WO1999009238A1 - Polyester fiber and fabric prepared therefrom - Google Patents

Polyester fiber and fabric prepared therefrom Download PDF

Info

Publication number
WO1999009238A1
WO1999009238A1 PCT/JP1998/003660 JP9803660W WO9909238A1 WO 1999009238 A1 WO1999009238 A1 WO 1999009238A1 JP 9803660 W JP9803660 W JP 9803660W WO 9909238 A1 WO9909238 A1 WO 9909238A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
dye
fabric
weight
polyester fiber
Prior art date
Application number
PCT/JP1998/003660
Other languages
French (fr)
Japanese (ja)
Inventor
Jinichiro Kato
Katsuhiro Fujimoto
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26532160&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1999009238(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to EP98937854A priority Critical patent/EP1006220A4/en
Priority to US09/485,938 priority patent/US6652964B1/en
Priority to JP51302799A priority patent/JP3226931B2/en
Priority to KR1020007001596A priority patent/KR100359347B1/en
Publication of WO1999009238A1 publication Critical patent/WO1999009238A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/84Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters

Definitions

  • the present invention relates to a polymethylene terephthalate fiber, particularly a polymethylene terephthalate fiber which can be dyed in a deep color under normal pressure with one or both of a cationic dye and a disperse dye.
  • the present invention relates to a fabric using this fiber.
  • Polymethylene terephthalate fiber has soft texture derived from low modulus, excellent elastic recovery and similar properties to nylon fiber, and low wearability and dimensions. This is an epoch-making fiber that has properties similar to polyethylene terephthalate fiber, such as stability and yellowing resistance, and is being applied to clothing, power plants, etc. It is getting.
  • polymethylene terephthalate fiber has a problem with dyeability. That is, in the known polymethylene terephthalate fiber, the dye to be used is limited to a disperse dye, and it can be dyed in a deep color only under a high pressure of 110 to 120 ° C. There was a major problem with staining.
  • the fact that the dyes used to dye the fibers are limited to disperse dyes means that the resulting dyed products have low clarity, and dry cleaning fastness, wet rub fastness, and sublimation fastness are slightly inferior. means.
  • the dyeing temperature for the dyeing in the dark is 1 1 0 ⁇ 1 2 0 D C, for example, other fibers pyrolysis occurs at these high temperatures
  • the mixed fabric cannot be dyed.
  • mixing polymethyl terephthalate fibers with other fibers, such as polyurethane elastic yarn, cotton, silk, and acetate fibers results in a softer texture than ever before.
  • Mixed textiles can be expected, but if these other fibers exceed 11 oC at the dyeing stage, their strength will be greatly reduced or they will be devitrified white, greatly impairing their merchantability. There was a problem.
  • polytrimethylene terephthalate fibers can be dyed at normal pressure with either a cation dye or a disperse dye, or with both dyes. It was not known.
  • a copolymer is prepared by adding isophthalic acid having a sulfonate metal base / sulfonate quaternary phosphonium base to the polyester before the completion of the polycondensation reaction (Japanese Patent Publication No. Japanese Patent Application Laid-Open No. 2004-977, Japanese Patent Publication No. Sho 47-22334, and Japanese Patent Laid-Open No. Hei 5-23013) are known.
  • the fibers thus obtained do not have the dyeing properties of a normal pressure thione dye and have a high modulus of elasticity, so that they give only a firm and stiff cloth.
  • adipic acid and isophthalic acid are used in addition to isophthalic acid having a sulfonate metal base in polyethylene phthalate.
  • dicarboxylic acids such as acids or their alkyl esters as copolymer components are known (for example, Japanese Patent Application Laid-Open No. 57-661119).
  • the fibers obtained in this way still have a high modulus of elasticity and give only rugged fabrics.
  • Fibers having good dyeability to disperse dyes, low elastic modulus, and excellent elastic recovery properties include, for example, a polymer disclosed in JP-A-52-530. Remethylene terephthalate fiber is an example.
  • Japanese Patent Publication No. Hei 9-5092225 discloses a method of dyeing polymethylene terephthalate fibers with a disperse dye under normal pressure. However, these fibers cannot be dyed at all under normal pressure with cationic dyes. Further, as has been clarified by detailed studies by the present inventors, with regard to disperse dyes, the techniques disclosed in these known documents only dye at extremely low dye concentration at normal pressure. I realized that I could't. For example, the dye concentration used in the example of Japanese Patent Publication No.
  • Hei 9-5099225 is at most 0.5% 0 wf (where the unit of% 0w ⁇ is the dye concentration in the dye solution). This is shown in terms of% by weight of the fiber that stains the same.)
  • fabrics that are dyed dark as well as light and medium colors are required.
  • Such a deep dyeing requires a dye concentration of 4% owf or more, and sometimes 10% owf or more.
  • a dye concentration of 4% owf or more cannot be dyed deeply at normal pressure because the dye cannot be exhausted sufficiently at normal pressure. Disclosure of the invention
  • An object of the present invention is to provide a polymethylethylene terephthalate fiber which can be dyed in a deep color under normal pressure by using either a cationic dye or a disperse dye or both dyes. is there.
  • Another object of the present invention is to provide a polyurethane elastic fiber, wool, silk.
  • the objective is to provide polytrimethylene terephthalate-based fibers that can dye composite fiber products mixed with tea, etc., without impairing the physical properties of these relatively low heat-resistant fibers. is there.
  • Still another object of the present invention is to provide a cross-woven, blended, or cross-knitted fabric of a polymethylentelephthalate fiber capable of being fast dyed under normal pressure and another fiber material. That is.
  • One specific object of the present invention is to provide a polyurethan elastic fiber and a polymethylene terephthalate-based fiber which can be fast dyed in a simple manner using ordinary atmospheric dyeing equipment. And providing a mixed fabric.
  • the present inventors have used polymethylene terephthalate obtained by copolymerizing a specific third component at a specific copolymerization ratio as a polymer, and have a very limited range of loss tangent peaks.
  • the present inventors have found that a polyester fiber prepared to have a temperature, an elastic modulus, and an elastic recovery can solve the above-mentioned problems, and have reached the present invention.
  • the first aspect of the present invention is that, in a fiber composed of polyester obtained by copolymerizing polymethylene terephthalate with a third component, the third component has an ester formation ratio of 0.5 to 5 mol% in a copolymerization ratio of 0.5 to 5 mol%.
  • the fiber has a loss tangent peak temperature of 85 to 115 ° C, an elastic modulus Q (g / d) and an elastic recovery rate R (%) of the fiber.
  • a second aspect of the present invention is a fiber comprising a polyester obtained by copolymerizing a poly (methylene terephthalate) with a third component, wherein the third component is (1) a copolymerization ratio of 1.5 to 12% by weight of carbon.
  • Aliphatic or alicyclic glycol having a number of 4 to 12; (2) a carbon number of 2 to 9 having a copolymerization ratio of 3 to 9% by weight; At least one selected from aliphatic or alicyclic dicarboxylic acids up to 14 or isophthalic acid; and (3) a polyalkylene glycol having a copolymerization ratio of 3 to 10% by weight.
  • the loss tangent peak temperature of the fiber is 85 to 102 ° C, and the relationship between the elastic modulus Q (g / d) and the elastic recovery rate R (%) of the fiber is expressed by the following equation (1).
  • a polyester fiber characterized by satisfying and a fabric using the same.
  • the polymer constituting the polyester fiber of the present invention has a specific amount of the third polymer in the polymethylene terephthalate. It is a polyester obtained by copolymerizing the components.
  • polymethylethylene terephthalate is a polyester containing terephthalic acid as an acid component and trimethylene glycol (also referred to as 1,3-propanediol) as a diol component. It is.
  • a normal pressure thione dye-dyable fiber When a specific amount of an ester-forming sulfonate compound is used as the third component to be copolymerized, a normal pressure thione dye-dyable fiber can be obtained. Also, (1) aliphatic or alicyclic glycol having 4 to 12 carbon atoms, (2) aliphatic or alicyclic dicarboxylic acid having 2 to 14 carbon atoms, or isophthalic acid When a specific amount of at least one selected from an acid and (3) polyalkylene glycol is copolymerized, a normal pressure disperse dye-dyable fiber can be obtained.
  • ester-forming sulfonate compound used in the present invention examples include a sulfonate group-containing compound represented by the following general formula.
  • R,, R may be the same group or different groups.
  • M is a metal, NH 4 , or a phosphonium group represented by the formula PR 3 RRR (wherein R 3 , R 4 , R 5 , and R 6 are a hydrogen atom, an alkyl group, an aryl group, and an arsenic group) And represents the same or different group selected from the droxyalkyl groups, and is preferably an alkyl group having 1 to 10 carbon atoms.
  • M is a metal, it is preferably an alkali metal or an alkaline earth metal.
  • Z is a trivalent organic group, preferably a trivalent aromatic group.
  • a fiber that can be dyed to a deep color with a cationic dye under normal pressure is obtained. Also, compared to polytrimethylene terephthalate homopolymer fiber, it becomes easier to dye the disperse dye.
  • the fact that dyeing can be performed at normal pressure means that the exhaustion rate to fibers at 95 ° C. is approximately 70% or more.
  • the cationic dyeable yarn exhibits an appropriate amount of weight loss characteristics, it is possible to obtain a softer texture by reducing the amount of alkali after weaving.
  • the alkali weight reduction means that the fabric is heated in an aqueous alkali solution to dissolve a part of the polymer on the fiber surface.
  • Moderate alkaline weight loss means that the amount and rate of alkaline weight loss can be controlled industrially. This is a surprisingly great feature. For example, in the case of cationic dyeable poly (ethylene terephthalate) fiber, the weight loss rate is too fast to control industrially, and in the polyester fiber of the present invention, the control is practically impossible.
  • the weight loss rate is the same as that of ordinary polyethylene terephthalate fiber that is not dyeable by Kachion, and it is possible to perform the weight loss using a known method.
  • the polyester fiber of the present invention whose weight has been reduced, becomes more soft and has micropores of several // m on the surface of the fiber, so that it has a dry feeling. It is possible to provide a feature that dyeing can be performed more clearly.
  • ester-forming sulfonate compounds include 5_ sodium sulfeusophthalic acid, 5_ calcium sulfoisophtalic acid, 41 sodium sulfo-1,2, 6_ naphtha range Carboxylic acid, 2-sodium sulfo 4-hydroxybenzoic acid, 3,5-dicarboxylate benzenesulfonate tetramethyl phosphonium salt, 3,5-dicarboxylic acid benzene sulfonate tetrabutyl phosphonium salt, 3, 5 Tricarboxylic acid benzenesulfonic acid tributylmethylphosphonium salt, 2,6-dicarboxylic acid naphthalene 1-4,2-sulfonic acid tetrabutylphosphonium salt, 2,6-dicarboxylic acid naphthalene-1 4—snolefone Tetramethylphosphonium acid salt, 3,5—dicarboxylic acid benzenesulfonic acid
  • the copolymerization ratio of the ester-forming sulfonate compound to the poly (methylene terephthalate) is 0.5 to 5 mol based on the total number of mols of all the acid components constituting the polyester. It needs to be%.
  • the copolymerization ratio of the ester-forming sulfonate compound is less than 0.5 mol%, it becomes impossible to dye with a cationic dye at normal pressure.
  • the proportion of the ester-forming sulfonate compound exceeds 5 mol%, the heat resistance of the polymer deteriorates, the polymerizability and the spinnability deteriorate, and the fiber is liable to yellow. From the viewpoint of having both polymerizability and spinnability while maintaining sufficient dyeability for cationic dyes, it is preferably 1 to 3 mol%, particularly preferably 1.2 to 2.5 mol%.
  • aliphatic and alicyclic glycols having 4 to 12 carbon atoms used in the present invention include, for example, 1,2-butanediol, 1,3-butanediol, and 1,4-butanediol.
  • the copolymerization ratio should be 1.5 to 12% by weight based on the weight of the polymer. If the copolymerization ratio is less than 1.5% by weight, it becomes impossible to dye a disperse dye to a deep color at normal pressure.
  • the copolymerization ratio of glycol has a strong correlation with the elastic modulus, elastic recovery, melting point, glass transition point, and dyeability. If the copolymerization ratio exceeds 12% by weight, the melting point and the glass transition point are greatly reduced, and the post-processing represented by heat setting and the usual use represented by ironing are performed. There are drawbacks in that the texture changes hardly in stages, and the dry cleaning fastness of the dyed fabric is reduced. Preferably it is 2 to 10% by weight, more preferably 3 to 7% by weight.
  • the aliphatic or alicyclic dica having 2 to 14 carbon atoms used in the present invention include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, heptane diacid, octane diacid, sebacic acid, dodecane diacid, and 2 — Methylglutaric acid, 2-Methyladipic acid, fumaric acid, maleic acid, itaconic acid, 1,4-cyclohexanedicarboxylic acid, 1,3—cyclohexanedicarboxylic acid, 1,2— Hexanedicarboxylic acid and the like.
  • By copolymerizing these dicarboxylic acids with polytrimethylene terephthalate it becomes possible to dye to a deep color using a disperse dye at normal pressure.
  • dicarboxylic acids or isophthalic acids sebacic acid, dodecane diacid, and 1,4-cyclohexane in terms of polymerization rate and light resistance during copolymerization are excellent.
  • Dicarboxylic acid and isophthalic acid are preferred.
  • isophthalic acid is particularly preferred in view of the excellent whiteness of the polymer.
  • the copolymerization ratio of the aliphatic or alicyclic dicarboxylic acid or isophthalic acid to polymethylene terephthalate needs to be 3 to 9% by weight based on one weight of the polymer. If the copolymerization ratio is less than 3% by weight, it becomes impossible to dye a deep color at normal pressure. When the copolymerization ratio is more than 9% by weight, the melting point and the glass transition point are too low, so that the post-processing typified by heat setting property and the normal use stage represented by ironing are required. However, there are drawbacks in that the texture is hardly changed and the dry cleaning fastness of the dyed fabric is reduced. It is preferably from 3 to 8% by weight, more preferably from 3 to 7% by weight.
  • polyalkylene glycol may be used as the copolymerization component.
  • glycol or acid is copolymerized as the third component
  • the melting point is inevitably lowered, and the spinnability is deteriorated. Welding ⁇ noticeable shrinkage, etc. This may cause poor handling.
  • polyalkylene glycol is used as the third component, the melting point hardly decreases and such a problem does not occur. This is thought to be because the polyalkylene glycol component is localized in the polymer due to its high molecular weight.
  • the polyalkylene glycol used may be polyethylene glycol, polymethylene glycol, polytetramethylene glycol or a copolymer thereof, but polyethylene is preferred in view of thermal stability. Glycol is most preferred.
  • the average molecular weight of polyalkylene glycol is preferably from 300 to 20000.
  • the average molecular weight is less than 300, since a very low molecular weight polyalkylene glycol is contained, it is distilled off under reduced pressure during polymerization under high vacuum, and the resulting polymer is obtained.
  • the amount of polyalkylene glycol contained is not constant. Therefore, the properties of the raw yarn such as high elongation properties, dyeing properties and thermal properties are not uniform, and the properties of the product vary.
  • the average molecular weight of polyalkylene glycol is preferably from 400 to 100,000, more preferably from 500 to 500,000.
  • the copolymerization ratio of the polyalkylene glycol to the polymethylene terephthalate must be 3 to 10% by weight based on the weight of the polymer.
  • the proportion of the polyalkylene glycol is less than 3% by weight, it becomes impossible to dye the disperse dye to a deep color at normal pressure.
  • the proportion of polyalkylene glycol exceeds 10% by weight, the heat resistance of the polymer decreases, and the polymerizability and spinnability deteriorate significantly.
  • the glass transition point is too low, and the texture changes to hard during normal use, such as post-processing, such as heat setting, and the drying of the fabric after dyeing.
  • a disadvantage arises in that cleaning fastness and light fastness are greatly reduced. It is preferably 4 to 8% by weight.
  • the polymer constituting the polyester fiber of the present invention can be copolymerized and blended with the fourth component within a range not to impair the purpose of the present invention. Even when such a fourth component is used, it is necessary to keep the copolymerization ratio in the range described above so as not to hinder the object of the present invention.
  • ester-forming sulfonate compounds and (1) aliphatic or cycloaliphatic glycols having 4 to 12 carbon atoms, and (2) aliphatics having 2 to 14 carbon atoms.
  • copolymerization of at least one selected from alicyclic dicarboxylic acid, isophthalic acid, and (3) polyalkylene glycol makes it possible to dye both cationic dyes and disperse dyes at normal pressure.
  • Polyester fibers can be obtained.
  • the copolymerization ratio is preferably from 2 to 2.5 mol% of the ester-forming sulfonate compound, and at least one selected from the above (1) to (3). It is preferred that one species be 3 to 7% by weight.
  • additives may be added to the polyester fiber of the present invention, for example, an anti-glazing agent, a heat stabilizer, an anti-foaming agent, a coloring agent, a flame retardant, an antioxidant, an ultraviolet absorber, and an infrared absorber.
  • an anti-glazing agent for example, an anti-glazing agent, a heat stabilizer, an anti-foaming agent, a coloring agent, a flame retardant, an antioxidant, an ultraviolet absorber, and an infrared absorber.
  • Agents, crystal nucleating agents, fluorescent whitening agents and the like may be copolymerized or mixed.
  • the molecular weight of the polyester used in the present invention can be defined by the intrinsic viscosity.
  • the intrinsic viscosity [? 7] is preferably 0.3 to 2.0, more preferably 0.35 to 2.0. With a value of 1.5, particularly preferably of 0.4 to 2, a polyester fiber having excellent strength and spinnability can be obtained. If the intrinsic viscosity is less than 0.3, the polymerization degree of the polymer is too low. The spinnability becomes unstable. Also, the strength of the obtained fiber is low and not satisfactory. On the other hand, when the intrinsic viscosity exceeds 2.0, the melt viscosity is too high, so that the metering by the gear pump cannot be performed smoothly, and the spinnability is reduced due to poor discharge.
  • polymerization can be basically carried out by using a known method. That is, in the ordinary production process of polymethylene terephthalate, a transesterification reaction followed by a polycondensation reaction of terephthalic acid or a lower ester of terephthalic acid such as dimethyl terephthalate with trimethylene glycol is carried out.
  • the third component can be added at any stage during the process. In this case, the ester-forming sulfonate compound and the aliphatic or alicyclic dicarboxylic acid or isophthalic acid need to be added before the transesterification reaction because the reaction with trimethylene glycol must be promoted.
  • polyalkylene glycol it is preferable to add polyalkylene glycol at the end of the transesterification reaction in order to prevent yellowing of the polymer and bumping at reduced pressure.
  • the transesterification catalyst it is preferable to use metal acetate, titanium alkoxide, etc. in an amount of 0.01 to 0.1% by weight, because it has the reaction speed, the whiteness of the polymer, and the thermal stability. .
  • the reaction temperature is about 200 to 240 ° C.
  • antimony oxide, titan alkoxide, or the like can be used. In particular, when titan alkoxide is used, it may be used also as a transesterification catalyst.
  • the amount of the catalyst is 0.01 to 0.1% by weight based on the total amount of rubonic acid used from the viewpoint of the reaction rate and the whiteness of the polymer.
  • the reaction temperature is 240 to 280. C, and the degree of vacuum is 0.001 to 1 t0 rr.
  • various additives may be added at any stage of the polymerization process.However, in order to minimize the inhibition of the reaction, they are added at any stage after the transesterification reaction. I prefer to do that.
  • the polymer constituting the polyester fiber of the present invention may be obtained by increasing the molecular weight by subjecting the polymer obtained by the above method to solid phase polymerization in an inert gas such as nitrogen or argon or under reduced pressure.
  • an inert gas such as nitrogen or argon or under reduced pressure.
  • solid phase polymerization for example, a known method used for polyethylene terephthalate can be applied as it is, but the intrinsic viscosity of the prepolymer before solid-phase polymerization is 0.4 to 0.8 as whiteness.
  • the solid-state polymerization temperature is preferably 170 to 230 ° C, and the time varies depending on the desired viscosity, but is usually about 3 to 36 hours. It is.
  • the polymer constituting the polyester fiber of the present invention may be produced by blending two kinds of polymers so as to obtain a desired copolymer composition.
  • polymethylene terephthalate prepared by copolymerizing 1,4-butanediol at 5% by weight has 95% by weight of polymethylene terephthalate and 95% by weight of polybutylene terephthalate. It may be manufactured by mixing 5% by weight of tallate.
  • Mixing here means that the mixture may be mixed in a polymerization kettle and sufficiently transesterified before being discharged, or more simply, the reaction may be performed in an extruder with the tip blended. Even with such a method, the transesterification rate is sufficiently high, so that a homogeneous polymer can be obtained.
  • What is important in the method for producing the polymer constituting the polyester fiber of the present invention is to maintain the whiteness of the polymer.
  • the third component is copolymerized with polymethylene terephthalate, it generally becomes easier to color during the polymerization process and the spinning process. Therefore, as a method for increasing the whiteness, it is preferable to use the above-mentioned preferable amount of catalyst and reaction temperature, and at the same time, use a heat stabilizer and a coloring inhibitor.
  • Trivalent or trivalent phosphorus compounds are preferred, e.g., trimethyl phosphate, triethyl phosphate, triphenyl phosphate, trimethyl phosphate, triethyl phosphate And triphenylphosphite, phosphoric acid, phosphorous acid and the like, and it is preferable to add 0.01 to 0.07% by weight to the polymer.
  • the coloring inhibitor include cobalt acetate and cobalt formate, and it is preferable to add 0.01 to 0.07% by weight to the polymer.
  • additives include lithium acetate, lithium carbonate, lithium formate, sodium acetate, sodium carbonate, sodium formate, sodium hydroxide, and sodium hydroxide.
  • Basic metal salts such as calcium and potassium hydroxide may be mentioned, and the amount thereof is 20 to 400 mol%, preferably 70 to 100 mol%, based on the ester-forming sulfonate compound. ⁇ 200 mol%.
  • the form of the polyester fiber of the present invention may be any of a long fiber and a short fiber, and in the case of a long fiber, any of a multifilament and a monofilament may be used. .
  • the total denier there is no particular limitation on the total denier, and it is preferably 5 to 1000 d, and especially 5 to 200 d when used for clothing.
  • the single yarn denier is not particularly limited, but is preferably 0.001 to 10 d.
  • the cross-sectional shape is not particularly limited, such as a round shape, a triangular shape, a flat shape, a star shape, and a w shape, and may be solid or hollow.
  • the peak temperature of the loss tangent (hereinafter abbreviated as “T max”) obtained from the dynamic viscoelasticity measurement is 85 to 85 when the third component is an ester-forming sulfonate compound.
  • the third component is (1) a copolymerization ratio of 1.5 to ⁇ 2% by weight of an aliphatic or alicyclic glycol having 4 to 12 carbon atoms, and (2) a copolymerization ratio of 3 From 9 to 9% by weight of an aliphatic or alicyclic dicarboxylic acid having 2 to 14 carbon atoms or isophthalic acid; (3) from a copolymerization ratio of 3 to 10% by weight of a polyalkylene glycol; It must be 85 to 102 for at least one of the selected species.
  • Tmax corresponds to the molecular density of the amorphous part
  • the exhaustion rate increases.
  • Tmax is less than 85 ° C
  • molecules can easily move at low temperatures when any of the third components is used.Therefore, typical post-processing such as heat setting and ironing are typical examples. During normal use, the shrinkage becomes too great and the texture becomes worse, or the dry cleaning fastness of the fabric after dyeing is reduced.
  • the third component is an ester-forming sulfonate.
  • the dyeability which is the object of the present invention, is reduced, and the space for the dye is too small, so that the cation dye under normal pressure is used.
  • the dye cannot be dyed to a dark color.
  • the third component (1) a copolymerization ratio of 1.5 to 12% by weight, an aliphatic or alicyclic glycol having 4 to 12 carbon atoms, and (2) a copolymerization ratio of 3 to 9% by weight.
  • Tmax is a structural factor of a fiber, spinning temperature, spinning speed, draw ratio, heat treatment temperature, scouring conditions, and alkali reduction even for polymers having the same copolymer composition. It shows different values depending on spinning conditions such as conditions and dyeing conditions, and post-processing conditions. In particular, since this value greatly changes with the heat set temperature, it is important to change the heat set temperature to keep T max in the above range.
  • the concept of setting the heat set temperature is roughly described. In the case of the polyester fiber specified in the present invention, T is set when the heat set temperature is in the range from room temperature to about 150 ° C.
  • ma X is a gradually increasing force, and after about 160 ° C, it drops significantly thereafter.
  • T max varies slightly depending on the type of the third component, but when an ester-forming sulfonate compound is used as the third component, the range of 97 to 112 ° C.
  • at least one selected from aliphatic or alicyclic dicarboxylic acids up to 14 and (3) alkylene glycol having a copolymerization ratio of 3 to 10% by weight 85 to 102 is used.
  • ° C particularly preferably 90-98 ° C.
  • the elastic modulus Q (g / d) of the polyester fiber of the present invention and the elastic recovery rate R (%) after standing for 20 minutes after elongation of 20% may satisfy the following expression (1). is necessary. This is because, when the formula (1) is satisfied, the fabric obtained from the polyester fiber of the present invention has a soft texture equal to or higher than that of nylon, unlike the fabric obtained from the conventional polyester fiber. It is because it can have.
  • the ester-forming sulfonate compound having a copolymerization ratio of 1.2 to 2.5 mol% and a copolymer having a copolymerization ratio of 3 to 7% by weight (1) a fatty acid having a carbon number of 4 to 12 or Alicyclic glycol, (2) having 4 to 12 carbon atoms Aliphatic or cycloaliphatic dicarboxylic acids, or isophthalic acid, up to (
  • the Tmax of the fiber is 85 to 115 ° C and
  • the reason that the relationship between the elastic modulus Q (g / d) and the elastic recovery rate R (%) of the fiber satisfies the equation (1) is the same as the detailed T max and the basis of the equation (1) described above. Required from.
  • the polyester fiber of the present invention can be obtained by the following method.
  • the polyester fiber of the present invention is obtained by melting a polymer dried to a water content of at least 100 ppm, and preferably 50 ppm or less using an extruder or the like, and then melting the polymer. It can be obtained by winding after extruding from a spinneret and then stretching. Stretching after winding here means that the yarn is wound on a bobbin or the like after spinning, and this yarn is stretched using another device, a so-called ordinary method, or a polymer extruded from a spinneret.
  • the spinning temperature for melt spinning the polymer is 240 to 320 ° C, preferably 240 to 300 ° C, and more preferably 240 to 28 ° C. A range of 0 ° C is appropriate. If the spinning temperature is lower than 240 ° C., the temperature is too low to be in a stable molten state, the resulting fibers have large spots, and no satisfactory strength and elongation are exhibited. On the other hand, when the spinning temperature exceeds 320 ° C., thermal decomposition becomes severe, and the obtained yarn is colored and does not show satisfactory strength and elongation.
  • the winding speed of the yarn is not particularly limited, but is usually 350 m / min or less, preferably 250 m / min or less, and more preferably 200 m / min or less. Take up. If the winding speed exceeds 350 m / min, the crystallization proceeds too much before winding, and the stretching ratio cannot be increased in the stretching process. Insufficient thread strength and elastic recovery rate cannot be obtained, or winding and tightening occur, and the bobbin and the like cannot be pulled out of the winder.
  • the stretching ratio at the time of stretching is 2 to 4 times, preferably 2.2 to 3.7 times, and more preferably 2.5 to 3.5 times.
  • the draw ratio is not more than 2 times, the polymer cannot be oriented sufficiently by drawing, and the elastic recovery of the obtained yarn will be low, which satisfies the expression (1). I can't do that. If it is 4 times or more, thread breakage is severe and it is not possible to perform stable elongation.
  • 3 0 ⁇ 8 0 Q C temperature is a stretching zone during stretching, favored properly the 3 5 ⁇ 7 0 ° C, rather further favored good 4 0 ⁇ 6 5 ° C. If the temperature of the drawing zone is lower than 30 ° C., yarn breakage frequently occurs during drawing, and continuous fibers cannot be obtained. If the temperature exceeds 80 ° C, slippage of the fiber against a heating zone such as a drawing roll deteriorates, so that single yarn breakage occurs frequently and the yarn becomes full of fluff. In addition, the polymers will slip through each other, resulting in insufficient orientation and lowering the elastic recovery rate.
  • This heat treatment is carried out at 90 to 200 ° C, preferably at 100 to 190 ° C, and more preferably at 110 to 180 ° C. If the heat treatment temperature is lower than 90 ° C, the crystallization of the fiber does not sufficiently occur, and the elastic recovery is deteriorated. At a temperature higher than 200 ° C., the fiber is cut by the heat treatment zone and cannot be drawn.
  • the polymer is extruded in the same manner as in the conventional method, and the molten multi-filament coming out of the spinneret is not immediately quenched, but is placed immediately below the spinneret at 30 to 200 ° C. After passing through a heat retaining area of 2 to 80 cm in length maintained at the same ambient temperature to suppress rapid cooling, this molten multifilament is rapidly cooled and converted into a solid multifilament, followed by stretching. It is extremely preferred to submit to the process. By allowing the polymer to pass through this heat insulation region, it is possible to suppress the generation of fine crystals and extremely oriented amorphous parts due to rapid cooling of the polymer, and to create an amorphous structure that is easily stretched in the stretching step.
  • Polyethylene terephthalate has a much faster crystallization rate than, for example, polyester such as polyethylene terephthalate. Performing such slow cooling is an extremely effective method for suppressing the formation of fine crystals and extremely oriented amorphous parts. If the temperature is lower than 30 ° C, the film is rapidly cooled, making it difficult to increase the draw ratio. Above 200 ° C., thread breakage tends to occur.
  • the temperature of such a heat retaining region is preferably from 40 to 200 ° C, more preferably from 50 to 150 ° C. Also, this The length of the heat insulation area is preferably 5 to 30 cm.
  • the winding speed of the first roll is 300 to 300 m / min.
  • the spinning speed is less than 300 m / min, spinning stability is excellent, but productivity is greatly reduced. If it exceeds 300 m / min, the orientation of the amorphous part or partial crystallization proceeds before winding, and the stretching ratio cannot be increased in the stretching process. And it is difficult to develop sufficient yarn strength.
  • it is 150 to 270 m / min.
  • the relax ratio (winding speed Z second roll speed) is about 0.95 to 0.99, preferably 0.95 to 0.98.
  • the speed of the second roll is determined by the stretching ratio, but is usually from 600 to 600 m / min.
  • the stretching ratio between the first roll and the second roll is 1.3 to 3 times, preferably 2 to 2.7 times. If the draw ratio is 1.3 or less, the polymer cannot be sufficiently oriented by stretching, and the strength and elastic recovery of the obtained fiber will be low. On the other hand, if it is three times or more, the fluff is so severe that stretching cannot be performed stably.
  • the temperature of the first roll is 40 to 70. C, and it is possible to create a situation where stretching is easy in this range. It is preferably between 50 and 60.
  • the heat is set at the second port, but the temperature is 120 to 160 ° C.
  • the temperature is lower than 120 ° C, thermal stability is poor, thermal deformation, and aging change. At a temperature of 160 ° C. or higher, fluff and yarn breakage occur, and stable spinning cannot be performed. Preferably, it is between 120 and 150 ° C. It is important to apply the favorable conditions indicated by the ordinary method and the straight-rolling method described above in order to ensure the homogeneity and quality of the obtained fiber.
  • u% can be used as a parameter for evaluating the quality of a fiber obtained by applying preferable spinning conditions.
  • u% is a parameter that indicates the homogeneity of the fiber cross-section. Under favorable conditions, U% is less than 2.5%, and in some cases less than 1.5%.
  • the polyester fiber obtained as described above can be used alone or as a part of a fabric to provide a fabric having excellent softness, stretchability, and coloring.
  • There are no particular restrictions on other fibers used in part of the fabric but in particular stretch fibers, cellulose fibers, wool, silk, acetate, etc. represented by polyurethane elastic fibers.
  • stretch fibers cellulose fibers, wool, silk, acetate, etc. represented by polyurethane elastic fibers.
  • the fabric can be dyed at normal pressure by using, for example, a cationic dye and / or a disperse dye, and has a unique texture that has a softness and a stretch property that have not existed conventionally.
  • the polyester fiber of the present invention can be used as a field in which either the cation dye or the disperse dye, or both dyes, can be dyed in a deep color. It can be dyed quickly and can have a different softness and sunset from the mixed fabric of nylon fiber and stretch fiber typified by polyurethane elastic fiber.
  • a mixed fabric of the poly (methylene terephthalate) fiber and a stretch fiber represented by a polyurea elastic fiber is exemplified as a particularly preferred fabric. You.
  • the form and knitting and weaving method of the cloth of the present invention including the above-mentioned mixed cloth are not particularly limited, and known methods can be used.
  • An example Examples thereof include plain woven fabrics using the polyester fiber of the present invention as warp or weft yarns, woven fabrics such as reversible woven fabrics, and knitted fabrics such as tricots and raschels. You may.
  • the stretch fiber used in the present invention is not particularly limited, but is a dry-spun or melt-spun polyurethane elastic fiber or a polybutylene terephthalate fiber.
  • polyester-based elastic fibers typified by polybutylene terephthalate fiber and polytetramethylene glycol copolymer.
  • the content of the polyester fiber of the present invention is not particularly limited, but is preferably 60 to 98%.
  • the fabric of the present invention can be dyed, for example, after knitting and weaving, through the steps of scouring, presetting, dyeing, and final set by a conventional method. If necessary, after scouring and before dyeing, it is possible to carry out a weight reduction treatment by an ordinary method.
  • Refining can be performed in a temperature range of 40 to 98 ° C.
  • scouring while relaxing is more preferable because it improves the elasticity.
  • the temperature of the heat set is from 120 to 190 ° C, preferably from 140 to 180 ° C, and the heat set time is 10 to 100 ° C. Seconds to 5 minutes, preferably 20 seconds to 3 minutes.
  • Staining is carried out at 70 to 150 ° C, preferably 90 to 120 ° C, and particularly preferably 90 to 100 ° C, without using a carrier. It can be carried out.
  • the cation When using dyes, metal or alkaline earth metals such as sodium sulfate, sodium nitrate, potassium sulfate, sulfate sulfate, etc. to improve the sharpness of the dyed material. It is particularly preferred to add a class of metal salts to the dye bath.
  • sorbing or reduction washing can be performed by a known method.
  • a mixed fabric consisting of a normal pressure dispersible dye-dyeable fiber and a polyurethan elastic fiber when mixed with stretch fiber
  • the reducing fiber is washed and the polyurethane is used. It is important to firmly remove the disperse dye that has contaminated the elastic fiber in order to improve the robustness of the fabric.
  • a reducing agent such as hydrosulfite sodium is dissolved in an aqueous solution of sodium carbonate such as sodium carbonate and sodium hydroxide.
  • the following is a special mention of the poly (methylene terephthalate) fiber of the present invention which can be dyed in a deep color with either a cationic dye or a disperse dye or both dyes at normal pressure.
  • the polymethylene terephthalate fiber of the present invention is a heat-resistant fiber such as stretch fiber, polyester, silk, and acetate represented by polyurethane elastic fiber.
  • a heat-resistant fiber such as stretch fiber, polyester, silk, and acetate represented by polyurethane elastic fiber.
  • polyurethane elastic fibers When mixed with fibers with low heat resistance, it can be dyed dark under normal pressure without impairing the performance of fibers with low heat resistance.
  • polymethylentelephthalate fibers are mixed with polyurethane elastic fibers, the softness and sunset are different from those of mixed fabrics using nylon fibers, Create a new sense of clothing that has easy-care characteristics
  • Polyurethane elastic fibers must be dyed at 110 ° C to 120 ° C for mixed fabrics of ordinary polymethylene terephthalate fibers and polyurethane elastic fibers. Thermal degradation. In addition, only with disperse dyes Does not stain. In the dyeing of the mixed fabric with the polyurethane elastic fiber by the disperse dye, the disperse dye is more exhausted by the polyurethane urethane fiber than by the polymethylene terephthalate fiber. Does not firmly adhere to the urethane elastic yarn fiber. For example, fiber disperse dyes are easily transferred by dry cleaning and washing, and stain the surrounding clothing.In some cases, the dyes are released and the color of the mixed fabric is faded, decreasing the color fastness. Let it. On the other hand, the above-mentioned problem has been solved by using the polytrimethylene terephthalate-based fiber of the present invention, which can dye either the cationic dye or the disperse dye or both dyes at normal pressure. it can.
  • the first method is to use the normal-pressure thione dye-dyeable polymethylene terephthalate fiber of the present invention.
  • Polyurethane elastic fibers are not dyed with cationic dyes. If polytrimethylene terephthalate fiber that can be dyed under normal pressure is used as the cationic dye, the above contamination will occur because only the polymethylene terephthalate fiber is selectively dyed. No problem.
  • the second method is the use of the normal pressure dispersible dyeable polymethylene terephthalate fiber of the present invention. If the polymethylene terephthalate fiber is modified to have normal pressure disperse dye dyeability, the transfer of the disperse dye to the polyurethan fiber can be considerably suppressed.
  • the fabric obtained using the polymethylene terephthalate fiber of the present invention is, for example, far more soft than a known mixed fabric of nylon fiber and polyurethane elastic fiber. There is no peculiar feeling unique to nylon fiber. In addition, it can be a new sensational garment with light stretch characteristics and excellent color development. Furthermore, polytrimethyl terephthalate-based fibers have a high heat setting property and are excellent in yellowing resistance. These properties indicate that there are no problems inherent to nylon fiber, and that it is easy to handle.
  • the polyester fiber of the present invention exhibits an excellent effect even when mixed with cellulose fiber.
  • a reactive dye is used for dyeing cellulose fibers
  • the reactive dye often decomposes when the temperature of the dye bath exceeds 100 ° C.
  • the poly (methylethylene terephthalate) fiber of the present invention it is possible to perform one-step, one-bath dyeing using a cation dye or a disperse dye and a reactive dye under normal pressure.
  • the fabric thus obtained is a new sensation garment having both the dry feeling unique to cellulose and the softness derived from polytrimethylene terephthalate.
  • the polyester fiber of the present invention can be applied alone to a woven or knitted fabric, and the obtained fabric is rich in softness and exhibits excellent stretch characteristics and coloring properties. Becomes If there is no problem with staining at 100 ° C. or more, it is also possible to stain at 100 ° C. or more. Further, as a characteristic of the polyester fiber of the present invention, the amount and speed of the weight loss can be industrially controlled in spite of being a cationic dye-dyeable fiber.
  • the polyester fiber of the present invention which has been reduced in alkali content, is further softened, and has micropores of several meters on the fiber surface, so that it has a dry feeling and can be dyed clearly. Can be issued.
  • the normal pressure disperse dye dyeable poly Ester fibers also have similar alkali weight loss characteristics.
  • the polytrimethylene terephthalate-based fiber of the present invention can be used for clothing such as outer garments, underwear, lining, sports, etc., as well as for raw yarn and core, It can also be used for materials such as ground and flocks.
  • the intrinsic viscosity [7?] was measured using an oste-ward viscosity tube at 35 ° C and o-chlorophenol.
  • the loss tangent (tan 5) and the dynamic elastic modulus at each temperature were measured using Orientec's Leo Vibron in dry air at a measurement frequency of 110 Hz and a heating rate of 5 ° C / min. It was measured. From the results, a loss tangent-one temperature curve was determined, and Tmax (° C), which is the peak temperature of the loss tangent, was determined on this curve.
  • the elastic modulus was measured according to JIS-L-113.
  • the measurement was carried out in a nitrogen stream of 100 milliliters Z min at a heating rate of 20 ° C./min using a DSC manufactured by SEIKO ELECTRONICS CO., LTD.
  • the peak value of the melting peak was used as the melting point.
  • the yellowness of the obtained fiber was measured using the b value.
  • the b value was measured using a color computer of Suga Test Instruments Co., Ltd. The yellowness increases as the b value increases.
  • the sample is a one-piece knitted fabric of polyester fiber (circular knit, sheeting, gauge 28), and score roll 400 (Kao Corporation, non-ion interface) Activator)
  • the sample was a piece of polyester fiber knitted fabric (circular knit, sheeting, gauge 28), using hot water (bath ratio 1:50) containing score roll 400 at 2 g / liter. It was scoured at 70 ° C for 20 minutes and dried with a tumble dryer. Then, a heat set at 180 ° C. for 30 seconds was performed using a pin tenter.
  • the dye is Telblue 3 RSF (manufactured by Nippon Kayaku Co., Ltd., disperse dye) was used at 6% 0 wf, and dyed at a bath ratio of 1:50 at 95 ° C for 60 minutes.
  • a dispersant 0.5 g / liter of Nikki Sansol (Nikka Chemical Co., Ltd., anionic surfactant) is used, and 0.25 milliliter of acetic acid is used.
  • the pH was adjusted to 5 by adding torr Z liter and 1 g Z liter of sodium acetate.
  • the exhaustion rate was determined by measuring the absorbance A of the dye stock solution and the absorbance a of the dye solution after dyeing using a spectrophotometer, and substituting into the following formula. The value at 580 nm, which is the maximum absorption wavelength of the dye, was used as the absorbance.
  • the lightness when dyed in black was evaluated using the L value.
  • the fastness test of the dyed fiber was evaluated using a single-mouth knitted fabric dyed by the method of (6).
  • Dry cleaning fastness is JIS-L-080
  • light fastness is JIS-L-0842
  • washing fastness is JIS-L-0844
  • dry and wet friction The fastness was measured in accordance with JIS-L-08449.
  • the dry cleaning fastness was tested for liquid contamination.
  • TMG Trimethylen glycol
  • DMT dimethyl terephthalate
  • SIPP sulphoisophthalic acid Trabutylphosphonium salt
  • the rate was 22 g Zd, and the elastic recovery rate was 87%.
  • the QZR value of the drawn yarn was 0.25, which satisfied expression (1).
  • the b value of the fiber was 6.1.
  • the exhaustion rate of the cationic dye of the polyester fiber obtained in this example at 95 ° C. and 30 minutes was as large as 72%, and a very clear dyed product was obtained.
  • polymethylethylene phthalate homopolymer was obtained without using SIPP.
  • the intrinsic viscosity of the obtained polymer was 0.63.
  • This polymer chip was spun and drawn in the same manner as in Example 1 to obtain a fiber.
  • the resulting fiber has a melting point of 23 ° C, Tmax of 11 ° C, a strength of 3.6 g / d, an elongation of 35%, an elasticity of 23 g / d, and an elastic recovery of 88%. Indicated.
  • the Q / R value of this fiber was 0.26, which satisfied the expression (1).
  • the exhaustion rate of the cation dye at 95 ° C. and 30 minutes of the polyester fiber obtained in this comparative example was 6%, and it could not be dyed in a deep color.
  • a polymer was prepared in the same manner as in Example 1 except that the copolymerization ratio of SIPP was 0.3 mol%, and spinning was performed. Table 1 summarizes the test and evaluation results of the obtained fibers.
  • the copolymerization ratio of the ester-forming sulfonate compound is less than 0.5 mol%, and the dye exhaustion rate of the dye at 95 ° C and 30 min at 30 ° C is 30%. Can't do it (Comparative Example 3)
  • Example 1 In the same manner as in Example 1, a fiber was prepared through polymerization and spinning with a copolymerization ratio of SIPP of 6 mol%. Table 1 summarizes the test and evaluation results. During the spinning of this polymer, thread breakage occurred frequently and the spinnability was poor. When the fiber was dyed at 95 ° C, the yarn shrank and became hard, and a fabric with a good texture could not be obtained. Further, the dry cleaning fastness of the obtained fabric was lower than that of Example 1.
  • Example 1 the stretching ratio was 3.3 times.
  • the orientation of the obtained fiber was too advanced, and T max exceeded 115 ° C.
  • the exhaustion rate of the cationic dye was 45%.
  • fluff was frequently generated in the obtained fiber.
  • Example 2 Polymerization and spinning were carried out in the same manner as in Example 1 except that the temperature of the hot roll was 25 ° C. Many yarn breaks occurred during drawing, and fibers could not be obtained continuously. Polymerization and spinning were performed in the same manner as in Example 1 except that the temperature of the hot roll was set at 80 ° C. At the time of drawing, the yarn was fused to the hot roll, and single yarn breakage occurred frequently, and the obtained fiber was full of fluff. U% was 3.2, which was bad.
  • Example 2 Polymerization and spinning were carried out in the same manner as in Example 1 except that the temperature of the hot plate was 70 ° C. Fibers were obtained without problems such as yarn breakage and fluffing. However, the obtained fiber had a low elastic recovery of 55% and a QZR value of 0.49, which did not satisfy the expression (1).
  • Polymerization / spinning was performed in the same manner as in Example 1 except that the temperature of the hot plate was set at 200 ° C. The fiber was cut at the hot plate and could not be drawn.
  • Polymerization / spinning was performed in the same manner as in Example 1 except that the draw ratio was 2.3 times and the temperature of the hot plate was 180 ° C. Fibers were obtained without problems such as yarn breakage and fluffing. However, the obtained fiber had a low elastic recovery rate of 48%, a QZR value of 0.52, and could not satisfy the expression (1).
  • Spinning was performed using poly (ethylene terephthalate) fiber obtained by copolymerizing 2.5% by mole of 5-sodium sulfoisophtalic acid.
  • the obtained fiber had a strength of 4.2 g Zd, an elongation of 30%, an elasticity of 100 g / d, an elastic recovery of 31%, a QZR value of 3.2, and a Tmaxl of 31 ° C. Show, Katyo The exhaustion rate of the dye at 95 ° C. and 30 minutes was 36%.
  • Example 1 was repeated without using cobalt acetate and trimethyl phosphite. In this case, there was no change in the fiber properties, but the b value of the fiber was 11.2, which turned yellow.
  • Example 2 The polymer obtained in Example 2 was dried to a water content of 50 ppm, melted at 285 ° C, and spinned into a single array having 0.23 mm diameter and having 36 holes. Extruded through mouth. The extruded molten multifilament is passed through a heat retaining area with a length of 5 cm and a temperature of 100 ° C, and then quenched by blowing air at a wind speed of 0.4 m / min to obtain a solid multifilament. I changed it to a comment.
  • this solid multifilament was heated to 60 ° C, and the first roll was at a speed of 210 m / min, and the rotary speed was heated to 133 ° C, 4300 m / min Then, hot stretching and heat setting were performed between the second rolls, and then the film was wound at 418 m / min.
  • the obtained fiber was made into a double yarn and made 75 d / 72 f.
  • the obtained fiber has a strength of 3.1 g Zd, an elongation of 41%, a U% of 0.7%, an elasticity of 22 gZd, a sexual recovery rate of 89%, a Q / R of 0.25,
  • the exhaustion rate of the cationic dye at Tmax 109 ° C, 95 ° C, and 30 minutes was 98%, and the b value was 6.5.
  • a warp knitted fabric was formed using the polyester fiber of Example 1 and a loyal force of 210 denier (polyurethane stretch fiber manufactured by Asahi Kasei Kogyo Co., Ltd.).
  • the knitting gauge is 28 G
  • the polyester fiber is 108 mm / 480 course of polyester fiber
  • stretch fiber strength is 12 mm / 480 course
  • driving is performed.
  • the density was 90 courses Z inch.
  • the mixing ratio of the polyester fiber was set to 75.5%.
  • the obtained greige was subjected to relax scouring for 90 minutes and a dry heat set at 160 ° C for 1 minute.
  • Disperse TL Non-ionic activator manufactured by Meisei Chemical Co., Ltd.
  • KYARILL BLACK BS-ED cationic dye manufactured by Nippon Kayaku Co., Ltd.
  • Using a liter add 50 g of sodium sulfate and 15 g / liter of sodium carbonate, and dye by adding a dye to an aqueous solution whose pH has been adjusted to 11. Liquid. Staining was performed at 95 ° C. for 1 hour at a staining concentration of 8% 0 wf and a bath ratio of 1:50.
  • Granup P manufactured by Sanyo Kasei Kogyo Co., Ltd., non-ionic surfactant 1 g Z liter, bath ratio 1: 50, 80 ° C. for 10 minutes.
  • finishing was performed by a conventional method.
  • the obtained dyed product had an L value of 11.2, which was sufficiently dyed.
  • the dyeing fastness of the dyed materials is from the washing fastness class 5, the wet rub fastness class 5, and the light fastness class 4.
  • the dyed knitted fabric was soft, rich in stretch, and had an excellent texture with tightness and waist.
  • Example 9 The same operation as in Example 9 was repeated using the polyester fiber of Example 2.
  • the L value of the obtained dyed product was 10.9, indicating that it was sufficiently dyed.
  • the dyeing fastness of this dyed product was 5 for washing fastness, 5 for wet rub fastness, and 4 to 5 light fastness.
  • the dyed material was soft, rich in stretchiness, and had an excellent texture with a firm and firm feel.
  • Example 9 The same knit as in Example 9 was knitted using the polymethylene terephthalate fiber prepared in Comparative Example 1.
  • the obtained greige was subjected to relax scouring at 90 ° C for 2 minutes and subjected to a dry heat set at 160 ° C for 1 minute.
  • To dye in a dark color use Dynix Black BG-FS (Disperse Dye, manufactured by Dystar Japan) 8% 0 wf, and add 0.5 g / In the presence of a little, the pH was adjusted to 6 with acetic acid, and the cells were stained at a bath ratio of 1:30 at 95 ° C for 60 minutes.
  • the wet rub fastness of the obtained dyed product was of the second grade, and the release of the disperse dye contaminating the stretch fiber was observed.Similar to Example 9 using the fiber prepared in Comparative Example 9 Was repeated.
  • the resulting fabric was clearly hard and was dyed only in a light color with an L value of 21.
  • a warp knitted fabric of nylon 6 fiber and Roy force spun by the usual method was prepared in the same manner as in Example 9, and was prepared by using Callon Black BGL (manufactured by Nippon Kayaku Co., Ltd.). Dye) at 7% 0 wf at 100 ° C. for 60 minutes. The lightfastness of the obtained dyed fabric was 2 to 3.
  • a 75-dZ36f polyester fiber obtained in the same manner as in Example 1 was used for warp and a 75-d / 44-f cuprammonium rayon for the weft, to give a plain weave (140-w / 25.4 mm, weft 80 / 25.4 mm).
  • This plain fabric was scoured by a conventional method. After washing with water, 180 ° C, 3
  • one-step one-bath dyeing with a cationic dye and a reactive dye was performed without using a carrier.
  • the cation dyes used were KYRILLIL BLACK BS-ED (Cation dyes, manufactured by Nippon Kayaku Co., Ltd.) and Dori Maleble X-SGN (Sand Co., Ltd., reactive dyes). .
  • the dispersant used was Dispar TL (manufactured by Meisei Chemical Co., Ltd.) at a rate of 1 g / liter, 50 g of sodium sulfate and 15 g / liter of sodium carbonate. The dye was added to the aqueous solution whose pH was adjusted to 11 to obtain a dye solution.
  • Staining was performed at 100 ° C. for 1 hour at a concentration of 2% 0 wf and a bath ratio of 1:50. After staining, the granules were soaked in Granup P (manufactured by Sanyo Chemical Industry Co., Ltd.) at 1 g / liter and a bath ratio of 1:50 at 80 ° C. for 10 minutes. staining After that, finishing was performed by a conventional method. The obtained dyed product was uniformly dyed and was a clear dyed product. K / S was 24.3. In addition, despite the fact that the alkali weight reduction treatment performed with ordinary polyester fibers was not performed, the fabric was full of soft texture and dryness, and had an excellent texture that cannot be obtained with conventional fabrics. The dry cleaning fastness was grade 5, the wet friction fastness was grade 5, and the light fastness was grade 4.
  • Example 2 Using 75 d / 36 f polyester fiber obtained in the same manner as in Example 1, a plain woven fabric was prepared using the same weft and warp yarns, and dyed. Although the obtained fabric did not have a dry feeling, it was extremely soft and the fabric showed a stretch property of about 7% in the weft direction.
  • Example 1 The fiber obtained in Example 1 was copolymerized and spun in the same manner as in Example 1, and copolymerized with 3% by mole of polyethylene terephthalate fiber and sodium 5-naphthalomisophthalate.
  • a weight loss test was carried out using a single-knit fabric (circular knit, sheeting, gauge 28) prepared from the prepared polyethylene terephthalate fiber. After knitting, the knitted fabric is scoured at 70 ° C for 20 minutes using warm water containing score roll 400 at 2 g / liter, dried with a tumble dryer, and then dried. A heat set at 180 ° C. for 30 seconds using a pin tenter was used.
  • Alkali weight reduction processing was carried out by placing the bite knitted fabric in a 6% by weight aqueous solution of sodium hydroxide boiled for 20 minutes.
  • the alkali weight loss rate was evaluated by dividing the weight of the knitted fabric reduced by the weight loss by the weight of the original knitted fabric.
  • the weight loss rates of the single-port knitted fabric of the fiber obtained in Example 1 and the single-port knitted fabric of polyethylene terephthalate fiber were 25.4% by weight and 10.3% by weight, respectively.
  • the polyester fiber of the present invention exhibits a weight loss rate close to that of polyethylene terephthalate fiber. did.
  • Example 12 In the same manner as in Example 12 using a one-piece knitted fabric obtained by knitting polyethylene terephthalate fiber obtained by copolymerizing sodium 5 sodium sodium sulfophthalate at 3 mol% in the same manner as in Example 12 When the weight was reduced, the knitted fabric was completely decomposed, dissolved and disappeared. Therefore, in the case of polyethylene terephthalate fiber obtained by copolymerizing 3% by mole of sodium 5-sodium sulfoisophtalate, it is practically impossible to reduce the weight loss rate because the rate of weight loss is too fast. It is possible.
  • a fiber was prepared by copolymerizing 2 mol% of dimethyl sodium 5-dimethylsophthalate and 5 wt% of dimethyl ethyl adipate.
  • the physical properties of the fiber are as follows: melting point: 220 ° C, strength: 3.6 g / d, elongation: 34%, elasticity: 22 g Zd, elastic recovery: 90%, and R value of 0.2 It was five.
  • the exhaustion rate of the cationic dye at 95 ° C and 30 minutes of the polyester fiber obtained in this example was 95%, and the exhaustion rate of the disperse dye at 95 ° C and 60 minutes. Showed high dyeability at 95% for both cationic dyes and disperse dyes at normal pressure.
  • the dry cleaning fastness of the one-necked knitted fabric after dyeing did not show any fading of the dyed material, and the cation dye and the disperse dye were in the 4th to 5th class of liquid contamination.
  • the light fastness (four to five grades), dry / wet friction fastness (five grades), and washing fastness (five grades) of the fibers were also good.
  • Example 2 The fiber obtained in Example 2 was cut to obtain a short fiber having a fiber length of 39 mm. .
  • a 20 d / 2 f filament obtained in the same manner as in Example 2 was used as a core, and the short fibers were arranged in a sheath.
  • the filament mixture was 11 wt%.
  • Yarn was obtained.
  • the composite yarn was woven into a warp (weaving density: 144, Z25.4 mm) and weft (weaving density: 77, Z25.4 mm) woven fabrics, and was woven according to the method of Example 9. Staining was performed at ° C.
  • the KZS of the dyed fabric was dyed deep at 25.3.
  • the obtained fabric was excellent in tension, waist, and resilience.
  • Example 2 The polymer obtained in Example 2 was subjected to solid-state polymerization in nitrogen at 200 ° C. for 24 hours to obtain a polymer having an intrinsic viscosity of 1.0.
  • the spinning was carried out in the same manner as in Example 1, and the strength was 4.0 (5, elongation 32%, 11% 1.0%, elastic modulus 23 g Zd, elasticity recovery rate 91%, QZR value A fiber having physical properties of 0.25, T maxll O ° C, and b value of 4.3 was obtained.
  • 4G 1,4-butanediol
  • DMT 130 parts by weight 1,4-butanediol
  • titanium tetrabutoxide 1.3 parts by weight
  • the intrinsic viscosity of the obtained polymer was 0.8.
  • the 4G component in the polymer measured by using NMR was 4.1% by weight.
  • a spinning temperature of 265 ° C and a spinning speed of 1200 were used using a spinning hole having 36 round cross-section holes (diameter: 0.23 mm).
  • An undrawn yarn was prepared by spinning at m / min.
  • the obtained undrawn yarn is hot-rolled 60. C, a hot plate was applied at 140 ° C, a draw ratio of 2.9 times, and a draw speed of 600 mZmin was used to obtain a drawn yarn of 50 d / 36 f.
  • Fiber properties are as follows: melting point: 2 24 ° C, Tma x 98 ° C, strength 3.6 g Zd, elongation 40%, U% 1.2%, elastic modulus 23 g / d, elastic recovery 83%, b value 4.5 .
  • the QZR value of this fiber was 0.28, thereby satisfying the expression (1).
  • the exhaustion rate of the polyester fiber of this example at 95 ° C. and 60 minutes by the disperse dye was 78%, indicating a high exhaustion rate.
  • Example 13 Polymerization / spinning was performed in the same manner as in Example 16 except that the ratio of TMG to 4G was changed. The results are shown in Table 2. The proportion of the 4G component was less than 1.5% by weight and the Tmax of the fiber was 106 ° C. The exhaustion rate by the disperse dye at 95 ° C and 6 minutes was low, and it was not possible to dye in a dark color.
  • Polymerization / spinning was performed in the same manner as in Example 16 except that the ratio of TMG to 4G was changed.
  • Table 2 shows the physical properties and evaluation results of the obtained fibers.
  • the ratio of the 4G component was 10.3% by weight.
  • the Tmax of the fiber was 85 ° C or less, and the exhaustion rate was high, but the dry cleaning fastness was very low at class 1.
  • Hexamethylen glycol (hereinafter abbreviated as 6G) was used in place of 4G, and polymerization and spinning was performed in the same manner as in Example 16 except that the ratio of TMG to 6G was changed.
  • Table 2 shows the test and evaluation results of the obtained fibers.
  • the proportion of the 6G component of the polymer was 8.7% by weight.
  • the Tmax of this fiber was 85 ° C or less, and when dyed at 95 ° C for 60 minutes, the exhaustion rate exceeded 70%.
  • the ruggedness was very poor at 1st grade.
  • the melting point of the fiber was as low as 210 ° C., and when processing such as false twisting was performed, the yarn was fused to the heater and processing could not be performed.
  • Example 16 Polymerization was carried out in the same manner as in Example 16 except that cyclohexanedimethanol (hereinafter abbreviated as C6-12G) was used instead of 4G and the ratio of TMG to C6-2G was changed. ⁇ Spinning was performed. The results are shown in Table 2. The ratio of the C 6 -2G component was 12.6% by weight. However, the elastic modulus of this yarn was 24 g Zd, the elastic recovery was 34%, and the QZR value was 0.71, which did not satisfy the expression (1). The fabric obtained from this yarn had poor elastic recovery. The Tmax of the fiber was 62 ° C. When dyed at 95 ° C for 60 minutes, the fabric shrank and became hard.
  • C6-12G cyclohexanedimethanol
  • Example 17 Polymerization spinning was carried out in the same manner as in Example 16 except that ethylene glycol (hereinafter abbreviated as 2G) was used instead of 4G and the ratio of TMG to 2G was changed. The results are shown in Table 2.
  • the obtained polymer is colored yellow, and the obtained fiber is also colored yellow with a b value of 18.3, and should be used for uses such as inner whiteners that require whiteness. Can not be done.
  • a warp knitted fabric was prepared using the polyester fiber of Example 16 and a 210 denier Roy force (polyurethane-based stretch fiber manufactured by Asahi Kasei Corporation).
  • the knitting gauge of this knitted fabric is 28 G, the loop length is 1800 mm / 480 course for polyester fiber, and 11 mm / 480 course for stretch fiber.
  • the implantation density was 90 courses Z inch.
  • the mixing ratio of the polyester fiber was set at 75.5%.
  • the obtained greige was subjected to relax scouring at 90 ° C for 2 minutes and subjected to a dry heat set at 160 ° C for 1 minute.
  • 8% owf of Dianix Black BG-FS Disperse Dye manufactured by Daiichi Yuichi Japan Co., Ltd.
  • 0.5 g / liter of Nikka Sun Salt 1200 as a dyeing aid.
  • the pH was adjusted to 6 with acetic acid, and the cells were stained at a bath ratio of 1:30 at 95 ° C for 60 minutes.
  • the black lightness L value of the obtained dyed product was 11.7, which was sufficient for coloring.
  • the dyed product has a washing fastness of 5, a wet rub fastness of 4, and a light fastness of 4, and has a soft, stretchy, tight, and firm feel.
  • a warp-knitted fabric of nylon 6 fiber spun by a conventional method and Roy force was prepared in the same manner as in Example 22 and calo black BGL (Nippon Kayaku Co., Ltd.) was used as the acid dye.
  • calo black BGL Nippon Kayaku Co., Ltd.
  • the L value of the obtained dyed product was 12.3.
  • the lightfastness of this fabric was 2 to 3.
  • a plain woven fabric (weaving density 1 40 lines Z25.4 mm, Latitude 80 lines / 25.4 mm). This plain fabric was scoured and made into a mass by a conventional method. The mercerization process was performed at room temperature by immersion in a 75% sodium hydroxide aqueous solution.
  • the dye was added to the aqueous solution in which H was adjusted to 11 to obtain a dye solution.
  • Dyeing was performed at 95 ° C. for 1 hour at a dye concentration of 2% owf and a bath ratio of 1:50.
  • the sample was rubbed with Granup P (manufactured by Sanyo Chemical Co., Ltd., nonionic surfactant) at 1 g / liter and a bath ratio of 1:50 at 80 ° C. for 10 minutes.
  • the obtained dyed product was uniformly dyed, had a soft texture, had a dry feeling, and had a good texture not seen in conventional fabrics.
  • the dyed product had a K / S of 22.7, a dry cleaning fastness of 3 to 4, a wet rub fastness of 4, and a light fastness of 4.
  • Example 24 Using a 75 d / 36 f polyester fiber obtained in the same manner as in Example 16, a similar plain woven fabric was prepared using the same weft and warp yarns and dyed. Although the obtained fabric had no dry feeling, the fabric was extremely soft and showed a stretch property of about 7% in the weft direction. (Example 24)
  • a twist of 300 TZm was applied to the polyester fiber of Example 16 and glued with a roller. Then, the warp was used, and diacetate (100 d / 150 f) was used for the weft.
  • a plain woven fabric 120 warps / 25.4 mm, weft 80 warp Z25.4 mm was woven.
  • Nippon Kayaku Polyesterable RSRS manufactured by Nippon Kayaku Co., Ltd.
  • Nyakuhon Kabushiki Kaisha RD 200 (Nippon Kayaku) as a disperse dye for diacetate (Manufactured by Sharp Corporation).
  • the dye concentration was 5% owf for each step, and one-step single-bath dyeing was carried out at 95 ° C in the presence of a dispersant with weak acidity. After staining, soda ash 1 g Z liter, nonionic detergent 0.5 g Z liter 70 in a weak alkaline bath. C. Soaking was performed for 20 minutes.
  • the K / S of the obtained dyed product was excellent, 22.2.
  • the dyed product had a dry cleaning fastness of 3 to 4th grade, a light fastness of 4th grade, a soft texture and excellent clarity.
  • Transesterification was carried out at 220 ° C using 117 parts by weight of DMT, 130 parts by weight of dimethyl isophthalate, 1.3 parts by weight of TMG 763 parts, and 1.3 parts by weight of titanate laboxide. Thereafter, 0.01 part of trimethyl phosphate was further added, and polycondensation was performed at 260 ° C. at a reduced pressure of 0.5 t 0 rr to obtain a polymer. The intrinsic viscosity of the obtained polymer was 0.8.
  • the isophthalic acid component in the polymer measured by NMR was 6.2% by weight.
  • a spinning temperature of 265 ° C and a spinning speed of 1200 were used using a spinning hole having 36 round cross-section holes (diameter: 0.23 mm).
  • An undrawn yarn was prepared by spinning at m / min. Then, the obtained undrawn yarn was heated at a hot roll of 60 ° C, a hot plate of 140 ° C, Stretching was performed at a draw ratio of 2.9 and a draw speed of 600 m / min to obtain a drawn yarn of 50 d / 36 f.
  • the physical properties of the fiber are as follows: melting point: 21.9 ° C, Tmax: 100 ° C, strength: 3.5 g / d, elongation: 43%, U%: 1.0%, elastic modulus: 24 gd, elastic recovery
  • the b value was 7.6%
  • the b value was 7.6.
  • the Q / R value of the fiber was 0.29, which satisfied Expression (1).
  • the polyester fiber of this example had an exhaustion rate of 81% with a disperse dye at 95 ° C for 60 minutes, indicating a high exhaustion rate.
  • the dry-cleaning fastness of the one-necked knitted fabric after dyeing did not show any fading of the dyed material, and the liquor contamination was grade 3.
  • the dyeing fastness of the dyed product was good in light fastness (grade 4 to 5), dry / wet rub fastness (grade 5), and wash fastness (grade 5).
  • Example 25 was repeated, except that the copolymerization ratio of dimethyl isophthalate was changed. Table 3 shows the test and evaluation results of the obtained fibers. In Comparative Example 19, the copolymerization ratio was too low, resulting in inferior dyeability of the fibers. In Comparative Example 20, the copolymerization ratio was too high, resulting in a decrease in dry cleaning fastness.
  • Example 25 Dimethyl isophthalate 6.2 219 0.80 3.5 43 24 82 0.29 100 1.0 81 3 7.6
  • Example 26 Dimethyl isophthalate 5.2 224 0.81 3.5 43 24 75 0.43 102 0.8 75 4 7.5
  • Example 27 Isophthalic acid Dinutyl 7.4 216 0.75 3.4 42 20 83 0.25 96 1.0 91 3 7.3
  • Example 28 Dimethyl succinate 4.0 222 0.80 3.5 42 22 85 0.28 92 1.1 85 38.2
  • Example 29 Dimethyl adipate 5.3 222 0.77 3.5 41 23 90 0.23 89 1.2 96 3 9.6
  • Example 30 di- / chill sebacate 7.8 210 0.80 3.0 44 22 86 0.19 85 1.1 96 3 9.5
  • Example 31 1,4-six ⁇ -hexane 6.0 220 0.80 2.2 42 23 87 0.21 85 1.2 90 3 9.0
  • Example 29 was repeated without using trimethyl phosphite. Although the fiber properties of the obtained fiber did not change, the b value of the fiber was 12.3, which turned slightly yellow.
  • a warp knitted fabric was prepared using the polyester fiber of Example 25 and a loyal force of 210 denier (polyurethane stretch fiber manufactured by Asahi Kasei Corporation).
  • the knitting gauge is 28 GG
  • the loop length is 1800 mm / 480 course of polyester fiber
  • the stretch fiber strength is 11 mm / 480 course
  • the driving density is 9 0 course Z inch.
  • the mixing ratio of polyester fiber was set at 75.5%.
  • the obtained greige was relaxed and scoured at 90 ° C for 2 minutes, and dried and set at 160 ° C for 1 minute.
  • the pH was adjusted to 6 with acetic acid in the presence of 0.5 g Z-liter, and staining was carried out at a bath ratio of 1:30 at 95 ° C for 60 minutes.
  • the black lightness L value of the obtained dyed product was 11.3, which was sufficient for color development. Washing fastness of the dyed product was class 5, wet rub fastness was class 4, and light fastness was class 4. In addition, the dyed product was soft and rich in stretch feeling, and had a firm and waisted texture.
  • Transesterification was carried out at 220 ° C using DMT 130 parts by weight, TMG 112 1 parts by weight, titanyl tributoxide 1.3 parts by weight, and cobalt acetate 0.01 parts by weight. Thereafter, 69 parts by weight of polyethylene glycol having an average molecular weight of 1000 and 0.01 part by weight of phosphoric acid were added, and the mixture was decompressed at 260 ° C under a pressure of 0.5 t0 rr. The polymer was obtained by polycondensation. The intrinsic viscosity of the obtained polymer was 0.82. The copolymerization ratio of polyethylene glycol having an average molecular weight of 1,000 was 5% by weight. After drying the obtained polymer chip, a spinning temperature of 26 ° C. and a spinning speed of 1 using a spinning hole having 36 round cross-section holes (0.23 mm) were used.
  • An undrawn yarn was prepared by spinning at 200 m / min. Next, the obtained undrawn yarn was drawn at a hot roll of 50 ° C, a hot plate of 140 ° C, a draw ratio of 2.9 times, and a drawing speed of 60 Om / min. /
  • a 36 f drawn yarn was obtained.
  • the physical properties of the fiber are as follows: Melting point: 23 ° C, Tmax: 92 ° C, strength: 3.1 g / d, elongation: 43%, U%: 1.1%, elastic modulus: 20 g Zd, elasticity The recovery rate was 89% and the b value was 8.2. In addition, the QZR value of the fiber was 0.22, thereby satisfying the expression (1).
  • Example 33 The same operation as in Example 33 was repeated, while changing the copolymerization ratio of polyethylene glycol. Table 4 shows the results. In Comparative Example 23, the copolymerization ratio was too low and the dyeability was insufficient, and in Comparative Example 24, the copolymerization ratio was too high and the dry cleaning fastness was poor. Also the whiteness of the fiber Also fell.
  • PEG polyethylene glycol
  • Example 33 A warp knitted fabric was prepared using the polyester fiber of Example 3 and a loyal force of 210 denier (polyurethane-based stretch fiber manufactured by Asahi Kasei Corporation).
  • the gauge is 28 G
  • the loop length is 108 mm / 480 course of polyester fiber
  • the stretch fiber strength is 112 mm / 480 course
  • the driving density is 9 0 course Z 25.4 mm.
  • the mixing ratio of the polyester fibers was set at 75.5%.
  • the obtained greige was relaxed and scoured at 90 ° C for 2 minutes, and dried and set at 160 ° C for 1 minute.
  • 8% owf of Dyanix Black BG-FS (manufactured by Dyster Japan) and 0.5 g of Nitukasan Sonoret 1200, which is a dyeing aid, with 0.5 g of Z-Little The pH was adjusted to 6, and staining was carried out at a bath ratio of 1:30 at 95 ° C for 60 minutes.
  • the black lightness L value of the obtained dyed product was 11.0, and the color was sufficiently developed.
  • the washing fastness of the fiber was grade 5, the wet rub fastness was grade 4, and the light fastness was grade 4.
  • the dyed fabric had a soft and stretchy feel, and had a tight and waisted texture.
  • Polymethylene terephthalate having an intrinsic viscosity of 0.9 and polybutylene terephthalate having an intrinsic viscosity of 1.0 are mixed at a ratio of 94.8: 5.2 and extruded as it is. Then, in the same manner as in Example 17, polymethylene terephthalate fiber obtained by copolymerizing 5.2% by weight of 1,4-butanediol was obtained.
  • the obtained fiber is almost equivalent to the fiber of Example 17 and has a strength of 3.6 g d, an elongation of 43%, a U% of 0.7%, an elasticity of 23 g / d, and an elastic recovery.
  • Example 43 Weaving a plain woven fabric (40 warp yarns) using the 75 d Z 36 f polyester fiber obtained in Example 1 as a warp yarn and a 75 d / 44 mm copper ammonia rayon as a weft yarn / 25.4 mm, latitude 80 lines ⁇ 25.4 mm).
  • This plain fabric was scoured by a conventional method. After washing with water and pre-setting at 80 ° C. for 30 seconds, one-step one-bath dyeing with a cation dye and a reactive dye was performed without using a carrier.
  • Cryacryl Black BS-ED (Cation Dye manufactured by Nippon Kayaku Co., Ltd.) and Drimaremble X-SGN (Reactive Dye manufactured by Sand Co., Ltd.) were used.
  • DISPER TL Dispersant manufactured by Meisei Chemical Co., Ltd.
  • the dye was added to the aqueous solution whose pH was adjusted to 11 to obtain a dye solution.
  • Dyeing was carried out at 100 ° C. for 1 hour at a dye concentration of 2% owi and a bath ratio of 1:50. After staining, the sample was soaked at 80 ° C. for 10 minutes at 1 g / liter, Granup P (manufactured by Sanyo Chemical Industries, Ltd.) at a bath ratio of 1:50. After dyeing, finishing was performed by a conventional method.
  • the obtained dyed product was uniformly dyed, was excellent in wet rub fastness, dry cleaning fastness, and light fastness, and was a clear dyed product.
  • the texture was full of soft texture and dry feeling, and was an excellent texture that cannot be obtained with conventional woven fabrics.
  • the same plain woven fabric was woven and dyed using 75 d / 36 f polyester fiber obtained in the same manner as in Example 1, using the same warp and weft. Although the obtained fabric did not have a dry feeling, it was extremely soft and the fabric exhibited a stretch property of about 7% in the weft direction.
  • Example 43 when dyeing was performed at a temperature of 130 ° C., the reactive dye was decomposed, and the fabric was darkened.
  • Example 4 Weaving a plain fabric using the 75 d / 36 f polyester fiber obtained in Example 1 for warp and weft (140 warp / 3.54, warp 80 / 2.54 ) did. After scouring the plain fabric by a conventional method, the alkali weight was reduced by 20% using a 10% aqueous sodium hydroxide solution. Thereafter, the same pre-setting and staining as in Example 43 were performed, and finally a final set was performed at 180 ° C. for 30 seconds.
  • the obtained fabric showed a soft and dry feeling that was not seen before, and also showed a stretch property of about 7% in the weft direction.
  • the poly (methylen terephthalate) fiber of the present invention can be dyed at ordinary pressure with either a dye or a disperse dye or both dyes to a color density (shades) practically required.
  • the polymethylene terephthalate-based fiber of the present invention has an Ossian de-air property similar to general-purpose polyester fibers such as polyethylene terephthalate fiber, dimensional stability, yellowing resistance, and the like. It is a fiber material that has a dry feel and a workability for reducing weight, and has flexibility similar to nylon fibers.
  • the polytrimethylene terephthalate fiber of the present invention can be used for heat-resistant fibers such as stretch fibers typified by polyurethane elastic fibers, wool, silk, and acetate. It is a suitable fiber material for the production of fast-dyed fabrics mixed with low-strength fiber materials and cellulosic fibers dyed at normal pressure.
  • a robust dyeing fabric can be manufactured by a simple dyeing method using a general-purpose normal-pressure dyeing facility without impairing the properties of the fiber. It is an industrial utility to be noted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Materials For Medical Uses (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

A polyester fiber prepared from a polyester prepared by copolymerizing polytrimethylene terephthalate with a third component, wherein the third component is an ester-forming sulfonate compound used in a comonomer ratio of 0.5 to 5 % by mole, the peak temperature of the tangent loss of the fiber is 85 to 115 °C, and the relationship between the modulus of elasticity, Q (g/d), and the elastic recovery, R (%), of the fiber satisfies 0.18 ≤ Q/R ≤ 0.45. This fiber can be deeply dyed under atmospheric pressure and enables fast dyeing of fabrics prepared by blending the fiber with a lowly heat-resistant fiber material, such as stretched fiber, wool, silk, and acetate fiber, typified by a polyurethane elastic fiber. The dyeing of the blended fabric can be carried out under atmospheric pressure, so that the properties of the blended lowly heat-resistant fiber material are less likely to be deteriorated in the course of dyeing. The polyester fiber can be subjected to alkaline weight loss treatment, is soft and rich in the feeling of dryness, and permits good color development.

Description

明 細 書 ポリ エステル繊維及びそれを用いた布帛 技術分野  Description Polyester fiber and fabric using the same
本発明は、 ポリ ト リ メ チレンテレフタ レー 卜系繊維、 特にカチォ ン染料、 分散染料のいずれか、 あるいは両方の染料で常圧下にて濃 色に染色できるポ リ ト リ メ チレンテレフタ レー ト系繊維及びこの繊 維を用いた布帛に関するものである。 背景技術  The present invention relates to a polymethylene terephthalate fiber, particularly a polymethylene terephthalate fiber which can be dyed in a deep color under normal pressure with one or both of a cationic dye and a disperse dye. The present invention relates to a fabric using this fiber. Background art
ポ リ ト リ メ チレンテレフタ レー ト繊維は、 低弾性率から由来する ソフ トな風合い、 優れた弾性回復性といつたナイ 口 ン繊維に類似し た性質と、 ゥ ォ ッ シュア ン ドウエアー性、 寸法安定性、 耐黄変性と いったポリエチレンテレフタ レ一 ト繊維に類似した性質を併せ持つ 画期的な繊維であり、 その特徴を生かして、 衣料、 力一ぺッ ト等へ の応用が進められつつある。  Polymethylene terephthalate fiber has soft texture derived from low modulus, excellent elastic recovery and similar properties to nylon fiber, and low wearability and dimensions. This is an epoch-making fiber that has properties similar to polyethylene terephthalate fiber, such as stability and yellowing resistance, and is being applied to clothing, power plants, etc. It is getting.
しかしながら、 ポ リ 卜 リ メ チレンテレフタ レー ト繊維は染色性に 関する問題がある。 すなわち、 公知のポ リ ト リ メ チレンテレフ タ レ 一ト繊維では、 用いる染料は分散染料に限定され、 1 1 0〜 1 2 0 °Cの高圧下でしか濃色に染色するこ とができないといった染色上の 大きな問題があった。  However, polymethylene terephthalate fiber has a problem with dyeability. That is, in the known polymethylene terephthalate fiber, the dye to be used is limited to a disperse dye, and it can be dyed in a deep color only under a high pressure of 110 to 120 ° C. There was a major problem with staining.
繊維が染められる染料が分散染料に限定されるという こ とは、 得 られた染色物の鮮明性が低く 、 ドライ ク リ ーニング堅牢性、 湿摩擦 堅牢性、 昇華堅牢性等がやや劣るこ とを意味する。  The fact that the dyes used to dye the fibers are limited to disperse dyes means that the resulting dyed products have low clarity, and dry cleaning fastness, wet rub fastness, and sublimation fastness are slightly inferior. means.
また、 濃色に染色するための染色温度が 1 1 0〜 1 2 0 DCになる という ことは、 例えば、 これらの高温では熱分解が生じる他の繊維 との混用布帛を染色することはできないことを意味する。 例えば、 ポ リ ト リ メ チ レ ンテ レフ タ レー ト繊維と、 ポリ ウ レタ ン弾性糸、 ゥ ール、 絹、 アセテー ト繊維といった他の繊維を混用すると、 ソフ ト で従来にはない風合いの混用布帛が期待できるが、 これらの他の繊 維は染色段階で 1 1 o °cを越えると、 強度が大き く低下したり白く 失透したり して、 商品性を大き く損なってしま う という問題があつ た。 Moreover, the fact that the dyeing temperature for the dyeing in the dark is 1 1 0~ 1 2 0 D C, for example, other fibers pyrolysis occurs at these high temperatures Means that the mixed fabric cannot be dyed. For example, mixing polymethyl terephthalate fibers with other fibers, such as polyurethane elastic yarn, cotton, silk, and acetate fibers, results in a softer texture than ever before. Mixed textiles can be expected, but if these other fibers exceed 11 oC at the dyeing stage, their strength will be greatly reduced or they will be devitrified white, greatly impairing their merchantability. There was a problem.
も し、 常圧でカチオ ン染料、 分散染料のいずれか、 あるいは両方 の染料で濃く 染まるポリ ト リ メチレンテレフ夕 レー ト繊維ができれ ば、 これらの問題は解決できる もののこのような繊維は従来知られ ていなかった。  These problems can be solved if polytrimethylene terephthalate fibers can be dyed at normal pressure with either a cation dye or a disperse dye, or with both dyes. It was not known.
公知の技術の範囲では、 ポリ ト リ メ チレンテレフタ レー ト繊維を 分散染料以外の染料、 例えばカチオ ン染料に染色可能にする技術は 全く 知られていない。  In the range of known techniques, no technique is known which enables polytrimethylene terephthalate fibers to be dyeable with dyes other than disperse dyes, for example, cation dyes.
ポリ ト リ メ チレンテレフタ レー ト繊維への具体的応用については 記載されていないが、 ポ リェチレンテレフタ レ一 ト繊維を中心と し たポ リ エステル繊維のカチオン染料に対しての染色性を高める方法 と しては、 ポ リ エステルにスルホ ン酸金属塩基ゃスルホ ン酸 4級ホ スホニゥム塩基を有するイ ソフタル酸を重縮合反応の完結前に添加 して共重合させる方法 (特公昭 3 4 — 1 0 4 9 7号公報、 特公昭 4 7 — 2 2 3 3 4号公報、 特開平 5 — 2 3 0 7 1 3号公報) が知られ ている。 しかしながら、 こう して得られる繊維は常圧力チオン染料 可染性はなく 、 弾性率が高いので風合いが堅く ごわごわした布帛 し か与えない。 また、 常圧でカチオ ン可染性を付与する方法と して、 ポ リ エチ レ ンテ レフ タ レー ト にスルホ ン酸金属塩基を有するイ ソ フ タル酸とと もに、 アジピン酸、 イ ソフタル酸のようなジカルボン酸 あるいはこれらのアルキルエステルを共重合成分と して用いるこ と が知られている (例えば、 特開昭 5 7 - 6 6 1 1 9号公報) 。 しか しながら、 こ う して得られる繊維はやはり弾性率が高く 、 ごわごわ した布帛 しか与えない。 No specific application to poly (methylene terephthalate) fiber is described, but it enhances the dyeing properties of polyester fibers, mainly poly (ethylene terephthalate) fibers, to cationic dyes. As a method, a copolymer is prepared by adding isophthalic acid having a sulfonate metal base / sulfonate quaternary phosphonium base to the polyester before the completion of the polycondensation reaction (Japanese Patent Publication No. Japanese Patent Application Laid-Open No. 2004-977, Japanese Patent Publication No. Sho 47-22334, and Japanese Patent Laid-Open No. Hei 5-23013) are known. However, the fibers thus obtained do not have the dyeing properties of a normal pressure thione dye and have a high modulus of elasticity, so that they give only a firm and stiff cloth. As a method for imparting cation dyeability at normal pressure, adipic acid and isophthalic acid are used in addition to isophthalic acid having a sulfonate metal base in polyethylene phthalate. Use of dicarboxylic acids such as acids or their alkyl esters as copolymer components Are known (for example, Japanese Patent Application Laid-Open No. 57-661119). However, the fibers obtained in this way still have a high modulus of elasticity and give only rugged fabrics.
分散染料に対しての染色性が良好で弾性率が低く 、 弾性回復性に 優れた繊維と しては、 例えば、 特開昭 5 2 — 5 3 2 0号公報に開示 されているポ リ ト リ メ チレンテレフタ レー ト繊維が挙げられる。 更 に、 特表平 9 一 5 0 9 2 2 5号公報には、 ポ リ 卜 リ メ チレンテレフ タ レ一ト繊維を分散染料を用いて、 常圧下で染色させる方法が示さ れている。 しかしながら、 これらの繊維は、 常圧下でカチオン染料 には全く染めるこ とはできない。 また、 本発明者らの詳細な検討に よって明らかになったことであるが、 分散染料に対しては、 これら の公知文献に示されている技術では、 常圧で極めて薄い染料濃度で しか染色できないこ とがわかった。 例えば、 特表平 9 一 5 0 9 2 2 5号公報の実施例では用いられている染料濃度は高々 0 . 5 % 0 w f (ここで、 % 0 w ί という単位は染液中の染料濃度を染色する繊 維の重量%で示したものである) である。 衣料分野では淡色、 中色 と同様に、 濃色に染ま った布帛が要求される。 このよ うな濃色染め では、 染料濃度は 4 % o w f 以上、 場合によ っては 1 0 % o w f 以 上が必要となるが、 ポ リ ト リ メ チレ ンテレフ タ レー ト繊維の染色に おいては、 常圧では染料を十分吸尽するこ とができないため、 濃色 に染めるこ とはできない。 発明の開示  Fibers having good dyeability to disperse dyes, low elastic modulus, and excellent elastic recovery properties include, for example, a polymer disclosed in JP-A-52-530. Remethylene terephthalate fiber is an example. Furthermore, Japanese Patent Publication No. Hei 9-5092225 discloses a method of dyeing polymethylene terephthalate fibers with a disperse dye under normal pressure. However, these fibers cannot be dyed at all under normal pressure with cationic dyes. Further, as has been clarified by detailed studies by the present inventors, with regard to disperse dyes, the techniques disclosed in these known documents only dye at extremely low dye concentration at normal pressure. I realized that I couldn't. For example, the dye concentration used in the example of Japanese Patent Publication No. Hei 9-5099225 is at most 0.5% 0 wf (where the unit of% 0wί is the dye concentration in the dye solution). This is shown in terms of% by weight of the fiber that stains the same.) In the field of garments, fabrics that are dyed dark as well as light and medium colors are required. Such a deep dyeing requires a dye concentration of 4% owf or more, and sometimes 10% owf or more.However, in dyeing polymethylene terephthalate fiber, Cannot be dyed deeply at normal pressure because the dye cannot be exhausted sufficiently at normal pressure. Disclosure of the invention
本発明の目的は、 カチオン染料、 分散染料のいずれか、 あるいは 両方の染料を用いて常圧下で濃色に染めることができるポリ ト リ メ チ レ ンテレフタ レ一 ト系繊維を提供するこ とである。  An object of the present invention is to provide a polymethylethylene terephthalate fiber which can be dyed in a deep color under normal pressure by using either a cationic dye or a disperse dye or both dyes. is there.
本発明の他の目的は、 ポ リ ウ レタ ン弾性繊維、 ウール、 絹、 ァセ テー ト等と混用 した複合繊維製品をこれらの比較的耐熱性の低い繊 維の物性をそこなわずに染色するこ とができ るポリ ト リ メチ レンテ レフタ レ一 ト系繊維を提供することにある。 Another object of the present invention is to provide a polyurethane elastic fiber, wool, silk, The objective is to provide polytrimethylene terephthalate-based fibers that can dye composite fiber products mixed with tea, etc., without impairing the physical properties of these relatively low heat-resistant fibers. is there.
本発明の更に他の目的は、 常圧下で堅牢染色が可能なポ リ ト リ メ チ レ ンテ レフ タ レー ト系繊維と他の繊維素材との交織、 混紡、 交編 された布帛を提供することである。  Still another object of the present invention is to provide a cross-woven, blended, or cross-knitted fabric of a polymethylentelephthalate fiber capable of being fast dyed under normal pressure and another fiber material. That is.
本発明の一つの具体的な目的には、 常用の常圧染色設備を用いて 簡素な方法で堅牢染色することができるポ リ ウ レタ ン弾性繊維とポ リ ト リ メ チレンテレフタ レ一 ト系繊維との混用布帛を提供すること が含まれている。  One specific object of the present invention is to provide a polyurethan elastic fiber and a polymethylene terephthalate-based fiber which can be fast dyed in a simple manner using ordinary atmospheric dyeing equipment. And providing a mixed fabric.
本発明者らは、 特定の第 3成分を特定の共重合比率で共重合した ポ リ ト リ メ チレンテレフタ レー トをポ リ マ一と して用いて、 極めて 限られた範囲の損失正接のピーク温度、 弾性率、 弾性回復率を有す るように調製したポ リ エステル繊維が、 上記の課題を解決できるこ とを見い出し、 本発明に到達した。  The present inventors have used polymethylene terephthalate obtained by copolymerizing a specific third component at a specific copolymerization ratio as a polymer, and have a very limited range of loss tangent peaks. The present inventors have found that a polyester fiber prepared to have a temperature, an elastic modulus, and an elastic recovery can solve the above-mentioned problems, and have reached the present invention.
すなわち、 本発明の第一は、 ポ リ ト リ メ チレンテレフタ レー トに 第 3成分を共重合したポ リエステルからなる繊維において、 第 3成 分が共重合比率 0 . 5 〜 5 モル%のエステル形成性スルホン酸塩化 合物であり、 該繊維の損失正接のピーク温度が 8 5 〜 1 1 5 °Cであ つて、 かつ該繊維の弾性率 Q ( g / d ) と弾性回復率 R ( % ) との 関係が下記式 ( 1 ) を満足するこ とを特徴とするポ リ エステル繊維 及びそれを用いた布帛であり、  That is, the first aspect of the present invention is that, in a fiber composed of polyester obtained by copolymerizing polymethylene terephthalate with a third component, the third component has an ester formation ratio of 0.5 to 5 mol% in a copolymerization ratio of 0.5 to 5 mol%. Sulfonic acid compound, the fiber has a loss tangent peak temperature of 85 to 115 ° C, an elastic modulus Q (g / d) and an elastic recovery rate R (%) of the fiber. Is a polyester fiber characterized by satisfying the following expression (1) and a fabric using the same:
0 . 1 8 ≤ Q / R≤ 0 . 4 5 · · · 式 ( 1 )  0.18 ≤ Q / R ≤ 0.45 · · · Equation (1)
本発明の第二は、 ポ リ ト リ メ チレンテレフタ レー トに第 3成分を共 重合したポ リエステルからなる繊維において、 第 3成分が ( 1 ) 共 重合比率 1 . 5 〜 1 2重量%の炭素数が 4 〜 1 2 までの脂肪族また は脂環式グリ コ ール、 ( 2 ) 共重合比率 3〜 9重量%の炭素数 2〜 1 4 までの脂肪族または脂環式ジカルボン酸、 またはイ ソフタル酸 、 ( 3 ) 共重合比率 3〜 1 0重量%のポリ アルキレングリ コールか ら選ばれた少なく と も 1種であり、 該繊維の損失正接のピーク温度 が 8 5〜 1 0 2 °Cであって、 かつ該繊維の弾性率 Q ( g/ d ) と弾 性回復率 R (%) との関係が下記式 ( 1 ) を満足することを特徴と するポリエステル繊維及びそれを用いた布帛である。 A second aspect of the present invention is a fiber comprising a polyester obtained by copolymerizing a poly (methylene terephthalate) with a third component, wherein the third component is (1) a copolymerization ratio of 1.5 to 12% by weight of carbon. Aliphatic or alicyclic glycol having a number of 4 to 12; (2) a carbon number of 2 to 9 having a copolymerization ratio of 3 to 9% by weight; At least one selected from aliphatic or alicyclic dicarboxylic acids up to 14 or isophthalic acid; and (3) a polyalkylene glycol having a copolymerization ratio of 3 to 10% by weight. The loss tangent peak temperature of the fiber is 85 to 102 ° C, and the relationship between the elastic modulus Q (g / d) and the elastic recovery rate R (%) of the fiber is expressed by the following equation (1). A polyester fiber characterized by satisfying and a fabric using the same.
0. 1 8 ≤ Q/R≤ 0. 4 5 · · · 式 ( 1 ) 本発明のポ リ エステル繊維を構成するポ リ マーは、 ポリ ト リ メ チ レ ンテレフタ レー トに特定量の第 3成分を共重合したポリエステル である。 こ こでポ リ ト リ メ チ レ ンテ レフ タ レー ト とは、 テ レフ タル 酸を酸成分と し 卜 リ メ チレングリ コール ( 1, 3 —プロパンジォー ルと もいう) をジオール成分と したポリ エステルである。  0.18 ≤ Q / R ≤ 0.45 ··· Formula (1) The polymer constituting the polyester fiber of the present invention has a specific amount of the third polymer in the polymethylene terephthalate. It is a polyester obtained by copolymerizing the components. Here, polymethylethylene terephthalate is a polyester containing terephthalic acid as an acid component and trimethylene glycol (also referred to as 1,3-propanediol) as a diol component. It is.
共重合する第 3成分と しては、 特定量のエステル形成性スルホ ン 酸塩化合物を用いると常圧力チオン染料可染性繊維を得るこ とがで きる。 また、 ( 1 ) 炭素数が 4〜 1 2 までの脂肪族または脂環式グ リ コール、 ( 2 ) 炭素数 2〜 1 4 までの脂肪族または脂環式ジ力ル ボン酸、 またはイ ソフタル酸、 ( 3 ) ポ リ アルキレングリ コールか ら選ばれた少なく と も 1種を特定量共重合すると、 常圧分散染料可 染性繊維を得ることができる。  When a specific amount of an ester-forming sulfonate compound is used as the third component to be copolymerized, a normal pressure thione dye-dyable fiber can be obtained. Also, (1) aliphatic or alicyclic glycol having 4 to 12 carbon atoms, (2) aliphatic or alicyclic dicarboxylic acid having 2 to 14 carbon atoms, or isophthalic acid When a specific amount of at least one selected from an acid and (3) polyalkylene glycol is copolymerized, a normal pressure disperse dye-dyable fiber can be obtained.
本発明で用いるエステル形成性スルホ ン酸塩化合物と しては、 下 記一般式で表されるスルホ ン酸塩基含有化合物が例示される。  Examples of the ester-forming sulfonate compound used in the present invention include a sulfonate group-containing compound represented by the following general formula.
R , -
Figure imgf000007_0001
R,-
Figure imgf000007_0001
こ こで、 R , 、 R 2 は、 一 C O O H、 一 C〇 O R、 一 O C O R、 — ( C H 2 ) n O H、 一 (C H 2 ) n 〔0 (C H 2 ) mP O Hま たは、 — C O 〔0 ( C H 2 ) „ 〕 m 0 H、 (ただし、 Rは炭素数 1Where R,, R 2 are one COOH, one C〇OR, one OCOR, — (CH 2 ) n OH, one (CH 2 ) n [0 (CH 2 ) m ] P OH or — CO [0 (CH 2) „] m 0 H, where R is 1 carbon
〜 1 0のアルキル基、 n、 m、 pは 1以上の整数) であり、 R , 、 R は同一の基でも、 相異なる基でもよい。 Mは金属、 N H 4 、 ま たは式一 P R 3 R R R で表されるホスホニゥム基 (式中 R 3 、 R 4 、 R 5 、 R 6 は、 水素原子、 アルキル基、 ァ リ ール基および ヒ ドロキシアルキル基から選ばれた同一または異なる基を示し、 好 ま しく は炭素数 1 〜 1 0のアルキル基である。 ) である。 Mが金属 である場合には、 好ま しく はアルカ リ金属、 アルカ リ土類金属であ る。 Zは 3価の有機基、 好ま しく は 3価の芳香族基である。 An alkyl group of ~ 10, n, m, and p are integers of 1 or more), R,, R may be the same group or different groups. M is a metal, NH 4 , or a phosphonium group represented by the formula PR 3 RRR (wherein R 3 , R 4 , R 5 , and R 6 are a hydrogen atom, an alkyl group, an aryl group, and an arsenic group) And represents the same or different group selected from the droxyalkyl groups, and is preferably an alkyl group having 1 to 10 carbon atoms. When M is a metal, it is preferably an alkali metal or an alkaline earth metal. Z is a trivalent organic group, preferably a trivalent aromatic group.
このよ う なエステル形成性スルホ ン酸塩化合物を共重合すること で、 常圧下でカチオン染料で濃色にまで染色できる繊維が得られる 。 また、 ポリ ト リ メ チレンテレフタ レー トホモポリ マー繊維に比べ て、 分散染料に対して易染性となる。 なお、 本発明において、 常圧 で染色できるという こ とは、 9 5 °Cで繊維への吸尽率がおおよそ 7 0 %以上達成されることを意味する。  By copolymerizing such an ester-forming sulfonate compound, a fiber that can be dyed to a deep color with a cationic dye under normal pressure is obtained. Also, compared to polytrimethylene terephthalate homopolymer fiber, it becomes easier to dye the disperse dye. In the present invention, the fact that dyeing can be performed at normal pressure means that the exhaustion rate to fibers at 95 ° C. is approximately 70% or more.
また、 このカチオン可染糸は適度なアル力 リ減量特性を示すので 、 製編織後、 アルカ リ減量をすることで一層ソ フ トな風合いを得る こと も可能である。 こ こでアルカ リ減量とは、 布帛をアルカ リ水溶 液中で加熱し、 繊維表面のポ リマーの一部を溶解させるという こと である。 適度のアルカ リ減量は、 アルカ リ減量の量や速度が工業的 に制御できるという こ とである。 これは驚く べき大きな特徴であり 、 例えばカチオン可染ポ リ エチレンテレフタ レー ト繊維ではアル力 リ減量速度が速すぎて制御が工業的に実質不可能となるが、 本発明 のポリエステル繊維ではアル力 リ減量速度が、 カチォン可染でない 通常のポリエチレンテレフタ レー ト繊維並であり、 公知の方法を用 いてアル力 リ減量を施すことが可能となる。 こう してアル力 リ減量 された本発明のポ リ エステル繊維は、 一層ソフ トになる他、 繊維表 面に数 // m程度の ミ ク ロな孔が存在し、 そのために ドライ感もあり 一層鮮明に染色できるといった特徴を出すことができる。 好ま しいエステル形成性スルホ ン酸塩化合物の具体例と しては、 5 _ナ ト リ ウムスルホイ ソフタル酸、 5 —カ リ ウムスルホイ ソフタ ル酸、 4 一ナ ト リ ウムスルホ一 2, 6 —ナフ夕 レンジカルボン酸、 2 —ナ ト リ ウムスルホー 4 ーヒ ドロキシ安息香酸、 3, 5 —ジカル ボン酸ベンゼンスルホン酸テ トラメ チルホスホニゥム塩、 3, 5 - ジカルボン酸ベンゼンスルホン酸テ トラブチルホスホニゥム塩、 3 , 5 ージカルボン酸ベンゼンスルホン酸 ト リ ブチルメ チルホスホニ ゥム塩、 2, 6 —ジカルボン酸ナフタ レ ン一 4 —スルホン酸テ 卜ラ ブチルホスホニゥム塩、 2, 6 —ジカルボン酸ナフタ レン一 4 —ス ノレホン酸テ トラメ チルホスホニゥム塩、 3 , 5 — ジカルボン酸ベン ゼンスルホン酸ア ンモニゥム塩等またはこれらのメ チル、 ジメ チル エステル等のエステル誘導体が挙げられる。 特にこれらのメ チル、 ジメ チルエステル等のエステル誘導体はポ リ マーの白度、 重合速度 が優れる点で好ま し く用いられる形態である。 In addition, since the cationic dyeable yarn exhibits an appropriate amount of weight loss characteristics, it is possible to obtain a softer texture by reducing the amount of alkali after weaving. Here, the alkali weight reduction means that the fabric is heated in an aqueous alkali solution to dissolve a part of the polymer on the fiber surface. Moderate alkaline weight loss means that the amount and rate of alkaline weight loss can be controlled industrially. This is a surprisingly great feature. For example, in the case of cationic dyeable poly (ethylene terephthalate) fiber, the weight loss rate is too fast to control industrially, and in the polyester fiber of the present invention, the control is practically impossible. The weight loss rate is the same as that of ordinary polyethylene terephthalate fiber that is not dyeable by Kachion, and it is possible to perform the weight loss using a known method. In this way, the polyester fiber of the present invention, whose weight has been reduced, becomes more soft and has micropores of several // m on the surface of the fiber, so that it has a dry feeling. It is possible to provide a feature that dyeing can be performed more clearly. Specific examples of preferred ester-forming sulfonate compounds include 5_ sodium sulfeusophthalic acid, 5_ calcium sulfoisophtalic acid, 41 sodium sulfo-1,2, 6_ naphtha range Carboxylic acid, 2-sodium sulfo 4-hydroxybenzoic acid, 3,5-dicarboxylate benzenesulfonate tetramethyl phosphonium salt, 3,5-dicarboxylic acid benzene sulfonate tetrabutyl phosphonium salt, 3, 5 Tricarboxylic acid benzenesulfonic acid tributylmethylphosphonium salt, 2,6-dicarboxylic acid naphthalene 1-4,2-sulfonic acid tetrabutylphosphonium salt, 2,6-dicarboxylic acid naphthalene-1 4—snolefone Tetramethylphosphonium acid salt, 3,5—dicarboxylic acid benzenesulfonic acid ammonium salt, etc. Le, include ester derivatives such as dimethyl chill ester. In particular, these ester derivatives such as methyl and dimethyl esters are preferably used in terms of excellent polymer whiteness and polymerization rate.
該エステル形成性スルホ ン酸塩化合物のポ リ ト リ メ チ レンテ レフ タ レ一 トに対する共重合比率は、 ポ リ エステルを構成する全酸成分 の総モル数に対して 0 . 5 ~ 5 モル%であるこ とが必要である。 ェ ステル形成性スルホン酸塩化合物の共重合比率が 0 . 5 モル%未満 になると常圧でカチオン染料で染色できな く なる。 またエステル形 成性スルホン酸塩化合物の割合が 5 モル%を超えるとポ リマ一の耐 熱性が悪化し、 重合性、 紡糸性が非常に悪化する他、 繊維が黄変し やすく なる。 カチオン染料に対する染色性を十分維持しながら、 重 合性、 紡糸性を兼ね備える観点から、 好ま しく は 1〜 3 モル%、 特 に好ま しく は、 1 . 2〜 2 . 5 モル%である。  The copolymerization ratio of the ester-forming sulfonate compound to the poly (methylene terephthalate) is 0.5 to 5 mol based on the total number of mols of all the acid components constituting the polyester. It needs to be%. When the copolymerization ratio of the ester-forming sulfonate compound is less than 0.5 mol%, it becomes impossible to dye with a cationic dye at normal pressure. When the proportion of the ester-forming sulfonate compound exceeds 5 mol%, the heat resistance of the polymer deteriorates, the polymerizability and the spinnability deteriorate, and the fiber is liable to yellow. From the viewpoint of having both polymerizability and spinnability while maintaining sufficient dyeability for cationic dyes, it is preferably 1 to 3 mol%, particularly preferably 1.2 to 2.5 mol%.
本発明で用いる炭素数が 4 ~ 1 2 までの脂肪族グリ コール、 脂環 式グリ コールの具体例と しては、 例えば 1, 2 —ブタ ンジオール、 1 , 3 —ブタ ンジオール、 1 , 4 一ブタ ンジオール、 ネオペンチル グリ コール、 l, 5 —ペンタメ チ レ ングリ コール、 1, 6 —へキサ メ チ レ ングリ コール、 ヘプタメ チ レ ングリ コール、 ォク タ メ チ レ ン グリ コール、 デカメ チレングリ コール、 ドデカメ チレングリ コール 、 1, 4 ー シク ロへキサンジオール、 1, 3 — シク ロへキサンジォ ール、 1, 2 — シク ロへキサンジオール、 1, 4 ー シク ロへキサン ジメ タ ノ ール、 1 , 3 — シク ロへキサン ジメ タ ノ ール、 1, 2 — シ ク ロへキサンジメ タノ ール等が挙げられる。 これらのグリ コールを ポ リ ト リ メ チレンテレフタ レー トに共重合することで、 常圧で分散 染料を用いて濃色まで染色可能となる。 これらの脂肪族または脂環 式グリ コールのうち、 ポ リ マーの白度、 熱分解性、 耐光性が優れて いる点を考慮すると 1, 4 —ブタ ンジオール、 1, 6 —へキサメ チ レ ングリ コーノレ、 ネオペンチルグ リ コール、 シ ク ロへキサンジメ タ ノ一ルが好ま しい。 更に重合速度、 ドライ ク リ ーニ ング堅牢性が優 れている点を考慮すると、 1, 4 —ブタ ンジオールが特に好ま しい これらのグリ コールのポ リ ト リ メ チレンテレフタ レー 卜に対する 共重合比率は、 ポ リ マー重量に対して 1 . 5〜 1 2重量%であるこ とが必要である。 共重合比率が 1 . 5重量%未満だと常圧で分散染 料に濃色まで染色することができな く なる。 グリ コールの共重合比 率は、 弾性率、 弾性回復率、 融点、 ガラ ス転移点、 染色性と大きな 相関がある。 共重合比率が 1 2重量%を越えると、 融点やガラ ス転 移点が大き く低下し、 熱セッ ト性に代表される後加工やアイ ロ ンが け等に代表される通常の使用の段階で風合いが硬く 変化してしま つ たり、 染色後の布帛の ドライ ク リ ーニ ング堅牢性が低下してしまう 欠点が生じる。 好ま し く は 2〜 1 0重量%であり、 更に好ま しく は 、 3〜 7重量%である。 Specific examples of the aliphatic and alicyclic glycols having 4 to 12 carbon atoms used in the present invention include, for example, 1,2-butanediol, 1,3-butanediol, and 1,4-butanediol. Butanediol, neopentyl Glycol, l, 5—pentamethylenglycol, 1, 6—hexamethylenglycol, heptamethylenglycol, octamethylenglycol, decamethylenglycol, dodecamethylenglycol, 1 1,4-cyclohexanediol, 1,3—cyclohexanediol, 1,2—cyclohexanediol, 1,4-cyclohexanedimethanol, 1,3—cyclo Hexane dimethyl ethanol, 1,2-cyclohexane dimethyl ethanol, and the like. By copolymerizing these glycols with polymethylene terephthalate, it becomes possible to dye to a deep color with a disperse dye at normal pressure. Of these aliphatic or alicyclic glycols, 1,4-butanediol and 1,6-hexamethylenglycol are considered in view of the polymer's excellent whiteness, thermal decomposition, and light resistance. Cornole, neopentyl glycol, and cyclohexanedimethanol are preferred. Furthermore, taking into account the fact that the polymerization rate and the dry cleaning fastness are excellent, the copolymerization ratio of these glycols to polymethylene terephthalate, in which 1,4-butanediol is particularly preferred, is as follows. It should be 1.5 to 12% by weight based on the weight of the polymer. If the copolymerization ratio is less than 1.5% by weight, it becomes impossible to dye a disperse dye to a deep color at normal pressure. The copolymerization ratio of glycol has a strong correlation with the elastic modulus, elastic recovery, melting point, glass transition point, and dyeability. If the copolymerization ratio exceeds 12% by weight, the melting point and the glass transition point are greatly reduced, and the post-processing represented by heat setting and the usual use represented by ironing are performed. There are drawbacks in that the texture changes hardly in stages, and the dry cleaning fastness of the dyed fabric is reduced. Preferably it is 2 to 10% by weight, more preferably 3 to 7% by weight.
本発明で用いる炭素数が 2〜 1 4 までの脂肪族または脂環式ジカ ルボン酸の具体例と しては、 例えば、 シユウ酸、 マロ ン酸、 コハク 酸、 グルタル酸、 アジピン酸、 ヘプタ ン二酸、 オク タ ン二酸、 セバ シン酸、 ドデカ ン二酸、 2 —メ チルグルタル酸、 2 —メ チルアジピ ン酸、 フマル酸、 マレイ ン酸、 ィ タコ ン酸、 1 , 4 —シク ロへキサ ンジカルボン酸、 1 , 3 —シク ロへキサンジカルボン酸、 1 , 2 — シク 口へキサンジカルボン酸等が挙げられる。 これらのジカルボン 酸をポリ ト リ メ チレンテレフタ レー トに共重合することで、 常圧で 分散染料を用いて濃色まで染色可能となる。 The aliphatic or alicyclic dica having 2 to 14 carbon atoms used in the present invention. Specific examples of rubonic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, heptane diacid, octane diacid, sebacic acid, dodecane diacid, and 2 — Methylglutaric acid, 2-Methyladipic acid, fumaric acid, maleic acid, itaconic acid, 1,4-cyclohexanedicarboxylic acid, 1,3—cyclohexanedicarboxylic acid, 1,2— Hexanedicarboxylic acid and the like. By copolymerizing these dicarboxylic acids with polytrimethylene terephthalate, it becomes possible to dye to a deep color using a disperse dye at normal pressure.
これらの脂肪族または脂環式ジカルボン酸、 またはィ ソフタル酸 のうち、 共重合する際の重合速度、 耐光性が優れている点でセバシ ン酸、 ドデカ ン二酸、 1 , 4 ーシク ロへキサンジカルボン酸、 イ ソ フタル酸が好ま しい。 更に、 ポリ マーの白度が優れている点を考慮 すると、 イ ソフタル酸が特に好ま しい。  Among these aliphatic or alicyclic dicarboxylic acids or isophthalic acids, sebacic acid, dodecane diacid, and 1,4-cyclohexane in terms of polymerization rate and light resistance during copolymerization are excellent. Dicarboxylic acid and isophthalic acid are preferred. Furthermore, isophthalic acid is particularly preferred in view of the excellent whiteness of the polymer.
これらの脂肪族または脂環式ジカルボン酸、 またはイ ソフタル酸 のポ リ ト リ メ チレンテレフタ レー トに対する共重合比率は、 ポ リマ 一重量に対し 3〜 9重量%であるこ とが必要である。 共重合比率が 3重量%未満では、 常圧で濃色に染色することができなく なる。 共 重合比率が 9重量%より多い場合、 融点やガラス転移点が下がりす ぎるために、 熱セッ ト性に代表される後加工やアイ ロ ンがけ等に代 表される通常の使用の段階で、 風合いが堅く 変化してしまったり、 染色後の布帛の ドライ ク リ ーニング堅牢性が低下してしま う欠点が 生じる。 好ま しく は 3〜 8重量%、 更に好ま しく は 3〜 7重量%で ある。  The copolymerization ratio of the aliphatic or alicyclic dicarboxylic acid or isophthalic acid to polymethylene terephthalate needs to be 3 to 9% by weight based on one weight of the polymer. If the copolymerization ratio is less than 3% by weight, it becomes impossible to dye a deep color at normal pressure. When the copolymerization ratio is more than 9% by weight, the melting point and the glass transition point are too low, so that the post-processing typified by heat setting property and the normal use stage represented by ironing are required. However, there are drawbacks in that the texture is hardly changed and the dry cleaning fastness of the dyed fabric is reduced. It is preferably from 3 to 8% by weight, more preferably from 3 to 7% by weight.
本発明では、 共重合成分と してポ リ アルキレングリ コールを用い ることもできる。 第 3成分と してグリ コールや酸を共重合した場合 、 どう しても融点が低下してしまい、 紡糸性が悪く なつたり、 得ら れた繊維を後加工する際に熱、 熱源への融着ゃ著しい収縮等がみら れ、 取り扱い性が悪く なつたりする場合がある。 しかし、 ポリ アル キレングリ コールを第 3成分と して用いた場合、 融点の低下がほと んど起こ らず、 このような問題が発生しない。 これは分子量が大き いためにポリ マー中でポリアルキレングリ コ一ル成分が局在化して いるためだと考えられる。 用いるポ リ アルキレンダリ コールと して は、 ポリエチレングリ コール、 ポリ ト リ メ チレングリ コール、 ポリ テ トラメ チレングリ コ一ルぁるいはこれらの共重合体のいずれでも よいが、 熱安定性を考えるとポリエチレングリ コールが最も好ま し い。 In the present invention, polyalkylene glycol may be used as the copolymerization component. When glycol or acid is copolymerized as the third component, the melting point is inevitably lowered, and the spinnability is deteriorated. Welding ゃ noticeable shrinkage, etc. This may cause poor handling. However, when polyalkylene glycol is used as the third component, the melting point hardly decreases and such a problem does not occur. This is thought to be because the polyalkylene glycol component is localized in the polymer due to its high molecular weight. The polyalkylene glycol used may be polyethylene glycol, polymethylene glycol, polytetramethylene glycol or a copolymer thereof, but polyethylene is preferred in view of thermal stability. Glycol is most preferred.
また、 ポ リ アルキ レ ングリ コールの平均分子量は 3 0 0〜 2 0 0 0 0が好ま しい。 平均分子量が 3 0 0未満の場合には、 かなり低分 子量のポリ アルキレングリ コ一ルが含まれているために、 高真空下 での重合時に減圧留去され、 得られたポ リマーに含まれるポリ アル キレングリ コール量が一定にならない。 従って、 原糸の強伸度物性 、 染色性、 熱特性等が均一にならず、 製品と しての特性がばらつい たものとなってしま う。  The average molecular weight of polyalkylene glycol is preferably from 300 to 20000. When the average molecular weight is less than 300, since a very low molecular weight polyalkylene glycol is contained, it is distilled off under reduced pressure during polymerization under high vacuum, and the resulting polymer is obtained. The amount of polyalkylene glycol contained is not constant. Therefore, the properties of the raw yarn such as high elongation properties, dyeing properties and thermal properties are not uniform, and the properties of the product vary.
一方平均分子量が 2 0 0 0 0 を超える場合には、 ポ リマー内に共 重合されない高分子量のポリ アルキレングリ コールが多く なるため に、 染色性、 ドラ イ ク リ ーニング堅牢性、 耐光堅牢性の低下が起こ る。 ポ リ アルキ レ ングリ コールの平均分子量は 4 0 0〜 1 0 0 0 0 、 より好ま しく は 5 0 0〜 5 0 0 0 がよい。  On the other hand, if the average molecular weight is more than 20000, the amount of high-molecular-weight polyalkylene glycol not copolymerized in the polymer increases, so that the dyeing properties, dry cleaning fastness, and light fastness are increased. Degradation occurs. The average molecular weight of polyalkylene glycol is preferably from 400 to 100,000, more preferably from 500 to 500,000.
ポ リ アルキレングリ コールのポ リ ト リ メ チレンテレフタ レ一 卜に 対する共重合比率はポ リマー重量に対して 3〜 1 0重量%であるこ とが必要である。 ポ リ アルキレングリ コールの割合が 3重量%未満 になると常圧で分散染料に濃色まで染色することができなく なる。 また、 ポ リ アルキ レ ングリ コールの割合が 1 0重量%を超えるとポ リ マーの耐熱性が低下し、 重合性、 紡糸性が非常に悪化する。 また ガラス転移点が低く なり過ぎ、 熱セッ ト性に代表される後加工ゃァ ィ ロ ンがけ等に代表される通常の使用の段階で風合いが硬く変化し てしまったり、 染色後の布帛の ドライ ク リ ーニング堅牢性や耐光堅 牢性が大幅に低下してしま う欠点が生じる。 好ま しく は 4〜 8重量 %である。 The copolymerization ratio of the polyalkylene glycol to the polymethylene terephthalate must be 3 to 10% by weight based on the weight of the polymer. When the proportion of the polyalkylene glycol is less than 3% by weight, it becomes impossible to dye the disperse dye to a deep color at normal pressure. On the other hand, if the proportion of polyalkylene glycol exceeds 10% by weight, the heat resistance of the polymer decreases, and the polymerizability and spinnability deteriorate significantly. Also The glass transition point is too low, and the texture changes to hard during normal use, such as post-processing, such as heat setting, and the drying of the fabric after dyeing. A disadvantage arises in that cleaning fastness and light fastness are greatly reduced. It is preferably 4 to 8% by weight.
本発明のポリエステル繊維を構成するポ リ マーには、 本発明の目 的を阻害しない範囲で第 4成分を共重合、 ブレ ン ドすること も可能 である。 このような第 4成分を用いる場合であっても、 既に述べた 共重合比率の範囲を守ることが本発明の目的を阻害しないために必 要となる。 これらの組み合わせのうち、 特にエステル形成性スルホ ン酸塩化合物と ( 1 ) 炭素数が 4〜 1 2 までの脂肪族または脂環式 グリ コール、 ( 2 ) 炭素数 2〜 1 4 までの脂肪族または脂環式ジカ ルボン酸、 またはイ ソフタル酸、 ( 3 ) ポ リ アルキレングリ コール から選ばれた少な く と も 1 種を共重合すると、 常圧でカチオン染料 、 分散染料の両方に染色可能なポ リ エステル繊維を得ることができ る。 このような共重合比率と しては、 好ま し く はエステル形成性ス ルホ ン酸塩化合物が し 2〜 2 . 5 モル%、 上記 ( 1 ) 〜 ( 3 ) か ら選ばれた少なく と も 1 種が 3〜 7 重量%であることが好ま しい。 更に必要に応じて、 本発明のポ リ エステル繊維に各種の添加剤、 例えば、 艷消し剤、 熱安定剤、 消泡剤、 整色剤、 難燃剤、 酸化防止 剤、 紫外線吸収剤、 赤外線吸収剤、 結晶核剤、 蛍光增白剤などを共 重合、 または混合してもよい。  The polymer constituting the polyester fiber of the present invention can be copolymerized and blended with the fourth component within a range not to impair the purpose of the present invention. Even when such a fourth component is used, it is necessary to keep the copolymerization ratio in the range described above so as not to hinder the object of the present invention. Among these combinations, in particular, ester-forming sulfonate compounds and (1) aliphatic or cycloaliphatic glycols having 4 to 12 carbon atoms, and (2) aliphatics having 2 to 14 carbon atoms. Alternatively, copolymerization of at least one selected from alicyclic dicarboxylic acid, isophthalic acid, and (3) polyalkylene glycol makes it possible to dye both cationic dyes and disperse dyes at normal pressure. Polyester fibers can be obtained. The copolymerization ratio is preferably from 2 to 2.5 mol% of the ester-forming sulfonate compound, and at least one selected from the above (1) to (3). It is preferred that one species be 3 to 7% by weight. Further, if necessary, various additives may be added to the polyester fiber of the present invention, for example, an anti-glazing agent, a heat stabilizer, an anti-foaming agent, a coloring agent, a flame retardant, an antioxidant, an ultraviolet absorber, and an infrared absorber. Agents, crystal nucleating agents, fluorescent whitening agents and the like may be copolymerized or mixed.
本発明に用いるポリ エステルは分子量を極限粘度によって規定す るこ とができ、 極限粘度 [ ?7 ] 力く 0 . 3 〜 2 . 0が好ま し く 、 更 に好ま しく は 0 . 3 5 ~ 1 . 5 、 特に好ま しく は 0 . 4 〜 し 2で 、 強度、 紡糸性に優れたポ リ エステル繊維を得ることができる。 極 限粘度が 0 . 3未満の場合は、 ポリ マーの重合度が低すぎるため、 紡糸性が不安定となる。 また、 得られる繊維の強度も低く満足でき るものではない。 逆に極限粘度が 2 . 0 を越える場合は、 溶融粘度 が高すぎるために、 ギアポンプでの計量がスムーズに行われなく な り、 吐出不良等で紡糸性は低下する。 The molecular weight of the polyester used in the present invention can be defined by the intrinsic viscosity. The intrinsic viscosity [? 7] is preferably 0.3 to 2.0, more preferably 0.35 to 2.0. With a value of 1.5, particularly preferably of 0.4 to 2, a polyester fiber having excellent strength and spinnability can be obtained. If the intrinsic viscosity is less than 0.3, the polymerization degree of the polymer is too low. The spinnability becomes unstable. Also, the strength of the obtained fiber is low and not satisfactory. On the other hand, when the intrinsic viscosity exceeds 2.0, the melt viscosity is too high, so that the metering by the gear pump cannot be performed smoothly, and the spinnability is reduced due to poor discharge.
本発明のポ リエステル繊維を構成するポ リマーの製造方法につい ては基本的には公知の方法を用いて重合することができる。 すなわ ち、 通常のポ リ ト リ メ チレンテレフタ レー 卜の製造工程において、 テレフタル酸またはテレフタル酸ジメ チル等のテレフタル酸低級ェ ステルと ト リ メ チレングリ コールとを、 エステル交換反応、 ついで 重縮合反応する際の任意の段階で、 第 3成分を添加することができ る。 この場合、 エステル形成性スルホン酸塩化合物と脂肪族または 脂環式ジカルボン酸、 またはィ ソフタル酸については、 ト リ メ チレ ングリ コールとの反応を促進させる必要があるので、 エステル交換 反応前に添加することが好ま しく 、 ポ リ アルキ レ ングリ コールにつ いてはポリ マーの黄変、 減圧時の突沸を防ぐためにエステル交換反 応終了時に添加するこ とが好ま しい。 エステル交換触媒と しては、 金属酢酸塩、 チタ ンアルコキサイ ド等を 0 . 0 1 〜 0 . 1 重量%用 いるこ とが反応速度、 ポリ マーの白度、 熱安定性を兼ね備えること から好ま しい。 反応温度と しては 2 0 0〜 2 4 0 °C程度である。 重 縮合触媒と しては、 ア ンチモ ン酸化物、 チタ ンアルコキシ ド等を用 いることができ、 特にチタ ンアルコキシ ドを用いる場合はエステル 交換触媒と兼用 してもよい。 触媒量と しては、 反応速度、 ポ リ マー の白度の観点から用いる全力ルボン酸量に対して 0 . 0 1 〜 0 . 1 重量%である。 反応温度と しては、 2 4 0 〜 2 8 0。Cであり、 真空 度と しては 0 . 0 0 1 〜 1 t 0 r rである。 また、 上述した各種の 添加剤は重合過程の任意の段階で添加してよいが、 反応の阻害を最 小限に抑えるために、 エステル交換反応終了後の任意の段階で添加 することが好ま しい。 Regarding the method for producing the polymer constituting the polyester fiber of the present invention, polymerization can be basically carried out by using a known method. That is, in the ordinary production process of polymethylene terephthalate, a transesterification reaction followed by a polycondensation reaction of terephthalic acid or a lower ester of terephthalic acid such as dimethyl terephthalate with trimethylene glycol is carried out. The third component can be added at any stage during the process. In this case, the ester-forming sulfonate compound and the aliphatic or alicyclic dicarboxylic acid or isophthalic acid need to be added before the transesterification reaction because the reaction with trimethylene glycol must be promoted. It is preferable to add polyalkylene glycol at the end of the transesterification reaction in order to prevent yellowing of the polymer and bumping at reduced pressure. As the transesterification catalyst, it is preferable to use metal acetate, titanium alkoxide, etc. in an amount of 0.01 to 0.1% by weight, because it has the reaction speed, the whiteness of the polymer, and the thermal stability. . The reaction temperature is about 200 to 240 ° C. As the polycondensation catalyst, antimony oxide, titan alkoxide, or the like can be used. In particular, when titan alkoxide is used, it may be used also as a transesterification catalyst. The amount of the catalyst is 0.01 to 0.1% by weight based on the total amount of rubonic acid used from the viewpoint of the reaction rate and the whiteness of the polymer. The reaction temperature is 240 to 280. C, and the degree of vacuum is 0.001 to 1 t0 rr. The above-mentioned various additives may be added at any stage of the polymerization process.However, in order to minimize the inhibition of the reaction, they are added at any stage after the transesterification reaction. I prefer to do that.
また、 本発明のポリエステル繊維を構成するポリマ一は上記の方 法によって得たポ リマーを窒素、 アルゴン等の不活性気体中、 ある いは減圧下で固相重合して分子量を高めてもよい。 このような方法 を適用すると、 ポ リマーの黄変を抑制できたり糸切れや毛羽の原因 となるオリ ゴマー量を低減できると共に、 強度を高めることができ る。 固相重合の方法は、 例えばポリエチレンテレフ夕 レー トに用い られる公知の方法をそのまま適用できるが、 固相重合前のプレポリ マーの極限粘度と しては、 0 . 4〜 0 . 8が白度を高める点から好 ま し く、 固相重合温度と しては 1 7 0〜 2 3 0 °Cが好ま し く 、 時間 は所望する粘度によ って異なるが、 通常 3 〜 3 6 時間程度である。 また、 本発明のポ リ エステル繊維を構成するポリ マーは、 目的と する共重合組成になるような 2種類のポリ マーをプレン ドして製造 してもよい。 例えば、 1 , 4 一ブタ ンジオールを 5重量%共重合し たポ リ ト リ メ チレ ンテレフ 夕 レー ト は、 ポ リ ト リ メ チ レ ンテ レフ タ レー トを 9 5重量%、 ポリブチ レ ンテ レフ タ レー トを 5重量%混ぜ て製造してもよい。 ここで混ぜるとは重合釜で混ぜて十分エステル 交換させてから払い出してもよ く 、 より簡便にはチップブレン ドし た状態で押出機の中で反応させてもよい。 このような方法を取って も、 エステル交換速度は十分速いために均質なポ リ マーを得ること ができる。  Further, the polymer constituting the polyester fiber of the present invention may be obtained by increasing the molecular weight by subjecting the polymer obtained by the above method to solid phase polymerization in an inert gas such as nitrogen or argon or under reduced pressure. . By applying such a method, it is possible to suppress the yellowing of the polymer, reduce the amount of the oligomer that causes thread breakage and fluff, and increase the strength. For the method of solid-phase polymerization, for example, a known method used for polyethylene terephthalate can be applied as it is, but the intrinsic viscosity of the prepolymer before solid-phase polymerization is 0.4 to 0.8 as whiteness. The solid-state polymerization temperature is preferably 170 to 230 ° C, and the time varies depending on the desired viscosity, but is usually about 3 to 36 hours. It is. Further, the polymer constituting the polyester fiber of the present invention may be produced by blending two kinds of polymers so as to obtain a desired copolymer composition. For example, polymethylene terephthalate prepared by copolymerizing 1,4-butanediol at 5% by weight has 95% by weight of polymethylene terephthalate and 95% by weight of polybutylene terephthalate. It may be manufactured by mixing 5% by weight of tallate. Mixing here means that the mixture may be mixed in a polymerization kettle and sufficiently transesterified before being discharged, or more simply, the reaction may be performed in an extruder with the tip blended. Even with such a method, the transesterification rate is sufficiently high, so that a homogeneous polymer can be obtained.
本発明のポリエステル繊維を構成するポリ マーの製造方法につい て重要なことは、 ポ リ マーの白度を維持するこ とである。 ポ リ ト リ メ チレンテレフタ レー トに第 3成分を共重合すると、 一般に重合過 程や紡糸過程で着色しやすく なる。 そこで、 白度を高める方法と し ては、 上記の好ま しい触媒量、 反応温度を適用すると同時に、 熱安 定剤ゃ着色抑制剤を用いることが好ま しい。 熱安定剤と しては、 5 価または 3価のリ ン化合物が好ま しく 、 例えば、 ト リ メ チルホスフ ー ト、 ト リ ェチルホスフ ェー ト、 ト リ フ ヱニルホスフ ヱー ト、 ト リ メ チルホスフ ァ イ ト、 ト リ ェチルホスフ ァ イ ト、 ト リ フ エニルホ スフ アイ ト、 リ ン酸、 亜リ ン酸等が挙げられ、 ポリマーに対し 0 . 0 1 〜 0 . 0 7重量%添加することが好ま しい。 また、 着色抑制剤 と しては、 酢酸コバル ト、 蟻酸コバル ト等が挙げられ、 ポリ マーに 対し 0 . 0 1 〜 0 . 0 7重量%添加することが好ま しい。 また、 極 限粘度を 0 . 9以上に上げる場合は、 プレボリマ一を固相重合する ことが白度を高める上で、 極めて有効な方法である。 こう して得ら れたポリマーは繊維にしても優れた白度を維持するこ とができる。 そのような白度と しては、 後述する b値で一 2〜 1 0 、 好ま し く は — 1 〜 6である。 What is important in the method for producing the polymer constituting the polyester fiber of the present invention is to maintain the whiteness of the polymer. When the third component is copolymerized with polymethylene terephthalate, it generally becomes easier to color during the polymerization process and the spinning process. Therefore, as a method for increasing the whiteness, it is preferable to use the above-mentioned preferable amount of catalyst and reaction temperature, and at the same time, use a heat stabilizer and a coloring inhibitor. As a heat stabilizer, 5 Trivalent or trivalent phosphorus compounds are preferred, e.g., trimethyl phosphate, triethyl phosphate, triphenyl phosphate, trimethyl phosphate, triethyl phosphate And triphenylphosphite, phosphoric acid, phosphorous acid and the like, and it is preferable to add 0.01 to 0.07% by weight to the polymer. Further, examples of the coloring inhibitor include cobalt acetate and cobalt formate, and it is preferable to add 0.01 to 0.07% by weight to the polymer. When the intrinsic viscosity is increased to 0.9 or more, solid phase polymerization of prepolymer is an extremely effective method for increasing whiteness. The polymer thus obtained can maintain excellent whiteness even in fiber. Such whiteness is 12 to 10 in the b value to be described later, preferably —1 to 6.
更に、 エステル形成性スルホン酸塩化合物を用いる時は、 重合過 程において紡ロバッ クに凝集し易い物質が生成しゃすいことと ト リ メ チレングリ コールダイ マー (構造式 : H0CH2CH2CH20CH2CH2CH20H ) が生成し易いことに特に注意をすべきである。 凝集物の量が多い と、 紡口パッ ク内の圧力上昇が大き く なり糸切れを起こ しやすく な つたり、 それを防ぐために紡口パッ クの交換頻度が多く なつて生産 性が低下するといつた問題が生じる。 また、 ト リ メ チ レ ングリ コ一 ルダイマーの量が多いと、 溶融時の熱安定性、 耐光性が低下すると いった問題が生じる。 このような問題を防ぐために、 ある種の添加 剤を重合時の任意の段階で添加することは好ま しい。 このような添 加剤と しては、 酢酸リ チウム、 炭酸リ チウム、 蟻酸リ チウム、 酢酸 ナ ト リ ウム、 炭酸ナ ト リ ウム、 蟻酸ナ ト リ ウム、 水酸化ナ ト リ ウム 、 水酸化カルシウ ム、 水酸化カ リ ウ ム等の塩基性金属塩が挙げられ 、 その添加量と しては、 エステル形成性スルホン酸塩化合物に対し 2 0〜 4 0 0 モル%、 好ま しく は 7 0〜 2 0 0 モル%である。 本発明のポ リ エステル繊維の形態は、 長繊維、 短繊維のいずれで あってもよ く 、 また長繊維の場合、 マルチフ ィ ラメ ン ト、 モノ フ ィ ラメ ン トのいずれであってもよい。 総デニールと しては特に制限は ない力く、 5 〜 1 0 0 0 d、 衣料用に用いる時は特に 5〜 2 0 0 d力く 好ま しい。 単糸デニールも特に制限はないが、 好ま し く は 0 . 0 0 0 1 〜 1 0 dである。 また断面形状についても、 丸型、 三角型、 扁 平型、 星型、 w型等、 特に制限はなく 、 中実であっても中空であつ てもよい。 Furthermore, when an ester-forming sulfonate compound is used, a substance that easily aggregates in the spin-back during the polymerization process is produced and the trimethylene glycol dimer (structural formula: H0CH 2 CH 2 CH 2 0CH 2) Particular attention should be paid to the fact that CH 2 CH 2 0H) is easily formed. If the amount of agglomerates is large, the pressure in the spout pack increases and the thread breaks easily, or if the frequency of replacing the spout pack is increased to prevent this, productivity will decrease. A problem arises. In addition, when the amount of trimethylenglycol dimer is large, there arises a problem that heat stability and light resistance during melting are reduced. To prevent such problems, it is preferable to add certain additives at any stage during the polymerization. Examples of such additives include lithium acetate, lithium carbonate, lithium formate, sodium acetate, sodium carbonate, sodium formate, sodium hydroxide, and sodium hydroxide. Basic metal salts such as calcium and potassium hydroxide may be mentioned, and the amount thereof is 20 to 400 mol%, preferably 70 to 100 mol%, based on the ester-forming sulfonate compound. ~ 200 mol%. The form of the polyester fiber of the present invention may be any of a long fiber and a short fiber, and in the case of a long fiber, any of a multifilament and a monofilament may be used. . There is no particular limitation on the total denier, and it is preferably 5 to 1000 d, and especially 5 to 200 d when used for clothing. The single yarn denier is not particularly limited, but is preferably 0.001 to 10 d. Also, the cross-sectional shape is not particularly limited, such as a round shape, a triangular shape, a flat shape, a star shape, and a w shape, and may be solid or hollow.
本発明のポ リエステル繊維では、 動的粘弾性測定から求められる 損失正接のピーク温度 (以下 「 T m a x」 と略記する) が第 3成分 がエステル形成性スルホ ン酸塩化合物の場合は 8 5 〜 1 1 5 °C、 第 3成分が ( 1 ) 共重合比率 1 . 5〜 〖 2重量%の炭素数が 4〜 1 2 までの脂肪族または脂環式グリ コール、 ( 2 ) 共重合比率 3 〜 9重 量%の炭素数 2 〜 1 4 までの脂肪族または脂環式ジカルボン酸、 ま たはイ ソフ タル酸、 ( 3 ) 共重合比率 3 〜 1 0 重量%のポリ アルキ レ ングリ コールから選ばれた少なく と も 1 種の場合は 8 5〜 1 0 2 でであるこ とが必要である。 これは、 この範囲で本発明が求める力 チオン染料または Z及び分散染料による常圧可染性と高い堅牢性が 確保できるからである。 T m a xは、 非晶部分の分子密度に対応す るので、 この値が小さ く なるほど非晶部分の分子密度が小さ く なる ために、 染料が入るための空隙部分が大き く なり染料が入りやすく なり、 吸尽率が高く なる。 いずれの第 3成分を用いた場合も T m a xが 8 5 °C未満では低い温度で分子が動きやすく なるため、 熱セッ 卜に代表される通常の後加工、 アイ ロ ンがけ等に代表される通常の 使用の段階で収縮が大き く なりすぎ、 風合いが悪化してしま う力、、 あるいは染色を行ったあとの布帛の ドライ ク リ ーニング堅牢性が低 下してしま う。 また、 第 3成分と してエステル形成性スルホン酸塩 化合物を用いた場合、 T m a xが 1 1 5 °Cを越えると、 本発明の目 的である染色性が低下し、 染料が入るための空隙部分が小さ く なり すぎて常圧下でカチオ ン染料に濃色まで染色することができなく な つてしま う。 第 3成分と して ( 1 ) 共重合比率 1 . 5〜 1 2重量% の炭素数が 4 〜 1 2 までの脂肪族または脂環式グリ コール、 ( 2 ) 共重合比率 3〜 9重量%の炭素数 2〜 1 4 までの脂肪族または脂環 式ジカルボン酸またはイ ソフタル酸、 および ( 3 ) 共重合比率 3〜In the polyester fiber of the present invention, the peak temperature of the loss tangent (hereinafter abbreviated as “T max”) obtained from the dynamic viscoelasticity measurement is 85 to 85 when the third component is an ester-forming sulfonate compound. 115 ° C, the third component is (1) a copolymerization ratio of 1.5 to 〖2% by weight of an aliphatic or alicyclic glycol having 4 to 12 carbon atoms, and (2) a copolymerization ratio of 3 From 9 to 9% by weight of an aliphatic or alicyclic dicarboxylic acid having 2 to 14 carbon atoms or isophthalic acid; (3) from a copolymerization ratio of 3 to 10% by weight of a polyalkylene glycol; It must be 85 to 102 for at least one of the selected species. This is because, in this range, normal pressure dyeability and high fastness by the thione dye or Z and the disperse dye required by the present invention can be secured. Since Tmax corresponds to the molecular density of the amorphous part, the smaller this value is, the smaller the molecular density of the amorphous part is. And the exhaustion rate increases. When Tmax is less than 85 ° C, molecules can easily move at low temperatures when any of the third components is used.Therefore, typical post-processing such as heat setting and ironing are typical examples. During normal use, the shrinkage becomes too great and the texture becomes worse, or the dry cleaning fastness of the fabric after dyeing is reduced. The third component is an ester-forming sulfonate. When the compound is used, if the Tmax exceeds 115 ° C, the dyeability, which is the object of the present invention, is reduced, and the space for the dye is too small, so that the cation dye under normal pressure is used. The dye cannot be dyed to a dark color. As the third component, (1) a copolymerization ratio of 1.5 to 12% by weight, an aliphatic or alicyclic glycol having 4 to 12 carbon atoms, and (2) a copolymerization ratio of 3 to 9% by weight. An aliphatic or alicyclic dicarboxylic acid or isophthalic acid having 2 to 14 carbon atoms, and (3) a copolymerization ratio of 3 to
1 0重量%のポ リ アルキレンダリ コールの群から選ばれた少なく と も 1 種を用いた場合、 T m a Xが 1 0 2 °Cを越えると、 染料が入る ための空隙部分が小さ く なりすぎて常圧下で分散染料に濃色まで染 色することができなく なってしま う。 When at least one member selected from the group consisting of 10% by weight of polyalkylene alcohol is used, if Tmax exceeds 102 ° C, the void space for the dye is reduced. This makes it impossible to dye the disperse dye deep under normal pressure.
このよ う に T m a xは、 繊維の構造因子であるために、 同じ共重 合組成を持つポ リ マーであっても、 紡糸温度、 紡糸速度、 延伸倍率 、 熱処理温度、 精練条件、 アルカ リ減量条件、 染色条件等の紡糸条 件、 後加工条件によって異なる値を示すものである。 特に、 熱セッ 卜温度でこの値は大き く 変化するので、 熱セッ 卜温度を変化させて T m a xを上記の範囲にするこ とが重要である。 熱セッ ト温度の設 定の考え方を大まかに示すと、 本発明で規定されたポ リ エステル繊 維の場合には、 熱セッ ト温度が室温から 1 5 0 °C程度までの範囲で は T m a Xは徐々 に高く なる力く、 1 6 0 °C程度を越えるとその後は 大き く 低下する。 これらの変化の割合は、 共重合比率ごとに異なる ので、 熱セッ ト温度と T m a X との関係を調べながら検討する必要 がある。 本発明の場合には、 1 1 5 °Cを越えると染色性改善効果が 小さ く 常圧可染性は示さなく なる。 しかし、 低ければよいというわ けではなく 、 非晶部分が粗になりすぎるために、 染料が入りやすく なると同時に抜けやすく なる欠点を持つ。 すなわち、 堅牢性、 特に 、 ドラ イ ク リ ーニング堅牢性、 湿摩擦堅牢性、 洗濯堅牢性等が低下 する。 また、 熱セッ ト時の硬化による風合いの悪化、 寸法安定性の 低下等の問題が出てく る。 好ま しい T m a xの範囲は第 3成分の種 類によつて若干異なるが、 第 3成分と してエステル形成性スルホ ン 酸塩化合物を用いた場合には、 9 7 〜 1 1 2 °C、 ( 1 ) 共重合比率 1 . 5〜 1 2重量%の炭素数が 4〜 1 2 までの脂肪族または脂環式 のグリ コール、 ( 2 ) 共重合比率 3 〜 9重量%の炭素数 2 〜 1 4 ま での脂肪族または脂環式ジカルボン酸、 ( 3 ) 共重合比率 3 〜 1 0 重量%のアルキレングリ コールから選ばれた少なく と も 1 種を用い た場合は 8 5〜 1 0 2 °C、 特に好ま し く は 9 0〜 9 8 °Cである。 As described above, since Tmax is a structural factor of a fiber, spinning temperature, spinning speed, draw ratio, heat treatment temperature, scouring conditions, and alkali reduction even for polymers having the same copolymer composition. It shows different values depending on spinning conditions such as conditions and dyeing conditions, and post-processing conditions. In particular, since this value greatly changes with the heat set temperature, it is important to change the heat set temperature to keep T max in the above range. The concept of setting the heat set temperature is roughly described. In the case of the polyester fiber specified in the present invention, T is set when the heat set temperature is in the range from room temperature to about 150 ° C. ma X is a gradually increasing force, and after about 160 ° C, it drops significantly thereafter. Since the ratio of these changes differs depending on the copolymerization ratio, it is necessary to study while examining the relationship between the heat setting temperature and Tmax. In the case of the present invention, when the temperature exceeds 115 ° C, the effect of improving the dyeability is small and the normal pressure dyeability is not exhibited. However, it is not only that the amount of the dye should be low, but also that the amorphous portion becomes too coarse, so that the dye can easily enter and simultaneously escape. That is, the fastness, especially the fastness of dry cleaning, the fastness of wet rubbing, the fastness of washing, etc. are reduced. I do. In addition, problems such as deterioration of texture due to curing during heat setting and deterioration of dimensional stability come out. The preferred range of T max varies slightly depending on the type of the third component, but when an ester-forming sulfonate compound is used as the third component, the range of 97 to 112 ° C. (1) an aliphatic or alicyclic glycol having a copolymerization ratio of 1.5 to 12% by weight having 4 to 12 carbon atoms; (2) a carbon number of 2 to 3 having a copolymerization ratio of 3 to 9% by weight. If at least one selected from aliphatic or alicyclic dicarboxylic acids up to 14 and (3) alkylene glycol having a copolymerization ratio of 3 to 10% by weight is used, 85 to 102 is used. ° C, particularly preferably 90-98 ° C.
また、 本発明のポ リ エステル繊維の弾性率 Q ( g / d ) と、 2 0 %伸長後、 1 分間放置後の弾性回復率 R ( % ) が下記式 ( 1 ) を満 足することが必要である。 これは、 式 ( 1 ) を満足するこ とで、 本 発明のポリエステル繊維から得られる布帛は従来のポ リ エステル繊 維から得られる布帛と異なり、 ナイ ロ ン並み以上のソ フ 卜な風合い を有することができるからである。  Further, the elastic modulus Q (g / d) of the polyester fiber of the present invention and the elastic recovery rate R (%) after standing for 20 minutes after elongation of 20% may satisfy the following expression (1). is necessary. This is because, when the formula (1) is satisfied, the fabric obtained from the polyester fiber of the present invention has a soft texture equal to or higher than that of nylon, unlike the fabric obtained from the conventional polyester fiber. It is because it can have.
0. 1 8 ≤ Q / R≤ 0. 4 5 * ' * 式 ( 1 )  0.18 ≤ Q / R ≤ 0.45 * '* Equation (1)
Q/R > 0. 4 5では弾性率が高すぎるために本発明の目的とす るナイ 口 ン並みのソフ トな風合いが得られない力、、 あるいは弾性回 復性が不足し、 一度応力が加わつて変形した繊維は元に戻らなく な つてしまい、 形態安定性の悪い布帛 しか得ることができなかったり する。 また、 QZRく 0. 1 8 となる領域は実質存在しないため、 本発明においては、 0. 1 8 を Q/Rの下限界と している。 式 ( 1 ) の範囲となり う る具体的な弾性率は、 通常 2 5 〜 4 0 g Z d、 弹 性回復率は 7 0〜 9 9 %となる。  When Q / R> 0.45, the elasticity is too high to achieve the soft texture that is the same as that of the knee, which is the object of the present invention. However, the fibers deformed by the addition of the resin do not return to the original state, and only a fabric having poor form stability can be obtained. In addition, since there is substantially no region where QZR is 0.18, 0.18 is set as the lower limit of Q / R in the present invention. The specific elastic modulus that can be in the range of the equation (1) is usually 25 to 40 g Zd, and the elastic recovery is 70 to 99%.
なお、 共重合比率が 1 . 2〜 2. 5 モル%のエステル形成性スル ホ ン酸塩化合物と共重合比率が 3〜 7重量%の ( 1 ) 炭素数が 4〜 1 2 までの脂肪または脂環式グリ コール、 ( 2 ) 炭素数が 4 〜 1 2 までの脂肪族または脂環式ジカルボン酸、 またはイ ソフタル酸、 (The ester-forming sulfonate compound having a copolymerization ratio of 1.2 to 2.5 mol% and a copolymer having a copolymerization ratio of 3 to 7% by weight (1) a fatty acid having a carbon number of 4 to 12 or Alicyclic glycol, (2) having 4 to 12 carbon atoms Aliphatic or cycloaliphatic dicarboxylic acids, or isophthalic acid, up to (
3 ) ポリ アルキレングリ コールから選ばれた少なく と も 1 種を共重 合したポリ 卜 リ メ チレンテレフタ レ一 ト繊維の場合は、 該繊維の T m a xを 8 5〜 1 1 5 °C、 かつ該繊維の弾性率 Q ( g / d ) と弾性 回復率 R ( % ) との関係が式 ( 1 ) を満足することが、 上述した詳 細な T m a X と式 ( 1 ) の根拠と同じ理由から必要となる。 3) In the case of polymethylene terephthalate fiber in which at least one kind selected from polyalkylene glycol is copolymerized, the Tmax of the fiber is 85 to 115 ° C and The reason that the relationship between the elastic modulus Q (g / d) and the elastic recovery rate R (%) of the fiber satisfies the equation (1) is the same as the detailed T max and the basis of the equation (1) described above. Required from.
本発明のポ リ エステル繊維は、 次に示すような方法で得ることが できる。  The polyester fiber of the present invention can be obtained by the following method.
本発明のポ リエステル繊維は、 少なく とも 1 0 0 p p m、 好ま し く は 5 0 p p m以下の水分量まで乾燥させたポリ マ一を押出機等を 用いて溶融させ、 その後溶融したポ リ マーを紡口より押出した後に 巻き取り、 次いで延伸を行う ことにより得ることができる。 こ こで 巻き取った後に延伸を行う とは、 紡糸を行つた後にボビン等に巻き 取り、 この糸を別の装置を用いて延伸する、 いわゆる通常法や、 紡 口より押し出されたポ リ マーが完全に冷却固化した後、 一定の速度 で回転している第一ロールに数回以上巻き付けられることにより、 ロール前後での張力が全く伝わらないようにし、 第一ロールと第一 ロールの次に設置してある第二ロールとの間で延伸を行うような、 紡糸一延伸工程を直結したいわゆる直延法を指す。  The polyester fiber of the present invention is obtained by melting a polymer dried to a water content of at least 100 ppm, and preferably 50 ppm or less using an extruder or the like, and then melting the polymer. It can be obtained by winding after extruding from a spinneret and then stretching. Stretching after winding here means that the yarn is wound on a bobbin or the like after spinning, and this yarn is stretched using another device, a so-called ordinary method, or a polymer extruded from a spinneret. After it has completely cooled and solidified, it is wound several times around the first roll rotating at a constant speed, so that the tension before and after the roll is not transmitted at all, and after the first roll and the first roll, It refers to the so-called straight drawing method in which the spinning and drawing process is directly connected, such as drawing between the installed second roll.
以下、 通常法について例を挙げて説明する。  Hereinafter, the ordinary method will be described with examples.
本発明においてポ リ マーを溶融紡糸する際の紡糸温度は 2 4 0〜 3 2 0 °C、 好ま し く は 2 4 0〜 3 0 0 °C、 更に好ま し く は 2 4 0〜 2 8 0 °Cの範囲が適当である。 紡糸温度が 2 4 0 °C未満では、 温度 が低過ぎて安定した溶融状態になり難く 、 得られた繊維の斑が大き く なり、 また満足し得る強度、 伸度を示さなく なる。 また、 紡糸温 度が 3 2 0 °Cを越えると熱分解が激しく なり、 得られた糸は着色し 、 また満足し得る強度、 伸度を示さなく なる。 糸の巻き取り速度については、 特に制限はないが、 通常 3 5 0 0 m / m i n以下、 好ま しく は 2 5 0 0 m / m i n以下、 更に好ま し く は 2 0 0 0 m / m i n以下で巻き取る。 巻取速度が 3 5 0 0 m / m i nを越えると、 巻き取る前に結晶化が進み過ぎ、 延伸工程で延 伸倍率を上げるこ とができないために分子を配向させるこ とができ ず、 十分な糸強度や弾性回復率を得るこ とができなかったり、 捲き 締ま りが起こ り、 ボビン等が巻取機より抜けなく なってしま ったり する。 延伸時の延伸倍率は 2 〜 4倍、 好ま し く は 2 . 2 〜 3 . 7倍 、 更に好ま し く は、 2 . 5 〜 3 . 5倍がよい。 延伸倍率が 2倍以下 では、 延伸により十分にポ リ マーを配向させる こ とができず、 得ら れた糸の弾性回復率は低いものとなってしまい、 式 ( 1 ) を満足す るこ とができない。 また 4倍以上では糸切れが激し く 、 安定して延 伸を行う ことができない。 In the present invention, the spinning temperature for melt spinning the polymer is 240 to 320 ° C, preferably 240 to 300 ° C, and more preferably 240 to 28 ° C. A range of 0 ° C is appropriate. If the spinning temperature is lower than 240 ° C., the temperature is too low to be in a stable molten state, the resulting fibers have large spots, and no satisfactory strength and elongation are exhibited. On the other hand, when the spinning temperature exceeds 320 ° C., thermal decomposition becomes severe, and the obtained yarn is colored and does not show satisfactory strength and elongation. The winding speed of the yarn is not particularly limited, but is usually 350 m / min or less, preferably 250 m / min or less, and more preferably 200 m / min or less. Take up. If the winding speed exceeds 350 m / min, the crystallization proceeds too much before winding, and the stretching ratio cannot be increased in the stretching process. Insufficient thread strength and elastic recovery rate cannot be obtained, or winding and tightening occur, and the bobbin and the like cannot be pulled out of the winder. The stretching ratio at the time of stretching is 2 to 4 times, preferably 2.2 to 3.7 times, and more preferably 2.5 to 3.5 times. If the draw ratio is not more than 2 times, the polymer cannot be oriented sufficiently by drawing, and the elastic recovery of the obtained yarn will be low, which satisfies the expression (1). I can't do that. If it is 4 times or more, thread breakage is severe and it is not possible to perform stable elongation.
延伸の際の温度は延伸ゾー ンでは 3 0 〜 8 0 QC、 好ま しく は 3 5 〜 7 0 °C、 更に好ま し く は 4 0 〜 6 5 °Cがよい。 延伸ゾー ンの温度 が 3 0 °C未満では延伸の際に糸切れが多発し、 連続して繊維を得る ことができない。 また 8 0 °Cを越える と延伸ロールなどの加熱ゾ一 ン対する繊維の滑り性が悪化するため単糸切れが多発し、 毛羽だら けの糸になってしま う。 また、 ポ リ マーどう しがすり抜けてしま う ため十分な配向がかからなく なり弾性回復率が低下する。 3 0 ~ 8 0 Q C temperature is a stretching zone during stretching, favored properly the 3 5 ~ 7 0 ° C, rather further favored good 4 0 ~ 6 5 ° C. If the temperature of the drawing zone is lower than 30 ° C., yarn breakage frequently occurs during drawing, and continuous fibers cannot be obtained. If the temperature exceeds 80 ° C, slippage of the fiber against a heating zone such as a drawing roll deteriorates, so that single yarn breakage occurs frequently and the yarn becomes full of fluff. In addition, the polymers will slip through each other, resulting in insufficient orientation and lowering the elastic recovery rate.
また、 繊維構造の経時変化を避けるために、 延伸後の熱処理を行 う必要がある。 この熱処理は 9 0 〜 2 0 0 °Cであり、 好ま し く は 1 0 0 〜 1 9 0 °C、 更に好ま しく は 1 1 0 〜 1 8 0 °Cで行うのがよい 。 熱処理温度が 9 0 °C未満では繊維の結晶化が十分に起こ らず、 弾 性回復性が悪化する。 また、 2 0 0 °Cより も高い温度では繊維が熱 処理ゾ一ンで切れてしまい延伸するこ とができない。  In addition, it is necessary to perform a heat treatment after drawing to avoid the temporal change of the fiber structure. This heat treatment is carried out at 90 to 200 ° C, preferably at 100 to 190 ° C, and more preferably at 110 to 180 ° C. If the heat treatment temperature is lower than 90 ° C, the crystallization of the fiber does not sufficiently occur, and the elastic recovery is deteriorated. At a temperature higher than 200 ° C., the fiber is cut by the heat treatment zone and cannot be drawn.
次に、 直延法について例を挙げて説明する。 紡口より押出した溶 融マルチフ ィ ラ メ ン トを紡口直下に設けた 3 0 - 2 0 0 °Cの雰囲気 温度に保持した長さ 2〜 8 0 c mの保温領域を通過させて急激な冷 却を抑制した後、 この溶融マルチフ ィ ラメ ン トを急冷して固体マル チフ ィ ラ メ ン ト に変え、 4 0 ~ 7 0 °Cに加熱した回転速度 3 0 0 〜 3 0 0 O m / m i nの第一ロールに巻き付け、 次に巻き取ることな く 1 2 0 〜 1 6 0 °Cに加熱した第二ロールに巻き付け、 第一ロール と第一ロールよ り速度を速めた第二ロールの間で 1 . 5〜 3倍に延 伸した後、 第二ロールより も低速で巻き取り機を用いて巻き取る。 紡糸過程で必要に応じて、 交絡処理を行ってもよい。 また、 紡糸速 度 3 0 0〜 3 0 0 0 m / m i nで一度巻き取った未延伸糸を上記の 第一ロール、 第二ロールを通して巻き取ってもよい。 Next, the straight-rolling method will be described with examples. Melt extruded from the spout After suppressing the rapid cooling by passing the molten multifilament through a heat-retaining area of 2 to 80 cm in length maintained at an ambient temperature of 30 to 200 ° C provided directly below the spinneret. The molten multi-filament is rapidly cooled to a solid multi-filament, and heated to 40 to 70 ° C. The first roll with a rotation speed of 300 to 300 Om / min And then wound without winding on a second roll heated to 120 to 160 ° C, and between the first roll and the second roll, which has a higher speed than the first roll, 1.5. After stretching it up to 3 times, wind it up with a winder at a lower speed than the second roll. Entangling treatment may be performed as necessary during the spinning process. The undrawn yarn once wound at a spinning speed of 300 to 300 m / min may be wound through the first roll and the second roll.
通常法と同様にポ リ マ一の溶融押し出 しを行い、 紡口から出た溶 融マルチフ ィ ラ メ ン トは直ちに急冷させず、 紡口直下に設けた 3 0 〜 2 0 0 °Cの雰囲気温度に保持した長さ 2 〜 8 0 c mの保温領域を 通過させて急激な冷却を抑制した後、 この溶融マルチフ ィ ラメ ン ト を急冷して固体マルチフ ィ ラメ ン 卜に変えて続く 延伸工程に供する ことが極めて好ま しい。 この保温領域を通過させるこ とで、 ポリ マ 一を急冷による微細な結晶や極度に配向 した非晶部分の生成を抑制 し、 延伸工程で延伸されやすい非晶構造を作るこ とができ、 その結 果、 本発明で必要な繊維物性を達成できる。 ポ リ ト リ メ チ レ ンテ レ フ タ レー ト は、 例えば、 ポ リ エチ レ ンテ レフ 夕 レー ト といっ たポ リ エステルに比較して遥かに速い結晶化速度を有しているので、 この ような徐冷を行う こ とは、 微細な結晶ゃ極度に配向 した非晶部分の 生成を抑制する上で極めて有効な方法である。 3 0 °C未満では急冷 となり、 延伸倍率を上げにく く なる。 また、 2 0 0 °C以上では糸切 れが起こ りやすく なる。 このよ う な保温領域の温度は 4 0〜 2 0 0 °Cが好ま し く 、 更に好ま しく は 5 0 〜 1 5 0 °Cである。 また、 この 保温領域の長さは 5 〜 3 0 c mが好ま しい。 The polymer is extruded in the same manner as in the conventional method, and the molten multi-filament coming out of the spinneret is not immediately quenched, but is placed immediately below the spinneret at 30 to 200 ° C. After passing through a heat retaining area of 2 to 80 cm in length maintained at the same ambient temperature to suppress rapid cooling, this molten multifilament is rapidly cooled and converted into a solid multifilament, followed by stretching. It is extremely preferred to submit to the process. By allowing the polymer to pass through this heat insulation region, it is possible to suppress the generation of fine crystals and extremely oriented amorphous parts due to rapid cooling of the polymer, and to create an amorphous structure that is easily stretched in the stretching step. As a result, the fiber properties required in the present invention can be achieved. Polyethylene terephthalate has a much faster crystallization rate than, for example, polyester such as polyethylene terephthalate. Performing such slow cooling is an extremely effective method for suppressing the formation of fine crystals and extremely oriented amorphous parts. If the temperature is lower than 30 ° C, the film is rapidly cooled, making it difficult to increase the draw ratio. Above 200 ° C., thread breakage tends to occur. The temperature of such a heat retaining region is preferably from 40 to 200 ° C, more preferably from 50 to 150 ° C. Also, this The length of the heat insulation area is preferably 5 to 30 cm.
糸の紡糸速度については、 第一ロールの巻き付け速度は 3 0 0〜 3 0 0 0 m/m i nである。 紡糸速度が 3 0 0 m/m i n未満では 、 紡糸安定性は優れるが、 生産性が大き く低下する。 また、 3 0 0 0 m/m i nを越えると、 巻き取る前に非晶部の配向や部分的な結 晶化が進み、 延伸行程で延伸倍率を上げることができないために、 分子を配向させることができず、 十分な糸強度を発現できにく い。 好ま しく は、 1 5 0 0〜 2 7 0 0 m/m i nである。  Regarding the spinning speed of the yarn, the winding speed of the first roll is 300 to 300 m / min. When the spinning speed is less than 300 m / min, spinning stability is excellent, but productivity is greatly reduced. If it exceeds 300 m / min, the orientation of the amorphous part or partial crystallization proceeds before winding, and the stretching ratio cannot be increased in the stretching process. And it is difficult to develop sufficient yarn strength. Preferably, it is 150 to 270 m / min.
巻き取り機の速度は第二ロールより も低く することが繊維の非晶 部分の配向緩和を起こさせるのに必要で、 これによりポ リ ト リ メ チ レ ンテレフタ レ一 ト繊維の大きな収縮が弱められる他、 非晶部分が ルーズとなり染料が入りやすい構造となつて染色性が向上する。 リ ラ ッ クス比 (巻き取り速度 Z第二ロール速度) は 0. 9 5 〜 0. 9 9程度、 好ま し く は 0. 9 5 〜 0. 9 8である。  It is necessary that the speed of the winder be lower than that of the second roll to relax the orientation of the amorphous portion of the fiber, thereby weakening the large shrinkage of the polymethylene terephthalate fiber. In addition, the amorphous part becomes loose and the dye is easily penetrated, improving the dyeability. The relax ratio (winding speed Z second roll speed) is about 0.95 to 0.99, preferably 0.95 to 0.98.
第二ロールの速度は延伸倍率によって決定されるが通常 6 0 0 ~ 6 0 0 0 m/m i nである。 第一ロールと第二ロール間での延伸倍 率は 1 . 3 〜 3倍、 好ま し く は 2〜 2. 7倍がよい。 延伸倍率が 1 . 3倍以下では、 延伸により十分にポ リ マーを配向させるこ とがで きず、 得られた繊維の強度や弾性回復率は低いものとなってしま う 。 また 3倍以上では毛羽が激しく 、 安定して延伸を行う ことができ ない。 第一ロールの温度は 4 0〜 7 0。Cであり、 この範囲で延伸し やすい状況を作り出すことができる。 好ま し く は、 5 0 〜 6 0 で ある。 第二口一ルで熱セッ トを行うが温度と しては 1 2 0〜 1 6 0 °Cである。 1 2 0 °C未満では熱安定性の乏しい、 熱変形、 経時変化 しゃすい繊維となる他、 発色性が低下する。 また、 1 6 0 °C以上で は毛羽や糸切れが発生し安定に紡糸することができない。 好ま し く は、 1 2 0 〜 1 5 0 °Cである。 以上の通常法、 直延法で示した好ま しい条件を適用するこ とは、 得られる繊維の均質性、 品質を十分なものとするためには重要であ る。 好ま しい紡糸条件を適用 して得られた繊維の品質を評価するパ ラメ一ターと しては、 例えば u %を用いることができる。 u %は繊 維の断面の均質性を示すパラメ ータ一であり、 好ま しい条件を適用 すると U %は 2 . 5 %以下、 場合によっては 1 . 5 %以下の値を示 す。 The speed of the second roll is determined by the stretching ratio, but is usually from 600 to 600 m / min. The stretching ratio between the first roll and the second roll is 1.3 to 3 times, preferably 2 to 2.7 times. If the draw ratio is 1.3 or less, the polymer cannot be sufficiently oriented by stretching, and the strength and elastic recovery of the obtained fiber will be low. On the other hand, if it is three times or more, the fluff is so severe that stretching cannot be performed stably. The temperature of the first roll is 40 to 70. C, and it is possible to create a situation where stretching is easy in this range. It is preferably between 50 and 60. The heat is set at the second port, but the temperature is 120 to 160 ° C. If the temperature is lower than 120 ° C, thermal stability is poor, thermal deformation, and aging change. At a temperature of 160 ° C. or higher, fluff and yarn breakage occur, and stable spinning cannot be performed. Preferably, it is between 120 and 150 ° C. It is important to apply the favorable conditions indicated by the ordinary method and the straight-rolling method described above in order to ensure the homogeneity and quality of the obtained fiber. For example, u% can be used as a parameter for evaluating the quality of a fiber obtained by applying preferable spinning conditions. u% is a parameter that indicates the homogeneity of the fiber cross-section. Under favorable conditions, U% is less than 2.5%, and in some cases less than 1.5%.
以上のようにして得られたポ リ エステル繊維は、 単独使い、 また は布帛の一部に使用することで、 ソフ ト性、 ス ト レッチ性、 発色性 に優れた布帛となる。 布帛の一部に使用する場合の他の繊維と して は特に制限はないが、 特にポ リ ウ レタ ン弾性繊維に代表されるス ト レ ツチ繊維、 セルロース繊維、 ウール、 絹、 アセテー ト等の繊維と 混用する こ とで、 ナイ 口 ン繊維やポ リ エチ レ ンテ レフ タ レ一 ト繊維 を用いた混用布帛では得られない特徴を発現させるこ とができる。 すなわち、 例えばカチオン染料または/及び分散染料を用いて常圧 染色できると共に、 従来なかったソフ トさ、 ス ト レッチ性を持つ独 特の風合いの布帛となる。  The polyester fiber obtained as described above can be used alone or as a part of a fabric to provide a fabric having excellent softness, stretchability, and coloring. There are no particular restrictions on other fibers used in part of the fabric, but in particular stretch fibers, cellulose fibers, wool, silk, acetate, etc. represented by polyurethane elastic fibers. By mixing with the above-mentioned fibers, characteristics that cannot be obtained with a mixed fabric using nylon fibers or polyethylene terephthalate fibers can be exhibited. That is, the fabric can be dyed at normal pressure by using, for example, a cationic dye and / or a disperse dye, and has a unique texture that has a softness and a stretch property that have not existed conventionally.
特に本発明のポ リ エステル繊維の、 カチオ ン染料または分散染料 のいずれか、 あるいは両方の染料に濃色に染色できる特性が生かせ る分野と して、 ポ リ ウ レタ ン弾性繊維を汚染するこ とな く 染色する こ とができ、 ナイ 口 ン繊維とポ リ ウ レタ ン弾性繊維に代表されるス ト レツチ繊維との混用布帛とは異なったソ フ 卜さや夕 ツチを持たせ ることができるという点で、 該ポ リ ト リ メチレンテレフタ レー ト繊 維とポ リ ウ レ夕 ン弾性繊維に代表されるス ト レ ツチ繊維との混用布 帛が特に好ま しい布帛と して例示される。  In particular, the polyester fiber of the present invention can be used as a field in which either the cation dye or the disperse dye, or both dyes, can be dyed in a deep color. It can be dyed quickly and can have a different softness and sunset from the mixed fabric of nylon fiber and stretch fiber typified by polyurethane elastic fiber. In particular, a mixed fabric of the poly (methylene terephthalate) fiber and a stretch fiber represented by a polyurea elastic fiber is exemplified as a particularly preferred fabric. You.
本発明の布帛は上記の混用布帛をも含め、 その形態、 製編織方法 については特に制限はなく 、 公知の方法を用いることができる。 例 えば、 本発明のポ リエステル繊維を経糸または緯糸に用いる平織物 、 リバーシブル織物等の織物、 ト リ コ ッ ト、 ラ ッ セル等の編物など が挙げられ、 その他交撚、 合糸、 交絡を施してもよい。 The form and knitting and weaving method of the cloth of the present invention including the above-mentioned mixed cloth are not particularly limited, and known methods can be used. An example Examples thereof include plain woven fabrics using the polyester fiber of the present invention as warp or weft yarns, woven fabrics such as reversible woven fabrics, and knitted fabrics such as tricots and raschels. You may.
本発明で用いられるス ト レツチ繊維と しては、 特に限定されるも のではないが、 乾式紡糸または溶融紡糸されたポ リ ウ レタ ン弾性繊 維、 あるいはポ リ ブチレンテレフタ レ一 ト繊維やポ リ テ トラメ チレ ングリ コール共重合ポ リ ブチレンテレフタ レー 卜繊維に代表される ポリエステル系弾性繊維等が挙げられる。 ス ト レ ツチ繊維を用いる 混用布帛において、 本発明のポ リ エステル繊維の含有率は特に制限 はないが、 6 0 〜 9 8 %が好ま しい。  The stretch fiber used in the present invention is not particularly limited, but is a dry-spun or melt-spun polyurethane elastic fiber or a polybutylene terephthalate fiber. And polyester-based elastic fibers typified by polybutylene terephthalate fiber and polytetramethylene glycol copolymer. In the mixed fabric using stretch fibers, the content of the polyester fiber of the present invention is not particularly limited, but is preferably 60 to 98%.
本発明の布帛は、 混用布帛も含め、 例えば製編織後、 常法により 精練、 プレセッ ト、 染色、 フ ァ イ ナルセ ッ 卜の過程を経て染色する ことができる。 また、 必要に応じて、 精練後、 染色前に常法により アル力 リ減量処理する ことも可能である。  The fabric of the present invention, including mixed fabrics, can be dyed, for example, after knitting and weaving, through the steps of scouring, presetting, dyeing, and final set by a conventional method. If necessary, after scouring and before dyeing, it is possible to carry out a weight reduction treatment by an ordinary method.
精練は 4 0 〜 9 8 °Cの温度範囲で行う こ とができる。 特にス ト レ ツチ繊維との混用の場合には、 リ ラ ッ クスさせながら精練するこ と が弾性を向上させるのでより好ま しい。  Refining can be performed in a temperature range of 40 to 98 ° C. In particular, in the case of blending with stretch fiber, scouring while relaxing is more preferable because it improves the elasticity.
染色前後の熱セッ トは一方あるいは両方共省略するこ と も可能で あるが、 布帛の形態安定性、 染色性を向上させるためには両方行う こ とが好ま しい。 熱セ ッ 卜の温度と しては、 1 2 0 〜 1 9 0 °Cの温 度、 好ま しく は 1 4 0 〜 1 8 0 °Cであり、 熱セ ッ ト時間と しては 1 0秒〜 5分、 好ま し く は、 2 0秒〜 3 分である。  It is possible to omit one or both of the heat setting before and after dyeing, but it is preferable to perform both in order to improve the form stability and dyeability of the fabric. The temperature of the heat set is from 120 to 190 ° C, preferably from 140 to 180 ° C, and the heat set time is 10 to 100 ° C. Seconds to 5 minutes, preferably 20 seconds to 3 minutes.
染色はキャ リ ア一を用いることな く 、 7 0 〜 1 5 0 °C、 好ま しく は、 9 0 〜 1 2 0 °C、 特に好ま し く は 9 0 〜 1 0 0 °Cの温度で行う こ とができる。 染色を均質に行うために、 酢酸や水酸化ナ ト リ ウム 等を用いて染料に応じた p Hに調整すると同時に、 界面活性剤から 構成された分散剤を使用することは特に好ま しい。 また、 カチオン 染料を用いる時は、 染色物の鮮明性を向上させるために、 硫酸ナ ト リ ウム、 硝酸ナ ト リ ウム、 硫酸カ リ ウム、 硫酸力ルンゥムのよ う な アル力 リ金属またはアル力 リ土類金属塩を染浴に添加するこ とは特 に好ま しい。 Staining is carried out at 70 to 150 ° C, preferably 90 to 120 ° C, and particularly preferably 90 to 100 ° C, without using a carrier. It can be carried out. In order to perform dyeing uniformly, it is particularly preferable to adjust the pH according to the dye using acetic acid, sodium hydroxide, or the like, and to use a dispersing agent composed of a surfactant. Also, the cation When using dyes, metal or alkaline earth metals such as sodium sulfate, sodium nitrate, potassium sulfate, sulfate sulfate, etc. to improve the sharpness of the dyed material. It is particularly preferred to add a class of metal salts to the dye bath.
染色後は公知の方法により ソービングまたは還元洗浄を行う こ と ができる。 特に、 ス ト レッチ繊維との混用において、 常圧分散染料 可染性繊維とポ リ ウ レタ ン弾性繊維からなる混用布帛を染色する場 合には還元性繊維洗浄を行い、 ポ リ ウ レタ ン弾性繊維を汚染した分 散染料をしつかり と除去しておく こ とが布帛の堅牢性を向上させる 点で重要である。 これらの方法は公知の方法でよ く 、 例えば、 炭酸 ナ ト リ ゥムゃ水酸化ナ ト リ ゥム等のアル力 リ水溶液中で、 ハイ ドロ サルフ アイ トナ ト リ ゥ ム等の還元剤を用いて処理することができる 以下は、 常圧でカチオン染料、 分散染料のいずれか、 あるいは両 方の染料で濃色に染色できる本発明のポ リ ト リ メ チレンテレフタ レ 一ト系繊維の特筆される使用態様の例示である。  After dyeing, sorbing or reduction washing can be performed by a known method. In particular, when dyeing a mixed fabric consisting of a normal pressure dispersible dye-dyeable fiber and a polyurethan elastic fiber when mixed with stretch fiber, the reducing fiber is washed and the polyurethane is used. It is important to firmly remove the disperse dye that has contaminated the elastic fiber in order to improve the robustness of the fabric. These methods are well-known methods. For example, a reducing agent such as hydrosulfite sodium is dissolved in an aqueous solution of sodium carbonate such as sodium carbonate and sodium hydroxide. The following is a special mention of the poly (methylene terephthalate) fiber of the present invention which can be dyed in a deep color with either a cationic dye or a disperse dye or both dyes at normal pressure. FIG.
( 1 ) 本発明のポ リ ト リ メ チレンテレフタ レ一 ト系繊維は、 ポ リ ウ レタ ン弾性繊維に代表されるス ト レ ツチ繊維、 ゥ一ル、 絹、 ァセ テ一 ト等の耐熱性の低い繊維との混用において、 耐熱性の低い繊維 の性能を損なわずに常圧下で濃色に染色できる。 特に、 ポ リ ト リ メ チ レ ンテ レフ タ レー ト系繊維をポリ ウ レタ ン弾性繊維と混用すると 、 ナイ 口 ン繊維を用いた混用布帛とは異なったソ フ 卜さ、 夕 ツチを 示し、 イージーケア特性を兼ね備えた、 新感覚の衣料を創造できる  (1) The polymethylene terephthalate fiber of the present invention is a heat-resistant fiber such as stretch fiber, polyester, silk, and acetate represented by polyurethane elastic fiber. When mixed with fibers with low heat resistance, it can be dyed dark under normal pressure without impairing the performance of fibers with low heat resistance. In particular, when polymethylentelephthalate fibers are mixed with polyurethane elastic fibers, the softness and sunset are different from those of mixed fabrics using nylon fibers, Create a new sense of clothing that has easy-care characteristics
( 2 ) 通常のポリ ト リ メ チレンテレフタ レ一 ト繊維とポリ ウ レタ ン弾性繊維と混用布帛は、 1 1 0〜 1 2 0 °cで染色する必要がある ため、 ポリ ウ レタ ン弾性繊維が熱劣化する。 加えて分散染料でしか 染色されない。 分散染料によるポ リ ウ レタ ン弾性繊維との混用布帛 の染色では、 分散染料がポリ 卜 リ メ チレンテレフタ レー ト繊維より もポ リ ウ レタ ン弾性繊維に、 より多く 吸尽されてしまい、 しかもポ リ ウ レタ ン弾性糸繊維にしっかり と固着しない。 例えば、 ドライ ク リ ーニング、 洗濯で容易に繊維分散染料が移染し、 周りの衣料を汚 染したり、 ある場合には染料が離脱して混用布帛の色を退色させ、 染色堅牢性を低下させる。 一方、 常圧でカチオン染料、 分散染料の いずれか、 あるいは両方の染料に対して濃色に染色可能な本発明の ポリ ト リ メ チレンテレフタ レー ト系繊維を用いることで、 前述の問 題を解決できる。 (2) Polyurethane elastic fibers must be dyed at 110 ° C to 120 ° C for mixed fabrics of ordinary polymethylene terephthalate fibers and polyurethane elastic fibers. Thermal degradation. In addition, only with disperse dyes Does not stain. In the dyeing of the mixed fabric with the polyurethane elastic fiber by the disperse dye, the disperse dye is more exhausted by the polyurethane urethane fiber than by the polymethylene terephthalate fiber. Does not firmly adhere to the urethane elastic yarn fiber. For example, fiber disperse dyes are easily transferred by dry cleaning and washing, and stain the surrounding clothing.In some cases, the dyes are released and the color of the mixed fabric is faded, decreasing the color fastness. Let it. On the other hand, the above-mentioned problem has been solved by using the polytrimethylene terephthalate-based fiber of the present invention, which can dye either the cationic dye or the disperse dye or both dyes at normal pressure. it can.
すなわち、 一つ目の方法は、 本発明の常圧力チオ ン染料可染ポ リ ト リ メ チレンテレフタ レー ト繊維の使用である。  That is, the first method is to use the normal-pressure thione dye-dyeable polymethylene terephthalate fiber of the present invention.
ポ リ ウ レタ ン弾性繊維は、 カチオン染料では染色されない。 そこ で、 カチオン染料に常圧で染色可能なポリ ト リ メ チレンテレフタ レ ー ト系繊維を用いると、 ポ リ 卜 リ メ チレンテレフ夕 レー ト系繊維の みを選択的に染色するために上記の汚染問題は生じない。  Polyurethane elastic fibers are not dyed with cationic dyes. If polytrimethylene terephthalate fiber that can be dyed under normal pressure is used as the cationic dye, the above contamination will occur because only the polymethylene terephthalate fiber is selectively dyed. No problem.
二つ目の方法は、 本発明の常圧分散染料可染ポ リ ト リ メ チレンテ レフタ レ一 ト繊維の使用である。 ポ リ ト リ メ チレンテレフタ レー ト 系繊維が常圧分散染料可染性を持つまでに改質されると、 ポ リ ウ レ 夕 ン弹性繊維への分散染料の移行をかなり抑制できる。  The second method is the use of the normal pressure dispersible dyeable polymethylene terephthalate fiber of the present invention. If the polymethylene terephthalate fiber is modified to have normal pressure disperse dye dyeability, the transfer of the disperse dye to the polyurethan fiber can be considerably suppressed.
( 3 ) ポ リ ウ レタ ン弾性繊維に代表されるス 卜 レッチ繊維との混 用分野の一つと して有力なパンテイス ト ッキング分野がある。 この 業界では、 専門の染色工場が通常高圧染色に必要な高圧染色釜を持 たない。 本発明の常圧力チオン染料可染性あるいは、 常圧分散染料 可染性ポリ 卜 リ メ チレンテレフタ レー ト繊維の使用は、 新たな設備 投資なしにナイ ロ ン繊維交編パンス ト に用いていた常圧染色釜をそ のまま転用できるといった設備上の利点を有する。 このような設備 上の利点は工業的には極めて重要な効果である。 (3) One of the fields of blending with stretch fibers represented by polyurethane elastic fibers is the predominant pantyhose field. In this industry, specialized dye plants do not usually have the high pressure dyeing vessels required for high pressure dyeing. The use of the normal pressure thione dye-dyeable or normal-pressure disperse dye-dyeable polymethylene terephthalate fiber of the present invention can be used for nylon fiber knitting pumps without investment in new equipment. It has the advantage of facilities that the pressure dyeing kettle can be diverted as it is. Such equipment The above advantage is a very important effect industrially.
( 4 ) 本発明のポ リ ト リ メ チレンテレフタ レ一 ト系繊維を用いて 得られる布帛は、 例えば、 公知のナイ ロ ン繊維とポ リ ウ レタ ン弾性 繊維との混用布帛より もはるかにソフ トで、 ナイ 口 ン繊維特有のヮ キシー感もない。 また軽ス ト レ ッ チ特性、 優れた発色性も有すると いった、 新感覚の衣料となり得る。 更に、 ポリ ト リ メ チ レ ンテレフ タ レー ト系繊維は、 熱セッ ト性が高く 、 耐黄変性にも優れている。 これらの特性は、 ナイ ロ ン繊維の特有の問題のないこ とを示してお り、 取扱に優しい衣料となる。  (4) The fabric obtained using the polymethylene terephthalate fiber of the present invention is, for example, far more soft than a known mixed fabric of nylon fiber and polyurethane elastic fiber. There is no peculiar feeling unique to nylon fiber. In addition, it can be a new sensational garment with light stretch characteristics and excellent color development. Furthermore, polytrimethyl terephthalate-based fibers have a high heat setting property and are excellent in yellowing resistance. These properties indicate that there are no problems inherent to nylon fiber, and that it is easy to handle.
( 5 ) 本発明のポ リ エステル繊維はセルロース繊維との混用にお いても卓越した効果を示す。 セルロース繊維の染色で反応染料を用 いる場合、 染浴の温度が 1 0 0 °Cを越えると反応染料が分解を起す ことが多い。 本発明のポリ 卜 リ メ チレンテレフ夕 レー ト系繊維を用 いるこ とで常圧下でカチオ ン染料または分散染料と、 反応染料を用 いて一段一浴染色すること も可能となる。 こ う して得られた布帛は セルロース特有の ドライ感とポリ ト リ メ チレンテレフタ レ一 卜に由 来するソ フ ト性を兼ね備えた、 新感覚衣料となる ものである。  (5) The polyester fiber of the present invention exhibits an excellent effect even when mixed with cellulose fiber. When a reactive dye is used for dyeing cellulose fibers, the reactive dye often decomposes when the temperature of the dye bath exceeds 100 ° C. By using the poly (methylethylene terephthalate) fiber of the present invention, it is possible to perform one-step, one-bath dyeing using a cation dye or a disperse dye and a reactive dye under normal pressure. The fabric thus obtained is a new sensation garment having both the dry feeling unique to cellulose and the softness derived from polytrimethylene terephthalate.
( 6 ) 本発明のポ リ エステル繊維は、 単独で織編物に適用するこ と も可能であり、 得られた布帛はソフ トさに富み、 優れたス ト レツ チ特性、 発色性を示すものとなる。 また、 1 0 0 °C以上で染色して も問題のない場合は、 1 0 0 °c以上で染色すること も可能である。 更に、 本発明のポ リ エステル繊維の特徴と しては、 カチオン染料 可染性繊維でありながら、 アル力 リ減量の量や速度が工業的に制御 可能となるこ とがある。 アルカ リ減量された本発明のポ リエステル 繊維は、 一層ソ フ ト になる他、 繊維表面に数 m程度の ミ ク ロな孔 が存在し、 そのために ドライ感もあり、 鮮明に染色できるといった 特徴を出すこ とができ る。 また、 本発明の常圧分散染料可染性ポ リ エステル繊維についてもこれに近いアルカ リ減量特性を有する。 以上、 本発明のポリ ト リ メ チレンテレフ タ レー ト系繊維は、 前記 の使用態様に準じて、 外衣、 下着類、 裏地、 スポーツ等の衣料用の 他、 力一ぺッ 卜用原糸、 芯地、 フロ ッキ一等の資材用と しても用い るこ とができる。 発明の実施の最良の形態 (6) The polyester fiber of the present invention can be applied alone to a woven or knitted fabric, and the obtained fabric is rich in softness and exhibits excellent stretch characteristics and coloring properties. Becomes If there is no problem with staining at 100 ° C. or more, it is also possible to stain at 100 ° C. or more. Further, as a characteristic of the polyester fiber of the present invention, the amount and speed of the weight loss can be industrially controlled in spite of being a cationic dye-dyeable fiber. The polyester fiber of the present invention, which has been reduced in alkali content, is further softened, and has micropores of several meters on the fiber surface, so that it has a dry feeling and can be dyed clearly. Can be issued. In addition, the normal pressure disperse dye dyeable poly Ester fibers also have similar alkali weight loss characteristics. As described above, the polytrimethylene terephthalate-based fiber of the present invention can be used for clothing such as outer garments, underwear, lining, sports, etc., as well as for raw yarn and core, It can also be used for materials such as ground and flocks. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例を挙げて本発明をより詳細に説明するが、 本発明は 以下の実施例の記載に限定される ものでない。 なお、 実施例中の主 な測定値及び評価値は、 以下の測定方法、 評価方法による。  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples. The main measurement values and evaluation values in the examples are based on the following measurement methods and evaluation methods.
( 1 ) 極限粘度の測定  (1) Measurement of intrinsic viscosity
この極限粘度 [ 7? ] は、 ォス ト ワル ド粘度管を用い、 3 5 °C、 o ーク ロロフ ヱノ ールを用いて測定した。  The intrinsic viscosity [7?] Was measured using an oste-ward viscosity tube at 35 ° C and o-chlorophenol.
( ) 損失正接の測定  () Loss tangent measurement
オ リエンテッ ク社製レオバイブロ ンを用い、 乾燥空気中、 測定周 波数 1 1 0 H z、 昇温速度 5 °C / m i n にて、 各温度における損失 正接 ( t a n 5 ) 、 および動的弾性率を測定した。 その結果から、 損失正接一温度曲線を求め、 この曲線上で損失正接のピーク温度で ある T m a x ( °C ) を求めた。  The loss tangent (tan 5) and the dynamic elastic modulus at each temperature were measured using Orientec's Leo Vibron in dry air at a measurement frequency of 110 Hz and a heating rate of 5 ° C / min. It was measured. From the results, a loss tangent-one temperature curve was determined, and Tmax (° C), which is the peak temperature of the loss tangent, was determined on this curve.
( 3 ) 弾性率の測定  (3) Measurement of elastic modulus
弾性率は J I S— L 一 1 0 1 3 に準じて測定した。  The elastic modulus was measured according to JIS-L-113.
( 4 ) 融点の測定  (4) Measurement of melting point
セィ コ一電子社製 D S Cを用い、 2 0 °C / m i nの昇温速度で 1 0 0 ミ リ リ ッ トル Z m i nの窒素気流下中で測定した。 ここでは、 融解のピークのピーク値を融点と した。  The measurement was carried out in a nitrogen stream of 100 milliliters Z min at a heating rate of 20 ° C./min using a DSC manufactured by SEIKO ELECTRONICS CO., LTD. Here, the peak value of the melting peak was used as the melting point.
( 5 ) 弾性回復率の測定  (5) Measurement of elastic recovery
繊維をチャ ッ ク間距離 2 0 c mで引っ張り試験機に取り付け、 伸 長率 2 0 %まで引っ張り速度 2 0 c m / m i nで伸長し 1 分間放置 する。 その後、 再び同じ速度で収縮させて応力一歪曲線を描く 。 収 縮中、 応力がゼロになった時の伸度を残留伸度 (X ) とする。 弾性 回復率は以下の式に従って求めた。 Attach the fiber to a tensile tester with a chuck distance of 20 cm and stretch it. Elongate at a pulling rate of 20 cm / min to a long rate of 20% and let stand for 1 minute. After that, it is contracted again at the same speed to draw a stress-strain curve. The elongation when the stress becomes zero during shrinkage is defined as the residual elongation (X). The elastic recovery was determined according to the following equation.
2 0 - X  2 0-X
弾性回復率 = 1 0 0 ( % )  Elastic recovery = 1 0 0 (%)
2 0  2 0
( 6 ) b値の測定  (6) Measurement of b value
得られた繊維の黄色みは b値を用いて測定した。 b値は、 スガ試 験機 (株) のカラ一コ ンピューターを用いて測定した。 b値が大き く なる程黄色みは増す。  The yellowness of the obtained fiber was measured using the b value. The b value was measured using a color computer of Suga Test Instruments Co., Ltd. The yellowness increases as the b value increases.
( 7 ) 染色性評価試験  (7) Dyeability evaluation test
① カチオン染料によるポリ エステル繊維の染色性の評価 試料はポ リ エステル繊維の一口編地 (丸編、 天竺、 ゲージ 2 8 ) を用い、 スコア ロール 4 0 0 (花王社製、 非イ オ ン界面活性剤) を (1) Evaluation of dyeability of polyester fiber by cationic dye The sample is a one-piece knitted fabric of polyester fiber (circular knit, sheeting, gauge 28), and score roll 400 (Kao Corporation, non-ion interface) Activator)
2 g Z リ ッ トルで含む温水 (浴比 1 : 5 0 ) を用いて、 7 0。C、 2 0分間精練処理し、 タ ンブラ 一乾燥機で乾燥させた。 次いで、 ピン テ ンタ一を用いて、 1 8 0 °C、 3 0 秒の熱セッ トを行ったものを使 用 した。 染料は、 カャク リ ルブルー G S L— E D (日本化薬 (株) 製カチオ ン染料) を使用 し、 4 % o w f 、 浴比 1 : 5 0 、 9 5 °C、70 g using hot water (bath ratio 1:50) contained in 2 g Z liter. C, scoured for 20 minutes and dried with a tumble dryer. Next, a heat set at 180 ° C for 30 seconds was performed using a pin tenter. The dye used was KACRYL BLUE GSL-ED (Cation dye manufactured by Nippon Kayaku Co., Ltd.), 4% owf, bath ratio 1:50, 95 ° C,
3 0 分染色した。 添加剤と して、 酢酸 0 . 2 5 g /リ ッ トルと硫酸 ナ ト リ ウム 3 g /リ ッ トルを加え、 p Hを調整した。 Stained for 30 minutes. As additives, 0.25 g / liter of acetic acid and 3 g / liter of sodium sulfate were added to adjust the pH.
② 分散染料によるポ リ エステル繊維の染色性の評価  ② Evaluation of dyeability of polyester fiber with disperse dye
試料はポ リ エステル繊維の一口編地 (丸編、 天竺、 ゲージ 2 8 ) を用い、 スコアロール 4 0 0 を 2 g /リ ッ トルで含む温水 (浴比 1 : 5 0 ) を用いて、 7 0 °C、 2 0分間精練処理し、 タ ンブラ一乾燥 機で乾燥させた。 次いで、 ピンテンタ一を用いて、 1 8 0 °C、 3 0 秒の熱セッ トを行ったものを使用 した。 染料は、 力ヤロ ンポ リエス テルブルー 3 R S F (日本化薬社製、 分散染料) を 6 % 0 w f で用 い、 浴比 1 : 5 0で 9 5 °C、 6 0分染色した。 分散剤と してはニッ 力サ ンソル ト 7 0 0 0 (日華化学社製、 ァニオ ン性界面活性剤) を 0. 5 g /リ ッ トル使用 し、 酢酸 0. 2 5 ミ リ リ ッ トル Zリ ッ トル と酢酸ナ ト リ ウム 1 g Zリ ツ トルを加え、 p Hを 5 に調整した。 吸尽率は、 染料原液の吸光度 A、 染色後の染液の吸光度 aを分光 光度計から求め、 以下の式に代入にて求めた。 吸光度は当該染料の 最大吸収波長である 5 8 0 n mでの値を採用 した。 The sample was a piece of polyester fiber knitted fabric (circular knit, sheeting, gauge 28), using hot water (bath ratio 1:50) containing score roll 400 at 2 g / liter. It was scoured at 70 ° C for 20 minutes and dried with a tumble dryer. Then, a heat set at 180 ° C. for 30 seconds was performed using a pin tenter. The dye is Telblue 3 RSF (manufactured by Nippon Kayaku Co., Ltd., disperse dye) was used at 6% 0 wf, and dyed at a bath ratio of 1:50 at 95 ° C for 60 minutes. As a dispersant, 0.5 g / liter of Nikki Sansol (Nikka Chemical Co., Ltd., anionic surfactant) is used, and 0.25 milliliter of acetic acid is used. The pH was adjusted to 5 by adding torr Z liter and 1 g Z liter of sodium acetate. The exhaustion rate was determined by measuring the absorbance A of the dye stock solution and the absorbance a of the dye solution after dyeing using a spectrophotometer, and substituting into the following formula. The value at 580 nm, which is the maximum absorption wavelength of the dye, was used as the absorbance.
吸尽率 = ( A - a ) / A x 1 0 0 (%)  Exhaust rate = (A-a) / A x 1 0 0 (%)
どの程度濃色に染ま つたかを表す深色度は、 K Z Sを用いて評価 した。 この値は、 染色後のサンプル布の分光反射率 Rを測定し、 以 下に示すクベルカ一ムンク (K u b e l k a— M u n k ) の式から 求めた。 この値が大きい程、 深色効果が大きいこ と、 すなわち、 よ く 発色されていることを示す。 Rは、 当該染料の最大吸収波長での 値を採用 した。  The degree of deep chromaticity, which indicates how deep the dye was, was evaluated using KZS. This value was obtained by measuring the spectral reflectance R of the sample cloth after dyeing, and using the following Kubelka-Munk (Kubelka-Munk) equation. The larger the value, the greater the deep color effect, ie, the better the color development. As R, the value at the maximum absorption wavelength of the dye was used.
KZ S = ( 1 — R) 2 / 2 R KZ S = (1 - R) 2/2 R
また、 黒色で染めた時の明度は、 L値を用いて評価した。  The lightness when dyed in black was evaluated using the L value.
( 8 ) 染色堅牢性試験  (8) Dye fastness test
染色繊維の堅牢性試験は、 ( 6 ) の方法で染色した一口編地を用 いて評価を行った。  The fastness test of the dyed fiber was evaluated using a single-mouth knitted fabric dyed by the method of (6).
ドライ ク リ 一ニング堅牢度は J I S— L一 0 8 6 0 に、 耐光堅牢 度は J I S - L - 0 8 4 2 に、 洗濯堅牢度は J I S - L - 0 8 4 4 に、 乾 ' 湿摩擦堅牢度は J I S - L - 0 8 4 9 に準じて行った。 尚 Dry cleaning fastness is JIS-L-080, light fastness is JIS-L-0842, washing fastness is JIS-L-0844, and dry and wet friction The fastness was measured in accordance with JIS-L-08449. still
、 ドライ ク リ ーニング堅牢度は液汚染を試験した。 The dry cleaning fastness was tested for liquid contamination.
( 9 ) U %の測定  (9) U% measurement
ツ ェルベガ一ウースター社 U S T E R T E S T E R 3を用いて 測定した。 〔実施例 1 〕 The measurement was carried out using USTERTESTER 3 by Twelvega-Wooster. (Example 1)
ト リ メ チレングリ コール (以下 「 T M G」 と略記する) 1 1 4 4 重量部、 ジメ チルテ レフ タ レー ト (以下 「 D MT」 と略記する) 1 3 0 0重量部、 5 —スルホイ ソフタル酸テ トラブチルホスホニゥム 塩 (以下 「 S I P P」 と略記する) 5 7重量部 (全酸成分の総モル 数に対して 2 m 0 1 %) 、 エーテル形成抑制剤と して酢酸リ チウム 0. 4 3重量部、 着色抑制剤と して酢酸コバル ト 0. 1 3重量部、 エステル交換触媒と してチタ ンテ トラブ トキシ ド 1 . 3重量部を用 いて、 2 2 0 °Cにてエステル交換反応を行った。 次いで、 重縮合触 媒と してチタ ンテ トラブ トキシ ド 1 . 3重量部、 熱安定剤と して ト リ メ チルホスフ アイ ト 0. 0 6 5重量部を添加して 2 7 0 °C、 減圧 度 0. 5 t 0 r r にて重縮合を行いポ リ マーを得た。 得られたポ リ マーの極限粘度は 0 . 6 1 であった。  Trimethylen glycol (hereinafter abbreviated as “TMG”) 1 144 4 parts by weight, dimethyl terephthalate (hereinafter abbreviated as “DMT”) 1300 parts by weight, 5 — sulphoisophthalic acid Trabutylphosphonium salt (hereinafter abbreviated as “SIPP”) 57 parts by weight (2 m 0 1% based on the total number of moles of all acid components), and lithium acetate 0.4 as an ether formation inhibitor Transesterification at 220 ° C using 3 parts by weight, 0.1 part by weight of cobalt acetate as a coloring inhibitor, and 1.3 parts by weight of titanate traboxide as a transesterification catalyst Was done. Then, 1.3 parts by weight of titanate laboxide as a polycondensation catalyst and 0.065 parts by weight of trimethyl phosphite as a heat stabilizer were added, and the pressure was reduced at 270 ° C. Polycondensation was performed at a temperature of 0.5 t 0 rr to obtain a polymer. The intrinsic viscosity of the obtained polymer was 0.61.
得られたポ リ マーチップを乾燥させた後、 3 6個の丸断面の孔 ( 直径 0. 2 3 mm) を持つ紡口を用い、 紡糸温度 2 6 5 °C、 紡糸速 度 1 2 0 O m/m i nで紡糸して未延伸糸を作成した。 次いで、 得 られた未延伸糸をホッ ト ローノレ 5 0 °C、 ホッ トプレー ト 1 4 0。C、 延伸倍率 3. 0倍、 延伸速度 6 0 0 mZm i nで延撚を行い、 5 0 d / 3 6 f の延伸糸を得た。 繊維の物性は、 融点 2 3 1 °C、 密度 1 . 3 2 g/ c m3 、 強度 3. 4 g / d、 伸度 3 7 %、 T m a x l l 0 °C、 U % 1 . 2 %、 弾性率 2 2 g Z d、 弾性回復率 8 7 %であつ た。 また、 延伸糸の Q Z R値は 0. 2 5 となり式 ( 1 ) を満足する こ とができた。 また、 繊維の b値は 6. 1 であった。 After drying the obtained polymer chip, a spinning temperature of 265 ° C and a spinning speed of 120 ° C were used using a spinning hole having 36 round cross-section holes (diameter: 0.23 mm). An undrawn yarn was prepared by spinning at m / min. Next, the obtained undrawn yarn is hot-rolled at 50 ° C. and hot-plated at 140 ° C. C. Stretching was performed at a draw ratio of 3.0 and a draw speed of 600 mZmin to obtain a drawn yarn of 50 d / 36 f. Physical properties of the fibers, the melting point 2 3 1 ° C, density 1. 3 2 g / cm 3 , strength 3. 4 g / d, elongation of 3 7%, T maxll 0 ° C, U% 1. 2%, elastic The rate was 22 g Zd, and the elastic recovery rate was 87%. In addition, the QZR value of the drawn yarn was 0.25, which satisfied expression (1). The b value of the fiber was 6.1.
この実施例で得られたポリ エステル繊維の 9 5 °C、 3 0分におけ るカチオン染料の吸尽率は 7 2 %と大き く 、 非常に鮮明な染色物が 得られた。  The exhaustion rate of the cationic dye of the polyester fiber obtained in this example at 95 ° C. and 30 minutes was as large as 72%, and a very clear dyed product was obtained.
染色後の一口編地の ドライ ク リ 一ニング堅牢度では染色物の退色 も認められず、 液汚染は 4 一 5級であつた。 また、 耐光堅牢度 ( 4 一 5級) 、 乾 , 湿摩擦堅牢度 ( 5級) 、 洗濯堅牢度 ( 5級) につい ても良好であった。 Dry cleaning of bite knitted fabrics after dyeing No liquid contamination was found, and the liquid contamination was class 4-1-5. In addition, the light fastness (class 4-15), the fastness to dry and wet friction (grade 5), and the fastness to washing (grade 5) were also good.
〔実施例 2〜 7 〕  (Examples 2 to 7)
実施例 1 と同様の方法でエステル形成性スルホ ン酸塩化合物の種 類および共重合比率を変化させて重合 , 紡糸を行った。 得られた繊 維の試験、 評価試験結果を表 1 に示す。 いずれの実施例の繊維も式 ( 1 ) を満足する もので、 良好な染色性、 堅牢性、 諸物性を示した  Polymerization and spinning were carried out in the same manner as in Example 1 except that the type of the ester-forming sulfonate compound and the copolymerization ratio were changed. Table 1 shows the test and evaluation test results of the obtained fibers. The fibers of all the examples satisfied the formula (1) and exhibited good dyeability, fastness, and various physical properties.
〔比較例 1 〕 [Comparative Example 1]
実施例 1 と同様にして、 S I P Pを用いずにポ リ 卜 リ メ チレンテ レフタ レ一 トホモポリ マ一を得た。 得られたポ リ マーの極限粘度は 0 . 6 3であった。 このポリ マーチ ップを実施例 1 と同様にして紡 糸、 延伸を行い繊維を得た。 得られた繊維は、 融点 2 3 6 °C、 T m a x 1 1 1 °C、 強度 3 . 6 g / d、 伸度 3 5 %、 弾性率 2 3 g / d 、 弾性回復率 8 8 %を示した。 また、 この繊維の Q / R値は 0 . 2 6 であり、 式 ( 1 ) は満足していた。  In the same manner as in Example 1, polymethylethylene phthalate homopolymer was obtained without using SIPP. The intrinsic viscosity of the obtained polymer was 0.63. This polymer chip was spun and drawn in the same manner as in Example 1 to obtain a fiber. The resulting fiber has a melting point of 23 ° C, Tmax of 11 ° C, a strength of 3.6 g / d, an elongation of 35%, an elasticity of 23 g / d, and an elastic recovery of 88%. Indicated. The Q / R value of this fiber was 0.26, which satisfied the expression (1).
しかしながら、 この比較例で得られたボ リ エステル繊維の 9 5 °C 、 3 0分におけるカチオ ン染料の吸尽率は 6 %であり、 濃色に染色 することはできなかった。  However, the exhaustion rate of the cation dye at 95 ° C. and 30 minutes of the polyester fiber obtained in this comparative example was 6%, and it could not be dyed in a deep color.
〔比較例 2〕  (Comparative Example 2)
実施例 1 と同様の方法で S I P Pの共重合比率を 0 . 3 モル%と して重合体を調製し、 紡糸を行った。 得られた繊維の試験、 評価結 果を表 1 にま とめた。 エステル形成性スルホン酸塩化合物の共重合 比率は 0 . 5 モル%未満であり、 繊維の 9 5 °C、 3 0分における力 チオ ン染料の吸尽率は 3 0 %と、 濃色に染色するこ とはできなかつ 〔比較例 3〕 A polymer was prepared in the same manner as in Example 1 except that the copolymerization ratio of SIPP was 0.3 mol%, and spinning was performed. Table 1 summarizes the test and evaluation results of the obtained fibers. The copolymerization ratio of the ester-forming sulfonate compound is less than 0.5 mol%, and the dye exhaustion rate of the dye at 95 ° C and 30 min at 30 ° C is 30%. Can't do it (Comparative Example 3)
実施例 1 と同様の方法で S I P Pの共重合比率を 6 モル%と して 重合 · 紡糸を経て繊維を調製した。 その試験、 評価結果を表 1 にま とめた。 このポ リマーの紡糸の際には糸切れが多発し紡糸性が悪か つた。 また繊維を 9 5 °Cにて染色をしたところ、 糸が収縮して硬く なり、 良好な風合いの布帛が得られなかった。 また得られた布帛の ドライ ク リ ーニング堅牢度は、 実施例 1 に比べて低下した。  In the same manner as in Example 1, a fiber was prepared through polymerization and spinning with a copolymerization ratio of SIPP of 6 mol%. Table 1 summarizes the test and evaluation results. During the spinning of this polymer, thread breakage occurred frequently and the spinnability was poor. When the fiber was dyed at 95 ° C, the yarn shrank and became hard, and a fabric with a good texture could not be obtained. Further, the dry cleaning fastness of the obtained fabric was lower than that of Example 1.
〔比較例 4〕  (Comparative Example 4)
実施例 1 において、 延伸倍率を 3 . 3倍にした。 得られた繊維は 配向が進みすぎ T m a Xが 1 1 5 °Cを越えた。 カチオン染料の吸尽 率は 4 5 %であった。 また得られた繊維には毛羽が多発した。 In Example 1, the stretching ratio was 3.3 times. The orientation of the obtained fiber was too advanced, and T max exceeded 115 ° C. The exhaustion rate of the cationic dye was 45%. In addition, fluff was frequently generated in the obtained fiber.
表 1 table 1
Figure imgf000035_0001
Figure imgf000035_0001
S I PM 5—ナ卜リゥムスルホイソフタル酸ジメチル S I PA 5ースルホイソフタル酸アンモニゥム塩ジメチル S I PM 5-Sulfoisophthalic acid ammonium dimethyl S I PA 5-Sulfoisophthalic acid ammonium salt
DC堅牢度 ドライクリーニング堅牢度 DC fastness Dry cleaning fastness
〔比較例 5〕 (Comparative Example 5)
ホッ トロールの温度を 2 5 °Cと した以外は実施例 1 と同様な方法 で重合、 紡糸を行った。 延伸の際に糸切れが多発し、 連続して繊維 を得ることができなかった。 また、 ホッ ト ロールの温度を 8 0 °Cと した以外は、 実施例 1 と同様な方法で重合、 紡糸を行った。 延伸の 際にホッ ト ロールに糸が融着するため単糸切れが多発し、 得られた 繊維は毛羽だらけであった。 U %は 3 . 2 と悪かった。  Polymerization and spinning were carried out in the same manner as in Example 1 except that the temperature of the hot roll was 25 ° C. Many yarn breaks occurred during drawing, and fibers could not be obtained continuously. Polymerization and spinning were performed in the same manner as in Example 1 except that the temperature of the hot roll was set at 80 ° C. At the time of drawing, the yarn was fused to the hot roll, and single yarn breakage occurred frequently, and the obtained fiber was full of fluff. U% was 3.2, which was bad.
〔比較例 6〕  (Comparative Example 6)
ホッ トプレー 卜の温度を 7 0 °Cと した以外は実施例 1 と同様な方 法で重合 · 紡糸を行った。 糸切れ、 毛羽の発生等の問題なく 繊維が 得られた。 しかし得られた繊維は弾性回復率が 5 5 %と低く 、 Q Z R値が 0 . 4 9 となり、 式 ( 1 ) を満足するものではなかった。  Polymerization and spinning were carried out in the same manner as in Example 1 except that the temperature of the hot plate was 70 ° C. Fibers were obtained without problems such as yarn breakage and fluffing. However, the obtained fiber had a low elastic recovery of 55% and a QZR value of 0.49, which did not satisfy the expression (1).
〔比較例 7〕  (Comparative Example 7)
ホッ トプレー 卜の温度を 2 0 0 °Cと した以外は、 実施例 1 と同様 な方法で重合 · 紡糸を行った。 繊維はホッ 卜プレー トのところで切 れ、 延伸を行う ことができなかった。  Polymerization / spinning was performed in the same manner as in Example 1 except that the temperature of the hot plate was set at 200 ° C. The fiber was cut at the hot plate and could not be drawn.
〔比較例 8 〕  (Comparative Example 8)
延伸倍率を 2 . 3倍、 ホッ トプレー トの温度を 1 8 0 °Cと した以 外は、 実施例 1 と同様な方法で重合 · 紡糸を行った。 糸切れ、 毛羽 の発生等の問題なく 繊維が得られた。 しかし、 得られた繊維は弾性 回復率が 4 8 %と低く 、 Q Z R値が 0 . 5 2 となり、 式 ( 1 ) を满 足することができなかった。  Polymerization / spinning was performed in the same manner as in Example 1 except that the draw ratio was 2.3 times and the temperature of the hot plate was 180 ° C. Fibers were obtained without problems such as yarn breakage and fluffing. However, the obtained fiber had a low elastic recovery rate of 48%, a QZR value of 0.52, and could not satisfy the expression (1).
〔比較例 9〕  (Comparative Example 9)
5 —ナ ト リ ゥムスルホイ ソフタル酸を 2 . 5 モル%共重合したポ リエチ レ ンテレフタ レー ト繊維を用いて紡糸を行った。 得られた繊 維は、 強度 4 . 2 g Z d、 伸度 3 0 %、 弾性率 1 0 0 g / d、 弾性 回復率 3 1 %、 Q Z R値 3 . 2、 T m a x l 3 1 °Cを示し、 カチォ ン染料の 9 5 °C、 3 0 分での吸尽率は 3 6 %であった。 Spinning was performed using poly (ethylene terephthalate) fiber obtained by copolymerizing 2.5% by mole of 5-sodium sulfoisophtalic acid. The obtained fiber had a strength of 4.2 g Zd, an elongation of 30%, an elasticity of 100 g / d, an elastic recovery of 31%, a QZR value of 3.2, and a Tmaxl of 31 ° C. Show, Katyo The exhaustion rate of the dye at 95 ° C. and 30 minutes was 36%.
〔参考例 1 〕  (Reference Example 1)
酢酸コバル ト、 ト リ メ チルホスフ アイ トを用いずに、 実施例 1 を 繰り返した。 この場合、 繊維物性には変化がなかったが、 繊維の b 値は 1 1 . 2であり黄色く なつた。  Example 1 was repeated without using cobalt acetate and trimethyl phosphite. In this case, there was no change in the fiber properties, but the b value of the fiber was 11.2, which turned yellow.
〔実施例 8 〕  (Example 8)
実施例 2で得たポ リ マーを乾燥し、 水分を 5 0 p p mにした後、 2 8 5 °Cで溶融させ、 直径 0 . 2 3 m mの 3 6個の孔の開いた一重 配列の紡口を通して押し出した。 押し出された溶融マルチフ ィ ラメ ン トを、 長さ 5 c m、 温度 1 0 0 °Cの保温領域を通過させた後、 風 速 0 . 4 m/m i n の風を当てて急冷し、 固体マルチフ ィ ラ メ ン ト に変えた。 次にこの固体マルチフ ィ ラ メ ン トを 6 0 °Cに加熱した回 転速度 2 1 0 0 m/m i nの第一ロールと 1 3 3 °Cに加熱した回転 速度 4 3 0 0 m/m i nの第二ロ ールの間を通して、 熱延伸と熱セ ッ トを行い、 その後 4 1 8 0 m/ m i nで巻き取った。 得られた繊 維は双糸にし 7 5 d / 7 2 f と した。  The polymer obtained in Example 2 was dried to a water content of 50 ppm, melted at 285 ° C, and spinned into a single array having 0.23 mm diameter and having 36 holes. Extruded through mouth. The extruded molten multifilament is passed through a heat retaining area with a length of 5 cm and a temperature of 100 ° C, and then quenched by blowing air at a wind speed of 0.4 m / min to obtain a solid multifilament. I changed it to a comment. Next, this solid multifilament was heated to 60 ° C, and the first roll was at a speed of 210 m / min, and the rotary speed was heated to 133 ° C, 4300 m / min Then, hot stretching and heat setting were performed between the second rolls, and then the film was wound at 418 m / min. The obtained fiber was made into a double yarn and made 75 d / 72 f.
得られた繊維は、 強度 3 . 1 g Z d 、 伸度 4 1 %、 U % 0 . 7 % 、 弾性率 2 2 g Z d、 弹性回復率 8 9 %、 Q / R 0 . 2 5 、 T m a x 1 0 9 °C、 9 5 °C、 3 0分におけるカチオン染料の吸尽率が 9 8 %、 b値 6 . 5 を示すものであっ た。  The obtained fiber has a strength of 3.1 g Zd, an elongation of 41%, a U% of 0.7%, an elasticity of 22 gZd, a sexual recovery rate of 89%, a Q / R of 0.25, The exhaustion rate of the cationic dye at Tmax 109 ° C, 95 ° C, and 30 minutes was 98%, and the b value was 6.5.
〔実施例 9 〕  (Example 9)
実施例 1 のポ リ エステル繊維と 2 1 0 デニールのロイ力 (旭化成 工業 (株) 製ポ リ ウ レタ ン系ス ト レ ツ チ繊維) を用いて経編地を編 成した。 編成のゲージは 2 8 G、 ノレープ長はポ リ エステル繊維が 1 0 8 0 mm/ 4 8 0 コ ース、 ス ト レ ッ チ繊維力く i 1 2 m m/ 4 8 0 コースと し、 打ち込み密度を 9 0 コース Zイ ンチと した。 また、 ポ リエステル繊維の混率は、 7 5 . 5 %に設定した。 得られた生機を 9 0 、 2分間リ ラ ッ ク ス精練し、 1 6 0 °C、 1 分間乾熱セッ トを施した。 カャク リ ルブラ ッ ク B S — E D (日本化 薬 (株) 製カチオン染料) を用い、 分散剤と してディ スパ一 T L ( 明成化学 (株) 製、 非ィォン性系活性剤) を 1 g Zリ ッ トル使用 し 、 硫酸ナ ト リ ウ ム 5 0 g Zリ ツ トルと炭酸ナ ト リ ウム 1 5 g /リ ツ トルを加え、 p Hを 1 1 に調整した水溶液に染料を加えて染液と し た。 染色濃度 8 % 0 w f 、 浴比 1 : 5 0 で 9 5 °C、 1 時間染色を行 つた。 染色後、 グラ ンア ッ プ P (三洋化成工業 (株) 製、 非イオ ン 性界面活性剤) 1 g Z リ ッ トル、 浴比 1 : 5 0 、 8 0 °Cで 1 0分間 ソービングした。 染色後、 常法により仕上げを行った。 得られた染 色物の L値は、 1 1 . 2 と、 十分に染色されていた。 染色物の染色 堅牢性は、 洗濯堅牢度 5級、 湿摩擦堅牢度 5級、 耐光堅牢度 4 からA warp knitted fabric was formed using the polyester fiber of Example 1 and a loyal force of 210 denier (polyurethane stretch fiber manufactured by Asahi Kasei Kogyo Co., Ltd.). The knitting gauge is 28 G, the polyester fiber is 108 mm / 480 course of polyester fiber, stretch fiber strength is 12 mm / 480 course, and driving is performed. The density was 90 courses Z inch. The mixing ratio of the polyester fiber was set to 75.5%. The obtained greige was subjected to relax scouring for 90 minutes and a dry heat set at 160 ° C for 1 minute. Disperse TL (Non-ionic activator manufactured by Meisei Chemical Co., Ltd.) is used as a dispersant in 1 g Z using KYARILL BLACK BS-ED (cationic dye manufactured by Nippon Kayaku Co., Ltd.) Using a liter, add 50 g of sodium sulfate and 15 g / liter of sodium carbonate, and dye by adding a dye to an aqueous solution whose pH has been adjusted to 11. Liquid. Staining was performed at 95 ° C. for 1 hour at a staining concentration of 8% 0 wf and a bath ratio of 1:50. After staining, Granup P (manufactured by Sanyo Kasei Kogyo Co., Ltd., non-ionic surfactant) 1 g Z liter, bath ratio 1: 50, 80 ° C. for 10 minutes. After dyeing, finishing was performed by a conventional method. The obtained dyed product had an L value of 11.2, which was sufficiently dyed. The dyeing fastness of the dyed materials is from the washing fastness class 5, the wet rub fastness class 5, and the light fastness class 4.
5級であった。 また、 この染色編地はソ フ トで、 ス ト レ ッ チ性に富 み、 しかも張り、 腰のある優れた風合いを示した。 It was 5th grade. The dyed knitted fabric was soft, rich in stretch, and had an excellent texture with tightness and waist.
〔実施例 1 0〕  (Example 10)
実施例 2 のポ リ エステル繊維を用いて、 実施例 9 と同様の操作を 繰り返した。 得られた染色物の L値は 1 0 . 9で、 十分に染色され ていた。 この染色物の染色堅牢度は、 洗濯堅牢性 5級、 湿摩擦堅牢 性 5級、 耐光堅牢性 4 から 5級であつた。 染色物はソ フ トで、 ス ト レツチ性に富み、 しかも張り、 腰がある優れた風合いを示した。  The same operation as in Example 9 was repeated using the polyester fiber of Example 2. The L value of the obtained dyed product was 10.9, indicating that it was sufficiently dyed. The dyeing fastness of this dyed product was 5 for washing fastness, 5 for wet rub fastness, and 4 to 5 light fastness. The dyed material was soft, rich in stretchiness, and had an excellent texture with a firm and firm feel.
〔比較例 1 0〕  (Comparative Example 10)
比較例 1 で作成したポ リ ト リ メ チレンテレフタ レー ト繊維を用い て実施例 9 と同様の編物を編成した。  The same knit as in Example 9 was knitted using the polymethylene terephthalate fiber prepared in Comparative Example 1.
得られた生機を 9 0 °C、 2分間リ ラ ッ ク ス精練し、 1 6 0 °C、 1 分間乾熱セッ トを施した。 濃色に染色するために、 ダイァニッ クス ブラ ッ ク B G — F S (ダイ スタージャパン社製分散染料) 8 % 0 w f を用い、 染色助剤であるニツカサ ンソル ト 1 2 0 0 を 0 . 5 g / リ ツ トルの存在下、 酢酸で p Hを 6 に調整して、 浴比 1 : 3 0で 9 5 °C、 6 0分間染色を行った。 得られた染色物の湿摩擦堅牢性は 2 級であり、 ス ト レ ッ チ繊維を汚染した分散染料の遊離が認められた また比較例 9で作成した繊維を用いて、 実施例 9 と同様の操作を 繰り返した。 得られた布帛は明らかに硬く 、 L値が 2 1 と薄い色に しか染色されなかった。 The obtained greige was subjected to relax scouring at 90 ° C for 2 minutes and subjected to a dry heat set at 160 ° C for 1 minute. To dye in a dark color, use Dynix Black BG-FS (Disperse Dye, manufactured by Dystar Japan) 8% 0 wf, and add 0.5 g / In the presence of a little, the pH was adjusted to 6 with acetic acid, and the cells were stained at a bath ratio of 1:30 at 95 ° C for 60 minutes. The wet rub fastness of the obtained dyed product was of the second grade, and the release of the disperse dye contaminating the stretch fiber was observed.Similar to Example 9 using the fiber prepared in Comparative Example 9 Was repeated. The resulting fabric was clearly hard and was dyed only in a light color with an L value of 21.
また、 比較のために、 通常法で紡糸されたナイ ロ ン 6繊維とロイ 力との経編地を実施例 9 と同様に作成し、 カャロ ンブラ ッ ク B G L (日本化薬 (株) 製酸性染料) を用いて、 7 % 0 w f にて 1 0 0 °C 、 6 0分間染色した。 得られた染色布帛の耐光堅牢度は 2 から 3級 であった。  For comparison, a warp knitted fabric of nylon 6 fiber and Roy force spun by the usual method was prepared in the same manner as in Example 9, and was prepared by using Callon Black BGL (manufactured by Nippon Kayaku Co., Ltd.). Dye) at 7% 0 wf at 100 ° C. for 60 minutes. The lightfastness of the obtained dyed fabric was 2 to 3.
〔実施例 1 1 〕  (Example 11)
実施例 1 と同様にして得た 7 5 d Z 3 6 f のポ リエステル繊維を 経糸、 緯糸に 7 5 d / 4 4 f の銅アンモニア レーヨ ンを用いて、 平 織物 (経 1 4 0本 / 2 5. 4 mm、 緯 8 0本 / 2 5. 4 mm) を製 織した。 この平織物を常法により精練した。 水洗後、 1 8 0 °C、 3 A 75-dZ36f polyester fiber obtained in the same manner as in Example 1 was used for warp and a 75-d / 44-f cuprammonium rayon for the weft, to give a plain weave (140-w / 25.4 mm, weft 80 / 25.4 mm). This plain fabric was scoured by a conventional method. After washing with water, 180 ° C, 3
0秒のプレセッ ト後、 キヤ リ ヤーを用いずにカチオン染料と、 反応 染料による一段一浴染色を行った。 カチオ ン染料と してはカャク リ ルブラ ッ ク B S — E D (日本化薬 (株) 製、 カチオ ン染料) 、 ドリ マレ ンブル一 X— S G N (サン ド (株) 製、 反応染料) を用いた。 分散剤はディ スパ一 T L (明成化学 (株) 製) を 1 g /リ ツ トル使 用 し、 硫酸ナ ト リ ウム 5 0 g Zリ ツ トルと炭酸ナ ト リ ウム 1 5 g / リ ッ トルを加え、 p Hを 1 1 に調整した水溶液に染料を加えて染液 と した。 濃度 2 % 0 w f 、 浴比 1 : 5 0で 1 0 0 °C、 1 時間染色を 行った。 染色後、 グラ ンアップ P (三洋化成工業 (株) 製) 1 g / リ ツ トル、 浴比 1 : 5 0で 8 0 °C、 1 0分間ソー ビングした。 染色 後、 常法により仕上げを行った。 得られた染色物は均一に染色され ており、 鮮明な染色物であった。 K / Sが 2 4 . 3であった。 また 通常のポ リエステル繊維で行うアルカ リ減量処理を行わないにも関 わらず、 ソフ 卜な風合いと ドライ感に溢れ、 従来の織物では得られ ない優れた風合いであった。 ドライ ク リ ーニング堅牢度は 5級、 湿 摩擦堅牢度は 5級、 耐光堅牢性は 4級であった。 After the 0-second preset, one-step one-bath dyeing with a cationic dye and a reactive dye was performed without using a carrier. The cation dyes used were KYRILLIL BLACK BS-ED (Cation dyes, manufactured by Nippon Kayaku Co., Ltd.) and Dori Maleble X-SGN (Sand Co., Ltd., reactive dyes). . The dispersant used was Dispar TL (manufactured by Meisei Chemical Co., Ltd.) at a rate of 1 g / liter, 50 g of sodium sulfate and 15 g / liter of sodium carbonate. The dye was added to the aqueous solution whose pH was adjusted to 11 to obtain a dye solution. Staining was performed at 100 ° C. for 1 hour at a concentration of 2% 0 wf and a bath ratio of 1:50. After staining, the granules were soaked in Granup P (manufactured by Sanyo Chemical Industry Co., Ltd.) at 1 g / liter and a bath ratio of 1:50 at 80 ° C. for 10 minutes. staining After that, finishing was performed by a conventional method. The obtained dyed product was uniformly dyed and was a clear dyed product. K / S was 24.3. In addition, despite the fact that the alkali weight reduction treatment performed with ordinary polyester fibers was not performed, the fabric was full of soft texture and dryness, and had an excellent texture that cannot be obtained with conventional fabrics. The dry cleaning fastness was grade 5, the wet friction fastness was grade 5, and the light fastness was grade 4.
また、 実施例 1 と同様にして得た 7 5 d / 3 6 f のポ リ エステル 繊維を用いて、 緯糸と経糸を同じにして平織物を作成し、 染色加工 した。 得られた布帛は ドライ感はないが、 極めてソフ トで布帛は緯 方向に 7 %程度のス ト レ ツチ性を示した。  Using 75 d / 36 f polyester fiber obtained in the same manner as in Example 1, a plain woven fabric was prepared using the same weft and warp yarns, and dyed. Although the obtained fabric did not have a dry feeling, it was extremely soft and the fabric showed a stretch property of about 7% in the weft direction.
〔実施例 1 2〕  (Example 12)
実施例 1 で得られた繊維と実施例 1 と同様な方法で重合、 紡糸を 行ったポ リエチレンテレフタ レー 卜繊維および 5 —ナ 卜 リ ゥムィ ソ フタル酸ナ ト リ ウムを 3 モル%共重合したポ リエチレンテレフタ レ — ト繊維で調製した一口編地 (丸編、 天竺、 ゲージ 2 8 ) を用いて アル力 リ減量テス トを行った。 一口編地は、 編成後、 スコア ロール 4 0 0 を 2 g / リ ッ トルで含む温水を用いて、 7 0 °C、 2 0分間精 練処理し、 タ ンブラ一乾燥機で乾燥させ、 次いで、 ピンテンタ一を 用いて、 1 8 0 °C、 3 0秒の熱セッ トを行ったものを用いた。 アル カ リ減量加工は、 沸騰させた水酸化ナ ト リ ウムの 6重量%水溶液中 に一口編地を 2 0分間入れて行った。 アルカ リ減量率は、 編地がァ ルカ リ減量によつて減少した分の重量を、 元の編地の重量で除した 値で評価した。  The fiber obtained in Example 1 was copolymerized and spun in the same manner as in Example 1, and copolymerized with 3% by mole of polyethylene terephthalate fiber and sodium 5-naphthalomisophthalate. A weight loss test was carried out using a single-knit fabric (circular knit, sheeting, gauge 28) prepared from the prepared polyethylene terephthalate fiber. After knitting, the knitted fabric is scoured at 70 ° C for 20 minutes using warm water containing score roll 400 at 2 g / liter, dried with a tumble dryer, and then dried. A heat set at 180 ° C. for 30 seconds using a pin tenter was used. Alkali weight reduction processing was carried out by placing the bite knitted fabric in a 6% by weight aqueous solution of sodium hydroxide boiled for 20 minutes. The alkali weight loss rate was evaluated by dividing the weight of the knitted fabric reduced by the weight loss by the weight of the original knitted fabric.
その結果、 実施例 1 で得られた繊維の一口編地、 ポ リエチレンテ レフタ レー ト繊維の一口編地での減量率は、 それぞれ 2 5 . 4重量 %、 1 0 . 3 重量%であった。 このよ う に本発明のポ リ エステル繊 維はポリエチレンテレフ夕 レー ト繊維に近いアル力 リ減量速度を示 した。 As a result, the weight loss rates of the single-port knitted fabric of the fiber obtained in Example 1 and the single-port knitted fabric of polyethylene terephthalate fiber were 25.4% by weight and 10.3% by weight, respectively. Thus, the polyester fiber of the present invention exhibits a weight loss rate close to that of polyethylene terephthalate fiber. did.
〔比較例 1 1 〕  [Comparative Example 11]
5 ーナ 卜 リ ウムスルホイ ソフタル酸ナ 卜 リ ウムを 3 モル%共重合 したポリエチレンテレフタ レー ト繊維を実施例 1 2 と同じ方法で編 成した一口編地を用いて実施例 1 2 と同様にアル力 リ減量を行つた ところ完全に編地が分解し、 溶解して消失してしま った。 従って、 5 —ナ ト リ ウムスルホイ ソフタル酸ナ 卜 リ ゥムを 3 モル%共重合し たポ リエチレンテレフタ レー ト繊維ではアル力 リ減量加工を施すこ とは、 減量速度が速すぎて実質不可能である。  In the same manner as in Example 12 using a one-piece knitted fabric obtained by knitting polyethylene terephthalate fiber obtained by copolymerizing sodium 5 sodium sodium sulfophthalate at 3 mol% in the same manner as in Example 12 When the weight was reduced, the knitted fabric was completely decomposed, dissolved and disappeared. Therefore, in the case of polyethylene terephthalate fiber obtained by copolymerizing 3% by mole of sodium 5-sodium sulfoisophtalate, it is practically impossible to reduce the weight loss rate because the rate of weight loss is too fast. It is possible.
〔実施例 1 3〕  (Example 13)
実施例 1 と同様な方法を用いて、 5 —ナ ト リ ゥムイ ソフタル酸ジ メ チルを 2 モル%、 ァジピン酸ジメ チルを 5 重量%共重合させた繊 維を作成した。 繊維の物性は、 融点 2 2 0 °C、 強度 3 . 6 g / d、 伸度 3 4 %、 弾性率 2 2 g Z d、 弾性回復率 9 0 %で、 Qノ R値は 0 . 2 5であった。  Using a method similar to that of Example 1, a fiber was prepared by copolymerizing 2 mol% of dimethyl sodium 5-dimethylsophthalate and 5 wt% of dimethyl ethyl adipate. The physical properties of the fiber are as follows: melting point: 220 ° C, strength: 3.6 g / d, elongation: 34%, elasticity: 22 g Zd, elastic recovery: 90%, and R value of 0.2 It was five.
この実施例で得られたポリ エステル繊維の 9 5 °C、 3 0分におけ るカチオン染料の吸尽率は 9 5 %、 また 9 5 °C、 6 0 分における分 散染料の吸尽率は 9 5 %とカチオ ン染料、 分散染料の両方に常圧で 高い染色性を示した。  The exhaustion rate of the cationic dye at 95 ° C and 30 minutes of the polyester fiber obtained in this example was 95%, and the exhaustion rate of the disperse dye at 95 ° C and 60 minutes. Showed high dyeability at 95% for both cationic dyes and disperse dyes at normal pressure.
染色後の一口編地の ドライ ク リ ーニ ング堅牢度は、 染色物の退色 も認められず、 カチオ ン染料、 分散染料と も液汚染は 4 から 5級で あった。 また、 繊維の耐光堅牢度 ( 4 から 5級) 、 乾 · 湿摩擦堅牢 度 ( 5級) 、 洗濯堅牢度 ( 5級) についても良好であった。  The dry cleaning fastness of the one-necked knitted fabric after dyeing did not show any fading of the dyed material, and the cation dye and the disperse dye were in the 4th to 5th class of liquid contamination. In addition, the light fastness (four to five grades), dry / wet friction fastness (five grades), and washing fastness (five grades) of the fibers were also good.
また、 実施例 9 、 1 1 と同様の織編物を調製したところ、 実施例 9、 1 1 と同様の優れた風合いを持つ布帛が得られた。  In addition, when the same woven or knitted fabric as in Examples 9 and 11 was prepared, a fabric having the same excellent texture as in Examples 9 and 11 was obtained.
〔実施例 1 4〕  (Example 14)
実施例 2 で得た繊維をカ ツ 卜 し、 繊維長 3 9 m mの短繊維を得た 。 実施例 2 と同様にして得た 2 0 d / 2 f のフ ィ ラ メ ン トを芯と し 、 この短繊維が鞘に配列されたフ ィ ラメ ン ト混率が 1 1 重量%の複 合糸を得た。 該複合糸を経糸 (織密度 1 4 6本 Z 2 5 . 4 mm) 、 緯糸 (織密度 7 7本 Z 2 5 . 4 mm) の織物に製織し、 実施例 9の 方法に準じて 9 5 °Cで染色を行った。 The fiber obtained in Example 2 was cut to obtain a short fiber having a fiber length of 39 mm. . A 20 d / 2 f filament obtained in the same manner as in Example 2 was used as a core, and the short fibers were arranged in a sheath. The filament mixture was 11 wt%. Yarn was obtained. The composite yarn was woven into a warp (weaving density: 144, Z25.4 mm) and weft (weaving density: 77, Z25.4 mm) woven fabrics, and was woven according to the method of Example 9. Staining was performed at ° C.
染色布帛の K Z Sは 2 5 . 3で濃色に染ま った。 また、 得られた 布帛は張り、 腰、 反発性に優れたものであった。  The KZS of the dyed fabric was dyed deep at 25.3. The obtained fabric was excellent in tension, waist, and resilience.
〔実施例 1 5〕  (Example 15)
実施例 2で得られたポリマーを窒素中、 2 0 0 °C、 2 4 時間固相 重合し、 極限粘度 1 . 0 のポリ マーを得た。 実施例 1 と同様に紡糸 を行ったところ、 強度 4 . 0 ノ(5、 伸度 3 2 %、 11 % 1 . 0 %、 弾性率 2 3 g Z d、 弹性回復率 9 1 %、 Q Z R値 0 . 2 5 、 T m a x l l O °C、 b値 4 . 3 の物性を持つ繊維を得た。  The polymer obtained in Example 2 was subjected to solid-state polymerization in nitrogen at 200 ° C. for 24 hours to obtain a polymer having an intrinsic viscosity of 1.0. The spinning was carried out in the same manner as in Example 1, and the strength was 4.0 (5, elongation 32%, 11% 1.0%, elastic modulus 23 g Zd, elasticity recovery rate 91%, QZR value A fiber having physical properties of 0.25, T maxll O ° C, and b value of 4.3 was obtained.
〔実施例 1 6〕  (Example 16)
T M G 1 0 3 1 重量部、 1 , 4 —ブタ ンジオール (以下 「 4 G」 と略記する) を 1 0 6重量部、 D M T 1 3 0 0重量部、 チタ ンテ ト ラブ トキシ ド 1 . 3重量部を用いて 2 2 0 °Cにてエステル交換を行 つたのち、 ト リ メ チルホスフ ヱ一 ト 0 . 0 1 重量%を添加し、 2 5 0 °Cにて減圧度 0 . 5 t 0 r r にて重縮合を行いポ リ マーを得た。 得られたポ リマーの極限粘度は 0 . 8であった。 また、 N M Rを用 いて測定したポリ マー中の 4 G成分は 4 . 1 重量%であつた。  TMG 103 parts by weight, 1,4-butanediol (hereinafter abbreviated as “4G”) 106 parts by weight, DMT 130 parts by weight, titanium tetrabutoxide 1.3 parts by weight After transesterification at 220 ° C using, 0.01% by weight of trimethyl phosphite was added, and the pressure was reduced to 0.5 t0 rr at 250 ° C. Then, polycondensation was performed to obtain a polymer. The intrinsic viscosity of the obtained polymer was 0.8. Further, the 4G component in the polymer measured by using NMR was 4.1% by weight.
得られたポ リ マーチップを乾燥させた後、 3 6個の丸断面の孔 ( 直径 0 . 2 3 m m) を持つ紡口を用い、 紡糸温度 2 6 5 °C、 紡糸速 度 1 2 0 0 m/m i nで紡糸して未延伸糸を作成した。 次いで、 得 られた未延伸糸をホッ ト ロ一ノレ 6 0。C、 ホッ トプレー ト 1 4 0 °C、 延伸倍率 2 . 9倍、 延伸速度 6 0 0 m Z m i nで延撚を行い、 5 0 d / 3 6 f の延伸糸を得た。 繊維の物性は、 融点 2 2 4 °C、 T m a x 9 8 °C、 強度 3. 6 g Z d、 伸度 4 0 %、 U % 1 . 2 %、 弾性率 2 3 g/ d、 弾性回復率 8 3 %、 b値 4. 5であった。 この繊維の QZR値は、 0. 2 8 となり式 ( 1 ) を満足することができた。 また、 本実施例のポ リ エステル繊維の 9 5 °C、 6 0分における分 散染料による吸尽率は 7 8 %であり、 高い吸尽率を示した。 After drying the obtained polymer chip, a spinning temperature of 265 ° C and a spinning speed of 1200 were used using a spinning hole having 36 round cross-section holes (diameter: 0.23 mm). An undrawn yarn was prepared by spinning at m / min. Next, the obtained undrawn yarn is hot-rolled 60. C, a hot plate was applied at 140 ° C, a draw ratio of 2.9 times, and a draw speed of 600 mZmin was used to obtain a drawn yarn of 50 d / 36 f. Fiber properties are as follows: melting point: 2 24 ° C, Tma x 98 ° C, strength 3.6 g Zd, elongation 40%, U% 1.2%, elastic modulus 23 g / d, elastic recovery 83%, b value 4.5 . The QZR value of this fiber was 0.28, thereby satisfying the expression (1). In addition, the exhaustion rate of the polyester fiber of this example at 95 ° C. and 60 minutes by the disperse dye was 78%, indicating a high exhaustion rate.
染色後の一口編地の ドライ ク リ ーニング堅牢度では染色物の退色 も認められず、 液汚染は 3. 5級、 耐光堅牢度 ( 5から 4級) 、 乾 • 湿摩擦堅牢度 ( 5級) 、 洗濯堅牢度 ( 5級) についても良好であ つた。  In the dry-cleaning fastness of the one-piece knitted fabric after dyeing, no fading of the dyed material was observed, the liquid contamination was 3.5 grade, the light fastness (5 to 4 grade), the dry • wet friction fastness (5 grade) ) The washing fastness (grade 5) was also good.
〔実施例 1 7〜 2 1 〕  (Examples 17 to 21)
グリ コール類の種類と、 グリ コール類と T M Gの比率を変えた以 外、 実施例 1 6 と同様の方法で重合 · 紡糸を行った。 得られた繊維 のそれぞれについての試験、 評価結果を表 2 にま とめた。 いずれの 場合も式 ( 1 ) を満足するで繊維であり、 また良好な染色性、 染色 堅牢性、 諸物性を示した。  Polymerization / spinning was carried out in the same manner as in Example 16 except that the type of glycols and the ratio of glycols to TMG were changed. Table 2 summarizes the test and evaluation results for each of the obtained fibers. In each case, it was a fiber satisfying the formula (1), and exhibited good dyeing properties, dyeing fastness, and various physical properties.
〔比較例 1 2〕  (Comparative Example 1 2)
比較例 1 のポ リ マーを用いて、 繊維を実施例 1 に準じて調製して 前記 ( 7 ) 染色性評価試験②の分散染料によるポ リエステル繊維の 染色性の評価を行った。 しかしながら、 この比較例で得られたポ リ エステル繊維は、 T m a X力く 1 0 2 °Cを越えていた。 この繊維の 9 5 °C、 6 0分における分散染料による吸尽率は、 3 6 %であり、 濃 色に染色することはできなかった。 しかしながら、 染液濃度を 0. 5 % o w f で行う と、 8 1 %まで吸尽率は向上した。 従って、 この 結果から、 ポ リ ト リ メ チ レ ンテレフタ レ一 ト繊維は分散染料に対し 低染料濃度では常圧可染性を示すが、 染料濃度が高く なると常圧可 染性は示さないこ とがわかる。  Using the polymer of Comparative Example 1, a fiber was prepared in the same manner as in Example 1, and the dyeability of the polyester fiber was evaluated by the disperse dye of the above (7) Dyeability evaluation test (1). However, the polyester fiber obtained in this comparative example had a T max of more than 102 ° C. The exhaustion rate of this fiber by the disperse dye at 95 ° C and 60 minutes was 36%, and it was not possible to dye it in a deep color. However, when the dye concentration was set at 0.5% owf, the exhaustion rate was increased to 81%. Therefore, this result indicates that polymethylethylene terephthalate fiber shows normal pressure dyeability at a low dye concentration with respect to the disperse dye, but does not show normal pressure dyeability at a high dye concentration. I understand.
〔比較例 1 3〕 TMGと 4 Gの比率を変えた以外、 実施例 1 6 と同様の方法で重 合 · 紡糸を行った。 その結果を表 2 に示す。 4 G成分の比率は 1 . 5重量%未満であり、 繊維の T m a xは 1 0 6 °Cであった。 9 5 °C 、 6分における分散染料による吸尽率は低く 、 濃色に染色すること はできなかった。 (Comparative Example 13) Polymerization / spinning was performed in the same manner as in Example 16 except that the ratio of TMG to 4G was changed. The results are shown in Table 2. The proportion of the 4G component was less than 1.5% by weight and the Tmax of the fiber was 106 ° C. The exhaustion rate by the disperse dye at 95 ° C and 6 minutes was low, and it was not possible to dye in a dark color.
表 2 Table 2
Figure imgf000045_0001
Figure imgf000045_0001
4 G 1 , 4 一ブタンジオール 6 G 1 , 6—へキサンジオール 4 G 1, 4 Monobutanediol 6 G 1, 6—Hexanediol
3 G - 2 ネオペンチルグリコール C 6 - 2 G シクロへキサンジメ夕ノール 3 G-2 Neopentyl glycol C 6-2 G Cyclohexanedimethanol
〔比較例 1 4〕 (Comparative Example 14)
T M Gと 4 Gの比率を変えた以外、 実施例 1 6 と同様の方法で重 合 · 紡糸を行った。 得られた繊維の物性、 評価結果を表 2 に示す。 4 G成分の比率は 1 0 . 3重量%であった。 繊維の T m a xは 8 5 °C以下であり、 吸尽率は高いが ドライ ク リ ーニング堅牢度は 1 級と 非常に劣る ものであった。  Polymerization / spinning was performed in the same manner as in Example 16 except that the ratio of TMG to 4G was changed. Table 2 shows the physical properties and evaluation results of the obtained fibers. The ratio of the 4G component was 10.3% by weight. The Tmax of the fiber was 85 ° C or less, and the exhaustion rate was high, but the dry cleaning fastness was very low at class 1.
〔比較例 1 5〕  (Comparative Example 15)
4 Gの代わりにへキサメ チレングリ コール (以下 6 Gと略す) を 用い、 T M Gと 6 Gの比率を変えた以外、 実施例 1 6 と同様の方法 で重合 · 紡糸を行った。 得られた繊維の試験、 評価結果を表 2 に示 す。 ポ リ マーの 6 G成分の比率は 8 . 7 重量%であった。 しかしこ の繊維の T m a Xは 8 5 °C以下であり、 9 5 °C、 6 0分で染色を行 つた場合、 吸尽率は 7 0 %を超えていたものの、 ドライ ク リ 一ニン グ堅牢性は 1 級と非常に劣る ものであつた。 また繊維の融点が 2 1 0 °Cと低く 、 仮撚り加工等の加工を行おう と したところ糸がヒータ 一に融着し、 加工を行う ことができなかった。  Hexamethylen glycol (hereinafter abbreviated as 6G) was used in place of 4G, and polymerization and spinning was performed in the same manner as in Example 16 except that the ratio of TMG to 6G was changed. Table 2 shows the test and evaluation results of the obtained fibers. The proportion of the 6G component of the polymer was 8.7% by weight. However, the Tmax of this fiber was 85 ° C or less, and when dyed at 95 ° C for 60 minutes, the exhaustion rate exceeded 70%. The ruggedness was very poor at 1st grade. In addition, the melting point of the fiber was as low as 210 ° C., and when processing such as false twisting was performed, the yarn was fused to the heater and processing could not be performed.
〔比較例 1 6 〕  (Comparative Example 16)
4 Gの代わりにシク ロへキサンジメ タ ノ 一ル (以下 C 6 一 2 Gと 略す) を用い、 T M Gと C 6 — 2 Gの比率を変えた以外、 実施例 1 6 と同様の方法で重合 · 紡糸を行った。 その結果を表 2 に示す。 C 6 — 2 G成分の比率は 1 2 . 6重量%であった。 しかしこの糸の弾 性率は 2 4 g Z d、 弾性回復率は 3 4 %であり、 Q Z R値は 0 . 7 1 と式 ( 1 ) を満足することができなかった。 この糸から得た布帛 は、 弾性回復性に乏しいものであった。 また繊維の T m a Xは 6 2 °Cであり、 9 5 °C、 6 0分で染色を行ったところ布帛が収縮し硬く なってしま った。  Polymerization was carried out in the same manner as in Example 16 except that cyclohexanedimethanol (hereinafter abbreviated as C6-12G) was used instead of 4G and the ratio of TMG to C6-2G was changed. · Spinning was performed. The results are shown in Table 2. The ratio of the C 6 -2G component was 12.6% by weight. However, the elastic modulus of this yarn was 24 g Zd, the elastic recovery was 34%, and the QZR value was 0.71, which did not satisfy the expression (1). The fabric obtained from this yarn had poor elastic recovery. The Tmax of the fiber was 62 ° C. When dyed at 95 ° C for 60 minutes, the fabric shrank and became hard.
〔比較例 1 7〕 4 Gの代わりにエチ レ ングリ コール (以下 2 Gと略す) を用い、 T M Gと 2 Gの比率を変えた以外、 実施例 1 6 と同様の方法で重合 ' 紡糸を行った。 その結果を表 2 に示す。 得られたポ リ マーは黄色 く 着色しており、 得られた繊維も b値が 1 8 . 3 と黄色く着色して おり、 白度の必要なィ ンナ一などの用途には使用するこ とができな かった。 (Comparative Example 17) Polymerization spinning was carried out in the same manner as in Example 16 except that ethylene glycol (hereinafter abbreviated as 2G) was used instead of 4G and the ratio of TMG to 2G was changed. The results are shown in Table 2. The obtained polymer is colored yellow, and the obtained fiber is also colored yellow with a b value of 18.3, and should be used for uses such as inner whiteners that require whiteness. Could not be done.
〔実施例 2 2〕  (Example 22)
実施例 1 6 のポリエステル繊維と 2 1 0 デニ一ルのロイ力 (旭化 成工業製のポ リ ウ レタ ン系ス ト レ ッ チ繊維) を用いて経編地を作成 した。 この編地の編成ゲージは 2 8 G、 ループ長はポ リ エステル繊 維力く 1 0 8 0 m m/ 4 8 0 コース、 ス ト レ ッ チ繊維力く 1 1 2 mm/ 4 8 0 コースと し、 打ち込み密度を 9 0 コース Zイ ンチと した。 ま た、 ポ リ エステル繊維の混率は 7 5 . 5 %に設定した。  A warp knitted fabric was prepared using the polyester fiber of Example 16 and a 210 denier Roy force (polyurethane-based stretch fiber manufactured by Asahi Kasei Corporation). The knitting gauge of this knitted fabric is 28 G, the loop length is 1800 mm / 480 course for polyester fiber, and 11 mm / 480 course for stretch fiber. The implantation density was 90 courses Z inch. The mixing ratio of the polyester fiber was set at 75.5%.
得られた生機を 9 0 °C、 2分間リ ラ ッ ク ス精練し、 1 6 0 °C、 1 分間乾熱セッ トを施した。 ダイァニッ クスブラ ッ ク B G — F S (ダ イ ス夕一ジ ャパン社製分散染料) を 8 % o w f 、 染色助剤である二 ッカサンソル ト 1 2 0 0 を 0 . 5 g /リ ッ トルの存在下、 酢酸で p Hを 6 に調整して、 浴比 1 : 3 0で 9 5 °C、 6 0分間染色を行った o  The obtained greige was subjected to relax scouring at 90 ° C for 2 minutes and subjected to a dry heat set at 160 ° C for 1 minute. In the presence of 8% owf of Dianix Black BG-FS (Disperse Dye manufactured by Daiichi Yuichi Japan Co., Ltd.) and 0.5 g / liter of Nikka Sun Salt 1200 as a dyeing aid. The pH was adjusted to 6 with acetic acid, and the cells were stained at a bath ratio of 1:30 at 95 ° C for 60 minutes.
得られた染色製品の黒色明度 L値は 1 1 . 7であり、 十分な発色 であった。 染色製品は、 洗濯堅牢度 5級、 湿摩擦堅牢度 4級、 耐光 堅牢度 4級で、 ソフ トでス ト レッチ感に富み、 張り、 腰がある風合 いを示した。  The black lightness L value of the obtained dyed product was 11.7, which was sufficient for coloring. The dyed product has a washing fastness of 5, a wet rub fastness of 4, and a light fastness of 4, and has a soft, stretchy, tight, and firm feel.
〔比較例 1 8〕  (Comparative Example 18)
比較のために、 通常法で紡糸されたナイ ロ ン 6繊維とロイ力との 経編地を実施例 2 2 と同様に作成し、 酸性染料と してカャロ ンブラ ッ ク B G L (日本化薬社製、 酸性染料) を用いて、 7 % o w f にて 9 5 °C、 6 0分染色した。 得られた染色製品の L値は 1 2 . 3であ つた。 この布帛の耐光堅牢度は 2 から 3級であった。 For comparison, a warp-knitted fabric of nylon 6 fiber spun by a conventional method and Roy force was prepared in the same manner as in Example 22 and calo black BGL (Nippon Kayaku Co., Ltd.) was used as the acid dye. At 7% owf Staining was performed at 95 ° C for 60 minutes. The L value of the obtained dyed product was 12.3. The lightfastness of this fabric was 2 to 3.
〔実施例 2 3〕  (Example 23)
実施例 1 6 と同様にして得た 7 5 d / 3 6 f のポ リエステル繊維 を経糸、 緯糸に 7 5 d / 4 4 f の銅ア ンモニア レーヨ ンを用いて、 平織物 (織密度 経 1 4 0本 Z 2 5 . 4 m m、 緯 8 0本 / 2 5 . 4 m m ) を作成した。 この平織物を常法により精練、 マ一セル化した 。 マーセル化加工は常温下、 7 5 %の水酸化ナ ト リ ウム水溶液に浸 して行った。 中和、 水洗、 1 8 0 °C、 3 0秒のプレセッ ト後、 キヤ リ ヤーを用いずに分散染料と反応染料による一段一浴染色を行った 分散染料と しては力ヤロ ンポ リ エステルブルー B R S F (日本化 薬社製、 分散染料) 、 ド リ マ レ ンブルー X— S G N (サ ン ド社製、 反応染料) を用いた。 分散剤はデイ スパー T L (明成化学社製) を 1 gノリ ッ トル使用 し、 硫酸ナ ト リ ウム 5 0 g Zリ ッ トルと炭酸ナ ト リ ウム 1 5 g /リ ッ トルを加え、 p Hを 1 1 に調整した水溶液に 染料を加えて染液と した。 染料濃度 2 % o w f 、 浴比 1 : 5 0で 9 5 °C、 1 時間染色した。 染色後、 グラ ンア ップ P (三洋化成社製、 非イ オ ン性界面活性剤) 1 g /リ ツ トル、 浴比 1 : 5 0 で 8 0 °C、 1 0分間ソ一ビングした。 染色後、 常法により仕上げを行った。 得られた染色物は均一に染色されており、 風合いもソフ 卜で、 か つ ドライ感があり、 従来の織物には見られない良好な風合いであつ た。 染色物の K / Sは 2 2 . 7、 ドライ ク リ ーニング堅牢度は 3か ら 4級、 湿摩擦堅牢度は 4級、 耐光堅牢度は 4級であった。  Using a 75 d / 36 f polyester fiber obtained in the same manner as in Example 16 as a warp and a weft as a 75 d / 44 f copper ammonia rayon, a plain woven fabric (weaving density 1 40 lines Z25.4 mm, Latitude 80 lines / 25.4 mm). This plain fabric was scoured and made into a mass by a conventional method. The mercerization process was performed at room temperature by immersion in a 75% sodium hydroxide aqueous solution. Neutralization, washing, pre-setting at 180 ° C for 30 seconds, and one-step single-bath dyeing with a disperse dye and a reactive dye without using a carrier Ester blue BRSF (manufactured by Nippon Kayaku Co., Ltd., disperse dye) and Drimaren Blue X—SGN (manufactured by Sando Co., Ltd., reactive dye) were used. As a dispersant, use 1 g of Dayspar TL (manufactured by Meisei Chemical Co., Ltd.), add 50 g of sodium sulfate and 15 g / liter of sodium carbonate and sodium carbonate, and add p. The dye was added to the aqueous solution in which H was adjusted to 11 to obtain a dye solution. Dyeing was performed at 95 ° C. for 1 hour at a dye concentration of 2% owf and a bath ratio of 1:50. After staining, the sample was rubbed with Granup P (manufactured by Sanyo Chemical Co., Ltd., nonionic surfactant) at 1 g / liter and a bath ratio of 1:50 at 80 ° C. for 10 minutes. After dyeing, finishing was performed by a conventional method. The obtained dyed product was uniformly dyed, had a soft texture, had a dry feeling, and had a good texture not seen in conventional fabrics. The dyed product had a K / S of 22.7, a dry cleaning fastness of 3 to 4, a wet rub fastness of 4, and a light fastness of 4.
また、 実施例 1 6 と同様にして得た 7 5 d / 3 6 f のポリエステ ル繊維を用いて、 緯糸と経糸を同じにして同様の平織物を作成し、 染色加工した。 得られた布帛は ドライ感はないが、 極めてソ フ トで 布帛は緯方向に 7 %程度のス 卜 レ ツチ性を示した。 〔実施例 2 4〕 Using a 75 d / 36 f polyester fiber obtained in the same manner as in Example 16, a similar plain woven fabric was prepared using the same weft and warp yarns and dyed. Although the obtained fabric had no dry feeling, the fabric was extremely soft and showed a stretch property of about 7% in the weft direction. (Example 24)
実施例 1 6 のポ リ エステル繊維に 3 0 0 T Z mの撚りを付与し、 ローラーにて糊付した後、 経糸と し、 緯糸にジアセテー ト ( 1 0 0 d / 1 5 0 f ) を用い平織物 (経 1 2 0本/ 2 5 . 4 mm、 緯 8 0 本 Z 2 5 . 4 mm) を製織した。  A twist of 300 TZm was applied to the polyester fiber of Example 16 and glued with a roller. Then, the warp was used, and diacetate (100 d / 150 f) was used for the weft. A plain woven fabric (120 warps / 25.4 mm, weft 80 warp Z25.4 mm) was woven.
ポ リエステル繊維用の分散染料と して力ヤロ ンポ リエステルブル 一 3 R S F (日本化薬社製) 、 ジアセテー ト用の分散染料と して力 ヤロ ンフ ァース トブル一 R D 2 0 0 (日本化薬社製) を用いた。 染 料濃度は、 各々 5 % o w f と し、 弱酸性で分散剤の存在下、 9 5 °C にて一段一浴染色を行った。 染色後、 ソ一ダ灰 1 g Zリ ツ トル、 非 イオン洗浄剤 0 . 5 g Zリ ッ トルの弱アルカ リ浴で 7 0。C、 2 0分 間ソービングを行った。 得られた染色物の K / Sは 2 2 . 2 と優れ たものであった。 染色物は、 ドラ イ ク リ ーニング堅牢度が 3 から 4 級、 耐光堅牢度は 4級で、 風合いはソ フ 卜で、 鮮明性にも優れたも のであった。  Nippon Kayaku Polyesterable RSRS (manufactured by Nippon Kayaku Co., Ltd.) as a disperse dye for polyester fiber, and Nyakuhon Kabushiki Kaisha RD 200 (Nippon Kayaku) as a disperse dye for diacetate (Manufactured by Sharp Corporation). The dye concentration was 5% owf for each step, and one-step single-bath dyeing was carried out at 95 ° C in the presence of a dispersant with weak acidity. After staining, soda ash 1 g Z liter, nonionic detergent 0.5 g Z liter 70 in a weak alkaline bath. C. Soaking was performed for 20 minutes. The K / S of the obtained dyed product was excellent, 22.2. The dyed product had a dry cleaning fastness of 3 to 4th grade, a light fastness of 4th grade, a soft texture and excellent clarity.
〔実施例 2 5〕  (Example 25)
D M T 1 1 7 0 重量部、 イ ソフタル酸ジメ チル 1 3 0重量部、 T M G 7 6 3重量部、 チタ ンテ トラブ トキシ ド 1 . 3 重量部を用いて 2 2 0 °Cにてエステル交換を行っ たのち、 更に ト リ メ チルホスフ エ ー ト 0 . 0 1 盧量部を添加して 2 6 0 °Cにて減圧度 0 . 5 t 0 r r にて重縮合を行いポ リ マーを得た。 得られたポリ マ一の極限粘度は 0 . 8 であった。 また、 N M Rを用いて測定したポ リ マー中のイ ソ フタル酸成分は 6 . 2重量%であった。  Transesterification was carried out at 220 ° C using 117 parts by weight of DMT, 130 parts by weight of dimethyl isophthalate, 1.3 parts by weight of TMG 763 parts, and 1.3 parts by weight of titanate laboxide. Thereafter, 0.01 part of trimethyl phosphate was further added, and polycondensation was performed at 260 ° C. at a reduced pressure of 0.5 t 0 rr to obtain a polymer. The intrinsic viscosity of the obtained polymer was 0.8. The isophthalic acid component in the polymer measured by NMR was 6.2% by weight.
得られたポ リ マーチップを乾燥させた後、 3 6個の丸断面の孔 ( 直径 0 . 2 3 m m) を持つ紡口を用い、 紡糸温度 2 6 5 °C、 紡糸速 度 1 2 0 0 m/m i nで紡糸して未延伸糸を作成した。 次いで、 得 られた未延伸糸をホ ッ ト ロール 6 0 °C、 ホッ 卜プレー ト 1 4 0 °C、 延伸倍率 2 . 9倍、 延伸速度 6 0 0 m / m i nで延撚を行い、 5 0 d / 3 6 f の延伸糸を得た。 繊維の物性は、 融点 2 1 9 °C、 T m a x 1 0 0 °C、 強度 3 . 5 g / d、 伸度 4 3 %、 U % 1 . 0 %、 弾性 率 2 4 g d、 弾性回復率 8 2 %、 b値 7 . 6 であった。 また、 繊 維の Q / R値は、 0 . 2 9 となり式 ( 1 ) を満足するこ とができた 。 この実施例のポ リ エステル繊維の 9 5 °C、 6 0分の分散染料によ る吸尽率は 8 1 %であり、 高い吸尽率を示した。 染色後の一口編地 の ドライ ク リ ーニング堅牢性では染色物の退色も認められず、 液汚 染は 3級であった。 また、 染色物の染色堅牢性は、 耐光堅牢度 ( 4 から 5級) 、 乾 · 湿摩擦堅牢度 ( 5級) 、 洗濯堅牢度 ( 5級) で、 良好であつた。 After drying the obtained polymer chip, a spinning temperature of 265 ° C and a spinning speed of 1200 were used using a spinning hole having 36 round cross-section holes (diameter: 0.23 mm). An undrawn yarn was prepared by spinning at m / min. Then, the obtained undrawn yarn was heated at a hot roll of 60 ° C, a hot plate of 140 ° C, Stretching was performed at a draw ratio of 2.9 and a draw speed of 600 m / min to obtain a drawn yarn of 50 d / 36 f. The physical properties of the fiber are as follows: melting point: 21.9 ° C, Tmax: 100 ° C, strength: 3.5 g / d, elongation: 43%, U%: 1.0%, elastic modulus: 24 gd, elastic recovery The b value was 7.6%, and the b value was 7.6. In addition, the Q / R value of the fiber was 0.29, which satisfied Expression (1). The polyester fiber of this example had an exhaustion rate of 81% with a disperse dye at 95 ° C for 60 minutes, indicating a high exhaustion rate. The dry-cleaning fastness of the one-necked knitted fabric after dyeing did not show any fading of the dyed material, and the liquor contamination was grade 3. The dyeing fastness of the dyed product was good in light fastness (grade 4 to 5), dry / wet rub fastness (grade 5), and wash fastness (grade 5).
〔実施例 2 6 〜 3 1 〕  (Examples 26 to 31)
ジカルボン酸誘導体の種類を変更し実施例 2 5 と同様の方法で重 合 · 紡糸を行った。 この繊維の評価結果を表 3 にま とめた。 いずれ の繊維も式 ( 1 ) を満足する繊維であり、 また良好な染色性、 堅牢 性、 諸物性を示した。  Polymer spinning was performed in the same manner as in Example 25 except that the type of the dicarboxylic acid derivative was changed. Table 3 summarizes the evaluation results of this fiber. All of the fibers satisfied the formula (1) and exhibited good dyeing properties, fastness, and various physical properties.
〔比較例 1 9 、 2 0〕  [Comparative Examples 19, 20]
イ ソフタル酸ジメ チルの共重合比率を変えて、 実施例 2 5 を繰り 返した。 得られた繊維の試験、 評価結果を表 3 に記す。 比較例 1 9 では共重合比率が低すぎて繊維の染色性が劣り、 比較例 2 0では共 重合比率が高すぎて ドライ ク リ 一二 ング堅牢性が低下した。 Example 25 was repeated, except that the copolymerization ratio of dimethyl isophthalate was changed. Table 3 shows the test and evaluation results of the obtained fibers. In Comparative Example 19, the copolymerization ratio was too low, resulting in inferior dyeability of the fibers. In Comparative Example 20, the copolymerization ratio was too high, resulting in a decrease in dry cleaning fastness.
表 3 共重合成分 融点 極限粘度 強度 伸度 弾性率 弾性回復率 Q/R Tmax U% 吸尽率 DC堅牢度 b値 種 類 重量% (°C) 〔 〕 (g/d) (%) (g/d) (%) 。C % ( ) (級) 実施例 25 イソフタル酸ジメチル 6.2 219 0.80 3.5 43 24 82 0.29 100 1.0 81 3 7.6 実施例 26 イソフタル酸ジメチル 5.2 224 0.81 3.5 43 24 75 0.43 102 0.8 75 4 7.5 実施例 27 イソフタル酸ジヌチル 7.4 216 0.75 3.4 42 20 83 0.25 96 1.0 91 3 7.3 実施例 28 コハク酸ジメチル 4.0 222 0.80 3.5 42 22 85 0.28 92 1.1 85 3 8.2 実施例 29 アジピン酸ジメチル 5.3 222 0.77 3.5 41 23 90 0.23 89 1.2 96 3 9.6 実施例 30 セバシン酸ジ;/チル 7.8 210 0.80 3.0 44 22 86 0.19 85 1.1 96 3 9.5 実施例 31 1, 4-シク πへキサン 6.0 220 0.80 2.2 42 23 87 0.21 85 1.2 90 3 9.0 Table 3 Copolymer components Melting point Intrinsic viscosity Strength Elongation Elastic modulus Elastic recovery Q / R Tmax U% Exhaustion rate DC fastness b value Type Weight% (° C) () (g / d) (%) (g / d) (%). C% () (grade) Example 25 Dimethyl isophthalate 6.2 219 0.80 3.5 43 24 82 0.29 100 1.0 81 3 7.6 Example 26 Dimethyl isophthalate 5.2 224 0.81 3.5 43 24 75 0.43 102 0.8 75 4 7.5 Example 27 Isophthalic acid Dinutyl 7.4 216 0.75 3.4 42 20 83 0.25 96 1.0 91 3 7.3 Example 28 Dimethyl succinate 4.0 222 0.80 3.5 42 22 85 0.28 92 1.1 85 38.2 Example 29 Dimethyl adipate 5.3 222 0.77 3.5 41 23 90 0.23 89 1.2 96 3 9.6 Example 30 di- / chill sebacate 7.8 210 0.80 3.0 44 22 86 0.19 85 1.1 96 3 9.5 Example 31 1,4-six π-hexane 6.0 220 0.80 2.2 42 23 87 0.21 85 1.2 90 3 9.0
ジ;! Iルボン酸  J! I-Rubonic acid
比較例 19 イソフタル酸ジメチル 1.8 227 0.80 3.6 40 23 89 0.26 108 54 4 7.6 比拳交例 20 ノフタル酸ジメチル 12.3 225 0.80 2.4 54 19 70 0.27 69 96 1 7.6 Comparative Example 19 Dimethyl isophthalate 1.8 227 0.80 3.6 40 23 89 0.26 108 54 4 7.6 Hiken Example 20 Dimethyl Nophthalate 12.3 225 0.80 2.4 54 19 70 0.27 69 96 1 7.6
〔参考例 2〕 (Reference Example 2)
卜 リ メ チルホスフ アイ トを用いずに、 実施例 2 9 を繰り返した。 得られた繊維の繊維物性は変化がなかったが、 繊維の b値は 1 2 . 3であり少し黄色く なつた。  Example 29 was repeated without using trimethyl phosphite. Although the fiber properties of the obtained fiber did not change, the b value of the fiber was 12.3, which turned slightly yellow.
〔実施例 3 2 〕  (Example 32)
実施例 2 5 のポ リ エステル繊維と 2 1 0 デニールのロイ力 (旭化 成工業製ポリ ウ レタ ン系ス ト レ ッ チ繊維) を用いて経編地を作成し た。 編成ゲージは 2 8 G G、 ループ長はポリエステル繊維が 1 0 8 0 mm/ 4 8 0 コース、 ス ト レ ッ チ繊維力く 1 1 2 m m/ 4 8 0 コ一 スと し、 打ち込み密度を 9 0 コース Zイ ンチと した。 また、 ポリ エ ステル繊維の混率は 7 5 . 5 %に設定した。  A warp knitted fabric was prepared using the polyester fiber of Example 25 and a loyal force of 210 denier (polyurethane stretch fiber manufactured by Asahi Kasei Corporation). The knitting gauge is 28 GG, the loop length is 1800 mm / 480 course of polyester fiber, the stretch fiber strength is 11 mm / 480 course, and the driving density is 9 0 course Z inch. The mixing ratio of polyester fiber was set at 75.5%.
得られた生機を 9 0 °C、 2分間リ ラ ッ クス精練し、 1 6 0 °C、 1 分間乾熱セッ トを施した。 ダイァニ ッ ク スブラ ッ ク B G — F S (ダ イ スタージ ャパン社製分散染料) を 8 % o w f 、 染色助剤である二 ッ カサ ンソル ト 1 2 0 0 (日華化学社製染色助剤) を 0 . 5 g Zリ ッ トルの存在下、 酢酸で p Hを 6 に調整して、 浴比 1 : 3 0で 9 5 °C、 6 0分間染色を行った。  The obtained greige was relaxed and scoured at 90 ° C for 2 minutes, and dried and set at 160 ° C for 1 minute. 8% owf of DYNAMIC BLACK BG-FS (Disperse Dye manufactured by Dystar Japan) and 0% of Nikka Sansalt 1200 (a dyeing aid manufactured by Nikka Chemical Co., Ltd.) The pH was adjusted to 6 with acetic acid in the presence of 0.5 g Z-liter, and staining was carried out at a bath ratio of 1:30 at 95 ° C for 60 minutes.
得られた染色製品の黒色明度 L値は 1 1 . 3であり、 十分な発色 であった。 染色物の洗濯堅牢度は 5級、 湿 摩擦堅牢度は 4級、 耐 光堅牢度は 4級であった。 また、 染色物はソ フ トでス ト レ ッ チ感に 富み、 張り、 腰がある風合いを示した。  The black lightness L value of the obtained dyed product was 11.3, which was sufficient for color development. Washing fastness of the dyed product was class 5, wet rub fastness was class 4, and light fastness was class 4. In addition, the dyed product was soft and rich in stretch feeling, and had a firm and waisted texture.
〔実施例 3 3〕  (Example 33)
D M T 1 3 0 0重量部、 T M G 1 1 2 1 重量部、 チタ ンテ トラブ トキシ ド 1 . 3重量部、 酢酸コバル ト 0 . 0 1 重量部を用いて 2 2 0 °Cにてエステル交換を行つたのち、 平均分子量 1 0 0 0のポ リエ チ レ ングリ コール 6 9 重量部、 リ ン酸 0 . 0 1 重量部を加え、 2 6 0 °Cにて減圧度 0 . 5 t 0 r r にて重縮合を行いポ リ マーを得た。 得られたポ リ マーの極限粘度は 0 . 8 2であつた。 平均分子量 1 0 0 0 のポ リ エチ レ ングリ コール共重合比率は 5重量%であった。 得られたポ リ マーチップを乾燥させた後、 3 6個の丸断面の孔 ( 0 . 2 3 m m ) を持つ紡口を用い、 紡糸温度 2 6 5 °C、 紡糸速度 1Transesterification was carried out at 220 ° C using DMT 130 parts by weight, TMG 112 1 parts by weight, titanyl tributoxide 1.3 parts by weight, and cobalt acetate 0.01 parts by weight. Thereafter, 69 parts by weight of polyethylene glycol having an average molecular weight of 1000 and 0.01 part by weight of phosphoric acid were added, and the mixture was decompressed at 260 ° C under a pressure of 0.5 t0 rr. The polymer was obtained by polycondensation. The intrinsic viscosity of the obtained polymer was 0.82. The copolymerization ratio of polyethylene glycol having an average molecular weight of 1,000 was 5% by weight. After drying the obtained polymer chip, a spinning temperature of 26 ° C. and a spinning speed of 1 using a spinning hole having 36 round cross-section holes (0.23 mm) were used.
2 0 0 m / m i nで紡糸して未延伸糸を作成した。 次いで、 得られ た未延伸糸をホッ ト ロール 5 0 °C、 ホッ トプレー ト 1 4 0 °C、 延伸 倍率 2 . 9倍、 延伸速度 6 0 O m / m i nで延撚を行い、 5 0 d /An undrawn yarn was prepared by spinning at 200 m / min. Next, the obtained undrawn yarn was drawn at a hot roll of 50 ° C, a hot plate of 140 ° C, a draw ratio of 2.9 times, and a drawing speed of 60 Om / min. /
3 6 f の延伸糸を得た。 繊維の物性は、 融点 2 3 2 °C、 T m a X 9 2 °C、 強度 3 . 1 g / d、 伸度 4 3 %、 U % 1 . 1 %、 弾性率 2 0 g Z d、 弹性回復率 8 9 %、 b値 8 . 2 であった。 また、 繊維の Q Z R値は 0 . 2 2 となり式 ( 1 ) を満足するこ とができた。 A 36 f drawn yarn was obtained. The physical properties of the fiber are as follows: Melting point: 23 ° C, Tmax: 92 ° C, strength: 3.1 g / d, elongation: 43%, U%: 1.1%, elastic modulus: 20 g Zd, elasticity The recovery rate was 89% and the b value was 8.2. In addition, the QZR value of the fiber was 0.22, thereby satisfying the expression (1).
この実施例のポ リ エステル繊維の 9 5 。C、 6 0 分の分散染料によ る吸尽率は 9 2 %であり、 高い吸尽率を示した。  95 of the polyester fiber of this example. The exhaustion rate by the disperse dye for 60 minutes at C was 92%, indicating a high exhaustion rate.
染色後の一口編地の ドライ ク リ 一二ング堅牢度では染色物の退色 も認められず、 液汚染は 2級であった。 また、 繊維の耐光堅牢度 ( 3級) 、 乾 · 湿摩擦堅牢度 ( 5級) 、 洗濯堅牢度 ( 5級) について も良好であった。  In the dry clearing fastness of the one-knit fabric after dyeing, no fading of the dyed product was observed, and the liquor contamination was class 2. In addition, the light fastness of the fiber (grade 3), dry / wet friction fastness (grade 5), and wash fastness (grade 5) were also good.
〔実施例 3 4 〜 4 0〕  (Examples 34 to 40)
ポ リ アルキ レ ングリ コールの種類を変更し実施例 3 3 と同様の方 法で重合 · 紡糸を行った。 得られた試験、 評価結果を表 4 にま とめ た。 いずれの実施例の繊維も式 ( 1 ) を満足しており、 また良好な 染色性、 堅牢性、 諸物性を示した。  Polymerization and spinning were performed in the same manner as in Example 33, except that the type of polyalkylene glycol was changed. Table 4 summarizes the obtained tests and evaluation results. The fibers of all Examples satisfied the formula (1) and exhibited good dyeing properties, fastness, and various physical properties.
〔比較例 2 3 、 2 4〕  [Comparative Examples 23 and 24]
ポ リ エチ レ ングリ コールの共重合比率を変えて、 実施例 3 3 と同 様の操作を繰り返した。 その結果を表 4 に記す。 比較例 2 3 では共 重合比率が低すぎて染色性が不充分、 比較例 2 4 では共重合比率が 高すぎて ドライ ク リ ーニング堅牢性が悪く なつた。 また繊維の白度 も低下した。 The same operation as in Example 33 was repeated, while changing the copolymerization ratio of polyethylene glycol. Table 4 shows the results. In Comparative Example 23, the copolymerization ratio was too low and the dyeability was insufficient, and in Comparative Example 24, the copolymerization ratio was too high and the dry cleaning fastness was poor. Also the whiteness of the fiber Also fell.
表 4 Table 4
Figure imgf000055_0001
Figure imgf000055_0001
PEG : ポリエチレングリコール PEG: polyethylene glycol
P TMG: ポリテトラメチレングリコール P TMG: Polytetramethylene glycol
〔実施例 4 1 〕 (Example 41)
実施例 3 3 のポ リエステル繊維と 2 1 0 デニールのロイ力 (旭化 成工業製ポ リ ウ レタ ン系ス ト レツチ繊維) を用いて経編地を作成し た。 この場合、 ゲージは 2 8 G、 ループ長はポ リ エステル繊維が 1 0 8 0 mm/ 4 8 0 コース、 ス ト レッチ繊維力く 1 1 2 m m/ 4 8 0 コースと し、 打ち込み密度を 9 0 コース Z 2 5 . 4 mmと した。 ま た、 ポリエステル繊維の混率は 7 5 . 5 %に設定した。  Example 33 A warp knitted fabric was prepared using the polyester fiber of Example 3 and a loyal force of 210 denier (polyurethane-based stretch fiber manufactured by Asahi Kasei Corporation). In this case, the gauge is 28 G, the loop length is 108 mm / 480 course of polyester fiber, the stretch fiber strength is 112 mm / 480 course, and the driving density is 9 0 course Z 25.4 mm. The mixing ratio of the polyester fibers was set at 75.5%.
得られた生機を 9 0 °C、 2分間リ ラ ッ クス精練し、 1 6 0 °C、 1 分間乾熱セッ トを施した。 ダイァニッ クスブラ ッ ク B G — F S (ダ イ スター ジ ャパン社製) を 8 % o w f 、 染色助剤であるニ ツ カサン ソノレ 卜 1 2 0 0 を 0 . 5 g Zリ ッ トルの存在下、 酢酸で p Hを 6 に 調整して、 浴比 1 : 3 0 で 9 5 °C、 6 0分間染色を行った。  The obtained greige was relaxed and scoured at 90 ° C for 2 minutes, and dried and set at 160 ° C for 1 minute. 8% owf of Dyanix Black BG-FS (manufactured by Dyster Japan) and 0.5 g of Nitukasan Sonoret 1200, which is a dyeing aid, with 0.5 g of Z-Little The pH was adjusted to 6, and staining was carried out at a bath ratio of 1:30 at 95 ° C for 60 minutes.
得られた染色製品の黒色明度 L値は 1 1 . 0であり、 十分な発色 であった。 繊維の洗濯堅牢度は 5級、 湿摩擦堅牢度は 4級、 耐光堅 牢度は 4級であった。 また、 染色布帛はソ フ トでス ト レ ッ チ感に富 み、 張り、 腰がある風合いを示した。  The black lightness L value of the obtained dyed product was 11.0, and the color was sufficiently developed. The washing fastness of the fiber was grade 5, the wet rub fastness was grade 4, and the light fastness was grade 4. In addition, the dyed fabric had a soft and stretchy feel, and had a tight and waisted texture.
〔実施例 4 2 )  (Example 4 2)
極限粘度 0 . 9 のポ リ ト リ メ チ レ ンテ レフ タ レー ト と極限粘度 1 . 0 のポリ ブチレンテレフ 夕 レー トを 9 4 . 8 : 5 . 2 の比率で混 合し、 そのまま押し出 し、 実施例 1 7 と同様にして 1 , 4 一ブタ ン ジオールを 5 . 2重量%共重合したポ リ 卜 リ メ チレンテレフタ レー ト繊維を得た。  Polymethylene terephthalate having an intrinsic viscosity of 0.9 and polybutylene terephthalate having an intrinsic viscosity of 1.0 are mixed at a ratio of 94.8: 5.2 and extruded as it is. Then, in the same manner as in Example 17, polymethylene terephthalate fiber obtained by copolymerizing 5.2% by weight of 1,4-butanediol was obtained.
得られた繊維は、 実施例 1 7 の繊維とほぼ同等であり、 強度 3 . 6 gノ d、 伸度 4 3 %、 U % 0 . 7 %、 弾性率 2 3 g / d、 弾性回 復率 8 1 %、 b値 4 . 4 、 Q/R値 0 . 2 8、 T m a x 9 7 °C、 9 5 °C、 6 0分での分散染料による吸尽率は 8 4 %であった。  The obtained fiber is almost equivalent to the fiber of Example 17 and has a strength of 3.6 g d, an elongation of 43%, a U% of 0.7%, an elasticity of 23 g / d, and an elastic recovery. Rate: 81%, b value: 4.4, Q / R value: 0.28, Tmax: 97% at 95 ° C, 95% at 60 minutes, exhaustion rate by disperse dye was 84%. .
〔実施例 4 3〕 実施例 1 で得た 7 5 d Z 3 6 f のポ リ エステル繊維を経糸、 緯糸 に 7 5 d / 4 4 ί の銅ア ンモニア レー ヨ ンを用いて、 平織物を製織 (経 4 0本/ 2 5 . 4 m m、 緯 8 0本 Ζ 2 5 . 4 m m ) した。 この 平織物を常法により精練した。 水洗後、 i 8 0 °C、 3 0秒のプレセ ッ ト後、 キヤ リ ヤーを用いずにカチォン染料と、 反応染料による一 段一浴染色を行った。 カャク リ ルブラ ッ ク B S — E D (日本化薬 ( 株) 製カチオ ン染料) 、 ド リ マ レ ンブル一 X— S G N (サン ド (株 ) 製反応染料) を用いた。 デイ スパー T L (明成化学 (株) 製分散 剤) を 1 g Zリ ツ トル使用 し、 硫酸ナ ト リ ウム 5 0 g /リ ツ トルと 炭酸ナ ト リ ウム 1 5 g Z リ ッ トルを加え、 p Hを 1 1 に調整した水 溶液に染料を加えて染液と した。 染料濃度 2 % o w i 、 浴比 1 : 5 0 で 1 0 0 °C、 1 時間染色を行った。 染色後、 グラ ンア ップ P (三 洋化成工業 (株) 製) 1 g /リ ッ トル、 浴比 1 : 5 0で 8 0 °C、 1 0分間ソ一ビングした。 染色後、 常法により仕上げを行った。 (Example 43) Weaving a plain woven fabric (40 warp yarns) using the 75 d Z 36 f polyester fiber obtained in Example 1 as a warp yarn and a 75 d / 44 mm copper ammonia rayon as a weft yarn / 25.4 mm, latitude 80 lines Ζ 25.4 mm). This plain fabric was scoured by a conventional method. After washing with water and pre-setting at 80 ° C. for 30 seconds, one-step one-bath dyeing with a cation dye and a reactive dye was performed without using a carrier. Cryacryl Black BS-ED (Cation Dye manufactured by Nippon Kayaku Co., Ltd.) and Drimaremble X-SGN (Reactive Dye manufactured by Sand Co., Ltd.) were used. Using 1 g Z liter of DISPER TL (Dispersant manufactured by Meisei Chemical Co., Ltd.), add 50 g / liter of sodium sulfate and 15 g Z liter of sodium carbonate. The dye was added to the aqueous solution whose pH was adjusted to 11 to obtain a dye solution. Dyeing was carried out at 100 ° C. for 1 hour at a dye concentration of 2% owi and a bath ratio of 1:50. After staining, the sample was soaked at 80 ° C. for 10 minutes at 1 g / liter, Granup P (manufactured by Sanyo Chemical Industries, Ltd.) at a bath ratio of 1:50. After dyeing, finishing was performed by a conventional method.
得られた染色物は、 均一に染色されており、 湿摩擦堅牢性、 ドラ ィ ク リ ーニング堅牢性、 耐光堅牢度に優れ、 鮮明な染色物であった 。 また通常のポ リ エステル繊維で行う アル力 リ減量処理を行わない にもかかわらず、 ソ フ 卜な風合いと ドラ イ感に溢れ、 従来の織物で は得られない優れた風合いであった。  The obtained dyed product was uniformly dyed, was excellent in wet rub fastness, dry cleaning fastness, and light fastness, and was a clear dyed product. In addition, despite the fact that the weight loss treatment performed with ordinary polyester fibers was not performed, the texture was full of soft texture and dry feeling, and was an excellent texture that cannot be obtained with conventional woven fabrics.
また、 実施例 1 と同様にして得た 7 5 d / 3 6 f のポ リエステル 繊維を経糸と緯糸を同じにして用いて、 同様の平織物を製織し、 染 色加工した。 得られた布帛は ドライ感はないが、 極めてソフ トで布 帛は緯方向に 7 %程度のス ト レツチ性を示した。  The same plain woven fabric was woven and dyed using 75 d / 36 f polyester fiber obtained in the same manner as in Example 1, using the same warp and weft. Although the obtained fabric did not have a dry feeling, it was extremely soft and the fabric exhibited a stretch property of about 7% in the weft direction.
〔比較例 2 5 )  (Comparative Example 25)
実施例 4 3 において、 1 3 0 °Cの温度で染色したところ、 反応染 料が分解を起こ し、 布帛が黒ずんでしま っ た。  In Example 43, when dyeing was performed at a temperature of 130 ° C., the reactive dye was decomposed, and the fabric was darkened.
〔実施例 4 4〕 実施例 1 で得た 7 5 d / 3 6 f のポ リ エステル繊維を経糸、 緯糸 に用いた平織物を製織 (経糸 1 4 0本 / 3 . 5 4、 経糸 8 0本 / 2 . 5 4 ) した。 この平織物を常法で精練後、 1 0 %の水酸化ナ ト リ ゥム水溶液を用いて 2 0 %のアルカ リ減量を行つた。 その後、 実施 例 4 3 と同様のプレセッ 卜、 染色を行い、 最後に 1 8 0 °C、 3 0秒 でフ ァ イ ナルセ ッ トを行った。 (Example 4 4) Weaving a plain fabric using the 75 d / 36 f polyester fiber obtained in Example 1 for warp and weft (140 warp / 3.54, warp 80 / 2.54 ) did. After scouring the plain fabric by a conventional method, the alkali weight was reduced by 20% using a 10% aqueous sodium hydroxide solution. Thereafter, the same pre-setting and staining as in Example 43 were performed, and finally a final set was performed at 180 ° C. for 30 seconds.
得られた布帛はソフ トでかつ ドライ感を持った従来にない風合い を示し、 更に緯方向に 7 %程度のス ト レ ッ チ性を示した。 産業上の利用の可能性  The obtained fabric showed a soft and dry feeling that was not seen before, and also showed a stretch property of about 7% in the weft direction. Industrial applicability
本発明のポ リ ト リ メ チレンテレフタ レー 卜系繊維は、 常圧で力チ オ ン染料、 分散染料のいずれか、 あるいは両方の染料で実用上求め られる色濃度 ( s h a d e s ) に染色することができる。 加えて、 本発明のポ リ ト リ メ チレンテレフタ レ一 卜系繊維は、 ポリエチレン テレフ タ レー ト繊維等の汎用ポリ エステル繊維に近似したゥオ シュ ア ン ドゥエアー性、 寸法安定性、 耐黄変性、 ドライな手触り感、 ァ ルカ リ減量加工性を有し、 ナイ 口 ン繊維に類似した柔軟性を具有す る繊維素材である。  The poly (methylen terephthalate) fiber of the present invention can be dyed at ordinary pressure with either a dye or a disperse dye or both dyes to a color density (shades) practically required. . In addition, the polymethylene terephthalate-based fiber of the present invention has an Ossian de-air property similar to general-purpose polyester fibers such as polyethylene terephthalate fiber, dimensional stability, yellowing resistance, and the like. It is a fiber material that has a dry feel and a workability for reducing weight, and has flexibility similar to nylon fibers.
上述の性能を備えるが故に、 本発明のポリ ト リ メ チレンテレフタ レ一 卜系繊維は、 ポ リ ウ レタ ン弾性繊維に代表されるス ト レッチ繊 維、 ウール、 絹、 アセテー ト、 等の耐熱性の低い繊維素材や常圧で 染色されるセル口ース繊維との混用布帛の堅牢染色物の製造に好適 な繊維材料である。 とりわけ、 前記の低耐熱繊維との混用による布 帛製品について、 堅牢染色布帛が、 汎用常圧染色設備で簡素な染色 方法を用いて、 繊維の特性を損なう ことなしに製造できる点が、 本 発明の特筆されるべき産業上の効用である。  Due to the above-mentioned performance, the polytrimethylene terephthalate fiber of the present invention can be used for heat-resistant fibers such as stretch fibers typified by polyurethane elastic fibers, wool, silk, and acetate. It is a suitable fiber material for the production of fast-dyed fabrics mixed with low-strength fiber materials and cellulosic fibers dyed at normal pressure. In particular, with respect to a fabric product obtained by mixing with the above-mentioned low heat-resistant fiber, a robust dyeing fabric can be manufactured by a simple dyeing method using a general-purpose normal-pressure dyeing facility without impairing the properties of the fiber. It is an industrial utility to be noted.

Claims

請 求 の 範 囲 The scope of the claims
1 . ポ リ ト リ メ チレンテレフタ レー トに第 3成分を共重合したボ リエステルからなる繊維において、 第 3成分が共重合比率 0 . 5〜 5 モル%のエステル形成性スルホン酸塩化合物であり、 該繊維の損 失正接のピーク温度が 8 5〜 1 1 5 °Cであつて、 かつ該繊維の弾性 率 Q ( g / d ) と弾性回復率 R ( % ) との関係が下記式 ( 1 ) を満 足することを特徴とするポ リ エステル繊維。 1. In a fiber composed of a polyester obtained by copolymerizing a third component with polymethylene terephthalate, the third component is an ester-forming sulfonate compound having a copolymerization ratio of 0.5 to 5 mol%, The loss tangent peak temperature of the fiber is 85 to 115 ° C., and the relationship between the elastic modulus Q (g / d) and the elastic recovery rate R (%) of the fiber is expressed by the following formula (1). Polyester fiber characterized by satisfying (1).
0 . 1 8 ≤ Q / R≤ 0 . 4 5 · · · 式 ( 1 )  0.18 ≤ Q / R ≤ 0.45 · · · Equation (1)
2. エステル形成性スルホン酸塩化合物が、 5 —ナ ト リ ウムスル ホイ ソフタル酸または/及び 3, 5 — ジカルボン酸ベンゼンスルホ ン酸テ トラアルキルホスホニゥム塩であることを特徴とする請求項 1 記載のポ リ エステル繊維。  2. The ester-forming sulfonate compound is 5-sodium sulfisophthalic acid or / and a tetraalkyl phosphonium salt of 3,5-dicarboxylic acid benzene sulfonate. Polyester fiber as described.
(ここでアルキル基は炭素数 1 〜 1 0 までのアルキル基を示す。 ) (Here, the alkyl group indicates an alkyl group having 1 to 10 carbon atoms.)
3. 第 3成分が 1 . 2〜 2 . 5 モル%のエステル形成性スルホ ン 酸塩化合物であることを特徴とする請求項 1 記載のポ リ エステル織 維。 3. The polyester fiber according to claim 1, wherein the third component is 1.2 to 2.5 mol% of an ester-forming sulfonate compound.
4. エステル形成性スルホン酸塩化合物が、 5 —ナ ト リ ウムスル ホイ ソフタル酸または Z及び 3, 5 ー ジカルボン酸ベンゼンスルホ ン酸テ トラアルキルホスホニゥム塩であり、 その共重合比率が 1 . 2〜 2 . 5 モル%であることを特徴とする請求項 1 記載のポ リエス テル繊維。  4. The ester-forming sulfonate compound is 5-sodium sulfisophthalic acid or a tetraalkylphosphonium salt of Z and 3,5-dicarboxylic acid benzenesulfonate, and the copolymerization ratio is 1. 2. The polyester fiber according to claim 1, wherein the content is 2 to 2.5 mol%.
(ここでアルキル基は炭素数 1 〜 1 0 までのアルキル基を示す。 ) 5 . ポ リ ト リ メ チレンテレフタ レー トに第 3成分を共重合したポ リ エステルからなる繊維において、 第 3成分が ( 1 ) 共重合比率 1(Here, the alkyl group is an alkyl group having 1 to 10 carbon atoms.) 5. In a fiber made of polyester obtained by copolymerizing polymethylene terephthalate with a third component, the third component is (1) Copolymerization ratio 1
. .
5 〜 1 2重量%の炭素数が 4 〜 1 2 までの脂肪族または脂環式グ リ コール、 ( 2 ) 共重合比率 3 ~ 9重量%の炭素数 2〜 1 4 までの 脂肪族または脂環式ジカルボン酸、 またはイ ソフタル酸、 ( 3 ) 共 重合比率 3 〜 1 0重量%のポリアルキレングリ コールから選ばれた 少なく とも 1 種であり、 該繊維の損失正接のピーク温度が 8 5〜 1 0 2 °Cであって、 かつ該繊維の弾性率 Q ( g/ d ) と弾性回復率 R (%) との関係が下記式 ( 1 ) を満足することを特徴とするポリェ ステル繊維。 5 to 12% by weight of an aliphatic or alicyclic glycol having a carbon number of 4 to 12; (2) a copolymerization ratio of 3 to 9% by weight of a carbon number of 2 to 14; At least one selected from aliphatic or alicyclic dicarboxylic acid, or isophthalic acid, and (3) a polyalkylene glycol having a copolymerization ratio of 3 to 10% by weight, and a peak temperature of loss tangent of the fiber. Is 85 to 102 ° C., and the relationship between the elastic modulus Q (g / d) and the elastic recovery rate R (%) of the fiber satisfies the following expression (1). Polyester fiber.
0. 1 8 ≤ Q / R≤ 0. 4 5 · · · 式 ( 1 ) 0.18 ≤ Q / R ≤ 0.45 · · · Equation (1)
6. 共重合比率が 1 . 2〜 2. 5 モル%のエステル形成性スルホ ン酸塩化合物と、 ( 1 ) 炭素数が 4〜 1 2 までの脂肪族または脂環 式グリ コール、 ( 2 ) 炭素数 2 ~ 1 4 までの脂肪族または脂環式ジ カルボン酸、 またはイ ソフタル酸、 ( 3 ) ポリ アルキレングリ コー ルから選ばれた少なく と も 1 種を 3〜 7重量%共重合したポ リ ト リ メ チレンテレフタ レ一 ト繊維であつて、 該繊維の損失正接のピーク 温度が 8 5 ~ 1 1 5 °C、 かつ該繊維の弾性率 Q ( g / d ) と弾性回 復率 R ( ) との関係が下記式 ( 1 ) を満足することを特徴とする ポ リ エステル繊維。 6. An ester-forming sulfonate compound having a copolymerization ratio of 1.2 to 2.5 mol%, (1) an aliphatic or alicyclic glycol having 4 to 12 carbon atoms, (2) A polymer obtained by copolymerizing at least 3 to 7% by weight of at least one selected from aliphatic or alicyclic dicarboxylic acids having 2 to 14 carbon atoms, or isophthalic acid, and (3) polyalkylene glycol. A retylene methylene terephthalate fiber having a loss tangent peak temperature of 85 to 115 ° C, an elastic modulus Q (g / d) and an elastic recovery rate R ( ) Which satisfies the following expression (1).
0. 1 8 ≤ Q / R≤ 0. 4 5 · · · 式 ( 1 )  0.18 ≤ Q / R ≤ 0.45 · · · Equation (1)
7. 請求項 1 〜 6 のポ リ エステル繊維において、 b値が一 2〜 1 0であるこ とを特徴とするポ リエステル繊維。  7. The polyester fiber according to claim 1, wherein the b value is 12 to 10.
8. 請求項 1 〜 7 のポリエステル繊維を一部または全部に用いた ことを特徴とする布帛。  8. A fabric, wherein the polyester fiber according to any one of claims 1 to 7 is partially or entirely used.
9. 請求項 1 〜 了 のポ リエステル繊維とス 卜 レッチ繊維を混用 し たことを特徴とする混用布帛。  9. A mixed fabric, comprising a mixture of the polyester fiber of claim 1 and the stretch fiber.
1 0. 請求項 1 〜 7 のポ リ エステル繊維を一部または全部に用い た布帛であって、 カチオン染料またはノ及び分散染料で染色された ことを特徴とする布帛。  10. A fabric using the polyester fiber of any one of claims 1 to 7 for a part or all of the fabric, wherein the fabric is dyed with a cationic dye or a dye and a disperse dye.
PCT/JP1998/003660 1997-08-18 1998-08-18 Polyester fiber and fabric prepared therefrom WO1999009238A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98937854A EP1006220A4 (en) 1997-08-18 1998-08-18 Polyester fiber and fabric prepared therefrom
US09/485,938 US6652964B1 (en) 1997-08-18 1998-08-18 Polyester fiber and fabric prepared therefrom
JP51302799A JP3226931B2 (en) 1997-08-18 1998-08-18 Polyester fiber and fabric using the same
KR1020007001596A KR100359347B1 (en) 1997-08-18 1998-08-18 Polyester fiber and fabric prepared therefrom

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP23549297 1997-08-18
JP9/235492 1997-08-18
JP9/245301 1997-09-10
JP24530197 1997-09-10

Publications (1)

Publication Number Publication Date
WO1999009238A1 true WO1999009238A1 (en) 1999-02-25

Family

ID=26532160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003660 WO1999009238A1 (en) 1997-08-18 1998-08-18 Polyester fiber and fabric prepared therefrom

Country Status (7)

Country Link
EP (2) EP1006220A4 (en)
JP (1) JP3226931B2 (en)
KR (2) KR100359347B1 (en)
AT (1) ATE354601T1 (en)
DE (1) DE69837169T2 (en)
ES (1) ES2278255T3 (en)
WO (1) WO1999009238A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001044345A1 (en) * 1999-12-15 2001-06-21 Asahi Kasei Kabushiki Kaisha Modified polytrimethylene terephthalate
US6316586B1 (en) 2000-08-15 2001-11-13 E. I. Du Pont De Nemours And Company Copolyether composition and processes therefor and therewith
US6479619B1 (en) 2001-03-15 2002-11-12 E. I. Du Pont De Nemours And Company Sulfoisophthalic acid solution process therewith
US6706852B2 (en) 2002-07-02 2004-03-16 E. I. Du Pont De Nemours And Company Partially ester-exchanged SIPM and process therewith
WO2011048888A1 (en) * 2009-10-20 2011-04-28 帝人ファイバー株式会社 Polyester fibers, process for production of the polyester fibers, cloth, fiber product, and polyester molded article
WO2012178094A1 (en) 2011-06-23 2012-12-27 E. I. Du Pont De Nemours And Company Modified nanoparticles, their preparation and use to improve cationic dyeability of fibrous substrate

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331264B1 (en) 1999-03-31 2001-12-18 E. I. Du Pont De Nemours And Company Low emission polymer compositions
US6576340B1 (en) 1999-11-12 2003-06-10 E. I. Du Pont De Nemours And Company Acid dyeable polyester compositions
US6312805B1 (en) 2000-02-11 2001-11-06 E.I. Du Pont De Nemours And Company Cationic dyeability modifier for use with polyester and polyamide
KR100635839B1 (en) * 2000-07-14 2006-10-18 데이진 가부시키가이샤 Polyester fiber
US6331606B1 (en) 2000-12-01 2001-12-18 E. I. Du Pont De Nemours And Comapny Polyester composition and process therefor
WO2009079499A1 (en) * 2007-12-18 2009-06-25 Shell Oil Company Polymer fiber containing flame retardant, process for producing the same, and material containing such fibers
KR101125253B1 (en) * 2011-10-28 2012-03-21 주식회사 지클로 Skin-core fiber comprising anionic polymer salt and cellulose, and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302211A (en) * 1992-04-21 1993-11-16 Kuraray Co Ltd Easily dyeable polyester fiber
JPH0770856A (en) * 1993-09-02 1995-03-14 Toyobo Co Ltd Covered polyester elastic yarn
JPH08269820A (en) * 1995-04-04 1996-10-15 Asahi Chem Ind Co Ltd Easily dyeable modified polyester fiber and its production

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3671379A (en) * 1971-03-09 1972-06-20 Du Pont Composite polyester textile fibers
US3900527A (en) * 1973-04-16 1975-08-19 Monsanto Co Production of basic dyeable polyester from terephthalic acid
DE2431072C3 (en) * 1974-06-28 1980-04-30 Bayer Ag, 5090 Leverkusen Thermoplastic copolyesters and processes for their manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302211A (en) * 1992-04-21 1993-11-16 Kuraray Co Ltd Easily dyeable polyester fiber
JPH0770856A (en) * 1993-09-02 1995-03-14 Toyobo Co Ltd Covered polyester elastic yarn
JPH08269820A (en) * 1995-04-04 1996-10-15 Asahi Chem Ind Co Ltd Easily dyeable modified polyester fiber and its production

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001044345A1 (en) * 1999-12-15 2001-06-21 Asahi Kasei Kabushiki Kaisha Modified polytrimethylene terephthalate
EP1245604A1 (en) * 1999-12-15 2002-10-02 Asahi Kasei Kabushiki Kaisha Modified polytrimethylene terephthalate
EP1245604A4 (en) * 1999-12-15 2003-01-29 Asahi Chemical Ind Modified polytrimethylene terephthalate
US6645619B2 (en) 1999-12-15 2003-11-11 Asahi Kasei Kabushiki Kaisha Modified polytrimethylene terephthalate
CN1322182C (en) * 1999-12-15 2007-06-20 旭化成株式会社 Modified polytrimethylene terephthalate
US6316586B1 (en) 2000-08-15 2001-11-13 E. I. Du Pont De Nemours And Company Copolyether composition and processes therefor and therewith
US6479619B1 (en) 2001-03-15 2002-11-12 E. I. Du Pont De Nemours And Company Sulfoisophthalic acid solution process therewith
US6706852B2 (en) 2002-07-02 2004-03-16 E. I. Du Pont De Nemours And Company Partially ester-exchanged SIPM and process therewith
WO2011048888A1 (en) * 2009-10-20 2011-04-28 帝人ファイバー株式会社 Polyester fibers, process for production of the polyester fibers, cloth, fiber product, and polyester molded article
JP5758807B2 (en) * 2009-10-20 2015-08-05 帝人フロンティア株式会社 POLYESTER FIBER, PROCESS FOR PRODUCING THE SAME, AND FABRIC AND FIBER PRODUCT
US9334608B2 (en) 2009-10-20 2016-05-10 Teijin Frontier Co., Ltd. Polyester fiber, method for producing the same, cloth, textile product, and polyester formed article
WO2012178094A1 (en) 2011-06-23 2012-12-27 E. I. Du Pont De Nemours And Company Modified nanoparticles, their preparation and use to improve cationic dyeability of fibrous substrate

Also Published As

Publication number Publication date
KR100359347B1 (en) 2002-10-31
DE69837169T2 (en) 2008-01-03
DE69837169D1 (en) 2007-04-05
EP1489206A2 (en) 2004-12-22
KR20010022988A (en) 2001-03-26
ES2278255T3 (en) 2007-08-01
EP1006220A1 (en) 2000-06-07
KR20020048993A (en) 2002-06-24
EP1489206B1 (en) 2007-02-21
EP1489206A3 (en) 2005-01-05
ATE354601T1 (en) 2007-03-15
EP1006220A4 (en) 2001-10-31
KR100359149B1 (en) 2002-11-01
JP3226931B2 (en) 2001-11-12

Similar Documents

Publication Publication Date Title
JP3255906B2 (en) Polyester fiber excellent in processability and method for producing the same
US6284370B1 (en) Polyester fiber with excellent processability and process for producing the same
JP3204399B2 (en) Polyester fiber and fabric using the same
JP3630662B2 (en) Copolymer polytrimethylene terephthalate
WO1999009238A1 (en) Polyester fiber and fabric prepared therefrom
US6652964B1 (en) Polyester fiber and fabric prepared therefrom
JP2002038333A (en) Polyester fiber having high dye-affinity
JP3073953B2 (en) Woven and knitted fabric with excellent coloring
WO1997005308A1 (en) Polyester fibers and product of dyeing of fabric made of fiber mixture containing the same
JP2000248427A (en) Polyester fiber
JP3267963B2 (en) Copolymerized polytrimethylene terephthalate
JPH11100722A (en) Easily dyeable polyester fiber
JPH1161563A (en) Copolyester fiber and fabric mixed therewith
JP3751138B2 (en) Antistatic polyester fiber and lining using the same
JPH08269820A (en) Easily dyeable modified polyester fiber and its production
JP3998672B2 (en) Copolymer polytrimethylene terephthalate fiber
JP3818743B2 (en) Easily dyeable polyester fiber and its mixed fabric dyeing
JP3618509B2 (en) Method for producing ethylene-vinyl alcohol copolymer fiber
JPH1193021A (en) Sheath-core polyester yarn
JPH111823A (en) Polyester fiber and dyed product of its mixed fiber fabric
JP2003301329A (en) Easily dyeable polyester un-stretched fiber
JP3999224B2 (en) Ethylene-vinyl alcohol copolymer fiber
JP2005299046A (en) Mixed product of polyester fiber and protein fiber
JP2006336136A (en) Blended product of polyester fiber and protein fiber
JP2002180384A (en) Dyed material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020007001596

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09485938

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998937854

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998937854

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007001596

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007001596

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998937854

Country of ref document: EP