WO1999013037A1 - Compositions de blanchiment - Google Patents

Compositions de blanchiment Download PDF

Info

Publication number
WO1999013037A1
WO1999013037A1 PCT/US1998/012325 US9812325W WO9913037A1 WO 1999013037 A1 WO1999013037 A1 WO 1999013037A1 US 9812325 W US9812325 W US 9812325W WO 9913037 A1 WO9913037 A1 WO 9913037A1
Authority
WO
WIPO (PCT)
Prior art keywords
avo
bleach
hydrophilic
acid
available oxygen
Prior art date
Application number
PCT/US1998/012325
Other languages
English (en)
Inventor
Susan Judith Mason
Ludivine Pascale Marie Grippay
Nour-Eddine Guedira
Donald Ray Brown
Michelle Frances Mellea
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB9719235A external-priority patent/GB2329188A/en
Priority claimed from GB9719231A external-priority patent/GB2329187A/en
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to EP98929053A priority Critical patent/EP1015539A4/fr
Priority to JP2000510830A priority patent/JP2001515952A/ja
Priority to CA002303769A priority patent/CA2303769A1/fr
Priority to BR9812446-3A priority patent/BR9812446A/pt
Priority to AU80711/98A priority patent/AU8071198A/en
Priority to US09/508,442 priority patent/US6444634B1/en
Publication of WO1999013037A1 publication Critical patent/WO1999013037A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/33Amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/37Mixtures of compounds all of which are anionic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • C11D17/065High-density particulate detergent compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/36Organic compounds containing phosphorus
    • C11D3/361Phosphonates, phosphinates or phosphonites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/36Organic compounds containing phosphorus
    • C11D3/364Organic compounds containing phosphorus containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3907Organic compounds
    • C11D3/3915Sulfur-containing compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3937Stabilising agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3945Organic per-compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/16Sulfonic acids or sulfuric acid esters; Salts thereof derived from divalent or polyvalent alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/28Sulfonation products derived from fatty acids or their derivatives, e.g. esters, amides

Definitions

  • the present invention relates to bleach-containing compositions, suitable for use in laundry washing methods.
  • organic peroxyacids which can provide effective stain and/or soil removal from fabrics at lower wash temperatures.
  • the organic peroxyacids are often obtained by the in situ perhydrolysis of organic peroxyacid bleach precursor compounds (bleach activators).
  • a commonly employed precursor compound is tetraacetyl ethylene diamine (TAED) which provides effective hydrophilic cleaning especially on beverage stains.
  • TAED tetraacetyl ethylene diamine
  • To achieve effective bleaching of a detergent both hydrophobic and hydrophilic stains need to be bleached by the bleach system.
  • Further organic peroxyacid precursors have thus been developed to deal with hydrophobic stains and soils.
  • the system should provide excellent bleaching at low levels, thereby minimizing the chance of damage to the fabrics.
  • the inventors have now surprisingly found that improved bleaching under stressed conditions can be achieved by use of a bleaching-composition containing a low level of bleach activators and peroxide source, namely having an available oxygen (AvO) derived from hydrophobic and hydrophilic bleach activators of less than 5000 ppm, and having a specific ratio of AvO of the hydrophobic activator to the AvO of the hydrophilic activator, namely from 3:1 to 1:50, and a specific ratio of the total AvO to the AvO of the activators, namely more than 2:1.
  • the bleach system has been found to be particularly useful in low density detergents, in hand washing detergents, in phosphate-containing compositions, and also in washing processes where a low concentration of detergent is used.
  • bleach and in particular hypochlorite bleach is known to kill bacteria.
  • High levels of bleach are normally required to provide a sufficient reduction of the bacteria's or to eliminate the bacteria's. Therefore, most detergents which comprise bleach systems known in the art, which only comprise low levels of bleach, are not effective as biocide agents for sanitization.
  • the inventors have found that mixed bleach systems, comprising specific levels and ratios of hydrophobic, hydrophilic bleach additives and peroxide sources are very useful as biocide agents.
  • the present invention relates to a detergent composition, having a density from 330g/litre to 700g/litre, comprising a bleaching system containing a hydrophilic and a hydrophobic peracid bleach or peracid bleach presursor and a peroxide source, characterized in that the total level of Available Oxygen from the hydrophilic and hydrophobic peracid bleach or bleach precursors (AvO-a) is less than 5000 ppm, the ratio of Available Oxygen of the hydrophobic peracid or precursor (AvO-hb) to the Available Oxygen of the hydrophilic peracid or precursor (AvO-hp) is from 3:1 to 1:50 and the ratio of the Available Oxygen of the peroxide source (AvO-o) to the AvO-a is at least 2:l.
  • the total level of Available Oxygen from the hydrophilic and hydrophobic peracid bleach or bleach precursors is less than 5000 ppm, or even less than 4000ppm or even less than 3000ppm or even less than 2500ppm.
  • the ratio of Available Oxygen of the hydrophobic peracid or precursor (AvO-hb) to the Available Oxygen of the hydrophilic peracid or precursor (AvO-hp) is from 3:1 to 1:50, more preferably from 2.5:1 to 1:30, or even 2:1 tol:20.
  • the ratio of the Available Oxygen of the peroxide source (AvO-o) to the AvO-a is at least 2:1, preferably at least 3:1 or even 4:1.
  • compositions preferably have a density from 370g/litre to 700g/litre, or even to 650g/litre or even to 600g/litre.
  • the composition is a low density granular composition, in particular phosphate-containing compositions and in particular high sudsing compositions, soaking or pre-treatment compositions, hand washing compositions.
  • the invention also relates to a method of washing laundry by hand or pre- treating or soaking of laundry, whereby a detergent composition according to the invention.
  • the invention also relates to the use of bleaching compositions, comprising hydrophobic and hydrophilic peracid bleach or precursors thereto, and a peroxide source for reduction of the activity of bacteria, whereby the ratio of AvO-hb to AvO- hp is from 3 : 1 to 1 :50, preferably 2.5 : 1 to 1 : 10 as even 2: 1 to 1 :20 and whereby the ratio of AvO-o to AvO-a is at least 2:1, preferably at least 3 : 1 or even 4:1.
  • the bleaching compositions are used for sanitisation of the fabrics or surfaces, cleaning with the bleaching compositions. Then, it is preferred that the sanitization method involves contacting the fabrics or surfaces containing bacteria's, in particularly present in stain on the fabrics or surfaces, with the compositions.
  • the invention also encompasses a method for sanitisation of fabrics whereby the fabrics are contacted with a composition or a solution of a composition, comprising a hydrophilic and hydrophobic peracid bleach or precursors thereto and a peroxide source, characterized in that the ratio of Available Oxygen of the hydrophobic peracid or precursor (AvO-hb) to the Available Oxygen of the hydrophilic peracid or precursor (AvO-hp) is from 3:1 to 1 :50 and the ratio of the Available Oxygen of the peroxide source (AvO-0) to the total level of Available Oxygen from the hydrophilic and hydrophobic peracid bleach (AvO-a) is at least 2:1.
  • a composition or a solution of a composition comprising a hydrophilic and hydrophobic peracid bleach or precursors thereto and a peroxide source, characterized in that the ratio of Available Oxygen of the hydrophobic peracid or precursor (AvO-hb) to the
  • the bleaching compositions are preferably present in cleaning compositions for cleaning fabrics or surfaces, preferably laundry or dishwashing detergents or hard- surface cleaners.
  • cleaning compositions for cleaning fabrics or surfaces preferably laundry or dishwashing detergents or hard- surface cleaners.
  • the level of AvO-a in the cleaning compositions or detergent composition, or solutions thereof, which contain the bleaching composition and which are for use of reducing the activity of bacteria is up to 10,000 ppm, more preferably, up to 5,000ppm or even 4,000ppm or even 3,000pppm or 2,500ppm.
  • An essential feature of detergent compositions of the invention is a hydrophobic peracid or precursor thereto.
  • the bleaching system preferably comprising a hydrophobic percarboxylic acid and/ or precursor thereto, of the formula
  • R 1 - CO - L wherein L is a leaving group which is linked to the R - CO- group with an oxygen atom, and R ⁇ has at least 6 carbon atoms.
  • Preferred leaving groups are benzoic acid and derivatives thereof and especially benzene sulphonate.
  • Percarboxylic acid bleach precursor are compounds which react with hydrogen peroxide in a perhydrolysis reaction to produce a percarboxylic acid.
  • the counterion M of the percarboxylic acid is preferably sodium, potassium or hydrogen.
  • hydrophobic peracids or precursors thereto are those whose parent carboxylic acid has a critical micelle concentration less than 0.5 moles/litre and wherein said critical micelle concentration is measured in aqueous solution at 20°- 50°C.
  • the percarboxylic acid preferably formed from the precursor, preferably contains at least 7 carbon atoms, or at least 8 or even 9 carbon atoms, and it may be preferred that it contains from 7 to 12 carbon atoms, more preferably from 8 to 11 carbon atoms, most preferably 9 or 10 carbon atoms.
  • the percarboxylic acid formed from the precursor or the peroxy acid has an alkyl chain comprising at least 7 carbon atoms, more preferably at least 8 carbon atoms, most preferably 9 carbon atoms.
  • the percarboxylic acid precursor can be any ester which had been described as a bleach activator for use in laundry detergents, for instance alkyl percarboxylic acid precursors described herein, sugar esters, such as pentaacetylglucose, esters of imidic acids such as ethyl benzimidate triacylcyanurates, such as triacetylcyanurate and tribenzoylcyanurate an esters giving relatively surface active oxidising products for instance of Cg-is -alkanoic or-aralkanoic acids such as described in GB-A-864798, GB-A-1147871 and the esters described in EP-A-98129 and EP-A- 106634.
  • sugar esters such as pentaacetylglucose
  • esters of imidic acids such as ethyl benzimidate triacylcyanurates, such as triacetylcyanurate and tribenzoylcyanurate
  • Preferred can be phenyl esters of C ⁇ 4 . 22 - alkanoic or alkenoic acids, esters of hydroxylamine, geminal diesters of lower alkanoic acids and gem-idols, such as those described in EP-A-0125781 especiallyl,l,5-triacetoxypent-4-ene and 1,1,5,5- tetraacetoxypentane and the corresponding butene and butane compounds, ethylidene benzoate acetate and bis(ethylidene acetate) adipate and enol esters, for instance as described inEP-A-0140648 and EP-A-0092932.
  • hydrophobic alkyl percarboxylic acid precursors include decanoly oxy benzoic acid or salt thereof, dodecanoyloxy-benzenesulphonate sodium or potassium salt, decanoyloxy - benzenesulphonate sodium or potassium salt (DOBS) , benzoyloxy - benzenesulphonate sodium or potassium salt salt (BOBS), more preferred sodium or potassium 3,5,5-tri-methyl hexanoyloxybenzene sulfonate (iso-NOBS) and even more preferred sodium or potassium nonanoyloxybenzene sulfonate (NOBS).
  • Amide substituted bleach activator compounds may also be useful herein, such as those described in EP-A-0170386.
  • Suitable examples of this class of agents include the precursors or the acids such as (6-hexylamino)-6-oxo-caproic acid(6- octylamino)-6-oxo-caproic acid, (6-nonylamino)-6-oxo-caproic acid, (6-decylamino)- 6-oxo-caproic acid, magnesium monoperoxyphthalate hexahydrate, the salt of meta- chloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid, or precursors thereof, in particlarly having a benzene sulphonate leaving group.
  • Such bleaching agents are disclosed in U.S. 4,483,781, U.S. 4,634,551, EP 0,133,354, U.S. 4,412,934 and
  • Suitable organic peroxyacids include diperoxyalkanedioc acids having more than 7 carbon atoms, such as diperoxydodecanedioc acid (DPDA), diperoxytetradecanedioc acid and diperoxyhexadecanedioc acid.
  • DPDA diperoxydodecanedioc acid
  • DPDA diperoxytetradecanedioc acid
  • diperoxyhexadecanedioc acid diperoxyhexadecanedioc acid.
  • PAP diperoxydodecanedioc acid
  • NAPAA nonanoylamido peroxo-adipic acid
  • hexane sulphenoyl peroxypropionic acid are also suitable herein.
  • compositions also comprise hydrophilic peracids or precursors thereto, preferably of the formula
  • R 1 - CO3M wherein R has at less than 6 carbon atoms, and M is a counterion; or of formula
  • R 1 - CO - L wherein L is a leaving group which is linked to the R ⁇ - CO- group with an oxygen atom, and R ⁇ has less then 6 carbon atoms.
  • a preferred hydrophilic precursor is TAED.
  • Inorganic perhydrate salts are a preferred source of peroxide.
  • these salts are present at a level of from 0.01% to 30% by weight, more preferably of from 0.5% to 10%.
  • inorganic perhydrate salts include perborate, percarbonate, perphosphate, persulfate and persilicate salts.
  • the inorganic perhydrate salts are normally the alkali metal salts.
  • the inorganic perhydrate salt may be included as the crystalline solid without additional protection.
  • the preferred executions of such granular compositions utilize a coated form of the material which provides better storage stability for the perhydrate salt in the granular product.
  • Suitable coatings comprise inorganic salts such as alkali metal silicate, carbonate or borate salts or mixtures thereof, or organic materials such as waxes, oils, or fatty soaps.
  • Sodium perborate is a preferred perhydrate salt and can be in the form of the monohydrate of nominal formula NaB ⁇ 2H2 ⁇ 2 or the tetrahydrate NaBO 2 H2 ⁇ 2.3H 2 O.
  • Alkali metal percarbonates particularly sodium percarbonate are preferred perhydrates herein.
  • Sodium percarbonate is an addition compound having a formula corresponding to 2Na2CO3.3H2O2, and is available commercially as a crystalline solid.
  • Potassium peroxymonopersulfate is another inorganic perhydrate salt of use in the detergent compositions herein.
  • the detergent compositions in accord with the invention may also contain additional detergent components.
  • additional detergent components and levels of incorporation thereof will depend on the physical form of the composition or component, and the precise nature of the washing operation for which it is to be used.
  • compositions of the invention preferably contain one or more additional detergent components selected from additional surfactants, additional bleaches, bleach catalysts, alkalinity systems, builders, phosphate-containing builders, organic polymeric compounds, enzymes, suds suppressors, lime soap, dispersants, soil suspension and anti-redeposition agents soil releasing agents, perfumes, brightners, photobleaching agents and additional corrosion inhibitors.
  • additional detergent components selected from additional surfactants, additional bleaches, bleach catalysts, alkalinity systems, builders, phosphate-containing builders, organic polymeric compounds, enzymes, suds suppressors, lime soap, dispersants, soil suspension and anti-redeposition agents soil releasing agents, perfumes, brightners, photobleaching agents and additional corrosion inhibitors.
  • the bleach system can contain a transition metal containing bleach catalyst.
  • One suitable type of bleach catalyst is a catalyst system comprising a transition metal cation of defined bleach catalytic activity, such as copper, iron or manganese cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminum cations, and a sequestrant having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra(methylenephosphonic acid) and water-soluble salts thereof.
  • a transition metal cation of defined bleach catalytic activity such as copper, iron or manganese cations
  • an auxiliary metal cation having little or no bleach catalytic activity such as zinc or aluminum cations
  • a sequestrant having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra(methylenephosphonic acid) and water-soluble salts thereof.
  • bleach catalysts include the manganese-based complexes disclosed in U.S. Pat. 5,246,621 and U.S. Pat. 5,244,594.
  • Preferred examples of these catalysts include MnIV2(u-O)3(l,4,7-trimethyl-l,4,7-triazacyclononane)2-(PF6)2, MnH ⁇ u- O) i (u-O Ac)2( 1 ,4,7-trimethyl- 1 ,4,7-triazacyclononane)2-(ClO4)2, Mn IV 4(u- O) 6 (l,4,7-triazacyclononane)4-(ClO )2, Mn m Mn IV 4(u-O) ⁇ (u-OAc) 2 .(l,4,7- trimethyl-l,4,7-triazacyclononane)2-(Cl ⁇ 4)3, and mixtures thereof.
  • ligands suitable for use herein include l,5,9-trimethyl-l,5,9-triazacyclododecane, 2-methyl- 1 ,4,7-triazacyclononane, 2-methyl- 1 ,4,7-triazacyclononane, 1 ,2,4,7-tetramethyl- 1,4,7-triazacyclononane, and mixtures thereof.
  • bleach catalysts see U.S. Pat. 4,246,612 and U.S. Pat. 5,227,084. See also U.S. Pat. 5,194,416 which teaches mononuclear manganese (IV) complexes such as Mn(l,4,7-trimethyl-l,4,7-triazacyclononane)(OCH3)3_(PF6).
  • Still another type of bleach catalyst, as disclosed in U.S. Pat. 5,114,606, is a water- soluble complex of manganese (III), and/or (IV) with a ligand which is a non- carboxylate polyhydroxy compound having at least three consecutive C-OH groups.
  • Preferred ligands include sorbitol, iditol, dulsitol, mannitol, xylithol, arabitol, adonitol, meso-erythritol, meso-inositol, lactose, and mixtures thereof.
  • U.S. Pat. 5,114,611 teaches a bleach catalyst comprising a complex of transition metals, including Mn, Co, Fe, or Cu, with an non-(macro)-cyclic ligand.
  • Said ligands are of the formula:
  • Preferred ligands include pyridine, pyridazine, pyrimidine, pyrazine, imidazole, pyrazole, and triazole rings.
  • said rings may be substituted with substituents such as alkyl, aryl, alkoxy, halide, and nitro.
  • substituents such as alkyl, aryl, alkoxy, halide, and nitro.
  • Particularly preferred is the ligand 2,2'-bispyridylamine.
  • Preferred bleach catalysts include Co, Cu, Mn, Fe,-bispyridylmethane and -bispyridylamine complexes.
  • Highly preferred catalysts include Co(2,2'-bispyridylamine)Cl2, Di(isothiocyanato)bispyridylamine-cobalt (II), trisdipyridylamine-cobalt(II) perchlorate, Co(2,2-bispyridylamine)2 ⁇ 2 ⁇ 4, Bis-(2,2*-bispyridylamine) copper(II) perchlorate, tris(di-2-pyridylamine) iron(II) perchlorate, and mixtures thereof.
  • Highly preferred may be manganese bridged cyclams, such as Mn dichloro cyclam or Mn 1,4,8,11 tetra azacyclotetradecane.
  • binuclear Mn complexed with tetra-N-dentate and bi-N- dentate ligands including lS ⁇ Mn ⁇ u-O ⁇ Mnl ⁇ and [Bipy2MnIH(u- O) 2 MnIVbipy 2 ]-(ClO4) 3 .
  • bleach catalysts are described, for example, in European patent application, publication no. 408,131 (cobalt complex catalysts), European patent applications, publication nos. 384,503, and 306,089 (metallo-porphyrin catalysts), U.S. 4,728,455 (manganese/multidentate ligand catalyst), U.S. 4,711,748 and European patent application, publication no. 224,952, (absorbed manganese on aluminosilicate catalyst), U.S. 4,601,845 (aluminosilicate support with manganese and zinc or magnesium salt), U.S. 4,626,373 (manganese/ligand catalyst), U.S. 4,119,557 (ferric complex catalyst), German Pat.
  • the bleach catalyst is typically used in a catalytically effective amount in the compositions and processes herein.
  • catalytically effective amount is meant an amount which is sufficient, under whatever comparative test conditions are employed, to enhance bleaching and removal of the stain or stains of interest from the target substrate.
  • the test conditions will vary, depending on the type of washing appliance used and the habits of the user. Some users elect to use very hot water; others use warm or even cold water in laundering operations. Of course, the catalytic performance of the bleach catalyst will be affected by such considerations, and the levels of bleach catalyst used in fully-formulated detergent and bleach compositions can be appropriately adjusted.
  • compositions and processes herein can be adjusted to provide on the order of at least one part per ten million of the active bleach catalyst species in the aqueous washing liquor, and will preferably provide from about 0.2 ppm to about 200 ppm, preferably 0.4 ppm to 100 ppm of the catalyst species in the wash liquor.
  • pH 10 under European conditions using perborate and a bleach precursor.
  • An increase in concentration of 3-5 fold may be required under U.S. conditions to achieve the same results.
  • the detergent compositions in accord with the invention preferably contain one or more surfactants selected from anionic, nonionic, cationic, ampholytic, amphoteric and zwitterionic surfactants and mixtures thereof.
  • ampholytic, amphoteric and zwitteronic surfactants are generally used in combination with one or more anionic and/or nonionic surfactants.
  • the detergent compositions in accord with the present invention preferably comprise an additional anionic surfactant.
  • anionic surfactants useful for detersive purposes can be comprised in the detergent composition. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants.
  • Anionic sulfate and sulfonate surfactants are preferred.
  • surfactants systems comprising a sulfonate and a sulfate surfactant, preferably a linear or branched alkyl benzene sulfonate and alkyl ethoxylsulfates, as described herein, preferably combined with a cationic surfactants as described herein.
  • anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated monoesters) diesters of sulfosuccinate (especially saturated and unsaturated CXX diesters), N-acyl sarcosinates.
  • Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
  • Anionic sulfate surfactants suitable for use herein include the linear and branched primary and secondary alkyl sulfates, alkyl ethoxysulfates, fatty oleoyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the C 5 -C 17 acyl-N-(C ⁇ -C4 alkyl) and -N-(Cj-C2 hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described herein).
  • Alkyl sulfate surfactants are preferably selected from the linear and branched primary Cl0"Cl8 alkyl sulfates, more preferably the Ci 1-C15 branched chain alkyl sulfates and the C12-C14 linear chain alkyl sulfates.
  • Alkyl ethoxysulfate surfactants are preferably selected from the group consisting of the C1 Q-Ci8 alkyl sulfates which have been ethoxylated with from 0.5 to 20 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulfate surfactant is a C1 i-Cj , most preferably C ⁇ 1 -Ci 5 alkyl sulfate which has been ethoxylated with from 0.5 to 7, preferably from 1 to 5, moles of ethylene oxide per molecule.
  • a particularly preferred aspect of the invention employs mixtures of the preferred alkyl sulfate and/ or sulfonate and alkyl ethoxysulfate surfactants. Such mixtures have been disclosed in PCT Patent Application No. WO 93/18124.
  • Anionic sulfonate surfactants suitable for use herein include the salts of C5-C20 linear alkylbenzene sulfonates, alkyl ester sulfonates, C6-C22 primary or secondary alkane sulfonates, Cg-C24 olefin sulfonates, sulfonated polycarboxylic acids, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfonates, and any mixtures thereof.
  • Suitable anionic carboxylate surfactants include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein.
  • Suitable alkyl ethoxy carboxylates include those with the formula RO(CF-2CH2 ⁇ ) x CH2C00"M + wherein R is a Cg to Cjg alkyl group, x ranges from O to 10, and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than 20 % and M is a cation.
  • Suitable alkyl polyethoxy polycarboxylate surfactants include those having the formula RO-(CHR ⁇ -CHR2-O)-R3 wherein R is a Cg to Ci alkyl group, x is from 1 to 25, R ⁇ and R2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, and R3 is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.
  • Suitable soap surfactants include the secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon.
  • Preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl-l-undecanoic acid, 2-ethyl-l-decanoic acid, 2-propyl- 1-nonanoic acid, 2-butyl-l-octanoic acid and 2-pentyl-l-heptanoic acid. Certain soaps may also be included as suds suppressors.
  • alkali metal sarcosinates of formula R-CON Oil) CH2 COOM, wherein R is a C5-C17 linear or branched alkyl or alkenyl group, R! is a C1-C4 alkyl group and M is an alkali metal ion.
  • R is a C5-C17 linear or branched alkyl or alkenyl group
  • R! is a C1-C4 alkyl group
  • M is an alkali metal ion.
  • any alkoxylated nonionic surfactants are suitable herein.
  • the ethoxylated and propoxylated nonionic surfactants are preferred.
  • Preferred alkoxylated surfactants can be selected from the classes of the nonionic condensates of alkyl phenols, nonionic ethoxylated alcohols, nonionic ethoxylated/propoxylated fatty alcohols, nonionic ethoxylate/propoxylate condensates with propylene glycol, and the nonionic ethoxylate condensation products with propylene oxide/ethylene diamine adducts.
  • the condensation products of aliphatic alcohols with from 1 to 25 moles of alkylene oxide, particularly ethylene oxide and/or propylene oxide, are suitable for use herein.
  • the alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms.
  • Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from 2 to 10 moles of ethylene oxide per mole of alcohol.
  • Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R 2 CONR 1 Z wherein : Rl is H, C1-C4 hydrocarbyl, 2-hydroxy ethyl, 2- hydroxy propyl, ethoxy, propoxy, or a mixture thereof, preferable C1-C4 alkyl, more preferably C ⁇ or C2 alkyl, most preferably C ⁇ alkyl (i.e., methyl); and R2 is a C5-C31 hydrocarbyl, preferably straight-chain C5-C19 alkyl or alkenyl, more preferably straight-chain C9-C17 alkyl or alkenyl, most preferably straight-chain C ⁇ ⁇ -C ⁇ 7 alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof.
  • Suitable fatty acid amide surfactants include those having the formula: R ⁇ CON(R ⁇ )2 wherein R ⁇ is an alkyl group containing from 7 to 21, preferably from 9 to 17 carbon atoms and each R ⁇ is selected from the group consisting of hydrogen, Ci -C4 alkyl, C1-C4 hydroxyalkyl, and -(C2H4O) x H, where x is in the range of from 1 to 3.
  • alkylpolysaccharides for use herein are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from 6 to 30 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from 1.3 to 10 saccharide units.
  • Preferred alkylpolyglycosides have the formula:
  • R 2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18 carbon atoms; n is 2 or 3; t is from 0 to 10, and x is from 1.3 to 8.
  • the glycosyl is preferably derived from glucose.
  • Suitable amphoteric surfactants for use herein include the amine oxide surfactants and the alkyl amphocarboxylic acids.
  • Suitable amine oxides include those compounds having the formula R3(OR4) X NO(RS)2 wherein R-* is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms; R ⁇ is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each R5 is an alkyl or hydroxyalkyl group containing from 1 to 3, or a polyethylene oxide group containing from 1 to 3 ethylene oxide groups.
  • R-* is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms
  • R ⁇ is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, or mixtures thereof
  • x is from
  • a suitable example of an alkyl aphodicarboxylic acid is Miranol(TM) C2M Cone, manufactured by Miranol, Inc., Dayton, NJ.
  • Zwitterionic surfactants can also be incorporated into the detergent compositions in accord with the invention. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Betaine and sultaine surfactants are exemplary zwitterionic surfactants for use herein.
  • Suitable betaines are those compounds having the formula wherein R is a Cg-Cjg hydrocarbyl group, each R! is typically C1-C3 alkyl, and R 2 is a C1-C5 hydrocarbyl group.
  • Preferred betaines are Ci 2-.1 g dimethyl-ammonio hexanoate and the CJQ-18 acylamidopropane (or ethane) dimethyl (or diethyl) betaines.
  • Complex betaine surfactants are also suitable for use herein.
  • Suitable cationic surfactants to be used in the detergent herein include the quaternary ammonium surfactants.
  • the quaternary ammonium surfactant is a mono Cg-Cj ⁇ , preferably C -C ⁇ Q N-alkyl or alkenyl ammonium surfactants wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
  • Preferred are also the mono-alkoxylated and bis-alkoxylated amine surfactants.
  • cationic ester surfactants Another suitable group of cationic surfactants which can be used in the detergent compositions or components thereof herein are cationic ester surfactants.
  • the cationic ester surfactant is a, preferably water dispersible, compound having surfactant properties comprising at least one ester (i.e. -COO-) linkage and at least one cationically charged group.
  • Suitable cationic ester surfactants including choline ester surfactants, have for example been disclosed in US Patents No.s 4228042, 4239660 and 4260529.
  • ester linkage and cationically charged group are separated from each other in the surfactant molecule by a spacer group consisting of a chain comprising at least three atoms (i.e. of three atoms chain length), preferably from three to eight atoms, more preferably from three to five atoms, most preferably three atoms.
  • the atoms forming the spacer group chain are selected from the group consisting of carbon, nitrogen and oxygen atoms and any mixtures thereof, with the proviso that any nitrogen or oxygen atom in said chain connects only with carbon atoms in the chain.
  • spacer groups having, for example, -O-O- (i.e.
  • spacer groups having, for example - CH2-O- CH2- and -CH2-NH-CH2- linkages are included.
  • the spacer group chain comprises only carbon atoms, most preferably the chain is a hydrocarbyl chain.
  • cationic mono-alkoxylated amine surfactant preferably of the general formula I:
  • Rl is an alkyl or alkenyl moiety containing from about 6 to about 18 carbon atoms, preferably 6 to about 16 carbon atoms, most preferably from about 6 to about 14 carbon atoms;
  • R 2 and R ⁇ are each independently alkyl groups containing from one to about three carbon atoms, preferably methyl, most preferably both R 2 and R ⁇ are methyl groups;
  • R ⁇ is selected from hydrogen (preferred), methyl and ethyl;
  • X" is an anion such as chloride, bromide, methylsulfate, sulfate, or the like, to provide electrical neutrality;
  • A is a alkoxy group, especially a ethoxy, propoxy or butoxy group; and
  • p is from 0 to about 30, preferably 2 to about 15, most preferably 2 to about 8.
  • the ApR ⁇ is a hydroxyalkyl group, having no greater than 6 carbon atoms whereby the — OH group is separated from the quaternary ammonium nitrogen atom by no more than 3 carbon atoms.
  • Particularly preferred ApR ⁇ groups are — CH2_ CH 2 OH, — CH 2 CH 2 CH 2 OH, — CH 2 CH(CH 3 )OH and — CH(CH 3 )CH 2 OH, with — CH2CH2OH being particularly preferred.
  • Preferred R* groups are linear alkyl groups. Linear Rl groups having from 8 to 14 carbon atoms are preferred.
  • Another highly preferred cationic mono-alkoxylated amine surfactants for use herein are of the formula
  • Rl is CI Q-CI g hydrocarbyl and mixtures thereof, especially C10-C14 alkyl, preferably Ci ⁇ . and C12 alkyl, and X is any convenient anion to provide charge balance, preferably chloride or bromide.
  • compounds of the foregoing type include those wherein the ethoxy (CH2CH2O) units (EO) are replaced by butoxy, isopropoxy [CH(CH3)CH2 ⁇ ] and [CH2CH(CH3O] units (i-Pr) or n-propoxy units (Pr), or mixtures of EO and/or Pr and/or i-Pr units.
  • EO ethoxy
  • i-Pr isopropoxy units
  • Pr n-propoxy units
  • the levels of the cationic mono-alkoxylated amine surfactants used in detergent compositions of the invention is preferably from 0.1% to 20%, more preferably from 0.2% to 7%, most preferably from 0.3% to 3.0% by weight of the composition.
  • the cationic bis-alkoxylated amine surfactant preferably has the general formula II:
  • R is an alkyl or alkenyl moiety containing from about 8 to about 18 carbon atoms, preferably 10 to about 16 carbon atoms, most preferably from about 10 to about 14 carbon atoms;
  • R 2 is an alkyl group containing from one to three carbon atoms, preferably methyl;
  • R ⁇ and R ⁇ can vary independently and are selected from hydrogen (preferred), methyl and ethyl,
  • X" is an anion such as chloride, bromide, methylsulfate, sulfate, or the like, sufficient to provide electrical neutrality.
  • a and A* can vary independently and are each selected from C1-C4 alkoxy, especially ethoxy, (i.e., -CH2CH2O-), propoxy, butoxy and mixtures thereof; p is from 1 to about 30, preferably 1 to about 4 and q is from 1 to about 30, preferably 1 to about 4, and most preferably both p and q are 1.
  • RI Ci n-Ci g hydrocarbyl and mixtures thereof, preferably C ⁇ Q, Ci2 > C14 alkyl and mixtures thereof.
  • X is any convenient anion to provide charge balance, preferably chloride.
  • cationic bis-alkoxylated amine surfactants useful herein include compounds of the formula:
  • R is Cio-Cjg hydrocarbyl, preferably C10-C14 alkyl, independently p is 1 to about 3 and q is 1 to about 3, R 2 is C1-C3 alkyl, preferably methyl, and X is an anion, especially chloride or bromide.
  • the detergent compositions in accord with the present invention preferably contain a water-soluble builder compound, typically present in detergent compositions at a level of from 1% to 80% by weight, preferably from 10% to 60% by weight, most preferably from 15% to 40% by weight of the composition.
  • the detergent compositions of the invention preferably comprise phosphate- containing builder material. Preferably present at a level of from 0.5% to 60%, more preferably from 5% to 50%, more preferably from 8% to 40.
  • the phosphate-containing builder material preferably comprises tetrasodium pyrophosphate or even more preferably anhydrous sodium tripolyphosphate.
  • Suitable water-soluble builder compounds include the water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, borates, and mixtures of any of the foregoing.
  • the carboxylate or polycarboxylate builder can be momomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
  • Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof.
  • Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates and the sulfinyl carboxylates.
  • Polycarboxylates or their acids containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No.
  • the most preferred polycarboxylic acid containing three carboxy groups is citric acid, preferably present at a level of from 0.1% to 15%, more preferably from 0.5% to 8% by weight of the composition.
  • Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1, 3, 3 -propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates.
  • Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000.
  • Preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
  • the parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts e.g. citric acid or citrate/citric acid mixtures are also contemplated as useful builder components.
  • B orate builders, as well as builders containing borate-forming materials that can produce borate under detergent storage or wash conditions are useful water-soluble builders herein.
  • Suitable examples of water-soluble phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymeta/phosphate in which the degree of polymerization ranges from about 6 to 21, and salts of phytic acid.
  • the detergent compositions in accord with the present invention may contain a partially soluble or insoluble builder compound, typically present in detergent compositions at a level of from 0.5% to 60% by weight, preferably from 5% to 50% by weight, most preferably from 8% to 40% weight of the composition.
  • Examples of largely water insoluble builders include the sodium aluminosilicates.
  • Suitable aluminosilicate zeolites have the unit cell formula Na z [(Al ⁇ 2) z (Si ⁇ 2)y]- XH2O wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264.
  • the aluminosilicate material are in hydrated form and are preferably crystalline, containing from 10% to 28%, more preferably from 18% to 22% water in bound form.
  • the aluminosilicate zeolites can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeolite HS and mixtures thereof. Zeolite A has the formula:
  • Zeolite X has the formula Na 6 [(AlO 2 )g6(SiO2)i06]- 276 H 2 O.
  • zeolite MAP builder Another preferred aluminosilicate zeolite is zeolite MAP builder.
  • the zeolite MAP can be present at a level of from 1% to 80%, more preferably from 15% to 40% by weight of the compositions.
  • Zeolite MAP is described in EP 384070A (Unilever). It is defined as an alkali metal alumino-silicate of the zeolite P type having a silicon to aluminium ratio not greater than 1.33, preferably within the range from 0.9 to 1.33 and more preferably within the range of from 0.9 to 1.2.
  • zeolite MAP having a silicon to aluminium ratio not greater than 1.15 and, more particularly, not greater than 1.07.
  • the zeolite MAP detergent builder has a particle size, expressed as a d5o value of from 1.0 to 10.0 micrometres, more preferably from 2.0 to 7.0 micrometres, most preferably from 2.5 to 5.0 micrometres.
  • the d5o value indicates that 50% by weight of the particles have a diameter smaller than that figure.
  • the particle size may, in particular be determined by conventional analytical techniques such as microscopic determination using a scanning electron microscope or by means of a laser granulometer. Other methods of establishing d5Q values are disclosed in EP 384070 A. Heavy metal ion sequestrant
  • compositions of the invention preferably contain as an optional component a heavy metal ion sequestrant.
  • heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions. These components may also have calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper.
  • Heavy metal ion sequestrants are generally present at a level of from 0.005% to 10%, preferably from 0.1% to 5%, more preferably from 0.25% to 7.5% and most preferably from 0.3% to 2% by weight of the compositions or component
  • Suitable heavy metal ion sequestrants for use herein include organic phosphonates, such as the amino alkylene poly (alkylene phosphonates), alkali metal ethane 1- hydroxy disphosphonates and nitrilo trimethylene phosphonates.
  • Preferred among the above species are diethylene triamine penta (methylene phosphonate), ethylene diamine tri (methylene phosphonate) hexamethylene diamine tetra (methylene phosphonate) and hydroxy-ethylene 1,1 diphosphonate, 1,1 hydroxyethane diphosphonic acid and 1,1 hydroxyethane dimethylene phosphonic acid.
  • Suitable heavy metal ion sequestrant for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2- hydroxypropylenediamine disuccinic acid or any salts thereof.
  • Suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A-399,133.
  • iminodiacetic acid-N-2- hydroxypropyl sulfonic acid and aspartic acid N-carboxymethyl N-2-hydroxypropyl- 3-sulfonic acid sequestrants described in EP-A-516,102 are also suitable herein.
  • EP-A-476,257 describes suitable amino based sequestrants.
  • EP-A-510,331 describes suitable sequestrants derived from collagen, keratin or casein.
  • EP-A- 528,859 describes a suitable alkyl iminodiacetic acid sequestrant. Dipicolinic acid and 2-phosphonobutane-l,2,4-tricarboxylic acid are also suitable.
  • Glycinamide-N,N'-disuccinic acid (GADS), ethylenediamine-N-N'-diglutaric acid (EDDG) and 2-hydroxypropylenediamine-N-N'-disuccinic acid (HPDDS) are also suitable.
  • diethylenetriamine pentacetic acid ethylenediamine- N,N'-disuccinic acid (EDDS), 1,1 hydroxyethane diphosphonic acid and 1,1 hydroxyethane dimethylene phosphonic acid or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof.
  • EDDS ethylenediamine- N,N'-disuccinic acid
  • 1,1 hydroxyethane diphosphonic acid and 1,1 hydroxyethane dimethylene phosphonic acid or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof.
  • Another preferred ingredient useful in the detergent compositions is one or more additional enzymes.
  • Preferred additional enzymatic materials include the commercially available lipases, cutinases, amylases, neutral and alkaline proteases, cellulases, endolases, esterases, pectinases, lactases and peroxidases conventionally incorporated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139.
  • protease enzymes include those sold under the tradenames Alcalase, Savinase, Primase, Durazym, and Esperase by Novo Industries A S (Denmark), those sold under the tradename Maxatase, Maxacal and Maxapem by Gist-Brocades, those sold by Genencor International, and those sold under the tradename Opticlean and Optimase by Solvay Enzymes.
  • Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.0001% to 4% active enzyme by weight of the composition.
  • Preferred amylases include, for example, ⁇ -amylases obtained from a special strain of B licheniformis, described in more detail in GB-1,269,839 (Novo).
  • Preferred commercially available amylases include for example, those sold under the tradename Rapidase by Gist-Brocades, and those sold under the tradename Termamyl, Duramyl and BAN by Novo Industries A/S.
  • Highly preferred amylase enzymes maybe those described in PCT/ US 9703635, and in WO95/26397 and WO96/23873.
  • Amylase enzyme may be incorporated into the composition in accordance with the invention at a level of from 0.0001% to 2% active enzyme by weight of the composition.
  • Lipolytic enzyme may be present at levels of active lipolytic enzyme of from 0.0001% to 2% by weight, preferably 0.001% to 1% by weight, most preferably from 0.001% to 0.5% by weight of the compositions.
  • the lipase may be fungal or bacterial in origin being obtained, for example, from a lipase producing strain ofHumicola sp., Thermomvces sp. or Pseudomonas sp. including Pseudomonas pseudoalcaligenes or Pseudomas fluorescens. Lipase from chemically or genetically modified mutants of these strains are also useful herein.
  • a preferred lipase is derived from Pseudomonas pseudoalcaligenes. which is described in Granted European Patent, EP-B-0218272.
  • Another preferred lipase herein is obtained by cloning the gene from Humicola lanuginosa and expressing the gene in Aspergillus oryza. as host, as described in European Patent Application, EP-A-0258 068, which is commercially available from Novo Industri A/S, Bagsvaerd, Denmark, under the trade name Lipolase. This lipase is also described in U.S. Patent 4,810,414, Huge-Jensen et al, issued March 7, 1989.
  • Organic polymeric compounds are preferred additional components of the detergent compositions and are preferably present as components of any paniculate components where they may act such as to bind the paniculate component together.
  • organic polymeric compound it is meant herein essentially any polymeric organic compound commonly used as dispersants, and anti-redeposition and soil suspension agents in detergent compositions, including any of the high molecular weight organic polymeric compounds described as clay flocculating agents herein, including quaternised ethoxylated (poly) amine clay-soil removal/ anti-redeposition agent in accord with the invention.
  • Organic polymeric compound is typically incorporated in the detergent compositions of the invention at a level of from 0.01% to 30%, preferably from 0.1% to 15%, most preferably from 0.5% to 10% by weight of the compositions.
  • organic polymeric compounds include the water soluble organic homo- or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
  • Polymers of the latter type are disclosed in GB-A-1, 596,756.
  • salts are polyacrylates of MWt 1000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 2000 to 100,000, especially 40,000 to 80,000.
  • polyamino compounds are useful herein including those derived from aspartic acid such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-351629.
  • organic polymeric compounds suitable for incorporation in the detergent compositions herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose and hydroxyethylcellulose.
  • organic polymeric compounds are the polyethylene glycols, particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000.
  • Highly preferred polymeric components herein are cotton and non-cotton soil release polymer according to U.S. Patent 4,968,451, Scheibel et al., and U.S. Patent 5,415,807, Gosselink et al., and in particular according to US application no.60/051517.
  • Another organic compound which is a preferred clay dispersant/ anti-redeposition agent, for use herein, can be the ethoxylated cationic monoamines and diamines of the formula:
  • X is a nonionic group selected from the group consisting of H, Ci -C4 alkyl or hydroxyalkyl ester or ether groups, and mixtures thereof
  • a is from 0 to 20, preferably from 0 to 4 (e.g. ethylene, propylene, hexamethylene)
  • the detergent compositions of the invention when formulated for use in machine washing compositions, may comprise a suds suppressing system present at a level of from 0.01% to 15%, preferably from 0.02% to 10%, most preferably from 0.05% to 3% by weight of the composition.
  • Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds and 2-alkyl alcanol antifoam compounds.
  • antifoam compound any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent composition, particularly in the presence of agitation of that solution.
  • Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a silicone component. Such silicone antifoam compounds also typically contain a silica component.
  • silicone antifoam compounds encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types.
  • Preferred silicone antifoam compounds are the siloxanes, particularly the polydimethylsiloxanes having trimethylsilyl end blocking units.
  • Other suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John.
  • the monocarboxylic fatty acids, and salts thereof, for use as suds suppressor typically have hydrocarbyl chains of 10 to 24 carbon atoms, preferably 12 to 18 carbon atoms.
  • Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
  • Suitable antifoam compounds include, for example, high molecular weight fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C18-C40 ketones (e.g. stearone) N-alkylated amino triazines such as tri- to hexa- alkylmelamines or di- to tetra alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl di- alkali metal (e.g. sodium, potassium, lithium) phosphates and phosphate esters.
  • high molecular weight fatty esters e.g. fatty acid triglycerides
  • fatty acid esters of monovalent alcohols e.g. fatty acid esters of monovalent alcohols
  • a preferred suds suppressing system comprises:
  • antifoam compound preferably silicone antifoam compound, most preferably a silicone antifoam compound comprising in combination
  • silica at a level of from 1% to 50%, preferably 5% to 25% by weight of the silicone/silica antifoam compound
  • silica/silicone antifoam compound is incorporated at a level of from 5% to 50%, preferably 10% to 40% by weight;
  • a dispersant compound most preferably comprising a silicone glycol rake copolymer with a polyoxyalkylene content of 72-78% and an ethylene oxide to propylene oxide ratio of from 1:0.9 to 1:1.1, at a level of from 0.5% to 10%, preferably 1% to 10% by weight;
  • a particularly preferred silicone glycol rake copolymer of this type is DCO544, commercially available from DOW Corning under the tradename DCO544;
  • an inert carrier fluid compound most preferably comprising a C ⁇ ⁇ -Ci g ethoxylated alcohol with a degree of ethoxylation of from 5 to 50, preferably 8 to 15, at a level of from 5% to 80%, preferably 10% to 70%, by weight;
  • a highly preferred particulate suds suppressing system is described in EP-A-0210731 and comprises a silicone antifoam compound and an organic carrier material having a melting point in the range 50°C to 85°C, wherein the organic carrier material comprises a monoester of glycerol and a fatty acid having a carbon chain containing from 12 to 20 carbon atoms.
  • EP-A-0210721 discloses other preferred particulate suds suppressing systems wherein the organic carrier material is a fatty acid or alcohol having a carbon chain containing from 12 to 20 carbon atoms, or a mixture thereof, with a melting point of from 45°C to 80°C.
  • suds suppressing systems comprise polydimethylsiloxane or mixtures of silicone, such as polydimethylsiloxane, aluminosilicate and polycarboxylic polymers, such as copolymers of laic and acrylic acid.
  • the detergent compositions herein may also comprise from 0.01% to 10 %, preferably from 0.05% to 0.5% by weight of polymeric dye transfer inhibiting agents.
  • the polymeric dye transfer inhibiting agents are preferably selected from polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidonepolymers or combinations thereof, whereby these polymers can be cross-linked polymers.
  • the detergent compositions herein also optionally contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners.
  • Hydrophilic optical brighteners useful herein include those having the structural formula:
  • R ⁇ is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl
  • R2 is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, morphilino, chloro and amino
  • M is a salt-forming cation such as sodium or potassium.
  • R ⁇ is anilino
  • R2 is N-2-bis-hydroxyethyl and M is a cation such as sodium
  • the brightener is 4,4',-bis[(4-anilino-6-(N-2-bis-hydroxyethyl)- s-triazine-2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal-UNPA-GX by Ciba-Geigy Corporation.
  • Tinopal-CBS-X and Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
  • the brightener is 4,4'-bis[(4-anilino-6-(N-2- hydroxyethyl-N-methylamino)-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid disodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal 5BM-GX by Ciba-Geigy Corporation.
  • R ⁇ is anilino
  • R2 is morphilino
  • M is a cation such as sodium
  • the brightener is 4,4'-bis[(4-anilino-6-mo ⁇ hilino-s-triazine-2-yl)amino]2,2'- stilbenedisulfonic acid, sodium salt.
  • This particular brightener species are commercially marketed under the tradename Tinopal-DMS-X and Tinopal AMS-GX by Ciba Geigy Corporation.
  • SRA polymeric soil release agents
  • SRA's will generally comprise from 0.01% to 10.0%, typically from 0.1% to 5%, preferably from 0.2% to 3.0% by weight, of the compositions.
  • Preferred SRA's typically have hydrophilic segments to hydrophilize the surface of hydrophobic fibers such as polyester and nylon, and hydrophobic segments to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles, thereby serving as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the SRA to be more easily cleaned in later washing procedures.
  • Preferred SRA's include oligomeric terephthalate esters, typically prepared by processes involving at least one transesterification/oligomerization, often with a metal catalyst such as a titanium(IV) alkoxide.
  • esters may be made using additional monomers capable of being incorporated into the ester structure through one, two, three, four or more positions, without, of course, forming a densely crosslinked overall structure.
  • Suitable SRA's include a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and allyl-derived sulfonated terminal moieties covalently attached to the backbone, for example as described in U.S. 4,968,451, November 6, 1990 to J.J. Scheibel and E.P. Gosselink.
  • ester oligomers can be prepared by: (a) ethoxylating allyl alcohol; (b) reacting the product of (a) with dimethyl terephthalate (“DMT”) and 1,2- ⁇ ropylene glycol (“PG”) in a two-stage transesterification/oligomerization procedure; and (c) reacting the product of (b) with sodium metabisulfite in water.
  • DMT dimethyl terephthalate
  • PG 1,2- ⁇ ropylene glycol
  • SRA's include the nonionic end-capped 1,2- propylene/polyoxyethylene terephthalate polyesters of U.S.
  • Gosselink et al. for example those produced by transesterification/oligomerization of poly(ethyleneglycol) methyl ether, DMT, PG and poly(ethyleneglycol) ("PEG").
  • SRA's include: the partly- and fully- anionic-end-capped oligomeric esters of U.S. 4,721,580, January 26, 1988 to Gosselink, such as oligomers from ethylene glycol ("EG"), PG, DMT and Na-3,6- dioxa-8-hydroxyoctanesulfonate; the nonionic-capped block polyester oligomeric compounds of U.S.
  • Gosselink for example produced from DMT, methyl (Me)-capped PEG and EG and/or PG, or a combination of DMT, EG and/or PG, Me-capped PEG and Na-dimethyl-5-sulfoisophthalate; and the anionic, especially sulfoaroyl, end-capped terephthalate esters of U.S.
  • SRA's also include: simple copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, see U.S. 3,959,230 to Hays, May 25, 1976 and U.S. 3,893,929 to Basadur, July 8, 1975; cellulosic derivatives such as the hydroxyether cellulosic polymers available as METHOCEL from Dow; the C1 -C4 alkyl celluloses and C4 hydroxyalkyl celluloses, see U.S.
  • methyl cellulose ethers having an average degree of substitution (methyl) per anhydroglucose unit from about 1.6 to about 2.3 and a solution viscosity of from about 80 to about 120 centipoise measured at 20°C as a 2% aqueous solution.
  • Such materials are available as METOLOSE SMI 00 and METOLOSE SM200, which are the trade names of methyl cellulose ethers manufactured by Shin-etsu Kagaku Kogyo KK.
  • SRA's include: (I) nonionic terephthalates using diisocyanate coupling agents to link polymeric ester structures, see U.S. 4,201,824, Violland et al. and U.S. 4,240,918 Lagasse et al.; and (II) SRA's with carboxylate terminal groups made by adding trimellitic anhydride to known SRA's to convert terminal hydroxyl groups to trimellitate esters. With the proper selection of catalyst, the trimellitic anhydride forms linkages to the terminals of the polymer through an ester of the isolated carboxylic acid of trimellitic anhydride rather than by opening of the anhydride linkage.
  • Either nonionic or anionic SRA's may be used as starting materials as long as they have hydroxyl terminal groups which may be esterified. See U.S. 4,525,524 Tung et al..
  • Other classes include: (III) anionic terephthalate-based SRA's of the urethane-linked variety, see U.S. 4,201,824, Violland et al.;
  • compositions of the invention include perfumes, colours and filler salts, with sodium sulfate being a preferred filler salt.
  • speckle particles Highly preferred may be the inclusion of speckle particles.
  • the following speckle particle is a preferred speckle particle: Sodium carbonate particles, having 75 % of particles having a particle size of from 600 microns to 850 microns and 25% of particles having a particle size of from 425 microns to 600 microns are obtained by agglomerating and sieving sodium carbonate powder. The thus obtained particles are sprayed with a Monastral blue BV paste solution and subsequently dried, obtaining speckle particles comprising about lOOOppm of dye.
  • Highly preferred compositions contain from about 2% to about 10% by weight of an organic acid, preferably citric acid.
  • a carbonate salt preferably combined with a carbonate salt, minor amounts (e.g., less than about 20% by weight) of neutralizing agents, buffering agents, phase regulants, hydrotropes, enzyme stabilizing agents, polyacids, suds regulants, opacifiers, anti-oxidants, bactericides and dyes, such as those described in US Patent 4,285,841 to Barrat et al., issued August 25, 1981 (herein inco ⁇ orated by reference), can be present.
  • neutralizing agents e.g., less than about 20% by weight
  • buffering agents e.g., phase regulants, hydrotropes, enzyme stabilizing agents, polyacids, suds regulants, opacifiers, anti-oxidants, bactericides and dyes, such as those described in US Patent 4,285,841 to Barrat et al., issued August 25, 1981 (herein inco ⁇ orated by reference), can be present.
  • phase regulants e.g.,
  • the detergent composition of the invention can be made via a variety of methods, including dry-mixing and agglomerating and/ or spray-drying of the various compounds comprised in the detergent component.
  • compositions in accordance with the invention can take a variety of physical forms including liquid and solid forms such as tablet, flake, pastille and bar, and preferably granular forms.
  • compositions in accord with the present invention can also be used in or in combination with bleach additive compositions, for example comprising chlorine bleach.
  • the detergent compositions can include as an additional component a chlorine-based bleach.
  • a chlorine-based bleach since preferred detergent compositions of the invention are solid, most liquid chlorine-based bleaching will not be suitable for these detergent compositions and only granular or powder chlorine-based bleaches will be suitable.
  • the detergent compositions can be formulated such that they are chlorine-based bleach-compatible, thus ensuring that a chlorine based bleach can be added to the detergent composition by the user at the beginning or during the washing process.
  • the chlorine-based bleach is such that a hypochlorite species is formed in aqueous solution.
  • the hypochlorite ion is chemically represented by the formula OCT.
  • Those bleaching agents which yield a hypochlorite species in aqueous solution include alkali metal and alkaline earth metal hypochlorites, hypochlorite addition products, chloramines, chlorimines, chloramides, and chlorimides.
  • Specific examples of compounds of this type include sodium hypochlorite, potassium hypochlorite, monobasic calcium hypochlorite, dibasic magnesium hypochlorite, chlorinated trisodium phosphate dodecahydrate, potassium dichloroisocyanurate, sodium dichloroisocyanurate sodium dichloroisocyanurate dihydrate, trichlorocyanuric acid, l,3-dichloro-5,5-dimethylhydantoin, N-chlorosulfamide, Chloramine T, Dichloramine T, chloramine B and Dichloramine B.
  • a preferred bleaching agent for use in the compositions of the instant invention is sodium hypochlorite, potassium hypochlorite, or a mixture thereof.
  • hypochlorite-yielding bleaching agents are available in solid or concentrated form and are dissolved in water during preparation of the compositions of the instant invention. Some of the above materials are available as aqueous solutions.
  • the mean particle size of the components of the granular compositions in accordance with the invention should preferably be such that no more that 25% of the particles are greater than 1.8mm in diameter and not more than 25% of the particles are less than 0.25mm in diameter.
  • the mean particle size is such that from 10% to 50% of the particles has a particle size of from 0.2mm to 0.7mm in diameter.
  • the term mean particle size as defined herein is calculated by sieving a sample of the composition into a number of fractions (typically 5 fractions) on a series of sieves, preferably Tyler sieves. The weight fractions thereby obtained are plotted against the aperture size of the sieves. The mean particle size is taken to be the aperture size through which 50% by weight of the sample would pass.
  • Machine laundry methods herein typically comprise treating soiled laundry with an aqueous wash solution in a washing machine having dissolved or dispensed therein an effective amount of a machine laundry detergent composition in accord with the invention.
  • an effective amount of the detergent composition it is meant from lOg to 300g of product dissolved or dispersed in a wash solution of volume from 5 to 65 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine laundry methods.
  • the detergent composition is formulated such that it is suitable for hand washing.
  • the detergent composition is a pre-treatment or soaking composition, to be used to pre-treat or soak soiled and stained fabrics.
  • Na ⁇ 2 (AlO 2 SiO 2 )j 2 .27H 2 O having a primary particle size in the range from 0.1 to 10 micrometers (weight expressed on an anhydrous basis)
  • Silicate Amo ⁇ hous sodium silicate (SiO 2 :Na 2 O 2.0:1) Sulfate Anhydrous sodium sulfate Mg sulfate Anhydrous magnesium sulfate Citrate Tri-sodium citrate dihydrate of activity 86.4% with a particle size distribution between 425 ⁇ m and 850 ⁇ m
  • MA AA Copolymer of 4:6 maleic/acrylic acid, average molecular weight about 10,000
  • Protease Proteolytic enzyme having 3.3% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Savinase
  • Protease I Proteolytic enzyme, having 4% by weight of active enzyme, as described in WO 95/10591, sold by Genencor Int. Inc.
  • Alcalase Proteolytic enzyme having 5.3% by weight of active enzyme, sold by NOVO Industries A/S
  • Amylase Amylolytic enzyme having 1.6% by weight of active enzyme, sold by NOVO Industries A S under the tradename Termamyl 120T
  • Amylase II Amylolytic enzyme as disclosed in PCT/ US9703635 Lipase Lipolytic enzyme, having 2.0% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Lipolase
  • Lipolytic enzyme having 2.0% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Lipolase Ultra
  • Endolase Endoglucanase enzyme having 1.5% by weight of active enzyme, sold by NOVO Industries A/S
  • Brightener 1 Disodium 4,4'-bis(2-sulphostyryl)biphenyl
  • Brightener 2 Disodium 4,4'-bis(4-anilino-6-mo ⁇ holino- 1.3.5- triazin-2-yl)amino) stilbene-2:2'-disulfonate
  • PEGx Polyethylene glycol, with a molecular weight of x (typically 4,000)
  • PEO Polyethylene oxide with an average molecular weight of 50,000
  • PVNO Polyvinylpyridine N-oxide polymer with an average molecular weight of 50,000
  • PVP VI Copolymer of polyvinylpyrolidone and vinylimidazole with an average molecular weight of 20,000
  • SRP 1 Anionically end capped poly esters
  • SRP 2 Diethoxylated poly (1, 2 propylene terephtalate) short block polymer
  • PEI Polyethyleneimine with an average molecular weight of 1800 and an average ethoxylation degree of 7 ethyleneoxy residues per nitrogen
  • Opacifier Water based monostyrene latex mixture, sold by
  • compositions are pre-treatment compositions in accordance with the invention.
  • Non-cotton soil release polymer according to U.S. Patent 5,415,807, Gosselink, Pan, Kellett and Hall, issued May 16, 1995.
  • Non-cotton soil release polymer according to U.S. Patent 4,968,451, Scheibel et al., issued November 6, 1990.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

L'invention concerne des compositions détergentes granulaires et plus particulièrement, des compositions détergentes renfermant du phosphate, de faible densité, qui comprennent un système spécifique de blanchiment renfermant un agent de blanchiment peracide hydrophobe et un agent de blanchiment peracide hydrophile et une source peroxyde, présentant des niveaux spécifiques faibles d'oxygène disponible à partir de l'agent de blanchiment de peroxyacide hydrophobe et hydrophile, un rapport spécifique d'oxygène disponible entre l'agent de blanchiment peracide hydrophobe et l'agent de blanchiment peracide hydrophile et un rapport spécifique d'oxygène disponible entre la source peroxyde et l'oxygène disponible des peracides. L'invention concerne aussi l'utilisation de systèmes de blanchiment spécifiques mélangés permettant de nettoyer ou de réduire l'activité bactérienne.
PCT/US1998/012325 1997-09-11 1998-06-12 Compositions de blanchiment WO1999013037A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP98929053A EP1015539A4 (fr) 1997-09-11 1998-06-12 Compositions de blanchiment
JP2000510830A JP2001515952A (ja) 1997-09-11 1998-06-12 漂白組成物
CA002303769A CA2303769A1 (fr) 1997-09-11 1998-06-12 Compositions de blanchiment comprenant un agent de blanchiment peracide hydrophobique, agent de blanchiment peracide hydrophobique et un agent de blanchiment au peroxyde
BR9812446-3A BR9812446A (pt) 1997-09-11 1998-06-12 "composições alvejantes"
AU80711/98A AU8071198A (en) 1997-09-11 1998-06-12 Bleaching compositions
US09/508,442 US6444634B1 (en) 1997-09-11 1998-06-12 Bleaching compositions

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB9719231.4 1997-09-11
GB9719235A GB2329188A (en) 1997-09-11 1997-09-11 Detergent composition containing a stabilised percarboxylic bleaching system
GB9719231A GB2329187A (en) 1997-09-11 1997-09-11 Detergent composition containing an anionic surfactant system and a hydrophobic peroxy bleach
GB9719235.5 1997-09-11

Publications (1)

Publication Number Publication Date
WO1999013037A1 true WO1999013037A1 (fr) 1999-03-18

Family

ID=26312215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/012325 WO1999013037A1 (fr) 1997-09-11 1998-06-12 Compositions de blanchiment

Country Status (7)

Country Link
EP (1) EP1015539A4 (fr)
JP (1) JP2001515952A (fr)
CN (1) CN1155687C (fr)
AU (1) AU8071198A (fr)
BR (1) BR9812446A (fr)
CA (1) CA2303769A1 (fr)
WO (1) WO1999013037A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000015750A1 (fr) * 1998-09-15 2000-03-23 The Procter & Gamble Company Compositions et procedes de nettoyage
US6551975B1 (en) 1998-09-15 2003-04-22 The Procter & Gamble Company Sanitizing compositions and methods

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004043360A1 (de) * 2004-09-08 2006-03-09 Clariant Gmbh Bleichaktivator-Mischungen
DE102005041967A1 (de) * 2005-09-03 2007-03-08 Clariant Produkte (Deutschland) Gmbh Granulare Bleichaktivator-Mischungen
JP5242370B2 (ja) * 2008-12-25 2013-07-24 花王株式会社 硬質表面用洗浄剤組成物の製造方法
CN101880610B (zh) * 2009-05-04 2013-03-13 浙江金科日化原料有限公司 一种颗粒状漂白活化剂组合物
EP2363456A1 (fr) * 2010-03-01 2011-09-07 The Procter & Gamble Company Composition détergente solide pour linge dotée d'un azurant sous forme de particules micronisées
EP2573158B1 (fr) * 2011-09-20 2016-11-30 The Procter and Gamble Company Composition de blanchiment pour les taches alimentaires
US10626350B2 (en) 2015-12-08 2020-04-21 Ecolab Usa Inc. Pressed manual dish detergent

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927559A (en) * 1988-04-14 1990-05-22 Lever Brothers Company Low perborate to precursor ratio bleach systems

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8620635D0 (en) * 1986-08-26 1986-10-01 Unilever Plc Detergent bleach composition
ATE182617T1 (de) * 1993-05-20 1999-08-15 Procter & Gamble Bleichmittelzusammensetzungen enthaltend n- acylcaprolactam aktivatoren
JPH07238298A (ja) * 1994-02-25 1995-09-12 Kao Corp 粒状漂白活性化剤組成物及びその製造方法
CA2187169A1 (fr) * 1994-04-07 1995-10-19 Gerard Marcel Abel Baillely Compositions de blanchiment comprenant des catalyseurs de blanchiment contenant du metal
DE4443177A1 (de) * 1994-12-05 1996-06-13 Henkel Kgaa Aktivatormischungen für anorganische Perverbindungen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927559A (en) * 1988-04-14 1990-05-22 Lever Brothers Company Low perborate to precursor ratio bleach systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1015539A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000015750A1 (fr) * 1998-09-15 2000-03-23 The Procter & Gamble Company Compositions et procedes de nettoyage
AU756417B2 (en) * 1998-09-15 2003-01-09 Procter & Gamble Company, The Sanitising compositions and methods
US6551975B1 (en) 1998-09-15 2003-04-22 The Procter & Gamble Company Sanitizing compositions and methods
CN100384973C (zh) * 1998-09-15 2008-04-30 宝洁公司 消毒组合物和方法

Also Published As

Publication number Publication date
EP1015539A4 (fr) 2002-01-30
AU8071198A (en) 1999-03-29
CN1155687C (zh) 2004-06-30
EP1015539A1 (fr) 2000-07-05
CA2303769A1 (fr) 1999-03-18
CN1278294A (zh) 2000-12-27
BR9812446A (pt) 2000-10-03
JP2001515952A (ja) 2001-09-25

Similar Documents

Publication Publication Date Title
US6444634B1 (en) Bleaching compositions
US6689732B1 (en) Detergent compositions having a specific hydrophobic peroxyacid bleaching system and anionic surfactant
EP1121406A1 (fr) Compositions ou composants detergents
EP1165733B1 (fr) Compositions detergentes
EP1165732A1 (fr) Composant d'adoucissant de textiles
EP1015539A1 (fr) Compositions de blanchiment
WO1999013040A1 (fr) Compositions detergentes
EP1021509A1 (fr) Composition detergente
US6551983B1 (en) Bleach-containing detergent composition
WO2000042158A1 (fr) Constituant de blanchiment
GB2348436A (en) Detergent compositions
WO2000002988A1 (fr) Adjuvant lessiviel
WO1999064558A1 (fr) Composition detergentes contenant des particules colorees
US6610644B1 (en) Detergent compositions comprising aggolomerates of layered silicate and anionic surfactant
CA2348593C (fr) Composition detergente a base d'agent de blanchiment
WO1999019428A1 (fr) Composition detergente
WO2000053710A1 (fr) Compositions de detergents
CA2331359C (fr) Procede de distribution
WO2001012767A1 (fr) Composant de desintegration et composition detergente contenant ce composant
EP1080168A2 (fr) Compositions detergentes
WO2000053709A1 (fr) Compositions de detergents
MXPA00002548A (en) Bleaching compositions
GB2347681A (en) Detergent compositions or components

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98810832.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2303769

Country of ref document: CA

Ref document number: 2303769

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09508442

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/002548

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1998929053

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998929053

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1998929053

Country of ref document: EP