JP2006336136A - Blended product of polyester fiber and protein fiber - Google Patents

Blended product of polyester fiber and protein fiber Download PDF

Info

Publication number
JP2006336136A
JP2006336136A JP2005161015A JP2005161015A JP2006336136A JP 2006336136 A JP2006336136 A JP 2006336136A JP 2005161015 A JP2005161015 A JP 2005161015A JP 2005161015 A JP2005161015 A JP 2005161015A JP 2006336136 A JP2006336136 A JP 2006336136A
Authority
JP
Japan
Prior art keywords
fiber
dyeing
polyester
polyester fiber
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005161015A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yoshida
義田  潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2005161015A priority Critical patent/JP2006336136A/en
Publication of JP2006336136A publication Critical patent/JP2006336136A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blended product of polyester fiber and protein fiber, having especially soft and pliant touch feeling, high in color developability, good in homochromaticity, slight in color variation for each dyeing batch, affording dyed products of high color reproducibility, and also high in color fastness performance. <P>SOLUTION: The blended product of polyester fiber and protein fiber is provided. In this product, the polyester fiber consists of a polyester obtained by copolymerizing 3-6 wt.% of a polyethylene glycol 300-2,000 in molecular weight with polyethylene terephthalate, wherein the polyester comprises a polyethylene terephthalate greater than 90 wt.% of which is composed of ethylene terephthalate recurring units. The polyester fiber is ≤1.4 dtex in single filament fineness and 85-105°C in the temperature(Tmax) at which the dynamic loss tangent(tanδ) at a measurement frequency of 110 Hz is maximum. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はポリエステル繊維とタンパク繊維との混用品に関するものである。さらに詳しくは、易染性ポリエステルを混用することでタンパク繊維を痛めずにタンパク繊維本来の風合、物性を最大限に発揮し、従来にない格段にソフトでしなやかな風合を有し、染色における色の再現性、堅牢度性能が良好で、且つポリエステルの機能性を兼備したポリエステル繊維とタンパク繊維との混用布帛の染色製品に関するものである。   The present invention relates to a mixed article of polyester fiber and protein fiber. More specifically, by mixing easily-dyeable polyester, the protein fiber's original texture and physical properties can be maximized without damaging the protein fiber, and it has an unprecedented soft and supple texture. In particular, the present invention relates to a dyed product of a mixed fabric of polyester fiber and protein fiber, which has good color reproducibility and fastness performance and also has polyester functionality.

ウール、シルクに代表されるタンパク繊維からなる布帛は、常圧染色ができ、染色性がよく、風合や色調に優れている反面、バルキー性、原糸強度が乏しいうえにウオッシュアンドウエア性、プリーツ性、寸法安定性、黄変性、防虫、防カビ性等の機能性が欠如している。このため、タンパク繊維に欠けているこれらの機能性に優れたポリエステル繊維を混用してこれらの欠点を補うことが行われている。   Fabrics made of protein fibers, such as wool and silk, can be dyed at normal pressure, have good dyeability, and are excellent in texture and color, but have poor bulkiness, raw yarn strength, wash and wear properties, It lacks functionality such as pleating, dimensional stability, yellowing, insect repellent and fungicide. For this reason, mixing these polyester fibers excellent in functionality lacking in protein fibers to compensate for these drawbacks has been performed.

ポリエステル繊維はタンパク繊維の欠点を補い得るものであるが、ポリエステル繊維の難染性ゆえタンパク繊維の通常の染色温度である95〜105℃で染色すると、ポリエステル繊維の発色性が著しく低く、タンパク繊維との同色性は得られない。一方、通常のポリエステル繊維の染色温度である130〜135℃の高温で染色するとタンパク繊維との同色性は得やすくなるが、該条件ではタンパク繊維が脆化し、強度、伸度等の物性が大きく低下するとともに、風合が損なわれるばかりか大きな黄化着色が発生するなどの問題が発生する。また、染色温度を下げて常圧下でキャリヤー剤を用いて染色した場合には、タンパク繊維への分散染料による汚染が増大するとともに染色堅牢度の低下や、繊維中の脱キャリヤー処理が困難なこと、キャリヤー臭による作業環境の低下等の問題がある。   Polyester fibers can compensate for the shortcomings of protein fibers, but when dyed at 95-105 ° C, which is the normal dyeing temperature of protein fibers, due to the difficulty of dyeing polyester fibers, the color development of polyester fibers is extremely low. The same color with cannot be obtained. On the other hand, when dyeing at a high temperature of 130 to 135 ° C., which is a normal polyester fiber dyeing temperature, it is easy to obtain the same color as protein fiber, but under such conditions, protein fiber becomes brittle and physical properties such as strength and elongation are large. In addition to being lowered, the texture is not only impaired, but also problems such as large yellowing occur. In addition, when dyeing is carried out using a carrier agent under normal pressure at a lower dyeing temperature, contamination by disperse dyes on protein fibers increases, dyeing fastness decreases, and it is difficult to remove the carrier in the fibers. In addition, there are problems such as a decrease in working environment due to carrier odor.

そこで、タンパク繊維の脆化を起こさせない温度領域で染色可能な常圧可染型ポリエステル繊維として、ナトリウムスルホイソフタル酸を5モル%以上共重合したカチオン染料可染型ポリエステル繊維の製造法が特許文献1、2に開示されている。しかしながら、染色性は高められるものの原糸強度が低く、伸縮回復性が乏しく、ソフトでしなやかな風合は得られず、耐薬品性が低く、カチオン染料の耐光堅牢度が乏しく、カチオン染料の染色機への汚染が大きい等の問題がある。   Therefore, as a normal-pressure dyeable polyester fiber that can be dyed in a temperature range that does not cause embrittlement of protein fibers, a method for producing a cationic dye-dyeable polyester fiber in which 5 mol% or more of sodium sulfoisophthalic acid is copolymerized is disclosed in Patent Literature 1 and 2. However, although the dyeability is improved, the raw yarn strength is low, the stretch recovery is poor, the soft and supple texture is not obtained, the chemical resistance is low, the light fastness of the cationic dye is poor, and the cationic dye is dyed. There are problems such as large contamination of the machine.

また、ポリエチレングリコールの共重合による易染性ポリエステル繊維の製造法が特許文献3に開示されている。しかしながら、染色性は良好なものの原糸での沸水収縮率が高く、原糸使いにおいてはソフトでしなやかな風合が得られない、原糸が黄変しやすく淡色系における鮮明性が得られない等の問題がある。
さらに、5000〜8000m/分の高速紡糸により繊維内部構造を変えた易染性ポリエステル繊維の製造法が特許文献4、5に開示されている。これらの高速紡糸によるポリエステル繊維は従来のポリエステル繊維に比べ易染性になっているものの完全な常圧可染とはいいがたく、濃色に染色するには、110〜120℃の染色温度が必要であり、タンパク繊維の脆化は免れなく、しかもソフトでしなやかな風合は得られない等の問題がある。
Patent Document 3 discloses a method for producing easily dyeable polyester fibers by copolymerization of polyethylene glycol. However, although the dyeing property is good, the boiling water shrinkage ratio of the raw yarn is high, the soft and supple texture cannot be obtained when using the raw yarn, the raw yarn is prone to yellowing and the sharpness in the light color system cannot be obtained. There are problems such as.
Furthermore, Patent Documents 4 and 5 disclose methods for producing easily dyeable polyester fibers in which the fiber internal structure is changed by high-speed spinning at 5000 to 8000 m / min. Polyester fibers produced by these high-speed spinning are easier to dye than conventional polyester fibers, but are not completely normal pressure dyeable. For dyeing in dark colors, a dyeing temperature of 110 to 120 ° C is required. There is a problem that protein fiber embrittlement is inevitable and soft and supple texture cannot be obtained.

従って、現状ではポリエステル繊維とタンパク繊維の混用品に対して、ポリエステル繊維の発色性とタンパク繊維の物性との兼ね合いから妥協点を見出した染色条件が採用され、ポリエステル繊維は分散染料での染色が行われている。しかるに分散染料で染色した場合、タンパク繊維は分散染料により汚染され、その汚染性のコントロールが困難であることから染色時の色ブレが大きく、ポリエステル繊維との同色性が悪い問題がある。しかも、染色された混用布帛の染色堅牢度が低下するという問題や、ポリエステル繊維の発色性が低く、イラツキとよばれる欠点があり、品質の悪い染色製品しか得られていないのが実状である。さらにマルチタイプのポリエステル繊維を用いた場合、ハイマルチになるにつれソフトな風合は得やすくなるものの発色性の低下が大きく、染色バッチ毎の色のバラツキもより大きくなり、タンパク繊維との同色性も悪く、より品質の悪い染色製品しか得られていないのが実状である。
特公昭61−17939号公報 特開昭61−34022号公報 特許2870769号公報 特公平01−15610号公報 特開昭59−59911号公報
Therefore, at present, dyeing conditions that find a compromise from the balance between the color development properties of the polyester fibers and the physical properties of the protein fibers are used for the mixed products of polyester fibers and protein fibers, and the polyester fibers are dyed with disperse dyes. Has been done. However, when dyed with disperse dyes, protein fibers are contaminated with disperse dyes, and it is difficult to control the contamination. Therefore, there is a problem that color blur at the time of dyeing is large and the same color as polyester fibers is poor. Moreover, there is a problem that the dyeing fastness of the dyed mixed fabric is lowered, the color developability of the polyester fiber is low, and there is a defect called irritation, and only the dyed product with poor quality is obtained. In addition, when multi-type polyester fibers are used, a soft texture is easily obtained as high-poly is obtained, but the color developability is greatly reduced, and the color variation between dyeing batches is larger and the same color as protein fibers. In fact, only a dyed product with a lower quality is obtained.
Japanese Patent Publication No. 61-17939 JP-A-61-34022 Japanese Patent No. 2870769 Japanese Patent Publication No. 01-15610 JP 59-59911 A

本発明は、改質されたポリエステル繊維とタンパク繊維を混用することにより、ポリエステル繊維の発色性が高く、同色性が良好で染色における色の再現性が高く、染色堅牢度性能の高い従来にない格段にソフトでしなやかな風合を有する混用染色製品を提供することを目的とする。   In the present invention, by mixing the modified polyester fiber and protein fiber, the polyester fiber has high color developability, good color matching, high color reproducibility in dyeing, and high dyeing fastness performance. An object is to provide a mixed dyeing product having a remarkably soft and supple texture.

本発明者は、タンパク繊維に混用するポリエステル繊維について鋭意研究を行った結果、ポリエチレンテレフタレートに分子量300〜2000のポリエチレングリコールを3〜6重量%共重合したポリエステルを5000m/分以上の巻き取り速度で紡糸したポリエステル繊維をタンパク繊維と混用した布帛が上記課題を解決することを見出し、更に検討した結果、本発明をなすに至った。   As a result of diligent research on polyester fibers to be mixed with protein fibers, the present inventor has obtained a polyester obtained by copolymerizing polyethylene terephthalate with 3 to 6% by weight of polyethylene glycol having a molecular weight of 300 to 2000 at a winding speed of 5000 m / min or more. As a result of finding out that a fabric in which a spun polyester fiber is mixed with protein fiber solves the above-mentioned problems and further studying it, the present invention has been made.

すなわち本発明は、以下のとおりである。
(1)ポリエステル繊維とタンパク繊維との混用品であって、ポリエステル繊維がポリエチレンテレフタレートに分子量300〜2000のポリエチレングリコールを3〜6重量%共重合したポリエステルで、90重量%以上がエチレンテレフタレート繰り返し単位からなるポリエチレンテレフタレートからなり、単糸デシテックスが1.4以下で、測定周波数110Hzにおける力学的損失正接(tanδ)が最大を示す温度(Tmax)が、85℃以上105℃以下であることを特徴とするポリエステル繊維とタンパク繊維との混用品。
(2)ポリエステル繊維が、繊度変動値U%が1.0%以下で且つ、繊度変動周波数解析による10〜80mの周期における変動係数CV値の最大値が0.3%以下(但し、繊度変動値U%の測定は、糸長500mに渡り測定する)であることを特徴とする上記(1)記載のポリエステル繊維とタンパク繊維との混用品。
(3)JIS−L−0844 A−2法における洗濯堅牢度が3級以上であって、JIS−L−0848法における汗アルカリ堅牢度が3級以上であることを特徴とする上記(1)または(2)記載のポリエステル繊維とタンパク繊維との混用品。
That is, the present invention is as follows.
(1) A mixed product of polyester fiber and protein fiber, wherein the polyester fiber is a polyester obtained by copolymerizing polyethylene terephthalate with 3 to 6% by weight of polyethylene glycol having a molecular weight of 300 to 2000, and 90% by weight or more is an ethylene terephthalate repeating unit. The temperature (Tmax) at which the mechanical loss tangent (tan δ) is maximum at a measurement frequency of 110 Hz is 85 ° C. or higher and 105 ° C. or lower. Mixed polyester fiber and protein fiber.
(2) The polyester fiber has a fineness fluctuation value U% of 1.0% or less, and a maximum value of a coefficient of variation CV in a period of 10 to 80 m by a fineness fluctuation frequency analysis is 0.3% or less (however, the fineness fluctuation The value U% is measured over a yarn length of 500 m). The mixed article of polyester fiber and protein fiber according to (1) above,
(3) The above-mentioned (1), wherein the fastness to washing in the JIS-L-0844 A-2 method is 3 or higher and the fastness to sweat alkali in the JIS-L-0848 method is 3 or higher. Or the mixed article of the polyester fiber and protein fiber as described in (2).

ポリエチレンテレフタレートに分子量300〜2000のポリエチレングリコールを3〜6重量%共重合した単糸デシテックスが1.4以下のポリエステルを5000m/分以上の巻き取り速度で紡糸した易染性ポリエステル繊維とタンパク繊維を混用することでポリエステル繊維の発色性が高く、同色性が良好で、染色における色の再現性や染色堅牢度が高く、従来にない格段にソフトでしなやかな風合を有する混用染色製品が得られるという効果を奏する。   Polyester terephthalate copolymerized with 3 to 6% by weight of polyethylene glycol having a molecular weight of 300 to 2000, a single yarn decitex having a polyester of 1.4 or less spun at a winding speed of 5000 m / min or more, and a dyeable polyester fiber and a protein fiber. When mixed, the color of polyester fibers is high, the same color is good, the color reproducibility and dyeing fastness in dyeing are high, and a mixed dyeing product with an unprecedented soft and supple texture can be obtained. There is an effect.

本発明について、以下に詳細に説明する。
本発明は、ポリエステル繊維とタンパク繊維との混用品において、ポリエステル繊維が、ポリエチレンテレフタレートに分子量300〜2000のポリエチレングリコールを3〜6重量%共重合したポリエステルで、90重量%以上がエチレンテレフタレート繰り返し単位からなるポリエチレンテレフタレートからなることを特徴とする。
本発明に用いられるポリエステル繊維における共重合成分であるポリエチレングリコールは、ポリエステル繊維の非晶構造に適当な乱れを起こし、染色性の向上に寄与するものである。
The present invention will be described in detail below.
The present invention relates to a mixed product of polyester fiber and protein fiber, wherein the polyester fiber is a polyester obtained by copolymerizing polyethylene terephthalate with 3 to 6% by weight of polyethylene glycol having a molecular weight of 300 to 2000, and 90% by weight or more is an ethylene terephthalate repeating unit. It consists of the polyethylene terephthalate which consists of.
Polyethylene glycol, which is a copolymerization component in the polyester fiber used in the present invention, causes an appropriate disturbance in the amorphous structure of the polyester fiber and contributes to an improvement in dyeability.

ポリエチレングリコールの分子量が300未満のものは、易染効果が不十分で常圧可染性を達成するためには6重量%以上の共重合量が必要となり、ポリマー色調が悪化するため好ましくない。また、ポリエチレンテレフタレートは真空下での重合のため分子量が300未満のポリエチレングリコールの場合、一部がプロダクト系外に飛散する恐れがあり、ポリマー組成が不安定となる。一方、ポリエチレングリコールの分子量が2000を越えた場合、ブロック共重合にともない超高分子成分が増大し、染色堅牢度、耐光性の低下が顕在化するため好ましくない。   Polyethylene glycol having a molecular weight of less than 300 is not preferable because the easy dyeing effect is insufficient and a copolymerization amount of 6% by weight or more is required to achieve atmospheric pressure dyeability, and the polymer color tone deteriorates. In addition, since polyethylene terephthalate is a polyethylene glycol having a molecular weight of less than 300 due to polymerization under vacuum, a part of the polyethylene terephthalate may be scattered outside the product system, and the polymer composition becomes unstable. On the other hand, when the molecular weight of polyethylene glycol exceeds 2000, the ultra-high molecular component increases with block copolymerization, and the decrease in dyeing fastness and light resistance becomes obvious.

また、ポリエチレングリコールの共重合量が3重量%未満の場合には、常圧での染色性が不十分であり、常圧可染性は得られない。一方、6重量%を越える場合には、常圧での染色性は十分であるが、ポリマー色調が悪化し、5000m/分以上の巻き取り速度においては、糸切れや毛羽の発生が多くなり、紡糸安定生産が困難となる。特に、繊度が細い領域では、この問題が顕著である。さらに、製糸されたフィラメントは耐光堅牢度、染色堅牢度が悪化し好ましくない。   When the copolymerization amount of polyethylene glycol is less than 3% by weight, the dyeability at normal pressure is insufficient, and normal pressure dyeability cannot be obtained. On the other hand, if it exceeds 6% by weight, the dyeability at normal pressure is sufficient, but the color of the polymer deteriorates, and at the winding speed of 5000 m / min or more, yarn breakage and fluffing increase. Stable spinning production becomes difficult. In particular, this problem is remarkable in the region where the fineness is thin. Furthermore, the filament produced is not preferable because light fastness and dyeing fastness deteriorate.

本発明におけるポリエステル繊維は、超高速紡糸法を用いるため、従来法によるポリエステル繊維に比べソフトな風合を有しており、更にポリエチレングリコールを共重合することで結晶化が抑制され、更にソフトな風合であり、繊度を細くすることで、更に一段とソフト感を増すことができる。本発明が求める従来にない格段にソフトでナイロンに近いしなやかな風合を有した混用品を得るには、ポリエステル繊維の単糸デシテックスが1.4以下とする必要がある。単糸デシテックスが1.4を越えると他素材が有する独特の風合を損ないポリエステル繊維の硬質な風合が強調されることとなる。好ましくは1.2以下である。   Since the polyester fiber in the present invention uses an ultra-high speed spinning method, the polyester fiber has a softer texture than the polyester fiber obtained by the conventional method, and further, the crystallization is suppressed by copolymerizing polyethylene glycol, which is further softer. The texture is soft, and the softness can be further increased by reducing the fineness. In order to obtain a blended product that has an unprecedented softness and a supple texture similar to nylon that is required by the present invention, the single yarn decitex of the polyester fiber needs to be 1.4 or less. If the single yarn decitex exceeds 1.4, the unique texture of other materials is impaired and the hard texture of the polyester fiber is emphasized. Preferably it is 1.2 or less.

本発明におけるポリエステル繊維は、動的粘弾性測定から求められる損失正接のピーク温度(以下、Tmaxと称す)が85℃以上105℃以下であることが必要である。これは、この範囲で本発明が求める従来にない格段にソフトでしなやかな風合が確保できるばかりか、染色性が高まり、単糸デシテックスが小さくなっても発色性が高いため、タンパク繊維への分散染料の汚染量が少なくなり、タンパク繊維の着色度が60以下にコントロールできることから同色性、染色バッチごとの色の再現性、染色堅牢度が良好となる。Tmaxは、非晶部の分子の移動性に対応するので、この値が小さくなるほど染料が非晶部に入りやすくなり、すなわち染色性が高くなるといえる。   The polyester fiber in the present invention is required to have a loss tangent peak temperature (hereinafter referred to as Tmax) determined from dynamic viscoelasticity measurement of 85 ° C. or higher and 105 ° C. or lower. This is because in this range, it is possible not only to ensure an unprecedented soft and supple texture that is required by the present invention, but also to increase the dyeability and high color development even when the single yarn decitex is reduced. Since the amount of disperse dye contamination is reduced and the degree of coloration of protein fibers can be controlled to 60 or less, the same color, color reproducibility for each dye batch, and dye fastness are improved. Since Tmax corresponds to the mobility of molecules in the amorphous part, it can be said that the smaller the value, the easier the dye enters the amorphous part, that is, the higher the dyeability.

本発明におけるポリエステル繊維は、Tmaxが105℃を越えると染色改善効果が少なく、より高い温度での染色が必要となりタンパク繊維の脆化の問題が発生しやすくなるので好ましくない。しかしTmaxが低すぎると力学物性、耐熱性の低下等の問題が出てくる。Tmaxの特に好ましい範囲は90℃以上100℃以下である。
また、Tmaxほど重要な条件ではないが、Tmaxにおける損失正接の値(以下、tanδmaxと称す)は0.13〜0.22程度が好ましい。損失正接の値は非晶量に対応しており、この範囲から外れると本発明で得られる風合の悪化や染色性、染色堅牢度が悪化するばかりか色の再現性が悪くなる惧れがある。
When the Tmax exceeds 105 ° C., the polyester fiber in the present invention is not preferable because the effect of improving the dyeing is small, dyeing at a higher temperature is required, and the problem of embrittlement of the protein fiber is likely to occur. However, if Tmax is too low, problems such as a decrease in mechanical properties and heat resistance appear. A particularly preferable range of Tmax is 90 ° C. or higher and 100 ° C. or lower.
Although not as important as Tmax, the loss tangent value at Tmax (hereinafter referred to as tan δmax) is preferably about 0.13 to 0.22. The value of loss tangent corresponds to the amount of amorphous material, and if it is out of this range, not only the texture, dyeability, and color fastness obtained in the present invention will deteriorate, but also the color reproducibility may deteriorate. is there.

一般に、繊維の繊度を細くして布帛化した場合、布帛の染色性が淡色化する傾向にあるが、本発明では、高速紡糸化及びポリエチレングリコールの共重合化により、染色性を改善したポリエステル繊維を用いるため、繊度を細くしても、十分な染色性が得られるという特徴を有している。   In general, when a fiber is made thin by making the fineness of the fiber, the dyeability of the fabric tends to lighten. In the present invention, the polyester fiber has improved dyeability by high-speed spinning and copolymerization of polyethylene glycol. Therefore, sufficient dyeability can be obtained even if the fineness is reduced.

次に本発明におけるポリエステル繊維の製造法について述べる。
本発明でいうポリエステル繊維とは、構成単位の少なくとも90%以上がエチレンテレフタレートであり、前記のポリエチレングリコール成分以外にも5モル%以下の他の成分を共重合していてもよい。例えば、ペンタエリスリトール、トリメチロールプロパン、トリメリット酸、ホウ酸等の鎖分岐剤を小割合重合したものであってもよい。
また、前記共重合成分の他に通常のエステル交換触媒、重合触媒、リン化合物、二酸化チタン等の艶消し剤、着色防止剤、酸化分解防止剤、消泡剤、ケイ光増白剤、顔料などを必要に応じて含有させてもよい。
Next, the manufacturing method of the polyester fiber in this invention is described.
In the polyester fiber as used in the present invention, at least 90% of the structural unit is ethylene terephthalate, and in addition to the polyethylene glycol component, other components of 5 mol% or less may be copolymerized. For example, a polymer obtained by polymerizing a small amount of a chain branching agent such as pentaerythritol, trimethylolpropane, trimellitic acid, boric acid or the like may be used.
In addition to the copolymer components, ordinary transesterification catalysts, polymerization catalysts, phosphorus compounds, matting agents such as titanium dioxide, coloring inhibitors, oxidative decomposition inhibitors, antifoaming agents, fluorescent whitening agents, pigments, etc. May be included as necessary.

本発明におけるポリエステル繊維を構成するポリマーの重合方法は、公知の方法を採用することができる。すなわち、ポリエチレングリコールはテレフタル酸、エチレングリコール等と反応させてもよく、あるいはテレフタル酸ジメチルとエチレングリコールをエステル交換反応を行った後に反応させてもよく、ポリエステルの重合反応が完了する任意の段階で添加してもよい。また、現在工業生産が行われているバッチ重合法、連続重合法のいずれも適用できる。   A known method can be adopted as a method for polymerizing the polymer constituting the polyester fiber in the present invention. That is, polyethylene glycol may be reacted with terephthalic acid, ethylene glycol or the like, or may be reacted after transesterification of dimethyl terephthalate and ethylene glycol, at any stage where the polyester polymerization reaction is completed. It may be added. In addition, any of the batch polymerization method and the continuous polymerization method that are currently being industrially produced can be applied.

本発明におけるポリエステル繊維は、5000m/分以上の巻き取り速度である高速紡糸法によって得ることができる。一方、当該共重合ポリエステルを通常法や直延法を用いて繊維化しても、タンパク繊維と混用した時の風合として従来にない格段にソフトでしなやかさは得ることは困難である。また染色バッチごとの色の再現性も不良となる。これは高速紡糸で得た繊維の非晶部分の配向が通常法や直延法で得た繊維のそれよりもはるかに小さいことに起因する。特に、本発明で用いるポリマーは非晶部分に適度に分子鎖の長いポリエチレングリコールを有するので、非晶部の配向が一層低下し、染色性が向上するばかりかソフトでしなやかな風合がいっそう助長され、しかも力学物性に優れた画期的な繊維となる。   The polyester fiber in the present invention can be obtained by a high speed spinning method having a winding speed of 5000 m / min or more. On the other hand, even if the copolymerized polyester is made into a fiber using a normal method or a straight-roll method, it is difficult to obtain a remarkably soft and suppleness as a texture when mixed with protein fiber. Also, the color reproducibility for each dyeing batch is poor. This is due to the fact that the orientation of the amorphous portion of the fiber obtained by high speed spinning is much smaller than that of the fiber obtained by the ordinary method or the straight-drawing method. In particular, since the polymer used in the present invention has polyethylene glycol having a moderately long molecular chain in the amorphous part, the orientation of the amorphous part is further lowered, and the dyeing property is improved, and the soft and supple texture is further promoted. In addition, it is a revolutionary fiber with excellent mechanical properties.

本発明において従来にない格段にソフトでしなやかな風合を付与するため単糸デシテックスを1.4以下とし、高速紡糸法において製糸した場合、繊度斑による染め斑が顕在化することが明らかとなった。この事態を回避するため本発明者らは鋭意研究を重ねた結果、単糸デシテックスが1.4以下で、5000m/分以上の高速紡糸法において、図1、2に示す、紡孔芯間距離が8mm以上である紡口を使用することで紡糸が安定化し、繊度変動が減少し、染め斑が回避されることを見出した。   In the present invention, in order to give a remarkably soft and supple texture in the present invention, when the single yarn decitex is set to 1.4 or less and the yarn is produced by the high speed spinning method, it becomes clear that the dyed spots due to the fineness spots become apparent. It was. In order to avoid this situation, the present inventors have conducted intensive research. As a result, in the high-speed spinning method with a single yarn decitex of 1.4 or less and 5000 m / min or more, the distance between the cores shown in FIGS. It has been found that by using a spinner having a diameter of 8 mm or more, spinning is stabilized, variation in fineness is reduced, and dyeing spots are avoided.

紡孔芯間距離が8mm未満の場合、繊維長手方向の繊度変動値U%が1.0%以上となり、繊度の変動が大きくなる。更に、その変動を周波数解析すると、繊度変動周波数解析による10〜50m周期変動係数が大きくなり、その最大値であるCV値が0.3%を越え、一口編地による均染性の評価を行なうと、筋状の染め斑が顕在化し、高品質の易染性ポリエステルが得られない。さらに芯間距離が8mm未満の場合、超高速紡糸に特有に生ずるネッキング延伸に伴う随伴気流の影響が大きく、糸揺れにより繊度斑となる。   When the inter-spinning core distance is less than 8 mm, the fineness variation value U% in the fiber longitudinal direction is 1.0% or more, and the fineness variation becomes large. Furthermore, when the fluctuation is subjected to frequency analysis, the periodic fluctuation coefficient of 10 to 50 m by the fineness fluctuation frequency analysis is increased, and the maximum value of the CV value exceeds 0.3%, and the leveling property evaluation by the bite knitted fabric is performed. As a result, streaky dyed spots appear and high-quality easily-dyeable polyester cannot be obtained. Furthermore, when the distance between the cores is less than 8 mm, the influence of the accompanying air flow accompanying necking stretching that is peculiar to ultra-high speed spinning is large, and fineness unevenness occurs due to yarn swinging.

本発明におけるポリエステル繊維のU%及びその周波数解析チャートを図4に示す。これより、繊維繊度の長手方向の変動が極めて少なく、繊維の長手方向に伴なう特異な周波数変動は無く、CV値は0.3%以下と極めて小さい値であり、繊度が長手方向に非常に安定して均一であるといえる。   FIG. 4 shows U% of the polyester fiber and its frequency analysis chart in the present invention. Accordingly, there is very little fluctuation in the longitudinal direction of the fiber fineness, there is no specific frequency fluctuation accompanying the longitudinal direction of the fiber, and the CV value is very small as 0.3% or less, and the fineness is very small in the longitudinal direction. It is stable and uniform.

繊度斑をより小さくし、より安定化するためには、紡口芯間距離10mm以上が好ましい。また、5000m以上の高速紡糸で円周冷却からなる冷却筒を付帯する紡糸設備を使用する場合の紡孔配列は1重円配列が好ましいが、芯間距離が8mm以下となる場合は多周円に紡孔を配列する必要があり、この際の内層部に位置する紡口芯間距離は外層紡孔の随伴気流が付加されるため10mm以上、好ましくは12mm以上の芯間距離にすることが好ましい。一方、芯間距離が30mmを越える場合は、U%及び品位への改善効果が見られず、紡口サイズが巨大となり工業生産上実用的でない。   In order to make the fineness spots smaller and more stable, the distance between the spinneret cores is preferably 10 mm or more. In addition, when using a spinning facility with a cooling cylinder made of circumferential cooling with high-speed spinning of 5000 m or more, a single-hole arrangement is preferable, but if the center distance is 8 mm or less, a multi-circular circle is used. In this case, the inter-spindle core distance located in the inner layer portion is 10 mm or more, preferably 12 mm or more, because the accompanying airflow of the outer layer spinning hole is added. preferable. On the other hand, when the distance between the cores exceeds 30 mm, the improvement effect on U% and quality is not seen, and the spinneret size becomes huge, which is not practical for industrial production.

一方、単糸デシテックスが1.4以下で、5000m/分以上の高速紡糸において、糸切れ、毛羽が多発する原因は定かではないが、本発明において、易染性を付与するためにポリエチレングリコールを共重合しており、耐熱性が通常のポリエチレンテレフタレートに対比して劣るため、重合工程および紡糸工程における粘度斑や触媒、添加剤の凝集物等が生じやすく、単糸デシテックスが1.4以下で、5000m/分以上の高速紡糸の場合、粘度変動や触媒、添加剤の凝集物等の影響を受けやすく、糸切れ、毛羽多発が顕在化したものと考えられる。   On the other hand, the cause of frequent yarn breakage and fluff in high-speed spinning with a single yarn decitex of 1.4 or less and 5000 m / min or more is not clear, but in the present invention, polyethylene glycol is used to impart easy dyeability. Because it is copolymerized and heat resistance is inferior to ordinary polyethylene terephthalate, it tends to cause viscosity spots, catalysts, and aggregates of additives in the polymerization process and spinning process, and the single yarn decitex is 1.4 or less. In the case of high-speed spinning at 5000 m / min or more, it is considered that the yarn is easily affected by fluctuations in viscosity, agglomerates of catalysts, additives, and the like, and the occurrence of yarn breakage and fluffing becomes apparent.

糸切れ、毛羽を防止するため、ポリマー重合段階および紡糸工程において異常滞留を極力防止するなど細心の注意を払う必要があるが、異常滞留部を完全に解消することは困難である。そこで、粘度変動や触媒、添加剤の凝集物の影響を回避するため鋭意検討の結果、ポリマーの紡口からの吐出線速度を20cm/秒以上、100cm/秒以下とすることで糸切れ、毛羽が解消される事を見出した。   In order to prevent yarn breakage and fluff, it is necessary to pay close attention to preventing abnormal retention as much as possible in the polymer polymerization stage and spinning process, but it is difficult to completely eliminate the abnormal retention portion. Therefore, as a result of intensive studies to avoid the influence of viscosity fluctuations and aggregates of catalysts and additives, yarn breakage and fluff can be controlled by setting the discharge linear velocity from the polymer nozzle to 20 cm / second or more and 100 cm / second or less. Has been found to be resolved.

紡孔吐出線速度20cm/秒未満では糸切れ、毛羽が多発し易く、好ましくは40cm/秒以上が好ましい。紡孔吐出線速度が100cm/秒を越えると、メルトフラクチャーとなり易く、紡糸の不安定化、紡糸不能の原因となる。また、紡孔吐出線速度20cm/秒未満の場合、繊度変動周波数解析による30〜80mの長周期の変動CV値が0.3%を越える大きな値となり、一口編地による均染性評価を行なうとバンド状の染め斑が顕在化し、高品位、高品質の易染性ポリエステル繊維が得られない。   If the spinning hole discharge linear velocity is less than 20 cm / sec, yarn breakage and fluff are likely to occur frequently, and preferably 40 cm / sec or more. When the spinning hole discharge linear velocity exceeds 100 cm / sec, melt fracture tends to occur, which may cause unstable spinning and impossible spinning. Further, when the spinning hole discharge linear velocity is less than 20 cm / second, the fluctuation CV value of a long period of 30 to 80 m according to the fineness fluctuation frequency analysis becomes a large value exceeding 0.3%, and the leveling property evaluation by the one-piece knitted fabric is performed. As a result, band-like dyed spots appear, and high-quality, high-quality easily-dyeable polyester fibers cannot be obtained.

本発明におけるポリエステル繊維は、例えば、図3に示す紡糸装置を用いて製造することができる。本発明に用いられる給糸用ノズルからなる収束ガイド、巻取装置、およびその他の溶融紡糸に必要な装置は、公知のものを使用してよい。また、本発明に用いる仕上油剤は、エマルジョンタイプ、ストレートタイプの何れでもよく、その成分は既知のものでよい。   The polyester fiber in the present invention can be produced using, for example, a spinning device shown in FIG. As the convergence guide composed of the yarn feeding nozzles used in the present invention, the winding device, and other devices necessary for melt spinning, known devices may be used. Further, the finishing oil used in the present invention may be either an emulsion type or a straight type, and its components may be known.

本発明の易染性ポリエステル繊維は、特に限定はしないが総繊度が10〜170デシテックスでの繊維が好ましく適用される。また繊維の形態は、長繊維でも短繊維でもよく、長さ方向に均一なものや太細のあるものでもよい。そして、繊維が加工される糸条の形態としては、リング紡績糸、オープンエンド紡績糸、エアジェット精紡糸等の紡績糸、甘撚糸〜強撚糸、仮撚加工糸(POYの延伸仮撚糸を含む)、空気噴射加工糸、押し込み加工糸、ニットデニット加工糸等がある。
本発明でいう混用品は、本発明の目的を損なわない範囲内でスパンデックス、綿、キュプラ、ビスコースレーヨン繊維、ポリアミド繊維、アクリル繊維等他の繊維を混紡(サイロスパンやサイロフィル等)、交絡混繊(高収縮糸との異収縮混繊糸等)、交撚、複合仮撚(伸度差仮撚等)、2フィード空気噴射加工等の混用の手段によるものであることができる。
The easily dyeable polyester fiber of the present invention is not particularly limited, but a fiber having a total fineness of 10 to 170 dtex is preferably applied. The form of the fibers may be long fibers or short fibers, and may be uniform or thick in the length direction. And as the form of the yarn in which the fiber is processed, a spun yarn such as a ring spun yarn, an open-end spun yarn, an air jet fine spun yarn, a sweet twisted yarn to a strongly twisted yarn, a false twisted yarn (including POY drawn false twisted yarn) ), Air injection processed yarn, indented processed yarn, knitted knitted yarn, and the like.
The mixed article as used in the present invention is a mixture of other fibers such as spandex, cotton, cupra, viscose rayon fiber, polyamide fiber, acrylic fiber, etc. within the range that does not impair the object of the present invention (silospan, silofil, etc.) It can be by means of mixing such as fine yarn (different shrinkage mixed yarn with high shrinkage yarn, etc.), cross twist, composite false twist (elongation difference false twist, etc.), two-feed air jet processing and the like.

本発明において、混用されるタンパク繊維は、羊毛、モヘヤ、カシミヤに代表される獣毛繊維と家蚕糸、野蚕糸に代表される絹繊維より適宜に選択される繊維である。
従来羊毛織物においては、湿潤処理をしても縮にくい、光沢を増し、染まり易くなる等を目的として、塩素ガスや塩素化合物にて羊毛のスケール処理が行われているが、この場合、従来のポリエステル繊維との複合においては、イラツキがより助長される問題があったが、本発明の易染性ポリエステル繊維と羊毛織物との混用品であれば、イラツキがなく同色性が良好となる。
In the present invention, the mixed protein fiber is a fiber appropriately selected from animal fibers represented by wool, mohair, and cashmere and silk fibers represented by rabbit yarn and wild silk yarn.
In conventional wool fabrics, wool has been scaled with chlorine gas or chlorine compounds for the purpose of being hard to shrink even when wet treated, increasing glossiness, and facilitating dyeing. In the composite with the polyester fiber, there is a problem that the irritation is further promoted. However, if it is a mixed product of the easily dyeable polyester fiber of the present invention and the wool fabric, there is no irritation and the same color is good.

本発明の混用品におけるポリエステル繊維とタンパク繊維の割合は、ポリエステル繊維が概ね65重量%以下であることが好ましい。混用の割合は混用品の形態あるいは用途に応じて選択される。その他にスパンデックス、綿、麻、キュプラ、ビスコースレーヨン、アセテート、アクリル繊維等が混用されることもありうる。   The polyester fiber and protein fiber in the mixed article of the present invention preferably have a polyester fiber content of approximately 65% by weight or less. The ratio of mixed use is selected according to the form or use of the mixed product. In addition, spandex, cotton, hemp, cupra, viscose rayon, acetate, acrylic fiber, and the like may be mixed.

本発明のポリエステル繊維とタンパク繊維との混用品の形態は、糸条の形態であることも、布帛の形態であることもできる。糸条の形態の例としては、混紡(混綿、フリース混紡、スライバー混紡、コアヤーン、サイロスパン、サイロフィル、ホロースピンドル等)、交絡混繊、交撚、意匠撚糸、カバリング(シングル、ダブル)、複合仮撚(同時仮撚、先撚仮撚)、伸度差仮撚、位相差、仮撚加工後に後混繊、2フィード(同時フィードやフィード差)空気噴射加工等による混用形態が挙げられる。   The form of the mixed article of the polyester fiber and the protein fiber of the present invention can be a thread form or a cloth form. Examples of yarn forms include blended yarn (blended cotton, fleece blended, sliver blended, core yarn, silo span, silofill, hollow spindle, etc.), entangled blended yarn, twisted yarn, design twisted yarn, covering (single, double), composite temporary Examples of the mixed use include twisting (simultaneous false twisting, first twist false twisting), elongation difference false twisting, phase difference, post-mixing after false twisting, and two-feed (simultaneous feed or feed difference) air jet machining.

一方、布帛の形態の例としては、一般的な交編があり、例えば交編では、両者を引き揃えて給糸したり、二重編地(例えばダブル丸編機、ダブル横編機、ダブルラッセル経編機)において表面及び又は裏面に各々給糸又は引き揃えて給糸する方法がある。交編では一方が経糸に他方を緯糸に用いる、経糸及び又は緯糸において両者を1〜3本交互に整経や緯入れにより配置する方法がある。さらには起毛織物やパイル織物において一方が地組織を構成し、他方が起毛部、パイル部を構成したり混用して地組織、起毛部等を構成する、二重織物において表面及び又は裏面を各々構成、又は混用して構成する等がある。   On the other hand, as an example of the form of the fabric, there is a general knitting. For example, in the knitting, the yarns are aligned and fed, or a double knitted fabric (for example, a double circular knitting machine, a double flat knitting machine, a double knitting machine) In a Russell warp knitting machine), there is a method of feeding yarns on the front surface and / or the back surface, respectively. In the knit, there is a method in which one is used for the warp and the other is used for the weft. In the warp and / or weft, both are alternately arranged by warping or weft insertion. Furthermore, in the raised fabric and the pile fabric, one side constitutes the ground structure, and the other constitutes the ground portion, the pile portion, or the ground structure, the raised portion, etc. There are configurations or mixed configurations.

また、これら各種の糸段階での複合と機上での複合を組み合わせてもよい。特に、芯部にポリエステル繊維を、鞘部にタンパク繊維を配置するように複合した鞘芯複合糸や交撚糸は、タンパク繊維の風合を保持しつつ、寸法安定性、ストレッチ性、防シワ性などの機能性をも付与でき好ましい。   Further, a combination of these various yarn stages and a combination on the machine may be combined. In particular, sheath-core composite yarns and twisted yarns, which are composed of polyester fibers in the core and protein fibers in the sheath, maintain the texture of the protein fibers, while maintaining dimensional stability, stretchability, and wrinkle resistance It is preferable that it can provide functionality such as.

本発明のポリエステル繊維とタンパク繊維との混用品の染色にあたって、易染性ポリエステル繊維を分散染料で染色する場合、通常ポリエステル繊維が分散染料にて染色されている染色条件であればいずれでも適用でき、染色助剤の種類とその使用濃度、染色pH、染色浴比、染色時間等は被染色品の種類、用いられる処理装置、染色法を勘案して適宜設定すればよい。
分散染料としては、ベンゼンアゾ系(モノアゾ、ジスアゾ、ナフタレンアゾ系)や複素環アゾ系(チアゾールアゾ、ベンゾチアゾールアゾ、キノリンアゾ、ピリドンアゾ、イミダゾールアゾ、チオフェンアゾ等)に代表されるアゾ系分散染料の使用が易染性ポリエステル繊維の常圧染色における発色性を高め、タンパク繊維への汚染を低減し、同色性、染色堅牢度を高める上で好ましい。また、特に染色濃度が低い場合には、拡散指数3.0以上の分散染料を用いると染色バッチごとの色のバラツキが少なくなるので好ましい。
When dyeing easily-dyeable polyester fibers with a disperse dye in dyeing a mixed product of polyester fiber and protein fiber of the present invention, any dyeing condition can be applied as long as the polyester fiber is usually dyed with a disperse dye. The type of dyeing assistant and its use concentration, dyeing pH, dyeing bath ratio, dyeing time, etc. may be appropriately set in consideration of the kind of article to be dyed, the processing apparatus used and the dyeing method.
As disperse dyes, use of azo disperse dyes represented by benzeneazo (monoazo, disazo, naphthaleneazo) and heterocyclic azo (thiazoleazo, benzothiazoleazo, quinolineazo, pyridoneazo, imidazoleazo, thiophenazo, etc.) However, it is preferable from the viewpoint of enhancing the color developability of the readily dyeable polyester fiber under normal pressure dyeing, reducing the contamination of the protein fiber, and increasing the same color and fastness of dyeing. In particular, when the dyeing density is low, it is preferable to use a disperse dye having a diffusion index of 3.0 or more because color variation between dyeing batches is reduced.

またタンパク繊維の染色は、酸性、含金、クロム、反応染料等にて通常タンパク繊維が染色されている条件であればいずれでも適用でき、染色法は分散染料との二浴染色法、一浴二段染色法、一浴染色法等適宜実施すればよい。
染色する際の染色温度は110℃以下が好ましく、特に100℃以下で染色するのが色の再現性を高める上で好ましい。染色操作は、ウインス、ジッガー、ビーム染色機、液流染色機等の装置を用い、バッチ方式、連続方式のいずれによっても実施することができる。
なお、浸染以外にパディング染色法、プリント法であっても実施することができる。染色後の後処理としては、通常実施されている還元剤を用いた還元洗浄やFix処理、ソーピング処理等を実施する。
In addition, protein fiber dyeing can be applied under any conditions in which protein fiber is usually dyed with acid, metal inclusion, chromium, reactive dye, etc., and dyeing method can be two-bath dyeing method with disperse dye, one bath A two-stage dyeing method, a one-bath dyeing method, or the like may be appropriately performed.
The dyeing temperature at the time of dyeing is preferably 110 ° C. or lower, and dyeing at 100 ° C. or lower is particularly preferable for improving color reproducibility. The dyeing operation can be carried out by either a batch method or a continuous method using an apparatus such as a wins, a jigger, a beam dyeing machine, or a liquid dyeing machine.
In addition to the dip dyeing, a padding dyeing method and a printing method can be used. As post-treatment after dyeing, reduction cleaning using a reducing agent, Fix treatment, soaping treatment, and the like, which are usually performed, are performed.

得られた混用染色品は、易染性ポリエステル繊維への分散染料の染着率を高め、単糸デシテックスが小さくても発色性が高く、タンパク繊維との同色性が良好で見栄えのよい混用品の染色物が得られる。また染色バッチごとの色のバラツキを抑え染色機の操業率を向上させる。
混用染色品は後処理後、常法に従って仕上げればよいが、ファイナルセット温度はプレセット温度より10℃以上低くしてセットすると好ましい結果が得られる。
本発明のポリエステル繊維とタンパク繊維との混用品は、格段にソフトでしなやかな風合を有し、発色性が高く、同色性が良好で、染色バッチごとの色のバラツキが少なく、色の再現性が高い染色物が得られ、かつ堅牢度性能も良好である。具体的には、JIS−L−0844 A−2法における洗濯堅牢度が3級以上であって、JIS−L−0848法における汗アルカリ堅牢度が3級以上である、商品価値の高い混用品を得ることができる。
The resulting mixed dyed product increases the dyeing rate of disperse dyes on easily dyeable polyester fibers, has high color developability even with a small single yarn decitex, and has the same colorability as protein fibers, making it a good-looking mix A dyed product is obtained. In addition, the color variation of each dyeing batch is suppressed and the operation rate of the dyeing machine is improved.
The mixed dyed product may be finished according to a conventional method after post-treatment, but a preferable result can be obtained by setting the final set temperature to be 10 ° C. lower than the preset temperature.
The polyester fiber and protein fiber mixed product of the present invention has a remarkably soft and supple texture, high color development, good color matching, little color variation between dyeing batches, and color reproduction. A dyed product with high properties is obtained, and fastness performance is also good. Specifically, a high commercial value mixed article in which the fastness to washing in the JIS-L-0844 A-2 method is 3 or higher and the fastness to sweat alkali in the JIS-L-0848 method is 3 or higher. Can be obtained.

以下に本発明を実施例などにより更に具体的に説明するが、本発明はこれら実施例などにより何ら限定されるものではない。尚、本発明で用いられる特性値の測定法を以下に示す。
(1)固有粘度[η] (dl/g)
固有粘度[η] (dl/g)は次式の定義に基づいて求められた値である。
[η]=lim(ηr−1)/C
C→0
定義中、ηrは純度98%以上のo−クロロフェノール溶媒で溶解したポリマーの希釈溶液35℃での粘度を同一温度で測定した上記溶媒の粘度で除した値であり、相対粘度と定義されるものである。Cはg/100mlで表わされるポリマー濃度である。
Examples The present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In addition, the measuring method of the characteristic value used by this invention is shown below.
(1) Intrinsic viscosity [η] (dl / g)
Intrinsic viscosity [η] (dl / g) is a value determined based on the definition of the following equation.
[Η] = lim (ηr−1) / C
C → 0
In the definition, ηr is a value obtained by dividing the viscosity of a polymer diluted in an o-chlorophenol solvent having a purity of 98% or more at 35 ° C. by the viscosity of the solvent measured at the same temperature, and is defined as a relative viscosity. Is. C is the polymer concentration expressed in g / 100 ml.

(2)強度・伸度
オリエンテック社製、引張試験機を用い、糸長20cm、引張速20cm/分の条件で測定した。
(2) Strength / Elongation Measured using a tensile tester manufactured by Orientec Co., Ltd. under the conditions of a yarn length of 20 cm and a tensile speed of 20 cm / min.

(3)繊度変動値U%、U%波形高低差
以下の方法で繊度変動値チャート(グラフ;Daiagram Mass)を求めると同時にU%を測定した。
・測定器:イブネスター(ツエルベガーウースター社製、ウースターテスターUT−4)
・測定条件
測定法 : ノーマル
糸速度 : 100m/分
ディスクテンション強さ(Tension force):10%
撚り(Twist) : S撚り 10000回/min
測定糸長 : 500m
スケール : ±10%
・繊度変動値U%
変動チャート及び表示される変動値を直読した。
(3) Fineness variation value U%, U% waveform height difference U% was measured at the same time as a fineness variation value chart (graph; Diagram Mass) was obtained by the following method.
・ Measurement device: Evenester (manufactured by Twelvegar Wooster, Wooster Tester UT-4)
Measurement conditions Measurement method: Normal Yarn speed: 100 m / min Disc tension strength (Tension force): 10%
Twist: S twist 10,000 times / min
Measuring thread length: 500m
Scale: ± 10%
・ Fineness fluctuation value U%
The fluctuation chart and displayed fluctuation values were read directly.

・繊度変動周波数解析
イブネステスターに付属の繊度変動周波数解析ソフトを用い上記条件で500m測定し、周波数とCV値を読んだ。
・ Fineness fluctuation frequency analysis The fineness fluctuation frequency analysis software attached to the Evenes tester was used to measure 500 m under the above conditions, and the frequency and CV value were read.

(4)損失正接
オリエンテック社製レオバイブロンを用い、試料重量約0.1mg、測定周波数110Hz、昇温速度5℃/分、乾燥空気中にて測定を行い、各温度における力学的損失正接(tanδ)、および動的粘弾性(E’)を測定する。その結果から、tanδ−温度曲線が得られ、この曲線上でtanδが最大値を示す温度(Tmax)(℃)とそのときのtanδの極大値tanδmaxを求めた。
(4) Loss tangent Using a Levivibron manufactured by Orientec, the sample weight is about 0.1 mg, the measurement frequency is 110 Hz, the heating rate is 5 ° C./minute, and the measurement is performed in dry air. ), And dynamic viscoelasticity (E ′). From the result, a tan δ-temperature curve was obtained, and the temperature (Tmax) (° C.) at which tan δ showed the maximum value on this curve and the maximum value tan δ max of tan δ at that time were obtained.

(5)吸尽率、発色性(K/S)測定:染色性の評価
試料は、糸を一口編地としスコアロール400を2g/リットル含む温水を用いて、70℃、20分間精練処理し、タンブラー乾燥機で乾燥させ、次いで、ピンテンターを用いて、180℃、30秒間の熱セットを行ったものを用いた。
染料は、Sumikaron Blue S−3RF(住化ケムテックス(株)製、商品名)を布帛に対して5重量%使用し、さらに分散剤として、ニッカサンソルト7000(日華化学(株)製、商品名)0.5g/リットル、酢酸0.25ml/リットル、酢酸ナトリウム1.0g/リットルを添加してpHを5に調整して染液とした。浴比25倍の染浴中で95℃にて60分の染色後、吸尽率を求めた。吸尽率は、染料原液の吸光度をA、染色後の染液の吸光度aを分光光度計から求め、以下の式に代入して求めた。吸光度は、当該染料の最大吸収波長である580nmでの値を採用した。
吸尽率=[(A−a)/A]×100(%)
発色性は、K/Sを用いて評価した。この値は、染色後のサンプル布帛の分光反射率Rを測定し、以下に示すKubelka−Munkの式から求めた。この値が大きいほど発色性が高い(表面濃度が高い)こと、すなわち、良く発色されていることを示す。当該染料の最大吸収波長である580nmでの値を採用した。
K/S=(1−R)/2R
(5) Exhaust rate, color developability (K / S) measurement: Evaluation of dyeability Samples were scoured at 70 ° C. for 20 minutes using warm water containing 2 g / liter of score roll 400 using yarn as a knitted fabric. Then, it was dried with a tumbler drier, and then heat-set at 180 ° C. for 30 seconds using a pin tenter was used.
As the dye, Sumikaron Blue S-3RF (manufactured by Sumika Chemtex Co., Ltd., trade name) is used in an amount of 5% by weight with respect to the fabric, and as a dispersant, Nikka Sun Salt 7000 (manufactured by Nikka Chemical Co., Ltd., product) Name) 0.5 g / liter, acetic acid 0.25 ml / liter, sodium acetate 1.0 g / liter was added to adjust the pH to 5 to obtain a dyeing solution. After dyeing at 95 ° C. for 60 minutes in a dye bath having a bath ratio of 25, the exhaustion rate was determined. The exhaustion rate was determined by substituting the absorbance of the dye stock solution with A and the absorbance a of the dyed solution after dyeing from a spectrophotometer and substituting it into the following equation. As the absorbance, a value at 580 nm, which is the maximum absorption wavelength of the dye, was adopted.
Exhaust rate = [(A−a) / A] × 100 (%)
The color developability was evaluated using K / S. This value was determined from the Kubelka-Munk equation shown below by measuring the spectral reflectance R of the dyed sample fabric. Larger values indicate higher color developability (higher surface concentration), that is, better color development. The value at 580 nm, which is the maximum absorption wavelength of the dye, was adopted.
K / S = (1-R) 2 / 2R

(6)染色物の発色性L値の測定
染色布帛の表面の色濃度を分光測色計(Kollmorgen社製、形式マクベスMS−2020)を使用してLab表色系におけるL値を測定した。L値は低い方が発色性が高い。
(6) Measurement of color developability L value of dyed product The color density of the surface of the dyed fabric was measured for L value in the Lab color system using a spectrocolorimeter (manufactured by Kollmorgen, model Macbeth MS-2020). The lower the L value, the higher the color developability.

(7)紡糸性の評価
1錘で24時間紡糸した場合の糸切れ回数で以下のように評価した。
糸切れ回数が1回以下を○、1〜3回までを△、3回を越える場合を×とした。
(7) Evaluation of spinnability The number of yarn breakage when spinning with one spindle for 24 hours was evaluated as follows.
The case where the number of yarn breaks was 1 or less was marked with ◯, 1 to 3 times with △, and the case with more than 3 times with x.

(8)均染性評価
試料は、糸を一口編地としスコアロール400を2g/リットル含む温水を用いて、70℃、15分間精練処理し、染料は、Foron Navy S−GL(クラリアントジャパン(株)製、商品名)を布帛に対して3重量%使用し、さらに分散剤として、ニッカサンソルト7000(日華化学(株)製、商品名)0.5g/リットル、酢酸0.25ml/リットル、酢酸ナトリウム1.0g/リットルを添加してPHを5に調整して染液とした。浴比25倍の染浴中でボイルにて30分染色後、均染性を以下の方法にて判定した。
ベテランの判定者3名で10段階評価し、次のように判定した。
○:8以上で均染性良好
△:6〜7で若干不良
×:6以下で不良
(8) Evaluation of leveling property The sample was subjected to scouring treatment at 70 ° C. for 15 minutes using warm water containing 2 g / liter of score roll 400 using a yarn as a knitted fabric, and the dye was Foron Navy S-GL (Clariant Japan ( (Trade name) manufactured by Co., Ltd., 3% by weight based on the fabric, and as a dispersant, Nikka Sun Salt 7000 (trade name, manufactured by Nikka Chemical Co., Ltd.) 0.5 g / liter, acetic acid 0.25 ml / Liter and sodium acetate 1.0 g / liter were added to adjust the pH to 5 to obtain a dyeing solution. After dyeing with a boil for 30 minutes in a dyeing bath having a bath ratio of 25 times, the leveling property was determined by the following method.
Three veteran judges were evaluated on a 10-point scale and determined as follows.
○: Level equality is good at 8 or more. Δ: Slightly poor at 6-7.

(9)風合い評価
検査者(30人)の触感によって布帛を次の基準で相対評価した。
◎:格段にソフトで、しなやか感が非常によい
○:ソフト、しなやか感はよい
△:ソフト、しなやか感はやや劣る
×:ソフト、しなやか感がない
(9) Texture evaluation The fabric was relatively evaluated according to the following criteria based on the feel of the examiner (30 persons).
◎: Extremely soft and very supple feeling ○: Soft, supple feeling is good △: Soft, supple feeling is slightly inferior ×: Soft, supple feeling

(10)同色性
易染性ポリエステル繊維とたんぱく繊維との明度差が少なく、色相差、彩度差、イラツキが少ないものを良好とし、5級(良好)〜1級(劣る)の5段階に判定した。
(10) Same color properties Little difference in brightness between easy-dyeing polyester fiber and protein fiber, good hue difference, saturation difference, and little irritation. Grade 5 (good) to grade 1 (inferior) Judged.

(11)染色バッチ間色差:色ブレ評価
混用品10反を1バッチとし、10バッチ染色を繰り返し、各バッチの10反目を代表としてそれぞれについて、10バッチ間の色差を分光測色計(Kollmorgen社製、形式マクベスMS−2020)にて測定し、その平均値を用いた。
(11) Color difference between dyeing batches: Color blur evaluation 10 batches of mixed goods are repeated as one batch, and 10 batches of each batch are represented as representatives, and the color difference between 10 batches is represented by a spectrocolorimeter (Kollmorgen). Manufactured, model Macbeth MS-2020), and the average value was used.

(12)洗濯堅牢度
混用染色品について、JIS−L−0844 A−2法に準じて評価した。但し、洗剤はアタック(花王(株)製:商品名)1g/リットルで用いた。試験片の変褪色と添付白布片の汚染の程度をそれぞれ変褪色用グレースケール、汚染用グレースケールと比較して判定した。
(12) Fastness to washing The mixed dyed product was evaluated according to JIS-L-0844 A-2 method. However, the detergent was used at 1 g / liter of Attack (trade name, manufactured by Kao Corporation). The change color of the test piece and the degree of contamination of the attached white cloth piece were judged by comparing with the gray scale for change color and the gray scale for contamination, respectively.

(13)汗アルカリ堅牢度
混用染色品について、JIS−L−0848法に準じてアルカリ性人工汗液を用いて評価した。試験片の変褪色と添付白布片の汚染の程度をそれぞれ変褪色用グレースケール、汚染用グレースケールと比較して判定した。
(13) Fastness to sweat alkali The mixed dyed product was evaluated using an alkaline artificial sweat according to the JIS-L-0848 method. The change color of the test piece and the degree of contamination of the attached white cloth piece were judged by comparing with the gray scale for change color and the gray scale for contamination, respectively.

(14)ドライクリーニング液の汚染
混用染色品について、JIS L−0860に準じてドライクリーニング試験を実施し、ドライクリーニング液とドライクリーニング試験後の汚れ液を磁性容器に(20m/m×40m/m×10m/m)に8cc採り、液汚染程度を汚染用グレースケールと比較してその色落ち度を判定した。色落ちの少ない良好なものを5級とし、順次1級(色落ちの大きいもの)に判定した。
(14) Contamination of dry cleaning liquid A dry cleaning test is performed on the mixed dyed product in accordance with JIS L-0860, and the dry cleaning liquid and the dirt liquid after the dry cleaning test are placed in a magnetic container (20 m / m × 40 m / m). 8 cc was taken at × 10 m / m), and the degree of color fading was determined by comparing the degree of liquid contamination with the gray scale for contamination. Good ones with little color fading were classified as grade 5, and were sequentially judged as grade 1 (those with large color fading).

(15)染色物中のタンパク繊維の汚染度
分散染料にて染色後、布帛を水洗、乾燥し、布帛からタンパク繊維を抜き取り、その汚染度をJIS−Z−8730に準拠し、分光測色計(Kollmorgen社製、形式マクベスMS−2020)使用し評価した。汚染度Dは、染色前後のタンパク繊維の着色度差を示すものであり、Lab表色系において、下記の式により求めた。数値が大きいほど分散染料による汚染が大きい。
D=(ΔL+Δa+Δb1/2
(15) Contamination degree of protein fiber in dyed product After dyeing with disperse dye, the fabric is washed with water and dried, protein fiber is extracted from the fabric, and the degree of contamination is determined in accordance with JIS-Z-8730. (Kollmorgen, Macbeth MS-2020) was used and evaluated. The degree of contamination D indicates the difference in the degree of coloration of protein fibers before and after staining, and was determined by the following formula in the Lab color system. The greater the number, the greater the contamination with disperse dyes.
D = (ΔL 2 + Δa 2 + Δb 2 ) 1/2

[実施例1、比較例1]
テレフタル酸ジメチル(以下、DMTと称す)100部、エチレングリコール76部、エステル交換触媒として、酢酸マンガン4水和物塩0.04部を仕込み、150℃から240℃に加熱して3時間を要してメタノールを留出しつつエステル交換反応を行った。 次いで、安定剤としてトリメチルフォスフェート0.04部、重合触媒として三酸化アンチモン0.05部、艶消し剤として二酸化チタン0.4部を添加した後、表1記載の分子量及び添加量にてポリエチレングリコールと、熱安定剤としてイルガノックス245(チバガイギー社製)をポリエチレングリコールに対して3%となるように加え混合添加する。その後、30分かけて常圧にて重縮合反応を行い、重合槽に移送した。移送完了後、徐々に減圧して、真空度0.5Torr、275℃で重縮合反応を行い、[η]=0.73の改質ポリエステルを得た。
[Example 1, Comparative Example 1]
100 parts of dimethyl terephthalate (hereinafter referred to as DMT), 76 parts of ethylene glycol and 0.04 part of manganese acetate tetrahydrate salt as a transesterification catalyst were charged and heated from 150 ° C to 240 ° C for 3 hours. Then, transesterification was carried out while distilling methanol. Next, 0.04 part of trimethyl phosphate as a stabilizer, 0.05 part of antimony trioxide as a polymerization catalyst, and 0.4 part of titanium dioxide as a matting agent were added, and then polyethylene having a molecular weight and an addition amount shown in Table 1 were added. Glycol and Irganox 245 (manufactured by Ciba Geigy) as a heat stabilizer are added to the polyethylene glycol to 3% and mixed and added. Thereafter, a polycondensation reaction was carried out at normal pressure over 30 minutes and transferred to a polymerization tank. After completion of the transfer, the pressure was gradually reduced, and a polycondensation reaction was performed at a vacuum degree of 0.5 Torr and 275 ° C. to obtain a modified polyester having [η] = 0.73.

これらポリマーを用いて、紡孔径0.17φにに穿孔された、紡糸孔36(外層に24個、芯間距離10.5mm、内層に12個、芯間距離18.3mm)有する2周円配列紡口を使用して、紡糸温度280℃、吐出線速度43.2cm/秒、巻取速度5800m/分で高速紡糸を行い、44デシテックス/36フィラメントの繊維を得た。得られた易染性ポリエステル繊維のTmax、強度、伸度、染色性、紡糸性評価結果を表1に記載した。   Using these polymers, a double-circular circular array having a spinning hole 36 (24 holes in the outer layer, 10.5 mm distance between the cores, 12 holes in the inner layer, 18.3 mm distance between the cores) drilled to a diameter of 0.17φ. Using a spinning nozzle, high-speed spinning was performed at a spinning temperature of 280 ° C., a discharge linear speed of 43.2 cm / sec, and a winding speed of 5800 m / min to obtain 44 dtex / 36 filament fibers. Table 1 shows the evaluation results of Tmax, strength, elongation, dyeability, and spinnability of the easily dyeable polyester fiber obtained.

本発明の易染性ポリエステル繊維の分散染料に対する染色性は、通常法で紡糸されたポリエステル繊維(Tmax136℃)の130℃、60分の染色性を比較することで評価できる。通常法で紡糸されたポリエステル繊維の分散染料に対する染料吸尽率は94%でK/S値は24であった。
この糸条とウール72番単糸を常法によりZ方向に750T/Mで合糸追撚し、得られた糸条を用い2/1の綾組織にて織物(経糸密度105本/インチ、緯糸密度82本/インチ)を調製した(易染性ポリエステル繊維の混用率は25%)。
The dyeability of the readily dyeable polyester fiber of the present invention with respect to the disperse dye can be evaluated by comparing the dyeability of a polyester fiber (Tmax 136 ° C) spun by a normal method at 130 ° C for 60 minutes. The dye exhaust rate of the polyester fiber spun by the usual method with respect to the disperse dye was 94% and the K / S value was 24.
This yarn and wool No. 72 single yarn were twisted and twisted at 750 T / M in the Z direction by a conventional method, and the resulting yarn was used for a woven fabric (warp density of 105 yarns / inch, Weft density of 82 yarns / inch) was prepared (mixing rate of easily dyeable polyester fiber was 25%).

次いでこの混用織物を常法により精練、洗絨を行い、塩素ガスによるウールのスケール処理を行い、180℃でプレセットを行った後、下記の染色条件で分散染色を実施した。
染色条件
染料:ディスパースブラック JSW(150%) 4.0%omf
(三木産業(株)製、ベンゼンアゾ系分散染料)
助剤:デモールN (北広ケミカル(株)製) 1g/リットル
浴 比 : 1:15
染色温度、時間: 98℃、45分
染色完了後、染色機から染色残液を排出し、染色機に水を入れ温度を65℃まで昇温し、これに下記薬剤を添加して下記の濃度の還元洗浄浴を調整し、染色物に65℃、10分間の還元洗浄を施した。
二酸化チオ尿素: 1g/リットル
アンモニア水(28%) : 1g/リットル
アミラジンD(第一工業製薬(株)製) : 0.5g/リットル
浴 比 : 1:20
Next, this mixed fabric was scoured and washed by a conventional method, subjected to wool scale treatment with chlorine gas, pre-set at 180 ° C., and then subjected to disperse dyeing under the following dyeing conditions.
Dyeing conditions Dye: Disperse Black JSW (150%) 4.0% omf
(Miki Sangyo Co., Ltd., benzeneazo disperse dye)
Auxiliary agent: Demol N (made by Kitahiro Chemical Co., Ltd.) 1 g / liter Bath ratio: 1:15
Dyeing temperature and time: 98 ° C., 45 minutes After dyeing is completed, the dyeing residual liquid is discharged from the dyeing machine, water is added to the dyeing machine, the temperature is raised to 65 ° C., and the following chemicals are added to the following concentration. The reduction washing bath was adjusted, and the dyed product was subjected to reduction washing at 65 ° C. for 10 minutes.
Thiourea dioxide: 1 g / liter
Ammonia water (28%): 1 g / liter Amirazine D (Daiichi Kogyo Seiyaku Co., Ltd.): 0.5 g / liter Bath ratio: 1:20

この還元洗浄後、残液を排出し、温湯および水により染色物を十分にすすぎ洗いした後、下記の条件にてウール側の染色を行った。
染色条件
染料:ダイアモンドブラック P−V(200%) 5%omf
(ダイスター(株)製)
助剤: 酢酸(40%) 3%omf
ギ酸(40%) 3%omf
重クロム酸カリ 1.1%omf
浴比: 1:20
染色温度、時間:98℃、60分
染色完了後、染色機から染色残液を排出し、染色機に水を入れ温度を75℃まで昇温しアミラジンD 2g/リットルを入れ、10分間のソーピング処理を実施した。処理後、温湯および水により染色物を十分にすすぎ洗いした後、乾燥し、常法によりフルデカタイザーを用い蒸絨処理を行って仕上げた。
After this reduction cleaning, the remaining liquid was discharged, and the dyed product was sufficiently rinsed with hot water and water, and then the wool side was dyed under the following conditions.
Dyeing conditions Dye: Diamond Black PV (200%) 5% omf
(Dystar Co., Ltd.)
Auxiliary: Acetic acid (40%) 3% omf
Formic acid (40%) 3% omf
Potassium dichromate 1.1% omf
Bath ratio: 1:20
Dyeing temperature, time: 98 ° C., 60 minutes After dyeing is completed, the dyeing residual liquid is discharged from the dyeing machine, water is added to the dyeing machine, the temperature is raised to 75 ° C., and amyrazine D is added at 2 g / liter, and soaping is performed for 10 minutes. Processing was carried out. After the treatment, the dyed product was sufficiently rinsed with warm water and water, then dried, and finished by steaming using a full decatetizer by a conventional method.

仕上げた染色物の風合、混用染色品の発色性、同色性、洗濯堅牢度、汗アルカリ堅牢度、ドライクリーニング液汚染、ウール繊維の汚染度の評価結果を表1に示す。
表1の結果より、本発明の実施例1で得られた混用品は、いずれも比較例1に比べ、格段にソフトでしなやかな風合を有し、発色性が高く、イラツキがなく同色性が良好であり、染色バッチごとの色のバラツキが少なく、色の再現性が高い染色物が得られ、かつ堅牢度性能も良好で商品価値の高い混用品が得られることがわかる。
Table 1 shows the evaluation results of the texture of the finished dyed product, the color development property of the mixed dyed product, the same color, the fastness to washing, the fastness to sweat alkali, the contamination of the dry cleaning liquid, and the contamination degree of the wool fibers.
From the results shown in Table 1, the mixed products obtained in Example 1 of the present invention all have a soft and supple texture compared to Comparative Example 1, have high color developability, no irritation, and the same color. It can be seen that a dyed product having a good color reproducibility, a high color reproducibility, a fastness performance and a high commercial value can be obtained.

[実施例2、比較例2]
実施例1で製造された44dtex/36fの各々のポリエステル原糸を正絹糸44中にて常法によりダブルカバリングを行いカバリング糸を作製した。このカバリング糸を常法により絹の精練処理を行い190dtexの糸条を得た(易染性ポリエステル繊維の混用率は23%)。得られた糸条を用い、24GGで天竺編物を作製した。
[Example 2, Comparative Example 2]
Each of the 44 dtex / 36 f polyester raw yarns produced in Example 1 was double-covered in the normal silk yarn 44 by a conventional method to produce a covering yarn. This covering yarn was subjected to silk scouring treatment by a conventional method to obtain a 190 dtex yarn (mixing rate of easily dyeable polyester fiber was 23%). Tendon knitted fabric was produced with 24GG using the obtained yarn.

得られた各々の編地を常法によりリラックス精練後、下記条件にて染色を実施した。
染色条件
染料:カヤロンポリエステルイエロー BRL−S 2.47%omf
カヤロンポリエステルルビン 3GL−S(150)1.24%omf
カヤロンポリエステルネービーブルー 2GN−SF(200)
0.16%omf
カヤカランイエロー GL(143) 0.75%omf
カヤカランボルデアックス BL 1.22%omf
カヤカラングレイ BL(167) 0.04%omf
((株)日本化薬カラーズ製、各々の染料濃度については分散染料はポリエステル重量に対する割合、酸性染料は絹重量に対する割合を示す)
助剤:ニッカサンソルトRM−340(日華化学工業(株)製)
0.5g/リットル
酢酸 0.5cc/リットル
酢酸ナトリウム 1g/リットル
SR−1801Mコンク(高松油脂(株)製) 3%omf
浴比: 1:20
染色温度、時間: 95℃、30分
Each obtained knitted fabric was relaxed and scoured by a conventional method, and then dyed under the following conditions.
Dyeing conditions Dye: Kayalon Polyester Yellow BRL-S 2.47% omf
Kayalon polyester rubin 3GL-S (150) 1.24% omf
Kayalon Polyester Navy Blue 2GN-SF (200)
0.16% omf
Kayakaran Yellow GL (143) 0.75% omf
Kayaka Rambordeax BL 1.22% omf
Kayaka Langley BL (167) 0.04% omf
(Manufactured by Nippon Kayaku Colors Co., Ltd., for each dye concentration, disperse dye is the ratio to the polyester weight, and the acid dye is the ratio to the silk weight)
Auxiliary agent: Nikka Sun Salt RM-340 (manufactured by Nikka Chemical Co., Ltd.)
0.5g / liter
Acetic acid 0.5cc / liter
Sodium acetate 1g / liter
SR-1801M Conch (Takamatsu Yushi Co., Ltd.) 3% omf
Bath ratio: 1:20
Dyeing temperature, time: 95 ° C, 30 minutes

染色後は、非イオン洗浄剤1g/リットルの浴で70℃で15分間のソーピングを行い、水洗し、150℃で30秒間の乾熱セットで仕上げた。
仕上げた染色物の風合、混用染色品の発色性、同色性、染色バッチ間色差、洗濯堅牢度、汗アルカリ堅牢度の評価結果を表2に示す。
表2の結果より、本発明の実施例2で得られた混用品は、いずれも比較例2に比べ、格段にソフトでしなやかな風合を有し、発色性が高く、同色性が良好で、染色バッチごとの色のバラツキが少なく、色の再現性が高い染色物が得られ、かつ堅牢度性能も良好で商品価値の高い混用品が得られることがわかる。
After dyeing, soaping was performed at 70 ° C. for 15 minutes in a non-ionic detergent 1 g / liter bath, washed with water, and finished with a dry heat set at 150 ° C. for 30 seconds.
Table 2 shows the evaluation results of the texture of the finished dyed product, the colorability of the mixed dyed product, the same color, the color difference between dyeing batches, the fastness to washing, and the fastness to sweat alkali.
From the results of Table 2, the mixed products obtained in Example 2 of the present invention all have a much softer and more supple texture than Comparative Example 2, have high color developability and good color matching. It can be seen that a dyed product with little color variation between dyeing batches and high color reproducibility can be obtained, and a mixed product with good fastness performance and high commercial value can be obtained.

Figure 2006336136
Figure 2006336136

Figure 2006336136
Figure 2006336136

本発明の混用品は特にインナー分野、スポーツ分野、アウター分野で好適に利用できる。   The mixed article of the present invention can be suitably used particularly in the inner field, sports field, and outer field.

本発明で使用されるポリエステル繊維の紡糸における紡口の断面概念図の例を示す。The example of the cross-sectional conceptual diagram of the spinning nozzle in spinning of the polyester fiber used by this invention is shown. 本発明で使用されるポリエステル繊維の紡糸における紡口の平面概念図の例を示す。The example of the plane conceptual diagram of the spinning nozzle in spinning of the polyester fiber used by this invention is shown. 本発明で使用されるポリエステル繊維の紡糸生産工程例を示す。The example of the spinning production process of the polyester fiber used by this invention is shown. 本発明で使用されるポリエステル繊維のU%及びイブネステスターによる周波数解析チャートの例を示す。The example of the frequency analysis chart by U% of the polyester fiber used by this invention and an evening tester is shown.

Claims (3)

ポリエステル繊維とタンパク繊維との混用品であって、ポリエステル繊維がポリエチレンテレフタレートに分子量300〜2000のポリエチレングリコールを3〜6重量%共重合したポリエステルで、90重量%以上がエチレンテレフタレート繰り返し単位からなるポリエチレンテレフタレートからなり、単糸デシテックスが1.4以下で、測定周波数110Hzにおける力学的損失正接(tanδ)が最大を示す温度(Tmax)が85℃以上105℃以下であることを特徴とするポリエステル繊維とタンパク繊維との混用品。   Polyester fibers and protein fibers are mixed products, and polyester fibers are polyesters obtained by copolymerizing polyethylene terephthalate with 3 to 6% by weight of polyethylene glycol having a molecular weight of 300 to 2000, and more than 90% by weight of polyethylene comprising ethylene terephthalate repeating units. A polyester fiber comprising terephthalate, having a single yarn decitex of 1.4 or less, and a temperature (Tmax) at which a mechanical loss tangent (tan δ) at a measurement frequency of 110 Hz is maximum is 85 ° C. or more and 105 ° C. or less; Mixed products with protein fiber. ポリエステル繊維が、繊度変動値U%が1.0%以下で、且つ、繊度変動周波数解析による10〜80mの周期における変動係数CV値の最大値が0.3%以下(但し、繊度変動値U%の測定は、糸長500mに渡り測定する)であることを特徴とする請求項1記載のポリエステル繊維とタンパク繊維との混用品。   The polyester fiber has a fineness variation value U% of 1.0% or less and a maximum value of the coefficient of variation CV in a period of 10 to 80 m according to the fineness variation frequency analysis is 0.3% or less (however, the fineness variation value U % Is measured over a yarn length of 500 m). The mixed article of polyester fiber and protein fiber according to claim 1. JIS−L−0844 A−2法における洗濯堅牢度が3級以上であって、JIS−L−0848法における汗アルカリ堅牢度が3級以上であることを特徴とする請求項1または2記載のポリエステル繊維とタンパク繊維との混用品。   The fastness to washing in the JIS-L-0844 A-2 method is grade 3 or higher, and the fastness to sweat alkali in the JIS-L-0848 method is grade 3 or higher, according to claim 1 or 2. A mixed product of polyester fiber and protein fiber.
JP2005161015A 2005-06-01 2005-06-01 Blended product of polyester fiber and protein fiber Withdrawn JP2006336136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005161015A JP2006336136A (en) 2005-06-01 2005-06-01 Blended product of polyester fiber and protein fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005161015A JP2006336136A (en) 2005-06-01 2005-06-01 Blended product of polyester fiber and protein fiber

Publications (1)

Publication Number Publication Date
JP2006336136A true JP2006336136A (en) 2006-12-14

Family

ID=37556936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005161015A Withdrawn JP2006336136A (en) 2005-06-01 2005-06-01 Blended product of polyester fiber and protein fiber

Country Status (1)

Country Link
JP (1) JP2006336136A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103194827A (en) * 2013-04-16 2013-07-10 如皋市丁堰纺织有限公司 Biomass regenerated-fiber blended silky yarn and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103194827A (en) * 2013-04-16 2013-07-10 如皋市丁堰纺织有限公司 Biomass regenerated-fiber blended silky yarn and production method thereof

Similar Documents

Publication Publication Date Title
EP1489206B1 (en) Polyester fiber and fabric using the same
JPH11100721A (en) Ultrafine multifilament and its production
US6652964B1 (en) Polyester fiber and fabric prepared therefrom
JP2006316368A (en) Mixed article of polyester fiber and polyurethane fiber
KR19990036010A (en) Polyester Fibers and Mixed Fabric Dyestuffs
JP2006336136A (en) Blended product of polyester fiber and protein fiber
JP3948942B2 (en) Method for dyeing polytrimethylene terephthalate fiber
JPH1161563A (en) Copolyester fiber and fabric mixed therewith
JP2007002357A (en) Mixture of polyester fiber and acrylic fiber
JP2007056412A (en) Blended article of polyester fiber and polytrimethylene terephthalate-based fiber
JP2007056413A (en) Blended article of polyester fiber and polyamide fiber
JP2005273115A (en) Easily dyeable polyester fiber and method for producing the same
JP2005299046A (en) Mixed product of polyester fiber and protein fiber
JPH0441738A (en) Dyed fabric comprising polyester fiber and polyamide fiber cord and its preparation
JP3267963B2 (en) Copolymerized polytrimethylene terephthalate
JP2005344243A (en) Mixed dyed product of polyester fiber and cellulose fiber
JP2007002358A (en) Mixture of polyester fiber and cellulosic fiber
KR100587118B1 (en) Preparation of polyester fiber with tone effect
JPH08269820A (en) Easily dyeable modified polyester fiber and its production
JP2005344242A (en) Mixed dyed product of polyester fiber and polyamide fiber
JP7172258B2 (en) Knitted fabric
JPH07238419A (en) Readily dyeable polyester hollow fiber excellent in color development and gloss
JP2001164436A (en) Polyester combined filament yarn and woven and knitted fabric using the same
JP3818743B2 (en) Easily dyeable polyester fiber and its mixed fabric dyeing
JP2006057194A (en) Polyester fiber-acrylic fiber blended article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090416