の回路素子定数 (インダク夕ンス、 容量など) を考慮しなければな らない。仮想テス夕を用いたテス卜においても、 前記素子定数を仮定す る。 そのような仮定を行なって、 D U Tとしての半導体集積回路デバイ スの入力に結合されるテス トボードの入カイン夕フエ一ス回路と D U Tとしての半導体集積回路デバイスの出力に結合されるテス トボード の出カイン夕フェース回路に対しては回路シミュレーシヨンを行い、 D U Tとしての半導体集積回路デバイスに対しては機能シミュレ一ショ ンを行なう。 このとき、 テス夕モデルで観測される入力波形や出力波形 が理想波形から大幅にずれている場合には、 前記素子定数を修正し、 テ ストボードにおける入出力ィン夕フェース回路の設計変更を行なう。 第 1 2図にはデバイスモデルを利用したユーザボードの設計手法の 一例が示される。ユーザボードの設計では、 デバイスモデルで特定され る半導体集積回路デバイスに接続される周辺回路の回路素子定数(ィン ダク夕ンス、 容量など) を考慮しなければならない。 ユーザボードの設 計において、前記回路素子定数を仮定する。そのような仮定を行なって、 半導体集積回路デバイスの入力に結合される入力周辺回路と半導体集 積回路デバイスの出力に結合される出力周辺回路には回路シミュレ一 シヨンを行い、半導体集積回路デバイスに対しては機能シミュレ一ショ ンを行なう。 このとき、 シミュレーションで観測される入力波形や出力 波形が理想波形から大幅にずれている場合には、前記素子定数を修正し、 ユーザボードにおける当該入力周辺回路及び出力周辺回路の設計変更 を行なう。 Figure 11 shows an example of a test board design method using virtual test equipment 2. In order to simulate actual device test, not only the semiconductor integrated circuit device as a DUT (Device Under Test), but also the circuit of the input / output interface circuit of the test board between the test device and the semiconductor integrated circuit device Device constants (inductance, capacitance, etc.) must be taken into account. In the test using the virtual test, the above-mentioned element constant is assumed. Making such an assumption, the input board of the test board coupled to the input of the semiconductor integrated circuit device as the DUT and the test board coupled to the output of the semiconductor integrated circuit device as the DUT A circuit simulation is performed for the output interface circuit, and a functional simulation is performed for the semiconductor integrated circuit device as the DUT. At this time, if the input waveform or output waveform observed by the test model deviates significantly from the ideal waveform, correct the element constants and change the design of the input / output interface circuit on the test board. . FIG. 12 shows an example of a user board design method using a device model. In the design of the user board, the circuit element constants (inductance, capacitance, etc.) of the peripheral circuits connected to the semiconductor integrated circuit device specified in the device model must be considered. In designing the user board, the above circuit element constants are assumed. With such assumptions, circuit simulation is performed on the input peripheral circuit coupled to the input of the semiconductor integrated circuit device and the output peripheral circuit coupled to the output of the semiconductor integrated circuit device. A function simulation will be performed for this. At this time, if the input waveform or the output waveform observed in the simulation is greatly deviated from the ideal waveform, the device constant is corrected, and the design of the input peripheral circuit and the output peripheral circuit on the user board is changed.
第 1 3図にはユーザボード上での半導体集積回路デバイスの一部を 回路シミュレーションの対象とした半導体集積回路デバイスの検証方 法の一例が示される。第 1 2図に対し、 半導体集積回路デバイスに対し、 その入力回路と出力回路を回路シミュレーシヨン対象とし、半導体集積 回路デバイスのその他の部分を機能シミユレ一シヨン対象とする。半導 体集積回路デバイスの入力回路と出力回路のシミュレ一ション波形が 理想波形と大幅にずれている場合、半導体集積回路デバイス内部の入力 回路を構成する トランジス夕の素子定数を変更することが必要になる。 このようなシミュレーションは、デバイスメ一力による回路設計段階で 明らかにすることができるから、ュ一ザシステムへの良好な適合性を得 るために半導体集積回路デバイス内部の設計変更も容易になる。 Fig. 13 shows an example of a method of verifying a semiconductor integrated circuit device in which a part of the semiconductor integrated circuit device on a user board is subjected to circuit simulation. Contrary to FIG. 12, the input circuit and the output circuit of the semiconductor integrated circuit device are subjected to circuit simulation, and the other parts of the semiconductor integrated circuit device are subjected to functional simulation. If the simulation waveforms of the input circuit and output circuit of the semiconductor integrated circuit device deviate significantly from the ideal waveform, it is necessary to change the element constants of the transistors constituting the input circuit inside the semiconductor integrated circuit device become. Such a simulation is performed at the circuit design stage using device capabilities. Because it can be clarified, it is easy to change the design inside the semiconductor integrated circuit device in order to obtain good compatibility with the user system.
以上本発明者によってなされた発明を実施例に基づいて具体的に説 明したが本発明はそれに限定されるものではなく、その要旨を逸脱しな い範囲において種々変更可能である。  The invention made by the present inventor has been specifically described based on the embodiments, but the present invention is not limited thereto, and can be variously modified without departing from the gist thereof.
例えば、仮想テス夕を構成するツールは上記の説明に限定されず適宜 変更可能である。 また、 半導体集積回路デバイスの回路規模が小さい場 合、 或いは回路構成が単純な場合等には、 複数個の機能モジュールへの 分割を行なわずにデバイスモデルを生成することも可能である。また、 本発明の半導体集積回路デバイスの開発方法は新規デバイスの開発に 適用されるだけでなく、既存デバィスの改良若しくは機能拡張に際して も適用することができる。 この場合には、 過去に蓄積された設計資産を 流用して本発明方法を適用できることは言うまでもない。 産業上の利用可能性  For example, the tools that make up the virtual test are not limited to the above description, and can be changed as appropriate. Also, when the circuit scale of the semiconductor integrated circuit device is small, or when the circuit configuration is simple, it is possible to generate a device model without dividing into a plurality of functional modules. Further, the method for developing a semiconductor integrated circuit device of the present invention can be applied not only to the development of a new device, but also to the improvement or extension of functions of an existing device. In this case, it goes without saying that the method of the present invention can be applied by diverting design resources accumulated in the past. Industrial applicability
本発明は、 A S I C (Application Specific Integrated Circuits) 方式、 スタンダードセル方式、 カスタム方式など半導体集積回路デバイ スの設計手法に拘わらず、 また、 メモリ、 マイクロコンピュー夕等の論 理 L S I、 アナログ L S I、 アナログ 'ディジ夕ル混在 L S Iなどの機 能にも制限されず、半導体集積回路デバイスの開発期間を全体的に短縮 すると共に開発効率を向上させて有効な種々の半導体集積回路デバイ スの開発に広く適用することができる。  Regardless of the design method of the semiconductor integrated circuit device such as the ASIC (Application Specific Integrated Circuits) method, the standard cell method, and the custom method, the present invention is also applicable to logic LSIs, analog LSIs, analogs such as memories and microcomputers, etc. '' Widely applicable to the development of various types of semiconductor integrated circuit devices that are not limited to functions such as digital mixed LSI, shorten the overall development period of semiconductor integrated circuit devices, improve development efficiency, and are effective can do.

Claims

請 求 の 範 囲 The scope of the claims
1 .目標仕様を満足させるように半導体集積回路デバイスの機能を機能 記述言語でモデル化したデバイスモデルを生成する第 1処理と、前記 デバイスモデルに基づいて半導体集積回路デバイスの回路設計を行 なう第 2処理と、 前記第 2処理と並列的に、 前記目標仕様に対応した テス ト項目をモデル化したテス夕モデルと共にデバイスモデルをシ ミュレ一シヨンしてテス ト設計を行なう第 3処理とを含むことを特 徴とする半導体集積回路デバイスの開発方法。 1. A first process for generating a device model in which the functions of the semiconductor integrated circuit device are modeled in a function description language so as to satisfy the target specification, and a circuit design of the semiconductor integrated circuit device is performed based on the device model. A second process and a third process of simulating a device model together with a test model in which a test item corresponding to the target specification is modeled in parallel with the second process to perform a test design. Development method of semiconductor integrated circuit device characterized by including.
2 . 前記第 1処理は、 前記半導体集積回路デバイスの目標仕様を満足す るように半導体集積回路デバイスの各外部端子に対応させて夫々の 外部端子の入出力状態を定義する第 1ステップと、半導体集積回路デ バイスを複数個の機能モジュールに分割すると共に個々の機能モジ ユールの内部端子を定義して各機能モジュールが目標仕様を満足す るように夫々の内部端子の入出力状態を定義する第 2ステップと、前 記第 1ステツプで定義された外部端子の入出力状態を与えたとき半 導体集積回路デバイスの目標仕様を満足するように前記夫々の機能 モジュール相互間の内部端子の結合状態を定義して前記デバイスモ デルを生成する第 3ステップとを含むことを特徴とする請求の範囲 第 1項記載の半導体集積回路デバイスの開発方法。 2. The first process is a first step of defining an input / output state of each external terminal corresponding to each external terminal of the semiconductor integrated circuit device so as to satisfy a target specification of the semiconductor integrated circuit device; Divide the semiconductor integrated circuit device into multiple functional modules, define the internal terminals of each functional module, and define the input / output state of each internal terminal so that each functional module satisfies the target specifications The second step and the connection state of the internal terminals between the respective functional modules so as to satisfy the target specification of the semiconductor integrated circuit device when the input / output states of the external terminals defined in the first step are given. 3. A method for developing a semiconductor integrated circuit device according to claim 1, further comprising the step of:
3 . 前記第 1処理は、 前記半導体集積回路デバイスの目標仕様を満足す るように半導体集積回路デバイスの各外部端子に対応させて夫々の 外部端子の入出力状態を定義する第 1ステップと、半導体集積回路デ バイスを複数個の機能モジュールに分割して定義すると共に個々の 機能モジュールの内部端子の入出力状態を定義する第 2ステップと、 第 2ステツプで定義された入出力状態を用いて機能モジュールの機 能シミュレーションを行なって機能モジュールが目標仕様を満足す るかを検証する第 3ステツプと、第 3ステツプで目標仕様を満足しな い機能モジュールに対して目標仕様の調整と前記第 3ステップとを 目標仕様を満足するまで繰り返す第 4ステップと、 目標仕様が満足さ れた機能モジュール相互間の内部端子の結合を定義し前記ステツプ3. The first process is a first step of defining an input / output state of each external terminal corresponding to each external terminal of the semiconductor integrated circuit device so as to satisfy a target specification of the semiconductor integrated circuit device; The second step of dividing the semiconductor integrated circuit device into a plurality of functional modules and defining the input / output states of the internal terminals of each functional module, and the input / output states defined in the second step. Function module machine The third step is to perform functional simulation to verify whether the functional module satisfies the target specification.The third step is to adjust the target specification and perform the third step for the functional module that does not satisfy the target specification in the third step. The fourth step is repeated until the target specification is satisfied.
1で定義された外部端子の入出力状態を与えてシミュレ一シヨンを 行ない半導体集積回路デバイスの目標仕様を満足するか否かを検証 する第 5ステップと、第 5ステップで目標仕様を満足しない場合に所 望の機能モジュールに対する目標仕様の調整と前記第 5ステップと を半導体集積回路デバイス全体の目標仕様を満足するまで繰り返す 第 6ステツプとを含み、前記第 5ステツプにおいて目標仕様が満足さ れたとき又は第 6ステップを経たとき、 機能モジュールの定義、 外部 端子及び内部端子の入出力状態に対する定義、及び内部端子相互間の 結合定義に基づいて前記デバイスモデルを生成することを特徴とす る請求の範囲第 1項記載の半導体集積回路デバイスの開発方法。. 前記デバイスモデルは、 半導体集積回路デバイスのチップに実現す べき機能に関するチップ機能記述デ一夕と、前記チップを収容して該 チップと電気的な接続が形成されるパッケージの電気的特性に関す るパッケージ機能記述データとの双方又は前者によって形成される ものであることを特徴とする請求の範囲第 2項又は第 3項記載の半 導体集積回路デバイスの開発方法。 The fifth step to verify whether the target specification of the semiconductor integrated circuit device is satisfied by performing simulation by giving the input / output state of the external terminal defined in 1 and the case where the target specification is not satisfied in the fifth step And a sixth step of adjusting the target specification for the desired functional module and repeating the fifth step until the target specification of the entire semiconductor integrated circuit device is satisfied, and the target specification is satisfied in the fifth step. And after the sixth step, the device model is generated based on the definition of the function module, the definition of the input / output state of the external terminal and the internal terminal, and the definition of the connection between the internal terminals. 2. The method for developing a semiconductor integrated circuit device according to claim 1. The device model relates to a chip function description data relating to a function to be realized in a chip of a semiconductor integrated circuit device, and relates to an electric characteristic of a package accommodating the chip and forming an electric connection with the chip. 4. The method for developing a semiconductor integrated circuit device according to claim 2, wherein the method is formed by both the package function description data and the former.
. 前記テスタモデルは、 テス夕のハードウエアを機能記述によって特 定したテス夕機能記述データと、前記テス ト項目毎にテス夕の動作を 決定するためのテストプログラムと、テス夕と半導体集積回路デバイ スとの接続を実現するためのテス トボードの回路構成を特定するテ ス トボ一ド設計デ一夕とに基づいて形成されるものであることを特 徴とする請求の範囲第 2項又は第 3項記載の半導体集積回路デバイ スの開発方法。The tester model includes a test function description data specifying the test function hardware by a function description, a test program for determining a test function operation for each test item, a test function and a semiconductor integrated circuit. It is formed based on the test board design data that specifies the circuit configuration of the test board for realizing the connection with the device. 4. The method for developing a semiconductor integrated circuit device according to claim 2 or 3, wherein:
. 前記テス ト設計は、 前記シミュレーション結果を前記テス夕モデル に反映して前記テス トプログラム及びテス トボ一ドを設計すること を特徴とする請求の範囲第 5項記載の半導体集積回路デバイスの閧 発方法。 6. The semiconductor integrated circuit device according to claim 5, wherein in the test design, the test program and the test board are designed by reflecting the simulation result in the test model. Departure method.
.前記回路記述データに基づいて半導体集積回路デバイスのレイァゥ トを特定するためのレイァゥトデ一夕を生成する第 4処理と、前記レ ィァゥ トデ一夕に基づいて製造された半導体集積回路デバイスを前 記テス トボードを介して前記テス夕に装着し、該テス夕を前記テス ト プログラムを利用して動作させて、実テストを行なう第 5処理とを更 に含むことを特徴とする請求の範囲第 6項記載の半導体集積回路デ バイスの開発方法。 A fourth process for generating a rate data for specifying a rate of the semiconductor integrated circuit device based on the circuit description data, and a semiconductor integrated circuit device manufactured based on the rate data; The method according to claim 6, further comprising a fifth process of mounting the test device on the test device via a test board, operating the test device using the test program, and performing an actual test. The semiconductor integrated circuit device development method described in the section.
.目標仕様を満足するように半導体集積回路デバイスの機能を機能記 述言語でモデル化したデバイスモデルを生成すると共に、デバイスモ デルに基づいて半導体集積回路デバイスの回路設計を行なうデバイ ス設計手段と、前記半導体集積回路デバイスをテス 卜するためのテス ト設計を行なうテス ト設計手段とを有し、 Device design means for generating a device model in which the functions of the semiconductor integrated circuit device are modeled in a functional description language so as to satisfy the target specification, and for designing the circuit of the semiconductor integrated circuit device based on the device model; and Test design means for performing test design for testing the semiconductor integrated circuit device,
前記テスト設計手段は、 前記デバイスモデルを入力し、 テス夕と半 導体集積回路デバイスとを接続するためのテス トボ一ドの回路設計 を支援する第 1デ一夕処理手段と、  First test processing means for inputting the device model and supporting circuit design of a test board for connecting a test circuit and a semiconductor integrated circuit device;
テス夕固有のハードウエアを機能記述によって特定するテス夕機 能記述データ及び前記デバイスモデルに基づいて、必要なテスト項目 を検証するためのテス トプログラムの設計を支援する第 2デ一夕処 理手段と、  The second data processing process that supports the design of a test program for verifying necessary test items based on the test data and the device model, which specifies the hardware specific to the test software by the function description. Means,
前記テス夕機能記述データ、前記テストプログラム及び前記テス 卜 ボードの設計デ一夕に基づいて前記目標仕様に対応したテス ト項目 をモデル化したテス夕モデルを構成し、当該テス夕モデルと前記デバ イスモデルとを統合してシミュレーシヨンを行う第 3データ処理手 段とを含み、 The test function description data, the test program, and the test Based on the design data of the board, a test data model is created by modeling test items corresponding to the target specifications, and the third data for performing simulation by integrating the test data model and the device model Processing means,
前記テスト設計手段による回路設計の完了前に、前記シミュレ一シ ョン結果に基づいて前記デバイスモデルが目標仕様を満足するか否 かを検証することにより前記テス トボードの設計デ一夕及びテス ト プログラムを検証可能にするものであることを特徴とする半導体集 積回路デバイスの開発システム。  Before the circuit design by the test design means is completed, whether or not the device model satisfies a target specification is verified based on the simulation result, thereby making it possible to perform design test and test of the test board. A semiconductor integrated circuit device development system characterized by making a program verifiable.
PCT/JP1997/004619 1997-12-16 1997-12-16 Method for developing semiconductor integrated circuit device WO1999031607A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000539433A JP3971104B2 (en) 1997-12-16 1997-12-16 Development method of semiconductor integrated circuit device
PCT/JP1997/004619 WO1999031607A1 (en) 1997-12-16 1997-12-16 Method for developing semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/004619 WO1999031607A1 (en) 1997-12-16 1997-12-16 Method for developing semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
WO1999031607A1 true WO1999031607A1 (en) 1999-06-24

Family

ID=14181665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004619 WO1999031607A1 (en) 1997-12-16 1997-12-16 Method for developing semiconductor integrated circuit device

Country Status (2)

Country Link
JP (1) JP3971104B2 (en)
WO (1) WO1999031607A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070294A (en) * 2006-09-15 2008-03-27 Yokogawa Electric Corp Debugging assistance method for ic tester
JP2009545791A (en) * 2006-08-02 2009-12-24 エアバス フランス Process and apparatus to assist in determining feasibility of electronic assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PFU TECHNICAL REVIEW, Vol. 7, No. 1, (May 1996), HIROTAKE NIIDE et al., "Application of Concurrent Engineering to Development of Computer System (in Japanese)", pages 31-40. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545791A (en) * 2006-08-02 2009-12-24 エアバス フランス Process and apparatus to assist in determining feasibility of electronic assembly
JP2008070294A (en) * 2006-09-15 2008-03-27 Yokogawa Electric Corp Debugging assistance method for ic tester

Also Published As

Publication number Publication date
JP3971104B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
US6678645B1 (en) Method and apparatus for SoC design validation
US6083269A (en) Digital integrated circuit design system and methodology with hardware
JP2815281B2 (en) Digital circuit design support system and method
US7593872B2 (en) Method and system for designing a probe card
EP0485199A2 (en) Creation of a factory-programmed device using a logic description and a sample device implementing the description
KR100463735B1 (en) Method for design validation of complex ic
US6197605B1 (en) Method and device for test vector analysis
US6487704B1 (en) System and method for identifying finite state machines and verifying circuit designs
JP2005292144A (en) Method and device for verifying integrated circuit device test for testing integrated circuit device
US20020173942A1 (en) Method and apparatus for design validation of complex IC without using logic simulation
US6629294B2 (en) Tool and method for improving the quality of board design and modeling
US6052809A (en) Method for generating test patterns
US20020163351A1 (en) Method for producing test patterns for testing an integrated circuit
US6185726B1 (en) System and method for efficiently designing integrated circuit devices
US7539900B1 (en) Embedded microprocessor for integrated circuit testing and debugging
JP3971104B2 (en) Development method of semiconductor integrated circuit device
Thiel Have I really met timing?-validating primetime timing reports with SPICE
WO1999031608A1 (en) Method for developing system board
US20040230414A1 (en) Method for verification of hardware designs with multiple asynchronous frequency domains
JPH09171056A (en) Test design method and device, test method and device
JP3162316B2 (en) Electronic circuit testing system
US20030126570A1 (en) Systems and methods for realizing integrated circuits
Hainz et al. Reduction of System Development Time with Early Sensor Prototyping and Measurement-Based Simulations
August A robust and efficient pre-silicon validation environment for mixed-signal circuits on intel's test chips
Jervan et al. Decider: A decision diagram based hierarchical test generation system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase