WO1999004481A1 - Exciting unit, linear or planar motor using the unit, stage device using the motor, and aligner using the device - Google Patents

Exciting unit, linear or planar motor using the unit, stage device using the motor, and aligner using the device Download PDF

Info

Publication number
WO1999004481A1
WO1999004481A1 PCT/JP1998/002761 JP9802761W WO9904481A1 WO 1999004481 A1 WO1999004481 A1 WO 1999004481A1 JP 9802761 W JP9802761 W JP 9802761W WO 9904481 A1 WO9904481 A1 WO 9904481A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
magnetic
magnetic pole
stage
permanent magnets
Prior art date
Application number
PCT/JP1998/002761
Other languages
French (fr)
Japanese (ja)
Inventor
Keiichi Tanaka
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP50686099A priority Critical patent/JP3829335B2/en
Priority to AU80370/98A priority patent/AU8037098A/en
Publication of WO1999004481A1 publication Critical patent/WO1999004481A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70758Drive means, e.g. actuators, motors for long- or short-stroke modules or fine or coarse driving
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/18Machines moving with multiple degrees of freedom
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for

Definitions

  • the present invention relates to a linear motor that can move linearly on a plane or a planar motor that can move two-dimensionally, a stage device using the same, and an exposure device using the same.
  • Prior art disclosing structures moving on the X-Y plane include, for example, those disclosed in Japanese Patent Application Laid-Open No. 62-110413 and U.S. Pat. No. 4,742,286. No. 5,867,597, US Pat. No. 4,867,597 and US Pat. There is an electromagnetic alignment device disclosed in US Pat. No. 4,835,378 and US Pat. No. 4,535,275. There is a disclosed two-dimensional drive. In these, the mover floats on an air bearing or the like and moves on the XY plane. Further, as a structure in which the mover is magnetically levitated and moves on the XY plane, a structure disclosed in Japanese Patent Application Laid-Open No. 2-359709 and U.S. Pat.
  • Japanese Patent Publication No. 51-492833 discloses a projection having a stator and an armature coil in which the N and S poles of a permanent magnet are arranged densely or at regular intervals.
  • a planar motor including a mover having a plurality of teeth.
  • planar motors are mainly applied to stage devices that move two-dimensionally in the XY plane, and are used to place a predetermined object on the mover and move in the XY plane.
  • a stage device using such a planar motor has a possibility of being applied to a stage system of an exposure device used for manufacturing a semiconductor device or the like (here, an exposure device is a semiconductor device). It is used in the photolithography process when manufacturing liquid crystal display devices or thin-film magnetic heads, etc., and is a device for accurately transferring a circuit pattern to a photosensitive substrate.
  • a projection exposure apparatus that projects and exposes a circuit pattern formed on a reticle onto a semiconductor wafer or a glass plate (hereinafter, referred to as a wafer) via a projection optical system is mainly used.
  • a projection optical system that projects and exposes a circuit pattern formed on a reticle onto a semiconductor wafer or a glass plate (hereinafter, referred to as a wafer) via a projection optical system.
  • a projection optical system There are various methods, for example, in the case of semiconductor device manufacturing, an image file that can project the entire reticle circuit pattern at once.
  • a projection exposure system that exposes the wafer in a step-and-repetitive manner through a projection optical system that has a ⁇
  • a flat type pallet that moves in one plane with one drive unit without separating each axial drive part
  • the armature coil is provided on the mover side, so that it becomes heavy, and there is a limit to moving the mover at high speed.
  • the mover moves on the stator while being supported by air floating or a support guide mechanism. Therefore, there is also a problem that a complicated mechanism for lifting or supporting is required.
  • An object of the present invention is to provide a linear or flat motor capable of obtaining a high thrust, having a light weight and capable of moving at a high speed.
  • Another object of the present invention is to provide a planar motor capable of moving a two-dimensional plane while giving a floating force to the mover.
  • an object of the present invention is to provide a planar motor capable of controlling the position and posture of the mover in three directions of X, YZ and the rotational directions of those axes, for a total of six degrees of freedom.
  • an object of the present invention is to provide a stage device using a planar motor capable of obtaining a high thrust, having a light weight and capable of moving at a high speed, and an exposure apparatus using the same.
  • Another object of the present invention is to move a two-dimensional plane while giving a floating force to the mover. It is an object of the present invention to provide a stage device using a flat-type motor and an exposure apparatus using the same.
  • an object of the present invention is to provide a stage device using a planar motor capable of controlling the position and orientation of the mover in three directions of X, Y, and ⁇ ⁇ ⁇ and a total of six degrees of freedom in the directions of rotation of those axes,
  • An object of the present invention is to provide an exposure apparatus using the same. Disclosure of the invention
  • the above-mentioned object is to form a pair with a magnetic pole unit having a plurality of permanent magnets arranged with the magnetic poles being alternately reversed, and to be used in a linear motor, and to form two substantially linearly formed arms.
  • a magnetic member having three protruding teeth formed at a distal end of each arm and a base end to which each arm is connected so as to face a plurality of permanent magnets of the magnetic pole unit; This is achieved by an excitation unit characterized by having two armature coils wound around each of the coils.
  • the above-mentioned object is to provide a linear motor having a plurality of permanent magnets arranged alternately with their magnetic poles reversed in a linear motor driven linearly, and the above-mentioned excitation unit. Achieved by a mold motor.
  • the plurality of permanent magnets of the magnetic pole unit have a width of 1 in the linear direction, and the centers of the permanent magnets are linearly spaced apart by a distance of 21. It is characterized in that the two protruding teeth of the portion are displaced from the protruding tooth of the base end by a distance of 1 ⁇ 2 relative to the linear direction.
  • the above-mentioned object is used in a plane type motor in combination with a magnetic pole unit having a plurality of permanent magnets arranged on the X- ⁇ plane by alternately reversing the directions of the magnetic poles.
  • Four arms, each of which has a substantially cross shape in the direction, are formed at the distal end of each arm and the base end where each arm is connected so as to face the plurality of permanent magnets of the pole unit.
  • the present invention is attained by an excitation unit having a magnetic member having five protruding teeth and four armature coils wound around each arm.
  • the object is to provide a magnetic field unit having a plurality of permanent magnets arranged on a plane by alternately reversing the directions of magnetic poles in a planar motor driven by a plane drive, and the excitation unit described above.
  • C achieved by a planar motor characterized by comprising
  • the plurality of permanent magnets of the magnetic pole unit have a width of 1 in the X and Y directions in the XY plane, and the centers of the permanent magnets are separated by a distance of 21 in the X and Y directions, respectively.
  • the two protruding teeth of the two arms extending in the X direction of the excitation unit are displaced relative to the protruding teeth of the base end by 1/2 of the soil in the X direction.
  • the two protruding teeth of the two arms extending in the direction are characterized by being displaced from the protruding teeth of the base end by 1/2 of the soil relative to the Y direction.
  • the permanent magnet whose magnetic axis is oriented in the direction of the magnetic pole of the permanent magnet is embedded between the plurality of permanent magnets in which the magnetic poles of the magnetic pole unit are reversed.
  • the plurality of permanent magnets spaced apart in the X direction of the magnetic pole unit between the plurality of permanent magnets spaced apart in the X direction of the magnetic pole unit, permanent magnets whose magnetic axes are oriented in the X direction are embedded, and a plurality of permanent magnets spaced in the Y direction are embedded.
  • the permanent magnets whose magnetic axes are oriented in the Y direction are embedded between the permanent magnets, and are surrounded by permanent magnets whose magnetic axes are oriented in the X direction and permanent magnets whose magnetic axes are oriented in the Y direction.
  • a conductor and a non-magnetic member are embedded in the region.
  • a conductor and a non-magnetic member are embedded in a region surrounded by a permanent magnet whose magnetic axis is oriented in the X direction and a permanent magnet whose magnetic axis is oriented in the Y direction.
  • a magnetic flux passes through a non-magnetic member, an eddy current is generated in the member, and the eddy current generates a magnetic flux in a direction to cancel the magnetic flux. That is, it is possible to efficiently form a magnetic flux loop by reducing the leakage of magnetic flux between the magnetic pole unit and the excitation unit.
  • a plurality of excitation units are fixed at predetermined positions to form a stator, and a magnetic pole unit is movable with respect to the stator. It is characterized by being used.
  • each excitation unit of the stator is disposed below the mover with the teeth facing upward, and the mover is configured with the plurality of permanent magnets facing downward. It is characterized by being arranged to face the protruding teeth. This makes it possible to obtain a small, lightweight, planar mover, and to drive the mover with less power.
  • each excitation unit of the stator is disposed below the mover with five protruding teeth facing upward, and the mover is configured such that a plurality of permanent magnets face downward and protrude. You may make it arrange
  • a pair of at least two excitation units arranged at a distance of 1 relative to each other in the X and Y directions is provided, and a predetermined current flowing through the four armature coils of each excitation unit is switched.
  • a thrust for relatively moving the magnetic pole unit in a predetermined direction in the XY plane is generated, or a magnetic repulsive force for magnetically levitating in the Z direction is generated.
  • a predetermined amount distance 1
  • the stator has a drive unit configured by combining at least two of the sets, and the drive unit causes the mover to move in a predetermined direction in the XY plane. It is characterized by generating a thrust to move and a magnetic repulsion to magnetically levitate in the Z direction. With such a drive unit, it becomes possible to generate a thrust for moving in the XY plane and at the same time to relatively float the magnetic pole unit.
  • the five teeth of the stator are arranged above the mover with the downward facing, and the mover is arranged so that a plurality of permanent magnets face upward with the permanent teeth, and the four electric motors of the stator are arranged.
  • the movable member may be floated by magnetic attraction between the plurality of permanent magnets of the mover and the five teeth of the stator. In this way, the drive of the mover can be controlled with less power, and the mover can be easily and accurately moved.
  • the stator has at least three drive units distributed in a plane, and the three drive units rotate in the X, Y, ⁇ axis directions and around each axis with respect to the stator.
  • the position and orientation of the mover are controlled with 6 degrees of freedom.
  • the stage can be displaced in the X, ⁇ , and ⁇ axis directions and rotated around those axes.
  • Position and attitude can be controlled with 6 degrees of freedom.
  • the teeth at the tips of the protruding teeth are formed in a sharp shape.
  • the tip of the tip of these teeth it is possible to obtain a thrust characteristic that changes sinusoidally in a non-excited state, and the tip of a plurality of excitation units in the drive unit is given a tip.
  • the thrust can be smoothed.
  • the object is to provide a stage device having a stage on which a substrate is mounted and a drive system for driving the stage, wherein the drive system controls the position of the stage in the X and ⁇ axis directions.
  • the magnetic pole units for the linear motor are arranged in the X and ⁇ directions, and the excitation unit for the linear motor is arranged in the X and ⁇ directions as a drive system so as to face the magnetic pole unit.
  • a stage device characterized in that It also has a stage on which the substrate is placed, and a drive system for driving the stage.
  • the drive system allows the stage position and orientation with six degrees of freedom in the X, ⁇ , and ⁇ axis directions and rotation around each axis.
  • a stage device for controlling a stage wherein a movable element of any of the above-mentioned planar motors is used as a stage, and a stator of any of the above-mentioned planar motors is used as a drive system. This is achieved by the device. Further, the above object is achieved by the above stage device of the present invention, further comprising a cooling mechanism for cooling the excitation unit.
  • the above object is achieved by an exposure apparatus for transferring an image of a pattern onto a substrate, the exposure apparatus having the above-mentioned stage apparatus as a stage apparatus for mounting and moving the substrate.
  • the exposure apparatus of the present invention includes a column that supports a projection optical system that projects a pattern image on a substrate via a vibration isolation mechanism, and a fixed frame that supports a drive system of the stage device. It is characterized in that the force does not reach the projection optical system.
  • the above object is also achieved by forming the excitation unit in a substantially linear shape in the method of assembling the excitation unit.
  • a magnetic body portion having two arms and three protruding teeth formed at a distal end of each arm and a base end to which each arm is connected so as to face a plurality of permanent magnets of the magnetic pole unit.
  • This is achieved by a method of assembling an excitation unit, which comprises assembling a material and two armature coils wound around respective arms.
  • the above object is also achieved by assembling the excitation unit by forming four arms each having a substantially cross shape in the X-Y direction as a whole, and forming a tip end of each arm and a base end to which each arm is connected.
  • This is achieved by a method of assembling an excitation unit, which comprises assembling a magnetic member having five protruded teeth and four armature coils wound around each arm.
  • the object is to provide a method of assembling a linear motor, in which two arms formed in a substantially straight line and a front end of each arm and each arm are opposed to a plurality of permanent magnets of a magnetic pole unit.
  • a magnetic member having three protruding teeth formed at the base end where the parts are connected, and an excitation unit assembling two armature coils wound around each arm, and alternately magnetic poles This is achieved by a method of assembling a linear motor, which comprises assembling a magnetic pole unit having a plurality of permanent magnets arranged in a reversed direction.
  • the object is to provide a method of assembling a planar motor, comprising: a magnetic pole unit having a plurality of permanent magnets arranged on an XY plane by alternately reversing the directions of magnetic poles; Four cross-shaped arms and five protruding teeth formed at the distal end of each arm and at the base end where each arm is connected so as to face the multiple permanent magnets of the pole unit And an excitation unit having four armature coils wound around each of the arm portions, and assembling the same.
  • the above object has a stage on which a substrate is placed, and a drive system for driving the stage, and the drive system controls the stage in six degrees of freedom of rotation in X, ⁇ , and Z axis directions and around each axis.
  • the movable element of the planar motor of the present invention is assembled as a stage
  • the stator of the planar motor of the present invention is assembled as a drive system. This is achieved by a method of assembling the stage device.
  • FIG. 1 is a perspective view showing a schematic structure of a planar motor according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a schematic structure of an excitation unit of the flat motor according to the first embodiment of the present invention.
  • FIG. 3 is a plan view showing a schematic structure of a magnetic pole unit of the flat motor according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a plane type module cut along line AA in FIG. 3 according to the first embodiment of the present invention.
  • FIG. 5 is a perspective view for explaining a positional relationship between five protruding teeth of the excitation unit 6 facing the magnetic pole unit 14 in the first embodiment of the present invention.
  • FIG. 6 is a view for explaining a moving operation of the mover in the planar motor according to the first embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a moving operation of the mover in the planar motor according to the first embodiment of the present invention.
  • FIG. 8 is a view for explaining the moving operation of the mover in the planar motor according to the first embodiment of the present invention.
  • FIG. 9 is a view for explaining the moving operation of the mover in the planar motor according to the first embodiment of the present invention.
  • FIG. 10 is a view for explaining the moving operation of the mover in the planar motor according to the first embodiment of the present invention.
  • FIG. 11 is a view for explaining the moving operation of the mover in the planar motor according to the first embodiment of the present invention.
  • FIG. 12 is a view for explaining the moving operation of the mover in the planar motor according to the first embodiment of the present invention.
  • FIG. 13 is a view for explaining the moving operation of the mover in the planar motor according to the first embodiment of the present invention.
  • FIG. 14 is a view showing the movement of the mover in the planar motor according to the first embodiment of the present invention. It is a figure explaining a dynamic operation.
  • FIG. 15 is a diagram showing an example of arrangement of exemplary units in the planar motor according to the first embodiment of the present invention.
  • FIG. 16 is a diagram illustrating a floating operation of the mover in the planar motor according to the first embodiment of the present invention.
  • FIG. 17 is a view for explaining the floating operation of the mover in the planar motor according to the first embodiment of the present invention.
  • FIG. 18 is a diagram illustrating the floating operation of the mover in the planar motor according to the first embodiment of the present invention.
  • FIG. 19 is a view for explaining the floating operation of the mover in the planar motor according to the first embodiment of the present invention.
  • FIG. 20 is a diagram illustrating a floating operation of the mover in the planar motor according to the first embodiment of the present invention.
  • FIG. 21 is a diagram illustrating an operation of controlling the mover with six degrees of freedom in the planar motor according to the first embodiment of the present invention.
  • FIG. 22 is a perspective view showing a schematic structure of a planar motor according to the second embodiment of the present invention.
  • FIG. 23 is a partial cross-sectional view of a planar motor according to the second embodiment of the present invention.
  • FIG. 24 is a perspective view for explaining a positional relationship between five protruding teeth of the excitation unit 6 facing the magnetic pole unit 14 in the second embodiment of the present invention.
  • FIG. 25 is a view for explaining the moving operation of the mover in the planar motor according to the second embodiment of the present invention.
  • FIG. 26 is a view for explaining the moving operation of the mover in the planar motor according to the second embodiment of the present invention.
  • FIG. 27 is a view for explaining the moving operation of the mover in the planar motor according to the second embodiment of the present invention.
  • FIG. 28 is a diagram showing the structure of the excitation unit 6 in the planar motor according to the third embodiment of the present invention.
  • FIG. 29 shows an excitation unit in a planar motor according to the third embodiment of the present invention.
  • FIG. 9 is a diagram for explaining the operation of the step 6.
  • FIG. 30 is a diagram for explaining the operation of the excitation unit 6 in the planar motor according to the third embodiment of the present invention.
  • FIG. 31 is a diagram showing a modification of the excitation unit 6 in the third embodiment of the present invention.
  • FIG. 32 is a diagram illustrating a schematic structure of an exposure apparatus according to a fourth embodiment of the present invention.
  • FIG. 33 is a diagram illustrating a schematic structure of a stage device according to a fourth embodiment of the present invention.
  • FIG. 34 is a diagram illustrating a schematic structure of a stage device according to a fourth embodiment of the present invention.
  • a planar motor according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 21.
  • a plurality of excitation units are fixed at predetermined positions to form a stator, and the magnetic pole unit is used as a movable element movable with respect to the stator.
  • Each excitation unit of the stator is arranged below the mover with five teeth facing upward, and the mover is arranged with a plurality of permanent magnets facing downward to face the teeth.
  • FIG. 1 is a perspective view of a flat type module according to the present embodiment.
  • the configuration of the planar module according to the present embodiment is roughly divided into a stator unit 2 and a mover 4.
  • the stator unit 2 a plurality of excitation units 6 are fixed on a flat base 8 extending in the XY plane, and a planar sliding member 10 is provided on the upper surface thereof.
  • the mover 4 has a magnetic pole unit 14 composed of a plurality of permanent magnets arranged in a matrix on an XY plane, and is fixed to the upper surface of the magnetic pole unit 14 to be a non-magnetic and non-conductive material.
  • a substrate 12 is a substrate 12.
  • the movable element 4 on the sliding member 10 is Floating in the Z direction and sliding member 10 above
  • the substrate 12 can also be leveled.
  • FIG. 2A is a plan view of the excitation unit 6 as viewed from the + Z direction to the 1Z direction in the coordinate system shown in FIG. Fig. 2 (b) is the side view, and Fig. 2 (c) is the front view.
  • the excitation unit 6 in the present embodiment has four arms 20, 22, 24, 26, each of which has a substantially cross shape in the X-Y direction as a whole. Five protruding teeth 28, 30, 30 protruding in the + Z direction from the base end (the center of the cross) to which the tip of 20 to 26 and each arm 20 to 26 are connected.
  • each armature coil 38 to 44 is connected to a current source, and each armature coil 38 of each excitation unit 6 is controlled by a command sent from the control system (not shown) to the current source.
  • a predetermined current can be supplied to ⁇ 44.
  • FIG. 3 is a plan view of the magnetic pole unit 14 seen from one direction toward the + Z direction in the coordinate system shown in FIG. This plan view shows a surface of the magnetic pole unit 14 facing each tooth of the excitation unit 6.
  • the magnetic pole unit 14 according to the present embodiment has a cubic permanent magnet 50 N, 50 S whose magnetic poles are reversed with respect to each other to form a matrix on the XY plane. Multiple are arranged in a shape.
  • the permanent magnet 5 ON has an N pole on the side facing each tooth of the excitation unit 6, and the permanent magnet 5 OS has an S pole on the side facing each tooth of the excitation unit 6.
  • the plurality of permanent magnets 50 N, 50 S of the magnetic pole unit 14 have a square shape having a width of 1 in the X and Y directions in the XY plane, and are adjacent to each other.
  • the centers of 0 S are arranged at a distance of 21 in the X and Y directions, respectively.
  • a cubic permanent magnet 54 whose magnetic axis is oriented in the X direction is embedded between the plurality of permanent magnets 50 N and 5 OS that are separated in the X direction.
  • the magnetic poles of the stones 50N and 50S are arranged so that the magnetic poles face each other.
  • cubic permanent magnets 56 whose magnetic axes are oriented in the Y direction are embedded, respectively, and the magnetic poles are similar to those in the X direction.
  • the magnetic poles of the permanent magnets 50N and 50S face the same poles.
  • a cubic region surrounded by a permanent magnet 54 whose magnetic axis is oriented in the X direction and a permanent magnet 56 whose magnetic axis is oriented in the Y direction is embedded with a conductive and non-magnetic member 60.
  • the member 60 copper or aluminum can be used.
  • the magnetic axis is oriented in the X or Y direction between the permanent magnets 50 N and 5 OS arranged in a matrix at a distance.
  • the thrust given to the mover 4 or the magnetic flux given to the levitation force can be used with high efficiency. Also, by embedding a member 60 which is a conductor and a non-magnetic material in a region surrounded by the permanent magnets 54 and 56, the magnetic flux passing through the member 60 is canceled by the magnetic flux of the generated eddy current. Therefore, the leakage of magnetic flux between the magnetic pole unit 14 and the excitation unit 6 can be reduced, and a magnetic flux loop can be formed efficiently.
  • FIG. 4 is a cross-sectional view of the planar module according to the present embodiment, taken along a line AA in FIG. 3 showing the magnetic pole unit 14.
  • FIG. 5 is a perspective view for explaining the positional relationship between the five protruding teeth of the excitation unit 6 facing the magnetic pole unit 14.
  • a plurality of permanent magnets 50 N, 50 S of a magnetic pole unit 14 each having a width 1 and a lateral permanent magnet 54 whose magnetic axis is oriented in the X or Y direction are opposed to each other.
  • the two protruding teeth 28, 32 at the end of each of the excitation units 6 extending in the X direction are relatively positioned in the X direction relative to the protruding tooth 36 at the base end. — Offset by 1/2 and +1/2.
  • the two protruding teeth 3 0 and 3 4 of the two arms 2 2 and 2 6 extending in the Y direction are also 1/1 / relative to the protruding teeth 36 of the base end in the Y direction. 2, + 1/2 They are staggered. Therefore, as shown in FIG. 5, when the position of the tooth portion T5 of the protruding tooth 36 at the base end coincides with and faces the permanent magnet 50N (N pole) of the magnetic pole unit 14, The teeth T 1, T 2, ⁇ 3, ⁇ 4 of the projecting teeth 28 to 34 of the four arms are respectively connected to the permanent magnets 50 S (S pole) of the magnetic pole unit 14 facing each other. It overlaps in the direction or Y direction by 1/2.
  • the direction of the magnetic axes of the permanent magnets 54 and 56 of the magnetic pole unit 14 is partially shown by arrows or omitted.
  • FIGS. 6A to 8A are plan views showing the positions of the teeth of the excitation unit 6 with respect to the magnetic pole unit 14 of the mover 4, and the tooth portions T1 to T of the teeth 28-36 are shown. The position of 5 is shown.
  • (B) in FIGS. 6 to 8 shows a cross section in the X direction including the tooth portion T 5 of the excitation unit 6.
  • (C) shows a cross section in the Y direction including the tooth portion T5 of the excitation unit 6.
  • the tooth portion T1 also generates a thrust due to the magnetic repulsive force on the permanent magnet 50S.
  • Fig. 7 (c) only magnetic repulsion occurs in the Y direction, and the resultant forces are balanced and no thrust is generated in the Y direction.
  • the teeth T2 and T4 in the Y direction also generate magnetic attraction repulsive force to generate thrust.
  • Fig. 9 (b) specifies the direction of the current flowing through the armature coils 38 to 44 of the excitation unit 6. The-mark in the drawing indicates the direction from the page to the front of the page, and the X indicates the direction from the front of the page.
  • FIG. 10 shows the current application schedule of the current flowing through the armature coils 38 to 44 of the excitation unit 6 and the change in the polarity excited in each tooth.
  • the currents flowing through the armature coils 38, 40, 42, and 44 are the currents C1, C2, C3, and C4, respectively, as shown in FIG. 9B.
  • the vertical axis indicates the polarity excited in the tooth portion T 1 of the tooth 28.
  • Fig. 10 (e) shows the result of energizing each armature coil 38-44 as shown in Figs. 10 (a)-(d), which is generated at the tooth T5 of the tooth 36 at the base end. The change of the magnetic pole is shown.
  • the suction force acts to generate thrust.
  • Fig. 11 shows the thrust generated by each tooth.
  • FIG. 11 (f) shows the resultant force of the thrusts F ⁇ 1 to F ⁇ 5, that is, the thrust at each moving position with the position shown in FIG. 9 (a) as a base point.
  • the waveform shown by the solid line shows the change in thrust in the non-excited state
  • the waveform shown by the broken line is generated by the excited state, that is, by the conduction schedule shown in Fig. 10. Thrust.
  • the sine wave changes with almost 21 periods so that it approaches 0 at each position slightly past.
  • the unit 14 faces the permanent magnet 56 between the permanent magnet 50 N (N pole) in the Y direction and the permanent magnet 50 S in the Y direction.
  • the initial state is a state in which the excitation unit 6 is relatively moved by 1 in the + Y direction from the state shown in FIG.
  • Fig. 13 (e) shows the excitation of the tooth T5 of the protruding tooth 36 at the base end as a result of energizing each of the armature coils 38 to 44 as shown in Figs. 13 (a) to 13 (d). The change is shown.
  • FIG. 14 shows the thrust generated by each tooth.
  • Fig. 14 (f) shows the resultant of the thrusts FT1 to FT5, that is, the thrust generated at each moving point with the position shown in Fig. 12 as a base point.
  • Figs. 14 (a) to 14 (f) the waveform shown by the solid line shows the change in thrust in the non-excitation state, and the waveform shown by the broken line is generated by the excitation state, that is, the energization schedule shown in Fig. Thrust.
  • At least two excitation units 6 may be arranged so as to be relatively shifted by one in the Y direction.
  • at least two excitation units 6 are used as shown in FIG.
  • the excitation units 6 may be arranged so that the positions of the excitation units 6 are relatively shifted by 1 in the X and Y directions.
  • FIG. 16 shows a cross section in the X direction showing the positions of the teeth T1 to T5 of the teeth 28 to 36 of the excitation unit 6 with respect to the magnetic pole unit 14 of the mover 4. I have. (B) shows a cross section in the Y direction including the tooth portion T5 of the excitation unit 6.
  • FIG. 16 it is assumed that the tooth portion T 5 of the protruding tooth 36 at the base end of the excitation unit 6 faces the permanent magnet 50 N (N pole) of the magnetic pole unit 14 as an initial state. .
  • the tooth portion ⁇ 5 is excited to the ⁇ pole.
  • FIGS. 16 (a) and 16 (b) magnetic repulsion is generated against the magnetic pole unit 14 at all the teeth T1 to t5, and the magnetic pole unit 14 is generated.
  • a levitation force is generated to make the levitation in the + Z direction. Due to the levitation force, the magnetic pole unit 14 floats with respect to the excitation unit 6.
  • the floating force cannot be maintained at all positions where the mover 4 moves two-dimensionally in the XY plane.
  • the position of the tooth portion T5 of the excitation unit 6 is as shown in FIG. 12 with the movement of the movable element in the X-Y direction, the movable element 4 is lifted up. You will not be able to get enough buoyancy. That is, the levitation force also changes depending on the relative position between the excitation unit 6 and the magnetic pole unit 14. This point will be described in detail with reference to FIGS. 17 to 20 taking movement in the X direction as an example.
  • the direction of the current flowing through the armature coils 38 to 44 of the excitation unit 6 is the same as the rule in Fig. 9 (b).
  • 34 shows the polarity excited to the teeth T2 to T4.
  • FIG. 17 (e) shows the excitation generated in the tooth portion T5 of the protruding tooth 36 at the base end as a result of energizing the armature coils 38-44 as shown in Figs. 17 (a)-(d). Shows the change.
  • Figure 18 shows the levitation force generated by each tooth.
  • FIGS. 18 (a) to 18 (f) shows the resultant force of the levitation forces F 1 to FT5, that is, the levitation force at each moving position with the position shown in FIG. 9 (a) as a base point.
  • the waveforms shown by the solid lines show changes in the levitation force in the non-excited state. In the non-excited state, only the magnetic attraction force acts, so the levitation force in the Z direction is all negative.
  • the waveform shown by the broken line is the excited state, that is, the levitation force generated by the energization schedule shown in FIG.
  • the levitation force generated by the excitation unit 6 when moving from the position shown in Fig.
  • the initial state is set at the position where each tooth of the excitation unit is moved relative to the position shown in FIG. 12 by 1 in the + Y direction from the state shown in FIG. 9 in the + Y direction.
  • the floating force in the case will be described.
  • the direction of the current flowing through the armature coils 38 to 44 of the excitation unit 6 and the sign of the current flowing through each armature coil 38 to 44 are the same as those shown in FIG.
  • the conduction schedule of the current flowing through the armature coils 38 to 44 of the excitation unit 6 Fig. 19 shows the change in the polarity of the yule and the polarity excited by each tooth.
  • the vertical axis of the upper graph represents the current C1 flowing through the armature coil 38.
  • Fig. 19 (e) shows the tooth T5 of the protruding tooth 36 at the base end as a result of energizing each armature coil 38-44 as shown in Figs. 19 (a)-(d). The change in excitation is shown.
  • a magnetic repulsive force acts between the permanent magnets 50N and 50S of the magnetic pole unit 14 facing the magnetic pole unit 14 and a levitation force is generated.
  • Fig. 20 shows the levitation force generated by each tooth.
  • FIGS. 20 (a) to 20 (f) shows the resultant force of the levitation forces F T1 to F T5, that is, the levitation force generated at each moving point with the position shown in FIG. 12 as a base point.
  • the waveforms shown by the solid lines show changes in the levitation force in the non-excited state. In the unexcited state, only the magnetic attraction acts, so the levitation force in the Z direction is all negative.
  • the waveform shown by the broken line is the excited state, that is, the levitation force generated by the energization schedule shown in FIG.
  • the levitation force generated in the excitation unit 6 when moving from the position shown in FIG. 12 changes sinusoidally in approximately 21 cycles in the excitation state.
  • At least two excitation units 6 may be arranged so as to be shifted by one relatively in the Y direction.
  • two excitation units are used as illustrated in FIG. 15 used for reducing the thrust unevenness described above. It is sufficient to use a set of exciters 6 and arrange a set of excitation units 6 whose mutual positions are relatively shifted by 1 in the X and Y directions, respectively.
  • the set of the excitation unit 6 shown in FIG. 15 is used for the two-dimensional movement of the mover 4 in the XY plane, and the excitation unit also shown in FIG. If a set of magnets 6 is prepared and used for floating the mover 4, that is, at least two sets of the excitation unit 6 are used, and the magnetic pole unit is relatively moved in a predetermined direction in the XY plane. By constructing a drive unit that generates a thrust to be generated and a magnetic repulsion for magnetically levitating in the Z direction, the mover 4 can move and levitate at the same time.
  • the magnetic pole unit 14 of the square mover 4 is divided into, for example, square areas A to D, and the area below the areas A to D is divided.
  • a different predetermined current may be supplied to each of the armature coils 38 to 44 of the set of the excitation unit 6.
  • the direction in the X-Y plane as a whole is Not only can you move, but you can also rotate around the Z axis.
  • Fig. 21 (b) by changing the levitation force in the Z direction of each of the regions A to D, it becomes possible to perform rotation about the X axis or the Y axis.
  • the leveling of the plane of the mover 4 can be adjusted.
  • planar motor of the present embodiment a plurality of sets of excitation units can be provided on the stator side, so that a high thrust can be obtained. Since it can be configured with a simple planar structure composed of the conductor member 60, the conductor member 60, and the substrate 12, it can be moved at a high speed with a light weight. Further, according to the planar motor according to the present embodiment, it becomes possible to move the two-dimensional plane while giving a floating force to the mover 4. Further, it is possible to realize a planar motor that can control the position and posture of the mover 4 in three axes directions of X, Y, and ⁇ ⁇ ⁇ and a total of six degrees of freedom in the rotation directions of those axes.
  • planar motor according to a second embodiment of the present invention will be described with reference to FIGS.
  • a plurality of excitation units are fixed at predetermined positions to form a stator, and the magnetic pole unit is used as a movable element movable with respect to the stator.
  • each excitation unit of the stator is arranged above the mover with five protruding teeth facing downward, and the mover faces the protruding teeth with a plurality of permanent magnets facing upward. The point is that it is arranged to be.
  • FIG. 1 a schematic configuration of the planar motor according to the present embodiment will be described with reference to FIG.
  • FIG. 22 is a perspective view of the flat motor according to the present embodiment.
  • the configuration of the planar motor according to the present embodiment is roughly divided into a stator unit 2 and a mover 4.
  • the stator unit 2 has a plurality of excitation units 6 fixed to the lower surface of a flat base 8 extending in an X-plane, and a flat sliding member 10 provided on the lower surface.
  • the mover 4 has a magnetic pole unit 14 composed of a plurality of permanent magnets arranged in a matrix on a ⁇ - ⁇ plane, and is fixed to the lower surface of the magnetic pole unit 14, and is made of a non-magnetic material and non-conductor. There is a certain substrate 12.
  • the mover 4 is located below the stator unit 2, and even if the respective excitation units 6 of the stator unit 2 are not excited, the plurality of permanent magnets of the mover 4 Through a predetermined gap with respect to the stator unit 2 Then, the mover 4 can be floated in the air.
  • the movable element 4 below the sliding member 10 is slid.
  • the movable member 10 can be moved two-dimensionally in the XY plane below the movable member 10, and the leveling of the mover 4 itself can be adjusted.
  • the excitation unit 6 of the stator unit 2 has the same configuration as the excitation unit 6 in the first embodiment described with reference to FIG. 2, and has five teeth 2 in the Z direction in a use state. The only difference is that 8, 30, 32, 34, and 36 are arranged so that the illustration and description of the configuration are omitted. Also, the structure of the magnetic pole unit 14 of the stator 4 of the planar motor according to the present embodiment is the same as the magnetic pole unit in the first embodiment described with reference to FIG. Is omitted.
  • FIG. FIG. 23 shows a cross section of a flat motor according to the present embodiment
  • FIG. 24 is a perspective view for explaining a positional relationship between five protruding teeth of an excitation unit 6 facing the magnetic pole unit 14.
  • the plurality of permanent magnets 50 N, 5 OS of the magnetic pole unit 14 each having a width 1 and the horizontal permanent magnet 54 whose magnetic axis is oriented in the X or Y direction are opposed to each other.
  • each of the excitation units 6 have two protruding teeth 28 and 32 at the end thereof relative to the protruding teeth 36 at the base end in the X direction. — Offset by 1/2 and +1/2.
  • the two protruding teeth 30 and 34 of the two arms 2 2 and 26 extending in the Y direction are also relatively smaller in the Y direction than the protruding teeth 36 of the base end. They are offset by 2, + 1/2. Therefore, as shown in FIG. 24, when the position of the tooth portion T5 of the protruding tooth 36 at the base end coincides with and faces the permanent magnet 50N (N pole) of the magnetic pole unit 14
  • the teeth T 1, T 2, ⁇ 3, ⁇ 4 of the four teeth 28-34 are permanent magnets 5 of the opposing magnetic pole unit 14, 5 OS (S pole) in the X direction Alternatively, they overlap by 1/2 in the Y direction.
  • FIG. 25 to 27 is a plan view showing the position of each tooth of the excitation unit 6 with respect to the magnetic pole unit 14 of the mover 4, and the tooth portion T of each tooth 28 to 36 is shown. 1 to T5 are shown.
  • (B) in FIGS. 25 to 27 shows a cross section in the X direction including the tooth portion T5 of the excitation unit 6.
  • (C) shows a cross section in the Y direction including the tooth portion T5 of the excitation unit 6.
  • the tooth T5 of the tooth 36 at the base end of the excitation unit 6 faces the permanent magnet 50N (N pole) of the magnetic pole unit 14 as an initial state.
  • the excitation unit by the plurality of permanent magnets 50 N and 50 S of the magnetic pole unit 14 is used.
  • the magnetic attraction between the teeth T 1 to T 5 of the box 6 is balanced, and the magnetic pole unit 14 floats in the air via a predetermined gap with respect to the excitation unit 6.
  • the N pole relatively strong at the tooth T1 (hereinafter, referred to as N + pole), and relatively weak at the teeth T2 to T4
  • the N-pole (hereinafter referred to as the N-pole) supplies a predetermined current to the four armature coils 38 to 44 so that the S-pole is excited in the tooth T5.
  • the magnetic attraction at the tooth T1 is stronger than that in the balanced state. Thrust is generated to move the pole unit 14 in the X direction (rightward in the figure).
  • the magnetic attraction force is weaker than in the balanced state, and as a result, the mover 4 starts moving in the X direction.
  • the magnetic attraction force is weaker than in the balanced state, and as a result, the mover 4 starts moving in the X direction.
  • Fig. 26 (c) in the Y direction, while the state of balance of the magnetic attraction force is maintained, only the magnetic attraction force as a whole changes, so the thrust in the Y direction is Does not occur.
  • the position of the excitation unit 6 with respect to the magnetic pole unit 14 is shifted in the Y direction.
  • At least two excitation units 6 may be arranged so as to be relatively shifted by one in the Y direction. That is, in order to move the mover 2 two-dimensionally in the XY plane while reducing the thrust unevenness, at least two movers are required as shown in FIG. 15 as in the first embodiment. It is sufficient to use the excitation unit 6 and arrange them so that their mutual positions are relatively shifted by 1 in the X and Y directions, respectively. Therefore, the set of the excitation unit 6 shown in FIG.
  • the excitation unit 6 shown in FIG. 15 is used for the two-dimensional movement of the mover 4 in the XY plane, and the excitation unit 6 shown in FIG. If a set of the magnets 6 is prepared and used for leveling the mover 4, that is, at least two sets of the excitation unit 6 are used, and the magnetic pole unit is oriented in a predetermined direction in the XY plane.
  • a driving unit that generates a thrust to move relative to the motor and changes the magnetic attraction force that is magnetically levitated in the Z direction, the movement of the mover 4 in the XY direction and the movement in the Z direction Movement can be performed simultaneously.
  • the magnetic pole unit 14 of the square mover 4 is moved to, for example, square areas A to D. It may be divided into four, and different predetermined currents may be supplied to the armature coils 38 to 44 of the set of the excitation units 6 above the regions A to D, respectively.
  • the direction of thrust in each of the areas A to D as shown in Fig. 21 (a)
  • Fig. 21 (b) by changing the levitation force in each of the areas A to D in the Z direction, rotation around the X axis or Y axis can be performed.
  • the leveling of the plane of the mover 4 can be adjusted.
  • a plurality of sets of the excitation units 6 can be provided on the stator unit 2 side, so that a high thrust can be obtained. Since it can be configured with a simple planar structure composed of the permanent magnet 50, the conductor member 60, and the substrate 12, it can be moved at a high speed with light weight.
  • the magnetic pole unit 6 of the mover 2 is required to float the mover 4.
  • the magnetic attraction force acting between the permanent magnets 50 N, 50 S of the stator unit 2 and the protruding teeth 28 to 36 of the excitation unit 6 of the stator unit 2 is canceled, and the floating of the movable element 4 is equal to or more than its own weight. It is necessary to generate an upward force. For this reason, a large current needs to flow through each of the armature coils 38 to 44, and the heat generated from the stator unit 2 due to energization of the coils increases.
  • planar motor of the present embodiment since the mover 4 is located below the stator unit 2 and the mover 4 floats in the space due to magnetic attraction even in a non-excited state. On the other hand, the position and orientation control of the mover 4 requires only a small amount of coil current, so that the heat generated from the stator unit 2 can be reduced, which is advantageous in that it is efficient.
  • a planar motor according to a third embodiment of the present invention will be described with reference to FIGS.
  • the planar motor according to the present embodiment has a shape of the tip of the five protruding teeth 28 to 36 of the excitation unit 6 in the planar motor according to the first and second embodiments. It has a characteristic in shape. Other configurations are the same as those of the first and second embodiments, so that illustration and description are omitted.
  • FIG. 28 shows a magnetic member having five protruding teeth of the excitation unit 6 according to the present embodiment, and armature coils 38 to 44 wound around arms thereof.
  • FIG. 28 (a) is a perspective view of the excitation unit 6 according to the present embodiment
  • FIG. 28 (b) is a partially enlarged view of the tip of each tooth of the excitation unit 6,
  • FIG. () Is a partial cross-sectional view of the tip of each tooth of the excitation unit 6.
  • a predetermined chamfer 6 2 is provided on each of the four end portions T 5 to T 5 of the five protruding teeth 28 to 36 of the excitation unit 6.
  • a to 62 d are applied, and the tooth portions at the tips of the five protruding teeth are formed in a sharp shape.
  • the flat portions and the chamfers 62 in the moving direction of the XY plane of the tooth portions T1 to D5 of the respective protruding teeth 28 to 36 are shown.
  • the length ratio of the 6 2d is set to about 2: 1: 1.
  • FIG. 29 shows the tooth part ⁇ 5 of the protruding tooth 36 as an example
  • the tooth part ⁇ 5 in the present embodiment is shown on the right side of the figure
  • the tooth part ⁇ 5 without chamfering is shown as a comparative example. Shown on the left.
  • each tooth portion of the present embodiment and the comparative example has a width substantially equal to the width 1 of the permanent magnet 50 of the magnetic pole unit 14, and the permanent magnet 50 S Shall be opposed to.
  • the shape of the tip portion of the tooth portion of the present embodiment is composed of the end face and the chamfers 62 to 62 d as already described with reference to FIG. 28, and the tip portion of the tooth portion of the comparative example is
  • the chamfers 6 2a to 6 2d provided on the tooth portions of the form (1) have a shape of only the end face.
  • the end surfaces of any of the teeth are located at a predetermined gap from the magnetic pole unit 14.
  • the magnetic attractive force acting between the tooth portion T5 of the present embodiment and the permanent magnet 50S of the magnetic pole unit 14 is denoted by Ft, and the breaking perpendicular to the direction in which the magnetic attractive force Ft acts.
  • Ft the magnetic attractive force acting between the tooth portion T5 of the present embodiment and the permanent magnet 50S of the magnetic pole unit 14
  • the breaking perpendicular to the direction in which the magnetic attractive force Ft acts Let At be the size of the area.
  • the magnetic attraction acting on the tooth portion T5 of the comparative example is F f
  • a f is the size of the cross-sectional area perpendicular to the direction in which the magnetic attraction F f acts.
  • the magnitude of the magnetic attraction force F is inversely proportional to the square of the distance between the two magnetic materials, and proportional to the surface area of the opposing magnetic materials.
  • the magnetic attraction force Ft of the tooth portion T5 of the present embodiment having a region where the distance of the action of the tooth portion is long ⁇ is smaller than the magnetic attraction force F
  • FIGS. 29 (b) to 29 (d) show the component force in the moving direction of the magnetic attraction forces Ft and Ff.
  • thrust components ft and ff are generated.
  • FIG. 30 (a) shows the thrust characteristics at the tooth portion of the comparative example
  • FIG. 30 (b) shows the thrust characteristics at the tooth portion according to the present embodiment.
  • the horizontal axis represents the moving distance.
  • the vertical axes in both figures show the cross-sectional areas A t and A f from the origin position to the upper side, and the magnitudes of the magnetic attraction forces F t and F f and the magnitudes of the thrusts ft and ff to the lower side Is shown.
  • the positions of a to d shown on the horizontal axis in the figure correspond to the movement amounts of the magnetic pole unit 14 shown in FIGS. 29 (a) to (d).
  • the cross-sectional area A f monotonously decreases with the movement of the magnetic pole unit 14. . Therefore, the magnetic attractive force F f also decreases monotonically.
  • Fig. 30 (a) The curve of the thrust ff shown by the solid line shows the thrust characteristics when only the permanent magnet 50S is considered, and the curve of the thrust ff shown by the broken line shows the This is the thrust characteristic when the effect of the permanent magnet 50 N next to S is considered.
  • the magnitude of the thrust ff at the moving position of the magnetic pole unit 14 is uneven, cogging occurs.
  • FIG. 30 (b) is the same as that of the comparative example in FIG. 30 (a).
  • the above-described sinusoidal thrust characteristics can be smoothed, so that cogging can be achieved. This makes it possible to realize a planar motor in which the load is extremely reduced.
  • the ratio of the end face of each tooth T1 to T5 of the excitation unit 6 to the chamfer is set to about 2: 1: 1 as described above, but of course, this is only an example. 'It is also possible to use other ratios.For example, as shown in Fig. 31, instead of chamfers 6 2a to 6 2d, there is no flat part as shown in Fig. A tooth portion at the tip of each protruding tooth may be formed to make it more sharp.
  • the width of each protruding tooth T1 to D5 of the excitation unit 6 of the stator unit 2, the width of the permanent magnet 50 of the mover 4, or the distance between the stator unit 2 and the mover 4 may be formed in an optimum tip shape.
  • the excitation unit 6 has four arms each having a substantially cross shape in the X-Y direction, and a base to which the tip of each arm and each of the arms are connected. It consisted of a magnetic member having five protruding teeth formed at the end, and four armature coils wound around each arm.
  • the excitation unit is composed of a magnetic member having two substantially linear arms, and a distal end of each arm and three protruding teeth formed at a base end to which the arms are connected.
  • a linear excitation unit formed of two armature coils wound around each arm may be used.
  • the mover moves straight through the plane. Move in a shape. If such linear excitation units are provided in the X and Y directions, the mover can be moved along the XY plane.
  • FIG. 32 shows an overall schematic configuration of an exposure apparatus according to the present embodiment.
  • the exposure apparatus of the present embodiment scans the reticle one-dimensionally and one-dimensionally scans the wafer at a speed synchronized with the reticle (a speed multiplied by the projection magnification). This is a so-called step-and-scan projection method.
  • An exposure apparatus In FIG. 32, a first column 230 made of invar (an alloy having a low expansion coefficient) is placed on a base 100 via an anti-vibration damper 112. The first column 230 fixes the projection optical system PL.
  • a laser interferometer 135 for measuring the position of the reticle scanning stage 180 is mounted on the first column 230, and a second column holding the illumination optical system 130 is also provided. Column 170 is fixed.
  • a stage device using the planar motor described in the second embodiment is provided inside the first column 230.
  • This stage device is composed of a stage drive unit 300 corresponding to the stator unit 2 in the second embodiment and a wafer stage WST corresponding to the mover 4.
  • a wafer W as a substrate is mounted.
  • a plurality of permanent magnets each having a magnetic axis oriented in a predetermined direction are arranged (the stage driving unit 300 is connected to the base 100 via the frame 124).
  • the wafer stage WST has a magnetic attraction force even when the plurality of excitation units 6 in the stage drive unit 300 are in a non-excited state.
  • the wafer stage WST is accordingly turned on by the projection optical system.
  • the direction perpendicular to the optical axis of the PL horizontal plane
  • the direction perpendicular to the paper plane in Figure 32 Y direction
  • the X direction perpendicular to the Y axis in the horizontal plane
  • the wafer W The optical axis of the projection optical system PL Position the wafer W in the Z direction
  • (C) The inclination of W with respect to the image plane of the projection optical system PL can also be adjusted.
  • the stage drive unit 300 When the wafer stage WST moves in the X, Y, and Z directions, the stage drive unit 300 Generates a reaction force in the opposite direction. Escaped to base 100 via 124. On the other hand, since the projection optical system PL is held by the first column 230 via the anti-vibration dam 12, the reaction force generated in the stage drive unit 300 exerts vibration on the projection optical system PL. None.
  • a second column 110 composed of a member is fixed on the first column 230, and a reticle scanning stage 180 slidable in the X direction is mounted on the upper part of the second column 170, and the reticle A reticle R having a transfer pattern formed thereon is held on a scanning stage 180.
  • the reticle scanning stage 180 is specifically a stage driven by a linear motor described in Japanese Patent Application Laid-Open No. 8-63231, and has a structure in which a reaction force due to driving is canceled. I have. Therefore, the reaction force generated on the reticle scanning stage 180 and the reaction force generated on the stage drive unit 300 do not cause vibration to the projection optical system PL, and also cause vibration to the illumination optical system 130. There is no.
  • the illumination optical system 130 includes a blind mechanism, a fly-eye lens, a condenser lens, and the like, and illumination light formed in a predetermined area irradiates the reticle R.
  • reticle R that has received the illumination light defined in a predetermined shape is held on reticle scanning stage 180 that can move at least in X direction at a constant speed on second column 170.
  • the reticle scanning stage 180 performs a one-dimensional scanning movement in the X direction, a minute rotation movement for bowing correction, and the like by a drive system 134.
  • a movable mirror 1336 that reflects the measurement beam from the laser interferometer 135 is fixed, and the X direction position of the reticle R is adjusted by the laser interferometer 135. Measured in real time.
  • the image of the pattern formed on the reticle R is reduced to, for example, 1/4 by the projection optical system PL and formed on the wafer W.
  • the wafer W is mounted on a wafer stage WST that can move in the X, Y, and Z directions.
  • the pattern on the reticle R is illuminated with the exposure light IL, and the projection image on the reticle R is projected and exposed on the wafer W via the projection optical system PL.
  • the illumination area on the reticle R is, for example, a rectangular slit, and the entire pattern area on the reticle R is not illuminated by the illumination area alone. Therefore, at the time of exposure, reticle scanning stage 180 is driven to scan reticle R with respect to the illumination area at a constant speed V1 in the X direction, which is a direction perpendicular to the longitudinal direction of the illumination area.
  • the wafer W is scanned at a constant speed V2 in the X direction with respect to the reticle image in the illumination area.
  • V 2 the velocity V 2 is / 5 ⁇ V 1.
  • the wafer stage WST is driven by the stage drive unit 300 to move the scanning start position of the next exposure area on the wafer W into the exposure field of the projection optical system PL. I do.
  • a moving mirror 1339X that reflects the measuring beam from the laser interferometer 1338X is fixed to one end surface of the wafer stage WST in the X direction, and the coordinate position of the wafer stage WST in the X direction is fixed. Is measured in real time by the laser interferometer 1 3 8 X.
  • a moving mirror 1339Y that reflects the measuring beam from the laser interferometer 1338Y is also fixed to one end surface of the wafer stage WST in the Y direction, and the YST of the wafer stage WST is fixed. Is measured in real time by the laser interferometer 1338Y.
  • the stage drive unit 300 of the scanning exposure apparatus is connected to a refrigerant supply port 310 at the end of a pipe drawn from a cooler (not shown).
  • the refrigerant controlled at a predetermined temperature through the stage 0 is introduced into the stage drive unit 300, circulates through the stage drive unit 300, and flows through the armature coils 38 to 44. After the plurality of excitation units 6 that have generated heat are cooled, they are discharged from the cooling medium discharge ports 312.
  • the scanning exposure apparatus is provided with a wafer stage transfer system 320 for loading or unloading wafer stage WST from opening 330 on the side surface of first column 230.
  • the wafer stage transfer system 320 has the same configuration as the stage drive unit 300, and can move the wafer stage WST on which the wafer W is mounted by floating it with magnetic attraction.
  • the transfer of the wafer W is The wafer stage WS is transported together with the stage WST.
  • the control of the exposure operation in the present scanning type exposure apparatus is totally managed by the main control unit 141.
  • the basic operation of the main controller 14 1 is based on the scan exposure based on the position information from the laser interferometers 13 5 and 13 8 and the speed information from the drive systems 13 4 and 13 7. While maintaining a predetermined speed ratio (a value corresponding to the projection magnification of the projection optical system PL) between the reticle scanning stage 180 and the wafer stage WS ⁇ ⁇ , a predetermined alignment of the relative positional relationship between the reticle pattern and the wafer pattern is performed. The relative movement is to be performed with the error kept within.
  • FIG. 33 is an exploded perspective view showing a part of stage drive unit 300 and wafer stage W S # according to the present embodiment.
  • FIG. 34 is a plan view showing the arrangement of the excitation unit 6 in the stage drive unit 300 and the arrangement of the magnetic pole units 14 provided on the wafer stage WS.
  • the stage drive unit 300 has a plurality of excitation units 6 fixed to the lower surface of a flat base 8, and a flat sliding member 10 on the lower surface. Is provided. An opening is provided substantially at the center of the stage drive unit 300, and the light exit side end of the lens barrel of the projection optical system is located in this opening. Therefore, the base 8 has a mortar-shaped slope in conformity with the shape of the light exit end of the lens barrel of the projection optical system, and is connected to the sliding member 10 at the opening at the bottom of the slope. ing.
  • the wafer stage WST has a substantially square planar shape, a circular wafer mounting surface on which the wafer W is mounted, and a plurality of permanent magnets around the wafer mounting surface.
  • Magnetic pole units formed in a matrix on a plane are provided divided into four regions A to D.
  • a nonmagnetic and nonconductive substrate 12 is fixed to the lower surface of the magnetic pole unit 14 and below the wafer mounting surface.
  • movable mirrors 1339X and 1339Y for measuring the positions in the X and Y directions with a laser interferometer are attached to two adjacent sides of the wafer stage WST. And You.
  • wafer stage WST serving as a mover is located below stage drive unit 300 serving as a stator unit, and stage drive unit 300 is provided. Even when each excitation unit 6 of the wafer stage WST is in a non-excited state, the magnetic force of the plurality of permanent magnets 50 N and 50 S of the wafer stage WST causes the stage drive unit 300 to pass through a predetermined gap through a predetermined gap. They can float in the air.
  • the plurality of excitation units 6 of the stage drive unit 300 located above the respective areas A to D are the excitation units already described with reference to FIG.
  • the six sets are arranged so that they function sequentially in groups of two.Each area A to D of the magnetic pole unit generates a thrust for relative movement in a predetermined direction in the XY plane, and a magnetic force is generated in the Z direction.
  • the wafer stage WS can be moved in the X and Y directions and in the Z direction at the same time.
  • the magnetic pole unit 14 of the wafer stage WST is divided into four areas A to D, the armature coils 38 to 44 of the set of the excitation unit 6 above the areas A to D are respectively provided for each area.
  • the actuators By supplying different predetermined currents to the actuators, for example, by changing the direction of thrust in each of the areas A to D, not only can the entire body move in one direction in the XY plane, but also rotate around the Z axis. Will be able to do it.
  • the rotation around the X axis or the Y axis can be performed, and the leveling of the wafer W plane of the wafer stage WST can be performed. Can be adjusted.
  • the four arms and the protruding teeth at the leading and trailing ends of the arms may be integrally formed of a magnetic material, or each part may be manufactured separately. And then assemble it.
  • the armature coil is wound around the arm of the manufactured magnetic member to connect the wires and pipes, and comprehensive adjustments (electrical adjustment, operation confirmation, etc.) are performed.
  • the mover of the planar motor according to the above-described embodiment is incorporated as a stage for mounting a substrate, and the stator is driven for driving the stage.
  • the system is incorporated as a system and comprehensively adjusted so that the position and orientation of the stage can be achieved with six degrees of freedom of rotation around the X, ⁇ , and ⁇ axes.
  • the illumination system and the projection optical system composed of a plurality of lenses are incorporated into the exposure apparatus main body to perform optical adjustment, and the step according to the above-described embodiment including a large number of mechanical parts is performed.
  • a lithographic apparatus as a reticle stage or wafer stage
  • attaching it to the main body of the exposure apparatus connecting wiring and piping, and performing comprehensive adjustments (electrical adjustment, operation confirmation, etc.). It is desirable to manufacture the exposure equipment in a clean room where the temperature and cleanliness are controlled.
  • the set of the excitation units 6 is defined by the arrangement shown in FIG. 15, but the present invention is not limited to this.
  • ⁇ 1, m 1 (n , M is a positive integer) and may be composed of at least two excitation units 6 separated by a distance.
  • the arrangement position of the pair of the excitation units 6 is not limited to the example shown in FIG. 15 and various modifications are possible.
  • the drive unit is divided into four regions A to D as shown in FIGS. 21 and 34 in order to give the mover 4 a movement with six degrees of freedom.
  • the invention is not limited to this, and the magnetic pole unit 14 is divided into areas A to C in which a line connecting the centers of the respective areas on the XY plane forms a triangle, and the excitation unit below the areas A to C is divided. Even if a predetermined current that is different for each region is supplied to each of the six sets of armature coils 38 to 44, the mover 4 can be given a movement with six degrees of freedom. Therefore, the number of divided regions may be three or more.
  • the one provided with the magnetic pole unit 14 is used for the mover 4, and the one provided with the excitation unit 6 is used for the stator unit 2, but the present invention is not limited to this.
  • the magnetic pole unit 14 may be used as the stator unit 2 and the exciting unit 6 may be used as the mover 4.
  • the number of excitation units 6 is not very large. This is effective if wiring for supplying current to the sub coils 38 to 44 can be simplified.
  • the stage apparatus and the exposure apparatus using the planar motor according to the second embodiment have been described.
  • the planar motor according to the first embodiment may be replaced with a stage apparatus.
  • exposure equipment
  • the stage apparatus using the planar motor of the present invention has been described as being applied to the wafer stage WST side.
  • the present invention is not limited to this, and for example, the reticle scanning stage 180 side And the reticle scanning stage 180 may be controlled with six degrees of freedom.
  • the excitation unit 6 is not limited to the shape shown in the above-described embodiment, but can be variously modified depending on the mounting space at the mounting stage and other components.
  • the excitation unit 6 in the above embodiment is formed in a cross shape in which an angle between two adjacent arms of each of the arms 20 to 26 is approximately 90 °.
  • the present invention is not limited to this, and the angle between two adjacent arms may be different.
  • the angle between the arm 20 and the arm 22 and the angle between the arm 24 and the arm 26 are both 120 °, and the arm 22 and the arm 24 It is a matter of course that the angle between the arm 26 and the arm 20 and the angle between the arm 20 may both be 60 ° (in the present invention, these are also referred to as substantially cross-shaped).
  • the width in the X and Y directions of the plurality of permanent magnets arranged in the X and Y directions of the pole unit may be appropriately changed.
  • the present invention is applied to a step-and-scan type projection exposure apparatus using a conventional ultra-high pressure mercury lamp as a light source, but the present invention is not limited to this.
  • the present invention can of course be applied to a projection exposure apparatus for exposing a wafer by a step-and-repeat method via a projection optical system having an image field capable of projecting the entire reticle circuit pattern at one time. Also, Since it does not require the intervention of air unlike a static pressure gas bearing, it can be used even in a vacuum, and is particularly suitable for use in an exposure apparatus using an excimer laser or another charged particle beam as a radiation source. Industrial applicability
  • the mover is lightweight and can move at high speed. Also, it is possible to realize a planar motor that moves a two-dimensional plane while giving a floating force to the mover. Furthermore, it is possible to realize a planar motor that can control the position and orientation of the mover in a total of six degrees of freedom in the three axis directions of X, Y, and ⁇ ⁇ ⁇ and the rotation directions of those axes.
  • the stage device for mounting and moving a wafer is sealed in a vacuum or He atmosphere, the stage that can move the mover to the target position at a high speed and can perform ultra-precision positioning An apparatus and an exposure apparatus using the same can be realized.

Abstract

A planar motor two-dimensionally movable in a plane which can generate strong thrust, can move a mover in a two-dimensional plane while the motor gives buoyancy to the mover, and can control the position and attitude of the mover in six degrees of freedom. The planar motor is provided with a mover (4) having a magnetic pole unit (14) in which a plurality of permanent magnets (50N and 50S) are arranged in matrix in an X-Y plane, with their magnetic poles being inverted alternately; an iron core having four arm sections (20-26) forming a cross in the X-Y direction as a whole and five projecting teeth (28-36) formed in the base-side section of the core where the arm sections (20-26) cross and in the front end sections of the arm sections (20-26) and disposed so that the teeth (28-36) can be faced to the magnets (50N and 50S) of the unit (14); and an exciting unit (6) having four armature coils (38-44) which are respectively wound around the arm sections (20-26).

Description

明 細 書 励磁ュニッ 卜およびそれを用いた直線型または平面型モータ、 およびそれを用い たステージ装置、 およびそれを用いた露光装置 技術分野  Description Excitation unit, linear or planar motor using the same, stage apparatus using the same, and exposure apparatus using the same
本発明は、 平面上を直線的に移動可能な直線型モータ、 または 2次元的に移動 可能な平面型モータ、 およびそれを用いたステージ装置、 およびそれを用いた露 光装置に関する。 背景技術  The present invention relates to a linear motor that can move linearly on a plane or a planar motor that can move two-dimensionally, a stage device using the same, and an exposure device using the same. Background art
制御対象を直線上もしくは平面上で移動させたり、 目標位置に位置決めさせる ために、 従来、 回転型モータと回転運動を直線運動に変換する変換機構を有する 装置が多用されている。 これに対して近年、 制御対象を直接モータに取り付けて 直線運動させるリニアモータの開発が進んでいる。 リニアモータは変換機構がな く構成部品も少ないため、 信頼性や精度の面で優れた特徴を有している。 このリ ニァモータを 2軸用い 2次元的に移動可能な平面型モータが、 可動部の軽量化、 構造の簡素化の観点から将来的に有望であると考えられている。  Conventionally, in order to move a control target on a straight line or a plane, or to position it at a target position, a device having a rotary motor and a conversion mechanism for converting rotary motion into linear motion has been frequently used. On the other hand, in recent years, the development of linear motors that directly attach a controlled object to a motor and perform linear motion has been progressing. Since linear motors have no conversion mechanism and have few components, they have excellent features in terms of reliability and accuracy. A planar motor that can move two-dimensionally using two linear motors is considered to be promising in the future from the viewpoint of reducing the weight of the movable part and simplifying the structure.
X— Y平面を移動する構造を開示した先行技術としては、 例えば、 特開昭 6 2 一 1 3 0 4 1 3号公報および米国特許第 4 , 7 4 2 , 2 8 6号に開示されたステ —ジ集成体や、 特公平 5— 8 6 8 4 5号公報および米国特許第 4 , 5 0 7 , 5 9 7号、 特公平 5— 8 6 8 4 7号公報および米国特許第 4 , 4 8 5 , 3 3 9号に開 示された電磁ァライメン卜装置があり、 さらに特開昭 5 8 - 1 7 5 0 2 0号公報 および米国特許第 4 , 5 3 5 , 2 7 8号に開示された 2次元駆動装置がある。 こ れらは、 可動子が空気軸受等により浮上して X— Y平面を移動するようになって いる。 また、 可動子が磁気浮上させられて X— Y平面を移動する構造として特開 平 2— 3 5 7 0 9号公報および米国特許第 4 , 9 5 2 , 8 5 8号に開示されたァ ライメン卜装置ゃ特開平 5 - 5 7 5 5 0号公報に開示されたステージ装置がある ( また、 上述の平面型モータとしては、 リニアパルスモータを移動平面上に 2軸 分連結したソィャモータタイプとして、 例えば特公昭 6 0 - 2 2 5 8 3号公報に 記載されているものがある。 Prior art disclosing structures moving on the X-Y plane include, for example, those disclosed in Japanese Patent Application Laid-Open No. 62-110413 and U.S. Pat. No. 4,742,286. No. 5,867,597, US Pat. No. 4,867,597 and US Pat. There is an electromagnetic alignment device disclosed in US Pat. No. 4,835,378 and US Pat. No. 4,535,275. There is a disclosed two-dimensional drive. In these, the mover floats on an air bearing or the like and moves on the XY plane. Further, as a structure in which the mover is magnetically levitated and moves on the XY plane, a structure disclosed in Japanese Patent Application Laid-Open No. 2-359709 and U.S. Pat. No. 4,952,858 is disclosed. There is a stage device disclosed in Japanese Unexamined Patent Publication No. 5-57550 ( a linear motor described above is a two-axis linear motor on a moving plane). As an example of a separately connected soy motor type, there is one disclosed in Japanese Patent Publication No. 60-22583.
一方、 平面移動する可動子の各軸方向駆動部分を分離せずに、 1つの駆動部で 平面移動可能な平面型パルスモー夕も検討されている。 例えば、 特公昭 5 1 一 4 9 2 8 3号公報等には、 永久磁石の N極と S極とが緻密にあるいは一定間隔で配 置された固定子と電機子コイルとを備えた突起状の歯を持った可動子とからなる 平面型モータが開示されている。  On the other hand, a flat-type pulse motor that can move in a plane with one drive unit without separating each axial drive part of the mover that moves in a plane is also being studied. For example, Japanese Patent Publication No. 51-492833 discloses a projection having a stator and an armature coil in which the N and S poles of a permanent magnet are arranged densely or at regular intervals. There is disclosed a planar motor including a mover having a plurality of teeth.
これらの平面型モータは、 主として X— Y面内を 2次元移動するステージ装置 等に応用され、 可動子上に所定の物体を載置して X— Y面内を移動させるのに用 いられる。 そして、 このような平面型モータを用いたステージ装置は、 半導体装 置等の製造に用いられる露光装置のステージ系に適用される可能性を有している ( ここで露光装置とは、 半導体装置、 液晶表示装置、 あるいは薄膜磁気へッ ド等を 製造する際のフォ卜リソグラフイエ程で用いられ、 回路パターンを正確に感光基 板に転写するための装置である。 現在では、 レチクルあるいはマスク (以下、 レ チクルという) に形成された回路パターンを投影光学系を介して半導体ウェハや ガラスプレート (以下、 ウェハという) 上に投影露光する投影露光装置が主流に なっている。 この投影露光装置としては種々の方式のものがあるが、 例えば半導 体装置の製造の場合、 レチクルの回路パターン全体を一度に投影し得るイメージ フィ一ルドを持つ投影光学系を介してウェハをステップ ' アンド ' リビー卜方式 で露光する投影露光装置と、 レチクルを 1次元に走査しつつ、 ウェハをそれと同 期した速度で 1次元に走査させる、 いわゆるステップ■アンド · スキャン方式の 投影露光装置とがある。  These planar motors are mainly applied to stage devices that move two-dimensionally in the XY plane, and are used to place a predetermined object on the mover and move in the XY plane. . A stage device using such a planar motor has a possibility of being applied to a stage system of an exposure device used for manufacturing a semiconductor device or the like (here, an exposure device is a semiconductor device). It is used in the photolithography process when manufacturing liquid crystal display devices or thin-film magnetic heads, etc., and is a device for accurately transferring a circuit pattern to a photosensitive substrate. Hereafter, a projection exposure apparatus that projects and exposes a circuit pattern formed on a reticle onto a semiconductor wafer or a glass plate (hereinafter, referred to as a wafer) via a projection optical system is mainly used. There are various methods, for example, in the case of semiconductor device manufacturing, an image file that can project the entire reticle circuit pattern at once. A projection exposure system that exposes the wafer in a step-and-repetitive manner through a projection optical system that has a ■ There is an and scan type projection exposure apparatus.
ところで、 上述のような平面型モータの場合、 例えばリニアパルスモータを 2 軸連結したソィャモータでは、 可動子側に電機子コイルや永久磁石が設けられて いる。 そのため必然的に可動子は重くならざるを得ず、 さらに平面移動する可動 子の各軸方向駆動部分が分離独立しているため、 可動子全体が大きく重くなつて しまう。 それに伴い周波数応答特性が低下してしまうので可動子を高速に移動さ せることが困難であるという問題を有している。  By the way, in the case of a planar motor as described above, for example, in a soy motor in which a linear pulse motor is connected in two axes, an armature coil and a permanent magnet are provided on the mover side. Therefore, the mover inevitably becomes heavy, and the axially moving parts of the mover moving in a plane are separated and independent, so that the entire mover becomes large and heavy. Accordingly, there is a problem that it is difficult to move the mover at a high speed because the frequency response characteristic is reduced.
また、 各軸方向駆動部分を分離せずに 1つの駆動部で平面移動する平面型パル スモータの場合にも、 複数の電機子コイルを可動子側に設けているので重くなつ てしまい、 高速で可動子を移動させるには限界がある。 In addition, a flat type pallet that moves in one plane with one drive unit without separating each axial drive part In the case of a motor as well, the armature coil is provided on the mover side, so that it becomes heavy, and there is a limit to moving the mover at high speed.
さらに、 上述のいずれの方式による平面型モータでも、 可動子は空気浮上ある いは支持ガイ ド機構により支持されて固定子上を移動する。 従って、 浮上あるい は支持するための複雑な機構が必要となるという問題もある。  Further, in any of the above-described planar motors, the mover moves on the stator while being supported by air floating or a support guide mechanism. Therefore, there is also a problem that a complicated mechanism for lifting or supporting is required.
以上の問題は、 目的位置まで可動子を高速に移動させ、 且つ超精密位置決めを 要求されるステージ装置、 あるいはそれを用いた露光装置にも直接的に影響を与 えることになり、 現状では平面型モ一タをステ一ジ装置に採用した露光装置は存 在しない。 ところが今後、 露光装置で製造する半導体装置、 あるいは液晶表示装 置はさらなる高集積化が必須でり、 そのため露光装置で用いる露光光にはさらに 短波長の光(荷電粒子線、 X線等も含むものとする)が使用されることになるが、 これらの光の照射経路は真空または H e雰囲気に保たれる必要がある。 従って、 露光装置内でウェハを載置するステージ装置回りも真空あるいは H e雰囲気にし なければならず、 ステージ装置を駆動させるのに用いられてきた従来の静圧気体 軸受等を用いることができな〈なるという事情がある。 このように、 露光装置の ステージ装置に磁気駆動の平面型モータを用いる必要性は認識されながら、 現実 には上述のような種々の問題により平面型モータを採用できないという問題を有 している。  The above problems directly affect the stage device that requires the mover to move to the target position at high speed and also requires ultra-precise positioning, or the exposure device that uses it. There is no exposure apparatus that uses a mold motor as a stage device. However, in the future, higher integration of semiconductor devices or liquid crystal display devices manufactured by the exposure apparatus will be essential, and the exposure light used in the exposure apparatus will have shorter wavelength light (including charged particle beams and X-rays). However, these light irradiation paths need to be kept in a vacuum or He atmosphere. Therefore, a vacuum or He atmosphere must also be provided around the stage device on which the wafer is mounted in the exposure apparatus, and the conventional static pressure gas bearings used to drive the stage device cannot be used. <There is a reason to become. As described above, although the necessity of using a magnetically driven planar motor for the stage device of the exposure apparatus is recognized, there is a problem that the planar motor cannot be actually employed due to the various problems described above.
本発明の目的は、 高推力が得られ、 可動子が軽量で高速移動可能な直線型また は平面型モータを提供することにある。  SUMMARY OF THE INVENTION An object of the present invention is to provide a linear or flat motor capable of obtaining a high thrust, having a light weight and capable of moving at a high speed.
また、 本発明の目的は、 可動子に浮上力を与えつつ 2次元平面を移動させるこ とができる平面型モ一タを提供することにある。  Another object of the present invention is to provide a planar motor capable of moving a two-dimensional plane while giving a floating force to the mover.
さらに、 本発明の目的は、 可動子の位置および姿勢を、 X、 Y Zの 3軸方向 およびそれらの軸の回転方向の合計 6自由度で制御できる平面型モータを提供す ることにある。  Further, an object of the present invention is to provide a planar motor capable of controlling the position and posture of the mover in three directions of X, YZ and the rotational directions of those axes, for a total of six degrees of freedom.
また、 本発明の目的は、 高推力が得られ、 可動子が軽量で高速移動可能な平面 型モータを用いたステージ装置、 およびそれを用いた露光装置を提供することに ύ¾る。  Further, an object of the present invention is to provide a stage device using a planar motor capable of obtaining a high thrust, having a light weight and capable of moving at a high speed, and an exposure apparatus using the same.
また、 本発明の目的は、 可動子に浮上力を与えつつ 2次元平面を移動させるこ とができる平面型モータを用いたステージ装置、 およびそれを用いた露光装置を 提供することにある。 Another object of the present invention is to move a two-dimensional plane while giving a floating force to the mover. It is an object of the present invention to provide a stage device using a flat-type motor and an exposure apparatus using the same.
さらに、 本発明の目的は、 可動子の位置および姿勢を、 X、 Y、 Ζの 3軸方向 およびそれらの軸の回転方向の合計 6自由度で制御できる平面型モータを用いた ステージ装置、 およびそれを用いた露光装置を提供することにある。 発明の開示  Further, an object of the present invention is to provide a stage device using a planar motor capable of controlling the position and orientation of the mover in three directions of X, Y, and お よ び and a total of six degrees of freedom in the directions of rotation of those axes, An object of the present invention is to provide an exposure apparatus using the same. Disclosure of the invention
上記目的は、 交互に磁極の向きを逆転させて配列した複数の永久磁石を有する 磁極ュニッ 卜と対をなして直線型モ一夕に用いられ、 ほぼ直線状に形成された 2 つの腕部と、 磁極ュニッ 卜の複数の永久磁石に対向するように、 各腕部の先端部 および各腕部が接続された基端部に形成された 3つの突歯とを有する磁性体部材 と、 各腕部のそれぞれに巻回された 2つの電機子コィルとを有することを特徴と する励磁ュニッ 卜によって達成される。  The above-mentioned object is to form a pair with a magnetic pole unit having a plurality of permanent magnets arranged with the magnetic poles being alternately reversed, and to be used in a linear motor, and to form two substantially linearly formed arms. A magnetic member having three protruding teeth formed at a distal end of each arm and a base end to which each arm is connected so as to face a plurality of permanent magnets of the magnetic pole unit; This is achieved by an excitation unit characterized by having two armature coils wound around each of the coils.
また上記目的は、 直線駆動させる直線型モータにおいて、 交互に磁極の向きを 逆転させて配列した複数の永久磁石を有する磁極ュニッ 卜と、 上述の励磁ュニッ 卜とを備えたことを特徴とする直線型モータによって達成される。 そして、 磁極 ュニッ 卜の複数の永久磁石は、 直線方向にそれぞれ幅 1 を有し、 且つ各永久磁石 の中心間は直線方向に距離 2 1だけ離間して配置されており、 励磁ュニッ 卜の腕 部の 2つの突歯は、 基端部の突歯に対して直線方向に相対的に土 1 Ζ 2だけずれ て配置されていることを特徴とする。  Further, the above-mentioned object is to provide a linear motor having a plurality of permanent magnets arranged alternately with their magnetic poles reversed in a linear motor driven linearly, and the above-mentioned excitation unit. Achieved by a mold motor. The plurality of permanent magnets of the magnetic pole unit have a width of 1 in the linear direction, and the centers of the permanent magnets are linearly spaced apart by a distance of 21. It is characterized in that the two protruding teeth of the portion are displaced from the protruding tooth of the base end by a distance of 1 土 2 relative to the linear direction.
さらに上記目的は、 交互に磁極の向きを逆転させて X— Υ平面上に配列した複 数の永久磁石を有する磁極ュニッ 卜と対をなして平面型モー夕に用いられ、 全体 で X —丫方向にほぼ十字形状をなす 4つの腕部と、 磁極ュニッ 卜の複数の永久磁 石に対向するように、 各腕部の先端部および各腕部が接続された基端部に形成さ れた 5つの突歯とを有する磁性体部材と、 各腕部のそれぞれに巻回された 4つの 電機子コイルとを有することを特徴とする励磁ュニッ 卜によって達成される。 また上記目的は、 平面駆動させる平面型モー夕において、 交互に磁極の向きを 逆転させて Χ— Υ平面上に配列した複数の永久磁石を有する磁極ュニッ 卜と、 上 記の励磁ュニッ 卜とを備えたことを特徴とする平面型モータによって達成される c そして、 磁極ユニッ トの複数の永久磁石は、 X— Y面内で X、 Y方向にそれそれ 幅 1 を有し、 且つ各永久磁石の中心間はそれぞれ X、 Y方向に距離 2 1だけ離間 して配置されており、励磁ュニッ 卜の X方向に伸びる 2つの腕部の 2つの突歯は、 基端部の突歯に対して X方向に相対的に土 1 / 2だけずれて配置され、 Y方向に 伸びる 2つの腕部の 2つの突歯は、 基端部の突歯に対して Y方向に相対的に土 1 / 2だけずれて配置されていることを特徴とする。 Further, the above-mentioned object is used in a plane type motor in combination with a magnetic pole unit having a plurality of permanent magnets arranged on the X-Υ plane by alternately reversing the directions of the magnetic poles. Four arms, each of which has a substantially cross shape in the direction, are formed at the distal end of each arm and the base end where each arm is connected so as to face the plurality of permanent magnets of the pole unit. The present invention is attained by an excitation unit having a magnetic member having five protruding teeth and four armature coils wound around each arm. Further, the object is to provide a magnetic field unit having a plurality of permanent magnets arranged on a plane by alternately reversing the directions of magnetic poles in a planar motor driven by a plane drive, and the excitation unit described above. C achieved by a planar motor characterized by comprising The plurality of permanent magnets of the magnetic pole unit have a width of 1 in the X and Y directions in the XY plane, and the centers of the permanent magnets are separated by a distance of 21 in the X and Y directions, respectively. The two protruding teeth of the two arms extending in the X direction of the excitation unit are displaced relative to the protruding teeth of the base end by 1/2 of the soil in the X direction. The two protruding teeth of the two arms extending in the direction are characterized by being displaced from the protruding teeth of the base end by 1/2 of the soil relative to the Y direction.
このような構成において、 励磁ュニッ 卜の各電機子コイルにそれぞれ所定の電 流を流すことにより、 各突歯のそれぞれに所定の極性を与えることができ、 各突 歯に対向する磁極ュニッ 卜の永久磁石との磁気的吸引力あるいは磁気的反発力に より磁極ュニッ 卜に推力を発生させたり、 あるいは浮上力を生じさせたりするこ とができるようになる。  In such a configuration, by supplying a predetermined current to each armature coil of the excitation unit, a predetermined polarity can be given to each tooth, and the permanent magnet of the magnetic pole unit facing each tooth can be provided. A magnetic attraction or a magnetic repulsion with the magnet can generate a thrust or a levitation force on the magnetic pole unit.
また本発明の直線型モータにおいて、 磁極ュニッ 卜の磁極の向きが逆転された 複数の永久磁石の間に、 該永久磁石の磁極方向に磁軸が向いた永久磁石が埋め込 まれていることを特徴とする。 また本発明の平面型モータにおいて、 磁極ュニッ 卜の X方向に離間した複数の永久磁石の間には、 X方向に磁軸が向いた永久磁石 がそれぞれ埋め込まれており、 Y方向に離間した複数の永久磁石の間には、 Y方 向に磁軸が向いた永久磁石がそれぞれ埋め込まれており、 X方向に磁軸が向いた 永久磁石と Y方向に磁軸が向いた永久磁石で囲まれた領域に、 導体且つ非磁性体 である部材が埋め込まれていることを特徴とする。 この構成にすれば、 磁極ュニ ッ 卜の永久磁石による磁束密度を大きくさせることができるので、 推力、 あるい は浮上力に寄与する磁束を高い効率で利用することができるようになる。  Further, in the linear motor according to the present invention, the permanent magnet whose magnetic axis is oriented in the direction of the magnetic pole of the permanent magnet is embedded between the plurality of permanent magnets in which the magnetic poles of the magnetic pole unit are reversed. Features. Further, in the planar motor of the present invention, between the plurality of permanent magnets spaced apart in the X direction of the magnetic pole unit, permanent magnets whose magnetic axes are oriented in the X direction are embedded, and a plurality of permanent magnets spaced in the Y direction are embedded. The permanent magnets whose magnetic axes are oriented in the Y direction are embedded between the permanent magnets, and are surrounded by permanent magnets whose magnetic axes are oriented in the X direction and permanent magnets whose magnetic axes are oriented in the Y direction. A conductor and a non-magnetic member are embedded in the region. With this configuration, the magnetic flux density due to the permanent magnet of the magnetic pole unit can be increased, so that the magnetic flux contributing to the thrust or the levitation force can be used with high efficiency.
また、 X方向に磁軸が向いた永久磁石と Y方向に磁軸が向いた永久磁石で囲ま れた領域に、 導体且つ非磁性体である部材が埋め込まれている構成によれば、 導 体且つ非磁性体である部材内を磁束が通過すると部材内に渦電流が発生し、 この 渦電流が磁束を打ち消す方向に磁束を生じさせる。 つまり、 磁極ュニッ 卜と励磁 ュニッ トとの間の磁束の漏れを低減させて効率よく磁束ループを形成させること ができるようになる。  According to a configuration in which a conductor and a non-magnetic member are embedded in a region surrounded by a permanent magnet whose magnetic axis is oriented in the X direction and a permanent magnet whose magnetic axis is oriented in the Y direction. When a magnetic flux passes through a non-magnetic member, an eddy current is generated in the member, and the eddy current generates a magnetic flux in a direction to cancel the magnetic flux. That is, it is possible to efficiently form a magnetic flux loop by reducing the leakage of magnetic flux between the magnetic pole unit and the excitation unit.
また本発明の直線型または平面型モータにおいて、 複数の励磁ュニッ 卜を所定 位置に固定して固定子とし、 磁極ュニッ 卜を固定子に対して移動可能な可動子と して用いることを特徴とする。 そして、 本発明の直線型または平面型モータにお いて、 固定子の各励磁ュニッ トは突齒を上方に向けて可動子の下方に配置され、 可動子は複数の永久磁石を下方に向けて突歯と対向するように配置されているこ とを特徴とする。 こうすることにより、 小型軽量で平面状の可動子を得ることが でき、 より少ない電力で当該可動子を駆動させることができるようになる。 ここで、 本発明の平面型モータの場合、 固定子の各励磁ュニッ 卜は 5つの突歯 を上方に向けて可動子の下方に配置され、 可動子は複数の永久磁石を下方に向け て突歯と対向するように配置されているようにしてもよい。 そして、 X、 Y方向 に相対的にそれぞれ距離 1 だけずらして配置した少なくとも 2つの励磁ュニッ ト からなる組を備え、 各励磁ュニッ 卜の 4つの電機子コイルに流す所定の電流を切 り替えることにより、 磁極ュニッ 卜を X— Y面内の所定方向に相対移動させる推 力を発生させ、 または Z方向に磁気浮上させる磁気的反発力を発生させることを 特徴とする。このように、少なくとも 2つの励磁ュニッ 卜の位置位相を所定量(距 離 1 ) 変化させることにより、 推力を向上させると共に、 推力むらを低減させる ことができるようになる。 Further, in the linear or planar motor of the present invention, a plurality of excitation units are fixed at predetermined positions to form a stator, and a magnetic pole unit is movable with respect to the stator. It is characterized by being used. In the linear or planar motor according to the present invention, each excitation unit of the stator is disposed below the mover with the teeth facing upward, and the mover is configured with the plurality of permanent magnets facing downward. It is characterized by being arranged to face the protruding teeth. This makes it possible to obtain a small, lightweight, planar mover, and to drive the mover with less power. Here, in the case of the planar motor of the present invention, each excitation unit of the stator is disposed below the mover with five protruding teeth facing upward, and the mover is configured such that a plurality of permanent magnets face downward and protrude. You may make it arrange | position so that it may oppose. A pair of at least two excitation units arranged at a distance of 1 relative to each other in the X and Y directions is provided, and a predetermined current flowing through the four armature coils of each excitation unit is switched. Thus, a thrust for relatively moving the magnetic pole unit in a predetermined direction in the XY plane is generated, or a magnetic repulsive force for magnetically levitating in the Z direction is generated. As described above, by changing the position phases of at least two excitation units by a predetermined amount (distance 1), it is possible to improve the thrust and reduce the thrust unevenness.
また、 本発明の上記平面型モータにおいて、 固定子は、 前記組を少なくとも 2 個組み合わせて構成される駆動ュニッ 卜を有し、 駆動ュニッ 卜により可動子を X —Y面内の所定方向に相対移動させる推力を発生させると共に、 Z方向に磁気浮 上させる磁気的反発力を発生させることを特徴とする。 このような駆動ュニッ ト により、 X— Y面内を移動する推力を発生させると同時に相対的に磁極ュニッ 卜 を浮上させておくことができるようになる。  Further, in the flat motor according to the present invention, the stator has a drive unit configured by combining at least two of the sets, and the drive unit causes the mover to move in a predetermined direction in the XY plane. It is characterized by generating a thrust to move and a magnetic repulsion to magnetically levitate in the Z direction. With such a drive unit, it becomes possible to generate a thrust for moving in the XY plane and at the same time to relatively float the magnetic pole unit.
一方、 前記固定子の 5つの突歯を下方に向けて可動子の上方に配置し、 可動子 は複数の永久磁石を上方に向けて突歯と対向するように配置され、 固定子の 4つ の電機子コイルに電流を供給しない無励磁状態でも、 可動子の複数の永久磁石と 固定子の 5つの突歯との間に働〈磁気的吸引力により、 可動子を浮上させるよう にしてもよい。 このようにすれば、 より少ない電力で当該可動子の駆動を制御で き、 可動子を容易にまた正確に移動させることができるようになる。  On the other hand, the five teeth of the stator are arranged above the mover with the downward facing, and the mover is arranged so that a plurality of permanent magnets face upward with the permanent teeth, and the four electric motors of the stator are arranged. Even in a non-excited state in which no current is supplied to the child coil, the movable member may be floated by magnetic attraction between the plurality of permanent magnets of the mover and the five teeth of the stator. In this way, the drive of the mover can be controlled with less power, and the mover can be easily and accurately moved.
さらに、 固定子は、 平面状に分布させた少なくとも 3個の駆動ュニッ トを有 し、 3個の駆動ユニッ トは、 固定子に対して X、 Y、 Ζ軸方向と各軸周りの回転 の 6自由度で可動子の位置姿勢を制御することを特徴とする。 こうすることによ り、 例えば磁極ュニッ 卜をステージとして利用するような場合、 ステージを X、 Υ、 Ζ軸方向に変位させ、 またそれらの軸回りに回転させることができるように なるので、 ステージの位置および姿勢を 6自由度で制御することができるように なる。 Further, the stator has at least three drive units distributed in a plane, and the three drive units rotate in the X, Y, Ζ axis directions and around each axis with respect to the stator. The position and orientation of the mover are controlled with 6 degrees of freedom. In this way, for example, when a magnetic pole unit is used as a stage, the stage can be displaced in the X, Υ, and Ζ axis directions and rotated around those axes. Position and attitude can be controlled with 6 degrees of freedom.
また、 本発明の励磁ュニッ 卜において、 突歯の先端の齒部は、 先鋭形状に形成 されていることを特徴とする。これら突歯先端の歯部を先銳状にすることにより、 無励磁状態で正弦波状に変化する推力特性を得ることができるようになり、 また 駆動ュニッ 卜内の複数の励磁ュニッ 卜の突歯を先銳状にすることにより推力の平 滑化を図ることができるようになる。  Further, in the excitation unit of the present invention, the teeth at the tips of the protruding teeth are formed in a sharp shape. By making the tip of the tip of these teeth into a tip shape, it is possible to obtain a thrust characteristic that changes sinusoidally in a non-excited state, and the tip of a plurality of excitation units in the drive unit is given a tip. By adopting a 銳 shape, the thrust can be smoothed.
また、 上記目的は、 基板を載置するステージと、 ステージを駆動する駆動系と を有し、 駆動系により、 X、 Υ軸方向でステージの位置を制御するステージ装置 において、 ステージとして、 上述の直線型モ一夕用の磁極ュニッ 卜を X方向と Υ 方向とに配置し、 駆動系として、 直線型モータ用の励磁ュニッ 卜を磁極ュニッ 卜 と対向するように X方向と Υ方向とに配置することを特徴とするステージ装置に よって達成される。 また、 基板を載置するステージと、 ステージを駆動する駆動 系とを有し、 駆動系により、 X、 丫、 Ζ軸方向と各軸周りの回転の 6自由度でス テ一ジの位置姿勢を制御するステージ装置において、 ステージとして、 上述のい ずれかの平面型モータの可動子を用い、 駆動系として、 上述のいずれかの平面型 モータの固定子を用いたことを特徴とするステ一ジ装置によって達成される。 また上記目的は、 本発明の上述のステージ装置において、 励磁ュニッ 卜を冷却 する冷却機構を備えたことを特徴とするステージ装置によって達成される。  Further, the object is to provide a stage device having a stage on which a substrate is mounted and a drive system for driving the stage, wherein the drive system controls the position of the stage in the X and Υ axis directions. The magnetic pole units for the linear motor are arranged in the X and Υ directions, and the excitation unit for the linear motor is arranged in the X and Υ directions as a drive system so as to face the magnetic pole unit. This is achieved by a stage device characterized in that It also has a stage on which the substrate is placed, and a drive system for driving the stage. The drive system allows the stage position and orientation with six degrees of freedom in the X, 丫, and Ζ axis directions and rotation around each axis. A stage device for controlling a stage, wherein a movable element of any of the above-mentioned planar motors is used as a stage, and a stator of any of the above-mentioned planar motors is used as a drive system. This is achieved by the device. Further, the above object is achieved by the above stage device of the present invention, further comprising a cooling mechanism for cooling the excitation unit.
さらに上記目的は、 パターンの像を基板に転写する露光装置において、 基板を 載置して移動するステージ装置として、 上述のステージ装置を備えたことを特徴 とする露光装置によって達成される。 また本発明の露光装置は、 パターンの像を 基板に投影する投影光学系を防振機構を介して支えるコラムと、 ステ一ジ装置の 駆動系を支える固定フレームとを備え、 駆動系に生じる反力が投影光学系に及ば ないことを特徴としている。  Further, the above object is achieved by an exposure apparatus for transferring an image of a pattern onto a substrate, the exposure apparatus having the above-mentioned stage apparatus as a stage apparatus for mounting and moving the substrate. Further, the exposure apparatus of the present invention includes a column that supports a projection optical system that projects a pattern image on a substrate via a vibration isolation mechanism, and a fixed frame that supports a drive system of the stage device. It is characterized in that the force does not reach the projection optical system.
また上記目的は、 励磁ュニッ 卜の組立方法において、 ほぼ直線状に形成された 2つの腕部と、 磁極ュニッ 卜の複数の永久磁石に対向するように、 各腕部の先端 部および各腕部が接続された基端部に形成された 3つの突歯とを有する磁性体部 材と、 各腕部のそれぞれに巻回された 2つの電機子コィルとを組み立てることを 特徴とする励磁ュニッ 卜の組立方法によって達成される。 The above object is also achieved by forming the excitation unit in a substantially linear shape in the method of assembling the excitation unit. A magnetic body portion having two arms and three protruding teeth formed at a distal end of each arm and a base end to which each arm is connected so as to face a plurality of permanent magnets of the magnetic pole unit. This is achieved by a method of assembling an excitation unit, which comprises assembling a material and two armature coils wound around respective arms.
また上記目的は、 励磁ュニッ 卜の組立方法において、 全体で X— Y方向にほぼ 十字形状をなす 4つの腕部と、 各腕部の先端部および各腕部が接続された基端部 に形成された 5つの突歯とを有する磁性体部材と、 各腕部のそれぞれに巻回され た 4つの電機子コイルとを組み立てることを特徴とする励磁ュニッ 卜の組立方法 によって達成される。  The above object is also achieved by assembling the excitation unit by forming four arms each having a substantially cross shape in the X-Y direction as a whole, and forming a tip end of each arm and a base end to which each arm is connected. This is achieved by a method of assembling an excitation unit, which comprises assembling a magnetic member having five protruded teeth and four armature coils wound around each arm.
さらに上記目的は、 直線型モータの組立方法において、 ぼぼ直線状に形成され た 2つの腕部と、 磁極ュニッ 卜の複数の永久磁石に対向するように、 各腕部の先 端部および各腕部が接続された基端部に形成された 3つの突歯とを有する磁性体 部材と、 各腕部のそれぞれに巻回された 2つの電機子コィルとを組み立てた励磁 ュニッ 卜と、 交互に磁極の向きを逆転させて配列した複数の永久磁石を有する磁 極ュニッ 卜とを組み立てることを特徴とする直線型モータの組立方法によって達 成される。  Further, the object is to provide a method of assembling a linear motor, in which two arms formed in a substantially straight line and a front end of each arm and each arm are opposed to a plurality of permanent magnets of a magnetic pole unit. A magnetic member having three protruding teeth formed at the base end where the parts are connected, and an excitation unit assembling two armature coils wound around each arm, and alternately magnetic poles This is achieved by a method of assembling a linear motor, which comprises assembling a magnetic pole unit having a plurality of permanent magnets arranged in a reversed direction.
さらに上記目的は、 平面型モータの組立方法において、 交互に磁極の向きを逆 転させて X— Y平面上に配列した複数の永久磁石を有する磁極ュニッ 卜と、 全体 で X— Y方向にほぼ十字形状をなす 4つの腕部と、 磁極ュニッ 卜の複数の永久磁 石に対向するように、 各腕部の先端部および各腕部が接続された基端部に形成さ れた 5つの突歯とを有する磁性体部材と、 各腕部のそれぞれに巻回された 4つの 電機子コイルとを有する励磁ュニッ 卜とを組み立てることを特徴とする平面型モ —夕の組立方法によって達成される。  Further, the object is to provide a method of assembling a planar motor, comprising: a magnetic pole unit having a plurality of permanent magnets arranged on an XY plane by alternately reversing the directions of magnetic poles; Four cross-shaped arms and five protruding teeth formed at the distal end of each arm and at the base end where each arm is connected so as to face the multiple permanent magnets of the pole unit And an excitation unit having four armature coils wound around each of the arm portions, and assembling the same.
またさらに上記目的は、 基板を載置するステージと、 ステージを駆動する駆動 系とを有し、 駆動系により、 X、 丫、 Z軸方向と各軸周りの回転の 6自由度でス テ一ジの位置姿勢を制御するステ—ジ装置の組立方法において、 本発明の平面型 モータの可動子をステージとして組み立て、 本発明の平面型モータの固定子を駆 動系として組み立てることを特徴とするステージ装置の組立方法によって達成さ れる。 図面の簡単な説明 Further, the above object has a stage on which a substrate is placed, and a drive system for driving the stage, and the drive system controls the stage in six degrees of freedom of rotation in X, 丫, and Z axis directions and around each axis. In a method of assembling a stage device for controlling the position and orientation of a stage, the movable element of the planar motor of the present invention is assembled as a stage, and the stator of the planar motor of the present invention is assembled as a drive system. This is achieved by a method of assembling the stage device. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の実施の形態による平面型モータの概略の構造を示す斜 視図である。  FIG. 1 is a perspective view showing a schematic structure of a planar motor according to a first embodiment of the present invention.
図 2は、 本発明の第 1の実施の形態による平面型モータの励磁ュニッ 卜の概略 の構造を示す図である。  FIG. 2 is a diagram showing a schematic structure of an excitation unit of the flat motor according to the first embodiment of the present invention.
図 3は、 本発明の第 1の実施の形態による平面型モータの磁極ュニッ 卜の概略 の構造を示す平面図である。  FIG. 3 is a plan view showing a schematic structure of a magnetic pole unit of the flat motor according to the first embodiment of the present invention.
図 4は、 本発明の第 1の実施の形態による図 3の A— A線で切断した平面型モ —夕の断面図である。  FIG. 4 is a cross-sectional view of a plane type module cut along line AA in FIG. 3 according to the first embodiment of the present invention.
図 5は、 本発明の第 1の実施の形態における、 磁極ュニッ 卜 1 4に対向する励 磁ュニッ 卜 6の 5つの突歯の位置関係を説明する斜視図である。  FIG. 5 is a perspective view for explaining a positional relationship between five protruding teeth of the excitation unit 6 facing the magnetic pole unit 14 in the first embodiment of the present invention.
図 6は、 本発明の第 1の実施の形態による平面型モ—夕における可動子の移動 動作を説明する図である。  FIG. 6 is a view for explaining a moving operation of the mover in the planar motor according to the first embodiment of the present invention.
図 7は、 本発明の第 1の実施の形態による平面型モータにおける可動子の移動 動作を説明する図である。  FIG. 7 is a diagram illustrating a moving operation of the mover in the planar motor according to the first embodiment of the present invention.
図 8は、 本発明の第 1の実施の形態による平面型モータにおける可動子の移動 動作を説明する図である。  FIG. 8 is a view for explaining the moving operation of the mover in the planar motor according to the first embodiment of the present invention.
図 9は、 本発明の第 1の実施の形態による平面型モータにおける可動子の移動 動作を説明する図である。  FIG. 9 is a view for explaining the moving operation of the mover in the planar motor according to the first embodiment of the present invention.
図 1 0は、 本発明の第 1の実施の形態による平面型モータにおける可動子の移 動動作を説明する図である。  FIG. 10 is a view for explaining the moving operation of the mover in the planar motor according to the first embodiment of the present invention.
図 1 1は、 本発明の第 1の実施の形態による平面型モータにおける可動子の移 動動作を説明する図である。  FIG. 11 is a view for explaining the moving operation of the mover in the planar motor according to the first embodiment of the present invention.
図 1 2は、 本発明の第 1の実施の形態による平面型モータにおける可動子の移 動動作を説明する図である。  FIG. 12 is a view for explaining the moving operation of the mover in the planar motor according to the first embodiment of the present invention.
図 1 3は、 本発明の第 1の実施の形態による平面型モータにおける可動子の移 動動作を説明する図である。  FIG. 13 is a view for explaining the moving operation of the mover in the planar motor according to the first embodiment of the present invention.
図 1 4は、 本発明の第 1の実施の形態による平面型モータにおける可動子の移 動動作を説明する図である。 FIG. 14 is a view showing the movement of the mover in the planar motor according to the first embodiment of the present invention. It is a figure explaining a dynamic operation.
図 1 5は、 本発明の第 1の実施の形態による平面型モータにおける例示ュニッ 卜の配置例を示す図である。  FIG. 15 is a diagram showing an example of arrangement of exemplary units in the planar motor according to the first embodiment of the present invention.
図 1 6は、 本発明の第 1の実施の形態による平面型モータにおける可動子の浮 上動作を説明する図である。  FIG. 16 is a diagram illustrating a floating operation of the mover in the planar motor according to the first embodiment of the present invention.
図 1 7は、 本発明の第 1の実施の形態による平面型モータにおける可動子の浮 上動作を説明する図である。  FIG. 17 is a view for explaining the floating operation of the mover in the planar motor according to the first embodiment of the present invention.
図 1 8は、 本発明の第 1の実施の形態による平面型モータにおける可動子の浮 上動作を説明する図である。  FIG. 18 is a diagram illustrating the floating operation of the mover in the planar motor according to the first embodiment of the present invention.
図 1 9は、 本発明の第 1の実施の形態による平面型モータにおける可動子の浮 上動作を説明する図である。  FIG. 19 is a view for explaining the floating operation of the mover in the planar motor according to the first embodiment of the present invention.
図 2 0は、 本発明の第 1の実施の形態による平面型モータにおける可動子の浮 上動作を説明する図である。  FIG. 20 is a diagram illustrating a floating operation of the mover in the planar motor according to the first embodiment of the present invention.
図 2 1は、 本発明の第 1の実施の形態による平面型モータにおける可動子を 6 自由度で制御する動作を説明する図である。  FIG. 21 is a diagram illustrating an operation of controlling the mover with six degrees of freedom in the planar motor according to the first embodiment of the present invention.
図 2 2は、 本発明の第 2の実施の形態による平面型モータの概略の構造を示す 斜視図である。  FIG. 22 is a perspective view showing a schematic structure of a planar motor according to the second embodiment of the present invention.
図 2 3は、本発明の第 2の実施の形態による平面型モータの部分断面図である。 図 2 4は、 本発明の第 2の実施の形態における、 磁極ュニッ 卜 1 4に対向する 励磁ュニッ 卜 6の 5つの突歯の位置関係を説明する斜視図である。  FIG. 23 is a partial cross-sectional view of a planar motor according to the second embodiment of the present invention. FIG. 24 is a perspective view for explaining a positional relationship between five protruding teeth of the excitation unit 6 facing the magnetic pole unit 14 in the second embodiment of the present invention.
図 2 5は、 本発明の第 2の実施の形態による平面型モータにおける可動子の移 動動作を説明する図である。  FIG. 25 is a view for explaining the moving operation of the mover in the planar motor according to the second embodiment of the present invention.
図 2 6は、 本発明の第 2の実施の形態による平面型モータにおける可動子の移 動動作を説明する図である。  FIG. 26 is a view for explaining the moving operation of the mover in the planar motor according to the second embodiment of the present invention.
図 2 7は、 本発明の第 2の実施の形態による平面型モータにおける可動子の移 動動作を説明する図である。  FIG. 27 is a view for explaining the moving operation of the mover in the planar motor according to the second embodiment of the present invention.
図 2 8は、 本発明の第 3の実施の形態による平面型モ—夕における励磁ュニッ 卜 6の構造を示す図である。  FIG. 28 is a diagram showing the structure of the excitation unit 6 in the planar motor according to the third embodiment of the present invention.
図 2 9は、 本発明の第 3の実施の形態による平面型モータにおける励磁ュニッ ト 6の動作を説明する図である。 FIG. 29 shows an excitation unit in a planar motor according to the third embodiment of the present invention. FIG. 9 is a diagram for explaining the operation of the step 6.
図 3 0は、 本発明の第 3の実施の形態 :よる平面型モータにおける励磁ュニッ 卜 6の動作を説明する図である。  FIG. 30 is a diagram for explaining the operation of the excitation unit 6 in the planar motor according to the third embodiment of the present invention.
図 3 1は、 本発明の第 3の実施の形態こおける励磁ュニッ ト 6の変形例を示す 図である。  FIG. 31 is a diagram showing a modification of the excitation unit 6 in the third embodiment of the present invention.
図 3 2は、 本発明の第 4の実施の形態こよる露光装置の概略の構造を説明する 図である。  FIG. 32 is a diagram illustrating a schematic structure of an exposure apparatus according to a fourth embodiment of the present invention.
図 3 3は、 本発明の第 4の実施の形態こよるステージ装置の概略の構造を説明 する図である。  FIG. 33 is a diagram illustrating a schematic structure of a stage device according to a fourth embodiment of the present invention.
図 3 4は、 本発明の第 4の実施の形態こよるステージ装置の概略の構造を説明 する図である。 発明を実施するための最良の形態  FIG. 34 is a diagram illustrating a schematic structure of a stage device according to a fourth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の第 1の実施の形態による平面型モータを図 1乃至図 2 1 を用いて説明 する。 本実施の形態における平面型モータは、 複数の励磁ュニッ 卜を所定位置に 固定して固定子とし、 磁極ュニッ 卜を固定子に対して移動可能な可動子として用 いるようにしている。 固定子の各励磁ュニッ トは 5つの突歯を上方に向けて可動 子の下方に配置され、 可動子は複数の永久磁石を下方に向けて突歯と対向するよ うに配置されている。 まず、 本実施の形態による平面型モータの概略の構成を図 1 を用いて説明する。  A planar motor according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 21. In the planar motor according to the present embodiment, a plurality of excitation units are fixed at predetermined positions to form a stator, and the magnetic pole unit is used as a movable element movable with respect to the stator. Each excitation unit of the stator is arranged below the mover with five teeth facing upward, and the mover is arranged with a plurality of permanent magnets facing downward to face the teeth. First, a schematic configuration of the planar motor according to the present embodiment will be described with reference to FIG.
図 1は本実施の形態による平面型モ一夕の斜視図である。 図 1 に示すように、 本実施の形態による平面型モ一夕の構成は、 固定子ュニッ 卜 2と可動子 4とに大 別される。 固定子ュニッ ト 2は、 X— Y平面に拡がる平板の基台 8上に複数の励 磁ュニッ 卜 6が固定され、 その上面に平面状の摺動部材 1 0が設けられている。 —方、 可動子 4は、 複数の永久磁石が X— Y平面上にマトリクス状に並んで構成 される磁極ュニッ ト 1 4と、 磁極ュニッ 卜 1 4上面に固定され、 非磁性体且つ非 導体である基板 1 2とで構成されている。 後程詳述するが、 固定子ユニッ ト 2の 複数の励磁ュニッ 卜 6のうち所定の複数の励磁ュニッ 卜 6を駆動させることによ り、 摺動部材 1 0上の可動子 4は、 図中 Z方向に浮上し、 且つ摺動部材 1 0上方 の X— Y面内を 2次元的に移動することができると共に、 基板 1 2のレべリング 調整も行うことができるようになつている。 FIG. 1 is a perspective view of a flat type module according to the present embodiment. As shown in FIG. 1, the configuration of the planar module according to the present embodiment is roughly divided into a stator unit 2 and a mover 4. In the stator unit 2, a plurality of excitation units 6 are fixed on a flat base 8 extending in the XY plane, and a planar sliding member 10 is provided on the upper surface thereof. On the other hand, the mover 4 has a magnetic pole unit 14 composed of a plurality of permanent magnets arranged in a matrix on an XY plane, and is fixed to the upper surface of the magnetic pole unit 14 to be a non-magnetic and non-conductive material. And a substrate 12. As will be described in detail later, by driving a plurality of predetermined excitation units 6 among the plurality of excitation units 6 of the stator unit 2, the movable element 4 on the sliding member 10 is Floating in the Z direction and sliding member 10 above In addition to being able to move two-dimensionally in the X-Y plane, the substrate 12 can also be leveled.
この固定子ュニッ 卜 2の励磁ュニッ 卜 6の構造を図 2を用いて説明する。 図 2 ( a ) は、 図 1 に示した座標系において、 + Z方向から一 Z方向に向かって見た 励磁ユニッ ト 6の平面図である。 図 2 ( b ) は同側面図、 図 2 ( c ) は同正面図 である。 図 2に示すように、 本実施の形態における励磁ュニッ 卜 6は、 全体で X 一 Y方向にほぼ十字形状をなす 4つの腕部 2 0、 2 2、 2 4、 2 6と、 各腕部 2 0〜2 6の先端部および各腕部 2 0〜2 6が接続された基端部 (十字形状の中心 部) から + Z方向に突出して形成された 5つの突歯 2 8、 3 0、 3 2、 3 4、 3 6とで構成される磁性体部材 (例えば、 鉄) を有している。 5つの突齒 2 8〜3 6の先端の平坦部は 1辺の長さが Ίの正方形形状であり、 またこれらの平坦部は 全て同一平面内にあるように高さが調整されている。 また、 磁性体部材の各腕部 2 0 - 2 6にはそれそれ電機子コイル 3 8、 4 0、 4 2、 4 4が巻回されている。 図示は省略したが各電機子コイル 3 8〜4 4は、 それぞれ電流源に接続され、 図 示しない制御系から電流源に送出される指令により、 各励磁ュニッ 卜 6の各電機 子コイル 3 8 ~ 4 4に所定の電流を供給できるようになつている。  The structure of the excitation unit 6 of the stator unit 2 will be described with reference to FIG. FIG. 2A is a plan view of the excitation unit 6 as viewed from the + Z direction to the 1Z direction in the coordinate system shown in FIG. Fig. 2 (b) is the side view, and Fig. 2 (c) is the front view. As shown in FIG. 2, the excitation unit 6 in the present embodiment has four arms 20, 22, 24, 26, each of which has a substantially cross shape in the X-Y direction as a whole. Five protruding teeth 28, 30, 30 protruding in the + Z direction from the base end (the center of the cross) to which the tip of 20 to 26 and each arm 20 to 26 are connected. It has a magnetic member (for example, iron) composed of 32, 34, and 36. The flat portions at the tips of the five teeth 28 to 36 have a square shape with a side length of Ί, and the heights of the flat portions are adjusted so that they are all in the same plane. Armature coils 38, 40, 42, 44 are respectively wound around the arms 20-26 of the magnetic member. Although not shown, each armature coil 38 to 44 is connected to a current source, and each armature coil 38 of each excitation unit 6 is controlled by a command sent from the control system (not shown) to the current source. A predetermined current can be supplied to ~ 44.
次に、 本実施の形態による平面型モータの固定子 4の磁極ュニッ 卜 1 4の概略 の構造を図 3を用いて説明する。 図 3は、 図 1 に示した座標系において、 一 方 向から + Z方向に向かって見た磁極ュニッ 卜 1 4の平面図である。この平面図は、 磁極ュニッ 卜 1 4の、 励磁ュニッ 卜 6の各突齒と対向する面を示している。 図 3 に示すように、 本実施の形態による磁極ュニッ ト 1 4は、 立方体状の永久磁石 5 0 N、 5 0 Sが互に磁極の向きを逆転させて X— Y平面上にマ卜リクス状に複数 配置されている。 永久磁石 5 O Nは、 励磁ュニッ 卜 6の各突歯に対向する側が N 極であり、 永久磁石 5 O Sは、 励磁ュニッ 卜 6の各突歯に対向する側が S極であ る。 磁極ュニヅ 卜 1 4の複数の永久磁石 5 0 N、 5 0 Sは、 X— Y面内で X、 Y 方向にそれぞれ幅 1 を有する正方形形状になり、 且つ隣り合う永久磁石 5 0 N、 5 0 Sの中心間はそれぞれ X、 Y方向に距離 2 1 だけ離間して配置されている。  Next, a schematic structure of the magnetic pole unit 14 of the stator 4 of the flat motor according to the present embodiment will be described with reference to FIG. FIG. 3 is a plan view of the magnetic pole unit 14 seen from one direction toward the + Z direction in the coordinate system shown in FIG. This plan view shows a surface of the magnetic pole unit 14 facing each tooth of the excitation unit 6. As shown in FIG. 3, the magnetic pole unit 14 according to the present embodiment has a cubic permanent magnet 50 N, 50 S whose magnetic poles are reversed with respect to each other to form a matrix on the XY plane. Multiple are arranged in a shape. The permanent magnet 5 ON has an N pole on the side facing each tooth of the excitation unit 6, and the permanent magnet 5 OS has an S pole on the side facing each tooth of the excitation unit 6. The plurality of permanent magnets 50 N, 50 S of the magnetic pole unit 14 have a square shape having a width of 1 in the X and Y directions in the XY plane, and are adjacent to each other. The centers of 0 S are arranged at a distance of 21 in the X and Y directions, respectively.
X方向に離間した複数の永久磁石 5 0 N、 5 O Sの間には、 X方向に磁軸が向 いた立方体状の永久磁石 5 4がそれぞれ埋め込まれており、 磁極の向きは永久磁 石 5 0 N、 5 0 Sの磁極と同極同士が向き合うように配置されている。 一方、 Y 方向に離間した複数の永久磁石 5 0 N、 5 O Sの間には、 Y方向に磁軸が向いた 立方体状の永久磁石 5 6がそれぞれ埋め込まれており、 X方向と同様に磁極の向 きは永久磁石 5 0 N、5 0 Sの磁極と同極同士が向き合うように配置されている。 また、 X方向に磁軸が向いた永久磁石 5 4と Y方向に磁軸が向いた永久磁石 5 6で囲まれた立方体状の領域には、 導体且つ非磁性体である部材 6 0が埋め込ま れている。 この部材 6 0としては、 銅やアルミニウムを用いることができる。 このように、 本実施の形態における可動子 4の磁極ュニッ ト 1 4では、 離間し てマトリクス状に配列された永久磁石 5 0 N、 5 O Sの間に、 Xまたは Y方向に 磁軸が向いた永久磁石 5 4、 5 6を上述のように配置することにより、 磁極ュニ ッ 卜 1 4の永久磁石 5 0 N、 5 0 Sで生じさせる磁束の磁束密度を大きくさせる ことができるので、 後程詳述するが可動子 4に与える推力、 あるいは浮上力に寄 与する磁束を高い効率で利用することができるようになる。また、永久磁石 5 4、 5 6で囲まれた領域に、導体且つ非磁性体である部材 6 0を埋め込むことにより、 部材 6 0内を通過する磁束を、 発生した渦電流の磁束で打ち消すように作用させ ることができるので、 磁極ュニッ 卜 1 4と励磁ュニッ 卜 6との間の磁束の漏れを 低減させて効率よく磁束ループを形成させることができるようになる。 A cubic permanent magnet 54 whose magnetic axis is oriented in the X direction is embedded between the plurality of permanent magnets 50 N and 5 OS that are separated in the X direction. The magnetic poles of the stones 50N and 50S are arranged so that the magnetic poles face each other. On the other hand, between the permanent magnets 50 N and 5 OS spaced apart in the Y direction, cubic permanent magnets 56 whose magnetic axes are oriented in the Y direction are embedded, respectively, and the magnetic poles are similar to those in the X direction. Are arranged such that the magnetic poles of the permanent magnets 50N and 50S face the same poles. A cubic region surrounded by a permanent magnet 54 whose magnetic axis is oriented in the X direction and a permanent magnet 56 whose magnetic axis is oriented in the Y direction is embedded with a conductive and non-magnetic member 60. Have been. As the member 60, copper or aluminum can be used. As described above, in the magnetic pole unit 14 of the mover 4 according to the present embodiment, the magnetic axis is oriented in the X or Y direction between the permanent magnets 50 N and 5 OS arranged in a matrix at a distance. By arranging the permanent magnets 54, 56 as described above, the magnetic flux density of the magnetic flux generated by the permanent magnets 50N, 50S of the magnetic pole unit 14 can be increased. As will be described in detail later, the thrust given to the mover 4 or the magnetic flux given to the levitation force can be used with high efficiency. Also, by embedding a member 60 which is a conductor and a non-magnetic material in a region surrounded by the permanent magnets 54 and 56, the magnetic flux passing through the member 60 is canceled by the magnetic flux of the generated eddy current. Therefore, the leakage of magnetic flux between the magnetic pole unit 14 and the excitation unit 6 can be reduced, and a magnetic flux loop can be formed efficiently.
次に、 本実施の形態による平面型モータの磁極ュニッ 卜 1 4に対する励磁ュニ ッ 卜 6の突歯の配置関係を図 4および図 5を用いて説明する。 図 4は、 本実施の 形態による平面型モ一夕を、 磁極ュニッ 卜 1 4を示した図 3の A— A線の位置で 切断した断面図である。 図 5は、 磁極ュニッ 卜 1 4に対向する励磁ュニッ 卜 6の 5つの突歯の位置関係を説明する斜視図である。 図 4に示すように、 それぞれ幅 1 を有する磁極ュニッ 卜 1 4の複数の永久磁石 5 0 N、 5 0 Sおよび、 Xまたは Y方向に磁軸が向いた横向きの永久磁石 5 4に対向する、 各励磁ュニッ 卜 6の X 方向に伸びる 2つの腕部 2 0、 2 4端部の 2つの突歯 2 8、 3 2は、 基端部の突 歯 3 6に対して X方向に相対的に— 1 / 2、 および + 1 / 2だけずれて配置され ている。  Next, the positional relationship of the teeth of the excitation unit 6 with respect to the magnetic pole unit 14 of the planar motor according to the present embodiment will be described with reference to FIGS. FIG. 4 is a cross-sectional view of the planar module according to the present embodiment, taken along a line AA in FIG. 3 showing the magnetic pole unit 14. FIG. 5 is a perspective view for explaining the positional relationship between the five protruding teeth of the excitation unit 6 facing the magnetic pole unit 14. As shown in FIG. 4, a plurality of permanent magnets 50 N, 50 S of a magnetic pole unit 14 each having a width 1 and a lateral permanent magnet 54 whose magnetic axis is oriented in the X or Y direction are opposed to each other. The two protruding teeth 28, 32 at the end of each of the excitation units 6 extending in the X direction are relatively positioned in the X direction relative to the protruding tooth 36 at the base end. — Offset by 1/2 and +1/2.
図示を省略するが同様に Y方向に伸びる 2つの腕部 2 2、 2 6の 2つの突歯 3 0、 3 4は、 基端部の突歯 3 6に対して Y方向に相対的に一 1 / 2、 + 1 / 2だ けずれて配置されている。 従って、 図 5に示すように、 基端部の突歯 3 6の歯部 T 5の位置が磁極ユニッ ト 1 4の永久磁石 5 0 N ( N極) に一致して対向してい る場合には、 4つの腕部の突齒 2 8〜 3 4の各歯部 T 1、 T 2、 Τ 3、 Τ 4は、 それぞれ対向する磁極ユニッ ト 1 4の永久磁石 5 0 S ( S極) に X方向あるいは Y方向に 1 / 2だけ重なるようになっている。 なお、 図 5およびこれ以降の図面 では、 磁極ュニッ 卜 1 4の横向きの永久磁石 5 4、 5 6の磁軸の方向は、 一部を 矢印で示すか、 図示を省略するものとする。 Although not shown, the two protruding teeth 3 0 and 3 4 of the two arms 2 2 and 2 6 extending in the Y direction are also 1/1 / relative to the protruding teeth 36 of the base end in the Y direction. 2, + 1/2 They are staggered. Therefore, as shown in FIG. 5, when the position of the tooth portion T5 of the protruding tooth 36 at the base end coincides with and faces the permanent magnet 50N (N pole) of the magnetic pole unit 14, The teeth T 1, T 2, Τ 3, Τ 4 of the projecting teeth 28 to 34 of the four arms are respectively connected to the permanent magnets 50 S (S pole) of the magnetic pole unit 14 facing each other. It overlaps in the direction or Y direction by 1/2. In FIGS. 5 and subsequent drawings, the direction of the magnetic axes of the permanent magnets 54 and 56 of the magnetic pole unit 14 is partially shown by arrows or omitted.
以上の説明は、 磁極ュニッ 卜 1 4に対する 1 つの励磁ュニッ ト 6の突歯の位置 関係である。 後程複数の励磁ュニッ 卜 6を用いた場合の各励磁ュニッ 卜 6の間の 磁極ュニッ 卜 1 4に対する配置関係を説明するが、 その前にここで、 1つの励磁 ュニッ 卜 6を用いて本実施の形態による平面型モータにおける可動子の移動動作 について図 6乃至図 1 4を用いて説明する。  The above description is the positional relationship of the teeth of one excitation unit 6 with respect to the magnetic pole unit 14. The arrangement of the magnetic pole units 14 between the magnetic units 6 when a plurality of magnetic units 6 are used will be described later.Before that, in this embodiment, one magnetic unit 6 is used. The moving operation of the mover in the planar motor according to the embodiment will be described with reference to FIGS.
まず、 1つの励磁ュニッ 卜 6で磁極ュニッ 卜 1 4を— X方向に移動させる場合 について図 6乃至図 8を用いて説明する。 ここでは、 X方向に可動子 4を移動さ せる場合を例にとって説明するが、 Y方向も同様の動作により移動可能である。 図 6乃至図 8における (a ) は可動子 4の磁極ュニッ 卜 1 4に対する励磁ュニッ 卜 6の各突歯の位置を示す平面図であり、 各突歯 2 8 - 3 6の歯部 T 1〜T 5の 位置を示している。 図 6乃至図 8における (b ) は、 励磁ュニッ 卜 6の歯部 T 5 を含む X方向の断面を示している。 ( c ) は、 励磁ュニッ 卜 6の歯部 T 5を含む Y方向の断面を示している。  First, a case where the magnetic pole unit 14 is moved in the -X direction by one excitation unit 6 will be described with reference to FIGS. Here, a case where the mover 4 is moved in the X direction is described as an example, but the mover 4 can be moved in the Y direction by the same operation. 6A to 8A are plan views showing the positions of the teeth of the excitation unit 6 with respect to the magnetic pole unit 14 of the mover 4, and the tooth portions T1 to T of the teeth 28-36 are shown. The position of 5 is shown. (B) in FIGS. 6 to 8 shows a cross section in the X direction including the tooth portion T 5 of the excitation unit 6. (C) shows a cross section in the Y direction including the tooth portion T5 of the excitation unit 6.
さて、 図 6において、 初期状態として励磁ュニッ 卜 6の基端部の突歯 3 6の歯 部 T 5が磁極ュニッ 卜 1 4の永久磁石 5 0 N ( N極)に対面しているものとする。 この状態を X = 0とし、 図示のように、 齒部 T 1 が N極、 歯部 T 2〜歯部 T 4が S極に励磁されるように 4つの電機子コィル 3 8〜 4 4に所定の電流を供給する c この電流の供給により歯部 T 5は、 強い N極に励磁される。その結果、 図 6 ( b ) に示すように、 歯部 T 1では、 磁気的吸引力により磁極ュニッ 卜 1 4を一 X方向 (図中左方向) に移動させようとする推力が発生し、 歯部 T 3においては磁気的 反発力により磁極ュニッ 卜 1 4を一 X方向に移動させようとする推力が発生する c さらに、 一旦移動が開始されると、 歯部 T 5も磁気的反発力による一 X方向への 推力を発生する。 一方、 図 6 ( c ) に示すように、 Y方向については磁気的反発 力だけが生じ、 それらの合力は釣り合って Y方向の推力は発生しない。 また、 図 6 ( a ) から明らかなように、 磁極ュニッ ト 1 4が移動を始めると Y方向の歯部 T 2、 T 4もそれぞれ磁気的反発力により磁極ュニッ 卜 1 4を一 X方向に移動さ せる推力を発生させることがわかる。 In FIG. 6, it is assumed that the tooth portion T5 of the protruding tooth 36 at the base end of the excitation unit 6 faces the permanent magnet 50N (N pole) of the magnetic pole unit 14 as an initial state. . This state is assumed to be X = 0, and as shown in the figure, the four armature coils 38 to 44 are energized so that the tooth T1 is N-pole and the teeth T2 to T4 are excited to the S-pole. A predetermined current is supplied. C By supplying this current, the tooth portion T5 is excited to a strong N pole. As a result, as shown in FIG. 6 (b), at the tooth portion T1, a thrust is generated to move the magnetic pole unit 14 in the X direction (left direction in the figure) by magnetic attraction. in teeth T 3 magnetic repulsion by the magnetic pole Yuni' Bok 1 4 further c thrust tending to move to an X direction it is generated, once movement is started, teeth T 5 also magnetic repulsion By one in the X direction Generates thrust. On the other hand, as shown in Fig. 6 (c), only magnetic repulsion occurs in the Y direction, and the resultant forces are balanced and no thrust is generated in the Y direction. Also, as is evident from Fig. 6 (a), when the magnetic pole unit 14 starts to move, the teeth T2 and T4 in the Y direction also move the magnetic pole unit 14 in the X direction by magnetic repulsion. It can be seen that thrust to move is generated.
次に、 可動子 4が図 6に示す位置 (X = 0 ) から X =— 1 / 2の位置まで移動 した状態を図 7を用いて説明する。 図 7に示すように、 可動子 4が X =— 1 / 2 の位置まで移動すると、 励磁ュニッ 卜 1 4の電機子コイル 3 8に流す電流を反転 させて歯部 T 1 が S極になるように励磁する。その結果図 7 ( b )に示すように、 齒部 T 3では、 永久磁石 5 0 Nに対する磁気的吸引力および永久磁石 5 0 Sに対 する磁気的反発力により磁極ュニッ 卜 1 4を— X方向に移動させようとする推力 が発生し、 歯部 T 5においては磁気的反発力により磁極ュニッ 卜 1 4を— X方向 に移動させようとする推力が発生する。 さらに、 一旦移動が開始されると、 歯部 T 1も永久磁石 5 0 Sに対する磁気的反発力による推力を発生する。 一方、 図 7 ( c ) に示すように、 Y方向については磁気的反発力だけが生じ、 それらの合力 は釣り合って Y方向の推力は発生しない。 また、 図 7 ( a ) から明らかなように、 Y方向の齒部 T 2、T 4もそれぞれ磁気的吸引反発力を生じて推力を発生させる。 次に、 可動子 4が図 7に示す位置 (Χ =— Ί / 2 ) から Χ =— 1の位置まで移 動した状態を図 8を用いて説明する。 Χ =— Iの位置では、 各電機子コイル 3 8 ~ 4 4に流す電流の向きは変えない。 図 8に示すように、 可動子 4が Χ =— 1の 位置まで移動した状態において、 齒部 Τ 1、 Τ 2、 Τ 4、 Τ 5では、 永久磁石 5 0 Sに対する磁気的反発力により磁極ュニッ 卜 1 4を一 X方向に移動させようと する推力が発生し、 歯部 Τ 3においては永久磁石 5 0 Νに対する磁気的吸引力に より磁極ュニッ ト 1 4を— X方向に移動させようとする推力が発生する。 一方、 図 8 ( c ) に示すように、 Χ =— 1の位置では磁極ュニッ 卜 1 4の Υ方向に永久 磁石が配置されていないので磁気的吸引力/反発力は発生しない。  Next, a state in which the mover 4 has moved from the position (X = 0) shown in FIG. 6 to the position X = − 1 will be described with reference to FIG. As shown in FIG. 7, when the mover 4 moves to the position of X = — 1, the current flowing through the armature coil 38 of the excitation unit 14 is reversed, and the tooth portion T 1 becomes the S pole. To excite. As a result, as shown in FIG. 7 (b), at the tooth portion T3, the magnetic pole unit 14 is displaced by the magnetic attraction force to the permanent magnet 50N and the magnetic repulsive force to the permanent magnet 50S. A thrust to move the magnetic pole unit 14 in the -X direction is generated at the tooth portion T5 by a magnetic repulsive force. Further, once the movement is started, the tooth portion T1 also generates a thrust due to the magnetic repulsive force on the permanent magnet 50S. On the other hand, as shown in Fig. 7 (c), only magnetic repulsion occurs in the Y direction, and the resultant forces are balanced and no thrust is generated in the Y direction. Further, as is apparent from FIG. 7 (a), the teeth T2 and T4 in the Y direction also generate magnetic attraction repulsive force to generate thrust. Next, a state in which the mover 4 has moved from the position (Χ = —Ί / 2) shown in FIG. 7 to the position Χ = —1 will be described with reference to FIG. At the position of Χ = —I, the direction of the current flowing through each armature coil 38 to 44 does not change. As shown in FIG. 8, when the mover 4 has moved to the position of Χ = −1, the magnetic poles of the teeth Τ1, Τ2, Τ4, Τ5 due to the magnetic repulsive force against the permanent magnet 50S are formed. A thrust is generated to move the unit 14 in the X direction. At the tooth portion Τ3, the magnetic pole unit 14 is moved in the −X direction by magnetic attraction to the permanent magnet 50Ν. Is generated. On the other hand, as shown in FIG. 8 (c), at the position of Χ = −1, no magnetic attraction / repulsion occurs because no permanent magnet is arranged in the Υ direction of the pole unit 14.
以上 Χ = 0から Χ =— 1 までにおける X方向の移動動作を説明したが、 Χ =— 1より負方向に移動する場合も、 あるいは Χ = 0より正方向に移動する場合につ いても、 同様にして各電機子コイル 3 8〜4 4に流す電流を変化させることによ り励磁ュニッ 卜 6に対して相対的に磁極ュニッ 卜 1 4を所定方向に移動させる推 力を発生させることができるようになる。 The movement in the X direction from Χ = 0 to Χ = — 1 has been described above. However, even when moving in the negative direction from Χ = — 1 or in the positive direction from Χ = 0, Similarly, by changing the current flowing through each armature coil 38 to 44, Thus, a thrust for moving the magnetic pole unit 14 in a predetermined direction relative to the excitation unit 6 can be generated.
次に、 図 9乃至図 1 4を用いて本実施の形態における磁極ュニッ 卜 1 4の移動 動作をより詳細に説明する。 図 9 (a) は、 X = 0の位置での磁極ユニッ ト 1 4 と励磁ュニッ 卜 6との配置関係を示し、図 6 (a)等に示したものと同様である。 すなわち、 初期状態として励磁ュニッ 卜 6の基端部の突歯 36の歯部 T 5が磁極 ユニッ ト 1 4の永久磁石 5 O N (N極) に対面している。 図 9 (b) は、 励磁ュ ニッ 卜 6の電機子コイル 38〜44に流す電流の向きを規定しており、 図示の - 印は紙面から紙面手前に向かう方向を、 X印は紙面手前から紙面に向かう方向を 示している。 この図 9 ( b ) に示す各電機子コイル 38~44に流す電流の方向 を正方向として、 磁極ュニヅ 卜 1 4が相対的に X = 0から X = 41 までの正方向 に移動する際における、 励磁ュニッ 卜 6の各電機子コイル 38〜44に流す電流 の通電スケジュールと、 各突歯に励磁される極性の変化を図 1 0に示す。 ここで 各電機子コイル 38、 40、 42、 44に流す電流は、 図 9 (b) に示したよう にそれそれ電流 C 1、 C 2、 C 3、 C4である。 図 1 0 (a) において、 横軸は χ = 0から X = 41 までの正方向の移動距離を示し、 上段のグラフの縦軸は電機 子コイル 38に流す電流 C 1 を表し、 下段のグラフの縦軸は突歯 28の歯部 T 1 に励磁される極性を示している。 同様にして図 1 0 (b) 〜 (d) もそれぞれ X 二 0から X = 41 までの正方向の移動距離における電機子コイル 40〜44に流 す電流 C 2〜C 4と、 突歯 30〜 34の歯部 T 2〜丁 4に励磁される極性を示し ている。 また図 1 0 (e) は、 図 1 0 (a) 〜 (d ) に示すように各電機子コィ ル 38〜44に通電した結果、 基端部の突齒 36の歯部 T 5に生じる磁極の変化 を示している。  Next, the movement operation of the magnetic pole unit 14 in the present embodiment will be described in more detail with reference to FIG. 9 to FIG. FIG. 9 (a) shows an arrangement relationship between the magnetic pole unit 14 and the excitation unit 6 at the position of X = 0, which is the same as that shown in FIG. 6 (a) and the like. That is, as an initial state, the tooth portion T5 of the protruding tooth 36 at the base end of the excitation unit 6 faces the permanent magnet 5ON (N pole) of the magnetic pole unit 14. Fig. 9 (b) specifies the direction of the current flowing through the armature coils 38 to 44 of the excitation unit 6.The-mark in the drawing indicates the direction from the page to the front of the page, and the X indicates the direction from the front of the page. Indicates the direction toward the paper. When the direction of the current flowing through each of the armature coils 38 to 44 shown in FIG. 9 (b) is the positive direction, when the magnetic pole unit 14 relatively moves in the positive direction from X = 0 to X = 41. FIG. 10 shows the current application schedule of the current flowing through the armature coils 38 to 44 of the excitation unit 6 and the change in the polarity excited in each tooth. Here, the currents flowing through the armature coils 38, 40, 42, and 44 are the currents C1, C2, C3, and C4, respectively, as shown in FIG. 9B. In Fig. 10 (a), the horizontal axis represents the positive moving distance from χ = 0 to X = 41, the vertical axis of the upper graph represents the current C1 flowing through the armature coil 38, and the lower graph represents the current. The vertical axis indicates the polarity excited in the tooth portion T 1 of the tooth 28. Similarly, Figs. 10 (b) to (d) also show the currents C2 to C4 flowing through the armature coils 40 to 44 at the positive travel distance from X20 to X = 41, and the protrusions 30 to The polarity excited in the 34 tooth portions T2 to T4 is shown. In addition, Fig. 10 (e) shows the result of energizing each armature coil 38-44 as shown in Figs. 10 (a)-(d), which is generated at the tooth T5 of the tooth 36 at the base end. The change of the magnetic pole is shown.
この図 1 0 (a) 〜 (e) に示したように各歯部 T 1〜丁 5の極性を X = 0か ら X二 41 までの移動に伴って変化させることにより、 各齒部 T 1〜丁 5および それらと対向する磁極ュニッ 卜 1 4の永久磁石 50 N、 50 Sとの間に、 図 6乃 至図 8を用いて説明したのと同様の磁気的反発力、 あるいは磁気的吸引力が作用 して推力が発生する。 各歯部により発生する推力を図 1 1に示す。 図 1 1 (a) 〜 (e ) は、 歯部 T 1〜丁 5に発生する推力 F T 1〜F T 5の X = 0から X = 4 Ίに至るまでの変化を示している。 そして、 図 1 1 (f ) は、 推力 F Τ 1〜F Τ 5の合力、 すなわち図 9 (a) に示した位置を基点として各移動位置での推力を 示している。 図 1 1 (a) 〜 (f ) において、 実線で示した波形は、 無励磁状態 での推力の変化を示し、 破線で示した波形が励磁状態、 すなわち図 1 0に示す通 電スケジュールにより発生する推力である。 図 1 1 (f ) の破線からわかるよう に、 図 9 (a) に示した位置から励磁により移動する場合の励磁ユニッ ト 6で発 生する推力は、 Χ = 0、 2 Ί、 4 Ίをそれぞれ少し過ぎた位置で 0に近くなるよ うなほぼ 21の周期の正弦波的な変化をする。 As shown in FIGS. 10 (a) to 10 (e), by changing the polarity of each of the teeth T1 to D5 with the movement from X = 0 to X2 41, each of the teeth T1 to T5 is changed. 6 to 8 and the magnetic repulsive force or magnetic force similar to that described with reference to FIGS. 6 to 8 between the permanent magnets 50 N and 50 S of the magnetic pole unit 14 facing them. The suction force acts to generate thrust. Fig. 11 shows the thrust generated by each tooth. Fig. 11 (a) to (e) show the thrusts FT1 to FT5 generated at the teeth T1 to D5, from X = 0 to X = 4. Changes up to Ί are shown. FIG. 11 (f) shows the resultant force of the thrusts FΤ1 to FΤ5, that is, the thrust at each moving position with the position shown in FIG. 9 (a) as a base point. In Figs. 11 (a) to 11 (f), the waveform shown by the solid line shows the change in thrust in the non-excited state, and the waveform shown by the broken line is generated by the excited state, that is, by the conduction schedule shown in Fig. 10. Thrust. As can be seen from the broken line in Fig. 11 (f), the thrust generated by the excitation unit 6 when moving from the position shown in Fig. 9 (a) by excitation is Χ = 0, 2Ί, 4Ί. The sine wave changes with almost 21 periods so that it approaches 0 at each position slightly past.
次に、 図 1 2乃至図 1 4を用いて、 励磁ュニッ 卜の各突歯が上述の図 9 (a) に示した位置からずれて位置している場合の移動動作について説明する。 図 1 2 は、 X = 0の位置での磁極ュニッ ト 1 4と励磁ュニッ 卜 6との配置関係を示し、 初期状態として励磁ュニッ 卜 6の基端部の突歯 36の歯部 T 5が磁極ュニッ 卜 1 4の Y方向の永久磁石 50 N (N極) と永久磁石 50 Sとの間の永久磁石 56に 対面していることを示している。 つまり、 図 9に示した状態から + Y方向に 1だ け相対的に励磁ュニッ 卜 6を移動させた状態を初期状態とした場合である。 励磁ュニッ 卜 6の電機子コイル 38〜44に流す電流の向き、 および各電機子 コイル 38〜44に流す電流の符号を図 9 ( b ) に示したものと同様にして、 磁 極ュニッ 卜 1 4が相対的に X = 0から X = 41 までの正方向に移動する際におけ る、 励磁ュニッ 卜 6の各電機子コィル 38〜44に流す電流の通電スケジュール と、 各突齒に励磁される極性の変化を図 1 3に示す。 図 1 3 (a) においても、 横軸は X = 0から X = 41 までの正方向の移動距離を示し、 上段のグラフの縦軸 は電機子コイル 38に流す電流 C 1を表し、 下段のグラフの縦軸は突歯 28の歯 部 T 1に励磁される極性を示している。 同様にして図 1 3 (b) 〜 (d) もそれ それ X = 0から X = 41 までの正方向の移動距離における電機子コイル 40〜4 4に流す電流 C 2〜C 4と、 突齒 30-34の歯部 T 2〜丁 4に励磁される極性 を示している。 また図 1 3 (e) は、 図 1 3 (a) 〜 (d) に示すように各電機 子コイル 38〜44に通電した結果、 基端部の突歯 36の歯部 T 5に生じる励磁 の変化を示している。  Next, referring to FIGS. 12 to 14, a description will be given of a moving operation in a case where each tooth of the excitation unit is shifted from the position shown in FIG. 9A. Fig. 12 shows the positional relationship between the magnetic pole unit 14 and the excitation unit 6 at the position of X = 0, and the tooth portion T5 of the protruding tooth 36 at the base end of the excitation unit 6 is the initial state. The unit 14 faces the permanent magnet 56 between the permanent magnet 50 N (N pole) in the Y direction and the permanent magnet 50 S in the Y direction. In other words, the initial state is a state in which the excitation unit 6 is relatively moved by 1 in the + Y direction from the state shown in FIG. The direction of the current flowing through the armature coils 38 to 44 of the excitation unit 6 and the sign of the current flowing through each of the armature coils 38 to 44 are the same as those shown in FIG. 4 is relatively moving in the positive direction from X = 0 to X = 41, the current supply schedule for the current flowing through the armature coils 38 to 44 of the excitation unit 6, and the excitation of each tooth Figure 13 shows the change in polarity. Also in Fig. 13 (a), the horizontal axis indicates the moving distance in the positive direction from X = 0 to X = 41, the vertical axis of the upper graph indicates the current C1 flowing through the armature coil 38, and the lower graph indicates the current C1. The vertical axis of the graph indicates the polarity excited in the tooth portion T1 of the tooth 28. Similarly, Figs. 13 (b) to 13 (d) also show the currents C2 to C4 flowing through the armature coils 40 to 44 at the positive travel distance from X = 0 to X = 41, and the tooth teeth. It shows the polarity excited in the teeth T2 to T4 of 30-34. Fig. 13 (e) shows the excitation of the tooth T5 of the protruding tooth 36 at the base end as a result of energizing each of the armature coils 38 to 44 as shown in Figs. 13 (a) to 13 (d). The change is shown.
この図 1 3 (a) 〜 (e) に示したように各歯部 T 1 ~T 5の極性を位置 Χ = 0から X = 41に渡って変化させることにより、 各齒部 T 1〜T 5およびそれら 近傍に対向する磁極ュニッ 卜 1 4の永久磁石 50 Ν、 50 Sとの間に磁気的反発 力、 あるいは磁気的吸引力が作用して推力が発生する。 各齒部により発生する推 力を図 1 4に示す。 図 1 4 (a) 〜 (e) は、 歯部 T 1 ~T 5に発生する推力 F T 1〜F T 5の Χ = 0から Χ = 41に至るまでの変化を示している。 そして、 図 1 4 (f ) は、 推力 F T 1〜FT 5の合力、 すなわち図 1 2に示した位置を基点 として各移動点で発生する推力を示している。 図 1 4 (a) 〜 (f ) において、 実線で示した波形は、 無励磁状態での推力の変化を示し、 破線で示した波形が励 磁状態、 すなわち図 1 3に示す通電スケジュールにより発生する推力である。 図 1 4 (f ) の破線からわかるように、 図 1 2に示した位置から移動する場合の励 磁ユニッ ト 6で発生する推力は、 ほぼ 21の周期で正弦波的に変化し、 X = 0、 21. 41の位置でほぼ 0になっている。 As shown in Figs. 13 (a) to (e), the polarity of each tooth T1 to T5 is By changing from 0 to X = 41, the magnetic repulsive force between the permanent magnets 50Ν and 50S of the magnetic pole unit 14 facing each tooth T1 to T5 and the vicinity thereof, or Thrust is generated by magnetic attraction. Fig. 14 shows the thrust generated by each tooth. FIGS. 14 (a) to 14 (e) show changes in the thrusts FT1 to FT5 generated in the tooth portions T1 to T5 from Χ = 0 to Χ = 41. Fig. 14 (f) shows the resultant of the thrusts FT1 to FT5, that is, the thrust generated at each moving point with the position shown in Fig. 12 as a base point. In Figs. 14 (a) to 14 (f), the waveform shown by the solid line shows the change in thrust in the non-excitation state, and the waveform shown by the broken line is generated by the excitation state, that is, the energization schedule shown in Fig. Thrust. As can be seen from the dashed line in Fig. 14 (f), the thrust generated by the excitation unit 6 when moving from the position shown in Fig. 12 changes sinusoidally in approximately 21 cycles, and X = It is almost 0 at 0, 21.41.
これら図 1 1 (f ) 、 図 1 4 ( f ) に示したように、 磁極ュニッ 卜 1 4に対す る励磁ュニッ ト 6の位置が Y方向にずれていても、 X方向の位置 (X = 0) が同 —であれば得られる推力特性は、 ぼぼ 21の周期で正弦波的に変化し、 X = 0、 21、 41の位置またはその近傍でほぼ 0または 0に近づく。 従って、 少なくと も 2個の励磁ュニッ 卜 6を用いることにして、 それらを X方向に相対的に 1だけ ずらして配置すれば推力むらを低減できることになる。 これは図 1 1 (f ) の波 形に対して図 1 4 (f ) の波形を相対的に 1だけ位相をずらして合成することに 相当し、 図からも明らかなように合成波形は平坦化されるので、 推力が 0に近づ く位置をなくすと共に推力むらを低減することができるようになる。  As shown in FIGS. 11 (f) and 14 (f), even if the position of the excitation unit 6 with respect to the magnetic pole unit 14 is shifted in the Y direction, the position in the X direction (X = If 0) is the same, the obtained thrust characteristic changes sinusoidally with a period of approximately 21 and approaches 0 or 0 at or near X = 0, 21, 41. Therefore, if at least two excitation units 6 are used and they are arranged by being shifted relative to each other by one in the X direction, thrust unevenness can be reduced. This is equivalent to combining the waveform of Fig. 11 (f) with the waveform of Fig. 14 (f) by shifting the phase by 1 relative to the waveform of Fig. 11 (f), and the synthesized waveform is flat as is clear from the figure. Therefore, it is possible to eliminate the position where the thrust approaches zero and to reduce the thrust unevenness.
以上は、 X方向の移動における推力特性であるが、 Y方向の移動における推力 特性も全〈同様の説明が成り立つ。 従って、 Y方向の推力むらを低減させるため には、 少なくとも 2個の励磁ュニッ ト 6を Y方向にも相対的に 1だけずらして配 置するようにすればよい。 つまり、 推力むらを低減させて X— Y面内で 2次元的 に可動子 2を移動させるには、 図 1 5に例示するように、 少なくとも 2個の励磁 ユニッ ト 6を用い、 それらの相互の位置が相対的に X、 Y方向にそれぞれ 1だけ ずれているように励磁ュニヅ 卜 6の組として配置すればよいことになる。  The above is the thrust characteristics in the movement in the X direction, but the thrust characteristics in the movement in the Y direction are all <the same description holds. Therefore, in order to reduce the thrust unevenness in the Y direction, at least two excitation units 6 may be arranged so as to be relatively shifted by one in the Y direction. In other words, to move the mover 2 two-dimensionally in the XY plane by reducing the thrust unevenness, at least two excitation units 6 are used as shown in FIG. The excitation units 6 may be arranged so that the positions of the excitation units 6 are relatively shifted by 1 in the X and Y directions.
次に、 本実施の形態による平面型モータにおける可動子の浮上動作について図 1 6乃至図 2 0を用いて説明する。 Next, the floating operation of the mover in the planar motor according to the present embodiment will be described. This will be described with reference to FIGS.
まず、 1つの励磁ュニッ 卜 6で磁極ュニッ 卜 1 4を浮上させる場合について図 1 6乃至図 2 0を用いて説明する。 はじめに本実施の形態における可動子を浮上 させる基本動作を図 1 6を用いて説明する。 図 1 6 ( a ) は、 可動子 4の磁極ュ ニッ ト 1 4に対する励磁ュニッ 卜 6の各突歯 2 8 ~ 3 6の歯部 T 1〜丁 5の位置 を示す X方向の断面を示している。 (b ) は、 励磁ュニッ ト 6の歯部 T 5を含む Y方向の断面を示している。  First, the case where the magnetic pole unit 14 is levitated by one excitation unit 6 will be described with reference to FIGS. 16 to 20. First, the basic operation for floating the mover in the present embodiment will be described with reference to FIG. FIG. 16 (a) shows a cross section in the X direction showing the positions of the teeth T1 to T5 of the teeth 28 to 36 of the excitation unit 6 with respect to the magnetic pole unit 14 of the mover 4. I have. (B) shows a cross section in the Y direction including the tooth portion T5 of the excitation unit 6.
図 1 6においては、 初期状態として励磁ュニッ 卜 6の基端部の突歯 3 6の歯部 T 5が磁極ュニヅ 卜 1 4の永久磁石 5 0 N ( N極) に対面しているものとする。 この状態を X = 0とし、 図示のように、 歯部 T 1 ~ T 4が S極に励磁されるよう に 4つの電機子コイル 3 8〜4 4に所定の電流を供給する。 このとき歯部 Τ 5は Ν極に励磁される。 その結果、 図 1 6 ( a ) 、 ( b ) に示すように、 全ての歯部 T 1 ~ t 5で、 磁極ュニッ 卜 1 4に対して磁気的反発力が発生して磁極ュニッ ト 1 4を + Z方向に浮上させようとする浮上力が発生する。 この浮上力により、 励 磁ュニッ ト 6に対して磁極ュニッ ト 1 4は浮上する。  In FIG. 16, it is assumed that the tooth portion T 5 of the protruding tooth 36 at the base end of the excitation unit 6 faces the permanent magnet 50 N (N pole) of the magnetic pole unit 14 as an initial state. . This state is set to X = 0, and a predetermined current is supplied to the four armature coils 38 to 44 so that the teeth T1 to T4 are excited to the S pole as shown in the figure. At this time, the tooth portion Τ 5 is excited to the Ν pole. As a result, as shown in FIGS. 16 (a) and 16 (b), magnetic repulsion is generated against the magnetic pole unit 14 at all the teeth T1 to t5, and the magnetic pole unit 14 is generated. A levitation force is generated to make the levitation in the + Z direction. Due to the levitation force, the magnetic pole unit 14 floats with respect to the excitation unit 6.
ところが、 上述の 1つの励磁ュニッ 卜 6だけでは、 可動子 4が X— Y面内を 2 次元的に移動する全ての位置で浮上力を維持させることはできない。 例えば、 可 動子の X— Y方向の移動に伴って、 励磁ュニッ 卜 6の歯部 T 5の位置が図 1 2に 示したような位置にある場合には、 可動子 4を浮上させておくだけの浮上力を得 ることはできなくなる。 すなわち、 浮上力も励磁ュニッ 卜 6と磁極ュニッ 卜 1 4 との相対位置により変化する。 この点につき、 図 1 7乃至図 2 0を用いて X方向 の移動を例にとって詳細に説明する。  However, with only one excitation unit 6 described above, the floating force cannot be maintained at all positions where the mover 4 moves two-dimensionally in the XY plane. For example, if the position of the tooth portion T5 of the excitation unit 6 is as shown in FIG. 12 with the movement of the movable element in the X-Y direction, the movable element 4 is lifted up. You will not be able to get enough buoyancy. That is, the levitation force also changes depending on the relative position between the excitation unit 6 and the magnetic pole unit 14. This point will be described in detail with reference to FIGS. 17 to 20 taking movement in the X direction as an example.
図 1 7 ( a ) は、 X = 0の位置での磁極ュニッ 卜 1 4と励磁ュニッ 卜 6との配 置関係が図 9 ( a ) に示した状態、 すなわち初期状態として励磁ユニッ ト 6の基 端部の突齒 3 6の歯部 T 5が磁極ュニッ ト 1 4の永久磁石 5 O N ( N極) に対面 している場合の通電スケジユールおよび各歯部の極性の変化を示している。なお、 励磁ュニッ 卜 6の電機子コイル 3 8〜4 4に流す電流の向きは、 図 9 ( b ) での 規則と同様とする。 図 1 7 ( a ) において、 横軸は X = 0から X = 4 1 までの正 方向の移動距離を示し、 上段のグラフの縱軸は電機子コイル 3 8に流す電流 C 1 を表し、 下段のグラフの縦軸は突歯 28の歯部 T 1に励磁される極性を示してい る。 同様にして図 1 7 (b) 〜 (d) もそれぞれ X = 0から X = 41 までの正方 向の移動距離における電機子コイル 40〜44に流す電流 C 2〜C 4と、 突齒 3 0〜34の齒部 T 2〜丁 4に励磁される極性を示している。 また図 1 7 ( e )は、 図 1 7 (a) 〜 (d ) に示すように各電機子コイル 38〜44に通電した結果、 基端部の突齒 36の齒部 T 5に生じる励磁の変化を示している。 Fig. 17 (a) shows the arrangement relationship between the magnetic pole unit 14 and the excitation unit 6 at the position of X = 0 as shown in Fig. 9 (a), that is, the initial state of the excitation unit 6 It shows a change in the energization schedule and the polarity of each tooth portion when the tooth portion T 5 of the protruding tooth 36 at the base end faces the permanent magnet 5 ON (N pole) of the magnetic pole unit 14. The direction of the current flowing through the armature coils 38 to 44 of the excitation unit 6 is the same as the rule in Fig. 9 (b). In Fig. 17 (a), the horizontal axis represents the moving distance in the positive direction from X = 0 to X = 41, and the vertical axis of the upper graph represents the current C1 flowing through the armature coil 38. The vertical axis of the lower graph shows the polarity excited in the tooth portion T1 of the tooth 28. Similarly, FIGS. 17 (b) to 17 (d) also show the currents C2 to C4 flowing through the armature coils 40 to 44 and the protruding teeth 30 in the forward movement distance from X = 0 to X = 41, respectively. 34 shows the polarity excited to the teeth T2 to T4. Also, Fig. 17 (e) shows the excitation generated in the tooth portion T5 of the protruding tooth 36 at the base end as a result of energizing the armature coils 38-44 as shown in Figs. 17 (a)-(d). Shows the change.
この図 1 7 (a) 〜 (e) に示したように各歯部 T 1 ~T 5の極性を、 位置 X =0から Χ = 4 Ίに至るまでに所定のスケジュールで変化させることにより、 各 歯部 Τ 1〜丁 5およびそれらと対向する磁極ュニッ 卜 1 4の永久磁石 50 Ν、 5 0 Sとの間に磁気的反発力が作用して浮上力が発生する。 各歯部により発生する 浮上力を図 1 8に示す。 図 1 8 (a) ~ (e) は、 歯部 T 1〜丁 5に発生する浮 上力 F T 1〜F T 5の位置 X = 0から X = 41に至るまでの変化を示している。 そして、 図 1 8 (f ) は、 浮上力 F丁 1〜F T 5の合力、 すなわち図 9 (a) に 示した位置を基点として各移動位置での浮上力を示している。図 1 8 (a)〜(f ) において、 実線で示した波形は、 無励磁状態での浮上力の変化を示している。 無 励磁状態では、 磁気的吸引力しか作用しないので Z方向の浮上力は全て負になつ ている。 破線で示した波形は励磁状態、 すなわち図 1 7に示す通電スケジュール により発生する浮上力である。 図 1 8 (f ) からわかるように、 図 9 (a) に示 した位置から移動する場合の励磁ュニッ 卜 6で発生させる浮上力は、 励磁状態に おいて、 位置 X = 0から X = 41に至る全域で +Z方向に可動子 4を浮上させる 正の浮上力が発生し、 その大きさが 21の周期の正弦波的に変化することがわか o  As shown in FIGS. 17 (a) to 17 (e), by changing the polarity of each tooth portion T1 to T5 according to a predetermined schedule from the position X = 0 to Χ = 4Ί, A magnetic repulsive force acts between the teeth # 1 to # 5 and the permanent magnets 50 #, 50S of the magnetic pole unit 14 facing them, and a levitation force is generated. Figure 18 shows the levitation force generated by each tooth. FIGS. 18 (a) to 18 (e) show changes in the levitation forces FT1 to FT5 generated at the tooth portions T1 to T5 from the position X = 0 to X = 41. FIG. 18 (f) shows the resultant force of the levitation forces F 1 to FT5, that is, the levitation force at each moving position with the position shown in FIG. 9 (a) as a base point. In FIGS. 18 (a) to 18 (f), the waveforms shown by the solid lines show changes in the levitation force in the non-excited state. In the non-excited state, only the magnetic attraction force acts, so the levitation force in the Z direction is all negative. The waveform shown by the broken line is the excited state, that is, the levitation force generated by the energization schedule shown in FIG. As can be seen from Fig. 18 (f), the levitation force generated by the excitation unit 6 when moving from the position shown in Fig. 9 (a) is from the position X = 0 to X = 41 in the excited state. The movable element 4 is levitated in the + Z direction in the entire region up to the point.A positive levitation force is generated, and its magnitude changes in a sinusoidal wave with a period of 21 o
次に、 励磁ュニッ 卜の各突歯が図 1 2に示す位置、 つまり、 図 9に示した状態 から +Y方向に 1だけ相対的に励磁ュニッ 卜 6を移動させた位置を初期状態とす る場合の浮上力について説明する。  Next, the initial state is set at the position where each tooth of the excitation unit is moved relative to the position shown in FIG. 12 by 1 in the + Y direction from the state shown in FIG. 9 in the + Y direction. The floating force in the case will be described.
本例も励磁ュニッ 卜 6の電機子コイル 38〜44に流す電流の向き、 および各 電機子コイル 38〜44に流す電流の符号を図 9 (b) に示したものと同様にし て、 磁極ユニッ ト 1 4が相対的に X = 0から X = 41 までの正方向に移動する際 における、 励磁ュニッ 卜 6の各電機子コイル 38〜44に流す電流の通電スケジ ユールと、 各突歯に励磁される極性の変化を図 1 9に示す。 図 1 9 (a) におい ても、 横軸は X = 0から X = 41 までの正方向の移動距離を示し、 上段のグラフ の縦軸は電機子コイル 38に流す電流 C 1を表し、 下段のグラフの縦軸は突齒 2 8の歯部 T 1に励磁される極性を示している。 同様にして図 1 9 (b) 〜 (d) もそれぞれ X = 0から X = 41 までの正方向の移動距離における電機子コイル 4 0〜44に流す電流 C 2〜C4と、 突歯 30〜 34の齒部 T 2〜T 4に励磁され る極性を示している。 また図 1 9 (e) は、 図 1 9 (a) 〜 (d) に示すように 各電機子コイル 38〜44に通電した結果、 基端部の突齒 36の歯部 T 5に生じ る励磁の変化を示している。 Also in this example, the direction of the current flowing through the armature coils 38 to 44 of the excitation unit 6 and the sign of the current flowing through each armature coil 38 to 44 are the same as those shown in FIG. When the unit 14 moves relatively in the positive direction from X = 0 to X = 41, the conduction schedule of the current flowing through the armature coils 38 to 44 of the excitation unit 6 Fig. 19 shows the change in the polarity of the yule and the polarity excited by each tooth. Also in Fig. 19 (a), the horizontal axis represents the moving distance in the positive direction from X = 0 to X = 41, and the vertical axis of the upper graph represents the current C1 flowing through the armature coil 38. The vertical axis of the graph indicates the polarity excited in the tooth portion T1 of the tooth 28. Similarly, Figs. 19 (b) to (d) also show the currents C2 to C4 flowing through the armature coils 40 to 44 at the positive movement distance from X = 0 to X = 41, and the protruding teeth 30 to 34, respectively. The polarity excited in the tooth portions T2 to T4 of FIG. In addition, Fig. 19 (e) shows the tooth T5 of the protruding tooth 36 at the base end as a result of energizing each armature coil 38-44 as shown in Figs. 19 (a)-(d). The change in excitation is shown.
この図 1 9 (a) 〜 ( e ) に示したように各齒部 T 1〜丁 5の極性を X = 0か X = 41に渡って変化させることにより、 各歯部 T 1〜丁 5およびそれら近傍 に対向する磁極ュニッ 卜 1 4の永久磁石 50 N、 50 Sとの間に磁気的反発力が 作用して浮上力が発生する。 各歯部により発生する浮上力を図 20に示す。 図 2 0 (a) ~ (e) は、 歯部 T 1〜丁 5に発生する浮上力 FT 1〜FT 5の X = 0 から X = 41に至るまでの変化を示している。 そして、 図 20 (f ) は、 浮上力 F T 1 ~F T 5の合力、 すなわち図 1 2に示した位置を基点として各移動点で発 生する浮上力を示している。 図 20 (a) 〜 (f ) において、 実線で示した波形 は、 無励磁状態での浮上力の変化を示している。 無励磁状態では、 磁気的吸引力 しか作用しないので Z方向の浮上力は全て負になっている。 破線で示した波形は 励磁状態、すなわち図 1 9に示す通電スケジュールにより発生する浮上力である。 図 20 (f ) からわかるように、 図 1 2に示した位置から移動する場合の励磁ュ ニッ卜 6で発生する浮上力は、 励磁状態において、 ほぼ 21の周期で正弦波的に 変化し、 且つ X =l、 31およびその近傍では負の浮上力、 すなわち吸引力が生 じてしまっていることがわかる。  As shown in FIGS. 19 (a) to 19 (e), by changing the polarity of each tooth T1 to D5 over X = 0 or X = 41, each tooth T1 to D5 is changed. A magnetic repulsive force acts between the permanent magnets 50N and 50S of the magnetic pole unit 14 facing the magnetic pole unit 14 and a levitation force is generated. Fig. 20 shows the levitation force generated by each tooth. FIGS. 20 (a) to 20 (e) show changes in the levitation forces FT1 to FT5 generated in the tooth portions T1 to T5 from X = 0 to X = 41. FIG. 20 (f) shows the resultant force of the levitation forces F T1 to F T5, that is, the levitation force generated at each moving point with the position shown in FIG. 12 as a base point. In FIGS. 20 (a) to 20 (f), the waveforms shown by the solid lines show changes in the levitation force in the non-excited state. In the unexcited state, only the magnetic attraction acts, so the levitation force in the Z direction is all negative. The waveform shown by the broken line is the excited state, that is, the levitation force generated by the energization schedule shown in FIG. As can be seen from FIG. 20 (f), the levitation force generated in the excitation unit 6 when moving from the position shown in FIG. 12 changes sinusoidally in approximately 21 cycles in the excitation state. In addition, it can be seen that a negative levitation force, that is, a suction force is generated at X = l, 31 and its vicinity.
このように、 図 1 8 (f ) 、 図 20 (f ) に示したように、励磁状態において、 磁極ュニッ 卜 1 4に対する励磁ュニッ 卜 6の位置が Y方向にずれて、 X方向の位 置 (X = 0) が同一である場合には、 それぞれの磁極ュニッ 卜 6から得られる浮 上力特性は、 ほぼ同位相であって 21の周期で正弦波的に変化する点で類似する が、 X= l、 31の位置近傍で浮上力が負になってしまうか否かで相違する。 従 つて、 少な〈とも 2個の励磁ュニッ 卜 6を用い、 それらを X方向に相対的に 1 だ けずらして配置すれば浮上力のむらを低減できることになる。これは図 1 8 ( f ) の波形に対して図 2 0 ( f ) の波形を相対的に 1だけずらして合成することに相 当し、 図からも明らかなように合成波形は平坦化されるので、 浮上力が負になる 位置をなくすと共に浮上力のむらを低減することができるようになる。 Thus, as shown in FIGS. 18 (f) and 20 (f), in the excited state, the position of the excitation unit 6 with respect to the pole unit 14 is shifted in the Y direction, and the position in the X direction is shifted. When (X = 0) is the same, the levitation force characteristics obtained from each magnetic pole unit 6 are similar in that they are almost in phase and change sinusoidally with a period of 21. The difference depends on whether the levitation force becomes negative near the position of X = l, 31. Obedience Therefore, if at least two excitation units 6 are used, and they are arranged relatively shifted by 1 in the X direction, the levitation force unevenness can be reduced. This is equivalent to synthesizing the waveform of Fig. 18 (f) with the waveform of Fig. 20 (f) shifted by 1 relative to the waveform of Fig. 18 (f), and the synthesized waveform is flattened as is clear from the figure. Therefore, it is possible to eliminate the position where the floating force becomes negative and to reduce the unevenness of the floating force.
以上は、 X方向の移動における浮上力特性であるが、 Y方向の移動における浮 上力特性も全く同様の説明が成り立つ。 従って、 Y方向の浮上力むらを低減させ るためには、 少なくとも 2個の励磁ュニッ ト 6を Y方向にも相対的に 1だけずら して配置するようにすればよい。 つまり、 浮上力むらを低減させて X— Y面内で 2次元的に可動子 4を移動させるには、 上述の推力むらの低減に用いた図 1 5に 例示するように 2個の励磁ュニッ 卜 6を用い、それらの相互の位置が相対的に X、 Y方向にそれぞれ 1 だけずれているような励磁ュニッ 卜 6の組を配置すればよい ことになる。  The above is the levitation force characteristics in the movement in the X direction, but the same description holds for the levitation force characteristics in the movement in the Y direction. Therefore, in order to reduce the floating force unevenness in the Y direction, at least two excitation units 6 may be arranged so as to be shifted by one relatively in the Y direction. In other words, in order to move the mover 4 two-dimensionally in the XY plane by reducing the floating force unevenness, two excitation units are used as illustrated in FIG. 15 used for reducing the thrust unevenness described above. It is sufficient to use a set of exciters 6 and arrange a set of excitation units 6 whose mutual positions are relatively shifted by 1 in the X and Y directions, respectively.
従って、 図 1 5に示した励磁ュニッ 卜 6の組を X— Y面内での可動子 4の 2次 元移動のために用い、 それとは別の位置にやはり図 1 5に示した励磁ュニッ 卜 6 の組を用意して可動子 4の浮上用に用いるようにすれば、 つまり、 励磁ュニッ 卜 6の組を少なくとも 2組用い、 磁極ュニッ 卜を X— Y面内の所定方向に相対移動 させる推力を発生させると共に、 Z方向に磁気浮上させる磁気的反発力を発生さ せる駆動ュニッ 卜を構成することにより、 可動子 4の移動と浮上を同時に行うこ とができるようになる。  Therefore, the set of the excitation unit 6 shown in FIG. 15 is used for the two-dimensional movement of the mover 4 in the XY plane, and the excitation unit also shown in FIG. If a set of magnets 6 is prepared and used for floating the mover 4, that is, at least two sets of the excitation unit 6 are used, and the magnetic pole unit is relatively moved in a predetermined direction in the XY plane. By constructing a drive unit that generates a thrust to be generated and a magnetic repulsion for magnetically levitating in the Z direction, the mover 4 can move and levitate at the same time.
また、 図 1 5に示したような配置の浮上用と移動用の励磁ュニッ 卜 6の組を複 数組設けて駆動ュニッ 卜を構成して基台 8上に設けることにより、 より広い範囲 に渡って可動子 4を移動させることができるようになる。 また、 複数の励磁ュニ ッ 卜 6の組を用いることにより、 高推力、 高浮上力を得ることができる。  In addition, by providing a plurality of sets of excitation units 6 for levitation and movement arranged as shown in FIG. 15 to form a drive unit and providing them on the base 8, a wider range is provided. The mover 4 can be moved across. Further, by using a set of a plurality of excitation units 6, a high thrust and a high levitation force can be obtained.
さらに、 図 2 1 ( a ) 、 (b ) に示すように正方形形状の可動子 4の磁極ュニ ッ 卜 1 4を例えば正方形形状の領域 A〜Dに 4分割し、 領域 A ~ Dの下方の励磁 ュニッ 卜 6の組の電機子コイル 3 8〜4 4にそれぞれ領域毎に異なる所定の電流 を供給するようにしてもよい。 こうすると、 例えば図 2 1 ( a ) に示すように領 域 A〜D毎の推力の方向を変えることにより、 全体として X— Y面内を一方向に 移動できるだけでなく、 Z軸回りの回転を行わせることができるようになる。 ま た、 図 2 1 ( b ) に示すように、 領域 A〜Dのそれぞれの Z方向の浮上力を変え ることにより、 X軸回りあるいは Y軸回りの回転を行わせることができるように なり、 可動子 4の平面のレペリングを調整することができるようになる。 Furthermore, as shown in FIGS. 21 (a) and (b), the magnetic pole unit 14 of the square mover 4 is divided into, for example, square areas A to D, and the area below the areas A to D is divided. A different predetermined current may be supplied to each of the armature coils 38 to 44 of the set of the excitation unit 6. In this way, for example, by changing the direction of the thrust in each of the areas A to D as shown in Fig. 21 (a), the direction in the X-Y plane as a whole is Not only can you move, but you can also rotate around the Z axis. In addition, as shown in Fig. 21 (b), by changing the levitation force in the Z direction of each of the regions A to D, it becomes possible to perform rotation about the X axis or the Y axis. However, the leveling of the plane of the mover 4 can be adjusted.
このように、 本実施の形態の平面型モータによれば、 固定子側に複数の励磁ュ ニッ 卜の組を設けることができるので高推力が得られ、 また、 可動子 4は、 永久 磁石 5 0と導体部材 6 0、 および基板 1 2からなる簡素な平面構造で構成できる ので軽量で高速に移動させることができるようになる。 また、 本実施の形態によ る平面型モータによれば、 可動子 4に浮上力を与えつつ 2次元平面を移動させる ことができるようになる。 さらに、 可動子 4の位置および姿勢を、 X、 Y、 Ζの 3軸方向およびそれらの軸の回転方向の合計 6自由度で制御できる平面型モータ を実現できる。  As described above, according to the planar motor of the present embodiment, a plurality of sets of excitation units can be provided on the stator side, so that a high thrust can be obtained. Since it can be configured with a simple planar structure composed of the conductor member 60, the conductor member 60, and the substrate 12, it can be moved at a high speed with a light weight. Further, according to the planar motor according to the present embodiment, it becomes possible to move the two-dimensional plane while giving a floating force to the mover 4. Further, it is possible to realize a planar motor that can control the position and posture of the mover 4 in three axes directions of X, Y, and お よ び and a total of six degrees of freedom in the rotation directions of those axes.
次に本発明の第 2の実施の形態による平面型モータを図 2 2乃至図 2 7を用い て説明する。 本実施の形態における平面型モータは、 複数の励磁ュニッ 卜を所定 位置に固定して固定子とし、 磁極ュニッ 卜を固定子に対して移動可能な可動子と して用いるようにしている。 第 1の実施形態との相違は、 固定子の各励磁ュニッ 卜が 5つの突歯を下方に向けて可動子の上方に配置され、 可動子は複数の永久磁 石を上方に向けて突歯と対向するように配置されている点にある。 まず、 本実施 の形態による平面型モータの概略の構成を図 2 2を用いて説明する。  Next, a planar motor according to a second embodiment of the present invention will be described with reference to FIGS. In the planar motor according to the present embodiment, a plurality of excitation units are fixed at predetermined positions to form a stator, and the magnetic pole unit is used as a movable element movable with respect to the stator. The difference from the first embodiment is that each excitation unit of the stator is arranged above the mover with five protruding teeth facing downward, and the mover faces the protruding teeth with a plurality of permanent magnets facing upward. The point is that it is arranged to be. First, a schematic configuration of the planar motor according to the present embodiment will be described with reference to FIG.
図 2 2は本実施の形態による平面型モータの斜視図である。 図 2 2に示すよう に、 本実施の形態による平面型モータの構成は、 固定子ュニッ 卜 2と可動子 4と に大別される。 固定子ユニッ ト 2は、 X— Υ平面に拡がる平板の基台 8下面に複 数の励磁ュニッ 卜 6が固定され、 その下面に平面状の摺動部材 1 0が設けられて いる。 一方、 可動子 4は、 複数の永久磁石が Χ— Υ平面上にマトリクス状に並ん で構成される磁極ュニッ 卜 1 4と、 磁極ュニッ 卜 1 4下面に固定され、 非磁性体 且つ非導体である基板 1 2とで構成されている。  FIG. 22 is a perspective view of the flat motor according to the present embodiment. As shown in FIG. 22, the configuration of the planar motor according to the present embodiment is roughly divided into a stator unit 2 and a mover 4. The stator unit 2 has a plurality of excitation units 6 fixed to the lower surface of a flat base 8 extending in an X-plane, and a flat sliding member 10 provided on the lower surface. On the other hand, the mover 4 has a magnetic pole unit 14 composed of a plurality of permanent magnets arranged in a matrix on a Χ-Υ plane, and is fixed to the lower surface of the magnetic pole unit 14, and is made of a non-magnetic material and non-conductor. There is a certain substrate 12.
このように本実施の形態では、 可動子 4が固定子ュニッ 卜 2の下方に位置して おり、 固定子ュニッ 卜 2の各励磁ュニッ 卜 6が無励磁状態でも可動子 4の複数の 永久磁石による磁気的吸引力により、 固定子ュニッ 卜 2に対して所定の空隙を介 して可動子 4が空中に浮いていることができるようになつている。 また後程詳述 するが、 固定子ュニッ 卜 2の複数の励磁ュニッ 卜 6のうち所定の複数の励磁ュニ ッ 卜 6を駆動させることにより、 摺動部材 1 0下方の可動子 4は、 摺動部材 1 0 下方の X— Y面内を 2次元的に移動することができると共に、 可動子 4自体のレ ベリング調整も行うことができるようになつている。 As described above, in the present embodiment, the mover 4 is located below the stator unit 2, and even if the respective excitation units 6 of the stator unit 2 are not excited, the plurality of permanent magnets of the mover 4 Through a predetermined gap with respect to the stator unit 2 Then, the mover 4 can be floated in the air. As will be described later in detail, by driving a predetermined plurality of excitation units 6 out of the plurality of excitation units 6 of the stator unit 2, the movable element 4 below the sliding member 10 is slid. The movable member 10 can be moved two-dimensionally in the XY plane below the movable member 10, and the leveling of the mover 4 itself can be adjusted.
この固定子ュニッ ト 2の励磁ュニッ 卜 6は、 図 2を用いて説明した第 1の実施 の形態における励磁ュニッ 卜 6と同一の構成であり、 使用状態において— Z方向 に 5つの突齒 2 8、 3 0、 3 2、 3 4、 3 6が向〈ように配置される点のみが異 なるのでその構成の図示および説明は省略する。 また、 本実施の形態による平面 型モ一夕の固定子 4の磁極ュニッ 卜 1 4の構造も図 3を用いて説明した第 1の実 施の形態における磁極ュニッ 卜と同一であるのでその説明は省略する。  The excitation unit 6 of the stator unit 2 has the same configuration as the excitation unit 6 in the first embodiment described with reference to FIG. 2, and has five teeth 2 in the Z direction in a use state. The only difference is that 8, 30, 32, 34, and 36 are arranged so that the illustration and description of the configuration are omitted. Also, the structure of the magnetic pole unit 14 of the stator 4 of the planar motor according to the present embodiment is the same as the magnetic pole unit in the first embodiment described with reference to FIG. Is omitted.
次に、 本実施の形態による平面型モータの磁極ュニッ 卜 1 4に対する励磁ュニ ッ ト 6の突歯の配置関係を図 2 3および図 2 4を用いて説明する。 図 2 3は、 本 実施の形態による平面型モータの一断面を示し、 図 2 4は、 磁極ユニッ ト 1 4に 対向する励磁ュニッ ト 6の 5つの突歯の位置関係を説明する斜視図である。 図 2 3に示すように、 それぞれ幅 1を有する磁極ュニッ 卜 1 4の複数の永久磁石 5 0 N、 5 O Sおよび、 Xまたは Y方向に磁軸が向いた横向きの永久磁石 5 4に対向 する、 各励磁ュニッ 卜 6の X方向に伸びる 2つの腕部 2 0、 2 4端部の 2つの突 齒 2 8、 3 2は、 基端部の突歯 3 6に対して X方向に相対的に— 1 / 2、 および + 1 / 2だけずれて配置されている。  Next, the positional relationship of the teeth of the excitation unit 6 with respect to the magnetic pole unit 14 of the planar motor according to the present embodiment will be described with reference to FIGS. 23 and 24. FIG. FIG. 23 shows a cross section of a flat motor according to the present embodiment, and FIG. 24 is a perspective view for explaining a positional relationship between five protruding teeth of an excitation unit 6 facing the magnetic pole unit 14. . As shown in FIG. 23, the plurality of permanent magnets 50 N, 5 OS of the magnetic pole unit 14 each having a width 1 and the horizontal permanent magnet 54 whose magnetic axis is oriented in the X or Y direction are opposed to each other. The two arms 20 and 24 extending in the X direction of each of the excitation units 6 have two protruding teeth 28 and 32 at the end thereof relative to the protruding teeth 36 at the base end in the X direction. — Offset by 1/2 and +1/2.
図示を省略するが同様に Y方向に伸びる 2つの腕部 2 2、 2 6の 2つの突歯 3 0、 3 4は、 基端部の突歯 3 6に対して Y方向に相対的に— 1 / 2、 + 1 / 2だ けずれて配置されている。 従って、 図 2 4に示すように、 基端部の突歯 3 6の歯 部 T 5の位置が磁極ユニッ ト 1 4の永久磁石 5 0 N ( N極) に一致して対向して いる場合には、 4つの腕部の突歯 2 8〜3 4の各歯部 T 1、 T 2、 Τ 3、 Τ 4は、 それぞれ対向する磁極ユニッ ト 1 4の永久磁石 5 O S ( S極) に X方向あるいは Y方向に 1 / 2だけ重なるようになっている。  Although not shown, the two protruding teeth 30 and 34 of the two arms 2 2 and 26 extending in the Y direction are also relatively smaller in the Y direction than the protruding teeth 36 of the base end. They are offset by 2, + 1/2. Therefore, as shown in FIG. 24, when the position of the tooth portion T5 of the protruding tooth 36 at the base end coincides with and faces the permanent magnet 50N (N pole) of the magnetic pole unit 14 The teeth T 1, T 2, Τ 3, 腕 4 of the four teeth 28-34 are permanent magnets 5 of the opposing magnetic pole unit 14, 5 OS (S pole) in the X direction Alternatively, they overlap by 1/2 in the Y direction.
以上の説明は、 磁極ュニッ ト 1 4に対する 1 つの励磁ュニッ 卜 6の突歯の位置 関係である。 後程複数の励磁ュニッ 卜 6を用いた場合の各励磁ュニッ ト 6の間の 磁極ュニッ 卜 1 4に対する配置関係を説明するが、 その前にここで、 1つの励磁 ュニッ 卜 6で磁極ュニッ 卜 1 4を X方向に移動させる場合について図 2 5乃至図 2 7を用いて説明する。 ここでは、 X方向に可動子 4を移動させる場合を例にと つて説明するが、 Y方向も同様の動作により移動可能である。 図 2 5乃至図 2 7 における (a ) は可動子 4の磁極ュニッ 卜 1 4に対する励磁ュニッ 卜 6の各突歯 の位置を示す平面図であり、 各突齒 2 8〜3 6の歯部 T 1 ~ T 5の位置を示して いる。 図 2 5乃至図 2 7における ( b ) は、 励磁ュニッ 卜 6の歯部 T 5を含む X 方向の断面を示している。 ( c ) は、 励磁ュニヅ 卜 6の歯部 T 5を含む Y方向の 断面を示している。 The above description is the positional relationship of the teeth of one excitation unit 6 with respect to the pole unit 14. Later, when a plurality of excitation units 6 are used, the distance between each excitation unit 6 Before describing the arrangement relationship with respect to the magnetic pole unit 14, the case where the magnetic pole unit 14 is moved in the X direction by one excitation unit 6 will be described with reference to FIGS. 25 to 27. I do. Here, a case where the mover 4 is moved in the X direction will be described as an example, but the mover 4 can be moved in the Y direction by the same operation. (A) in FIGS. 25 to 27 is a plan view showing the position of each tooth of the excitation unit 6 with respect to the magnetic pole unit 14 of the mover 4, and the tooth portion T of each tooth 28 to 36 is shown. 1 to T5 are shown. (B) in FIGS. 25 to 27 shows a cross section in the X direction including the tooth portion T5 of the excitation unit 6. (C) shows a cross section in the Y direction including the tooth portion T5 of the excitation unit 6.
さて、 図 2 5において、 初期状態として励磁ユニッ ト 6の基端部の突歯 3 6の 歯部 T 5が磁極ュニッ 卜 1 4の永久磁石 5 0 N ( N極) に対面しているものとす る。 この状態を X = 0とする。 この X = 0で励磁ュニッ 卜 6の各電機子コイル 3 8〜4 4に電流を供給しない無励磁状態では、 磁極ュニッ 卜 1 4の複数の永久磁 石 5 0 N、 5 0 Sによる励磁ュニッ 卜 6の各歯部 T 1 ~ T 5間の磁気的吸引力が 釣り合って、 励磁ュニッ 卜 6に対して所定の空隙を介して磁極ュニッ 卜 1 4は空 中に浮いている。  In FIG. 25, the tooth T5 of the tooth 36 at the base end of the excitation unit 6 faces the permanent magnet 50N (N pole) of the magnetic pole unit 14 as an initial state. You. This state is defined as X = 0. In the non-excitation state where current is not supplied to the armature coils 38 to 44 of the excitation unit 6 at X = 0, the excitation unit by the plurality of permanent magnets 50 N and 50 S of the magnetic pole unit 14 is used. The magnetic attraction between the teeth T 1 to T 5 of the box 6 is balanced, and the magnetic pole unit 14 floats in the air via a predetermined gap with respect to the excitation unit 6.
次に、 図 2 5 ( b ) に示すように、 歯部 T 1 に相対的に強い N極 (以降、 N + 極と標記する) 、 歯部 T 2〜歯部 T 4に相対的に弱い N極 (以降、 N—極と標言己 する) 、 歯部 T 5に S極が励磁されるように 4つの電機子コイル 3 8〜4 4に所 定の電流を供給する。 その結果、 各歯部 T 1 ~ T 5間の磁気的吸引力のバランス が崩れ、 図 2 5 ( b ) に示すように、 歯部 T 1では、 釣り合い状態時より強い磁 気的吸引力が発生して磁極ュニッ 卜 1 4を X方向 (図中右方向) に移動させよう とする推力が発生する。 また、 歯部 T 3においては釣り合い状態時より磁気的吸 引力が弱められる結果、 可動子 4は X方向に移動を開始する。  Next, as shown in FIG. 25 (b), the N pole relatively strong at the tooth T1 (hereinafter, referred to as N + pole), and relatively weak at the teeth T2 to T4 The N-pole (hereinafter referred to as the N-pole) supplies a predetermined current to the four armature coils 38 to 44 so that the S-pole is excited in the tooth T5. As a result, the balance of the magnetic attraction between the teeth T1 to T5 is lost, and as shown in FIG. 25 (b), the magnetic attraction at the tooth T1 is stronger than that in the balanced state. Thrust is generated to move the pole unit 14 in the X direction (rightward in the figure). Further, in the tooth portion T3, the magnetic attraction force is weaker than in the balanced state, and as a result, the mover 4 starts moving in the X direction.
—方、 図 2 5 ( c ) に示すように、 Y方向については磁気的吸引力の釣り合い 状態は維持されながら、 全体としての磁気的吸引力が変化するだけであるので Y 方向の推力は発生しない。このような本実施の形態による可動子の移動動作では、 第 1の実施の形態における各電機子コィル 3 8〜4 4に供給する電流よりも遙か に少ない電流の供給で可動子を移動させることができる。 次に、 可動子 4が図 2 5に示す位置 (X = 0 ) から X = 1 / 2の位置まで移動 した状態を図 2 6を用いて説明する。 図 2 6に示すように、 可動子 4が X = 1 / 2の位置まで移動すると、 歯部 T 3に S +極、 歯部 T 1 に N +極、 T 2および T 4に N—極、 歯部 T 5に S —極が励磁されるように 4つの電機子コイル 3 8〜4 4に所定の電流を供給する。 その結果、 各歯部 T 1〜丁 5間の磁気的吸引力のバ ランスが崩れ、 図 2 6 ( b ) に示すように、 歯部 T 3では、 磁極ュニッ 卜 1 4の 永久磁石 5 0 Nに対して釣り合い状態時より強い磁気的吸引力が発生し、 また永 久磁石 5 0 Sに対して磁気的反発力が発生して磁極ユニッ ト 1 4を X方向 (図中 右方向) に移動させようとする推力が発生する。 また、 歯部 T 1 においては釣り 合い状態時より磁気的吸引力が弱められる結果、 可動子 4は X方向に移動を開始 する。 一方、 図 2 6 ( c ) に示すように、 Y方向については磁気的吸引力の釣り 合い状態は維持されながら、 全体としての磁気的吸引力が変化するだけであるの で Y方向の推力は発生しない。 On the other hand, as shown in Fig. 25 (c), in the Y direction, while the state of balance of the magnetic attraction force is maintained, only the magnetic attraction force changes as a whole, so the thrust in the Y direction is generated. do not do. In the moving operation of the mover according to the present embodiment, the mover is moved by supplying a much smaller current than the current supplied to each of the armature coils 38 to 44 in the first embodiment. be able to. Next, a state where the mover 4 has moved from the position (X = 0) shown in FIG. 25 to the position X = 1 / will be described with reference to FIG. As shown in Fig. 26, when the mover 4 moves to the position of X = 1/2, the S + pole at the tooth T3, the N + pole at the tooth T1, and the N— pole at T2 and T4. A predetermined current is supplied to the four armature coils 38 to 44 so that the S—pole is excited in the tooth portion T5. As a result, the balance of the magnetic attraction force between the teeth T1 to T5 is broken, and as shown in FIG. 26 (b), at the tooth T3, the permanent magnet 50 of the magnetic pole unit 14 is formed. A stronger magnetic attractive force is generated for N than in the balanced state, and a magnetic repulsive force is generated for the permanent magnet 50 S, causing the magnetic pole unit 14 to move in the X direction (rightward in the figure). A thrust to move is generated. Further, in the tooth portion T1, the magnetic attraction force is weaker than in the balanced state, and as a result, the mover 4 starts moving in the X direction. On the other hand, as shown in Fig. 26 (c), in the Y direction, while the state of balance of the magnetic attraction force is maintained, only the magnetic attraction force as a whole changes, so the thrust in the Y direction is Does not occur.
次に、 可動子 4が図 2 6に示す位置 (X = l / 2 ) から X = lの位置まで移動 した状態を図 2 7を用いて説明する。 X = 1の位置では、 各電機子コイル 3 8〜 4 4に流す電流の向きを逆転させて、 歯部 T 5に N +極、 歯部 T 1〜歯部 T 4に S—極が励磁されるように 4つの電機子コイル 3 8〜4 4に所定の大きさの電流 を供給する。 その結果、 各歯部 T 1〜丁 5間の磁気的吸引力のバランスが崩れ、 図 2 7 ( b ) に示すように、 歯部 T 5では、 磁極ュニッ 卜 1 4の永久磁石 5 0 S に対して釣り合い状態時より強い磁気的吸引力が発生し、 また永久磁石 5 0 Nに 対して磁気的反発力が発生して磁極ュニッ 卜 1 4を X方向 (図中右方向) に移動 させようとする推力が発生する結果、可動子 4は X方向に移動を開始する。一方、 図 2 7 ( c ) に示すように、 X = 1の位置では磁極ュニッ ト 1 4の Y方向に永久 磁石が配置されていないので磁気的吸引力は釣り合い状態は維持される。  Next, a state where the mover 4 has moved from the position (X = l / 2) shown in FIG. 26 to the position X = l will be described with reference to FIG. At the position of X = 1, the direction of the current flowing through each armature coil 38 to 44 is reversed, and the N + pole is excited in the tooth T5, and the S-pole is excited in the tooth T1 to the tooth T4. A current of a predetermined magnitude is supplied to the four armature coils 38 to 44 as described above. As a result, the balance of the magnetic attraction force between the tooth portions T1 to T5 is lost, and as shown in FIG. 27 (b), at the tooth portion T5, the permanent magnet 50S of the magnetic pole unit 14 is formed. A stronger magnetic attraction force is generated than in the balanced state, and a magnetic repulsion force is generated against the permanent magnet 50 N to move the magnetic pole unit 14 in the X direction (rightward in the figure). As a result, the mover 4 starts moving in the X direction. On the other hand, as shown in FIG. 27 (c), at the position of X = 1, since the permanent magnet is not arranged in the Y direction of the pole unit 14, the balanced state of the magnetic attraction force is maintained.
以上 X = 0から Χ = Ί までにおける X方向の移動動作を説明したが、 Χ = Ίよ り正方向に移動する場合も、 あるいは χ = οより負方向に移動する場合について も、 同様にして各電機子コイル 3 8〜4 4に流す電流を変化させることにより励 磁ュニッ ト 6に対して相対的に磁極ュニッ 卜 1 4を所定方向に移動させる推力を 発生させることができるようになる。 なお本実施の形態による平面型モータも、 第 1の実施の形態における図 1 0お よび図 1 3に対応する通電スケジュールに基づいて各電機子コイル 3 8〜4 4に 電流を供給することにより、 図 1 1 および図 1 4に示すような推力を各齒部に発 生させることができるようになる。 従って、 本実施の形態においても、 これら図 1 1 ( f ) 、 図 1 4 ( f ) に示したように、 磁極ュニッ 卜 1 4に対する励磁ュニ ッ 卜 6の位置が Y方向にずれていても、 X方向の位置 (X = 0 ) が同一であれば 得られる推力特性は、 ほぼ 2 1の周期で正弦波的に変化し、 X = 0、 2 1、 4 1 の位置またはその近傍でほぼ 0または 0に近づく。 従って、 少な〈とも 2個の励 磁ュニッ 卜 6を用いることにして、 それらを X方向に相対的に 1 だけずらして配 置すれば推力むらを低減できることになる。 これは図 1 1 ( f ) の波形に対して 図 1 4 ( f ) の波形を相対的に 1 だけ位相をずらして合成することに相当し、 図 からも明らかなように合成波形は平坦化されるので、 推力が 0に近づ〈位置をな くすと共に推力むらを低減することができるようになる。 The movement in the X direction from X = 0 to Χ = 以上 has been described above.The same applies to the case of moving in the positive direction from Χ = 、 or the case of moving in the negative direction from χ = ο. By changing the current flowing through each of the armature coils 38 to 44, a thrust for moving the magnetic pole unit 14 in a predetermined direction relative to the excitation unit 6 can be generated. Note that the planar motor according to the present embodiment also supplies current to each of the armature coils 38 to 44 based on the energization schedule corresponding to FIGS. 10 and 13 in the first embodiment. Thus, a thrust as shown in FIGS. 11 and 14 can be generated at each tooth. Therefore, also in the present embodiment, as shown in FIGS. 11 (f) and 14 (f), the position of the excitation unit 6 with respect to the magnetic pole unit 14 is shifted in the Y direction. Also, if the position in the X direction (X = 0) is the same, the thrust characteristics obtained will change sinusoidally with a period of approximately 21 and the thrust characteristics at or near the positions of X = 0, 21 and 41 Nearly zero or approaching zero. Therefore, if at least two excitation units 6 are used and they are arranged by being shifted relative to each other by one in the X direction, thrust unevenness can be reduced. This is equivalent to combining the waveform in Fig. 11 (f) with the phase of Fig. 14 (f) shifted by 1 relative to the waveform in Fig. 11 (f), and the synthesized waveform is flattened as is clear from the figure. As a result, the thrust approaches 0, and it becomes possible to eliminate the position and reduce the thrust unevenness.
以上は、 X方向の移動における推力特性であるが、 Y方向の移動における推力 特性も全く同様の説明が成り立つ。 従って、 Y方向の推力むらを低減させるため には、 少なくとも 2個の励磁ュニッ 卜 6を Y方向にも相対的に 1 だけずらして配 置するようにすればよい。 つまり、 推力むらを低減させて X— Y面内で 2次元的 に可動子 2を移動させるには、 第 1の実施の形態と同様に、 図 1 5に例示するよ うに、 少なくとも 2個の励磁ュニッ 卜 6を用い、 それらの相互の位置が相対的に X、 Y方向にそれぞれ 1 だけずれているように配置すればよいことになる。 従って、 図 1 5に示した励磁ユニッ ト 6の組を X— Y面内での可動子 4の 2次 元移動のために用い、 それとは別の位置にやはり図 1 5に示した励磁ユニッ ト 6 の組を用意して可動子 4のレべリング用に用いるようにすれば、 つまり、 励磁ュ ニッ 卜 6の組を少なくとも 2組用い、 磁極ュニッ 卜を X— Y面内の所定方向に相 対移動させる推力を発生させると共に、 Z方向に磁気浮上させている磁気的吸引 力を変化させる駆動ュニッ 卜を構成することにより、 可動子 4の X— Y方向の移 動と Z方向の移動を同時に行うことができるようになる。  The above is the thrust characteristics in the movement in the X direction, but the same description holds true for the thrust characteristics in the movement in the Y direction. Therefore, in order to reduce the thrust unevenness in the Y direction, at least two excitation units 6 may be arranged so as to be relatively shifted by one in the Y direction. That is, in order to move the mover 2 two-dimensionally in the XY plane while reducing the thrust unevenness, at least two movers are required as shown in FIG. 15 as in the first embodiment. It is sufficient to use the excitation unit 6 and arrange them so that their mutual positions are relatively shifted by 1 in the X and Y directions, respectively. Therefore, the set of the excitation unit 6 shown in FIG. 15 is used for the two-dimensional movement of the mover 4 in the XY plane, and the excitation unit 6 shown in FIG. If a set of the magnets 6 is prepared and used for leveling the mover 4, that is, at least two sets of the excitation unit 6 are used, and the magnetic pole unit is oriented in a predetermined direction in the XY plane. By forming a driving unit that generates a thrust to move relative to the motor and changes the magnetic attraction force that is magnetically levitated in the Z direction, the movement of the mover 4 in the XY direction and the movement in the Z direction Movement can be performed simultaneously.
また、 図 1 5に示したような配置の浮上用と移動用の励磁ュニッ 卜 6の組を複 数組設けて駆動ュニッ 卜を構成して基台 8下面に設けることにより、 より広い範 囲に渡って可動子 4を移動させることができるようになる。 また、 複数の励磁ュ ニッ 卜 6の組を用いることにより、 高推力、 高浮上力を得ることができる。 Further, by providing a plurality of sets of excitation units 6 for levitation and movement having the arrangement shown in FIG. 15 to form a drive unit and providing them on the lower surface of the base 8, a wider range is provided. The mover 4 can be moved over the enclosure. Further, by using a group of a plurality of excitation units 6, high thrust and high levitation force can be obtained.
さらに、 第 1の実施の形態による図 2 1 ( a ) 、 ( b ) に示したのと同様にし て、 正方形形状の可動子 4の磁極ュニッ 卜 1 4を例えば正方形形状の領域 A〜D に 4分割し、 領域 A〜Dの上方の励磁ュニッ 卜 6の組の電機子コイル 3 8〜4 4 にそれぞれ領域毎に異なる所定の電流を供給するようにしてもよい。こうすると、 例えば図 2 1 ( a )に示すように領域 A〜D毎の推力の方向を変えることにより、 全体として X— Y面内を一方向に移動できるだけでなく、 Z軸回りの回転を行わ せることができるようになる。 また、 図 2 1 ( b ) に示すように、 領域 A〜Dの それぞれの Z方向の浮上力を変えることにより、 X軸回りあるいは Y軸回りの回 転を行わせることができるようになり、 可動子 4の平面のレペリングを調整する ことができるようになる。  Further, in the same manner as shown in FIGS. 21 (a) and (b) according to the first embodiment, the magnetic pole unit 14 of the square mover 4 is moved to, for example, square areas A to D. It may be divided into four, and different predetermined currents may be supplied to the armature coils 38 to 44 of the set of the excitation units 6 above the regions A to D, respectively. By doing so, for example, by changing the direction of thrust in each of the areas A to D as shown in Fig. 21 (a), not only can the entire body move in one direction in the X-Y plane, Will be able to do it. Also, as shown in Fig. 21 (b), by changing the levitation force in each of the areas A to D in the Z direction, rotation around the X axis or Y axis can be performed. The leveling of the plane of the mover 4 can be adjusted.
このように、 本実施の形態の平面型モータにおいても、 固定子ュニッ 卜 2側に 複数の励磁ユニッ ト 6の組を設けることができるので高推力が得られ、 また、 可 動子 4は、 永久磁石 5 0と導体部材 6 0、 および基板 1 2からなる簡素な平面構 造で構成できるので軽量で高速に移動させることができるようになる。  As described above, also in the planar motor according to the present embodiment, a plurality of sets of the excitation units 6 can be provided on the stator unit 2 side, so that a high thrust can be obtained. Since it can be configured with a simple planar structure composed of the permanent magnet 50, the conductor member 60, and the substrate 12, it can be moved at a high speed with light weight.
また、 第 1の実施の形態における平面型モータでは、 可動子 4が固定子ュニッ 卜 2の上方に位置しているため、 可動子 4を浮上させるには可動子 2の磁極ュニ ッ 卜 6の永久磁石 5 0 N、 5 0 Sと固定子ュニッ 卜 2の励磁ュニッ 卜 6の各突歯 2 8〜 3 6との間に働く磁気的吸引力を打ち消し、 且つ可動子 4の自重以上の浮 上力を発生させる必要がある。 そのため、 各電機子コイル 3 8〜4 4に大電流を 流す必要が生じ、 コイル通電による固定子ュニッ 卜 2からの発熱が多くなつてし まう。 一方、 本実施の形態による平面型モータによれば、 可動子 4が固定子ュニ ッ 卜 2の下方に位置し、 無励磁状態でも磁気的吸引力により可動子 4が空間に浮 いているので、 可動子 4の位置姿勢制御は微少のコイル通電で済み、 そのため固 定子ュニッ 卜 2からの発熱も少なくでき、効率的であるという利点を有している。 次に本発明の第 3の実施の形態による平面型モータを図 2 8乃至図 3 1 を用い て説明する。 本実施の形態による平面型モータは、 第 1 および第 2の実施の形態 による平面型モ一夕における励磁ュニッ 卜 6の 5つの突歯 2 8 ~ 3 6の先端部形 状に特徴を有している。 その他の構成は、 第 1および第 2の実施の形態と同様で あるので図示および説明を省略する。 Further, in the planar motor according to the first embodiment, since the mover 4 is located above the stator unit 2, the magnetic pole unit 6 of the mover 2 is required to float the mover 4. The magnetic attraction force acting between the permanent magnets 50 N, 50 S of the stator unit 2 and the protruding teeth 28 to 36 of the excitation unit 6 of the stator unit 2 is canceled, and the floating of the movable element 4 is equal to or more than its own weight. It is necessary to generate an upward force. For this reason, a large current needs to flow through each of the armature coils 38 to 44, and the heat generated from the stator unit 2 due to energization of the coils increases. On the other hand, according to the planar motor of the present embodiment, since the mover 4 is located below the stator unit 2 and the mover 4 floats in the space due to magnetic attraction even in a non-excited state. On the other hand, the position and orientation control of the mover 4 requires only a small amount of coil current, so that the heat generated from the stator unit 2 can be reduced, which is advantageous in that it is efficient. Next, a planar motor according to a third embodiment of the present invention will be described with reference to FIGS. The planar motor according to the present embodiment has a shape of the tip of the five protruding teeth 28 to 36 of the excitation unit 6 in the planar motor according to the first and second embodiments. It has a characteristic in shape. Other configurations are the same as those of the first and second embodiments, so that illustration and description are omitted.
図 2 8は、 本実施の形態による励磁ュニッ 卜 6の 5つの突歯を有する磁性体部 材とそれそれの腕部に巻かれた電機子コイル 3 8〜4 4を示している。 図 2 8 ( a ) は、 本実施の形態による励磁ュニッ 卜 6の斜視図、 図 2 8 ( b ) は、 励磁 ユニッ ト 6の各突齒の先端部の部分拡大図、 図 2 8 ( c ) は、 励磁ュニッ 卜 6の 各突齒の先端部の部分断面図である。 図 2 8 ( a ) 〜 ( c ) に示すように、 励磁 ュニッ 卜 6の 5つの突歯 2 8〜3 6の各歯部 T 1〜丁 5の端部 4辺には、 所定の 面取り 6 2 a〜6 2 dが施され、 5つの突歯の先端の歯部が、 先鋭形状に形成さ れている。 本実施の形態においては、 図 2 8 ( c ) に示すように、 各突歯 2 8〜 3 6の歯部 T 1〜丁 5の X— Y面の移動方向における平坦部と面取り 6 2 a〜6 2 dの長さの比は、 約 2 : 1 : 1に設定されている。  FIG. 28 shows a magnetic member having five protruding teeth of the excitation unit 6 according to the present embodiment, and armature coils 38 to 44 wound around arms thereof. FIG. 28 (a) is a perspective view of the excitation unit 6 according to the present embodiment, and FIG. 28 (b) is a partially enlarged view of the tip of each tooth of the excitation unit 6, and FIG. () Is a partial cross-sectional view of the tip of each tooth of the excitation unit 6. FIG. As shown in FIGS. 28 (a) to (c), a predetermined chamfer 6 2 is provided on each of the four end portions T 5 to T 5 of the five protruding teeth 28 to 36 of the excitation unit 6. a to 62 d are applied, and the tooth portions at the tips of the five protruding teeth are formed in a sharp shape. In the present embodiment, as shown in FIG. 28 (c), the flat portions and the chamfers 62 in the moving direction of the XY plane of the tooth portions T1 to D5 of the respective protruding teeth 28 to 36 are shown. The length ratio of the 6 2d is set to about 2: 1: 1.
さて、 この励磁ュニッ 卜 6の突齒 2 8〜3 6の各歯部 T 1〜T 5について、 当 該齒部 Τ 1〜丁 5を用いることにより得られる作用および効果を図 2 9および図 3 0を用いて説明する。 図 2 9は、 突齒 3 6の歯部 Τ 5を例に取り、 本実施の形 態における歯部 Τ 5を図中右側に示し、 比較例として面取りが施されていない歯 部 Τ 5を左側に示している。 図中上段から下段に向かって、 本実施の形態の歯部 Τ 5と比較例の歯部 Τ 5とが磁極ュニッ 卜 1 4に対して相対的に移動する際の、 無励磁状態における磁気的吸引力の作用の相違を示す。  Now, for the teeth T1 to T5 of the protruding teeth 28 to 36 of the excitation unit 6, the operation and effect obtained by using the teeth 1 to 5 will be described with reference to FIGS. This will be described using 30. FIG. 29 shows the tooth part Τ5 of the protruding tooth 36 as an example, the tooth part Τ5 in the present embodiment is shown on the right side of the figure, and the tooth part Τ5 without chamfering is shown as a comparative example. Shown on the left. When the tooth portion # 5 of the present embodiment and the tooth portion # 5 of the comparative example move relative to the magnetic pole unit 14 from the upper stage to the lower stage in the figure, the magnetic force in the non-excitation state is increased. The difference in the operation of the suction force is shown.
まず、 図 2 9 ( a ) において、 本実施の形態および比較例のいずれの歯部も、 磁極ュニッ 卜 1 4の永久磁石 5 0の幅 1 とほぼ等しい幅を有し、 永久磁石 5 0 S に対向しているものとする。 本実施の形態の歯部の先端部の形状は、 既に図 2 8 を用いて説明した通り端面と面取り 6 2 a〜6 2 dで構成され、 比較例の歯部の 先端部は、 本実施の形態の歯部に設けられた面取り 6 2 a ~ 6 2 dがな〈、 端面 だけの形状である。 いずれの齒部の端面も磁極ュニッ 卜 1 4から所定の空隙を隔 てて位置している。  First, in FIG. 29 (a), each tooth portion of the present embodiment and the comparative example has a width substantially equal to the width 1 of the permanent magnet 50 of the magnetic pole unit 14, and the permanent magnet 50 S Shall be opposed to. The shape of the tip portion of the tooth portion of the present embodiment is composed of the end face and the chamfers 62 to 62 d as already described with reference to FIG. 28, and the tip portion of the tooth portion of the comparative example is The chamfers 6 2a to 6 2d provided on the tooth portions of the form (1) have a shape of only the end face. The end surfaces of any of the teeth are located at a predetermined gap from the magnetic pole unit 14.
このとき本実施の形態の齒部 T 5と磁極ュニッ 卜 1 4の永久磁石 5 0 Sとの間 に作用する磁気的吸引力を F t、 磁気的吸引力 F tが働く方向に垂直な断面積の 大きさを A tとする。 一方、 比較例の歯部 T 5に作用する磁気的吸引力を F f 、 磁気的吸引力 F f が働く方向に垂直な断面積の大きさを A f とする。 一般に、磁気的吸引力 Fの大きさは、 2つの磁性体間の距離の 2乗に反比例し、 対向する磁性体の表面積に比例するので、 面取り 62〜62 dが設けられている 分だけ力の作用する距離が長〈なる領域を有する本実施の形態の歯部 T 5の磁気 的吸引力 F tは、 比較例の齒部 T 5の磁気的吸引力 F f より小さいものとなって いる。 At this time, the magnetic attractive force acting between the tooth portion T5 of the present embodiment and the permanent magnet 50S of the magnetic pole unit 14 is denoted by Ft, and the breaking perpendicular to the direction in which the magnetic attractive force Ft acts. Let At be the size of the area. On the other hand, the magnetic attraction acting on the tooth portion T5 of the comparative example is F f, A f is the size of the cross-sectional area perpendicular to the direction in which the magnetic attraction F f acts. In general, the magnitude of the magnetic attraction force F is inversely proportional to the square of the distance between the two magnetic materials, and proportional to the surface area of the opposing magnetic materials. The magnetic attraction force Ft of the tooth portion T5 of the present embodiment having a region where the distance of the action of the tooth portion is long <is smaller than the magnetic attraction force Ff of the tooth portion T5 of the comparative example. .
以上の状態から、 図 29 (b) から図 29 ( d ) に示すように磁極ュニッ 卜 1 4を図中右方向に移動させると、 磁気的吸引力 F t、 F fの移動方向の分力とし て推力成分 f t、 f f が発生する。 この移動に伴う推力成分 f t、 f fの変化を 図 29と共に図 30を用いて説明する。 図 30 (a) は比 例の歯部での推力特 性を示し、 図 30 ( b)は、本実施の形態による歯部での推力特性を示している。 両図とも横軸は移動距離を示している。 両図の縦軸は原点位置から上側にはそれ それ断面積 A t、 A f を示し、 下側にはそれぞれ磁気的吸引力 F t、 F fの大き さ、 および推力 f t、 f f の大きさを示している。 図中横軸に示した a〜dの位 置は、 図 29 (a)〜(d ) で示した磁極ュニッ 卜 1 4の移動量に対応している。 まず、 比較例の歯部において、 図 29 (a) 〜 (d) および図 30 ( a ) に示 すように、 磁極ュニッ ト 1 4の移動に伴って、 断面積 A fは単調に減少する。 そ のため、 磁気的吸引力 F f も、 単調に減少していく。 その結果、 推力 f fは、 _ 旦急激に増加して、 その後単調に減少する。 図 30 (a) 中実線で示した推力 f fの曲線は、 永久磁石 50 Sのみを考慮した場合の推力特性を示しており、 破線 で示した推力 f fの曲線は、 移動に伴って永久磁石 50 Sの隣の永久磁石 50 N の影響を考慮した場合の推力特性である。 このように、 比較例に用いた従来の歯 部では、 磁極ュニッ 卜 1 4の移動位置における推力 f fの大きさに偏りがあるた め、 コギングが発生する。  From the above state, when the magnetic pole unit 14 is moved rightward in the figure as shown in FIGS. 29 (b) to 29 (d), the component force in the moving direction of the magnetic attraction forces Ft and Ff is obtained. As a result, thrust components ft and ff are generated. The change in the thrust components f t and f f associated with this movement will be described with reference to FIG. 29 and FIG. FIG. 30 (a) shows the thrust characteristics at the tooth portion of the comparative example, and FIG. 30 (b) shows the thrust characteristics at the tooth portion according to the present embodiment. In both figures, the horizontal axis represents the moving distance. The vertical axes in both figures show the cross-sectional areas A t and A f from the origin position to the upper side, and the magnitudes of the magnetic attraction forces F t and F f and the magnitudes of the thrusts ft and ff to the lower side Is shown. The positions of a to d shown on the horizontal axis in the figure correspond to the movement amounts of the magnetic pole unit 14 shown in FIGS. 29 (a) to (d). First, in the tooth portion of the comparative example, as shown in FIGS. 29 (a) to (d) and FIG. 30 (a), the cross-sectional area A f monotonously decreases with the movement of the magnetic pole unit 14. . Therefore, the magnetic attractive force F f also decreases monotonically. As a result, the thrust f f suddenly increases _ and then decreases monotonically. Fig. 30 (a) The curve of the thrust ff shown by the solid line shows the thrust characteristics when only the permanent magnet 50S is considered, and the curve of the thrust ff shown by the broken line shows the This is the thrust characteristic when the effect of the permanent magnet 50 N next to S is considered. As described above, in the conventional tooth portion used in the comparative example, since the magnitude of the thrust ff at the moving position of the magnetic pole unit 14 is uneven, cogging occurs.
—方、本実施の形態による歯部の場合、図 29 ( a) ~ ( d )および図 30 (b) に示すように、 面取り 62 a〜62 dを備えているために、 磁極ュニッ 卜 1 4の 移動に伴って、 断面積 A tは単調には減少せず面積が増加する位置が存在する。 そのため、 磁気的吸引力 F f も、 断面積 A tの変化に応じて増加する位置が存在 し、 位置 a~d間で 1周期分の正弦波状に変化する。 その結果、 推力 f tは、 半 周期分の正弦波状に変化するようになる。 なお、 図 3 0 ( b ) 中実線および破線 で示した推力 f f の曲線の意味は、 図 3 0 ( a ) における比較例と同様である。 このように本実施の形態によれば、 無励磁状態で正弦波状に変化する推力特性 を得ることが得きるようになるのでコギングを低減させることができるようにな る。 さらに、 位相をずらして配置され、 且つ駆動される複数の励磁ュニッ 卜 6の 突歯の全歯部に対して面取りを設けることにより、 上述の正弦波状の推力特性を 平滑化させることができるのでコギングを極めて低減させた平面型モータを実現 することができるようになる。 On the other hand, in the case of the tooth portion according to the present embodiment, as shown in FIGS. 29 (a) to (d) and FIG. 30 (b), since the chamfers 62a to 62d are provided, the magnetic pole unit 1 With the movement of 4, there is a position where the cross-sectional area At does not decrease monotonically but increases in area. Therefore, there is a position where the magnetic attraction force F f increases in accordance with a change in the cross-sectional area At, and changes in a sinusoidal waveform for one cycle between the positions a to d. As a result, thrust ft is half It changes like a sine wave for the period. The meaning of the curves of the thrust ff indicated by the solid line and the broken line in FIG. 30 (b) is the same as that of the comparative example in FIG. 30 (a). As described above, according to the present embodiment, it is possible to obtain a thrust characteristic that changes sinusoidally in a non-excited state, so that cogging can be reduced. Furthermore, by providing chamfers for all the teeth of the teeth of the plurality of excitation units 6 that are arranged and driven out of phase, the above-described sinusoidal thrust characteristics can be smoothed, so that cogging can be achieved. This makes it possible to realize a planar motor in which the load is extremely reduced.
以上の説明は、 励磁ュニッ 卜 6の各突歯の歯部 T 1 ~ T 5の端面と面取りの比 率が上述のように約 2 : 1 : 1 として説明したが、 もちろんこれは一例であって '他の比率にすることも可能であり、 例えば図 3 1 に示すように、 面取り 6 2 a ~ 6 2 dに替えて、 図 3 1に示すように平坦部をなく して四角錐状に各突歯の先端 の歯部を形成してより先鋭形状にしてもよい。 要は、 固定子ユニッ ト 2の励磁ュ ニッ ト 6の各突歯 T 1〜丁 5の幅、 可動子 4の永久磁石 5 0の幅、 あるいは固定 子ュニッ 卜 2と可動子 4との間の空隙の距離等種々のパラメータに基づいて、 各 突歯 T 1〜丁 5の先端を最適な先銳形状に形成すればよい。  In the above description, the ratio of the end face of each tooth T1 to T5 of the excitation unit 6 to the chamfer is set to about 2: 1: 1 as described above, but of course, this is only an example. 'It is also possible to use other ratios.For example, as shown in Fig. 31, instead of chamfers 6 2a to 6 2d, there is no flat part as shown in Fig. A tooth portion at the tip of each protruding tooth may be formed to make it more sharp. In short, the width of each protruding tooth T1 to D5 of the excitation unit 6 of the stator unit 2, the width of the permanent magnet 50 of the mover 4, or the distance between the stator unit 2 and the mover 4 Based on various parameters such as the distance of the gap, the tips of the respective protruding teeth T1 to T5 may be formed in an optimum tip shape.
なお、 第 1 および第 2の実施の形態では、 励磁ュニッ ト 6は X— Y方向にほぼ 十字形状をなす 4つの腕部と、 各腕部の先端部および前記各腕部が接続された基 端部に形成された 5つの突歯とを有する磁性体部材と、 各腕部のそれぞれに巻回 された 4つの電機子コイルで構成されていた。 しかし、 励磁ユニッ トを、 ほぼ直 線状をなす 2つの腕部と各腕部の先端部および前記各腕部が接続された基端部に 形成された 3つの突歯とを有する磁性体部材と、 各腕部のそれぞれに巻回された 2つの電機子コイルで構成した直線型の励磁ュニッ 卜にしてもよい。 2つの電機 子コイルにそれぞれ電流を (+ 1、 + 1 ) → ( + 1、 0 )→ ( 0、 - I ) → ( - I、 一 I ) のように印加すれば可動子が平面を直線状に移動する。 また、 かかる 直線型の励磁ュニッ 卜を、 X、 Y方向にそれぞれ設ければ、 可動子を X— Y平面 に沿って移動させることも可能である。  In the first and second embodiments, the excitation unit 6 has four arms each having a substantially cross shape in the X-Y direction, and a base to which the tip of each arm and each of the arms are connected. It consisted of a magnetic member having five protruding teeth formed at the end, and four armature coils wound around each arm. However, the excitation unit is composed of a magnetic member having two substantially linear arms, and a distal end of each arm and three protruding teeth formed at a base end to which the arms are connected. Alternatively, a linear excitation unit formed of two armature coils wound around each arm may be used. When current is applied to the two armature coils in the order of (+1, +1) → (+1, 0) → (0, -I) → (-I, one I), the mover moves straight through the plane. Move in a shape. If such linear excitation units are provided in the X and Y directions, the mover can be moved along the XY plane.
次に、 上記実施の形態による平面型モータを用いたステージ装置および露光装 置について説明する。 本発明の第 4の実施の形態として上述の第 2の実施の形態 による平面型モータを用いたステージ装置およびそれを用いた露光装置を図 3 2 乃至図 3 4を用いて説明する。 Next, a stage device and an exposure device using the planar motor according to the above embodiment will be described. The second embodiment described above as the fourth embodiment of the present invention. A stage apparatus using a planar motor and an exposure apparatus using the same will be described with reference to FIGS. 32 to 34.
図 3 2は、 本実施の形態による露光装置の全体の概略構成を示している。 本実 施の形態における露光装置は、 レチクルを 1次元に走査しつつ、 ウェハをそれと 同期した速度 (投影倍率を掛けた速度) で 1次元に走査させる、 いわゆるステツ プ .アンド · スキヤン方式の投影露光装置である。 図 3 2において、 ベース 1 0 0上に防振ダンバ 1 1 2を介してインバ一 (低膨張率の合金) よりなる第 1 コラ 厶 2 3 0が載置されている。第 1 コラム 2 3 0は投影光学系 P Lを固定している。 また、 第 1 コラム 2 3 0には、 レチクル走査ステージ 1 8 0の位置を測定するた めのレーザ干渉計 1 3 5が載置されており、 さらに照明光学系 1 3 0を保持する 第 2コラム 1 7 0が固定されている。  FIG. 32 shows an overall schematic configuration of an exposure apparatus according to the present embodiment. The exposure apparatus of the present embodiment scans the reticle one-dimensionally and one-dimensionally scans the wafer at a speed synchronized with the reticle (a speed multiplied by the projection magnification). This is a so-called step-and-scan projection method. An exposure apparatus. In FIG. 32, a first column 230 made of invar (an alloy having a low expansion coefficient) is placed on a base 100 via an anti-vibration damper 112. The first column 230 fixes the projection optical system PL. In addition, a laser interferometer 135 for measuring the position of the reticle scanning stage 180 is mounted on the first column 230, and a second column holding the illumination optical system 130 is also provided. Column 170 is fixed.
第 1 コラム 2 3 0の内側には、 第 2の実施の形態で説明した平面型モータを用 いたステージ装置が設けられている。 このステージ装置は、 第 2の実施の形態に おける固定子ュニッ 卜 2に対応するステージ駆動ュニッ 卜 3 0 0と、 可動子 4に 対応するウェハステージ W S Tとから構成され、 ウェハステージ W S T上に感光 基板としてのウェハ Wが載置されている。 ウェハステージ W S Tのウェハ W載置 面周囲には磁軸がそれぞれ所定の方向を向いた複数の永久磁石が配列されている ( ステージ駆動ュニヅ ト 3 0 0はフレーム 1 2 4を介してベース 1 0 0に固定され また、 第 2の実施の形態で説明したように、 ウェハステージ W S Tはステージ 駆動ュニッ 卜 3 0 0内の複数の励磁ュニッ 卜 6が無励磁状態であっても、 磁気的 吸引力により空中に浮いており、 駆動系 1 3 7からの制御によりステージ駆動ュ ニッ ト 3 0 0内の所定の複数の励磁ュニッ 卜 6が励磁されると、 それに応じてゥ ェハステージ W S Tは、 投影光学系 P Lの光軸に垂直な面 (水平面) 内で図 3 2 の紙面に垂直な方向 (Y方向) 、 水平面内で Y軸に垂直な X方向、 およびウェハ Wを投影光学系 P Lの光軸方向である Z方向にウェハ Wを位置決めすると共に、 ウェハ Wの投影光学系 P Lの結像面に対する傾きも調整できるようになつている, ウェハステージ W S Tが X , Y, Z方向に移動することによって、 ステージ駆動 ユニッ ト 3 0 0には移動方向とは逆向きの反力が生じる。 この反力は、 フレーム 1 2 4を介してベース 1 0 0に逃がされる。 一方、 投影光学系 P Lは、 防振ダン 1 2を介して第 1 コラム 2 3 0により保持されているので、 ステージ駆動ュ ニッ 卜 3 0 0に生じる反力が投影光学系 P Lに振動を及ぼすことはない。 Inside the first column 230, a stage device using the planar motor described in the second embodiment is provided. This stage device is composed of a stage drive unit 300 corresponding to the stator unit 2 in the second embodiment and a wafer stage WST corresponding to the mover 4. A wafer W as a substrate is mounted. Around the wafer W mounting surface of the wafer stage WST, a plurality of permanent magnets each having a magnetic axis oriented in a predetermined direction are arranged (the stage driving unit 300 is connected to the base 100 via the frame 124). 0, and as described in the second embodiment, the wafer stage WST has a magnetic attraction force even when the plurality of excitation units 6 in the stage drive unit 300 are in a non-excited state. When a plurality of predetermined excitation units 6 in the stage drive unit 300 are excited by the control of the drive system 1337, the wafer stage WST is accordingly turned on by the projection optical system. In the plane perpendicular to the optical axis of the PL (horizontal plane), the direction perpendicular to the paper plane in Figure 32 (Y direction), in the horizontal plane the X direction perpendicular to the Y axis, and the wafer W The optical axis of the projection optical system PL Position the wafer W in the Z direction, (C) The inclination of W with respect to the image plane of the projection optical system PL can also be adjusted. When the wafer stage WST moves in the X, Y, and Z directions, the stage drive unit 300 Generates a reaction force in the opposite direction. Escaped to base 100 via 124. On the other hand, since the projection optical system PL is held by the first column 230 via the anti-vibration dam 12, the reaction force generated in the stage drive unit 300 exerts vibration on the projection optical system PL. Never.
第 1 コラム 2 3 0上にィンバーよりなる第 2コラム 1 1 0が固定され、 第 2コ ラム 1 7 0の上部に X方向に摺動自在なレチクル走査ステージ 1 8 0が載置され, レチクル走査ステージ 1 8 0上に転写用のパターンが形成されたレチクル Rが保 持されている。 レチクル走査ステージ 1 8 0は、 具体的には特開平 8— 6 3 2 3 1号に記載されたリニアモータによる駆動方式のステージであり、 駆動による反 力が相殺されるような構造となっている。 従って、 レチクル走査ステージ 1 8 0 に生じる反力およびステージ駆動ュニッ 卜 3 0 0に生じる反力は、 投影光学系 P Lに振動を及ぼすことはなく、 照明光学系 1 3 0にも振動を及ぼすことがない。 —方、 不図示のエキシマレ一ザ光源 (K r F、 A r F ) 、 あるいは固体レーザ 光源 ( F 2 ) からの露光用照明光が導光光学系 (不図示) を介して、 照明光学 系 1 3 0に入射する。照明光学系 1 3 0は、ブラインド機構、 フライアイレンズ、 コンデンサレンズ等を有し、 所定の領域に形成された照明光がレチクル Rを照射 する。 このように、 所定形状に規定された照明光を受けたレチクル Rは、 第 2コ ラム 1 7 0上を少なくとも X方向に等速移動可能なレチクル走査ステージ 1 8 0 に保持される。 レチクル走査ステージ 1 8 0は、 駆動系 1 3 4によって X方向の 一次元走査移動、 ョ—イング補正のための微小回転移動等を行う。 またレチクル 走査ステージ 1 8 0の一端にはレーザ干渉計 1 3 5からの測長ビームを反射する 移動鏡 1 3 6が固定され、 レチクル Rの X方向位置がレーザ干渉計 1 3 5によつ てリアルタイムに計測される。 A second column 110 composed of a member is fixed on the first column 230, and a reticle scanning stage 180 slidable in the X direction is mounted on the upper part of the second column 170, and the reticle A reticle R having a transfer pattern formed thereon is held on a scanning stage 180. The reticle scanning stage 180 is specifically a stage driven by a linear motor described in Japanese Patent Application Laid-Open No. 8-63231, and has a structure in which a reaction force due to driving is canceled. I have. Therefore, the reaction force generated on the reticle scanning stage 180 and the reaction force generated on the stage drive unit 300 do not cause vibration to the projection optical system PL, and also cause vibration to the illumination optical system 130. There is no. - How, through the excimer one laser light source (not shown) (K r F, A r F ), or a solid laser light source (F 2) exposure illumination light from the light guide optical system (not shown), an illumination optical system It is incident on 130. The illumination optical system 130 includes a blind mechanism, a fly-eye lens, a condenser lens, and the like, and illumination light formed in a predetermined area irradiates the reticle R. Thus, reticle R that has received the illumination light defined in a predetermined shape is held on reticle scanning stage 180 that can move at least in X direction at a constant speed on second column 170. The reticle scanning stage 180 performs a one-dimensional scanning movement in the X direction, a minute rotation movement for bowing correction, and the like by a drive system 134. At one end of the reticle scanning stage 180, a movable mirror 1336 that reflects the measurement beam from the laser interferometer 135 is fixed, and the X direction position of the reticle R is adjusted by the laser interferometer 135. Measured in real time.
レチクル Rに形成されたパターンの像は、 投影光学系 P Lによって、 例えば 1 / 4に縮小されてウェハ W上に結像される。 ウェハ Wは、 X Y Z方向に移動可能 なウェハステージ W S T上に載置されている。  The image of the pattern formed on the reticle R is reduced to, for example, 1/4 by the projection optical system PL and formed on the wafer W. The wafer W is mounted on a wafer stage WST that can move in the X, Y, and Z directions.
このように、 レチクル R上のパターンは露光光 I Lで照明され、 レチクル R上 のパ夕一ン像が投影光学系 P Lを介してゥヱハ W上に投影露光される。 この場合 レチクル R上の照明領域は、 例えば矩形のスリツ 卜状であり、 その照明領域だけ ではレチクル R上の全パターン領域が照明されない。 そこで、 露光時にはレチクル走査ステージ 1 8 0を駆動することにより、 その 照明領域に対して、 レチクル Rをその照明領域の長手方向に垂直な方向である X 方向に一定速度 V 1で走査する。 これに同期して、 ウェハステージ W S Tを駆動 することにより、 ウェハ Wをその照明領域内のレチクル像に対して一 X方向に一 定速度 V 2で走査する。 投影光学系 P Lによるレチクル Rからウエノ、 Wへの投影 倍率を^とすると、 速度 V 2は /5 · V 1である。 このようにして、 レチクル Rお よびウェハ Wを同期して走査することにより、 レチクル Rの全パターンの像がゥ ェハ W上に投影露光される。 1つの露光領域の露光が終了すると、 ウェハステー ジ W S Tをステージ駆動ュニッ 卜 3 0 0で駆動することにより、 ウェハ W上の次 の露光領域の走査開始位置が投影光学系 P Lの露光フィールド内に移動する。 また、 ウェハステージ W S Tの X方向一端面にはレーザ干渉計 1 3 8 Xからの 測長ビ一ムを反射する移動鏡 1 3 9 Xが固定され、 ウェハステ一ジ W S Tの X方 向の座標位置がレーザ干渉計 1 3 8 Xによってリアルタイムに計測される。 図示 は省略したがウェハステージ W S Tの Y方向一端面にもレーザ干渉計 1 3 8 Yか らの測長ビ一ムを反射する移動鏡 1 3 9 Yが固定され、 ウェハステ一ジ W S Tの Y方向の座標位置がレ一ザ干渉計 1 3 8 Yによってリアルタイムに計測されるよ うになっている。 Thus, the pattern on the reticle R is illuminated with the exposure light IL, and the projection image on the reticle R is projected and exposed on the wafer W via the projection optical system PL. In this case, the illumination area on the reticle R is, for example, a rectangular slit, and the entire pattern area on the reticle R is not illuminated by the illumination area alone. Therefore, at the time of exposure, reticle scanning stage 180 is driven to scan reticle R with respect to the illumination area at a constant speed V1 in the X direction, which is a direction perpendicular to the longitudinal direction of the illumination area. By driving the wafer stage WST in synchronization with this, the wafer W is scanned at a constant speed V2 in the X direction with respect to the reticle image in the illumination area. Assuming that the projection magnification from the reticle R to the ueno and W by the projection optical system PL is ^, the velocity V 2 is / 5 · V 1. In this manner, by synchronously scanning reticle R and wafer W, images of all patterns of reticle R are projected and exposed on wafer W. When exposure of one exposure area is completed, the wafer stage WST is driven by the stage drive unit 300 to move the scanning start position of the next exposure area on the wafer W into the exposure field of the projection optical system PL. I do. A moving mirror 1339X that reflects the measuring beam from the laser interferometer 1338X is fixed to one end surface of the wafer stage WST in the X direction, and the coordinate position of the wafer stage WST in the X direction is fixed. Is measured in real time by the laser interferometer 1 3 8 X. Although not shown, a moving mirror 1339Y that reflects the measuring beam from the laser interferometer 1338Y is also fixed to one end surface of the wafer stage WST in the Y direction, and the YST of the wafer stage WST is fixed. Is measured in real time by the laser interferometer 1338Y.
また、本実施の形態による走査型露光装置のステージ駆動ュニッ 卜 3 0 0には、 図示しない冷却器から引き出された配管の端部の冷媒供給口 3 1 0が接続され、 冷媒供給口 3 1 0を介して所定の温度に制御された冷媒がステージ駆動ュニッ 卜 3 0 0内に導入されてステージ駆動ュニッ 卜 3 0 0内を循環し、 電機子コイル 3 8〜4 4に流された電流により発熱した複数の励磁ュニッ 卜 6を冷却した後、 冷 媒排出口 3 1 2から排出されるようになっている。  The stage drive unit 300 of the scanning exposure apparatus according to the present embodiment is connected to a refrigerant supply port 310 at the end of a pipe drawn from a cooler (not shown). The refrigerant controlled at a predetermined temperature through the stage 0 is introduced into the stage drive unit 300, circulates through the stage drive unit 300, and flows through the armature coils 38 to 44. After the plurality of excitation units 6 that have generated heat are cooled, they are discharged from the cooling medium discharge ports 312.
また、 本実施の形態による走査型露光装置には、 ウェハステージ W S Tを第 1 コラム 2 3 0側面の開口 3 3 0から搬入あるいは搬出するためのウェハステージ 搬送系 3 2 0が設けられている。 このウェハステージ搬送系 3 2 0は、 ステージ 駆動ュニッ 卜 3 0 0と同様の構成をしており、 ウェハ Wを載置したウェハステ一 ジ W S Tを磁気的吸引力で浮上させて移動させることができるようになつている, このように本実施の形態による走査型露光装置では、 ウェハ Wの搬送はウェハス テージ W S Tに載置した状態で、 ウェハステージ W S Τごと搬送することによつ て亍ゎれるようになっている。 Further, the scanning exposure apparatus according to the present embodiment is provided with a wafer stage transfer system 320 for loading or unloading wafer stage WST from opening 330 on the side surface of first column 230. The wafer stage transfer system 320 has the same configuration as the stage drive unit 300, and can move the wafer stage WST on which the wafer W is mounted by floating it with magnetic attraction. In the scanning exposure apparatus according to the present embodiment, the transfer of the wafer W is The wafer stage WS is transported together with the stage WST.
また、 本走査型露光装置における露光動作の制御は、 主制御部 1 4 1により統 括的に管理される。 主制御部 1 4 1の基本的な動作は、 レーザ干渉計 1 3 5、 1 3 8からの位置情報、 駆動系 1 3 4、 1 3 7等からの速度情報等に基づいて、 ス キャン露光時にレチクル走査ステージ 1 8 0とウェハステージ W S Τとを所定の 速度比 (投影光学系 P Lの投影倍率に応じた値) を保ちつつ、 レチクルパターン とウェハパターンとの相対位置関係を所定のァライメン卜誤差内に抑えたまま相 対移動させることにある。  In addition, the control of the exposure operation in the present scanning type exposure apparatus is totally managed by the main control unit 141. The basic operation of the main controller 14 1 is based on the scan exposure based on the position information from the laser interferometers 13 5 and 13 8 and the speed information from the drive systems 13 4 and 13 7. While maintaining a predetermined speed ratio (a value corresponding to the projection magnification of the projection optical system PL) between the reticle scanning stage 180 and the wafer stage WS 時 に, a predetermined alignment of the relative positional relationship between the reticle pattern and the wafer pattern is performed. The relative movement is to be performed with the error kept within.
次に、 本実施の形態による露光装置のステージ駆動ュニッ 卜 3 0 0およびゥェ ハステージ W S Τの構造を図 3 3および図 3 4を用いてより詳細に説明する。 図 3 3は、 本実施の形態によるステージ駆動ュニヅ ト 3 0 0とウェハステージ W S Τの一部を分解して表示した斜視図である。 また、 図 3 4は、 ステージ駆動ュニ ッ ト 3 0 0内の励磁ュニッ 卜 6の配置と、 ウェハステージ W S Τに設けられた磁 極ュニッ 卜 1 4の配置関係を示す平面図である。  Next, the structure of the stage drive unit 300 and wafer stage WS of the exposure apparatus according to the present embodiment will be described in more detail with reference to FIGS. 33 and 34. FIG. FIG. 33 is an exploded perspective view showing a part of stage drive unit 300 and wafer stage W S # according to the present embodiment. FIG. 34 is a plan view showing the arrangement of the excitation unit 6 in the stage drive unit 300 and the arrangement of the magnetic pole units 14 provided on the wafer stage WS.
図 3 3および図 3 4に示すように、 ステージ駆動ュニッ 卜 3 0 0は、 平板の基 台 8下面に複数の励磁ュニッ 卜 6が固定され、 その下面に平面状の摺動部材 1 0 が設けられている。 ステージ駆動ュニッ 卜 3 0 0のほぼ中央部には開口部が設け られており、 この開口部に投影光学系 Ρしの鏡筒の光射出側端部が位置するよう になっている.。 従って基台 8は、 当該投影光学系 Ρしの鏡筒の光射出端部の形状 に合わせて、 すり鉢状の斜面を有し、 その斜面底部の開口部で摺動部材 1 0に接 続されている。  As shown in FIGS. 33 and 34, the stage drive unit 300 has a plurality of excitation units 6 fixed to the lower surface of a flat base 8, and a flat sliding member 10 on the lower surface. Is provided. An opening is provided substantially at the center of the stage drive unit 300, and the light exit side end of the lens barrel of the projection optical system is located in this opening. Therefore, the base 8 has a mortar-shaped slope in conformity with the shape of the light exit end of the lens barrel of the projection optical system, and is connected to the sliding member 10 at the opening at the bottom of the slope. ing.
—方、 ウェハステージ W S Tは、 ほぼ正方形の平面形状を有し、 その中央部に ウェハ Wを載置する円形状のウェハ載置面が設けられ、 その周囲に複数の永久磁 石が X— Υ平面上にマトリクス状に並んで構成された磁極ュニッ 卜が 4つの領域 A〜Dに分けられて設けられている。 また、 磁極ュニッ 卜 1 4下面およびウェハ 載置面下方には、 非磁性体且つ非導体である基板 1 2が固定されている。 また、 ウェハステージ W S Tの側面部の隣り合う 2面には、 X、 Y方向の位置をそれぞ れレ一ザ干渉計で計測するための移動鏡 1 3 9 X、 1 3 9 Yが取り付けられてい る。 On the other hand, the wafer stage WST has a substantially square planar shape, a circular wafer mounting surface on which the wafer W is mounted, and a plurality of permanent magnets around the wafer mounting surface. Magnetic pole units formed in a matrix on a plane are provided divided into four regions A to D. A nonmagnetic and nonconductive substrate 12 is fixed to the lower surface of the magnetic pole unit 14 and below the wafer mounting surface. In addition, movable mirrors 1339X and 1339Y for measuring the positions in the X and Y directions with a laser interferometer are attached to two adjacent sides of the wafer stage WST. And You.
このように本実施の形態のステージ装置では、 可動子となるウェハステージ W S Tは固定子ュニッ 卜となるステージ駆動ュニヅ ト 3 0 0の下方に位置して、 ス テ―ジ駆動ュニッ 卜 3 0 0の各励磁ュニヅ 卜 6が無励磁状態でもウェハステージ W S Tのの複数の永久磁石 5 0 N、 5 0 Sによる磁気的吸引力により、 ステージ 駆動ュニッ ト 3 0 0に対して所定の空隙を介して空中に浮いていることができる ようになっている。  As described above, in the stage apparatus of the present embodiment, wafer stage WST serving as a mover is located below stage drive unit 300 serving as a stator unit, and stage drive unit 300 is provided. Even when each excitation unit 6 of the wafer stage WST is in a non-excited state, the magnetic force of the plurality of permanent magnets 50 N and 50 S of the wafer stage WST causes the stage drive unit 300 to pass through a predetermined gap through a predetermined gap. They can float in the air.
また、 図 3 4に示すように、 各領域 A ~ D上方に位置するステージ駆動ュニッ 卜 3 0 0の複数の励磁ュニッ 卜 6は、 既に図 1 5を用いて説明したような励磁ュ ニッ 卜 6の組が 2組ずつで順次機能するように配置されており、 磁極ュニッ 卜の 各領域 A〜Dに X— Y面内の所定方向に相対移動させる推力を発生させると共に, Z方向に磁気浮上させている磁気的吸引力を変化させてウェハステージ W S丁の X— Y方向の移動と Z方向の移動を同時に行うことができるようにしている。 さらに、 ウェハステージ W S Tの磁極ユニッ ト 1 4が領域 A〜Dに 4分割され ているので、 領域 A ~ Dの上方の励磁ュニッ 卜 6の組の電機子コィル 3 8〜4 4 にそれぞれ領域毎に異なる所定の電流を供給して、 例えば領域 A〜D毎の推力の 方向を変えることにより、 全体として X— Y面内を一方向に移動できるだけでな く、 Z軸回りの回転を行わせることができるようになる。 また、 領域 A ~ Dのそ れそれの Z方向の浮上力を変えることにより、 X軸回りあるいは Y軸回りの回転 を行わせることができるようになり、 ウェハステージ W S Tのウェハ W平面のレ ベリングを調整することができる。  Further, as shown in FIG. 34, the plurality of excitation units 6 of the stage drive unit 300 located above the respective areas A to D are the excitation units already described with reference to FIG. The six sets are arranged so that they function sequentially in groups of two.Each area A to D of the magnetic pole unit generates a thrust for relative movement in a predetermined direction in the XY plane, and a magnetic force is generated in the Z direction. By changing the magnetic attraction force that is being levitated, the wafer stage WS can be moved in the X and Y directions and in the Z direction at the same time. Further, since the magnetic pole unit 14 of the wafer stage WST is divided into four areas A to D, the armature coils 38 to 44 of the set of the excitation unit 6 above the areas A to D are respectively provided for each area. By supplying different predetermined currents to the actuators, for example, by changing the direction of thrust in each of the areas A to D, not only can the entire body move in one direction in the XY plane, but also rotate around the Z axis. Will be able to do it. In addition, by changing the floating force in the Z direction of each of the regions A to D, the rotation around the X axis or the Y axis can be performed, and the leveling of the wafer W plane of the wafer stage WST can be performed. Can be adjusted.
なお上記実施の形態における励磁ュニッ 卜の製造は、 4つの腕部および腕部先 端部および基端部の突歯を磁性材料で一体的に形成してもよいし、 各部をそれぞ れ製作しておいて、 組み立てるようにしてもよい。 そして製作された磁性体部材 の腕部に電機子コイルを巻き回して配線や配管を接続し、 さらに総合調整 (電気 調整、 動作確認等) が行われる。  In the manufacture of the excitation unit in the above-described embodiment, the four arms and the protruding teeth at the leading and trailing ends of the arms may be integrally formed of a magnetic material, or each part may be manufactured separately. And then assemble it. The armature coil is wound around the arm of the manufactured magnetic member to connect the wires and pipes, and comprehensive adjustments (electrical adjustment, operation confirmation, etc.) are performed.
また、 上記実施の形態による励磁ュニッ 卜を有する平面型モータの製造では、 上記励磁ュニッ 卜の製造に加えて、 基板上に相互に磁極の向きを逆転させて複数 の永久磁石を配列して組み立てられる磁極ュニッ 卜が製造される。 また、上記実施の形態による平面型モータを組み込んだステージ装置の製造は、 基板を載置するステージとして上記実施の形態による平面型モータの可動子を組 み込み、 固定子をステージ駆動用の駆動系として組み込んで、 X、 Υ、 Ζ軸方向 と各軸周りの回転の 6自由度でステ―ジの位置姿勢ができるように総合調整する ことにより行われる。 In the manufacture of the planar motor having the excitation unit according to the above-described embodiment, in addition to the manufacture of the excitation unit, a plurality of permanent magnets are arranged on a substrate by reversing the directions of the magnetic poles thereof. The magnetic pole unit is manufactured. Also, in the manufacture of the stage device incorporating the planar motor according to the above-described embodiment, the mover of the planar motor according to the above-described embodiment is incorporated as a stage for mounting a substrate, and the stator is driven for driving the stage. The system is incorporated as a system and comprehensively adjusted so that the position and orientation of the stage can be achieved with six degrees of freedom of rotation around the X, Υ, and Ζ axes.
また、 上記実施の形態による露光装置の製造は、 複数のレンズから構成される 照明系、 投影光学系を露光装置本体に組み込み光学調整するとともに、 多数の機 械部品からなる上記実施の形態によるステ一ジ装置をレチクルステージやウェハ ステージとして組み込み、 露光装置本体に取り付けて配線や配管を接続し、 さら に総合調整 (電気調整、 動作確認等) をすることにより行われる。 なお、 露光装 置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望 ましい。  In the manufacture of the exposure apparatus according to the above-described embodiment, the illumination system and the projection optical system composed of a plurality of lenses are incorporated into the exposure apparatus main body to perform optical adjustment, and the step according to the above-described embodiment including a large number of mechanical parts is performed. This is done by incorporating a lithographic apparatus as a reticle stage or wafer stage, attaching it to the main body of the exposure apparatus, connecting wiring and piping, and performing comprehensive adjustments (electrical adjustment, operation confirmation, etc.). It is desirable to manufacture the exposure equipment in a clean room where the temperature and cleanliness are controlled.
本発明は、 上記実施の形態に限らず種々の変形が可能である。  The present invention is not limited to the above embodiment, and various modifications are possible.
上記実施の形態においては、 図 1 5に示すような配置で励磁ュニッ ト 6の組を 規定したが、 本発明はこれに限られず、 例えば、 X、 Υ方向にそれぞれ η 1、 m 1 ( n、 mは正の整数) だけ離れた少なくとも 2つの励磁ユニッ ト 6で組を構成 してもよい。 また、 励磁ュニッ 卜 6の組同士の配置位置も、 図 1 5の例示に限ら れず種々の変形が可能である。  In the above embodiment, the set of the excitation units 6 is defined by the arrangement shown in FIG. 15, but the present invention is not limited to this. For example, η 1, m 1 (n , M is a positive integer) and may be composed of at least two excitation units 6 separated by a distance. Further, the arrangement position of the pair of the excitation units 6 is not limited to the example shown in FIG. 15 and various modifications are possible.
また、 上記実施の形態においては、 可動子 4に 6自由度の動きを与えるために 図 2 1や図 3 4に示すように駆動ュニッ 卜をそれぞれ領域 A〜Dの 4分割とした が、 本発明はこれに限られず、 磁極ュニッ 卜 1 4を X— Y平面で各領域の中心を 結ぶ線が三角形を構成するような領域 A〜Cに分け、 領域 A〜Cの下方の励磁ュ ニッ ト 6の組の電機子コイル 3 8〜4 4にそれぞれ領域毎に異なる所定の電流を 供給するようにしても、 可動子 4に 6自由度の動きを与えることができる。 従つ て分割する領域の数は 3以上であればよい。  Further, in the above embodiment, the drive unit is divided into four regions A to D as shown in FIGS. 21 and 34 in order to give the mover 4 a movement with six degrees of freedom. The invention is not limited to this, and the magnetic pole unit 14 is divided into areas A to C in which a line connecting the centers of the respective areas on the XY plane forms a triangle, and the excitation unit below the areas A to C is divided. Even if a predetermined current that is different for each region is supplied to each of the six sets of armature coils 38 to 44, the mover 4 can be given a movement with six degrees of freedom. Therefore, the number of divided regions may be three or more.
さらに、 上記実施の形態においては、 磁極ュニッ ト 1 4を備えた方を可動子 4 に、 励磁ュニッ 卜 6を備えた方を固定子ュニッ 卜 2に用いたが、 本発明はこれに 限らず、 磁極ュニッ 卜 1 4側を固定子ュニッ 卜 2に、 励磁ュニッ 卜 6側を可動子 4にしてももちろんよい。 特に、 励磁ュニッ ト 6の数があまり多〈なく、 各電機 子コイル 3 8〜 4 4に電流を供給するための配線なども簡素にできる場合には有 効である。 Further, in the above embodiment, the one provided with the magnetic pole unit 14 is used for the mover 4, and the one provided with the excitation unit 6 is used for the stator unit 2, but the present invention is not limited to this. The magnetic pole unit 14 may be used as the stator unit 2 and the exciting unit 6 may be used as the mover 4. In particular, the number of excitation units 6 is not very large. This is effective if wiring for supplying current to the sub coils 38 to 44 can be simplified.
また、 第 4の実施の形態では第 2の実施の形態による平面型モータを用いたス テージ装置および露光装置について説明したが、 同様にして第 1の実施の形態に よる平面型モータをステージ装置および露光装置に適用することももちろん可能 あ  In the fourth embodiment, the stage apparatus and the exposure apparatus using the planar motor according to the second embodiment have been described. Similarly, the planar motor according to the first embodiment may be replaced with a stage apparatus. And exposure equipment
また、 上記実施の形態においては、 本発明の平面型モータを用いたステージ装 置をウェハステージ W S T側に適用して説明したが、 本発明はこれに限られず、 例えばレチクル走査ステージ 1 8 0側に適用して、 レチクル走査ステージ 1 8 0 を 6自由度で制御するようにしてももちろんよい。  Further, in the above-described embodiment, the stage apparatus using the planar motor of the present invention has been described as being applied to the wafer stage WST side. However, the present invention is not limited to this, and for example, the reticle scanning stage 180 side And the reticle scanning stage 180 may be controlled with six degrees of freedom.
また、 励磁ュニッ 卜 6は上記実施の形態で示した形状に限定されるものではな く、 実装段階での取り付けスペースや他の構成要素との兼ね合いにより、 種々の 変形が可能である。 例えば、 上記実施の形態での励磁ュニッ ト 6は、 各腕部 2 0 〜2 6の隣り合う 2つの腕部に挟まれる角度がほぼ 9 0 ° となる十字形状に構成 したが、 本発明はこれに限られず、 隣り合う 2つの腕部に挟まれる角度が異なつ ていてももちろんよい。 例えば、 腕部 2 0と腕部 2 2とで挟まれる角度、 および 腕部 2 4と腕部 2 6とで挟まれる角度が共に 1 2 0 ° であり、 腕部 2 2と腕部 2 4とで挟まれる角度、 および腕部 2 6と腕部 2 0とで挟まれる角度が共に 6 0 ° であるような構成でももちろんよい (本発明では、 これらもほぼ十字形状である と呼ぶ) 。 さらに、 腕部 2 0〜2 6のそれぞれの長さを異ならせたり、 また、 各 突歯を腕部先端部および基端部直上から突出させるのではなく、 先端部および基 端部の側方から伸びるようにしてももちろんよい。 このような励磁ュニッ 卜の形 状の変更に伴い、 磁極ュニッ 卜の X— Y方向に並ぶ複数の永久磁石の X、 Y方向 の幅を適宜変更するようにしてももちろんよい。  Further, the excitation unit 6 is not limited to the shape shown in the above-described embodiment, but can be variously modified depending on the mounting space at the mounting stage and other components. For example, the excitation unit 6 in the above embodiment is formed in a cross shape in which an angle between two adjacent arms of each of the arms 20 to 26 is approximately 90 °. The present invention is not limited to this, and the angle between two adjacent arms may be different. For example, the angle between the arm 20 and the arm 22 and the angle between the arm 24 and the arm 26 are both 120 °, and the arm 22 and the arm 24 It is a matter of course that the angle between the arm 26 and the arm 20 and the angle between the arm 20 may both be 60 ° (in the present invention, these are also referred to as substantially cross-shaped). Furthermore, instead of making the lengths of the arms 20 to 26 different, or protruding each tooth from just above the tip and base of the arm, from the side of the tip and base, Of course, it may be extended. Along with such a change in the shape of the excitation unit, the width in the X and Y directions of the plurality of permanent magnets arranged in the X and Y directions of the pole unit may be appropriately changed.
また、 第 4の実施の形態においては、 従来型の超高圧水銀ランプを光源として 用いたステップ ·アンド · スキャン方式の投影露光装置に本発明を適用したが、 本発明はこれに限られず例えば、 レチクルの回路パターン全体を一度に投影し得 るイメージフィ一ルドを持つ投影光学系を介してウェハをステップ . アンド - リ ピー卜方式で露光する投影露光装置にももちろん適用することができる。 また、 静圧気体軸受のように空気の介在を必要としないので、 真空中でも用いることが できるので、 エキシマレーザ、 あるいは他の荷電粒子線等を線源とする露光装置 に用いて特に好適である。 産業上の利用可能性 In the fourth embodiment, the present invention is applied to a step-and-scan type projection exposure apparatus using a conventional ultra-high pressure mercury lamp as a light source, but the present invention is not limited to this. The present invention can of course be applied to a projection exposure apparatus for exposing a wafer by a step-and-repeat method via a projection optical system having an image field capable of projecting the entire reticle circuit pattern at one time. Also, Since it does not require the intervention of air unlike a static pressure gas bearing, it can be used even in a vacuum, and is particularly suitable for use in an exposure apparatus using an excimer laser or another charged particle beam as a radiation source. Industrial applicability
以上の通り、 本発明によれば、 高推力が得られ、 可動子が軽量で高速移動可能 な平面型モータを実現できる。 また、 可動子に浮上力を与えつつ 2次元平面を移 動させる平面型モータを実現できる。 さらに、 可動子の位置および姿勢を、 X、 Y、 Ζの 3軸方向およびそれらの軸の回転方向の合計 6自由度で制御することが できる平面型モータを実現できる。  As described above, according to the present invention, it is possible to realize a flat motor in which a high thrust is obtained, the mover is lightweight and can move at high speed. Also, it is possible to realize a planar motor that moves a two-dimensional plane while giving a floating force to the mover. Furthermore, it is possible to realize a planar motor that can control the position and orientation of the mover in a total of six degrees of freedom in the three axis directions of X, Y, and お よ び and the rotation directions of those axes.
また、 本発明によれば、 ウェハを載置して移動するステージ装置が真空あるい は H e雰囲気内に密閉されていても、 目的位置まで可動子を高速に移動させ且つ 超精密位置決めできるステージ装置およびそれを用いた露光装置を実現できる。  Further, according to the present invention, even if the stage device for mounting and moving a wafer is sealed in a vacuum or He atmosphere, the stage that can move the mover to the target position at a high speed and can perform ultra-precision positioning An apparatus and an exposure apparatus using the same can be realized.

Claims

請 求 の 範 囲 The scope of the claims
1 . 交互に磁極の向きを逆転させて配列した複数の永久磁石を有する磁極ュニッ 卜と対をなして直線型モータに用いられ、 1. Used in linear motors in pairs with magnetic pole units having a plurality of permanent magnets arranged with the magnetic poles reversed alternately.
ほぼ直線状に形成された 2つの腕部と、 前記磁極ュニッ 卜の前記複数の永久磁 石に対向するように、 前記各腕部の先端部および前記各腕部が接続された基端部 に形成された 3つの突齒とを有する磁性体部材と、 前記各腕部のそれぞれに巻回 された 2つの電機子コイルとを有することを特徴とする励磁ュニッ ト。  A pair of substantially linearly formed arms and a base end to which the distal ends of the respective arms and the respective arms are connected so as to face the plurality of permanent magnets of the magnetic pole unit. An excitation unit comprising: a magnetic member having three formed protruding teeth; and two armature coils wound around each of the arms.
2 . 直線駆動させる直線型モータにおいて、  2. In a linear motor driven linearly,
交互に磁極の向きを逆転させて配列した複数の永久磁石を有する磁極ュニッ 卜 と、  A magnetic pole unit having a plurality of permanent magnets arranged by alternately reversing the direction of magnetic poles;
請求の範囲第 1項に記載の励磁ュニッ 卜と  The excitation unit according to claim 1 and
を備えたことを特徴とする直線型モータ。  A linear motor comprising:
3 . 請求の範囲第 2項記載の直線型モータにおいて、  3. In the linear motor according to claim 2,
前記磁極ュニッ 卜の複数の前記永久磁石は、 直線方向にそれぞれ幅 1 を有し、 且つ前記各永久磁石の中心間は直線方向に距離 2 1 だけ離間して配置されており、 前記励磁ュニッ 卜の前記腕部の 2つの前記突歯は、 前記基端部の突齒に対して 直線方向に相対的に士 1 / 2だけずれて配置されていることを特徴とする直線型 モータ。  The plurality of permanent magnets of the magnetic pole unit each have a width of 1 in the linear direction, and the centers of the permanent magnets are linearly spaced apart by a distance of 21. The linear motor according to claim 1, wherein the two protruding teeth of the arm portion are disposed so as to be displaced from each other by a half in a linear direction with respect to the protruding teeth of the base end portion.
4 . 交互に磁極の向きを逆転させて X —丫平面上に配列した複数の永久磁石を有 する磁極ュニッ 卜と対をなして平面型モータに用いられ、 4. Used in a flat-type motor in pairs with a magnetic pole unit having a plurality of permanent magnets arranged on the X-- 丫 plane by alternately reversing the direction of the magnetic poles.
全体で X— Y方向にほぼ十字形状をなす 4つの腕部と、 前記磁極ュニッ 卜の前 記複数の永久磁石に対向するように、 前記各腕部の先端部および前記各腕部が接 続された基端部に形成された 5つの突歯とを有する磁性体部材と、 前記各腕部の それぞれに巻回された 4つの電機子コイルとを有することを特徴とする励磁ュニ ッ 卜。  The distal end of each arm and each of the arms are connected so as to face the four arms, which are substantially cross-shaped in the X-Y direction as a whole, and the plurality of permanent magnets of the magnetic pole unit. An excitation unit comprising: a magnetic member having five protruding teeth formed at a base end portion formed; and four armature coils wound around each of the arm portions.
5 . 平面駆動させる平面型モータにおいて、  5. For a planar motor driven by a plane,
交互に磁極の向きを逆転させて X— Y平面上に配列した複数の永久磁石を有す る磁極ュニッ 卜と、 請求の範囲第 4項に記載の励磁ュニッ 卜と A magnetic pole unit having a plurality of permanent magnets arranged on the XY plane by alternately reversing the directions of the magnetic poles; The excitation unit according to claim 4 and
を備えたことを特徴とする平面型モータ。  A flat type motor comprising:
6 . 請求の範囲第 2項記載の平面型モータにおいて、  6. The flat motor according to claim 2,
前記磁極ユニッ トの複数の前記永久磁石は、 前記 X— Y面内で X、 Y方向にそ れぞれ幅 1 を有し、 且つ前記各永久磁石の中心間はそれぞれ X、 Y方向に距離 2 1 だけ離間して配置されており、  The plurality of permanent magnets of the magnetic pole unit have a width of 1 in the X and Y directions in the XY plane, respectively, and a distance between the centers of the permanent magnets in the X and Y directions respectively. 2 1 apart
前記励磁ュニッ 卜の X方向に伸びる 2つの前記腕部の 2つの前記突齒は、 前記 基端部の突歯に対して X方向に相対的に土 1 / 2だけずれて配置され、 Y方向に 伸びる 2つの前記腕部の 2つの前記突歯は、 前記基端部の突齒に対して Y方向に 相対的に土 1 / 2だけずれて配置されていることを特徴とする平面型モータ。 The two teeth of the two arms extending in the X direction of the excitation unit are displaced relative to the teeth of the base end by 1/2 of the soil in the X direction, and are arranged in the Y direction. A planar motor, wherein the two protruding teeth of the two extending arms are displaced relative to the protruding teeth of the base end by a half of soil in the Y direction.
7 . 請求の範囲第 2項記載の直線型モータにおいて、 7. In the linear motor according to claim 2,
前記磁極ュニッ 卜の磁極の向きが逆転された複数の永久磁石の間に、 該永久磁 石の磁極方向に磁軸が向いた永久磁石が埋め込まれていることを特徴とする直線 型モータ。  A linear motor, wherein a permanent magnet whose magnetic axis is oriented in the direction of the magnetic pole of the permanent magnet is embedded between a plurality of permanent magnets whose magnetic poles are reversed in direction of the magnetic pole unit.
8 . 請求の範囲第 5項記載の平面型モータにおいて、 8. The flat motor according to claim 5,
前記磁極ュニッ 卜の X方向に離間した前記複数の永久磁石の間には、 X方向に 磁軸が向いた永久磁石がそれぞれ埋め込まれており、 Y方向に離間した前記複数 の永久磁石の間には、 Y方向に磁軸が向いた永久磁石がそれぞれ埋め込まれてお 前記 X方向に磁軸が向いた永久磁石と前記 Y方向に磁軸が向いた永久磁石で囲 まれた領域に、 導体且つ非磁性体である部材が埋め込まれていることを特徴とす る平面型モータ。  Permanent magnets whose magnetic axes are oriented in the X direction are respectively embedded between the plurality of permanent magnets spaced in the X direction of the magnetic pole unit, and between the plurality of permanent magnets spaced in the Y direction. The permanent magnet whose magnetic axis is oriented in the Y direction is embedded in each of the permanent magnets whose magnetic axis is oriented in the X direction and the permanent magnet whose magnetic axis is oriented in the Y direction. A planar motor having a non-magnetic member embedded therein.
9 . 請求の範囲第 2項または第 3項、 または第 5項乃至第 7項のいずれかに記載 の直線型または平面型モータにおいて、  9. The linear or planar motor according to any one of claims 2 or 3, or 5 to 7,
複数の前記励磁ュニッ 卜を所定位置に固定して固定子とし、 前記磁極ュニッ 卜 を前記固定子に対して移動可能な可動子として用いることを特徴とする直線型ま たは平面型モータ。  A linear or planar motor, wherein a plurality of the excitation units are fixed at predetermined positions to form a stator, and the magnetic pole units are used as movers movable with respect to the stator.
1 0 . 請求の範囲第 9項記載の直線型または平面型モータにおいて、  10. The linear or planar motor according to claim 9,
前記固定子の前記各励磁ュニッ 卜は前記突歯を上方に向けて前記可動子の下方 に配置され、 前記可動子は前記複数の永久磁石を前記下方に向けて前記突歯と対 向するように配置されていることを特徴とする直線型または平面型モータ。 Each of the excitation units of the stator is positioned below the movable element with the protruding teeth facing upward. Wherein the mover is arranged so that the plurality of permanent magnets face the lower teeth so as to face the protruding teeth.
1 1 . 請求の範囲第 5項記載の平面型モータにおいて、  11. The flat motor according to claim 5,
少なくとも 2つの前記励磁ュニッ 卜を X、 Y方向に相対的にそれぞれ距離 1 だ けずらして配置した固定子からなる組を備え、 前記各励磁ュニッ 卜の前記 4つの 電機子コイルに流す所定の電流を切り替えることにより、 前記磁極ュニッ 卜を可 動子として前記 X— Y面内の所定方向に相対移動させる推力を発生させ、 または 前記可動子を Z方向に磁気浮上させる磁気的反発力を発生させることを特徴とす る平面型モータ。  A set of at least two stators arranged at a distance of 1 relative to each other in the X and Y directions, and a predetermined current flowing through the four armature coils of each of the excitation units To generate a thrust for moving the magnetic pole unit as a movable element in a predetermined direction in the XY plane, or to generate a magnetic repulsive force for magnetically levitating the movable element in the Z direction. A flat-type motor characterized in that:
1 2 . 請求の範囲第 1 1項記載の平面型モータにおいて、  12. The flat motor according to claim 11, wherein:
前記固定子は、 前記組を少なくとも 2個組み合わせて構成される駆動ュニッ ト を有し、 前記駆動ュニッ 卜により前記可動子を前記 X— Y面内の所定方向に相対 移動させる推力を発生させると共に、 前記 Z方向に磁気浮上させる磁気的反発力 を発生させることを特徴とする平面型モ一夕。  The stator has a drive unit formed by combining at least two of the sets, and the drive unit generates a thrust for relatively moving the mover in a predetermined direction in the XY plane, and A planar repulsive force generating a magnetic repulsive force for magnetically levitating in the Z direction.
1 3 . 請求の範囲第 1 2項記載の平面型モータにおいて、  13. The flat motor according to claim 12,
前記固定子は、平面状に分布させた少なくとも 3個の前記駆動ュニッ 卜を有し、 前記 3個の前記駆動ユニッ トは、 前記固定子に対して前記 X、 丫、 Z軸方向と前 記各軸周りの回転の 6自由度で前記可動子の位置姿勢を制御することを特徴とす る平面型モータ。  The stator has at least three drive units distributed in a plane, and the three drive units are arranged in the X, 丫, and Z-axis directions with respect to the stator. A planar motor characterized in that the position and orientation of the mover are controlled with six degrees of freedom of rotation about each axis.
1 4 . 請求の範囲第 1項または第 4項に記載の励磁ユニッ トにおいて、  14. In the excitation unit according to claim 1 or 4,
前記突歯の先端の歯部は、 先鋭形状に形成されていることを特徴とする励磁ュ ニッ ト。  The exciting unit according to claim 1, wherein a tooth portion at a tip of the protruding tooth is formed in a sharp shape.
1 5 . 基板を載置するステージと、 前記ステージを駆動する駆動系とを有し、 前 記駆動系により、 X、 Y軸方向で前記ステージの位置を制御するステージ装置に おいて、  15. A stage device having a stage on which a substrate is placed and a drive system for driving the stage, wherein the drive system controls the position of the stage in the X and Y axis directions.
前記ステージとして、 請求の範囲第 2頃に記載の前記磁極ュニッ 卜を X方向と Y方向とに配置し、  As the stage, the magnetic pole unit according to claim 2 is arranged in the X direction and the Y direction,
前記駆動系として、 請求の範囲第 2頃に記載の前記励磁ュニッ 卜を前記磁極ュ ニヅ 卜と対向するように X方向と Y方向とに配置することを特徴とするステージ 装置。 A stage as the drive system, wherein the excitation unit described in claim 2 is arranged in the X direction and the Y direction so as to face the magnetic pole unit. apparatus.
1 6 . 基板を載置するステージと、 前記ステージを駆動する駆動系とを有し、 前 記駆動系により、 X、 丫、 Z軸方向と各軸周りの回転の 6自由度で前記ステージ の位置姿勢を制御するステ一ジ装置において、  16. A stage on which a substrate is placed, and a drive system for driving the stage, the drive system having six degrees of freedom of rotation in X, 丫, and Z axis directions and around each axis. In a stage device for controlling the position and orientation,
前記ステージとして、 請求の範囲第 1 1項乃至第 1 3項のいずれかに記載の平 面型モータの可動子を用い、  As the stage, a movable element of the flat motor according to any one of claims 11 to 13 is used,
前記駆動系として、 請求の範囲第 1 1項乃至第 1 3項のいずれかに記載の平面 型モータの固定子を用いたことを特徴とするステージ装置。  14. A stage device, wherein the stator of the planar motor according to claim 11 is used as the drive system.
1 7 . 請求の範囲第 1 5項または第 1 6項に記載のステージ装置において、 前記励磁ュニッ トを冷却する冷却機構を備えたことを特徴とするステージ装置 c 1 7. In the stage apparatus according to the first paragraph 5 or the first item 6 claims, the stage apparatus characterized by comprising a cooling mechanism for cooling the excitation Yuni' preparative c
1 8 . パターンの像を基板に転写する露光装置において、 1 8. In an exposure apparatus that transfers a pattern image to a substrate,
前記基板を載置して移動するステージ装置として、 請求の範囲第 1 5項または 第 1 6項に記載のステージ装置を備えたことを特徴とする露光装置。  17. An exposure apparatus, comprising: the stage device according to claim 15 or 16 as a stage device on which the substrate is mounted and moved.
1 9 . 請求の範囲第 1 8項記載の露光装置において、  19. The exposure apparatus according to claim 18, wherein
前記パターンの像を基板に投影する投影光学系を防振機構を介して支えるコラ ムと、  A column for supporting a projection optical system for projecting an image of the pattern onto a substrate via a vibration isolation mechanism,
前記ステージ装置の駆動系を支える固定フレームとを備え、  A fixed frame supporting a drive system of the stage device,
前記駆動系に生じる反力が前記投影光学系に及ばないことを特徴とする露光装 m. o  Exposure apparatus m.o characterized by the fact that the reaction force generated in the drive system does not reach the projection optical system.
2 0 . 励磁ユニッ トの組立方法において、  20. In the method of assembling the excitation unit,
ほぼ直線状に形成された 2つの腕部と、 前記磁極ュニッ 卜の前記複数の永久磁 石に対向するように、 前記各腕部の先端部および前記各腕部が接続された基端部 に形成された 3つの突歯とを有する磁性体部材と、 前記各腕部のそれぞれに巻回 された 2つの電機子コイルとを組み立てることを特徴とする励磁ュニッ 卜の組立 方法。  A pair of substantially linearly formed arms and a base end to which the distal ends of the respective arms and the respective arms are connected so as to face the plurality of permanent magnets of the magnetic pole unit. A method for assembling an excitation unit, comprising: assembling a magnetic member having three formed protruding teeth, and two armature coils wound around each of the arm portions.
2 1 . 励磁ュニッ 卜の組立方法において、  2 1. In the method of assembling the excitation unit,
全体で X— Y方向にほぼ十字形状をなす 4つの腕部と、 前記各腕部の先端部お よび前記各腕部が接続された基端部に形成された 5つの突歯とを有する磁性体部 材と、 前記各腕部のそれぞれに巻回された 4つの電機子コイルとを組み立てるこ とを特徴とする励磁ュニッ 卜の組立方法。 A magnetic body having four arms each having a substantially cross shape in the X-Y direction as a whole, and five protruding teeth formed at a distal end of each of the arms and a base end to which each of the arms is connected. The parts and four armature coils wound around each of the arms are assembled. And a method of assembling the excitation unit.
2 2 . 直線型モータの組立方法において、 2 2. In the method of assembling the linear motor,
ほぼ直線状に形成された 2つの腕部と、 前記磁極ュニッ 卜の前記複数の永久磁 石に対向するように、 前記各腕部の先端部および前記各腕部が接続された基端部 に形成された 3つの突歯とを有する磁性体部材と、 前記各腕部のそれぞれに巻回 された 2つの電機子コイルとを組み立てた励磁ュニッ 卜と、  A pair of substantially linearly formed arms and a base end to which the distal ends of the respective arms and the respective arms are connected so as to face the plurality of permanent magnets of the magnetic pole unit. An excitation unit assembling a magnetic member having three formed protruding teeth, and two armature coils wound around each of the arm portions;
交互に磁極の向きを逆転させて配列した複数の永久磁石を有する磁極ュニッ 卜 と  A magnetic pole unit having a plurality of permanent magnets arranged by alternately reversing the magnetic pole direction;
を組み立てることを特徴とする直線型モータの組立方法。  And a method of assembling a linear motor.
2 3 . 平面型モータの組立方法において、 23. In the method of assembling the planar motor,
交互に磁極の向きを逆転させて X—Y平面上に配列した複数の永久磁石を有す る磁極ュニッ 卜と、  A magnetic pole unit having a plurality of permanent magnets arranged on the XY plane by alternately reversing the directions of the magnetic poles;
全体で X— Y方向にほぼ十字形状をなす 4つの腕部と、 前記磁極ュニッ 卜の前 記複数の永久磁石に対向するように、 前記各腕部の先端部および前記各腕部が接 続された基端部に形成された 5つの突歯とを有する磁性体部材と、 前記各腕部の それぞれに巻回された 4つの電機子コイルとを有する励磁ュニッ トと  The distal end of each arm and each of the arms are connected so as to face the four arms, which are substantially cross-shaped in the X-Y direction as a whole, and the plurality of permanent magnets of the magnetic pole unit. A magnetic member having five protruding teeth formed at the base end formed, and an excitation unit having four armature coils wound around each of the arms.
を組み立てることを特徴とする平面型モータの組立方法。  A method for assembling a planar motor, comprising:
2 4 . 基板を載置するステージと、 前記ステージを駆動する駆動系とを有し、 前 記駆動系により、 X、 丫、 Z軸方向と各軸周りの回転の 6自由度で前記ステージ の位置姿勢を制御するステ一ジ装置の組立方法において、  24. A stage on which a substrate is placed, and a drive system for driving the stage, wherein the drive system has six degrees of freedom of rotation in X, 丫, and Z axis directions and around each axis. In an assembling method of a stage device for controlling a position and orientation,
請求の範囲第 1 1項乃至第 1 3項のいずれかに記載の平面型モータの可動子を 前記ステージとして組み立て、  Assembling the mover of the planar motor according to any one of claims 11 to 13 as the stage,
請求の範囲第 1 1項乃至第 1 3項のいずれかに記載の平面型モータの固定子を 前記駆動系として組み立てることを特徴とするステージ装置の組立方法。  14. A method for assembling a stage device, comprising: assembling the stator of the planar motor according to any one of claims 11 to 13 as the drive system.
PCT/JP1998/002761 1997-07-18 1998-06-22 Exciting unit, linear or planar motor using the unit, stage device using the motor, and aligner using the device WO1999004481A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP50686099A JP3829335B2 (en) 1997-07-18 1998-06-22 Excitation unit, planar motor using the same, stage apparatus using the same, and exposure apparatus using the same
AU80370/98A AU8037098A (en) 1997-07-18 1998-06-22 Exciting unit, linear or planar motor using the unit, stage device using the motor, and aligner using the device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/210034 1997-07-18
JP21003497 1997-07-18
JP36191297 1997-12-10
JP9/361912 1997-12-10

Publications (1)

Publication Number Publication Date
WO1999004481A1 true WO1999004481A1 (en) 1999-01-28

Family

ID=26517817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002761 WO1999004481A1 (en) 1997-07-18 1998-06-22 Exciting unit, linear or planar motor using the unit, stage device using the motor, and aligner using the device

Country Status (3)

Country Link
JP (1) JP3829335B2 (en)
AU (1) AU8037098A (en)
WO (1) WO1999004481A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001018944A1 (en) * 1999-09-02 2001-03-15 Koninklijke Philips Electronics N.V. Displacement device
JP2003052164A (en) * 2001-08-06 2003-02-21 Univ Nihon Magnetically levitated type xy planar linear synchronous motor
JP2003534761A (en) * 2000-05-23 2003-11-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Displacement device
JP2006294793A (en) * 2005-04-08 2006-10-26 Canon Inc Stage device and exposure device
JP2007214449A (en) * 2006-02-10 2007-08-23 Ushio Inc XYtheta MOVING STAGE
JP2008091892A (en) * 2006-09-11 2008-04-17 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2008141165A (en) * 2006-09-20 2008-06-19 Asml Netherlands Bv Stage device and lithographic device
CN101800460B (en) * 2009-12-23 2012-07-11 哈尔滨工业大学 Short-stroke direct current planar motor integrating winding structure
US8283813B2 (en) 2007-06-27 2012-10-09 Brooks Automation, Inc. Robot drive with magnetic spindle bearings
JP5446865B2 (en) * 2007-09-04 2014-03-19 株式会社安川電機 Magnetic levitation system
US8823294B2 (en) 2007-06-27 2014-09-02 Brooks Automation, Inc. Commutation of an electromagnetic propulsion and guidance system
US9752615B2 (en) 2007-06-27 2017-09-05 Brooks Automation, Inc. Reduced-complexity self-bearing brushless DC motor
CN108475979A (en) * 2016-01-22 2018-08-31 Tdk株式会社 Actuator
JP2020202746A (en) * 2020-09-18 2020-12-17 株式会社神戸製鋼所 Electric motor
US11002566B2 (en) 2007-06-27 2021-05-11 Brooks Automation, Inc. Position feedback for self bearing motor
IT202000014239A1 (en) 2020-06-15 2021-12-15 Biometic S R L TUNNEL COMPUTERIZED TOMOGRAPH AND METHOD FOR PERFORMING A COMPUTERIZED TOMOGRAPHY OF AN OBJECT
US20220037070A1 (en) * 2019-02-01 2022-02-03 Zaber Technologies Inc. Adjustable magnetic counterbalance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101488249B1 (en) * 2014-01-27 2015-01-30 연세대학교 산학협력단 Untethered Biped Walking Machine Using Air-Core Coils

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926706A (en) * 1972-07-05 1974-03-09
JPS6192158A (en) * 1984-10-11 1986-05-10 Hitachi Ltd Linear motor
JPS6289467A (en) * 1985-06-25 1987-04-23 Yaskawa Electric Mfg Co Ltd Surface pulse motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926706A (en) * 1972-07-05 1974-03-09
JPS6192158A (en) * 1984-10-11 1986-05-10 Hitachi Ltd Linear motor
JPS6289467A (en) * 1985-06-25 1987-04-23 Yaskawa Electric Mfg Co Ltd Surface pulse motor

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509992A (en) * 1999-09-02 2003-03-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Displacement device
US6531793B1 (en) 1999-09-02 2003-03-11 Koninklijke Philips Electronics N.V. Displacement device
US6879063B2 (en) 1999-09-02 2005-04-12 Asml Netherlands B.V. Displacement device
WO2001018944A1 (en) * 1999-09-02 2001-03-15 Koninklijke Philips Electronics N.V. Displacement device
JP2003534761A (en) * 2000-05-23 2003-11-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Displacement device
JP2003052164A (en) * 2001-08-06 2003-02-21 Univ Nihon Magnetically levitated type xy planar linear synchronous motor
JP2006294793A (en) * 2005-04-08 2006-10-26 Canon Inc Stage device and exposure device
JP4673117B2 (en) * 2005-04-08 2011-04-20 キヤノン株式会社 Stage apparatus and exposure apparatus
JP2007214449A (en) * 2006-02-10 2007-08-23 Ushio Inc XYtheta MOVING STAGE
JP4702083B2 (en) * 2006-02-10 2011-06-15 ウシオ電機株式会社 XYθ moving stage
JP4704403B2 (en) * 2006-09-11 2011-06-15 エーエスエムエル ネザーランズ ビー.ブイ. Positioning device, lithographic apparatus and device manufacturing method
JP2008091892A (en) * 2006-09-11 2008-04-17 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP4669868B2 (en) * 2006-09-20 2011-04-13 エーエスエムエル ネザーランズ ビー.ブイ. Stage apparatus and lithography apparatus
JP2008141165A (en) * 2006-09-20 2008-06-19 Asml Netherlands Bv Stage device and lithographic device
US11002566B2 (en) 2007-06-27 2021-05-11 Brooks Automation, Inc. Position feedback for self bearing motor
US8283813B2 (en) 2007-06-27 2012-10-09 Brooks Automation, Inc. Robot drive with magnetic spindle bearings
US8823294B2 (en) 2007-06-27 2014-09-02 Brooks Automation, Inc. Commutation of an electromagnetic propulsion and guidance system
US9024488B2 (en) 2007-06-27 2015-05-05 Brooks Automation, Inc. Robot drive with magnetic spindle bearings
US9752615B2 (en) 2007-06-27 2017-09-05 Brooks Automation, Inc. Reduced-complexity self-bearing brushless DC motor
JP5446865B2 (en) * 2007-09-04 2014-03-19 株式会社安川電機 Magnetic levitation system
CN101800460B (en) * 2009-12-23 2012-07-11 哈尔滨工业大学 Short-stroke direct current planar motor integrating winding structure
CN108475979B (en) * 2016-01-22 2020-03-20 Tdk株式会社 Actuator
CN108475979A (en) * 2016-01-22 2018-08-31 Tdk株式会社 Actuator
US20220037070A1 (en) * 2019-02-01 2022-02-03 Zaber Technologies Inc. Adjustable magnetic counterbalance
US11915863B2 (en) * 2019-02-01 2024-02-27 Zaber Technologies Inc. Adjustable magnetic counterbalance
IT202000014239A1 (en) 2020-06-15 2021-12-15 Biometic S R L TUNNEL COMPUTERIZED TOMOGRAPH AND METHOD FOR PERFORMING A COMPUTERIZED TOMOGRAPHY OF AN OBJECT
EP3926333A1 (en) 2020-06-15 2021-12-22 Biometic S.r.l. Ct scanner and method for performing a ct examination of an object
US11609189B2 (en) 2020-06-15 2023-03-21 Biometic S.R.L. CT scanner and method for performing a CT examination of an object
JP2020202746A (en) * 2020-09-18 2020-12-17 株式会社神戸製鋼所 Electric motor
JP7044844B2 (en) 2020-09-18 2022-03-30 株式会社神戸製鋼所 Electric motor
JP2022069672A (en) * 2020-09-18 2022-05-11 株式会社神戸製鋼所 Electric motor

Also Published As

Publication number Publication date
AU8037098A (en) 1999-02-10
JP3829335B2 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
JP4639517B2 (en) Stage apparatus, lithography system, positioning method, and stage apparatus driving method
WO1999004481A1 (en) Exciting unit, linear or planar motor using the unit, stage device using the motor, and aligner using the device
US6339266B1 (en) Planar motor device, stage unit, exposure apparatus and its making method, and device and its manufacturing method
US6452292B1 (en) Planar motor with linear coil arrays
US6927505B2 (en) Following stage planar motor
US20100167556A1 (en) Three degree of movement mover and method for controlling a three degree of movement mover
WO2000010242A1 (en) Compact planar motor having multiple degrees of freedom
JP4167213B2 (en) Lithographic apparatus and device manufacturing method
WO1999010970A1 (en) Positioning device, driving unit, and aligner equipped with the device
US8432072B2 (en) Three axis linear actuator
JP4191645B2 (en) Lithographic apparatus and device manufacturing method
US20030102721A1 (en) Moving coil type planar motor control
JP2002112526A (en) Flat motor, stage-positioning system, and aligner
JP4314555B2 (en) Linear motor device, stage device, and exposure device
JP4484621B2 (en) Lithographic apparatus
US20170207691A1 (en) Three axis linear actuator
US20080252151A1 (en) Two degree of freedom movers with overlapping coils
JP2001037201A (en) Motor device, stage equipment and exposure device
US6479991B1 (en) Stage mechanism, exposure apparatus and device manufacturing method in which a coil unit of a driving mechanism is moved substantially in synchronism with a stage
JP2006246570A (en) Linear motor and exposure device using linear motor
JP2015073083A (en) Stage device and driving method of the same
KR20120112031A (en) Planar motor and lithographic apparatus comprising such planar motor
WO2013031221A1 (en) Mobile device, exposure device, method for producing flat panel display, and method for producing device
JPH11196560A (en) Planar motor, stage device, and exposing device
JP2000078830A (en) Linear motor and stage device and aligner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA