WO1999016998A1 - Internal combustion engine with oscillating rotor - Google Patents

Internal combustion engine with oscillating rotor Download PDF

Info

Publication number
WO1999016998A1
WO1999016998A1 PCT/ES1998/000265 ES9800265W WO9916998A1 WO 1999016998 A1 WO1999016998 A1 WO 1999016998A1 ES 9800265 W ES9800265 W ES 9800265W WO 9916998 A1 WO9916998 A1 WO 9916998A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
engine
oscillating
crankshaft
connecting rod
Prior art date
Application number
PCT/ES1998/000265
Other languages
Spanish (es)
French (fr)
Inventor
Felix Alvaro Fernandez
Original Assignee
Universidad Politecnica De Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politecnica De Madrid filed Critical Universidad Politecnica De Madrid
Publication of WO1999016998A1 publication Critical patent/WO1999016998A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C9/00Oscillating-piston machines or engines
    • F01C9/002Oscillating-piston machines or engines the piston oscillating around a fixed axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines

Definitions

  • emblism engine is based on the work of the active fluid, consisting of air, fuel and waste gases, which evolves cyclically by carrying out the thermodynamic processes of admission, compression, combustion, expansion and exhaust, which take place inside the enclosure which defines the position of the piston inside each cylinder. Due to the acceptable balanced and cyclic regularity that it presents, the most used type of four-stroke alternative engine is the in-line four-cylinder engine, in which the piston displacements are offset by equal values over two turns of the crankshaft .
  • the pistons actuate the respective connecting rods acting on the crankshaft, resulting in the fact that the operating cycles of each cylinder are identical, equally out of phase in half a turn of the crankshaft, and their effects are added at each moment to give a useful torque of the gases.
  • Wankel engines are also well known in today's technology, of which only the so-called “Wankel engines” have some practical interest.
  • the thermodynamic cycle of a Wankel engine is similar to that of a classic alternative engine, but its mechanical configuration is radically different.
  • a rotor of suitable lobular geometry enclosed in a crankcase also appropriately, and among them is the active fluid.
  • the relative movement of the rotor with respect to the crankcase modifies the available volume of the active fluid, so that its thermodynamic cycle is similar to that of the alternative engine.
  • the mechanical configuration of the Wankel engine allows for relative improvements in the power / weight ratio, but instead has some drawbacks. The most relevant inconveniences are:
  • crankcase distortion problems due to asymmetry in the peripheral distribution of temperatures on the inner surface of the crankcase.
  • the Oscillating Rotor Engine object of the present Patent Registration Application, is conceptually a hybrid mechanical solution between the four-stroke alternative engine, and the Wankel type engine.
  • the concept of this engine seeks to improve the performance of the types mentioned, minimizing the inconvenience of both.
  • Compared to the conventional alternative engine it has a significantly lower number of components, thus drastically reducing its weight and potential cost.
  • In front of the Wankel engine it has the advantage of not needing the crown components
  • the invention consists of a four-stroke internal combustion engine, in which there are variable volume enclosures, within which the active fluid operates, similar to how it acts in the cylinders of a conventional four-wheel internal combustion engine times
  • this invention is applicable to any even number of enclosures, which function as cylinders in the alternative engine, and since the most extended alternative use engine is that of four cylinders in line, for the purpose of explaining the idea the case of the four-enclosure motor will be specifically described.
  • Figure 1 represents a section through a plane perpendicular to the axis of rotation thereof.
  • the rotor "R” Concentrically with the axis of the cylindrical bore, the rotor "R" is mounted, whose geometric configuration is that of a circular cylinder provided with two longitudinally arranged equal fins and symmetrically positioned said rotor with its fins conveniently fits inside the cited cylindrical bore , being able to rotate oscillating within the planned cylindrical sector
  • Figure 2 represents a section through the vertical plane of symmetry of the cylindrical bore, which presents the motor configuration in the direction of the rotor axis "R".
  • the anterior and posterior cylindrical closure bases are solved by means of two flat support pieces "S” and “T”, which reinforce the union of the half-pieces "A” and “B” with cylinder head parts "C” and “D” by threaded bolts as shown in the figure.
  • This joint in addition to closing the cylindrical bore, provides a good structural configuration of the assembly, which makes it susceptible to withstand the high pressures that the active fluid will present in operation.
  • Said support pieces “S” and “T” also provide housing for the front and rear bearings of the rotor shaft supports, as shown in the figure. Additionally, said “S” and “T” parts extend to accommodate the front and rear bearings of the power shaft or crankshaft of the "E" engine, represented in the
  • the axis of the rotor "R”, at its rear end carries an arm “M”, whose axis is positioned perpendicular to the plane of symmetry of the fins, and the end of said arm has a bolt on which articulates a connecting rod “N ".
  • the power shaft or crankshaft “E”, which is parallel to the axis of rotation of the rotor "R”, is positioned in a convenient situation, and at its rear end it has a crank arm “P”, also arranged with its articulating pin with the other end of the connecting rod "N”.
  • the amplitude of the elongation of the angular movement of the rotor corresponds to half a turn of the crankshaft, and marks the extreme positions of the rotor fins, which are equivalent to the upper and lower dead spots, (PMS and PMI respectively), referents to the comparable alternative engine. Said extreme positions are represented in imaginary line in figure 1.
  • the angle " ⁇ m” is a function of the position of the axis of the crankshaft “E” with respect to the axis of the rotor, of the radii of the arms "M” and “P”, and of the length of the connecting rod "N”, by which can be selected for a suitable value for said angle, adopting values suitable for the dimensions mentioned.
  • (P) is the instantaneous pressure in the enclosure
  • (d ⁇ ) is the elementary angle rotated by the rotor.
  • (P) acts on the fin's face in the same direction as (d ⁇ ) the elementary work is positive, (motor work).
  • the elementary work is negative, (hard work).
  • SHEET D I ⁇ N R of the gases on the power axis The diagram of this pair of gases is very similar to that resulting in a conventional four-cylinder alternative engine at the exit of its crankshaft. Therefore, the cyclic regularity of the oscillating rotor motor will be very similar to that of the alternative motor. However, from the point of view of the maximum loads that the components of the mechanism have to support, there are essential differences between both types of motors, which clearly favor the Oscillating Rotor Motor.
  • each fin divides the cylindrical sector in which it moves into two enclosures, so that the total number of enclosures that a particular Oscillating Rotor Motor would have, would be twice the number of fins of its rotor. Since, each enclosure will act in a similar way to how a comparable alternative engine cylinder acts, the described solution would be equally applicable to any type of Oscillating Rotor Motor, according to the number of rotor fins selected in each case.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transmission Devices (AREA)
  • Hydraulic Motors (AREA)

Abstract

This new conception of internal combustion engine replaces positively current conventional piston-type engines because at similar service and power performances this new engine provides considerable reduction of weight and cost. The concept of oscillating rotor engine is applicable to substitute any alternating engine having an even number of cylinders and independently any application to which such engine is intended. The thermodynamic transformations and the energetic exchanges obtained with this type of engine are practically similar to those of the piston-type engine of similar power; however, its composition and mechanical operation are very different. The oscillating rotor engine is comprised of a resistant body inside which a rotor provided with blades is housed; a rotor has an oscillating angular motion through an arm-rod-crank mechanism coupled to the powershaft or crankshaft. The blades of the rotor divide the space formed by the body or case into deformable enclosures which act as the cylinders of a conventional alternating engine, with the faces of the blades playing the role of the surfaces of the pistons in an alternating engine.

Description

MOTOR DE COMBUSTIÓN INTERNA DE ROTOR OSCILANTE. OSCILLATING ROTOR INTERNAL COMBUSTION MOTOR.
En el estado actual de la tecnología de los motores de combustión interna es sobradamente conocido el motor alternativo de cuatro tiempos, cuyas aplicaciones en propulsión de vehículos terrestres, marinos y aéreos, así como en plantas de generación de energía mecánica o eléctrica y en otra maquinaria industrial, están enormemente diversificadas, y su empleo es utilizado extensivamente como fuente de potencia en muchas aplicaciones.In the current state of internal combustion engine technology, the four-stroke alternative engine is well known, whose applications in propulsion of land, marine and air vehicles, as well as in mechanical or electrical power generation plants and other machinery industrial, they are greatly diversified, and their use is used extensively as a power source in many applications.
El funcionamiento del motor alternativo, (también denominado comúnmente comoThe operation of the alternative engine, (also commonly referred to as
"motor de embolo"), se fundamenta en el trabajo del fluido activo, compuesto por aire, combustible y gases residuales, que evoluciona cíclicamente realizando los procesos termodinámicos de admisión, compresión, combustión, expansión y escape, que tienen lugar dentro del recinto cerrado que define la posición del émbolo dentro de cada cilindro. Debido al aceptable equilibrado y regularidad cíclica que presenta, el tipo de motor alternativo de cuatro tiempos más utilizado es el motor de cuatro cilindros en linea, en el cuál los desplazamientos de los émbolos están desfasados en valores iguales a lo largo de dos vueltas del cigüeñal. Los émbolos accionan las respectivas bielas actuando sobre el cigüeñal, resultando así que los ciclos operativos de cada cilindro son idénticos, igualmente desfasados en media vuelta del cigüeñal, y sus efectos se suman en cada momento para dar un par útil de los gases."embolism engine"), is based on the work of the active fluid, consisting of air, fuel and waste gases, which evolves cyclically by carrying out the thermodynamic processes of admission, compression, combustion, expansion and exhaust, which take place inside the enclosure which defines the position of the piston inside each cylinder. Due to the acceptable balanced and cyclic regularity that it presents, the most used type of four-stroke alternative engine is the in-line four-cylinder engine, in which the piston displacements are offset by equal values over two turns of the crankshaft . The pistons actuate the respective connecting rods acting on the crankshaft, resulting in the fact that the operating cycles of each cylinder are identical, equally out of phase in half a turn of the crankshaft, and their effects are added at each moment to give a useful torque of the gases.
La configuración mecánica más convencional de dicho motor de cuatro tiempos con cuatro cilindros es " en linea"; e incorpora necesariamente un bloque para cuatro cilindros, cuatro émbolos, cuatro bielas y un cigüeñal de cuatro manivelas, así como la necesaria estructura de soporte de dichos componentes. Todos éstos elementos están sometidos a cargas considerables, por lo que necesariamente deben tener una suficiente resistencia estructural y consiguientemente un peso importante, lo que conduce al resultado de que dicho tipo de motor presente una relación potencia/peso relativamente limitada.The most conventional mechanical configuration of said four-stroke engine with four cylinders is "in line"; and it necessarily incorporates a block for four cylinders, four pistons, four connecting rods and a crankshaft with four cranks, as well as the necessary support structure of said components. All these elements are subjected to considerable loads, so they must necessarily have sufficient structural strength and consequently an important weight, which leads to the result that said type of motor has a relatively limited power / weight ratio.
H D Por otra parte, en la tecnología actual son también bien conocidos los motores rotarios, de los cuales solamente tienen algún interés práctico los denominados "motores Wankel". El ciclo termodinámico de un motor Wankel es similar al de un motor alternativo clásico, pero su configuración mecánica es radicalmente diferente. En dichos motores Wankel existe un rotor de geometría lobular adecuada, encerrado en un cárter de forma también apropiada, y entre ellos se encuentra el fluido activo. El movimiento relat ivo del rotor respecto al cárter modifica el volumen disponible del fluido activo, de forma que su ciclo termodinámico resulta similar al del motor alternativo. Sin embargo, la configuración mecánica del motor Wankel permite mejoras relativas de la relación potencia/peso, pero a cambio presenta algunos inconvenientes de consideración. Los inconvenientes más relevantes son:HD On the other hand, rotary engines are also well known in today's technology, of which only the so-called "Wankel engines" have some practical interest. The thermodynamic cycle of a Wankel engine is similar to that of a classic alternative engine, but its mechanical configuration is radically different. In said Wankel engines there is a rotor of suitable lobular geometry, enclosed in a crankcase also appropriately, and among them is the active fluid. The relative movement of the rotor with respect to the crankcase modifies the available volume of the active fluid, so that its thermodynamic cycle is similar to that of the alternative engine. However, the mechanical configuration of the Wankel engine allows for relative improvements in the power / weight ratio, but instead has some drawbacks. The most relevant inconveniences are:
• Problemas importantes para garantizar una estanqueidad suficiente del fluido activo.• Important problems to ensure sufficient tightness of the active fluid.
• Problemas de distorsión del cárter por asimetría en la distribución periférica de temperaturas en la superficie interna del cárter.• Crankcase distortion problems due to asymmetry in the peripheral distribution of temperatures on the inner surface of the crankcase.
• Efectos de desgastes de los elementos de estanqueidad y en los engranajes que accionan el movimiento del rotor.• Effects of wear of the sealing elements and on the gears that drive the rotor movement.
Como consecuencia de la presencia de dichos problemas, que imponen una fiabilidad y vida de servicio relativamente bajas, así como por el hecho de que el desarrollo de los motores Wankel no ha llegado al grado de madurez conseguido para los motores alternativos, dicho tipo de motor no ha alcanzado una penetración relevante en el mercado.As a consequence of the presence of such problems, which impose a relatively low reliability and service life, as well as the fact that the development of Wankel engines has not reached the maturity level achieved for alternative engines, said type of engine It has not reached a relevant market penetration.
El Motor de Rotor Oscilante, objeto de la presente Solicitud de Registro de Patente, es conceptualmente una solución mecánica híbrida entre el motor alternativo de cuatro tiempos, y el motor de tipo Wankel. El concepto de éste motor persigue mejorar las prestaciones de los tipos citados, minimizando los inconvenientes de ambos. Frente al motor alternativo convencional presenta un número de componentes sensiblemente menor, reduciendo así drásticamente el peso y costo potencial del mismo. Frente al motor Wankel presenta la ventaja de no necesitar los componentes de coronaThe Oscillating Rotor Engine, object of the present Patent Registration Application, is conceptually a hybrid mechanical solution between the four-stroke alternative engine, and the Wankel type engine. The concept of this engine seeks to improve the performance of the types mentioned, minimizing the inconvenience of both. Compared to the conventional alternative engine, it has a significantly lower number of components, thus drastically reducing its weight and potential cost. In front of the Wankel engine, it has the advantage of not needing the crown components
HOJA DE I L dentada y piñón, que son imprescindibles para el movimiento epicicloidal del motor Wankel, y además, está exento de la mayoría de los problemas asociados a la distorsión térmica del cárter, causante de las dificultades para resolver la estanqueidad de los gases, y, por ende, originaria de los problemas de desgastes, de baja fiabilidad, y de corta vida de servicio.IL SHEET Toothed and pinion, which are essential for the Wankel engine epicyclic movement, and in addition, it is exempt from most of the problems associated with the thermal distortion of the crankcase, causing difficulties in resolving the gas tightness, and therefore , originating from wear problems, low reliability, and short service life.
HOJA DE SUSTITUCIÓN REGLA 26 DESCRIPCIÓN DE LA INNOVACIÓN.SUBSTITUTE SHEET RULE 26 DESCRIPTION OF INNOVATION.
La invención consiste en un motor de combustión interna de cuatro tiempos, en el que existen recintos de volumen variable, dentro de los cuales acciona el fluido activo, de forma similar a como actúa en los cilindros de un motor convencional de combustión interna alternativo de cuatro tiempos Aunque ésta invención es aplicable a cualquier numero par de recintos, que hacen la función de los cilindros en el motor alternativo, y dado que el motor alternativo de empleo mas extendido es el de cuatro cilindros en linea, a efectos de explicación de la idea se describirá específicamente el caso del motor de cuatro recintos El fundamento mecánico de éste nuevo motor se expone a través de la figura 1 , que representa una sección por un plano perpendicular al eje de giro del mismo Según presenta dicha figura, el motor está compuesto por las dos piezas semicarter "A" y "B", las cuales forman internamente dos sectores cilindricos, y que están rígidamente unidas a través de otras dos piezas culata "D" y "C", en las cuales están previstos los pasos necesarios para los conductos de admisión y escape e incorporan los asientos de las correspondientes válvulas Dichas piezas culata "D" y "C" forman juntamente con las "A" y "B" un cuerpo πgido hueco, cuyo interior forma dos sectores cilindricos acoplados a dos cuñas planas, sobre las que asientan las válvulas que están representadas en línea imaginaria en la figura.The invention consists of a four-stroke internal combustion engine, in which there are variable volume enclosures, within which the active fluid operates, similar to how it acts in the cylinders of a conventional four-wheel internal combustion engine times Although this invention is applicable to any even number of enclosures, which function as cylinders in the alternative engine, and since the most extended alternative use engine is that of four cylinders in line, for the purpose of explaining the idea the case of the four-enclosure motor will be specifically described. The mechanical basis of this new motor is exposed through Figure 1, which represents a section through a plane perpendicular to the axis of rotation thereof. the two half-pieces "A" and "B", which internally form two cylindrical sectors, and which are rigidly joined through each other two cylinder head pieces "D" and "C", in which the necessary steps for the intake and exhaust ducts are provided and incorporate the seats of the corresponding valves. These cylinder head pieces "D" and "C" form together with the "A "and" B "a hollow πrido body, whose interior forms two cylindrical sectors coupled to two flat wedges, on which the valves that are represented in imaginary line in the figure.
Concéntricamente con el eje del hueco cilindrico, se encuentra montado el rotor "R", cuya configuración geométrica es la de un cilindro circular provisto de dos aletas iguales longitudinalmente dispuestas y colocadas simétricamente Dicho rotor con sus aletas ajusta convenientemente en el interior del hueco cilindrico citado, pudiendo girar oscilando dentro del sector cilindrico previstoConcentrically with the axis of the cylindrical bore, the rotor "R" is mounted, whose geometric configuration is that of a circular cylinder provided with two longitudinally arranged equal fins and symmetrically positioned said rotor with its fins conveniently fits inside the cited cylindrical bore , being able to rotate oscillating within the planned cylindrical sector
La presencia del rotor "R" con sus aletas divide el hueco cilindrico en cuatro recintos "1 " ,"2" ,"3", "4", los cuales actúan como los cuatro cilindros de un motor alternativo convencional, ya que éstos recintos son los que ocupará el fluido activo del motorThe presence of the rotor "R" with its fins divides the cylindrical hollow into four enclosures "1", "2", "3", "4", which act as the four cylinders of a conventional alternative engine, since these enclosures they are the ones that will occupy the active motor fluid
HOJA DE S T IÓN R evolucionando termodinámicamente de forma equivalente a como lo hace en los cilindros de un motor alternativo clásico. Los volúmenes de dichos recintos variarán con la posición angular del rotor en cada momento, pero estarán siempre delimitados por las siguientes superficies: • La pared interior de las piezas semicárter "A" y "B" que forman los sectores cilindricos.ST IÓN R SHEET evolving thermodynamically in the same way as it does in the cylinders of a classic alternative engine. The volumes of these enclosures will vary with the angular position of the rotor at all times, but will always be delimited by the following surfaces: • The inner wall of the semi-crankcase "A" and "B" that form the cylindrical sectors.
• Las paredes correspondientes a las válvulas de las piezas culata "C" y "D".• The walls corresponding to the valves of the cylinder head parts "C" and "D".
• Las caras laterales de las dos aletas del rotor.• The side faces of the two rotor fins.
• La parte circular de la superficie cilindrica correspondiente al tambor del rotor. • Las superficies planas que cierran las bases anterior y posterior del hueco cilindrico. Los volúmenes limitados por dichas superficies configuran recintos estancos que encierran al fluido activo mientras las válvulas están cerradas, y su estanqueidad estará garantizada por la presencia de los elementos deslizantes de sellado de borde de aleta "U", y de centro de culata "V".• The circular part of the cylindrical surface corresponding to the rotor drum. • Flat surfaces that close the anterior and posterior bases of the cylindrical bore. The volumes limited by said surfaces form sealed enclosures that enclose the active fluid while the valves are closed, and their tightness will be guaranteed by the presence of the sliding edge sealing elements "U", and the cylinder head center "V" .
De todas éstas superficies las únicas susceptibles de desplazarse cuando funciona el motor son las caras laterales de las aletas, que son por tanto, las superficies activas. La figura 2 representa una sección por el plano vertical de simetría del hueco cilindrico, la cuál presenta la configuración del motor en la dirección del eje del rotor "R". Según puede verse en dicha figura 2, las bases anterior y posterior de cierre del hueco cilindrico se resuelven mediante dos piezas soporte planas "S" y "T", las cuales refuerzan la unión de las piezas semicarter "A" y "B" con las piezas culata "C" y "D" mediante bulones roscados según representa la figura. Esta unión, además de cerrar el hueco cilindrico, proporciona una buena configuración estructural del conjunto, que le hace susceptible de soportar las altas presiones que el fluido activo presentará en funcionamiento.Of all these surfaces the only ones likely to move when the engine is running are the lateral faces of the fins, which are therefore the active surfaces. Figure 2 represents a section through the vertical plane of symmetry of the cylindrical bore, which presents the motor configuration in the direction of the rotor axis "R". As can be seen in said figure 2, the anterior and posterior cylindrical closure bases are solved by means of two flat support pieces "S" and "T", which reinforce the union of the half-pieces "A" and "B" with cylinder head parts "C" and "D" by threaded bolts as shown in the figure. This joint, in addition to closing the cylindrical bore, provides a good structural configuration of the assembly, which makes it susceptible to withstand the high pressures that the active fluid will present in operation.
Dichas piezas soporte "S" y "T" proporcionan, además, alojamiento a los cojinetes delantero y trasero de los apoyos del eje del rotor, según se presenta en la figura. Adicionalmente dichas piezas "S" y "T" se extienden para alojar a los cojinetes delantero y trasero del eje de potencia o cigüeñal del motor "E", representado en lasSaid support pieces "S" and "T" also provide housing for the front and rear bearings of the rotor shaft supports, as shown in the figure. Additionally, said "S" and "T" parts extend to accommodate the front and rear bearings of the power shaft or crankshaft of the "E" engine, represented in the
HOJA DE SU T I N RE L figuras 1 y 2.SHEET OF YOUR TIN RE L Figures 1 and 2.
El eje del rotor "R", en su extremo trasero lleva solidario un brazo "M", cuyo eje está posicionado perpendicularmente al plano de simetría de las aletas, y el extremo de dicho brazo tiene un bulón sobre el que articula una biela "N". El eje de potencia o cigüeñal "E", que es paralelo al eje de giro del rotor "R", está posicionado en una situación conveniente, y en su extremo trasero lleva un brazo manivela "P", dispuesto igualmente con su bulón que articula con el otro extremo de la biela "N". El conjunto compuesto por el brazo "M", la biela "N"y la manivela "P" completa un mecanismo clásico de brazo- biela-manivela, que produce un movimiento angular de oscilación completa del rotor "R", para cada vuelta del eje de cigüeñal "E".The axis of the rotor "R", at its rear end carries an arm "M", whose axis is positioned perpendicular to the plane of symmetry of the fins, and the end of said arm has a bolt on which articulates a connecting rod "N ". The power shaft or crankshaft "E", which is parallel to the axis of rotation of the rotor "R", is positioned in a convenient situation, and at its rear end it has a crank arm "P", also arranged with its articulating pin with the other end of the connecting rod "N". The set consisting of the arm "M", the connecting rod "N" and the crank "P" completes a classic crank arm-crank mechanism, which produces a full swing angular movement of the rotor "R", for each turn of the crankshaft shaft "E".
La amplitud de la elongación del movimiento angular del rotor (αm) , corresponde a media vuelta del cigüeñal, y marca las posiciones extremas de las aletas del rotor, que equivalen a los puntos muertos superior e inferior, (P.M.S. y P.M.I. respectivamente), referentes al motor alternativo equiparable. Dichas posiciones extremas están representadas en linea imaginaria en la figura 1.The amplitude of the elongation of the angular movement of the rotor (αm), corresponds to half a turn of the crankshaft, and marks the extreme positions of the rotor fins, which are equivalent to the upper and lower dead spots, (PMS and PMI respectively), referents to the comparable alternative engine. Said extreme positions are represented in imaginary line in figure 1.
El ángulo "αm" es función de la posición del eje del cigüeñal "E" con respecto al eje del rotor, de los radios de los brazos "M" y "P", y de la longitud de la biela "N", por lo que puede seleccionarse un valor adecuado para dicho ángulo, adoptando valores convenientes para las dimensiones citadas.The angle "αm" is a function of the position of the axis of the crankshaft "E" with respect to the axis of the rotor, of the radii of the arms "M" and "P", and of the length of the connecting rod "N", by which can be selected for a suitable value for said angle, adopting values suitable for the dimensions mentioned.
Para valores fijos de dichas dimensiones, a cada posición angular del eje de cigüeñal "E" corresponde una posición angular determinada del rotor "R".For fixed values of these dimensions, a given angular position of the rotor "R" corresponds to each angular position of the crankshaft axis "E".
Cuando varía el ángulo girado por el rotor, varían proporcionalmente los volúmenes de los recintos "1", "2", "3"y "4", de forma que la ley de variación de dichos volúmenes en función del ángulo girado por el cigüeñal, resulta muy semejante a la correspondiente de los volúmenes activos de los cilindros en un motor alternativo de cuatro cilindros convencional. La relación de volumen máximo/ volumen mínimo de cada recinto resulta idéntica a la relación volumétrica de compresión del motor alternativo equiparable, y por tanto, tiene el mismo significado termodinámico que ésta. Así resulta que, si se supone inicialmente posicionado el mecanismo motor, de formaWhen the angle rotated by the rotor varies, the volumes of the enclosures "1", "2", "3" and "4" vary proportionally, so that the law of variation of said volumes as a function of the angle rotated by the crankshaft , is very similar to the corresponding of the active volumes of the cylinders in an alternative conventional four-cylinder engine. The ratio of maximum volume / minimum volume of each enclosure is identical to the volumetric compression ratio of the comparable alternative engine, and therefore has the same thermodynamic significance as this. Thus, if the motor mechanism is initially positioned, it is assumed
HO que la muñequilla del cigüeñal se encuentre en la posición correspondiente al punto muerto superior, cuando el recinto "1" se encuentra a su volumen mínimo después de haber realizado el escape de su fluido activo, el funcionamiento del motor se realizaría con la siguiente secuencia: • Durante la primera media vuelta del cigüeñal "E", el recinto " 1 "realiza su carrera de admisión, el recinto "2" realiza su carrera de compresión, el recinto "3" realiza su carrera de expansión, y el recinto "4" realiza su carrera de escapeHO If the crankshaft wrist is in the position corresponding to the upper dead center, when the enclosure "1" is at its minimum volume after the escape of its active fluid, the engine operation would be carried out in the following sequence: • During the first half turn of the crankshaft "E", the enclosure "1" performs its admission race, the enclosure "2" performs its compression stroke, the enclosure "3" conducts its expansion stroke, and the enclosure "4 "make your escape run
• Durante la segunda media vuelta del cigüeñal "E", el recinto "1 " realiza su carrera de compresión, el recinto "2" la de expansión, el recinto "3" la de escape, y el recinto "4" la de admisión• During the second half turn of the crankshaft "E", the enclosure "1" performs its compression stroke, the enclosure "2" the expansion, the enclosure "3" the exhaust, and the enclosure "4" the admission
• Durante la tercera media vuelta del cigüeñal "E", el recinto "1 "realiza su expansión, el "2" su escape, el "3" su admisión y el "4" su compresión• During the third half turn of the crankshaft "E", the enclosure "1" performs its expansion, the "2" its exhaust, the "3" its intake and the "4" its compression
• Durante la cuarta media vuelta del cigüeñal "E", el recinto "1 " hace su escape, el "2" su admisión, el "3 "su compresión y el "4" su expansión Esta secuencia se repite cíclicamente para sucesivas vueltas del cigüeñal, y se produce de forma que el ciclo termodinamico de cada recinto resulta semejante al de cada cilindro de un motor alternativo convencional de cuatro cilindros El trabajo elemental del ciclo de un cilindro de motor alternativo se obtiene por el desplazamiento de la fuerza que actúa sobre la superficie del embolo, como resultante de la presión del fluido activo en cada instante El trabajo elemental del ciclo de un recinto del Motor de Rotor Oscilante se obtiene de forma equivalente, por desplazamiento de la fuerza que actúa sobre la cara activa de la aleta del rotor que limita dicho recinto, como resultante de la presión del fluido activo en cada instante Así, dicho trabajo elemental resulta ser el producto de la presión existente en el recinto en cada instante, por el área efectiva de la aleta, y por el arco elemental recorrido por el centro del rectángulo que forma dicha área efectiva A su vez, el área afectiva de la aleta es el producto de su longitud (L) por la diferencia de los radios de cabeza (R) y de raíz (r) de la misma aleta, y el arco elemental recorrido por su centro es el producto del ángulo elemental girado por el rotor por el radio medio entre cabeza y raíz rm=(R+r)/2 De todo esto se deduce que el trabajo elemental del ciclo de un recinto para un Motor• During the fourth half turn of the crankshaft "E", the enclosure "1" makes its escape, the "2" its admission, the "3" its compression and the "4" its expansion This sequence is repeated cyclically for successive turns of the crankshaft, and is produced in such a way that the thermodynamic cycle of each enclosure is similar to that of each cylinder of a conventional alternative four-cylinder engine The elementary work of the cycle of an alternative engine cylinder is obtained by the displacement of the force acting on the surface of the plunger, as a result of the pressure of the active fluid at every moment The elementary work of the cycle of an enclosure of the Oscillating Rotor Motor is obtained in an equivalent way, by displacement of the force acting on the active face of the fin of the rotor that limits said enclosure, as a result of the pressure of the active fluid at each instant Thus, said elementary work turns out to be the product of the pressure existing in the enclosure at each i nstante, by the effective area of the fin, and by the elementary arc traveled by the center of the rectangle that forms said effective area In turn, the affective area of the fin is the product of its length (L) by the difference of the head (R) and root (r) radii of the same fin, and the elementary arc traveled through its center is the product of the elementary angle rotated by the rotor by the mean radius between head and root rm = (R + r) / 2 From all this it follows that the elementary work of the cycle of an enclosure for an Engine
HO A DE R de Rotor Oscilante es:HO A DE R of Oscillating Rotor is:
dτ =P *L *(R -r) *(R +r)/2 *dddτ = P * L * (R -r) * (R + r) / 2 * dd
Donde (P) es la presión instantánea existente en el recinto, y (dα) es el ángulo elemental girado por el rotor. Cuando (P) actúa sobre la cara de la aleta en el mismo sentido que (d α) el trabajo elemental es positivo, (trabajo motor). Cuando actúa en sentido contrario, el trabajo elemental es negativo, (trabajo resistente).Where (P) is the instantaneous pressure in the enclosure, and (dα) is the elementary angle rotated by the rotor. When (P) acts on the fin's face in the same direction as (d α) the elementary work is positive, (motor work). When it acts in the opposite direction, the elementary work is negative, (hard work).
Considerando que los cuatro recintos actúan simultáneamente pero desfasados media vuelta del cigüeñal, el trabajo elemental de los gases del conjunto de motor será:Considering that the four enclosures act simultaneously but out of phase half a turn of the crankshaft, the elementary work of the gases of the engine assembly will be:
Mo(or =(∑P) *L *(R -r) *(R +r)/2 *daMo (or = (∑P) * L * (R -r) * (R + r) / 2 * da
Donde (Σ P) es la suma algebraica de las presiones de los cuatro recintos, teniendo en cuenta su signo según el de (dα) . Consecuentemente, el par instantáneo de los gases aplicado al rotor resulta:Where (Σ P) is the algebraic sum of the pressures of the four enclosures, taking into account its sign according to that of (dα). Consequently, the instantaneous torque of the gases applied to the rotor results:
MRotor =(∑P) *L *(R -r) *(R +r)/2M Rotor = (∑P) * L * (R -r) * (R + r) / 2
Que es, lógicamente, función del ángulo girado por el rotor ( α ) en cada instante, y cuya construcción gráfica se obtiene de la gráfica de par de los gases de un recinto, sumada algebraicamente sobre sí misma otra tres veces con desfases de media vuelta del cigüeñal. En la figura 3 se indican los sentidos de las presiones actuantes en cada recinto, cuando el recinto "l" está en su carrera de expansión. En la misma figura se representa el esquema mecánico de transmisión de movimiento del rotor al eje de cigüeñal (brazo "M", biela "N", y manivela "P"). El par de los gases aplicado al rotor en cada instante se transmite al brazo "M" del rotor, accionando la biela "N", la cuál actúa a su vez sobre el brazo de muñequilla del cigüeñal, produciendo el par motor resultante de la acciónWhich is, logically, a function of the angle rotated by the rotor (α) at each moment, and whose graphic construction is obtained from the graph of the torque of the gases of an enclosure, added algebraically on itself another three times with half-turn offsets of the crankshaft. Figure 3 shows the directions of the pressures acting in each enclosure, when the enclosure "l" is in its expansion stroke. In the same figure the mechanical scheme of transmission of movement of the rotor to the crankshaft axis (arm "M", connecting rod "N", and crank "P") is represented. The torque of the gases applied to the rotor at each moment is transmitted to the arm "M" of the rotor, driving the connecting rod "N", which acts in turn on the crank arm of the crankshaft, producing the torque resulting from the action
HOJA D IÓN R de los gases sobre el eje de potencia. El diagrama de dicho par de los gases es muy similar al que resulta en un motor alternativo de cuatro cilindros convencional a la salida de su cigüeñal. Por lo tanto, la regularidad cíclica del motor de rotor oscilante será muy similar a la del motor alternativo. Sin embargo, desde el punto de vista de las cargas máximas que han da soportar los componentes del mecanismo, existen diferencias esenciales entre ambos tipos de motores, que favorecen claramente al Motor de Rotor Oscilante. La razón de dicha diferencia se basa en el hecho de que, en el motor alternativo la carga máxima que recibe la biela correspondiente a cada cilindro proviene del pico de presión producido por la explosión sobre el émbolo correspondiente, que actúa independientemente del resto de los cilindros, y que se transmite directamente al codo correspondiente del cigüeñal. Ésta gran carga de pico obliga a dimensionar cada biela y cada codo del cigüeñal con una robustez adecuada a la magnitud de la citada carga. En el motor de rotor oscilante la acción de pico de presión debido a la explosión de un recinto se transmite a la cara activa de la correspondiente aleta, produciendo el efecto positivo de par al rotor, pero simultáneamente las caras activas de las aletas de los otros tres recintos están produciendo efecto negativo de par al rotor, que restándose aminora la carga máxima que debe soportar tanto la biela como el cigüeñal. Consecuentemente, tanto la biela como el cigüeñal precisarán tener menos robustez, y por tanto, menos peso que en el motor alternativo. Si se tiene en cuenta además, que el motor de rotor oscilante tiene solamente una biela y un solo codo de cigüeñal, frente a cuatro que necesita el motor alternativo, queda indudablemente justificada la ventaja de reducción de peso del motor de rotor oscilante frente al alternativo. La descripción expuesta en particular para el motor con rotor de dos aletas, se puede generalizar para rotores de cualquier número de aletas, considerando simplemente que cada aleta divide en dos recintos el sector cilindrico en que se mueve, de forma que, el número total de recintos que tendría un Motor de Rotor Oscilante determinado, sería el doble del número de aletas de su rotor. Dado que, cada recinto actuará de forma semejante a como actúa un cilindro del motor alternativo equiparable, la solución descrita sería igualmente aplicable a cualquier tipo de Motor de Rotor Oscilante, según el número de aletas de rotor que se seleccione en cada caso. Así resulta que, si se selecciona un rotor de una sola aleta el motor de rotor oscilante correspondiente tendría dos recintos y sería, por tanto, equiparable a un motor alternativo de dos cilindro en línea. Si se seleccionase un rotor con dos aletas, el motor tendría cuatro recintos, y sería equiparable al alternativo de cuatro cilindros en línea. Para rotor de tres aletas se tendría un motor equiparable al alternativo de seis cilindros en línea. Y así sucesivamente, se podría configurar cualquier modelo de Motor de Rotor Oscilante, equiparable al motor alternativo de cualquier número par de cilindros en línea. ( A efectos expositivos las figuras presentan el caso específico de rotor con dos aletas, que conduce al motor equiparable al alternativo de cuatro cilindros en línea).SHEET D IÓN R of the gases on the power axis. The diagram of this pair of gases is very similar to that resulting in a conventional four-cylinder alternative engine at the exit of its crankshaft. Therefore, the cyclic regularity of the oscillating rotor motor will be very similar to that of the alternative motor. However, from the point of view of the maximum loads that the components of the mechanism have to support, there are essential differences between both types of motors, which clearly favor the Oscillating Rotor Motor. The reason for this difference is based on the fact that, in the alternative engine, the maximum load received by the connecting rod corresponding to each cylinder comes from the pressure peak produced by the explosion on the corresponding piston, which acts independently of the rest of the cylinders , and that is transmitted directly to the corresponding crankshaft elbow. This large peak load forces to dimension each connecting rod and each crankshaft elbow with a robustness appropriate to the magnitude of said load. In the oscillating rotor motor the action of peak pressure due to the explosion of an enclosure is transmitted to the active face of the corresponding fin, producing the positive effect of torque to the rotor, but simultaneously the active faces of the fins of the other three enclosures are producing a negative torque effect on the rotor, which by subtracting reduces the maximum load that both the connecting rod and the crankshaft must bear. Consequently, both the connecting rod and the crankshaft will need to have less robustness, and therefore, less weight than in the alternative engine. If it is also taken into account, that the oscillating rotor motor has only one connecting rod and one single crankshaft elbow, compared to four that the alternative motor needs, the weight reduction advantage of the oscillating rotor motor versus the alternative one is undoubtedly justified . The description given in particular for the two-finned rotor motor can be generalized for rotors of any number of fins, simply considering that each fin divides the cylindrical sector in which it moves into two enclosures, so that the total number of enclosures that a particular Oscillating Rotor Motor would have, would be twice the number of fins of its rotor. Since, each enclosure will act in a similar way to how a comparable alternative engine cylinder acts, the described solution would be equally applicable to any type of Oscillating Rotor Motor, according to the number of rotor fins selected in each case. Thus it turns out that, if a single-finned rotor is selected, the corresponding oscillating rotor motor would have two enclosures and would therefore be comparable to an inline two-cylinder alternative engine. If a rotor with two fins were selected, the engine would have four enclosures, and would be comparable to the four-cylinder in-line alternative. For a three-finned rotor, there would be an engine comparable to the six-cylinder in-line alternative. And so on, you could configure any model of Oscillating Rotor Motor, comparable to the alternative engine of any even number of cylinders in line. (For expository purposes the figures present the specific case of a rotor with two fins, which leads to the engine comparable to the four-cylinder in-line alternative).
HOJA DE S 2 S 2 SHEET

Claims

REIVINDICACIONES:CLAIMS:
Se declara como de nueva y propia la invención, y se reivindica la propiedad y explotación exclusiva de: 1 - Motor de Combustión Interna de Rotor Oscilante, caracterizado porque integra los componentes esenciales siguientes.The invention is declared as new and proprietary, and the exclusive ownership and exploitation of: 1 - Internal Combustion Engine of Oscillating Rotor is claimed, characterized in that it integrates the following essential components.
• Un cuerpo, que constituye una carcasa rígida, cuyo interior, hueco, está formado por sectores cilindricos , igualmente distribuidos en la periferia del hueco y limitados por piezas culata en forma de cuñas planas, donde se alojan las válvulas• A body, which constitutes a rigid housing, whose interior, hollow, is formed by cylindrical sectors, also distributed in the periphery of the hollow and limited by cylinder head shaped parts, where the valves are housed
• Un rotor oscilante de eje concéntrico con la carcasa, cuya forma geométrica externa es la de un cilindro circular provisto de aletas longitudinales, igualmente distribuidas, siendo el número de dichas aletas igual al de sectores cilindricos previstos para el interior hueco de la carcasa Éste rotor oscilante dispone de un eje, que en su extremo de salida lleva solidario un brazo, provisto de bulón, para articulación del extremo de una biela.• A concentric axis oscillating rotor with the housing, whose external geometric shape is that of a circular cylinder provided with longitudinal fins, equally distributed, the number of said fins being equal to the number of cylindrical sectors provided for the hollow interior of the housing This rotor Oscillating has a shaft, which at its exit end carries an arm, provided with a bolt, for articulation of the end of a connecting rod.
• Dos placas planas, que cierran los extremos del hueco interior de la carcasa, las cuales proporcionan alojamiento al eje del rotor oscilante, y se extienden para proporcionar soporte y posicionamiento adecuado a los cojinetes de apoyo del eje cigüeñal, de salida de potencia del motor• Two flat plates, which close the ends of the inner hollow of the housing, which provide housing to the oscillating rotor shaft, and extend to provide adequate support and positioning to the crankshaft bearing support bearings, motor power output
• Un eje cigüeñal , apoyado en los cojinetes, y provisto de un brazo de manivela, que equipado con su correspondiente bulon de extremo, propicia la articulación adecuada para el otro extremo de la biela• A crankshaft axle, supported by the bearings, and provided with a crank arm, which equipped with its corresponding end bolt, provides adequate articulation for the other end of the connecting rod
• Una biela cuyos extremos articulan con los bulones respectivos del brazo de salida del rotor y de la manivela del cigüeñal• A connecting rod whose ends articulate with the respective bolts of the rotor output arm and the crankshaft crank
2 - Motor de Combustión Interna de Rotor Oscilante, según la Reivindicación 1 , caracterizado porque el rotor puede realizar un recorrido angular oscilante, gobernado por el mecanismo de brazo de rotor, biela, y manivela del cigüeñal Los extremos de dicho recorrido angular definen dos puntos muertos del citado mecanismo 3 - Motor de Combustión Interna de Rotor Oscilante, según reivindicaciones 1 y 2,2 - Internal Swing Rotor Combustion Engine, according to Claim 1, characterized in that the rotor can perform an oscillating angular path, governed by the mechanism of the rotor arm, connecting rod, and crankshaft crank The ends of said angular path define two points of said mechanism 3 - Internal Combustion Engine of Oscillating Rotor, according to claims 1 and 2,
DE caracterizado porque cada aleta del rotor divide en dos recintos el sector cilindrico en que se mueve, de forma que el número total de recintos que tiene el Motor de Rotor Oscilante resulta el doble del número de aletas del rotor.FROM characterized in that each rotor fin divides the cylindrical sector in which it moves into two enclosures, so that the total number of enclosures that the Oscillating Rotor Motor has is twice the number of rotor fins.
4.- Solución de Motor de Rotor Oscilante según las Reivindicaciones 1 y 2, caracterizada porque el ángulo (αm) de elongación de la oscilación del rotor define dos posiciones extremas de cada aleta, y consecuentemente los volúmenes mínimo y máximo de cada recinto cuando funciona el motor. La relación de volumen máximo/ volumen mínimo de cualquier recinto es idéntica a la relación volumétrica de compresión del motor alternativo equiparable, y se calcula mediante el ángulo de elongación de la oscilación del rotor que se determina en función de las dimensiones geométricas de los elementos componentes de la transmisión mecánica, brazo- biela- manivela, que liga el movimiento de oscilación del rotor con el circular del eje cigüeñal. 5. -Solución de Motor de Rotor Oscilante según las Reivindicaciones 1 a 4, caracterizado porque, las acciones de presión que actúan sobre las caras activas de las aletas del rotor se suman algebraicamente para producir el par resultante sobre el eje del rotor de forma directa, haciendo innecesaria la presencia de un cigüeñal largo y de varios codos. 6.- Motor de Combustión Interna de Rotor Oscilante según las Reivindicaciones 1 a 5, caracterizado porque emplea una sola biela y un cigüeñal muy corto y simple, que supone una reducción de peso en relación al motor alternativo equiparable. 4.- Oscillating Rotor Motor Solution according to claims 1 and 2, characterized in that the angle (αm) of elongation of the oscillation of the rotor defines two extreme positions of each fin, and consequently the minimum and maximum volumes of each enclosure when it operates the motor. The ratio of maximum volume / minimum volume of any enclosure is identical to the volumetric compression ratio of the comparable alternative engine, and is calculated by the angle of elongation of the rotor oscillation that is determined based on the geometric dimensions of the component elements of the mechanical transmission, crank-crank, which links the oscillating movement of the rotor with the circular of the crankshaft. 5.-Oscillating Rotor Motor Solution according to claims 1 to 4, characterized in that, the pressure actions acting on the active faces of the rotor fins are added algebraically to produce the resulting torque on the rotor shaft directly , making the presence of a long crankshaft and several elbows unnecessary. 6. Internal Swing Rotor Combustion Engine according to Claims 1 to 5, characterized in that it uses a single connecting rod and a very short and simple crankshaft, which means a reduction in weight in relation to the comparable alternative engine.
PCT/ES1998/000265 1997-09-26 1998-09-25 Internal combustion engine with oscillating rotor WO1999016998A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES9702023A ES2137122B1 (en) 1997-09-26 1997-09-26 OSCILLATING ROTOR INTERNAL COMBUSTION ENGINE.
ESP9702023 1997-09-26

Publications (1)

Publication Number Publication Date
WO1999016998A1 true WO1999016998A1 (en) 1999-04-08

Family

ID=8300717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1998/000265 WO1999016998A1 (en) 1997-09-26 1998-09-25 Internal combustion engine with oscillating rotor

Country Status (2)

Country Link
ES (1) ES2137122B1 (en)
WO (1) WO1999016998A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100432375C (en) * 2007-03-03 2008-11-12 谈诚 Golden proportion of design for oscillating-piston mechanical structure
CN102953806A (en) * 2012-11-19 2013-03-06 黎澄生 X-variable compression ratio engine
CN104153876A (en) * 2014-07-07 2014-11-19 杨思强 Engine
RU2659602C1 (en) * 2017-06-07 2018-07-03 федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский национальный исследовательский технический университет" (ФГБОУ ВО "ИРНИТУ") Vaned internal combustion engine
RU213237U1 (en) * 2021-05-28 2022-08-31 Вадим Вениаминович Клементьев vane motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1584473A (en) * 1967-02-20 1969-12-26
FR2297323A1 (en) * 1975-01-08 1976-08-06 Grossetete Roger Two stroke rotary piston IC engine - has oscillating rotor blades cooperating with radial blades in housing
DE3127498A1 (en) * 1981-07-11 1983-04-14 Friedrich 4320 Hattingen Twachtmann Four-chamber four-stroke oscillating piston engine
FR2539814A1 (en) * 1983-01-21 1984-07-27 Dorchies Alain Machine with an oscillating piston which can be used as a 2-stroke or 4-stroke internal combustion engine, as a fluid transmission device, pump, compressor, or electric generator
US4599976A (en) * 1983-12-13 1986-07-15 Societe A Responsabilite Limitee Datome Reciprocating rotary piston thermal engine with a spherical chamber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1584473A (en) * 1967-02-20 1969-12-26
FR2297323A1 (en) * 1975-01-08 1976-08-06 Grossetete Roger Two stroke rotary piston IC engine - has oscillating rotor blades cooperating with radial blades in housing
DE3127498A1 (en) * 1981-07-11 1983-04-14 Friedrich 4320 Hattingen Twachtmann Four-chamber four-stroke oscillating piston engine
FR2539814A1 (en) * 1983-01-21 1984-07-27 Dorchies Alain Machine with an oscillating piston which can be used as a 2-stroke or 4-stroke internal combustion engine, as a fluid transmission device, pump, compressor, or electric generator
US4599976A (en) * 1983-12-13 1986-07-15 Societe A Responsabilite Limitee Datome Reciprocating rotary piston thermal engine with a spherical chamber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100432375C (en) * 2007-03-03 2008-11-12 谈诚 Golden proportion of design for oscillating-piston mechanical structure
CN102953806A (en) * 2012-11-19 2013-03-06 黎澄生 X-variable compression ratio engine
CN104153876A (en) * 2014-07-07 2014-11-19 杨思强 Engine
CN104153876B (en) * 2014-07-07 2016-02-24 杨思强 A kind of motor
RU2659602C1 (en) * 2017-06-07 2018-07-03 федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский национальный исследовательский технический университет" (ФГБОУ ВО "ИРНИТУ") Vaned internal combustion engine
RU213237U1 (en) * 2021-05-28 2022-08-31 Вадим Вениаминович Клементьев vane motor

Also Published As

Publication number Publication date
ES2137122B1 (en) 2000-08-01
ES2137122A1 (en) 1999-12-01

Similar Documents

Publication Publication Date Title
JP3676303B2 (en) Hinge-coupled rotor type internal combustion engine
ES2307149T3 (en) OSCILLATING PISTON MACHINE AND VEHICLE WITH AN OSCILLATING PISTON MACHINE OF THIS TYPE.
US4270395A (en) Motion translating mechanism
US3256866A (en) Internal combustion engine
US4173151A (en) Motion translating mechanism
ES2237479T3 (en) DEVICE TO MODIFY THE DEGREE OF COMPRESSION IN ORDER TO OPTIMIZE THE OPERATION OF ALTERNATIVE PUMP MOTORS.
US2162771A (en) Motor
RU2004111293A (en) PISTON MACHINE WITH ROTATING CYLINDER
US2407859A (en) Mechanical movement
ES2225756T3 (en) ENGINE WITH ROTARY ROD BULON.
WO1998004820A1 (en) Internal combustion engine with central chamber
EP1407117B1 (en) The oscillating-rotary engine
WO1999016998A1 (en) Internal combustion engine with oscillating rotor
SU466675A3 (en) Rotary piston machine
US9528585B2 (en) Piston engine
US3760777A (en) Rotary-piston engine
US3950117A (en) Machine with rotary articulated pistons
US1037094A (en) Internal-combustion motor.
US1329625A (en) Internal-combustion rotary engine
JPS62182442A (en) Hypo cycloid crank internal combustion engine
US1701439A (en) Engine
US1048308A (en) Rotary gas-engine.
US3279279A (en) Crankshaft for multi-stage rotary piston engine
US1069936A (en) Internal-combustion engine.
US3762276A (en) Steam engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase