TW201300834A - 顯示裝置,尤其是頭戴式顯示器或護目鏡 - Google Patents

顯示裝置,尤其是頭戴式顯示器或護目鏡 Download PDF

Info

Publication number
TW201300834A
TW201300834A TW100141592A TW100141592A TW201300834A TW 201300834 A TW201300834 A TW 201300834A TW 100141592 A TW100141592 A TW 100141592A TW 100141592 A TW100141592 A TW 100141592A TW 201300834 A TW201300834 A TW 201300834A
Authority
TW
Taiwan
Prior art keywords
light
slm
grating
controllable
display device
Prior art date
Application number
TW100141592A
Other languages
English (en)
Inventor
Gerald Fuetterer
Original Assignee
Seereal Technologies Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seereal Technologies Sa filed Critical Seereal Technologies Sa
Publication of TW201300834A publication Critical patent/TW201300834A/zh

Links

Abstract

本發明係一種顯示裝置,尤其是頭戴式顯示器或目鏡,具有一個空間光調制器(200)及一個產生空間光調制器(200)之分段多重成像用的光線偏轉裝置(400),其中多重成像是以至少具有可預先給定之多重成像段落之數量的方式進行,該數量決定可視範圍的大小,在該可視範圍內,供觀察者眼睛(1000)觀察的在空間光調制器內全像編碼的3D場景可以被重建。

Description

顯示裝置,尤其是頭戴式顯示器或護目鏡
本發明係一種顯示裝置,該顯示裝置能夠在一相當大的空間可視範圍內產生一具有空間光調制器(SLM)之多重組合成像的全像重建。

一般而言,視覺式顯示裝置及/或輸出裝置是為觀察者提供二維視頻數據、電腦產生的立體圖像、或全像產生的3D場景數據。

除了能夠將產生的圖像或重建的3D景像不經光學放大直接感知為實像的顯示裝置外,還有許多顯示裝置是用來觀察虛擬產生的圖像,這一類顯示裝置也稱為虛像顯示器(VID)。

具有虛像產生作用之顯示裝置經常被應用在非常靠近眼睛的顯示裝置(近眼顯示裝置)。這一類顯示裝置也稱為頭戴式顯示器(HMD)或頭盔顯示器。也有人將這一類顯示裝置稱為數據眼鏡(Data Glass)。

頭戴式顯示器(HMD)是一種戴在使用者頭上的類似眼鏡或頭盔(頭盔顯示器)的顯示裝置。這一類顯示裝置可以使用者的單眼或雙眼上(單眼HMD或雙眼HMD)。

本發明不限於純粹的頭戴式顯示器。本發明亦包括固定式或可攜式顯示裝置,透過該固定式或可攜式顯示裝置使觀察者可以透過位於眼睛附近的光學放大器(目鏡)觀察至少一個顯示器的放大顯示及/或透過顯示器重建之3D場景的放大重建。在以下的說明中將這種由電子演映箱構成的全像顯示裝置稱為目鏡。對於目鏡之尺寸及重量的要求不像對頭戴式顯示器(HMD)那麼高。目鏡能夠被廣泛應用在需要以不易疲勞且長時間的方式對具有很大之空間深度的3D數據組進行觀察的場合。例如醫學上用於對空間電腦斷層掃描數據、核磁共振斷層掃描數據、電子掃描顯微鏡數據、或超音波數據的觀察。

本發明亦可應用於在使用者之視線方向上作為可產生放大的虛像或實像之抬頭顯示器(Head-Up-Display)的顯示裝置。

本發明亦可應用於產生放大之實像的顯示裝置。

除另有特別說明外,以下之實施方式均適用於產生虛像之顯示裝置,例如頭戴式顯示器(HMD)或目鏡裝置。為了簡化說明起見,在以下的說明中僅使用HMD一詞,但此名稱並不排除產生實像的顯示裝置。

HMD可以將使用者周圍的環境完全遮擋住,因此使用者只會將所顯示的資訊感知為虛擬實境(VR)。在其他的裝置中,要顯示的資訊會與天然的環境印象重疊(例如經由半透明的反射鏡重疊),因後形成擴增實境(AR)。

使用目鏡裝置時,天然環境可以包括一經由另外存在之顯微鏡光程產生之真實物件的顯微鏡圖像。有些裝置允許透過可控制的介質影響重疊的程度。完全遮擋的裝置也可以具有至少一個定位在眼睛附近的照相機。透過照相機圖像與要顯示之資訊的重疊,亦可實現擴增實境(AR)的應用。

頭戴式顯示器已有多種不同的實施方式(例如類似眼鏡或頭盔的顯示器)被記載於專利文獻中。

例如US 2009/0180194 A1有揭示以立體方式顯示3D場景用的HMD。

例如登記人在WO 2008/071588已揭示製作成HMD以全像產生3D場景重建的顯示裝置。這種HMD僅能在一很小的空間可視範圍內重建3D場景。張開的觀察視窗(VW)大約僅相當於瞳孔的直徑。在大多數情況下,所產生的觀察視窗並非真實光圈,而是虛光圈。

SLM內的全像資訊的一維編碼會形成一具有相干及不相干方向的觀察視窗。相干方向是由兩個繞射級的間距所定義,其中這兩個繞射級是由調制單元的有效光柵所形成。有效光柵是指SLM的可被觀察者的眼睛看到的光柵。全像重建可以在兩個被選出的繞射級之間被觀察到。這兩個繞射級的間距必須大於觀察者的眼睛的瞳孔直徑,以避免產生雙像。如果是垂直編碼,會形成在水平方向的繞射級。觀察視窗在不相干方向上的大小是由照明的角度頻譜決定。

為了避免觀察視窗的主動追蹤,觀察視窗的大小(例如15mm x 15mm)應明顯大於瞳孔。為此系統內使用之空間光調制器的光柵間距需很小,以便能夠產生所需的很大的繞射角。為了同時獲得盡可能大的視場,需使用具有高解析度的光調制器。

在全像HMD的觀察視窗內,觀察者的瞳孔通常應位於兩個繞射級之間。

為了能夠在規定的距離及以規定的開角及高品質且足夠亮度的眼睛解析度看見要產生的重建,所使用之HMD的空間光調制器(SLM)應具有許多調制單元(調制像點,像素)。尤其是在SLM的調制單元應只是被一維編碼的情況下,更應具有很大數量的調制單元。例如,可以應用在HMD的小型SLM通常具有由<3*106個調制單元構成的調制單元矩陣。但是為了能夠為要產生的重建形成較大的空間可視範圍,SLM應具有由>20*106個調制單元構成的調制單元矩陣。

因此有一個問題是,需要將調制單元矩陣僅具有較少數量之調制單元的HMD加以改良,以使其能夠產生具有很高解析度的全像重建。

全像HMD的另外一個問題是,需要產生一類似於在全像直視顯示器內的盡可能大的空間可視範圍,以便在一適當的距離將一盡可能大的重建與真實環境重疊。

伸展到觀察空間的空間可視範圍(VOV)可以被定義成頂端帶有一平面的截錐體(平截頭錐體),該平面代表一應形成於觀察者眼睛之入射瞳孔的小型觀察視窗。其還具有另外一個平面,該平面的尺寸及與觀察者眼睛的距離定義了水平及垂直視角。例如,這個平面可以是產生全像編碼3D場景之重建的SLM的一個放大虛像。空間可視範圍從觀察者眼睛擴展到無限遠。可視範圍並非一定要具有矩形斷面。視所使用之SLM的形狀或相鄰之視場光圈的形狀而定,可視範圍也可以具有其他形狀的斷面,例如圓形、橢圓形或六角形斷面。

全像顯示器及全像HMD之空間帶寬積(SBP)通常是由觀察視窗(VW)的尺寸定義,定應被縮小至一最小值。如果觀察視窗的尺寸和眼睛的入射瞳孔(EP)一樣大,即達到SBP的最小值,該最小值仍能容許一完全的物件解析。雖然將VW放大到高於這個值會使SBP變大,但是這樣做的優點是VW不必再追蹤眼睛的移動。

如果空間光調制器應以一維的方式與複數值編碼,則當觀察視窗的尺寸為VM=15mm時,相干方向之角度每一度需要的調制單元數量超過700個,反之不相干方向之角度每一度需要的調制單元數量不超過60個。

重建大型3D場景用的HMD應具備這些特徵,也就是至少具有一個大的空間可視範圍、很大的對比度、以及與觀察者眼睛相距一很大的觀察距離。觀察視窗的尺寸至少要大到使觀察者的瞳孔仍具有一移動空間,而不必啟動顯示器內的觀察者眼睛追蹤裝置。

空間可視範圍具有的開角需能夠使在HMD內要產生的重建與真實環境以一相對較大的對比度重疊。對觀察者而言,應產生一3D場景的3D顯示,就像以全像直視顯示器能夠實現的3D顯示一樣。

為了獲得解析度盡可能高的空間光調制器,一種已知的作法是使多個解析度較小的光調制器在一或兩個方向上盡可能以無間隙的方式連接,以形成這樣的調制面。這通常是透過空間光調制器的放大成像來達成。但是這種配置方式的缺點是需要很大的構造體積。因此對HMD而言並不是很適用。

第二種方法是使解析度較小的光調制器的圖像按時間順序在一或兩個方向上串連起來。這通常是使用機械式偏轉裝置(例如偏轉鏡或多邊形鏡)來達成。這種機械式偏轉裝置同樣需要很大的構造體積,而且可能會產生干擾噪音,因此對HMD而言並不是很適用。不過倒是可以應用在固定式裝置上。WO 00/28369 A2建議借助可開關的繞射布拉格光柵實現這樣的串連。在製造這種可開關的光柵時,通常是透過對一全像圖的照射,在由液晶及聚合物組成的混合物中聚合出固定的光柵。透過改變電極結構上的電壓,可以改變液晶的折射率,使光線能夠不受阻礙的穿過光柵,或是在光柵上被繞射及偏轉。這種作法的缺點是,由於光柵結構是固定的,因此只能產生一個繞射角。而且這個繞射角是由波長決定。如果為了產生具有高解析度的大的調制面,而將多個調制像串連在一起,則必須為每一個場在一個堆疊內將一個個獨立的光柵連接在一起。在每一個時間點,堆疊內都只有一個光柵會被啟動,也就是將光線繞射到所希望之方向的那個光柵。光線會不受阻礙的穿過每一個未被啟動的光柵。對彩色顯示器而言,由於繞射角都是由波長決定的關係,因此對每一個顏色成份(紅,黃,藍)而言,要產生的每一個調制器成像都需要一個自己的可開關的偏轉光柵,也就是每一個場3個偏轉光柵。由於無法製造出繞射效應100%的可開關的繞射光柵,因此在所有光柵均處於關閉狀態時穿過堆疊的光線不能被用來產生圖像。

因此3個圖像的一維串連需要由9個可開關光柵組成的堆疊,而且這些光柵各具有不同的固定光柵常數。

要製造這麼厚的光柵堆疊是一件很麻煩的事,而且其應用會有問題,因為堆疊中的每一個光學交界層都會發生反射。由於光線心須穿過許多透明電極結構,因此會有很大一部分光線被吸收及/或散射。這兩種效應都會使光線強度變小,尤其是多重反射可能會造成不利的散射光,導致對比度變差。

本發明的解決方案的出發點是,為產生大空間場景應實現一大空間可視範圍,但是只有一個具有少量調制單元的空間光調制器可供使用。

所謂空間光調制器(SLM)是指一種平面形裝置,此種裝置可以在調制面內以可控制的方式局部改變光線的光學特性,以便能夠編碼全像資訊。視編碼方式而定,可以僅影響光線的振幅或相位、或是同時影響振幅及相位。空間光調制器對振幅及/或相位的影響不需要以直接方式進行,而是可以利用額外的元件(例如起偏振器)經由光線的其他特性(例如偏振)來進行。空間光調制器通常是由多個可個別控制的調制單元(像點,像素)組成的平面配置所構成。可以用電學或光學的方式將調制單元定址。調制單元本身能夠以可控制的方式產生光線,或是以可控制的方式影響透射光或反射光。調制單元也可以使要控制的光線產生波長變化。

空間光調制器也可以是由一維空間光調制器(例如柵狀光閥GLV)的一維掃描裝置構成,或是由點狀光調制器(例如雷射源)的二維掃描裝置構成。

為了能夠對重建場景的觀察產生大的開角及大的數值孔徑(NA),本發明明的方式是使至少一個空間光調制器被多重相鄰及/或上下堆疊成像。這是以以快到觀察者不會感覺到空間可視範圍的時間順序合成的速度進行。

多重成像也可以是部分或完全重疊。

應製造出一種使頭戴式顯示器及/或目鏡能夠將空間光調制器及其內編碼的3D場景放大的全像顯示器,其中可使用位於光程上具有場透鏡及/或放大鏡功能的透鏡,或是使用具有可控制之光學介質的透鏡。相應於全像直視顯示器的顯示方式,空間光調制器應位於一個轉換平面上,或是可以成像到一個轉換平面內。

一般而言可使用具有折射、繞射及反射成像介質的成像系統。

觀察視窗應位於瞳孔面,而且在該處不能與SLM的成像重合。

應用本發明之申請專利範圍第1項的理論即可解決以上的問題。附屬申請專利範圍之內容為本發明之其他有利的實施方式及改良方式。

本發明的顯示裝置(尤其是頭戴式顯示器或目鏡)具有一個空間光調制器、一個光線偏轉裝置、以及至少一個成像系統,其中空間光調制器可以被至少在一個方向相干的波前照亮,其中光線偏轉裝置的構造使空間光調制器的由段落組合的至少是一維的多重成像能夠按照時間順序以可控制的方式被產生,其中分段化多重成像是以至少具有可預先給定之多重成像段落之數量的方式進行,該數量決定可視範圍的大小,在該可視範圍內,供觀察者眼睛觀察的在空間光調制器內全像編碼的3D場景可以被重建。

例如在多重成像中變成多倍的SLM位於具有場透鏡功能之成像系統的平面,其焦點位於觀察者的眼睛。焦平面就是SLM的傅利葉平面,光源也被具有場透鏡功能的成像光學鏡組成像到傅利葉平面內。在SLM上編碼的全像圖的反變換以多個繞射級形成於這個平面。兩個繞射級之間的區域被選出作為觀察視窗。被編碼成全像圖的波前到達觀察者的眼睛,該波前可能發送出3D場景。觀察者會看到3D場景在重建區的重建,該重建區是由觀察視窗及虛擬放大的SLM張拉而成。物件會在何處被看見,也就是在SLM之前、之後或旁邊被看見,是由3D場景在全像圖中的深度編碼決定。

具有場透鏡功能的透鏡可作為成像光學鏡組,此成像光學鏡組可包含多個成像介質。成像特性可以是可變化或可控制的。這個成像光學鏡組最好還包含其他可影響光線的介質,例如光圈。例如光圈可以縮小像差的影響,或是抑制較高的繞射級。

根據產生放大圖像之顯示裝置的一種有利的實施方式,可控制光線偏轉裝置的構造使空間光調制器的分段組合多重成像能夠在場透鏡的平面上被產生。

在相干波前通過後,可以由可控制光線偏轉裝置(例如以可控制塗層作為光線偏轉介質的光線偏轉裝置)以某一數量進行段落的顯示,該數量是由顯示3D場景之正面需張拉之視覺錐體段落的數量及/或在一視覺錐體內可預先給定之尺寸決定。將空間光調制器分段化之可控制光線偏轉介質可以按照位置及時間依序改變,或是同時改變,其中空間光調制器可以在一視覺錐體內被虛擬放大產生。調制面可相應於被掃描之SLM的段落數量在視覺錐體內被放大,其中SLM的虛像可以在該視覺錐體內被放大產生。

空間可視範圍是由多個由SLM的虛像張拉成的段落組成。虛擬場透鏡及SLM之所有子圖像的虛擬總圖像位於空間可視範圍的一個平面,例如直視顯示器的平面。

場透鏡是一種會聚透鏡,其作用是在空間上分開的現有繞射級(也就是在空間上分開的現有的光源像)產生一虛擬觀察視窗。會聚透鏡是在一虛擬的SLM像的平面上作為虛擬場透鏡及虛擬相數函數,並具有一虛焦距,該虛焦距至少近似於虛擬SLM像的距離。

這個必要的虛擬相位函數可以透過相應的成像光學鏡組獲得實現,因此不必直接將真實的會聚透鏡設置在SLM上或其附近。但也可以將一個真實的會聚透鏡設置在SLM附近,並與SLM被成像到虛擬SLM像的平面。這基本上相當於配置一個非全像工作的HMD,最大亮度該HMD配置在觀者眼睛之入射瞳孔內的最大亮度區,也疾是說SLM的所有光線都會聚到入射瞳孔。這種HMD之虛擬場透鏡的焦距幾乎等於虛擬觀察距離。

可控制光線偏轉裝置的構造使被平坦相干波前照亮的小型物件(例如可控制的空間光調制器)可以被至少是一維分段多重成像。這些段落彼此應盡可能無間隙的連接,或是彼此部分重疊,這些重疊可以在全像資訊的編碼中被考慮進去。一種有利的方式是將各調制器段落的成像放大。

因此一種有利的作法是將顯示裝置內的光線偏轉裝置設計成使空間光調器之多重虛像的各個段落無間隙的彼此連接,或是彼此部分重疊,其中重疊部分在全像資訊的編碼中可以被考慮進去。

在光程上位於後方的成像裝置可以將3D顯示進一步放大成像。因此為了在顯示裝置內產生放大圖像,可以在光程上設置額外的成像裝置,其作用是將可控制光線偏轉裝置產生的空間光調制器的分段組合多重成像進一步放大成像。

SLM的組合虛像位於視線方向的一個平面上,並構成3D重建之視角範圍的邊界。透過觀察者眼睛可以定義一個空間可視範圍(VOV)。一種有利的作法是只重建3D場景位於這個可視空間範圍內的部分。

本發明的出發點是,從(最好是反射式)空間調制器(SLM)發出的一個相干波前顯示SLM在具有場透鏡功能之透鏡的一個主平面上的一個段落。透過光線偏轉裝置,SLM可以按時間順序依序及/或同時在場透鏡內以段落方式顯示。

透過可以按時間順序依序或同時顯示的段落,可以按時間順序依序或同時產生空間可視範圍的各個子範圍。觀察者眼睛及觀察視窗位於虛擬場透鏡的焦點。

觀察視窗是相當於SLM之虛擬多重成像的菲涅耳變換式之平面的一部分。

透過可控制光線偏轉裝置,相干波前可以將SLM依序多重成像在聚焦系統的平面上,且該平面最好是聚焦系統的一個聚透鏡平面。在另外一種實施方式中,聚焦系統可以具有至少一個具有放大功能的透鏡。

可控制光線偏轉裝置也可以不產生SLM的實像,而是依序產生多重至少是一維的SLM的中間像。

SLM可以設置靠近場透鏡平面的前面或後面,而且可以是真實或虛擬的SLM。

透過在場透鏡平面顯示的段落,SLM可以被虛像至少一維複製。

光線偏轉裝置產生的組成空間光調制器之多重成像的段落數量可以有不同的設計,例如這樣做的目的是使要實現的空間可視範圍或預先給定的瞳孔到要放大的SLM的虛像的觀察距離,能夠與圖像格式或圖像內容配合。

因此在顯示裝置的一種變化設計中,光線偏轉控制裝置被設計成可以改變組成空間調制器之多重成像的段落數量及/或大小。

透過光線偏轉裝置可以產生SLM的一維或二維多重成像。例如為了產生二維多重成像,可以使光線偏轉裝置具有至少兩個在其偏轉方向上彼此交叉的一維光線偏轉元件。

為了產生放大圖像,顯示裝置的可控制光線偏轉裝置最好具有至少一個可控制光線偏轉器,且該光線偏轉器具有光柵週期可改變的可控制液晶光柵。最好是能夠透過改變電極結構上的電壓曲線調整光柵週期。

光線偏轉裝置中的光線偏轉器,例如可控制液晶光柵、多工體光柵或具有可變換稜鏡角的可控制稜鏡,可以具有柱面透鏡功能,以達到光束的光學變形延伸。也可以使用稜鏡組,以達到光束或在一方向上的波場的光學變形延伸。

多工體光柵是在製造時被寫入至少兩個不同的偏轉方向的立體全像圖。可以透過入射光線的一或數個特性(例如入射方向,波長或偏振狀態)選擇所要的偏轉方向。

根據本發明之顯示裝置的一種變化方式,可控制光線偏轉裝置具有至少一個立體全像圖,其中立體全像圖具有至少兩個不同的繞射角,可以透過照亮空間調制器之光線的至少兩個不同的入射角及/或兩個不同的波長選出該等繞射角。

利用使得只有被繞射的光線會產生圖像的體光柵的配置方式所產生的SLM的一維擴展,可以實現能夠裝在眼鏡框上體積很小的顯示器。體光柵還可以另外具有場透鏡功能。可以更改體光柵的配置,以便使SLM之組合圖像所在的平面擴大,例如擴大10倍。但這並不是必須正好是將這個平面擴大。只要是將現有的波前擴大即可。

通常可以用一個預先給定大小的觀察視窗及一個可預先給定的從觀察者或使用者的瞳孔到SLM之虛擬多重成像的距離,來定義HMD的空間可視範圍。例如從觀察者或使用者的瞳孔到SLM之虛擬多重成像的距離可以是在1m到3m之間。

根據另外一種實施方式,HMD在光程上還具有一個空間頻率濾波器,其作用是將SLM編碼之具有較高繞射級的波前過濾掉。根據一種實施方式,可以賦予在最簡單的實施方式中被製作成靜態孔徑光圈的濾波器可控制的光圈功能,並構成觀察視窗,且該觀察視窗在觀察者眼睛的成像構成入射瞳孔。例如可以將這個濾波器設置在一個望遠鏡成像系統的中央焦平面上。透過過濾掉SLM之較高的空間頻率,在眼睛上成像的觀察視窗就不會顯現出相鄰的較高繞射級。如果觀察視窗或可視範圍的大小大約相當於觀察者的瞳孔,則使用這種濾波器是很有利的作法。

根據本發明之顯示裝置的一種變化方式,在光程上至少設有一個濾波器,其作用是將空間光調制器編碼之波前的較高繞射級過濾掉。

一種特別有利的作法是將濾波器設置在一個望遠鏡成像系統的中央焦平面上。

如果觀察視窗很小,例如3mm,一種有利的方式是觀察視窗能夠根據眼睛的移動以可控制的方式追蹤眼睛的移動。例如可以利用HMD內建的攝影機探測眼睛位置。追蹤工作可以由一個本身具有光線偏轉器的獨立的可控制追蹤裝置負責,其中多重成像通常是與眼睛位置一起被追蹤。例如這個追蹤裝置可以是液晶光柵、能夠實現可變的稜鏡功能的可控制電濕潤單元、液晶稜鏡單元、可變的擴大稜鏡單元、或是掃描反射鏡。

本發明之顯示裝置的一種變化方式具有一個可控制追蹤裝置,其作用是使觀察視窗能夠根據眼睛的移動以可控制的方式追蹤眼睛的移動。

但是部分或全部的追蹤工作也可以是由光線偏轉裝置執行,以產生空間光調制器的由段落組合的多重成像。因此所產生的段落就已經使多重成像追蹤眼睛位置。

根據本發明之顯示裝置的一種特別有利的實施方式,光線偏轉裝置除了產生空間光調制器的分段組合多重成像外,還使一個虛擬觀察視窗能夠根據眼睛的移動以可控制的方式追蹤眼睛的移動,或是可以支援可控制追蹤裝置。

此外,顯示裝置還可以具有調整器,以便透過手動或自動調整,使觀察視窗與瞳孔位置及眼睛間距適配。例如可以設置傳感器探測瞳孔的中央位置,並透過相應的執行元件使顯示裝置的光學系統與眼睛間距適配,以便能夠完美的看到3D場景的重建。

本發明之顯示裝置的一種變化方式是具有調整器,其作用是透過手動或自動調整,使觀察視窗與觀察者眼睛的瞳孔位置及眼睛間距適配。

也可以將調整器的部分或全部功能整合到光線偏轉裝置或追蹤裝置中。為此亦可設置探測瞳孔位置的傳感器。在顯示裝置的預置初始狀態或使用過程中,可以將一個固定的位移值導入光線偏轉裝置及/或追蹤裝置,以便能夠完美的看到3D場景的重建。這樣做的好處是無需額外的執行元件。

根據本發明之顯示裝置的一種特別有利的實施方式,光線偏轉裝置及/或追蹤裝置能夠支援調整器,或是能夠以可控制的方式調整觀察視窗,使其與瞳孔位置適配。

也可以將光線偏轉裝置的光線偏轉器設置在一個在一或二個空間方向彎曲的面上,以產生分段組合多重成像的段落。空間光調制器之分段組合多重成像相對於一平坦組合圖像的逐個連續出現的段落位置偏移可以在3D物件的全像編碼中獲得修正,使其可以在虛擬像空間中被正確且不失真有顯現。在產生段落時,也可以透過其他的光學成像裝置形成這樣的彎曲。同樣的,也可以透過光程上其他的成像裝置(例如凸反射鏡)將分段組合多重成像彎曲成像為放大的虛擬調制面。同樣的,這個彎曲也可以在全像編碼時被修正。

根據本發明之顯示器的一種變化方式,產生及/或形成空間光調制器之分段組合多重成像之段落的光線偏轉裝置及/或成像系統的其他光學元件能夠產生及/或形成分段組合多重成像的彎曲成像,並在3D場景編碼時將這個彎曲納入考量。

視所需要的總放大率及SLM的光柵間距而定,可以將第一階段的成像以放大、縮小、或1:1的比例成像。也可以用光學變形的方式成像。透過光線偏轉裝置使SLM被分段組合,例如被多重成像在配備放大光學鏡組之成像系統的物平面上,形成組合的中間像。例如,光線偏轉裝置400的第一光線偏轉器是一個光柵間距可變化的可控制液晶光柵,第二光線偏轉器是一個多工體光柵,每一個子成像及成像波長都有一個自身的體光柵被寫入這個多工體光柵。為每一個需要的成像及波長選擇體光柵是透過第一光線偏轉器當前的繞射角及彩色多工光調制單元當前的波長進行。光線偏轉裝置也可以執行或支援光學變形成像,例如光線偏轉器不只是將光線偏轉,也會擴大角度範圍。

根據本發明之顯示器的一種變化方式,成像系統及/或光線偏轉裝置以光學變形的方式形成空間光調制器之分段組合多重成像。

一種有利的方式是將僅具有一個可控制光偏轉器的光線偏轉裝置設置在一個遠心成像系統的共同焦平面上。這個光線偏轉器僅需以可控制的方式執行光程的一個傾斜,以產生一個分段組合多重成像。例如可以利用一個可控制的稜鏡或可控制的繞射偏轉光柵執行這個傾斜。將光程傾斜的光線偏轉器的位置也可以不同於焦平面的位置,以實現一個額外的場透鏡功能。因此而出現的調制圖像重疊現象可以在全像編碼時被納入考量。

本發明之顯示器的一種變化方式具有至少一個遠心成像系統,在其物側焦平面上設有一個光線偏轉裝置,其作用是以可控制的方式將來自空間光調制器的光線傾斜。

一種時間及/或空間分段方式在一擴展的觀察空間中呈現圖像內容的實施方式能夠透過態編碼且至少是部分相干的全像3D顯示,呈現不相干之2D顯示及/或3D立體顯示在立體角內的可變化的組合。

這種可能的實施方式奠基於多個觀點。

眼睛能夠將具有高對比差的區域看得特別清楚,例如聚焦在點、稜角、或差接結構上。

例如,在空間中顯示的未結構化面僅具有很小的對比度,因此眼睛很難聚焦其上。因此一個可能性是將動態編碼全像3D顯示限制在結構及稜角特徵,也就是限制在有很強的聚焦作用的特徵,以及透過2D或3D立體顯示產生聚焦作用效果較差的面及物件段落。這相當於動態編碼全像3D顯示及2D或3D立體顯示的一種線性顯示。這可以透過未分段或時間或空間分段的觀察範圍的整個或部分立體角範圍獲得實現。

可以將上述步驟的執行限制在將中央觀察視窗的邊緣區域向外擴展,以便對要顯示的動態編碼全像3D場景獲得全面的立體感。

例如,一種簡單的實施方式(為了簡化顯示起見,此處僅討論垂直視角),是透過動態編碼全像3D顯示產生相當於SLM在場透鏡平面上的一個平均段落的平均角度範圍(0至+/-13)°,也就是26°。在平均角度範圍之上及之下的角度範圍(+13至+39°及-13至-39°)則可以透過2D或3D立體顯示產生。

以上方式的背景是,使用者在其所處的天然環境中只能體認到具有高解析度及可強烈感知之3D印象的有限度的立體角。如果為使用者提供很大的立體角,則高解析度及可強烈感知之3D印象的特徵僅存在於整個立體角的一個子範圍。這個子範圍就是使用者能夠集中注意力的範圍。由於這個範圍會跟著使用者眼睛的移動而移動,因此一種有利的作法是讓以強烈聚焦及3D特徵顯現的空間範圍也跟著移動。為達到這個目的,需要探測使用者的眼睛位置及/或視線方向。因此即使觀察視窗的大小是15mm而無需追蹤觀察視窗,追蹤以很強的聚焦及3D特徵顯現的空間範圍仍是有利的,當然前提是這個空間範圍僅是所顯現之整個空間的一部分。

例如,全像顯示及2D及/或3D立體顯示可以用平面交錯、交錯重疊、或直接彼此連接的方式進行。可以使用校正及比較表(LUT),以減少平頭截體內的可辨識到的干擾。

一種有利於降低成本的方式是設置一個用於全像編碼的SLM,以及一個用於典型2D顯示的SLM。一種有利的方式是以雷射二極體作為用於全像編碼的SLM的照明工具,以及以發光二極體(LED)作為用於典型2D顯示的SLM的照明工具。2D或3D立體顯示亦可使用自身發光的SLM,例如OLED顯示器。

例如可以應用極性、波長、及/或目標場景的空間稀釋等特性,以了減少在物空間內可以辨識的散斑及相鄰點的相干串擾,

例如,一種可能的選項是使照明裝置將負責重建共同像點區的兩個SLM照亮的光源在紅黃藍(RGB)顏色區具有不同的窄帶波長區。因此而出現的色移可以在為配屬於SLM之像點編碼時被納入考量。應用不同的偏振光(例如水平及垂直偏振或右及左循環偏振)也是一種可能的選項。同樣的,因此而產生的不同強度的光成份,也可以在像點編碼時被納入考量。

也可以將這兩種選項組合在一起。

可以將時間及空間相干性降低到最低程度,也就是將體光柵與不同配置的光源組合在一起,例如與如上述選項之雷射二極體組合。

對製造固定式儀器而言,一種有利的作法是以多個SLM執行物點的稀釋,其中這些SLM之重建3D場景的各部分的雲點會彼此交錯。例如可以利用具有相同波長但彼此不相干的光源將各個SLM照亮。這些光源的波長也可以彼此略有不同,其中這些色移在全像圖編碼時應被納入考量,以獲得不受干擾的彩色重建。

本發明之顯示器的一種非常有利的種變化方式是具有另外一個光線偏轉裝置,其作用是產生另外一個空間調制器的分段多重成像。各個空間光調制器的分段多重成像是彼此交叉插入及/或彼此相互轉動及/或彼此相互移位及/或在深處被分成階段,並與觀察者眼睛(1000,1001,1002)的瞳孔定義一個共同的觀察範圍。這些分段組合多重成像的子區域彼此相鄰、或全部或部分重疊,其中重疊是以不相干、部分相干、或相干的方式形成。在每一個子區域內都有一個2D顯示及/或3D立體顯示及/或全像3D重建。

根據一種有利的實施方式,SLM可以和一個可控制元件組合,這個元件可以具有一個有場透鏡功能的透鏡及一個可控制光線偏轉裝置。

這個可控制元件也可以是一個靜態體光柵,這個靜態體光柵可以在一個平面上具有交錯照亮的光程,或是在不同平面上具有上下照亮的光程。

這種靜態光線偏轉元件與另外一個可開關及/或可控制光線影響器(例如可開關及/或可控制光圈場組合,以便在每一個時間點都只傳輸一個偏轉方向的光線。

此外,聚焦系統的場透鏡也可以單獨作為體光柵或以液晶(LC)為基的可控制光柵。

可以將光線偏轉裝置、一個場透鏡及一個選擇性配備的追蹤裝置設計成使繞射式光線偏轉器的第0繞射級不會參與成像。因此也可以使用繞射效應很小的繞射式光線偏轉器及成像器,這樣只要選擇所要的光線偏轉裝置,具有干擾性的低亮度光就會留在第0繞射級內。

根據本發明之顯示裝置的一種變化方式,在可控制光線偏轉裝置(400,401,402,450)有設置一個光柵週期可改變的可控制液晶光柵及/或體光柵,第0繞射級的光線穿過這個液晶光柵及/或體光柵時不會被利用到,而且能夠遠離其他有作用的光程。

這些元件的各個功能也可以在各個元件內作為可控制光柵組合在一起。

照亮光程的目的可以是偏振分離及/或波長分離及角分離及/或角合併。可以使用相同的技術工具(也就是偏振,波長及角度)選出及分離被編碼到這種多工體光柵內的光程。

如果使用的是體光柵,而且可以電切換其重建幾何,則該體光柵含有一種取向能夠以可控制方式改變的液晶材料。

由於具有可實現的厚度,因此體光柵也適於合併光程,而且對本發明而言是一種有助於縮小顯示器尺寸及/或厚度及重量的適當工具。

可以用重鉻酸鹽明膠(DCG)、光反射玻璃、或光化聚合物製造靜態體光柵,也就是具有固定的重建幾何及/或光柵參數不隨時間變化的體光柵。

一種特別有利的方式是使用折射率會隨深度改變的體光柵,也就是具有z功能的體光柵。透過這種Z變跡可以壓抑角度選擇性及波長選擇性的旁瓣最大值,以及將角度選擇性、偏振選擇性及/或波長選擇性調整到對該設計而言最佳的函數關係。這種方式可對透射及反射體光柵均可應用,其中可以將一個厚層中不同的體光柵照亮,例如一個接一個照亮(也就是在不同深度範圍),或是交錯照亮(也就是說至少有部分重疊),其中變跡功能至少會壓抑角度選擇性及波長選擇性的旁瓣最大值,並使SLM的多重成像的各個段落達到對該設計而言最佳的過渡。

多工體光柵也可以是由多個彼此黏合的層製成,其中這些層各具有單獨的繞射圖案。每一層也都可以含有一個多工體光柵,例如為一個波長範圍及/或角度範圍被最佳化。

光線偏轉器的可控制層可以含有一種液晶材料,該液晶材料在光線偏轉裝置內可以作為體光柵或液晶光柵被控制,以調制光程及/或相干波前,或是改變光程及/或相干波前的傳播方向。

可以用電控制的體光柵屬於一種聚合物分散液晶光柵(PDLCG),而且能夠達到很高的切換速度。

對於要產生的重建,一種有利的作法是將具有深度顯著圖案及特徵的編碼限制在組合調制成像的一個範圍。這個範圍最好是位於觀察者眼睛的視線方向,而且可以透過偵測瞳孔位置找到這個範圍。

不相干2D或3D立體顯示可以與全像重建重疊。這個重疊可以是平面覆蓋或交錯轉向的方式,其中空間光調制器至少在一個段可以全像編碼,其他段落則可以立體圖像編碼,例如可以在中央段落產生全像重建。在其他的段落,3D場景可以用2D或3D方式顯示。

HMD可以配備一個能夠將3D場景全像編碼的空間光調制器(SLM),或是配備一個能夠為2D或3D顯示提供立體圖像的空間光調制器(SLM)。

本發明之主申請專利項目頭定義的戴式顯示器可以擴充為2D-HMD、3D立體HMD、以及3D全像HMD(無需放大裝置)。

透過放大倍數可變化的SLM平面,本發明的HMD經過修改後可以應用於其他的立體顯示應用,例如作為全像直接顯示器或應用於全像電視機。

尤其是對目鏡而言,也可以使用至少掃描一個線性空間光調制器的變化方式。空間光調制器分段組合多重成像的段落最好是以一維垂直於掃描方向的掃描輪的形式形成。例如可以用電流計鏡(可以製作成微機械元件)或多邊形鏡進行掃描。一種有利的方式是使用可控制繞射光柵。

根據本發明之顯示裝置的一種有利的變化方式,顯示裝置的空間光調制器是一種線性空間光調器,此種線性空間光調器可在垂直於其線性伸展範圍被光線偏轉器掃描,且其掃描圖能夠在其線性方向上被可控制光線偏轉裝置按時間順序多重重疊組合。

如果是利用多邊形鏡進行掃描,可以將多邊形鏡設計成一個接一個的鏡面朝轉軸的方向傾斜,以使掃描輪排列成行或稍有重疊。這些重疊可以在全像圖值編碼時被納入考量。

根據本發明的一種特別有利的變化方式,具有線性空間光調制器的顯示裝置設有一個多邊形鏡,該多邊形鏡至少有兩個鏡面相互傾斜,以使其掃描輪在垂直於掃描方向上下排列或稍有重疊。

根據一種特有利的變化方式,在顯示裝置的空間光調制器之前及/或之後設有一個微型透鏡裝置,其作用是提高空間光調制器的光效能及/或降低空間光調制器之各個調制單元之間區域的邊緣效應。

為達到上述目的,也可以將微型透鏡裝置設置在空間光調制器的一個中間像的位置,或是設置在空間光調制器的一個分段組合中間像的位置。

微型透鏡裝置可以另外具有一個變跡掩膜,以便最大限度的抑制詷制單元形成之光柵的較高的繞射級。另外一種實現變跡的可能性是,微型透鏡的焦點並非正好位於調制單元的平面上,而是略微偏離這個平面。透過輕微的散焦,可使所屬之微型透鏡的上述作用與作用面的大小配合。透鏡形狀可根據其光學傳輸函數被最佳化。透鏡形狀也可以是平面形,並具有一個梯度指數輪廓。

如果是使用透射式調制器,則微型透鏡裝置也可以是位於背光照明及調制單元之間的光程上,以便將背光照明的未調制的光線聚集在調制單元的作用面上。

變跡掩膜也可以在沒有微型透鏡的情況下單獨使用,以抑制較高的繞射等級。

根據本發明之顯示裝置的一個實施例,變跡掩膜係位於空間光調制器面對觀察者眼睛的那一個面上。也可以將變跡掩膜設置在空間光調制器的一個中間像及/或分段組合中間像的位置。

HMD在光程上還可以具有一個濾色器,其作用是產生彩色重建,例如由紅黃藍三原色構成的彩色重建。

為了產生完整的全像圖,可以使用透射式及反射式SLM。如果是使用反射式SLM,則需要一個平面前景照明裝置,或是照明裝置可以具有一個傾斜照明的投影系統。可以用能夠調制光線之振幅或相位的系統作為調制器。也可以是具有複合式調制器,也就是可以直接調制光線之振幅及相位的調制器。

利用光束組合器(BC),例如登記人在DE 10 2009 044 910 A1提出的光束組合器,光線可以視編碼方式被兩個(例如二相編碼的情況)或多個調制單元移位至完整的全像圖值。

有許多不同的可能性能夠以有利的方式執行本發明的理論,及/或將以上描述的實施方式組合在一起。此部分詳見附屬於申請專利範圍第1項的各項附屬專利申請項目,以及以下根據圖式對本發明之各種有利的實施方式所作的說明。以下除了根據圖式對本發明之各種有利的實施方式的說明外,還包括對本發明之理論的執行及進一步改良的說明。
第1a及1b圖分別顯示一個具有若干基本功能的光線偏轉裝置400,以及這些功能應如何在HMD中被使用。

第1a圖的光線偏轉裝置400具有兩個可控制光線偏轉器410,420,其作用是以調制相干波前720,730,740將空間光調制器200多重成像。SLM 200被未在圖中繪出的一個照明裝置準直照亮。光線經過SLM 200調制後,從SLM 200發出一相干波前710。

在一種略加變化的實施方式中,SLM 200是被一會聚波前照亮。為搭配這種照明方式,可選擇性的搭配未在圖中繪出的光束組合器。

例如,如登記人在DE 10 2009 044 910 A1中建議的,在光束組合器內有兩片雙折射平板(Savart-Plate),則光束組合器的厚度必須根據SLM的位置調整,以使相鄰的波前重疊成合在一起的像素。

這種球面照明很容易在具有至少一個體光柵的平面前光源模組內被執行。全部或一部分場透鏡在照明裝置內的實現方式可以省下反射面。為此透射式SLM亦可使用會聚式背面照明。

如第1a圖左邊的情況所示,調制平面波場710經過可控制光線偏轉器410,420的傳輸成為調制波場730,但並未被偏轉。空間光調制器可以分成段落被顯示在後面的場透鏡平面上。在第1a圖顯示的另外兩種情況中,調制波前710被偏轉成朝兩個不同方向的調制波前720,740。可以利用至少一個光線偏轉器將調制波前偏轉,或是利用鍍膜以可控制的方式使調制波前產生可預先給定的偏轉角。具有固定式可控制偏轉器之可控制偏轉裝置的偏轉元件的組合也可以偏轉及傳輸調制波前。例如,可控制光線偏轉器可以含有兩種可控制液晶材料。

第1b圖顯示本發明之頭戴式顯示器(HMD)的基本結構,此種HMD使用如第1A圖的光線偏轉裝置。在光程上,彼此位置相當靠近的光線偏轉裝置400及放大透鏡530位於要多重成像的SLM 200的後面。透過選擇性配備的追蹤裝置600,在SLM 200內被編碼的全像資訊的3D重建可以追蹤觀者1000的瞳孔移動。這對於所產生的觀察視窗直徑與觀察者的瞳孔直徑差異非常小的情況特別有利。

透過SLM 200,例如具有可被個別控制之調制單元構成的矩陣的SLM,可以從不同的觀點經由波前WFi的調制Mi按時間順序產生3D場景的子全像圖。調制單元被一個圖中未繪出之光源的光線以平面波前準直照亮,此光源的光線至少在一個方向具有相干特性。被空間光調制器200按時間順序調制的波前710在光線偏轉裝置400內被偏轉到不同方向,而成為調制波前720,730,740。透過光線偏轉裝置400,空間光調制器200可以在放大透鏡530的平面上按時間順序以分段組合的方式被顯示成具有高解析度的虛擬空間光調制器。放大透鏡530具有場透鏡功能。

透過空間光調制器200的可在一或二個方向多重相鄰顯現的段落,使這些段落所屬的光調制器像能夠以虛像的方式在空間可視範圍內被看見,其中可以在光偏轉裝置400產生不同光偏轉的相應時間點將調制波前720-740配屬於光調制器像。這樣觀察者就可以意識整個可視範圍,以及看見3D顯示。3D重建可以在其內被看見的觀察空間是由空間可視範圍所定義。

透過第1b圖中穿過光線偏轉裝置400的調制波前710 ,使SLM 200可以按時間及/或靜態相鄰被多重顯示在放大透鏡(放大鏡)530的平面上,在此過程中會產生調制波前720-740。

視與觀察者眼睛1000的距離而定,最好構成多透鏡系統的放大透鏡530通常並非場透鏡。放大透鏡的作用如同放大鏡,其中組合的SLM是設置在放大鏡系統的焦距內。在放大透鏡530的焦距相同的情況下,可以透過組合的調制器像到放大透鏡530的物側主平面的距離,調整眼睛能夠看到的組合的調制器像的虛像的位置。這樣就可以同時確定全像重建的可視範圍。

場透鏡以真實或虛擬的方式位於真實或虛擬(多重組合的)SLM的平面上。場透鏡的功能可以在整個光學系統內被執行,並含有多個被動及/或主動成像元件。

另外一種方式是透過放大透鏡530實現場透鏡功能。在這種情況下,組合的調制器像位於放大透鏡530的主平面上,同時也是眼睛看到的組合的調制器的虛像,其中該虛像張拉出可視範圍。在這種情況下,放大透鏡是一個純粹的場透鏡,而且這個場透鏡是設置在使用者眼睛的入射瞳孔之前與入射瞳孔的距離等於場透鏡之焦距的位置。這個場透鏡不會產生放大作用。

第2圖是以簡化方式顯示這種情況。第2圖顯示了為執行本發明的理論,頭戴式顯示器所包含的最主要的器材。對SLM 200進行掃描的光線偏轉裝置400及具有場透鏡功能的透鏡500顯示於基本配置圖中。

SLM 200可以透過按時間順序的相干波前承載不同的全像資訊,同時透過光線偏轉裝置400(例如包含一個可控制液晶光柵的光線偏轉裝置)分成多個段落以至少一維的方式被顯示或複製在場透鏡平面上,例如按1、2、3、4、5的順序按時間被連續顯示5次,因而形成組合的調制器的圖像270。

可控制液晶光柵最好是一種主動液晶偏振光柵,其光柵常數會隨著電極結構上的電壓輪廓及寫入的相位輪廓的改變而改變。

按時間順序連續形成的分段化波前720-760在瞳孔方向被成像裝置偏轉。透過SLM 200的段落即可形成一個從瞳孔一直到無限遠的空間可視範圍。

波前對空間光調制器200的掃描也可以是用靜態方式進行,其中SLM 200被一起分段化,也就是說多個空間光調制器彼此緊靠在一起,或是經由成像裝置被光線偏轉裝置400組合成一個大型的高解析度虛擬調制器。

除了按時間順序在具有場透鏡功能之透鏡500的平面上產生SLM 200的多重成像外,也可以同時在具有場透鏡功能之透鏡500的平面上產生多重成像。例如可以透過其內有多個傳播方向被靜態寫入的體光柵來實現。例如,在一個固定的時間點的編碼只對一個段落是正確的,對另外4個段落則不是。例如可以利用電切換光圈抑制從這4個段落發出的光線向眼睛的方向傳播。例如這種可開關光圈裝置可以構成一種液晶快門顯示器。將這種裝置應用在HMD的優點是,除了SLM 200及光源外,只能使用分段化可快速切換的光圈。

例如,透過本發明之HMD的這種基本結構可以將具有4000x2000個調制單元的空間光調制器放大5倍。空間可視範圍(FOV)的開角可以達到26°,觀察視窗的尺寸可以達到15mm。

具有場透鏡功能的成像光學鏡組500可以是折射式、繞射式、或反射式的鏡組。也可以是這些型式的組合,例如具有繞射修正的折射式系統。

為了降低閃變效應,SLM 200的分段化最好是以其他的順序(例如2、4、1、3、5)取代1、2、3、4、5的順序進行。

可以根據SLM 200的段落及根據顏色,將所要產生的3D場景的重建順序最佳化。

第3至第5圖是以示意方式顯示先前技術產生調制器之放大虛像的若干典型光程。

第3圖是根據一個具有多重成像及濾除較高繞射級的未折疊光程,以俯視方式顯示在頭戴式顯示器(HMD)及/或目鏡的空間可視範圍內產生SLM 200之放大虛像220的原理。HMD具有一個照明裝置100。照明裝置100具有一個光源110(例如雷射二極體)及一個準直光學鏡組120(例如透鏡),其作用是將光源110的光線準直,以及將相干波前導引到可控制空間光調制器(SLM)200。包含兩個透鏡系統510,520的4f-成像系統500位於SLM 200之後。4f-成像系統500將SLM 200成像為中間像280。透鏡系統500對經SLM 200動態編碼的較高繞射級具有空間濾除功能。如果起因於SLM 200之空間調制器像點矩陣的較高的繞射級可能對重建品質造成干擾,則抑制這些繞射級到達觀察者眼睛1000之入射瞳孔(EP)是一種有利的作法。例如可以將製作成針孔光圈的濾波器590設置在透鏡系統510,520的共同焦點上,以達到這個目的。

在通往瞳孔的接下來的光程中,具有放大光學鏡組800的成像系統位於4f-成像系統500之後,其中透過4f-成像系統500觀察者眼睛1000會將SLM 200的圖像280看成放大的虛像220。

光線偏轉裝置產生的組合的調制器像亦可位於SLM 200所在的位置。

這種可控制光線偏轉裝置最好是具有至少兩個可控制層,例如兩個可控制液晶層。其中一個層可以選擇性的包含一個具有寫入之光程的立體全像圖。

光線偏轉裝置也可以部分或完整具有其他的可控制光線偏轉元件。例如這些光線偏轉元件包括具有可控制且可改變之楔形角的元件,這種元件就是照鏡物鏡用來穩定圖像用的元件。

2D及3D圖像及/或重建可以在單一範圍顯示,或是整個在空間可視範圍顯示。

第4圖是顯示如第3圖之HMD在折疊光程的情況下的俯視圖。透過折疊使光程具有另外兩個導引相干波前用的反射鏡920,930。SLM 200是一種反射式調制器,例如具有矽基底的反射式液晶調制器(LCOS),或一種微型反射鏡裝置(微電機系統MEMS,數位微型反射鏡元件DMD),而且是被平面前光源模組(FLU)150照亮。光源110(例如雷射光源)產生的相干光線經由準直光學鏡組120及偏轉鏡910被輸入到平面前光源模組的一個楔形波導管。如果SLM 200是一種相位調制器,則可以選擇性的具有一個光束組合器(BC)300,以獲得全像圖重建所需的複數調制值。

光線偏轉裝置產生的組合的調制器像亦可位於SLM 200所在的位置。

一種有利的方式是將一個光線偏轉裝置設置在SLM的共軛面上。

第5圖顯示結構緊密之HMD之SLM 200的單階段虛擬放大的原理。由於各元件排列的非常緊密,及/或各元件的功被被整合到至少一個共同層,以及觀察視窗的放大倍數很高,因此沒有設置追蹤裝置。如同第4圖的情況,光源110經準直光學鏡組120準直的光線被平面前光源模組150偏轉到SLM 200上。可以選擇性的在SLM 200之前設置一個光束組合器300,以便將被多個調制單元調制過的光線合併成一個共同的全像圖值。空間光調制器(SLM)200被成像到一個放大透鏡(最好是一個放大成像系統)之焦距內的平面上。在接下來的光程中,波前經過反射鏡930到達觀察者眼睛1000的瞳孔,使瞳孔可以看到在作為螢幕的空間可視範圍的平面上的SLM 200的虛像220。例如,作為體光柵的繞射式物鏡適用於結構緊密的光程,以實現上述的原理。

如同第3圖及第4圖的情況,光線偏轉裝置產生的組合的調制器像亦可位於SLM 200所在的位置。

如果第4圖或第5圖中的反射鏡930是半透明或可控制半透明反射鏡,則可實現擴增實境(AR)的應用。

第6圖顯示一個全像投影系統。SLM 200透過光源110及準直光學鏡組120經編轉鏡910被平面前光源模組150照亮。可以選擇性的在SLM 200之前設置一個光束組合器300。以42”顯示器為例,在圖中未繪出的SLM 200的放大組合虛像顯示在距離1m的位置。在這個平面上相當於一個動態3D圖框。

光程包含一個反射鏡組950,960,970及一個可控制光線偏轉裝置400,因此空間光調制器(SLM)200至少可以是雙重的。這樣做的優點是,可以將光線偏轉裝置400製作成單層結構,因為調制器像僅需被偏轉一次,而且沒有移位。在中間像270有相鄰排列的不同的調制器像。

光線偏轉裝置400也可以搭配一個具有可控制分段化快門的靜態光線偏轉裝置。

投影系統也可以在觀察視窗的平面上具有一個光圈平面,這樣就可以抑制較高的繞射級。

例如可以將反射鏡970轉換成一個折射構件。在這種情況下,來自SLM 200並照射在其上的光束會因為全反射(FTIR)被反射到觀察者眼睛的入射瞳孔(EP)。透過這種方式可以實現一種透視顯示器。透過視情況接通的快門可以啟動及關閉這個選項。

例如也可以透過一個反射立體全像圖實現反射鏡970的功能。可以限制角度及波長選擇性,以實現透視顯示器。此處亦可另外加入一個快門。

第7圖是以示意方式顯示另外一個實施例,根據這個實施例,光線偏轉裝置450被設置在一個場透鏡之後。和第1圖或第2圖的實施例一樣,光線偏轉裝置450包括第一及第二光線偏轉器460,470,而且其中至少有一個光線偏轉器是可控制的。

光線偏轉裝置450也可以與追蹤裝置組合成一個光線偏轉及追蹤裝置,其中該追蹤裝置使觀察視窗可以追蹤觀察者眼睛1000的眼睛及/或瞳孔的移動。透過這種裝置可以使位於SLM 200及光線偏轉裝置450之間的放大光學鏡組810的尺寸小於在透鏡系統之前設有一個光線偏轉裝置的配置方式。

也可以在SLM 200的平面上設置一個真實的場透鏡。

第8圖顯示一個構造尺寸較大的具有放大光學鏡組800 的成像系統,其設置方式和第3圖及第4圖的實施例是一樣的。由於成像系統已經將圖中未會出的一個SLM的組合中間像270成像,因此其所需的直徑會大於可比較的SLM尺寸及可比較的成像比例。

在光程上可以選擇性的將一個追蹤裝置600設置在具有放大光學鏡組800的成像系統及觀察者眼睛1000之間。

第9圖是以示意方式顯示如何透過兩個將光束偏轉的反射鏡920,930縮小一種變化方式的構造深度,根據這種變化方式,光線偏轉裝置450係設置在SLM 200之放大光學鏡組810的後面。在這種變化方式中,放大光學鏡組的透鏡及反射鏡920,930都只需相當小的直徑就可以將光束偏轉,這是因為SLM 200是在這些透鏡及反射鏡之後才會被光線偏轉裝置450多重成像。偏轉鏡930也可以是半透明或可開關及/或可控制半透明反射鏡,以實現擴增實境(AR)的應用。

根據第10圖顯示的一種特別有利的變化方式,偏轉鏡同時也是光線偏轉裝置450的一部分。光線偏轉裝置450的至少一個光線偏轉器460,470是可控制的,以便在時間多工運轉的狀態下能夠產生SLM 200的多重成像。一種有利的方式是光線偏轉器460是可控制的,光線偏轉器470則是包含多個重建幾何的反射全像圖。具有放大功能的放大光學鏡組810的任務是使觀察者眼睛1000在規定的虛擬觀察距離能夠看到多重成像。穿過光線偏轉器460,470被偏轉的光線(也就是第0繞射級)不會被利用到,因以可以用適當的吸收或遮蔽器材抑制這些光線,以使其不能到達觀察者眼睛1000。因此可以將固定或可變射光柵應用於只需具有很小的繞射效應的光偏轉器460,470。光偏轉器460是一種寫入多個偏轉方向的透射全像圖,或是能夠用可控制的方式偏轉光線。光線偏轉器460,470也可以是具有數個或多個能夠在一維或二維被接通或控制的單元的矩陣形裝置,以實現或支援額外的場透鏡功能或修正功能。也可以在SLM 200的平面上設置一個真實的場透鏡。

也可以在體光柵的位置設置繞射或反射式偏轉裝置。例如這些層可以具有實現可變光楔功能的可接通或可控制電濕潤單元。

第11圖是以示意方式顯示使用凸反射鏡970以縮短構造長度,以及搭配光線偏轉裝置400,以便在放大光學鏡組810的後面產生SLM 200的多重成像。在這個實施例中,反射式SLM 200是透過光源110(例如雷射光源)、準直光學鏡組120、偏轉鏡910及平面前光源模組150被照亮。透過放大光學鏡組810及光線偏轉裝置400的協助,SLM 200以一維或二維的方式被相鄰多重成像為組合的真實中間像270,因而形成一個高解析度的空間光調制器。透過凸反射鏡970,由組合的空間光調制器產生的全像重建會被再度放大及看見。為了產生高品質的全像重建,可以和其他所有的實施例一樣,在SLM 200之設設置一個光束組合器300,以獲得高品質的調制值。

第12a圖顯示一個對第11圖略為修改的實施例。根據這個實施例,有一個光學可定址空間光調制器(OASLM)250被設置在中間像270的位置。SLM 200透過成像光學鏡組810及光線偏轉裝置400被按照時間順序相鄰複製在OASLM250上。光線偏轉裝置400還可以具有其他的成像特性群完全取代成像光學鏡組810。為了形成小型成像光柵,成像光學鏡組及/或其他的成像功能也可以在OASLM 250上縮小成像。

OASLM 250構成一個高解析度的二次空間光調制器。透過SLM 200的多重成像被編碼到OASLM 250內的全像資訊會經由凸反射鏡970被放大成為3D場景的重建,並被觀察者眼睛1000看見。一個相干光源160(最好是雷射光源)經由準直光學鏡組170將OASLM 250照亮,一個選擇性配備的偏轉鏡980及一個平面前光源模組170可篩選經由SLM 200寫入的資訊,以重建全像3D場景。

如果是使用透射式OASLM,則可以將前光源模組改為背光源模組(BLU)。在光線方向上,可以將一個選擇性配備的光束組合器300設置在OASLM之後。

根據第12b圖中的一種特別有利的變化方式,OASLM 250的篩選是經由SLM 200進行,其中OASLM 250是由透明相位調制器構成,SLM 200是由振幅調制器構成,其作用包括將相位值寫入OASLM 250,以及透過被編碼到SLM 200的振幅值篩選所屬的相位值。OASLM 250及SLM 200共同構成一個複數值的調制器。這種變化方式不需要光束組合器,而且可以提高空間解析度,因為不需使用SLM 200的多個調制單元為複數值編碼。

寫入相位值所用的波長可以是不同於篩選帶有振幅值之相位值所用波長。OASLM 250的光導管可以僅對寫入波長(例如在紫外線附近的波長)敏感。SLM 250被相鄰成像在其上的OASLM 250的各單一範圍可以在寫入過程中被個別接通(對寫入波長敏感),或是被切換到無作用,以進行篩選,其中寫入的相位資訊會被儲存起來。篩選工作完成後,最好能夠透過消隱脈衝以分段方式或全面將OASLM 250清除。另外一種可行的方式是篩選時以短的光脈衝工作。這樣光導管就有足夠的時間讓舊的電荷載體流出,例如在一個或所有剩下的段落被寫入及/或被篩選出的時間內,因為OASLM 250的這個部分在這段時間內不會被照亮。如果是彩色顯示,則彩色面同樣是按時間順序被產生。

第13圖是以示意方式顯示分別經由薄的波導管1101,1102為一位觀察者的左眼及右眼1001,1002產生虛擬高解析度組合SLM圖像的過程。如此處顯示的雙目裝置對全像HMD及所有的實施例都是非常有利的變化方式。

由於左眼及右眼1001,1002用的光學元件是一致及/或對像對稱的,因此此處僅描述左眼1001用的通道。反射式SLM 201被平面前光源模組151照亮。來自未在圖中繪出的光源的相干光線通過準直光學鏡組121被輸入到前光源模組。可以選擇性的在SLM 201之後設置一個光束組合器301。經過SLM 201調制的波前通過放大光學鏡組811到達光線偏轉裝置401。光線偏轉裝置401會按時間順序連續產生不同的角頻譜,這些角頻譜經由輸入光學鏡組1111(最好是體光柵)被輸入到帶有扁平角的薄的波導管1101,所有輸入角度的光線就會經由在波導管1101的兩個彼此平行的交界面上的全反射,朝波導管1101的方向傳播。波導管1101不必是完全平坦的,而是也可以是具有彎曲的表面。透過多個各自對應一個不同的角範圍的反射體光柵1121-1123,光線偏轉裝置401產生的角頻譜的光線會朝觀察者眼睛1101的方向從波導管1101輸出。這樣觀察者眼睛1101就可以看到被編碼到SLM 201內的全像資訊的重建。這個重建是按時間順序由SLM 201的組合放大虛像所產生。

根據這個實施例,光線偏轉裝置401只能具有一個光線偏轉器,而且最好是一個光柵常變可改變的繞射式可控制液晶光柵。反射式輸出光柵1121-1123構成光線偏轉裝置401的第二層。也可以將反射式輸出光柵1121-1123製作成介電層堆的形式。反射式輸出光柵1121-1123的作用是在波導管1101的一個特定的位置將一個特定的入射角轉換成一個特定的反射角,然後再轉換成一個特定的輸出角。

也可以將輸入光柵1111製作成反射式的光柵,並設置在薄的波導管1101背對光線偏轉裝置401的那一個面上。同樣的,也可以將輸出光柵1121-1123製作成透射式可控制光柵,並設置在薄的波導管1101面對眼睛的那一個面上。

也可以將光線偏轉裝置401設置在成像光鏡組811及SLM 201,但是如第8圖所示,這樣做會增加成像光學鏡組的構造尺寸。如果在這個位置將光線偏轉裝置401製作成雙層式結構,這樣光線偏轉裝置401就可以直接產生時間及空間移位的多重成像,但是這樣做會需要較大的輸入光柵1111。如果在這個位置將光線偏轉裝置401製作成單層結構,則和第8圖的情況不同,此時SLM段落的虛像不會位於一個平面上,而是彼此會夾一個角度。這在編碼時必須被納入考慮。

在第13圖的配置中,也可以在SLM 201,202的後面分別設置一個光束組合器,以產生複數全像圖值。

同樣的,此實施例也可以和第12圖一樣使用OASLM,以產生全像重建。如果是透過可電學快速定址SLM寫入OASLM,或是如第12圖所示是為了產生複數全像圖值,則多重成像也可以分兩階段進行,其中一個階段是透過位於可電學定址SLM及OASM之間的光線偏轉裝置進行,另一個階段是透過位於OASLM之後的光線偏轉裝置進行。在這種情況下,OASLM也必須具有很高的開關頻率,也就是說,必須能夠產生很高的圖像產生率。

根據顯示裝置的一種特別有利的變化方式,光線偏轉裝置(400,401,402,450)能夠在一扁平波導管內至少一維產生一個空間光調制器(200,201,205,206,207,250)的分段組合多重成像。

以下將配合以示意方式繪製的圖式說明一系列對固定及/或可攜式顯示器特別有利的變化方式,其中觀察者的眼睛與目鏡非常接近。由於對位置關係的要求不是很高,因此可以使用至少部分未折疊的光程及多階段成像系統。尤其是在放大倍數很大時,可以更好的修正像差。

第14圖是以示意方式顯示多階段成像系統的一個光線偏轉裝置400。

一個光調制單元260(例如在第6圖已說明過的光調制單元)位於一個望遠鏡成像系統之前,該望遠鏡成像系統具有兩個透鏡系統510,520,且在其共同焦平面上設有一個光圈590。望遠鏡成像系統將光調制單元260的SLM成像到如第8圖之具有放大光學鏡組800且位於觀察者眼睛之前的成像系統的物平面。

視所需要的總放大率及SLM的光柵間距而定,可以將第一階段的成像以放大、縮小、或1:1的比例成像。也可以用光學變形的方式成像。透過光線偏轉裝置400使被多重成像在配備放大光學鏡組800之成像系統的物平面上,形成組合的中間像270。例如,光線偏轉裝置400的第一光線偏轉器410是一個光柵間距可變化的可控制液晶光柵,第二光線偏轉器420是一個多工體光柵,每一個子成像及成像波長都有一個自身的體光柵被寫入這個多工體光柵。為每一個需要的成像及波長選擇體光柵是透過第一光線偏轉器410當前的繞射角及彩色多工光調制單元260當前的波長進行。光線偏轉裝置400也可以執行或支援光學變形成像。

如果光線調制單元260具有全像光學元件(HOE)(最好是構成體光柵),則除了準直照明外,還可以搭配準直單元對一維全像編碼所需的平面波頻譜進行調整。此外,波前彎曲(例如球面波)也可以作為照明波場,這樣做除了提高透過光學系統傳播的光強度外,也開啟了修正系統像差的可能性。例如可以透過照明波前修正波陣面法線在SLM上的局部偏差。這樣就可以修正組合的調制器像的球面像差及/或有錯誤的亮度分佈。

光線偏轉裝置400還可以具有其他的修正功能及波前形成功能。可以直接在所使用的光學結構內透過全像圖曝光製造所需的體光柵,其中所要的初始分佈是作為曝光的參考波。這種原位曝光可以將所有出現的像差都納入考慮。如果模擬所使用的光學設計程序得知有像差存在,則可以從這些像差及額定值計算出修正用的電腦生成全像圖(CGH)。這些電腦生成全像圖可以應用於體光柵的接收,或是直接用在光程上。

相較於第14圖,第15圖是以示意方式顯示一個在二階段成系統中設置在觀察者眼睛1000及放大光學鏡組810之間的光線偏轉裝置。第二成像階段的放大光學鏡組相當於第7圖的放大光學鏡組。但是在本實施例中,並不是SLM被放大光學鏡組直接放大成像,而是中間像280。光調制單元260之SLM的中間像280是由具有兩個透鏡系統510,520的望遠鏡成像系統所產生。同樣的,一種有利的方式是在透鏡系統510,520的共同焦平面上設置一個光圈590,以抑制SLM光柵產生的較高的繞射級。本實施例的第一階段相當於第14圖的第一階段。

和第7圖與第8圖的比較一樣,第15圖之第二階段的數值孔徑也可以比第14圖縮小,這是因為光線偏轉裝置是設置在個透鏡系統之後。

例如,也可以透過第一透鏡系統510及第二透鏡系統520產生光調制單元260之SLM在中間像280上的第一個成像,其中第一透鏡系統510被修正到”無限遠”,第二透鏡系統520會和現代化顯微鏡的鏡筒透鏡一樣產生圖像。可以將過濾觀察視窗用的孔徑光圈590設置在第一透鏡系統510的後焦平面上,以使其位於SLM的第一傅利葉平面上。

由於3D物件的顯示是以全像方式進行,因此可以在物點編碼時將像差(例如像場彎曲)納入考慮,以便能夠顯現平坦且不失真的平面。

同樣的,可以透過3D場景編碼或以其他的修正元件(未在圖中繪出)修正SLM的多重成像的每一個多重段落可能出現的不同的像差。例如,這些修正元件除了相位及局部出現的角度改變外,也可以修正振幅。例如可以將一個這樣的修正元件設置在中間像280的附近。例如這個修正元件可以是一個同時具有適當的修正相位分佈及適當的修正振幅分佈的相位修正板。

除了能夠使用可控制繞射光柵,或是將可控制繞射光柵與多工體光柵搭配使用外,也可以在光線偏轉裝置400內使用及/或搭配其他適當的光偏轉器。

具有楔形角的可控制稜鏡,例如亦可用於圖像穩定的稜鏡,很適合作為光線偏轉元件。這種稜鏡可以應用於觀察視窗追蹤眼睛的移動,但前提是觀察視窗的尺寸很小,以使觀察者能夠舒適的觀睹3D重建。

第16圖是以示意方式顯示一個這樣的裝置,其具有位於光線偏轉裝置400內的第一及第二可控制光線偏轉器410,420,其中光線偏轉器410,420都是具有可變化楔形角的可控制稜鏡。光線偏轉器410,420位於一個包括兩個透鏡系統810,820的望遠鏡成像系統及一個如第8圖之具有放大光學鏡組800的成像系統之間。多重成像所形成的是中間像270。光線偏轉器410,420可以具有一個光圈590。如第16圖所示,按時間順序分段張拉觀察空間的工作可以完全由折射元件進行。延長光學系統的構造長度可以縮小可變化稜鏡的可控制楔形角範圍。

這種光線偏轉器的功能可以滿足光程只有傾斜但沒有移位的裝置的要求。

其他可使用的光線偏轉器還包括可控制的可移動透鏡。這種透鏡可以亦可作為繞射光學鏡組,以便在移動或轉動時能夠達到低慣性矩及高加速度的效果。一種有利的方式是將SLM縮小成像在可移動繞射光學鏡組上,以進一步縮小構造尺寸及其重量。

也可以使用具有翻轉鏡及/或擺動鏡的裝置,以及使用具有旋轉多邊形鏡的裝置,以便利用同步化照明產生SLM的多重成像。

第17圖顯示透過兩個可控制偏轉鏡411,412將光束偏移的原理,其中偏轉鏡411,421可以用很快的速度同方向偏轉。

第18圖顯示將利用快速可控制擺動鏡414使光束快速移位的裝置設置在多重成像用的光線偏轉裝置中。

也可以將第17圖及第18圖的裝置組合在一起,以便能夠以可控制的方式將光程再翻轉一次。例如這樣就可以實現額外的追蹤。

第19圖是以示意方式顯示在一個二階段成像系統中使用具有兩個光線偏轉器410,420的光線偏轉裝置400的實施例,其中光線偏轉器410,420都是可控制且可轉動的轉鏡。和第17圖的實施例一樣,光線偏轉器410,420也是同方向轉動,但是光線方向和第17圖相反。和第16圖一樣,為了產生光調制單元260之SLM的多重成像,光線偏轉器410,420被設置在一個包括兩個透鏡系統510,520的望遠鏡成像系統及一個如第8圖之具有放大光學鏡組800的成像系統之間。同樣的,亦可選擇性的設置一個光圈590。多重成像所形成的是中間像270。使用這兩個可控制光線偏轉器410,420還可以使光程折疊,以縮短構造長度。

如果無需折疊光程,則也可以透過一個可控制且可旋轉的平面平行板使光束偏移產生多重成像。這個平面平行板最好具有消色差的作用。光束偏移的程度是由轉動角度、折射率及板厚等三個因素決定。如果以一個同樣具有消色差作用的透鏡取代平面平行板,則另外可以在一或二個方向實現場透鏡功能。必要時這種裝置也很適合用於使觀察視窗追蹤眼睛的移動,因為該處所需的調節速度較小。

第20圖是以示意方式顯示在一個二階段成像系統中使用具有兩個光線偏轉器410,420的光線偏轉裝置400的實施例,其中用於多重成像的光線偏轉器410,420是可控制偏轉光柵及多重反射光柵。相較於第14圖的透射光柵,使用反射光柵更容易額外改變光束方向。

在第19圖及第20圖中,光線偏轉裝置400面對觀察者眼睛的光線偏轉器402也可以是半透明或可控制半透明的,以實現擴增實境(AR)的應用。此外,光線偏轉器402也可以包含一個起偏振器,例如線柵起偏器(WGP)。一種有利的方式是,起偏振器的取向能夠阻止在凹坑、玻璃面及其他真實物件上被直接反射的光線穿過,以免這些光線在觀察者眼睛內造成干擾性的光反射。但是具有擴增實境(AR)特性之全像顯示器的偏振光線則會被光線偏轉器420朝觀察者眼睛的方向反射,因為這些光線承載重建3D場景所需的經光調制單元260編碼的全像資訊。

第21圖是以示意方式顯示透過兩個透射體光柵191,192產生SLM 200或SLM 270之多重組合圖像的光學變形放大的原理,其中各光束之間的路徑差會被補償。透過波長的補償,可以使光源110經準直光學鏡組120準直的光線保持很小的相干長度。

這樣的裝置可以被整合到本發明之裝置的光程中。如第21圖所示,為產生光學變形延伸,並非一定要將這個裝置設置在緊靠SLM的位置,而是也可以設置在光程上一個具有受到足夠限制之平面波頻譜的範圍。使用體光柵時,此處所謂的足夠是指平面波頻譜被以很高的繞射效率繞射。透射體光柵愈薄,透射體光柵能夠利用的角度範圍就愈大。一般而言,反射體光柵的角度選擇性大於透射體光柵。

也可以透過兩個反射體光柵或一個反射體光柵及一個透射體光柵的組合實現補償路徑長度差的原理。

第21圖的裝置可以將光學變形擴展的功能及在光線偏轉器內使光束及/或波前偏轉的功能結合在一起,以達到程光的平面平行折疊,以及減少元件的使用數量。

透過光學設計的優化,可以減少主動元件的數量。

第22圖以示意方式顯示在具有兩個透鏡系統510,520的遠心成像系統的共同焦平面上設置一個具有可控制偏轉光柵的光線偏轉裝置400。一種有利的方式是在兩個透鏡系統510,520的共同焦平面上設置一個光圈590,以濾除不需要的繞射級,也就是光調制單元260之SLM的光柵產生的繞射級。透過遠心成像系統,以及將光線偏轉裝置400設置在兩個透鏡系統510,520的共同焦平面上,只需透過光線偏轉裝置400執行一個適當的可控制偏轉,即可產生SLM的一個組合中間像270。也可以透過光線偏轉裝置400的其他的光線偏轉器(例如可控制的稜鏡)執行這個偏轉。偏轉光程用的光線偏轉器的位置也可以偏離焦平面的位置,以實現額外的場透鏡功能。因此而出現的調制器像的重疊可以在全像圖編碼時被納入考慮。

具有放大光學鏡組800的成像系統將組合中間像270進一步虛擬放大,因此觀察者眼睛可以在一個虛擬顯示的平面(例如距離1m至2m的位置)看到這個中間像。

這個原理也可以應用在有二個以上成像階段的系統。

如果能夠舒適的觀看3D重建的觀察範圍太小,可以如第8圖所示選擇性的將一個追蹤裝置設置在緊靠眼睛的位置。

如果這個追蹤裝置是一個引進角度的元件,則會使組合虛擬調制器像產生位移,因此觀察範圍也會產生位移。因此如果追蹤裝置的工作方式是由光線入射角決定,則追蹤裝置應與光線偏轉裝置400同步化,以獲得無間隙的組合的調制器像。組合的調制器像的位移可以在重建3D場景的全像圖編厑時被納入考慮。

如果是使用一維編碼,則可以在光圈590的平面上設置一個漫射透鏡片,其作用是將在觀察範圍內的平面平行頻譜向不相干方向張拉,及/或放大到必要的值。也就是說,觀察視窗的這個平面平行頻譜不必在光調制單元260的SLM被照亮時就已經達到完全的尺寸。

光線偏轉裝置400還可以具有額外的修正功能,以縮小像差,也可以另外具有柱面透鏡功能,以執行成像比例的光學變形變化。

可以利用一個可控制光學偏轉器按照時間順序連續張拉觀察範圍,但前提是要將其設置在緊鄰觀察者眼睛之入射瞳孔的位置。這個光線偏轉器與觀察者眼睛之入射瞳孔的距離愈大,觀察視窗的可利用有效範圍就愈小。如果觀視窗夠大,例如20mm,則可以將一個引入角度用的可控制液晶光柵設置在距離觀察者眼睛10mm的位置,以獲得一個組合的調制器像。具體的值可以從到觀察者眼睛的距離、在觀察者眼睛之入射瞳孔的平面上的未翻轉的觀察視窗的尺寸、所希望的觀察範圍、以及可選擇性追蹤觀察者眼睛之入射瞳孔上的觀察視窗的精密度計算出來。

第23圖顯示的就是這種情況。和第7圖不一樣的是,此處光線偏轉裝置400移動到非常靠近觀察者眼睛1000的位置,因此無需可控制的光束移位,而是只需一個可控制的光束偏轉,就可以使觀察者眼睛1000能夠在一個多重組合觀察空間內觀察到一個在光調制單元260內編碼的3D場景。光調制單元260可透過光線偏轉裝置450控制偏轉的光線可透過放大光學鏡組810在所希望的觀察距離產生虛擬組合的調制器像。可選擇性配備的光圈850的作用是將SLM的較高的繞射級過慮掉。光圈850構成觀察視窗的邊界,並使在較高繞射級可能出現的高強度雷射遠離眼睛周圍。

也可以將光線偏轉裝置850的光線偏轉器設置在一個在一或二個空間方向彎曲的面上,以便將觀察範圍在一或二個方向多重組合。與第23圖比較的第24顯示的就是這種情況。

組合彎曲的虛擬調制器面相對於平面組合圖像先後出現的位置偏差可以在進行3D物件的全像編碼時被修正,因此該3d物件可以在虛擬像空間被正確且不失真的顯現。

只要經過適當的設計,光線偏轉器也可以執行虛擬組合SLM的功能及追蹤觀察者眼睛的入射瞳孔。但這要在光線偏轉器的速度及可利用的角範圍允許的組合調制器範圍大於SLM的速度允許的組合調制器範圍時,這樣做才有意義。此時整個組合的調制器像會在可利用的角度範圍內移位,這樣要重建之3D場景的要顯現的部分就可以被適配。

觀察視窗的純時間連續組合對所使用之空間光調制器的圖像重復顯示速度有很高的要求。

基於以下的原因,像空間的組合是很有利的。在相干方向大約需要725個調制單元/°,以產生15mm的觀察視窗,在觀察者及顯示器的位置均固定的情況下,這個觀察視窗可使觀察者追蹤成為無需執行的動作。在執行觀察者追蹤時,可以將這個值(15mm)縮小到三分之一,以照亮觀察者5mm大的入射瞳孔。但是這在相干方向仍然需要觀察範圍的大約250個調制單元/°。以全HD解析度作比較,在二維或立體顯示的情沿下,只需觀察範圍的60個調制單元/°。現今高解析度空間光調制器的調制器像點數並不足以張拉出一個大的全像觀察範圍。透過時間連續多重組合,尤其是在相干方向的時間連續多重組合,可以產生所希望的大的觀察範圍。但是時間連續的工作方式也會提高對調制器的速度的要求,尤其是在需要時間連續顯示紅黃藍三原色的情況下。

為了降低串擾(也就是相鄰物點的干涉,也可能以班點的形式顯示),可以將相干圖像內容以稀釋的形式連續顯示,也就是將多個稀釋的物點雲一個接一個顯示。但是這同樣會提高對所使用之空間光調制器的圖像重復顯示速度的要求。

尤其是對固定式顯示器而言,由於對構造體積及重量的要求比較不高,因此一種有利的方式是同時使用多個空間光調制器。例如這樣就可以同時產生紅黃藍三原色,然後一起或個別透過時間多工操作產生一個組合觀察空間。

另外一種可能性是將空間及時間多工操作組合在一起。這樣就可以組合成一個大的觀察範圍,例如在一個空間方向透過多個調制器的空間多工操作,以及在另外一個空間方向透過這些空間光調制器的時間多工操作。

可以利用已知的器材將具有不同顏色的3個空間光調制器的光程組合在一起,例如二向色性反射鏡、稜鏡裝置、偏振光學鏡組、或繞射光線偏轉器。

第25圖是以示意方式顯示一個顏色多工操作裝置,其作用是在一個遠心成像系統的共同焦平面上設置一個具有可控制偏轉光柵(作為可控制光調制器)的光線偏轉裝置400的情況下,在二階段成像系統內產生不同頻譜分佈之3個光調制單元261,262,263的3個空間光調制器的多重成像,其中該二階段成像系統(具有多工操作裝置)類似於第22圖的二階段成像系統(但是沒有多工操作裝置)。在本實施例中,光調制單元261,262,263的3個調制器像的光束組合是在遠必成像系統的共同中間像平面上進行,其中遠心成像系統是由一個分別配屬於光調制單元261,262,263的物側獨立透鏡系統511,512,513及一個位於光線偏轉裝置400附近的像側透鏡系統520所構成。

透鏡組520是展開在一個較大的數值孔徑上。在本實施例中,藍光光調制單元262位於直接光程上。光線偏轉裝置400被光調制單元261,263的黃光及紅光傾斜照亮。在紅光光程上另外設有一個反射體光柵990,其作用是將光程折疊。在這個裝置中,體光柵990的角度選擇性決定了紅光SL盼尺寸,及/或在決定SLM的尺寸時,也決定了位於SLM正後方第一個透鏡系統513的有效焦距。

另外一種可能的方式是在光線偏轉裝置400之前設置一個彩色分束立方體(X-Cube)。光調制單元261,262,263照亮各單色SLM的光源與光線偏轉裝置400同步。在這種裝置中,如果光線偏轉裝置400不具備消色差功能,則其切換速度至少要達到3個SLM的3倍。如果所有的相關資訊都已被寫入SLM,則最好是每隔三分之一個圖像傳送週期使一個SLM移位,以及每個時間移位僅以很短的光脈衝照亮。例如,可控制液晶光柵可以用1.8kHz運轉,以及相位SLM(例如LCOS)可以用600Hz運轉。

另外一種可能的方式是先在組合中間像270的平面上產生多重成像,然後再進行紅黃藍光程的折疊。為此紅黃藍光程各自都具有一個光線偏轉裝置,因此對這3個光線偏轉裝置的切換速度的要求比較低。

第26圖顯示一個具有垂直多重成像及搭配如第13圖顯示的很薄的波導管1100的HMD。在這個實施例中,反射式SLM 200是被平面前光源模組150照亮。來自一個未在圖中繪出之光源的相干光線經過一個未在圖中繪出的準直光學鏡組輸入平面前光源模組150。可以選擇性的在SLM 200之後設置一個光束組合器300,例如其可將SLM 200之相鄰調制單元的兩個相位值組合在一起,以用於二相編碼。SLM 200、前光源模組150、以及光束組合器300都是光調制單元260的一部分,其中光調制單元260是從一個未在圖中繪出的控制單元獲得3D場景全像編碼所需的數據。一種有利的方式是將光調制單元260設置在放大光學鏡組800的物側焦平面內。經光調制單元260調制的波前會通過放大光學鏡組800到達光線偏轉裝置400的第一個光線偏轉器410。可控制光線偏轉器410最好是一種可控制液晶光柵,其可透過接通至電極結構的電壓輪廓產生一可變的繞射偏轉光柵。這個可變的繞射偏轉光柵按時間順續在垂直方向將SLM 200的光線連續偏轉到至少兩同的垂直角度頻譜。例如,第26圖的實施例是透過4個不同的角度頻譜產生4個不同的垂直方向。第二個光線偏轉器420將各角度頻譜的光線偏轉,以便以時間多工操作在垂直方向形成相互移位的段落。光線偏轉裝置400的光線偏轉器420也可以是一種含有可控制液晶光柵的光線偏轉器。光線偏轉裝置400的光線偏轉器420也可以含有多工體光柵,其作用是將每一個不同的輸入角度頻譜轉換成對應的輸出角度頻譜。對一種有利的彩色HMD而言,這個多工體光柵還可以用於分波多工,其中彩色HMD也可以具有多個連接的體光柵及/或多工體光柵。兩個光線偏轉器410,420之間的距離是由光線偏轉器410的最大偏轉角及要產生之垂直段落的數量決定。按時間順序連續產生的垂直段落會經由輸入光學鏡組1110(最好含有體光柵)被輸入到帶有扁平角的薄的波導管1100,所有輸入角度的光線都會經由在波導管1100的兩個彼此平行的交界面上的全反射,朝波導管1100的方向傳播。第26圖顯示輸入波導管1100的一個側面交界面。當然此處亦可透過輸入光學鏡組1110輸入波導管1100面對光線偏轉裝置400的那一個面,例如透射線體光柵輸入,或是輸入波導管1100背對光線偏轉裝置400的那一個面,例如反射線體光柵輸入。一種有利的方式是,輸入光學鏡組1110包含至少一個多工體光柵。和第13圖的情況類似,透過輸入光學鏡組1110將光線輸入波導管1100的作業亦可以多個水平角度頻譜(例如5個)的形式進行,其中這些水平角度頻譜將光調制單元260的共同水平調制單元範圍張拉起來。同樣的,在第26圖的實施例中,波導管1100也不必是完全平坦的,而是也可以是具有彎曲的表面及/或相互夾一個小的楔形角。也可以將第二個光線偏轉器420及輸入光學鏡組1110合併到一個共同的元件中,以進行光線偏轉及光線輸入。光線通過輸出光學鏡組1130從平坦的波導管1100朝觀察者眼睛1000的方向輸出。因而形成一個未在圖中繪出的觀察視窗,觀察者眼睛的瞳孔即位於這個觀察視窗內。在這個觀察視窗內,SLM 200的放大多重組合虛像230在垂直段落I-IV可以在觀察空間內被看見。為了減少循視可看見的閃光,可以改變及優化段落I-IV的時間順序。這個時間順序也可以是隨機分佈的順序。應選擇對閃光造成最大抑制的隨機分佈。因此顯示同一個段落的時間間隔不能過大。

此外,多個組合虛像230到觀察者眼睛1000的可視距離也與SLM 200之有效面積的大小及放大光鏡組800的放大倍數有關。例如這個距離是2m。在光程上的第一放大光學鏡組800之後,還可以在其他元件內額外執行透鏡折射效應及/或形成波場的功能,例如在第一個可控制光線偏轉器410、第二個可控制光線偏轉器420、輸入光學鏡組1110、薄的波導管1100、輸出光學鏡組1130內執行。

觀察視窗及SLM 200的多重組合虛像230定義的觀察範圍就是透過在光調制單元260內編碼之全像振幅分佈及/或相位分佈進行之一維場景的物點重建的觀察範圍。當然也可以在與觀察者眼睛相距任意距離的位置以全像方式產生二維場景。如果是使用具有振幅調制器的器材,例如以白克哈特(Burckhardt)編碼進行全像編碼的器材,則也可以在多重組合虛像230的平面上對二維場景直接(也就是並非全像)編碼。

如果SLM 200的水平調制範圍從輸入光學鏡組1110分裂成不同的水平輸入角度範圍,則應將輸出光學鏡組1130設計成包含多個水平段落A-E,這些水平段落分別將一個水平輸入角度範圍轉換成一個水平輸出角度範圍,這樣就會形成SLM 200的一個共同劃分成水平段落a-e的多重組合虛像230。這些水平範圍同時輸出垂直段落I-IV的光線。水平段落a-e及垂直段落I-IV都是以無間隙的方式彼此鄰接,或是彼此略為重疊,其中段落的重疊可以在全像圖值編碼以產生要重建的物點時被納入考慮。

為了測定組合放大虛像260的各個水平段落a-e及/或垂直段落I-IV與其理想位置的偏差,可以在薄的波導管1100上設置對位置敏感的傳感器1140。這些傳感器最好是設置在波導管1100的邊緣區域,也就是位於觀察者之可視範圍之外的區域。為了照亮對位置敏感的傳感器1140,光調制器200可以在邊緣區域具有額外的調制單元,其作用是用於修正值的測定,而不是用於全像圖資訊的編碼。在顯示器運轉期間,可以持續測定修正值,這樣即使是溫度改變造成的漂移現象也可以獲得補償。

在光線偏轉器410,420造成的光線偏轉方向上也可以產生一個較大的最大偏轉角,因此無需在光調制器200上設置透明傳感器及額外的調制單元,就可以進行這個修正。例如,這個額外的區域只有在初始化階段接通顯示器時會被用來測定修正值。這個額外的區域通常並不在可視範圍內,而是位於視場光圈的範圍,例如眼鏡框的範圍。對位置敏感的傳感器1140也可以是透明的,且位於觀察者眼睛的可視範圍內,因此幾乎不會被看見,而且也不需要在調制器上有任何額外的調制單元。傳感器1140造成的光吸收可以在全像圖值編碼時被納入考慮。接通顯示器時,可以透過滻生適當的試驗測定修正值。

光接收器的一維或二維的場,例如光電二極體或光電電晶體及/或CCD傳感器或CMOS傳感器等均可作為對位置敏感的傳感器1140。例如透過這些傳感器可以進行簡單的邊緣偵測。一種有利的方式是使用對位置敏感的光接收器,這種光接收器可以經過一個側面電極結構測定一或多個光分佈的重心。也可以直接將對位置敏感的傳感器1140設置在扁平波導管1100上,例如利用薄層技術即可實現。

透過所使用的液晶光柵可以主動補償垂直失調。為了修正水平失調,可以設置第二個交叉的可控制液晶光柵。

輸出光學鏡組1130也可以是一種透射體光柵,且位於薄的波導管1100面對觀察者眼睛1000的那一個面上。

解析度是由放大光學鏡組800的數值孔徑決定。所選擇的解析度至少要使SLM的另外一個繞射級在放大光學鏡組800(通常是主要的放大光學鏡組)會繼續傳播。

設置在放大光學鏡組800之後的光學元件可以具有較小的角度接受性。例如體光柵就是這種情況。出現在放大光學鏡組800之後的平面波頻譜是由設置在放大光學鏡組800之後的光學元件的角度接受性或角度選擇性預先規定。

出現在放大光學鏡組800之後的平面波頻譜決定了可設置在放大光學鏡組800之前的光調制單元260的尺寸,以及設置在放大光學鏡組800之後的第一個可控制光線偏轉器410所需的尺寸。

如果光學鏡組800的焦距變大,所使用之SLM200及/或光調制單元260的尺寸就會跟著變大。

放大光學鏡組800的數值孔徑通常應大於或等於解析要顯示之3D場景的所有編碼物點所需的數值孔徑。

可控制光線偏轉器410,420也可以彼此有移位,在這種情況下,如果有效的較高繞射級的繞射效應過小,就可以將光線偏轉器410,420的第0繞射級過濾掉,因此在選擇光線偏轉器410,420時,仍有干擾性強度成分留在第0繞射級內。

一種有利的作法是以光學變形的方式產生光調制單元260的組合放大虛像230。例如可以透過放大光學鏡組800及/或輸入光學鏡組1110實現這種作法。但是也可在光調制單元260及扁平波導管1100之間設置額外的元件,例如柱面透鏡、光柵或體光柵,以達到相同的目的。例如在第二個可控制光線偏轉器之後設置一個柱面透鏡。

透過輸入光學鏡組1110及輸出光學鏡組1130對扁平波導管1100進行的輸入及輸出工作也可以用不分段的方式進行,這需要具備一個連續輸出元件,以便將當前在定位置的角度朝特定方向輸出。

為此可具有透射體光柵或反射體光柵,以透過透射體光柵或反射體光柵的厚度優化角度選擇性。反射體光柵的角度接受性通常大於透射體光柵。提高透射體光柵的厚度即可縮小其角度接受性。改變調制強度,也就是改變折射率,就可以影響反射體光柵的角度接受性。

一種有利的作法是抑制角度選擇性的旁瓣最大值。如果是使用頻譜較寬的波長範圍,例如一般2D-HMD或立體3D-HMD的情況(例如使用OLED),則抑制角度選擇性及/或波長選擇性的旁瓣最大值是有利的作法。

在透過兩個彼此相干的平面波被曝光到均勻的記錄介質的透射體光柵內,若忽略光吸收,則在記錄介質內的折射率調制包絡線是一個矩形函數。在透射體光柵及反射體光柵內,也可以透過製造時曝光用的波前所選擇的相干性折射率調制包絡線,例如成為高斯正常分佈、漢明窗(Hamming window)、或開氏貝索加權函數(Kaiser Bessel window)的形式。這樣做可以大幅降低角度選擇性及波長選擇性的旁瓣最大值。如果不同的重建幾何的選擇性及/或波長選擇性彼此非常靠近,則這種作法是很有利的。因為這樣可以避免在觀察範圍因選擇性及波長選擇性的旁瓣最大值形成的重象。

根據本發明之顯示裝置的一種非常有利的實施方式,在可控制光線偏轉裝置內設有體光柵及/或多工體光柵,其中透過製造時曝光用的波前所選擇的相干性可以調整該體光柵及/或多工體光柵的折射率調制包絡線。

除了以二維方式工作的空間光調制器(調制單元位於二維調制單元矩陣中)外,也可以使用一維光調制器,以便在HMD或目鏡內達到高解析度的大型觀察範圍。這種一維及/或線性光調制器只有一列或少數幾列調制器單元。由於不需要矩陣形控制,因此能夠以較低的成本製造出在列的方向具有高解析度的一維及/或線性光調制器。此外,由於控制電子元件及調制單元之間的線管線長度很短,因此能夠達到很高的光調制切換速度。適常的線性SLM的一個例子是包含可控制繞射光柵之調制單元的一維裝置,例如光柵光閥(GLV)或光柵機電系統(GEMS)。這些調制器是以反射方式工作,而且能夠對照射光線進行相位調制。

為了獲得一個二維像空間,這些調制器會按照時間順序在垂直於調制單元之線性伸展的方向上被多重相鄰成像。例如前面介紹過的產生SLM的組合放大虛像的裝置就很適合,但前提是所使用的可控制光線偏轉裝置能夠在可預先給定的角度範圍內形成連續偏轉角,其中該可預先給定的角度範圍決定觀察範圍的大小。一維SLM特別適用於在調制器列的方向(也就是垂直於掃描方向)進行的全像圖值一維編碼。

彩色重建3D場景的顯示器的SLM會類似於二維SLM按照時間順序被各顏色成份(紅,黃,藍)照亮,或是每一個顏色成份都會被自射的SLM調制,其中光程的構造使其能夠形成組合放大虛像,如第25圖所示。

第27a圖顯示一維SLM透過可控制生線偏轉器410進行掃描的情況。這個實施例的光學結構與第22圖非常類似。但是在本實施例中,光調制單元260包含至少一個線性SLM。線性SLM的掃描是在一個遠心透鏡系統的中央焦平面的範圍透過光線偏轉器410進行。光線偏轉器260最好是包含一個可控制繞射液晶光柵,而且可以透過接通至電極結構的電壓輪廓在一給定的範圍內以微調方式改變該液晶光柵的光柵常數。最大偏轉角是由可能的最小晶格常數決定,晶格常數是由電極結構的精細度決定。遠心透鏡系統包含第一透鏡系統510及第二透鏡系統520,其中第一透鏡系統是作為投影系統將來自光調制單元260的光線平行化,第二透鏡系統的作用是作為一種平場聚焦透鏡。光線偏轉器410產生的偏轉角被透鏡系統520轉換成移位,因而形成一個組合中間像270,此中間條270是作為接下來的放大成像系統的虛擬二維SLM。這種成像系統已經在第8圖說明過。遠心成像系統的共同焦平面也可以包含一個光圈590。較高的繞射級只會在調制單元的方向出現。

第27b圖顯示的光調制單元260具有至少一個線性SLM 205,其中光調制單元260可應用於第27a圖的顯示裝置。線性SLM 205被至少一個光源110(例如雷射光源)透過準直光學鏡組120及作為前光源模組的分束立方體130充分相干照亮。所謂充分相干的意思是,光源110的準直光線的空間相干大到至少能夠將SLM 205的一個子區域照亮,在這個子區域內會全像形成一個要重建的物點,因此這個子區域就是子全像圖的範圍。如果是使用二相編碼,則一種有利的作法是使線性SLM 205具有一個光束組合器,其作用是將使SLM 205(作為相位調制器)的兩個相鄰調制單元的調制光線組合成一個複數值。這兩個調制單元不必一定是緊鄰在一起的調制單元。這兩個調制單元之間的距離是由不同偏振(也就是正交偏振)的光線在延遲板330上被相互移位的距離決定。為此這兩個調制單元的光線會在一個非結構化的延遲板320上被局部不同偏振(也就是正交偏振)。非結構化的線性偏振器310會從不同偏振(也就是正交偏振)的兩個相互移位的光線部分選出共同的偏振部分。正交偏振包括線性垂直(TE)及線性平行(TM)偏振光線,以及左循環及右循環偏振光線。

一種特別有利的情況是並非兩個相鄰像素在SLM 205的線性伸展方向上組合,而是線性SLM 205具有調制單元的至少兩個相鄰列。這兩個相鄰列也可以彼此隔一較大的距離,例如在二者對之間還可以設置一個控制電子元件。結構化的延遲板320僅由一種雙折射材料的條帶構成,這種雙折射材料在雙程光程中產生一個造成入射偏振的正交偏振。例如,為了提高SLM之相鄰條帶偏振正交化的消色差性,可以在相鄰且待組合的反射式SLM條帶上方設置一個+λ/4及一個-λ/4延遲條帶。

光程在兩個偏振部分的延遲板330內的相互移位相當於兩個調制單元列之間的距離。如果SLM 205在時間多工運轉中被不同的色光部分照亮,則偏振改變元件310,320,330應具有消色差性。這些偏振改變元件也可以具有與波長同步且會隨偏振變化的可控制相位延遲。例如具有可控制雙折射的液晶層就很適合。

第27c圖顯示可應用在第27a圖的光調制單元260的另外一個實施例。複數值調制值是由線性SLM 206,207之相應調制單元在相位中被調制的光線的重疊透過分束立方體130而產生。為此線性SLM 206,207是彼此平行被分別定位在分束立方體130的一個面(例如正交面)之前。兩個SLM 206,207共同被光源110及準直光學鏡組120透過分束立方體130充分相干照亮。準直光學鏡組120位於分束立方體130的另外一個面之前。兩個SLM 206,207的組合光線經由分束立方體130的第4個面輸出。

第27a圖的可控制光線偏轉器410還可以具有其他的修正功能及/或柱面透鏡功能,其中柱面透鏡功能可以執行成像比例的光學變形改變。

根據一種可應用於目鏡的變化方式,至少有一個線性SLM以機構方式被掃描,以產生SLM的組合放大虛像。例如可以用電流計鏡(可以製作成微機械元件)及/或多邊形鏡進行掃描。第28圖以示意方式顯示的變化方式具有多邊形鏡415,其作用是掃描一個遠心成像系統之共同焦平面上的光調制單元260的調制光線,如第27a-c圖所示,該遠心成像系統具有兩個透鏡系統510,520。包含光調制單元260在內的光程相當於第27a-c圖的情況,因此不在此處重複說明。多邊形鏡415是作為可控制光線偏轉器,其作用是在一掃描條帶內,以垂直於線性光調制單元260之線性伸展的方向掃描線性光調制單元260,因而在中間像270的平面上產生一個二維的虛擬SLM。可以將一個未在圖中繪出的光線偏轉裝置設置在這個平面上,其作用是將光調制單元260的調制光線垂直於多邊形鏡415的移動方向偏轉,以透過一個圖中未繪出的成像系統產生中間像270的一個組合放大虛像,其中中間像是由至少兩個重疊的放大掃描條帶構成。一個未在圖中繪出的系統控制器會控制光線偏轉裝置,使其與多邊形鏡415及光調制單元260同步。

為了使光程達到所需的傾斜,可以將這種光線偏轉裝置設置在透鏡系統510及多邊形鏡415之間,或是設置在多邊形鏡415及透鏡系統520之間。例如可以使用晶格常數可調整的可開關及/或可控制液晶光柵,或是可開關液晶偏振光柵及/或可開關體光柵。

另外一種方式是透過設置在透鏡系統510及組合中間像270的平面之間的光線偏轉裝置使光程達到必要的傾斜。例如可以將兩個可控制光線偏轉器(例如兩個可控制液晶光柵或兩個可開關體光柵元件)串接在一起,這樣就可以透過兩個引進一角度的元件使掃描條帶產生必要的橫向位移,以便獲得一個由中間像270 的平面上的多個掃描條帶構成的組合圖像。也可以將兩個引進一角度的元件構成的裝置設置在透鏡系統510之前,也就是設置在光調制單元260及透鏡系統510之間。一種可行的組合是將一個引進一角度的元件設置在主要SLM及透鏡系統510之間,以及將另外一個引進一角度的元件設置在透鏡系統520及組合中間像270之間。

在組合中間像270之後有一個未在圖中繪出的具有放大功能的成像系統,其作用是產生光調制單元260之SLM的二維組合放大虛像。

可以將多邊形鏡415設計成具有輕微的光學變形性,這樣做有助於簡化產生3D場景之彩色重建的顯示器的構造。

多邊形鏡的鏡面可以包含一個垂直於轉動方向的吸光光圈,其作用是抑制較高的繞射級。也可以透過限制構造高度實現這個光圈功能。

一種特別有利的變化方式是將多邊形鏡415的連續鏡面設計成相互傾斜,這樣在光調制單元260之SLM的線性伸展方向也可以實現多重組合成像。相互傾斜的鏡面的數量決定了在SLM之線性伸展方向的多重成像的數量。傾斜順序可以在SLM內重複多次,以提高鏡面數,以及降低多邊形鏡415所需的轉動速度。可以改變各個鏡面的傾斜順序,以減低散斑效應。

為了在垂直於多邊形鏡415的轉動方向產生多重成像,另外一種可能的變化方式是將鏡面作為反射立體全像圖,其作用是將光線朝不同方向偏轉。在這種情況下,每一個鏡面都只需為一個反射角被選出,即使是時間多工運轉也只需為一個波長範圍被選出,因此不需要多工體光柵全像圖。同樣的,這種由反射體光柵構成的鏡面的順序也可以在多邊形鏡415上重複多次。

可以將反射體光柵設計成能夠在偏轉方向上改變偏轉角,這樣就可以獲得一個額外的透鏡功能及/或改變在這個方向上的成像比例,及/或修正一或多個位於光程上的成像系統在這個偏轉方向的像差。經由鏡面改變在轉動方向的偏轉角也可以修正一或多個位於光程上的成像系統在轉動方向的像差。在兩個方向的較小的像差也可以在像點編碼時被修正。

也可以使用調制單元間距相當大及/或調制單元之間的間隙相當大的線性SLM。在這種情況下,多邊形鏡415的各個反射鏡只能相互略微傾斜,因此能夠按照時間順序產生高解析度的無間隙放大組合虛像。由於最大可達到的繞射角在全像圖編碼時會變小,因此在大多數情況下,這種設計並不有利,除非是技術上需要使調制單元之間有較大的間隙存在,才建議使用這種設計。

一種有利的方式是使在SLM的線性伸展方向的各個影像帶重疊,且其重疊程度使進行物點的全像編碼時由於最大繞射角受限制的關係,因而有足夠的相干照亮調制單元可供使用。

也可以利用兩個正交多邊形鏡達到二維多工,其中第一個多邊形鏡會成像在第二個多邊形鏡上。這樣做雖然會使光程加長,但是對位置固定的全像顯示器是不會有問題的。

如果線性SLM具有多個調制單元列,為了避免出現斑點,可以將不同列中要重建的相鄰像點編碼。一種有利的方式是使像素光柵內不同列的各個調制單元相互略微移位。這樣的裝置亦可用來提高在調制器伸展方向的解析度。

可以將兩個觀察者眼睛的光程設計成只需一個多邊形鏡,其作用是掃描右眼及左眼的至少一個光線偏轉單元260。

例如,可以透過光敏傳感器測定及/或確定各個像段的相互位置及/或絕對位置。在全像圖值編碼時可以將必要的修正納入考慮。

如果各個顏色不是在時間多工運轉中產生,而是被不同的線性SLM調制,則可以為所有需要的顏色設置一個共同的多邊形鏡415。例如可以為每一個顏色具有一個自身的光調制單元260,而且第25圖所示每一個光調制單元260都可以配置一個自身的透鏡系統510。光程可以在多邊形鏡415的轉動方向略微移位,並利用多邊形鏡415彼此重疊的不同的掃描範圍。彩色重建只發生在共同的重疊範圍,而且這個共同的重疊範圍決定了光調制單元260之線性SLM的組合放大虛像在轉動方向的大小。

也可以將光程設置在垂直於轉動方向的位置。在這種情況下,一種有利的作法是將鏡面作為反射多工體光柵,根據調制器像帶在鏡面上的移位,這些反射多工體光柵為每一個顏色成份都具有一個這種垂直於多邊形鏡415之轉動方向的偏轉方向,以使顏色成份在共同的透鏡系統520之後重疊。也可以用沒有移位的方式工作,也就是說各顏色成份之間只有相互傾斜。

另外一種變化方式是使每一個鏡面為每一個顏色成份具有一個垂直於轉動方向的段落,這些段落相互傾斜,以使顏色成份在共同的透鏡系統520之後重疊。這樣在鏡面上就不需要有反射立體全像圖。

鏡面可以帶有彎曲的面,以獲得額外的透鏡功能或修正功能。

一種有利的作法是使有的顏色成份都聚集到線性光調制單元260內。例如可以在作為投影光學鏡組的透鏡系統510之前設置一個色光分束器,以實現這種作法。

第29圖再次顯示前面已多次提及的透過在可控制光線偏轉器410,420內設置繞射光學元件以避免出現第0繞射級的作法,這種作法可應用於本文提及的大多數實施例。如果在使用較高的繞射級時,第0繞射級含有具干擾性殘留強度,就需要採取這種作法。來自未在圖中繪出的一個光調制裝置的光線被以可控制的方式在光線偏轉器410上繞射。第0繞射級未被繞射的光線沿光學軸的方向以不會被繞射的方式穿過光線偏轉器410(例如可控制液晶光柵)被吸光光圈捕捉,以避免出現散射光。被可控制光線偏轉裝置410繞射偏離光學軸的光線接著穿過第二個可控制光線偏轉器420。例如,光線是傾斜照射到第二個光線偏轉裝置420。同樣的,此處第0繞射級未被繞射的殘留光線也會被一個吸光過濾器490吸收。光線偏轉器420可以是可控制液晶光柵,或是多工體光光柵。組合中間像270僅由繞射光線成像,因此不含任何第0繞射級。圖中兩個光線偏轉器410,420的平行位置僅是示意表示,實際上此二者也可以是相互傾斜的,例如為了使最大偏轉角變得更大,而使光程要求光線偏轉器410,420相互傾斜。

如果觀察視窗小於入射瞳孔的移動自由度,則觀察視窗需要追蹤觀察者眼睛的入射瞳孔。以HMD或目鏡為例,如果入射瞳孔的移動自由度是水平15mm,垂直15mm。則在一維編碼的情況下,可以使用垂直尺寸15mm、水平尺寸20mm的觀察視窗,這樣就不需要追蹤入射瞳孔。

如果將觀察視窗的尺寸縮小到5mm,調制單元密度會從725個調制單元/°降低到約240個調制單元/°,這僅相當於4倍HD-TV像點密度。除了調制單元密度降低外,在這種情況下如果將兩個方向的調制單元密度都降低,則調制單元的總數量會縮小9倍。除了SLM的面積及光學元件明顯變小外,SLM本身也可以達到很高的節能效果。

因此一種有利的作法是使觀察視窗保持很小的尺寸,並使觀察視窗追蹤觀察者眼睛的入射瞳孔。

有各種不同的方式可以實現觀察視窗追蹤觀察者眼睛及/或入射瞳孔的移動。

例如,觀察視窗可以橫向移動。一個位置固定的顯示器引進一個觀察視窗-過濾平面。觀察窗的移動可以在這個過濾平面之後進行。亞種可能的變化方式是觀察視窗-光圈掩膜可以主動移動,例如製作成機械式移動光圈或可控制液晶光圈的形式。可以用電學或光學方式控制這種機械式移動光圈或可控制液晶光圈。動態移動觀察視窗光圈的光學定址可以避免在觀察視窗-光圈掩膜平面上的調制單元矩陣,以及這個調制單元矩陣在動態光圈平面上的干擾性繞射效應。

觀察視窗在觀察者眼睛之入射瞳孔平面上的傾斜相當於虛擬SLM在這個時間點顯示被顯現的部分的移位。因此應確認在觀察視窗追蹤入射瞳孔時引入的觀察視窗傾斜角已被考慮進去。如果各個虛擬SLM段落在像空間內有足夠的重疊,就不會在供重建用的像空間內形成任何間隙,因此只需適當的3D場景編碼就足以令使用者不會感覺到觀察視窗追蹤觀察者眼睛的移動中的入射瞳孔,也就是說,編碼會使重建物件的位置在虛擬SLM段落的位置改變時看起來好像保持不變。觀察視窗的很小的傾斜,例如<1°,可以被在SLM上產生的子全像圖的很小的移位(例如少於725像素)補償。

但如果追蹤引入的角度過大,這個補償通常是不夠的。因此通常需要補償追蹤引入的觀察視窗的傾斜角度。這樣做可以降低各個虛擬SLM像空間段落之間的應重疊的程度,以及使可顯示的觀察空間最大化。

第30圖的裝置是透過一個作為可控制光線偏轉器610的具有可調整稜鏡角的稜鏡改變光調制單元260的平均反射角,以實現觀察視窗1200對觀察者眼睛1000之入射瞳孔的移動的追蹤。產生光調制單元260之SLM的組合放大虛像的裝置和第23圖的裝置是相同的。光調制單元260之SLM的組合放大虛像是由位於觀察者眼睛附近的光線偏轉裝置450搭配放大光學鏡組810所產生。如果觀察者眼睛轉動,則可以透過可控制光線偏轉器610將在光調制單元260內被調制的波前偏轉,其中可控制光線偏轉器610可以被設置在光調制單元260附近的一個平面上。可控制光線偏轉器610位於後面的放大光學鏡組810的物側焦平面的範圍。放大光學鏡組810將波前的偏轉轉換成觀察視窗1200的位移。例如這個位移是5mm,這表示觀察空間被移動了這個距離。透過相應的同步化3D場景編碼,可以補償這個位移,因此對觀察者而言,3D場景內的靜態物件看起來的位置並未改變。也可以在可控制光線偏轉裝置450內同步設定一個修正角,這樣無需重新編碼就可以使場景在相同角度下保持可視狀態。

可控制光線偏轉器610也可以是一種可控制繞射偏轉光柵。可以將可控制光線偏轉器610設置在放大光學鏡組810之後,並在該處將光程移位。例如可以使用一個不需複雜動作就可以執行消色差的可旋轉平面平行板。

如果是使用二相編碼,也可以將可控制光線偏轉器610設置在光調制單元260內的一個選擇性配備的光束組合光學鏡組之後,這樣做的好處是光束組合光學鏡組不會改變光程,因為將SLM照亮的光束的入射角並不會改變。

改變準直SLM照明的照明角度也可以使經SLM編碼的波前偏轉,以追蹤觀察視窗,如果複數值SLM或使相位移位的SLM的設計能夠達到在傾斜照明的情況下保持3D場景的重建品質的要求,則無需在光調制單元260及放大光學鏡組810之間設置光線偏轉器410。例如使用多個使相位移位的像素,以及交互計算最佳相位值,而可達到這個要求。如果執行追蹤步驟的數量很小,則可以先計算觀察視窗之位移較少的位置的相位值。可控制相位延遲器亦可具有一個選擇性配備的光束組合光學鏡組,其作用是補償傾斜光程造成的相移的改變。例如這種可控制相位延遲器可具有可控制雙折射液晶層。

通常一種較有利的方式是在SLM之後使被SLM反射的波前轉動,也就是說將SLM設置在光調制單元260之光束組合器的後面,而且與其非常靠近的位置。但是光調制單元260也可以被成像在可控制光線偏轉器610上。

第30圖的光程可以具有很短的構造長度,因此很適於應用在HMD中,其可在位置固定的顯示器內提供觀察視窗-過濾光圈-平面或是將SLM成像在光線偏轉器610上。

由於觀察者眼睛1000之入射瞳孔的移動相當緩慢,因此可以將工作速度僅略快於觀察者眼睛1000之入射瞳孔的移動的偏轉元件應用於光線偏轉器610 。例如可以使用一種工作方式如同圖像穩定稜鏡的折射式光線偏轉器610。

為了追蹤觀察者眼睛1000之入射瞳孔,可以利用光束分束器及成像光學鏡組偵測入射瞳孔的位置,例如將入射瞳孔成像在一個CMOS攝影偵測器上,然後由圖像處理計算機計算出觀察者眼睛及/或入射瞳孔的移動。

由於光源發出的光線會分佈到所有的圖像段落,因此透過SLM之放大虛像的時間連續組合重建全像編碼之空間場景需要很強的光源,以使重建場景獲得足夠的亮度。因此所有參與此過程的光學元件都要具有很高的光效能。第31圖的實施例顯示如何透過一個微型透鏡裝置290提高SLM的填隙因數,以提升其能能量效益,以及減少遮蔽掩膜(黑色矩陣)未能抑制的邊緣效應。例如調制單元之作用區邊緣的散射場或作用區之範圍都可能形成這種邊緣效應。散射場會使所要的相位及/或強度值失真。

反射式SLM 200被平面前光源模組150發出的平面波前140照亮。微型透鏡裝置290的各個透鏡將光線集中到SLM 200的反射式調制單元,因此應盡可能使這些調制單元之間的區域不能獲得任何光線,以免產生干擾性的散射光。經調制單元調制的光線被微型透鏡裝置290的透鏡擴展,並以調制波前240的形式穿過平面前光源模組150。

微型透鏡裝置290的各個透鏡分別配屬於SLM 200的一個調制單元。微型透鏡裝置290的光柵可以與SLM 200之調制單元的光柵重合。這兩個構件應相互校準,以使每一個透鏡的Foki均位於透鏡的中心位置。透過這種裝置可以降低或完全避免SLM像素的邊緣的照明。由於相位的關係,兩個相鄰像素之間的過渡區並未被精確定義,也就是說其包含相鄰相位值的過渡區。這個會對重建造成干擾的區域不會被照亮。

此外,還可以透過在微型透鏡的Foki內的強度分佈執行振幅變跡功能。為了達到最佳效果,可以另外使用一個振幅掩膜,這樣可以有效實現單一SLM像素的正強形或高斯形振幅分佈。這種相當於開氏貝索加權函數(Kaiser Bessel window)的濾波功能可以降低在SLM的較高的繞射級出現的強度。

微型透鏡裝置290還可以具有一個變跡掩膜,以進一步抑制因調制單元的光柵形成的較高的繞射級。透過使微型透鏡的Foki並非剛好位於調制單元的平面,而是相對於調制單元的平面略微失調,以達到變跡。透過輕微的散焦,可以使微型透鏡的前述作用與有效面的尺寸配合。這樣就可以根據透鏡的光學傳遞輸函數將透鏡形狀最佳化。透鏡形狀也可以是平面的,並具有一個梯度指數輪廓。

如果是使用透射式調制器,則微型透鏡裝置也可以是位於背光照明及調制單元之間的光程上,以便將背光照明的未調制的光線聚集在調制單元的作用面上。

變跡掩膜也可以在沒有微型透鏡的情況下單獨使用。但是也可以使用微型透鏡,以提高有效透射。

第32圖使用微型透鏡290及搭配光束組合器的實施例,其中光束組合器是由結構化的延遲板320、延遲板330及偏振器310所構成。

如果是雷射光,則在微型透鏡裝置之微型透鏡的焦平面上會出現一個光束收縮部。在光束收縮部內相位是平面的。光束組合器可以將兩個相鄰調制單元的光線組合在一起,以產生複數值調制。例如可以將結構化的延遲板320設置在微型透鏡裝置290的基板上,以便為交替的調制器列留下正交偏振。

前光源模組150以未調制的波前140照亮微型透鏡場。在也可以製作得比較厚的前光源模組150內,一個未在圖式中繪出的光源的光線以鋸齒形傳播,也就是說以45°傳播。也可以使用體光柵的傾斜度很大的照度(例如84.26°)作為前光源模組單元,例如實現接近0°的出射角。如果體光柵具有足夠的厚度,則可以使用SLM的略微傾斜的照明及很小的角度接受性,以便在反射式SLM的照明中將去程及回程分開。

未調制的波前140在第一次通過結構化的延遲板320後,接著在反射式調制單元上被調制,然後第二次通過結構化的延遲板320,最後再離開前光源模組150成為具有正交偏振列的調制波前240。這些正交偏振列在延遲板320內被聚集在一起。在延遲板320之後設有一個偏振過濾器310,其可使正交偏振的投影以45°角通過。含有全像編碼3D場景的經調制的被數值波前350位於被在偏振過濾器310之後。

一般而言,在沒有主動元件的情況下也可以達到像空間的組合例如可以使用5個LCOS SLM,以便在虛擬像空間內垂直上下重疊。這些LCOS SLM可以按時間順序顯示RGB(紅緣藍)內容。也可以使用3個單元作為RGB-LCOS單元來運轉,其中每個單元都是由5個LCOS組合。也就是說,可以使用15個LCOS,以便用彩色顯示一個大的觀察範圍。

多工操作的作法也可以擴大到子顏色。例如可以用兩個不同波長的藍光照亮SLM,其中這兩個藍光的波長僅相差5nm。

這也可以被用來作為3D目標場景的稀釋的形式,但前提是隨時間改變被移位成像的SLM的觀察範圍交互排列。因此一個SLM僅顯示3D場景的一部分像點,其中另外一個SLM或其他被數個SLM顯示共同觀察範圍內的另外一部分像點,以減少相鄰像素之間的斑點及干涉。稀釋的作用是減少相鄰像點之間的相干串擾。

但是這種形式的稀釋並不是在每一種實施方式中都需要有波長偏移。例如可以用相同波長照亮SLM,這些波長來自不同的雷射光源或其他不同的光源。例如可以使用體光柵,以便經由角多工操作或偏振多工操作實現調制器像的組合,或是在稀釋的情況下實現像空間的組合。有一系列典型的光學元件可用於偏振多工操作。例如偏振分束立方體、偏振分束板、線柵偏振器、體光柵等元件,這些元件都具有特定的繞射角。

另外一種結構緊密的HMD的實施方式具有含場透鏡的放大系統的組合,其中放大系統對於空間光調制器只有很小的放大率,因此空間光調制器的圖像可以在很靠近觀察者的位置以虛像方式顯示。不需要追蹤系統。放大倍率很小且與眼睛距離很近的複數值SLM的虛擬成像對2D編碼的子全像圖是一個很有利的實施方式。

在其他的實施方式中,光線偏轉裝置可以具有一個光偏轉器,例如這個光線偏轉器含有數量固定的繞射作用層,透過這些作用層使來自空間光調制器的調制波前被多重分段組合。組合的成像直接顯示或是經由另外一個成像顯示在快門顯示器上,其中快門顯示器的開口是可透光控制的。經過要顯示之空間角度範圍的多重成像的段落,來自SLM且含有當前之段落的正確編碼的光線會透過被控制的快門-段落按照可事先給定的順序朝瞳孔的方向傳播。

光線偏轉裝置能夠與具有場透鏡功能的透鏡組合成一個光束組合器。

本發明的全像顯示器除了可應用於HMD外,也可以應用於其他的3D顯示器。

以上配合圖式說明的全像顯示器的實施方式在HMD中可應用於顯示裝置內的觀察者的雙眼。

如果虛擬SLM的放大倍率非常大,則追蹤裝置可以是由可控制液晶光柵、以電濕潤單元(EW)為基礎的可控制稜鏡單元、液晶稜鏡單元、可控制擴大稜鏡單元所構成,如果追構造高度很小,也可以是由掃描反射鏡構成。

如果是空間光調制器,例如LCOS調制器,則用於產生彩色重建的額外的濾色器雖然會使掃描速度降低到三分之一,但是在SLM上需要的調制單元數量會提高3倍。因此一種合適的方式是每一個顏色設置一個獨立的SLM,也就是說,一個R(紅色)-SLM,一個G(黃色)-SLM,一個B(藍色)-SLM。例如可以用一個繞射式彩色組合立方體組合這3個獨立的SLM。

如果是使用LCOS及RGB(紅黃藍)調制器的全像光學元件(HOE),則應使用兩種LCOS變化方式組點的全像光學元件,以便製造出重量輕且體積小的HMD。同樣的,亦可以反射及反折射光學元件應用於HMD,以實現緊密的結構。

另外一種可能的方式是使用兩個SLM,例如兩個LCOS-SLM或兩個EMES-擺動鏡-SLM,以便按時間順序連續顯示兩種以上的顏色。例如時間順序可以是R_SLM1,G_SLM2,b_SLM1,R_SLM2,G_SLM1,B_SLM2,R_SLM1等。這可以兼顧現有的圖像重復顯示速度及構造深度。按時間順序連續照明的方式要使每一個SLM都能被所有的顏色照亮。

為了將SLM分段化,可以在光線偏轉裝置內設置一個主動式可控制層及一或二個被動式可控制層。

例如經SLM調制的波前可以按1、2、3、4、5的順序被液晶光柵一維偏轉到場透鏡平面,其中順序4產生小的偏轉,也就是說沒有相位光柵被寫入液晶光柵。接著按規定距離設置的體光柵可以將帶有相當於場透鏡平面上順序1至5之入射角的波前朝眼睛的方向偏轉。除了偏轉掃描SLM的調制波前外,體光柵還可以同時實現場透鏡的功能。這有助於減少HMD內必要件數量。在這個例子中,光線偏轉裝置僅具有一個可切換的光線偏轉器。除了一個光柵週期可調整的可控制液晶光柵外,可控制及/或可切換的偏轉功能亦可由PDLC光柵或其他可切換元件獲得實現。

也可以用已含有場透鏡功能的波前照亮SLM。這波前可以具有凹或凸的彎曲形狀。這種波前照亮SLM的方式可以使產生波前之第0繞射級的元件及/或在SLM的調制單元結構繞射的光線不會被用於產生圖像,以避免散光及/或干擾光的出現。

可以設置具有可切換及/或可控制散射特性的散射元件,以便能夠從3D顯示切換到2D顯示。為此SLM或SLM的段落及/或SLM之多重成像的一個虛像應與散射面近似在同一個平面上。

例如,如果是以光線偏轉裝置內的快門顯示器產生SLM的靜態顯示,則SLM可以在場透鏡平面被以段落方式顯示5次。在一個時間點所希望的快門開口會被打開,因而使含有這個段落之全像重建資訊的SLM被編碼。快門顯示器是一種只具有一個擴展的可切換面
或少數幾個這種切換面的顯示器。快門顯示器也可以是由高解析度的顯示器構成,這種快門顯示器是透過控制調制單元在所希望的範圍產生透光性。

倍增的SLM可以部分或全部填滿平截頭錐體,同時平截頭錐體可以具有相鄰或交錯轉換的3D顯示或2D/3D顯示。

經略加變更後多重成像的原理亦可應用於具有至少兩個SLM的情況,例如每個SLM僅應顯示在一要重建之3D場內50%的物點雲。在這種情況下,可以為每一個原色使用多個窄頻帶波長範圍,例如R1G1B1及R2G2B2,或是兩個彼此正交的偏振方向及/或這兩種變化方式的組合。

稀釋的物點雲可以交錯切換顯示。為了將所使用之SLM的光程組合在一起,可以使用含有立體全像圖的波長決定、偏振決定、及/或角度決定的光學元件。

也可以設置至少兩個SLM,在此情況下,如果是使用一維編碼,編碼方向彼此會有一個角度,例如彼此正交。因此可以減少被觀察者看到的物點傳播。重疊可以用不相干、部分相干、或相干的方式完成,也就是說具有干涉性。

這種構造方式可以同時減少場景點及垂建的斑點圖案之間的光學串擾。

如果是一維編碼,可以用主動或被動方式輸入產生觀察視窗所需的一維散射。主動散射器,例如液晶光柵,其中又以能夠產生可變光柵週期及不同光柵週期之重疊的偏振光柵為最佳,因為即使是使用非常相干的光源,這種偏振光柵仍可大幅減少在觀察視窗方向的斑點。

含有液晶之液晶偏振光柵的電極(其中液晶在光柵面被轉動,因而相當於被轉動的雙折射段落)可以接通足夠快速且靜態波動的電壓,以實現散射功能。散射功能的反射特性可以透過合成相位光柵現有的空間頻率被最佳化。

也可以將主動散射器設置在光源面,以配合空間相干性。

也可以使用能夠一個接一個連續接通的可切換及/或可控制液晶光柵。也可以使用能夠在一個單一的液晶平實現相位的快速時間波動的液晶散射器。

位置固定的顯示器可以在光源平面設置可轉動或可移動的毛玻璃。

另外一種可能的方式是利用可控制的電動執行元件,例如壓電陶瓷(PZT)執行元件或磁線圈驅動器,以夠快且振動度夠小的方式移動非常薄的1D或2D散射膜,以使其能夠應用於HMD。

平面背光、前光及邊緣照明裝置均可安裝在HMD中。

此外,顯示裝置內可設置控制器,其作用是控制所有的可切換及/或可控制元件,必要時亦可使這些元件同步作用。

此外,也可以將複數個元件組合成獨立的模組,以減輕HMD的重量。例如電機箱、光源箱及/或電池箱可以分開固定在觀察者身上。

此外,以上描述的顯示器實施方式亦可應用於本說明未提及之其他全像及/或自動反光立體顯示裝置。

最後要特別指出的是,以上提及的實施例僅是用於說明本發明的理論,但是本發明的範圍絕非僅限於這些實施例。特別是以上提及的實施例彼此有許多可能的組合方式。
100...照明裝置
110...光源
120/121/170...準直光學鏡組
130...分束立方體
140...平面波前
150/151...平面前光源模組
160...相干光源
191/192...透射體光柵
200/201/202/205/206/207/250...空間光調制器
220...放大虛像
230...組合虛像
260/261/262/263...光調制單元
270...組合中間像
280...中間像
290...微型透鏡裝置
300/301...光束組合器
310...偏振器
320/330...延遲板
350...被數值波前
400/401/402/450...光線偏轉裝置
410/420/460/470/610...光線偏轉器
411/412/421/910/980...偏轉鏡
414...擺動鏡
415...多邊形鏡
490...吸光過濾器
500...4f-成像系統
510/520...透鏡系統
511/512/513...物側獨立透鏡系統
530...放大透鏡
580/590...濾波器
600...追蹤裝置
710...相干波前
240/720/730/740...調制波前
760...分段化波前
800/810/811...放大光學鏡組
920/930...反射鏡
950/960/970...反射鏡組
1000/10010/1002...觀察者眼睛
1100/1101/1102...波導管
1110...輸入光學鏡組
1121//1122/1123...反射體光柵
1130...輸出光學鏡組
1140...傳感器
1200...觀察視窗
第1a圖:光線偏轉裝置在3種接通狀態的功能。
第1b圖:應用於第一個實施例的光線偏轉裝置。
第2圖:使用第1b圖之裝置擴大的可視範圍。
第3圖:利用4f-成像系統及一附加放大光學鏡組產生虛擬放大調制圖像的原理。
第4圖:反射式SLM及透過使用帶有附加放大光學鏡組之4f-成像系統的反射鏡縮短構造長度的原理。
第5圖:透過在具有場透鏡功能之放大透鏡系統的前面設置一個反射鏡以縮短構造長度的原理。
第6圖:本發明的一種變化方式,此種變化方式具有凸反射鏡,以縮短構造長度。
第7及第8圖:比較將光線偏轉裝置設置在具有場透鏡功能之放大透鏡系統之前及之後所需的構造長度。
第9圖:將光線偏轉裝置(偏轉鏡)設置在放大光學鏡組之後,以縮短構造深度。
第10圖:使用光線偏轉裝置的光線偏轉器,以縮短構造深度,其中不使用第0繞射級。
第11圖:使用凸反射鏡,並搭配設置在放大光學鏡組之後的光線偏轉裝置,以縮短構造長度。
第12a圖:使用光線偏轉裝置,以便將一個振幅調制器多重成像在一個光學定址空間光調制器上。
第12b圖:使用光線偏轉裝置,以便將一個振幅調制器多重成像在一個光學定址空間光調制器上,其中該光學定址空間光調制器與將相值寫入光學定址空間光調制器之可電學定址調制器共同構成一個複數值調制器。
第13圖:使用光線偏轉裝置,以便透過一個很薄的波導管產生多重成像。
第14圖:使用光線偏轉裝置,以便在一個將調制器成像的望遠鏡成像系統及一個具有放大光學鏡組的成像系統之間產生多重成像。
第15圖:使用光線偏轉裝置,以便在具有一個望遠鏡成像系統及一個具有放大光學鏡組的成像系統的調制器的二階段成像之後產生多重成像。
第16圖:使用光線偏轉裝置內的至少兩個可變光楔,以便在一個將調制器成像的望遠鏡成像系統及一個具有放大光學鏡組的成像系統之間產生多重成像。
第17圖:將應用兩個可控制往同方向轉動的偏轉鏡使光束快速移位的配置設置在多重成像用的光線偏轉裝置中。
第18圖:將利用快速擺動鏡使光束快速移位的裝置設置在多重成像用的光線偏轉裝置中。
第19圖:使用具有兩個可控制往同方向轉動的偏轉鏡的光線偏轉裝置,以便在一個二階段成像系統中多重成像。
第20圖:使用具有一個可控制偏轉光柵及一個多工反射體光柵的偏轉鏡的光線偏轉裝置,以便在一個二階段成像系統中多重成像。
第21圖:透過兩個透射體光柵使SLM或SLM之多重組合圖像光學變形放大的原理,其中各單一光束之間的路徑差會被補償。
第22圖:在一個遠心成像系統的光圈平面上設置一個具有可控制偏轉光柵的光線偏轉裝置,以便在一個二階段成像系統中多重成像。
第23圖:將光線偏轉裝置設置在緊靠使用者眼睛之入射瞳孔(EP)的位置,以產生多重成像。
第24圖:將至少一維彎曲的光線偏轉裝置設置在緊靠使用者眼睛之入射瞳孔(EP)的位置,以產生多重成像。
第25圖:一個彩色多工操作裝置,使用設置在一個遠心成像系統之光圈平面上的一個如第22圖顯示之具有可控制偏轉光柵的光線偏轉裝置,以便在一個二階段成像系統中多重成像。
第26圖:利用光線偏轉裝置透過一個很薄的波導管產生垂直多重成像。
第27a-c圖:在一個遠心成像系統的光圈平面上設置一個具有可控制偏轉光柵的光線偏轉裝置,以便在一個搭配一維光調制器的二階段成像系統中多重成像。
第28圖:在一個遠心成像系統的光圈平面上設置一個多邊形鏡作為光線偏轉裝置,以便在一個搭配一維光調制器的二階段成像系統中多重成像。
第29圖:將繞射光學元件設置在可控制光線偏轉器內並避免第0繞射級,以產生光調制裝置的組合放大虛像。
第30圖:利用稜鏡改變SLM的平均幅射角,以便跟著觀察者眼睛的入射瞳孔的移動追蹤觀察視窗。
第31圖:降低調制單元的邊緣效應,以及透過微型透鏡裝置提高SLM(例如反射式SLM)的填隙因數。
第32圖:降低調制單元的邊緣效應,以及透過微型透鏡裝置提高SLM(例如搭配光束組合器的反射式SLM)的填隙因數。
200...空間光調制器
400...光線偏轉裝置
410...第一光線偏轉器
420...第二光線偏轉器
530...放大透鏡
600...追蹤裝置
710...相干波前
720/730/740...調制波前
1000...觀察者眼睛

Claims (25)

  1. 顯示裝置,尤其是頭戴式顯示器或目鏡,具有一個空間光調制器、一個光線偏轉裝置、以及至少一個成像系統,其中空間光調制器可以被至少在一個方向相干的波前照亮,其中光線偏轉裝置的構造使空間光調制器的由段落組合的至少是一維的多重成像能夠按照時間順序以可控制的方式被產生,其中多重成像是以至少具有可預先給定之多重成像段落之數量的方式進行,該數量決定可視範圍的大小,在該可視範圍內,供觀察者眼睛觀察的在空間光調制器內全像編碼的3D場景可以被重建。
  2. 如申請專利範圍第1項的顯示裝置,其特徵為:可控制光線偏轉裝置的構造使空間光調制器的分段組合多重成像能夠在場透鏡的平面上被產生。
  3. 如前述申請專利範圍中任一項的顯示裝置,其特徵為:可控制光線偏轉裝置的構造使空間光調器之多重虛像的各個段落無間隙的彼此連接,或是彼此部分重疊,其中重疊部分在全像資訊的編碼中可以被考慮進去。
  4. 如前述申請專利範圍中任一項的顯示裝置,其特徵為:在光程上設置額外的成像裝置,其作用是將可控制光線偏轉裝置產生的空間光調制器的分段組合多重成像進一步放大成像。
  5. 如前述申請專利範圍中任一項的顯示裝置,其特徵為:可控制光線偏轉裝置可以改變組成空間調制器之多重成像的段落數量及/或大小。
  6. 如前述申請專利範圍中任一項的顯示裝置,其特徵為:可控制光線偏轉裝置具有至少一個可控制光線偏轉器,且該光線偏轉器具有光柵週期可改變的液晶光柵。
  7. 如前述申請專利範圍中任一項的顯示裝置,其特徵為:可控制光線偏轉裝置具有至少一個立體全像圖,其中立體全像圖具有至少兩個不同的繞射角,可以透過照亮空間調制器之光線的至少兩個不同的入射角及/或兩個不同的波長選出該等繞射角。
  8. 如前述申請專利範圍中任一項的顯示裝置,其特徵為:在光程上至少設有一個濾波器,其作用是將空間光調制器編碼之波前的較高繞射級過濾掉。
  9. 如申請專利範圍第8項的顯示裝置,其特徵為:濾波器係設置在一個望遠鏡成像系統的中央焦平面上。
  10. 如前述申請專利範圍中任一項的顯示裝置,其特徵為:具有一個可控制追蹤裝置,其作用是使觀察視窗能夠根據眼睛的移動以可控制的方式追蹤眼睛的移動。
  11. 如前述申請專利範圍中任一項的顯示裝置,其特徵為:光線偏轉裝置除了產生空間光調制器的分段組合多重成像外,還使一個虛擬觀察視窗能夠根據眼睛的移動以可控制的方式追蹤眼睛的移動,或是可以支援可控制追蹤裝置。
  12. 如前述申請專利範圍中任一項的顯示裝置,其特徵為:具有調整器,以便透過手動或自動調整,使觀察視窗與觀察者眼睛的瞳孔位置及眼睛間距適配。
  13. 如前述申請專利範圍中任一項的顯示裝置,其特徵為:光線偏轉裝置及/或追蹤裝置)能夠支援調整器,或是能夠以可控制的方式調整觀察視窗,使其與瞳孔位置適配。
  14. 如前述申請專利範圍中任一項的顯示裝置,其特徵為:產生及/或形成空間光調制器之分段組合多重成像之段落的光線偏轉裝置及/或成像系統的其他光學元件能夠產生及/或形成分段組合多重成像的彎曲成像,並在3D場景編碼時將這個彎曲納入考量。
  15. 如前述申請專利範圍中任一項的顯示裝置,其特徵為:成像系統及/或光線偏轉裝置以光學變形的方式形成空間光調制器之分段組合多重成像。
  16. 如前述申請專利範圍中任一項的顯示裝置,其特徵為:具有至少一個遠心成像系統,在其物側焦平面上設有一個光線偏轉裝置,其作用是以可控制的方式將來自空間光調制器的光線傾斜。
  17. 如前述申請專利範圍中任一項的顯示裝置,其特徵為:具有至少另外一個光線偏轉裝置,其作用是產生另外一個空間調制器的分段多重成像,同時這些分段多重成像是彼此交叉插入及/或彼此相互轉動及/或彼此相互移位及/或在深處被分成階段,並與觀察者眼睛的瞳孔定義一個共同的觀察範圍,這些分段組合多重成像的子區域彼此相鄰、或全部或部分重疊,其中重疊是以不相干、部分相干、或相干的方式形成,同時在每一個子區域內都有一個2D顯示及/或3D立體顯示及/或全像3D重建。
  18. 如前述申請專利範圍中任一項的顯示裝置,其特徵為:在可控制光線偏轉裝置有一個光柵週期可改變的可控制液晶光柵及/或多工體光柵,第0繞射級的光線穿過這個液晶光柵及/或體光柵時不會被利用到,而且能夠遠離其他有作用的光程。
  19. 如前述申請專利範圍中任一項的顯示裝置,其特徵為:顯示裝置的空間光調制器是一種線性空間光調器,此種線性空間光調器可在垂直於其線性伸展範圍被光線偏轉器掃描,且其掃描圖能夠在其線性方向上被可控制光線偏轉裝置按時間順序多重重疊組合。
  20. 如申請專利範圍第19項的顯示裝置,其特徵為:具有一個多邊形鏡,該多邊形鏡至少有兩個鏡面相互傾斜,以使其掃描輪在垂直於掃描方向上下排列或稍有重疊。
  21. 如前述申請專利範圍中任一項的顯示裝置,其特徵為:在空間光調制器之前及/或之後至少設有一個微型透鏡裝置。
  22. 如前述申請專利範圍中任一項的顯示裝置,其特徵為:至少有一個微型透鏡裝置設置在空間光調制器的一個中間像及/或分段組合中間像的位置。
  23. 如前述申請專利範圍中任一項的顯示裝置,其特徵為:變跡掩膜位於空間光調制器面對觀察者眼睛的那一個面上,及/或位於空間光調制器的一個中間像及/或分段組合中間像的位置。
  24. 如前述申請專利範圍中任一項的顯示裝置,其特徵為:在可控制光線偏轉裝置內設有體光柵及/或多工體光柵,其中透過製造時曝光用的波前所選擇的相干性可以調整該體光柵及/或多工體光柵的折射率調制包絡線。
  25. 如前述申請專利範圍中任一項的顯示裝置,其特徵為:可控制光線偏轉裝置能夠以可控制的方式按時間順序在一扁平波導管內至少一維產生一個空間光調制器的分段組合多重成像。
TW100141592A 2011-06-23 2011-11-15 顯示裝置,尤其是頭戴式顯示器或護目鏡 TW201300834A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011078027 2011-06-23
DE102011053710 2011-09-16

Publications (1)

Publication Number Publication Date
TW201300834A true TW201300834A (zh) 2013-01-01

Family

ID=48137472

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100141592A TW201300834A (zh) 2011-06-23 2011-11-15 顯示裝置,尤其是頭戴式顯示器或護目鏡

Country Status (1)

Country Link
TW (1) TW201300834A (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107015368A (zh) * 2017-06-05 2017-08-04 东南大学 一种近眼双目显示装置
CN107438796A (zh) * 2014-12-26 2017-12-05 Cy视觉公司 近眼显示装置
US9851575B2 (en) 2014-05-15 2017-12-26 Omnivision Technologies, Inc. Wafer-level liquid-crystal-on-silicon projection assembly, systems and methods
US9927619B2 (en) 2015-11-06 2018-03-27 Omnivision Technologies, Inc. Pupillary adjustable head mounted device
US10101587B2 (en) 2015-12-18 2018-10-16 Delta Electronics, Inc. Display apparatus
CN108957752A (zh) * 2014-01-29 2018-12-07 谷歌有限责任公司 头戴式显示器
TWI720401B (zh) * 2018-02-06 2021-03-01 美商谷歌有限責任公司 近眼顯示系統、在一近眼顯示系統中之方法及顯現系統
TWI737771B (zh) * 2016-07-13 2021-09-01 盧森堡商喜瑞爾工業公司 顯示裝置及以高解析度顯示場景的方法
CN113348497A (zh) * 2019-01-18 2021-09-03 杜比实验室特许公司 用于降噪的衰减波前确定
US11181801B2 (en) 2018-02-06 2021-11-23 Google Llc Beam steering optics for virtual reality systems
TWI759395B (zh) * 2016-12-31 2022-04-01 以色列商魯姆斯有限公司 基於經由光導光學元件之視網膜成像的眼動追蹤器
CN114295076A (zh) * 2022-01-05 2022-04-08 南昌航空大学 一种解决基于结构光的微小物体测量阴影问题的测量方法
TWI766000B (zh) * 2017-03-30 2022-06-01 英國商波動光學有限公司 用於擴增實境或虛擬實境顯示裝置之波導
CN115348394A (zh) * 2022-06-30 2022-11-15 浙江大华技术股份有限公司 曝光装置、曝光控制方法和拍摄终端
TWI802601B (zh) * 2017-10-13 2023-05-21 美商康寧公司 用於擴增實境系統的波導式光學系統與方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108957752A (zh) * 2014-01-29 2018-12-07 谷歌有限责任公司 头戴式显示器
US9851575B2 (en) 2014-05-15 2017-12-26 Omnivision Technologies, Inc. Wafer-level liquid-crystal-on-silicon projection assembly, systems and methods
US10310285B2 (en) 2014-05-15 2019-06-04 Omnivision Technologies, Inc. Wafer-level liquid-crystal-on-silicon projection assembly, systems and methods
CN107438796B (zh) * 2014-12-26 2020-07-03 Cy视觉公司 头戴式显示装置、近眼显示装置和方法
CN107438796A (zh) * 2014-12-26 2017-12-05 Cy视觉公司 近眼显示装置
US9927619B2 (en) 2015-11-06 2018-03-27 Omnivision Technologies, Inc. Pupillary adjustable head mounted device
US10101587B2 (en) 2015-12-18 2018-10-16 Delta Electronics, Inc. Display apparatus
TWI737771B (zh) * 2016-07-13 2021-09-01 盧森堡商喜瑞爾工業公司 顯示裝置及以高解析度顯示場景的方法
TWI759395B (zh) * 2016-12-31 2022-04-01 以色列商魯姆斯有限公司 基於經由光導光學元件之視網膜成像的眼動追蹤器
US11487111B2 (en) 2017-03-30 2022-11-01 Snap Inc. Waveguide for an augmented reality or virtual reality display
TWI766000B (zh) * 2017-03-30 2022-06-01 英國商波動光學有限公司 用於擴增實境或虛擬實境顯示裝置之波導
CN107015368A (zh) * 2017-06-05 2017-08-04 东南大学 一种近眼双目显示装置
CN107015368B (zh) * 2017-06-05 2020-05-05 东南大学 一种近眼双目显示装置
TWI802601B (zh) * 2017-10-13 2023-05-21 美商康寧公司 用於擴增實境系統的波導式光學系統與方法
TWI720401B (zh) * 2018-02-06 2021-03-01 美商谷歌有限責任公司 近眼顯示系統、在一近眼顯示系統中之方法及顯現系統
US11181801B2 (en) 2018-02-06 2021-11-23 Google Llc Beam steering optics for virtual reality systems
US11314083B2 (en) 2018-02-06 2022-04-26 Google Llc Beam steering optics for near-eye and head mounted displays
CN113348497A (zh) * 2019-01-18 2021-09-03 杜比实验室特许公司 用于降噪的衰减波前确定
CN113348497B (zh) * 2019-01-18 2023-11-28 杜比实验室特许公司 用于降噪的衰减波前确定
CN114295076A (zh) * 2022-01-05 2022-04-08 南昌航空大学 一种解决基于结构光的微小物体测量阴影问题的测量方法
CN114295076B (zh) * 2022-01-05 2023-10-20 南昌航空大学 一种解决基于结构光的微小物体测量阴影问题的测量方法
CN115348394A (zh) * 2022-06-30 2022-11-15 浙江大华技术股份有限公司 曝光装置、曝光控制方法和拍摄终端

Similar Documents

Publication Publication Date Title
TWI554783B (zh) A display device, in particular a head mounted display or goggles
TW201300834A (zh) 顯示裝置,尤其是頭戴式顯示器或護目鏡
KR102481581B1 (ko) 디스플레이 장치
EP3314324B1 (en) Holographic near-eye display
TWI559105B (zh) 用於追蹤使用者之組合式光調制裝置
US20200183079A1 (en) Display device comprising a light guide
KR101398150B1 (ko) 3차원 표현의 재구성물을 생성하기 위한 헤드 장착형 디스플레이 장치
US7843636B2 (en) Image display method for a stereoscopic image
JP5150619B2 (ja) シーンの再構成のためのホログラフィ投影装置およびシーンのホログラフィ再構成方法
JP2009537853A5 (zh)
CN113424096A (zh) 全息平视显示装置
JP2023551206A (ja) 高解像度ライトフィールド投影装置
JP2020537767A (ja) 大きな視野を生成するための表示装置および方法
US11650422B2 (en) Active correction of aberrations in optical systems
JP2010237691A (ja) 3次元像表示装置
JP2008151863A (ja) 3次元像表示装置
JP2009290440A (ja) 画像表示方法