WO1999008145A1 - Afficheur d'images en trois dimensions - Google Patents

Afficheur d'images en trois dimensions Download PDF

Info

Publication number
WO1999008145A1
WO1999008145A1 PCT/GB1998/002360 GB9802360W WO9908145A1 WO 1999008145 A1 WO1999008145 A1 WO 1999008145A1 GB 9802360 W GB9802360 W GB 9802360W WO 9908145 A1 WO9908145 A1 WO 9908145A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
image display
display
mirror
lens
Prior art date
Application number
PCT/GB1998/002360
Other languages
English (en)
Inventor
Edward George Sydney Paige
Mark Andrew Aquilla Neil
Leon Oliver Dylan Sucharov
Original Assignee
Isis Innovation Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isis Innovation Limited filed Critical Isis Innovation Limited
Priority to CA002300047A priority Critical patent/CA2300047A1/fr
Priority to EP98937677A priority patent/EP1000377A1/fr
Priority to JP2000506557A priority patent/JP2001512849A/ja
Publication of WO1999008145A1 publication Critical patent/WO1999008145A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/388Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume
    • H04N13/395Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume with depth sampling, i.e. the volume being constructed from a stack or sequence of 2D image planes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/24Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type involving temporal multiplexing, e.g. using sequentially activated left and right shutters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/54Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels the 3D volume being generated by moving a 2D surface, e.g. by vibrating or rotating the 2D surface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/32Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using arrays of controllable light sources; using moving apertures or moving light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/322Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using varifocal lenses or mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/344Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/346Image reproducers using prisms or semi-transparent mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/388Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume
    • H04N13/393Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume the volume being generated by a moving, e.g. vibrating or rotating, surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/011Head-up displays characterised by optical features comprising device for correcting geometrical aberrations, distortion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • G02B2027/0116Head-up displays characterised by optical features comprising device for genereting colour display comprising devices for correcting chromatic aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/365Image reproducers using digital micromirror devices [DMD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof

Definitions

  • the present invention relates to a three dimensional (3-D) image display of the type in which a series of two dimensional (2-D) images in different depth planes are presented in succession sufficiently rapidly that the series of images is perceived as a 3-D image.
  • the 3-D image display is suited for use in a stereo head mounted display system.
  • a pair of microdisplay devices such as a feroelectric liquid crystal spatial light modulators (FLCSLM) are employed to display two images which are separately viewed through a series of lenses by each of the viewer's eyes so that the image is viewed at infinity or some other fixed distance.
  • Figure 1 shows a conventional microdisplay projection system for one eye consisting of the FLCSLM 1 , an objective lens 2 and an eyepiece lens 3. In practice a parallel lens system for the other eye would also be provided. The lenses provide the magnification necessary for the image displayed by the FLCSLM to be seen.
  • d denotes the size of an individual pixel of the FLCSLM which subtends an angle ⁇ as seen by the viewer.
  • the image display system shown in Figure 1 is for the display of a two dimensional image.
  • one of the fixed lenses, preferably the objective lens be replaced by a variable focus lens or in a folded system by a deformable mirror so that the image generate by the first FLCSLM may be presented to the viewer's eye sequentially at different focal positions and perceived as a 3-D image.
  • the present invention proposes an alternative display system which enables 3-D images to be perceived by a viewer which avoids the significant expense and other undesirable features of a variable focus lens or deformable mirror.
  • the present invention provides a 3-D image display comprising a display, a demagnifying lens for demagnifying an image generated by the display; a lens system for focussing the demagnified image and a controllable optical path length modifier for adjusting the optical path length through the image display whereby an image generated by the display can be focussed to sequentially appear at a plurality of different focal positions.
  • the optical path length modifier may be in the form of a drive unit for axially moving one or more optical components of the image display.
  • the optical path length modifier may be in the form of a variable refractive index plate or an electro-optic modulator.
  • the variation in optical path length necessary to focus the image at appropriate focal positions is significantly reduced.
  • the 3-D image display is particularly suited to a head mounted display.
  • Figure 1 is a diagram of a conventional image display system
  • Figure 2 is a diagram of a first embodiment of a 3-D image display in accordance with the present invention.
  • Figure 3 is a diagram of a second embodiment of a 3-D image display in accordance with the present invention.
  • FIG 2 a modified version of the conventional image display system of Figure 1 is shown consisting of a FLCSLM 11 , an objective lens 12 and an eyepiece lens 13 along with a demagnifying lens 14 located between the FLCSLM 11 and the objective lens 12.
  • the demagnifying lens 14 generates a scaled down image in plane P 1 of the image generated by the FLCSLM 11. This demagnification is accommodated by the remainder of the lens system, lenses 12 and 13, which provides a greater magnification than for the display system of Figure 1 so that the size of the image seen by the viewer is the same as for a conventional image display system.
  • the objective lens 12 is housed in a piezoelectrically movable mount 15 which enables the objective lens 12 to be moved axially towards and away from the image plane P 1 .
  • the movable mount 15 or other suitable means provides a controlled movement of the objective lens along the axis of the display system.
  • movement of the objective lens 12 towards or away from the image plane P 1 changes the apparent focal position of the image perceived by the viewer.
  • the objective lens must be moved a distance ⁇ from the position of the objective lens where the image is projected at infinity, in accordance with the following approximate relationship:
  • the objective lens 12 In this way, movement of the objective (or eyepiece) lens to different positions successively will present the 2-D images at different perceived distances and if this is done sufficiently quickly the viewer perceives the image as three dimensional.
  • the objective lens 12 must be moved very quickly if the image perceived by the viewer is to be 3-D.
  • To achieve a flicker free 3-D image a complete sequence of images at different perceived distances must be produced ideally faster than video rates, for example in less than 40ms.
  • the actual distance which the objective lens 12 must travel is scaled by a factor M 2 thereby making the generation of 3-D images in this manner feasible.
  • FIG 3 a folded image display system is shown in which the microdisplay 11 is used in a reflective mode with a polarising beam splitter 16 provided between a polarised light source (not shown) and the FLCSLM 11.
  • the objective lens 12 also functions as the demagnifying lens with the image passing through the lens 12 to a mirror 17, which is mounted on the movable mount 15, and back through the lens.
  • linearly polarised light passes through the beam splitter 16 and is reflected back by the FLCSLM 11.
  • the reflected light from the FLCSLM which contains an image in light with polarisation rotated through 90°, is reflected by the beam splitter 16 through a quarter wave plate 18 towards the objective lens 12.
  • the objective lens 12 demagnifies the image from the beam splitter 16 to produce a demagnified image in the image plane P 1 .
  • the mirror 17 placed at or near P 1 reflects the demagnified image back towards the objective lens 12 which refocuses the image to plane P 2 .
  • the double pass through the quarter wave plate 18 ensures that the polarisation of the image is rotated through 90° thereby ensuring the image passes straight through the beam splitter 16 to the eyepiece lens 13.
  • the viewer perceives the image at infinity. Movement of the mirror 17 away from the image plane P 1 results in the image being perceived at a finite distance. Unlike the image display of Figure 2, as this is a folded optical system the mirror 17 need only be moved a distance ⁇ /2 to achieve any desired perceived distance.
  • the polarising beam splitter 16 may be positioned adjacent the FLCSLM 11 , off the main optical path through the apparatus, and the quarter wave plate 18 may be replaced with a non-polarising beam splitter, for example a pellicle beam splitter.
  • a non-polarising beam splitter for example a pellicle beam splitter.
  • each pixel of display 11 contributes to one image plane and one plane only, because of the small angle of view. Hence, the display 11 can exhibit all the image planes at the same time.
  • the SLM shutter 19 is then used to transmit only the images from pixels of the display 11 appropriate for a particular plane.
  • each image plane is transmitted cyclically by the shutter 19 to the eyepiece.
  • the display can be relatively slow (say 50 Hz, i.e. video rate) and rich in information (many colours, many grey levels) whilst the SLM shutter 19 operates at the much fast rate of the mount 15.
  • the SLM shutter 19 is positioned adjacent the display 11. However, there may be occasions where it is necessary to position the shutter away from the display, but still in an image plane of the display, in which case, the shutter must accommodate any changes in magnification of the image.
  • refocusing of the image perceived by the viewer is achieved by the mechanical axial shift of one or more of the optical components of the system, e.g. the objective lens ( Figure 2) and the mirror ( Figure 3).
  • the refocusing is achieved because the optical path within the display system has been lengthened or reduced by a distance ⁇ in that part of the display system where a demagnified real or virtual image is projected.
  • a variable refractive index plate may be introduced into the display system in the vicinity of P 1 .
  • variable refractive index device may be, for example, in the form of an electro-optic modulator or may be a plate such as a glass disc with sectors of varying thickness which can be rotated to intersect the optical path through the display system in sequence thereby achieving the necessary sequential path length variations.
  • the output aperture of the display system is limited in size which has the effect of restricting the position of the viewer's eye.
  • this is not a problem where the image display is to be used as a head mounted 3-D display as the viewer's position relative to the display is of necessity fixed.
  • the size of the output aperture is limited by the aperture of the objective lens and the magnification and position of the eyepiece lens.
  • Particular display system architectures may therefore be selected to optimise the output aperture as far as the viewer is concerned.
  • appropriate selection of the system architecture is also necessary to ensure that the angular field of view seen by the viewer is constant for all perceived distances.
  • the resulting aberrations introduced as the image is refocused are low compared to conventional 3- D display systems.
  • the power consumption is reduced and the associated noise and vibration can be minimised.
  • the display system has the further advantage that it has the potential to transmit 100% of the input light which is a great improvement over conventional systems which employ either a FLCSLM variable focus lens or deformable mirror both of which are inefficient.
  • a FLCSLM acting as a variable lens that part of the light which is not refocused can lead to degradation in image contrast.
  • Conventional systems which employ a FLCSLM as a variable lens have a further disadvantage in that such systems suffer from achromatic aberrations which is not a problem of the display systems describe above.
  • 3-D image displays have been described with reference to a head mounted display, of course the image displays are suitable for use in other applications such as in opthalmology equipment or indeed in any circumstances where rapid refocusing of images is required.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

L'invention concerne un afficheur d'images en trois dimensions, constitué d'un écran pixélisé (11) qui est éclairé à travers un séparateur de faisceaux (16). Un miroir plan (17) est monté sur un support mobile (15) qui permet de rapprocher ou d'éloigner le miroir d'un objectif (12), placé entre le miroir (17) et le séparateur de faisceaux (16). Une lame quart d'onde (18), disposée entre le séparateur de faisceaux (16) et le miroir (17), permet à la lumière, réfléchie par le miroir (17) à travers la lame quart d'onde (18), de passer directement par le séparateur de faisceaux (16) pour tomber sur un oculaire (13). Grâce aux déplacements du miroir (17), on peut l'utiliser comme un modificateur de longueur du trajet optique et afficher l'image provenant de l'écran (11) dans différentes positions focales. Un cyclage rapide du miroir à travers différentes positions focales crée une image qui est perçue en trois dimensions. L'objectif (12) étant placé entre le séparateur de faisceaux (16) et le miroir (17), ledit objectif (12) fonctionne également comme une lentille réductrice pour les images provenant de l'écran (11). Une réduction préliminaire de l'image permet de diminuer la longueur des courses que le miroir (17) doit faire pour obtenir les changements désirés de la position focale, ce qui à son tour baisse les exigences en matière de performances du support (15); ces performances doivent être considérables dans les systèmes conventionnels n'utilisant pas la réduction. De cette manière, on peut utiliser dans l'afficheur d'images des composants optiques et mécaniques simples pour générer des images qui seront perçues comme tridimensionnelles.
PCT/GB1998/002360 1997-08-07 1998-08-06 Afficheur d'images en trois dimensions WO1999008145A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002300047A CA2300047A1 (fr) 1997-08-07 1998-08-06 Afficheur d'images en trois dimensions
EP98937677A EP1000377A1 (fr) 1997-08-07 1998-08-06 Afficheur d'images en trois dimensions
JP2000506557A JP2001512849A (ja) 1997-08-07 1998-08-06 三次元的像ディスプレイ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9716689.6 1997-08-07
GBGB9716689.6A GB9716689D0 (en) 1997-08-07 1997-08-07 Three dimensional image display

Publications (1)

Publication Number Publication Date
WO1999008145A1 true WO1999008145A1 (fr) 1999-02-18

Family

ID=10817115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1998/002360 WO1999008145A1 (fr) 1997-08-07 1998-08-06 Afficheur d'images en trois dimensions

Country Status (5)

Country Link
EP (1) EP1000377A1 (fr)
JP (1) JP2001512849A (fr)
CA (1) CA2300047A1 (fr)
GB (1) GB9716689D0 (fr)
WO (1) WO1999008145A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19954900A1 (de) * 1999-11-11 2001-06-13 4D Vision Gmbh Verfahren und Anordnung zur dreidimensionalen Darstellung
WO2001048536A2 (fr) * 1999-12-23 2001-07-05 Shevlin Technologies Limited Dispositif d'affichage
WO2002031574A1 (fr) * 2000-10-13 2002-04-18 Commissariat A L'energie Atomique Systeme de visualisation individuel
WO2005069641A1 (fr) * 2004-01-09 2005-07-28 Koninklijke Philips Electronics N.V. Affichage volumetrique
WO2005069058A1 (fr) * 2004-01-09 2005-07-28 Koninklijke Philips Electronics N.V. Dispositif de reglage de la longueur d'un trajet optique
EP2241927A1 (fr) * 2008-01-29 2010-10-20 Brother Kogyo Kabushiki Kaisha Dispositif d'affichage d'images
WO2018196968A1 (fr) * 2017-04-26 2018-11-01 Huawei Technologies Co., Ltd. Dispositif et procédé de génération de champ lumineux 3d

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930071B2 (ja) * 2007-01-23 2012-05-09 セイコーエプソン株式会社 表示装置
US9864205B2 (en) * 2014-11-25 2018-01-09 Ricoh Company, Ltd. Multifocal display
WO2017127494A1 (fr) 2016-01-22 2017-07-27 Corning Incorporated Appareil d'affichage personnel à champ large
US10976551B2 (en) 2017-08-30 2021-04-13 Corning Incorporated Wide field personal display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984004193A1 (fr) * 1983-04-13 1984-10-25 Bruker Medizintech Installation pour produire des representations tridimensionnelles completes d'un objet dans l'espace
EP0385705A2 (fr) * 1989-02-27 1990-09-05 Texas Instruments Incorporated Appareil et méthode pour système 3D de vidéo numérisé
WO1993021673A1 (fr) * 1992-04-21 1993-10-28 Bandgap Technology Corporation Systeme d'affichage a groupement de lasers a cavite verticale et a emission de surface
EP0785457A2 (fr) * 1996-01-17 1997-07-23 Nippon Telegraph And Telephone Corporation Dispositif optique et dispositif d'affichage à trois dimensions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984004193A1 (fr) * 1983-04-13 1984-10-25 Bruker Medizintech Installation pour produire des representations tridimensionnelles completes d'un objet dans l'espace
EP0385705A2 (fr) * 1989-02-27 1990-09-05 Texas Instruments Incorporated Appareil et méthode pour système 3D de vidéo numérisé
WO1993021673A1 (fr) * 1992-04-21 1993-10-28 Bandgap Technology Corporation Systeme d'affichage a groupement de lasers a cavite verticale et a emission de surface
EP0785457A2 (fr) * 1996-01-17 1997-07-23 Nippon Telegraph And Telephone Corporation Dispositif optique et dispositif d'affichage à trois dimensions

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19954900C2 (de) * 1999-11-11 2003-01-09 4D Vision Gmbh Verfahren und Anordnung zur dreidimensionalen Darstellung
DE19954900A1 (de) * 1999-11-11 2001-06-13 4D Vision Gmbh Verfahren und Anordnung zur dreidimensionalen Darstellung
CN1310056C (zh) * 1999-12-23 2007-04-11 谢夫林技术有限公司 一种显示设备
WO2001048536A2 (fr) * 1999-12-23 2001-07-05 Shevlin Technologies Limited Dispositif d'affichage
WO2001048536A3 (fr) * 1999-12-23 2001-12-06 Shevlin Technologies Ltd Dispositif d'affichage
US6517206B2 (en) 1999-12-23 2003-02-11 Shevlin Technologies Limited Display device
US6733132B2 (en) 1999-12-23 2004-05-11 Shevlin Technologies Limited Display device
WO2002031574A1 (fr) * 2000-10-13 2002-04-18 Commissariat A L'energie Atomique Systeme de visualisation individuel
FR2815422A1 (fr) * 2000-10-13 2002-04-19 Commissariat Energie Atomique Systeme de visualisation indiduel
WO2005069641A1 (fr) * 2004-01-09 2005-07-28 Koninklijke Philips Electronics N.V. Affichage volumetrique
WO2005069058A1 (fr) * 2004-01-09 2005-07-28 Koninklijke Philips Electronics N.V. Dispositif de reglage de la longueur d'un trajet optique
US7798648B2 (en) 2004-01-09 2010-09-21 Koninklijke Philips Electronics N.V. Optical path length adjuster
EP2241927A1 (fr) * 2008-01-29 2010-10-20 Brother Kogyo Kabushiki Kaisha Dispositif d'affichage d'images
EP2241927A4 (fr) * 2008-01-29 2011-09-14 Brother Ind Ltd Dispositif d'affichage d'images
WO2018196968A1 (fr) * 2017-04-26 2018-11-01 Huawei Technologies Co., Ltd. Dispositif et procédé de génération de champ lumineux 3d
CN110494790A (zh) * 2017-04-26 2019-11-22 华为技术有限公司 用于生成3d光场的设备和方法
US11409118B2 (en) 2017-04-26 2022-08-09 Huawei Technologies Co., Ltd. Device and method for generating a 3D light field

Also Published As

Publication number Publication date
EP1000377A1 (fr) 2000-05-17
GB9716689D0 (en) 1997-10-15
CA2300047A1 (fr) 1999-02-18
JP2001512849A (ja) 2001-08-28

Similar Documents

Publication Publication Date Title
US11048209B2 (en) Display device
KR101496797B1 (ko) 광도파로를 구비한 홀로그래픽 재구성 시스템
TWI687721B (zh) 顯示裝置
EP0886802B1 (fr) Procede et appareil pour visualiser une image
EP2160905B1 (fr) Affichage autostéréoscopique à utilisateurs multiples
US20030197933A1 (en) Image input apparatus and image display apparatus
US5408264A (en) Three-dimensional image display apparatus for optically synthesizing images formed on different surfaces on a display screen
KR20210068047A (ko) 시청자에게 정확한 단안 깊이 큐를 제공하는 라이트-필드 혼합 현실 시스템
TW201300834A (zh) 顯示裝置,尤其是頭戴式顯示器或護目鏡
US20130010087A1 (en) Method and device for the time-sequential recording of three-dimensional images
WO1999008145A1 (fr) Afficheur d'images en trois dimensions
JP2007526499A (ja) 複屈折性光路長調節器を使用した体積測定画像化ディスプレイ装置
WO2022112818A1 (fr) Projecteur à champ lumineux à haute résolution
US11835721B2 (en) Display device and method for producing a large field of vision
US11650422B2 (en) Active correction of aberrations in optical systems
JP3022559B1 (ja) 三次元表示システム
Travis et al. Flat projection for 3-D
Eichenlaub Multiperspective look-around autostereoscopic projection display using an ICFLCD
Wang Different multi-focal-plane method
JP2022160182A (ja) 光学ユニットおよびそれを用いたヘッドマウントディスプレイ装置
JP2000175220A (ja) 三次元表示方法及び装置
JP2001108912A (ja) 実体顕微鏡
CN117850036A (zh) 具有可平移反射器的可调谐透镜
CN116679476A (zh) 光学器件、头戴显示设备和头戴显示设备的调节方法
JP2000201360A (ja) 3次元画像表示位置変換装置および方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2300047

Country of ref document: CA

Ref country code: CA

Ref document number: 2300047

Kind code of ref document: A

Format of ref document f/p: F

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 1998937677

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09485216

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998937677

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998937677

Country of ref document: EP