WO1999004439A1 - Element transformateur thermoelectrique a rendement eleve et utilisation dudit element - Google Patents

Element transformateur thermoelectrique a rendement eleve et utilisation dudit element Download PDF

Info

Publication number
WO1999004439A1
WO1999004439A1 PCT/CH1998/000290 CH9800290W WO9904439A1 WO 1999004439 A1 WO1999004439 A1 WO 1999004439A1 CH 9800290 W CH9800290 W CH 9800290W WO 9904439 A1 WO9904439 A1 WO 9904439A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
particular according
cooling
dielectric
thermoelectric
Prior art date
Application number
PCT/CH1998/000290
Other languages
German (de)
English (en)
Inventor
Ivo F. Sbalzarini
Caspar O. H. Messner
Original Assignee
Sbalzarini Ivo F
Messner Caspar O H
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sbalzarini Ivo F, Messner Caspar O H filed Critical Sbalzarini Ivo F
Priority to AU79042/98A priority Critical patent/AU7904298A/en
Publication of WO1999004439A1 publication Critical patent/WO1999004439A1/fr

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction

Definitions

  • the present invention relates to a device for supplying or removing heat in or from a medium, such as a solid or a fluid. It comprises a thermo-electric current converter element with a highly heat-conducting dielectric and in or on the solid or in the fluid, i.e. a gas or a liquid, arranged heat conductor; a heat exchanger element, a cooling unit, a controllable heating / cooling with a thermostat, a heat store with an absorption and storage body of low thermal conductivity, all with a device according to the invention, and further uses of the devices according to the invention.
  • a thermo-electric current converter element with a highly heat-conducting dielectric and in or on the solid or in the fluid, i.e. a gas or a liquid, arranged heat conductor
  • a heat exchanger element a cooling unit, a controllable heating / cooling with a thermostat, a heat store with an absorption and storage body of low thermal conductivity, all with a device according to the invention, and further
  • thermoelectric cooling As early as 1834, the French watchmaker Peltier discovered as a "counterpart" to the Seebeck effect, which had been known for 13 years at the time, that when direct current was passed through a thermocouple, heat was removed from the surroundings at one connection soldering point and transported to the other. In 1838, the German physicist demonstrated Lenz says that this newly discovered effect allows water to be frozen at a bismuth-antimony junction or that ice can be melted when the current flow is reversed, and attempts have been made to extract heat from one environment and supply it to another by means of so-called thermoelectric cooling .
  • thermoelectric heating (not to be confused with the joule 'see resistance heating).
  • thermoelectric materials Although known as a phenomenon, the Peltier effect could not be used for a long time due to the lack of good thermoelectric materials. Only the Seebeck effect for generating an electrical potential difference as a result of a temperature difference at the soldering points of a thermocouple was used in measuring devices (thermocouples for electronic temperature measurement), since the efficiency was irrelevant or could be compensated for by a higher sensitivity of the measuring electronics.
  • thermoelectric cooling In line with the increasing need of ever broader sections of the population, in the mid-1950s and especially in the 1960s, a busy research and development activity in the field of thermoelectric cooling began.
  • the heat absorbed on one side of such a block is transferred to the other side of the elements, where it then has to be dissipated, stored, for example by means of cooling fins or suitable cooling devices, or absorbed in the event of heat.
  • the Joule 'see heat from the - as small as possible - electrical resistances of the element, the heat conduction through the material of the element in the opposite direction, the opposing Seebeck effect caused by the resulting temperature difference and heat conduction losses (proportional to the cable length) counteract this - limiting efficiency.
  • thermocouples used to date.
  • Adequate electrical insulation with at the same time the best possible heat conduction is usually achieved using aluminum layers [GB 2 247 348, EP 0 592 044], particle-reinforced resins [GB 1 025 687], silicone gels [EP 0 592 044] or polymers Thin films (THERMAL CLAD * ) [US 5,040,381] achieved.
  • Peltier element In practice, the efficiency of a Peltier element could not be increased by more than 14%, although theoretically (i.e. neglecting all losses due to insulation and thermal loss when transitioning to and from the element) up to 50-70% would have been possible. Since then, Peltier elements have only been used for instruments such as dew point measuring devices, for special mobile cooling devices, for space travel purposes, etc., where the lowest performance is required or the efficiency is irrelevant.
  • the problem is solved by means of a device according to the wording according to claim 1.
  • thermoelectric current converter element such as a Peltier element
  • a thermoelectric Peltier circuit is the embedding of the solder joints, such as from Thermocouples of the optimal combination Bi2Te3 / Sb2Te3 50/50 with Bi2Te3 / Bi2Se3 75/25 (doped with copper bromide) together with their electrical connections (eg copper or silver connections) in a dielectric, which at the same time has good thermal conductivity (> 10 Wm ⁇ K "1 ) having.
  • the conventional dielectrics hinder the flow of heat, while the new materials proposed according to the invention conduct the heat optimally, but not the electrical current, so that a good heat-current flow design is possible even with relatively small temperature differences.
  • the heat-conducting dielectric contains at least one of the following substances: aluminum nitride, boron nitride, carbon, silicon carbide, beryllium oxide, silicon oxynitride, aluminum oxynitride, silicon-aluminum nitride and / or composite materials or alloys thereof and / or diamond-structure ceramic and / or Diamond and / or carbon fiber composite materials and / or polymers and / or polymer systems (ideally with low water absorption capacity), in particular polytetrafluoroethylene (PTFE, Teflon), polyphenylene oxide (PPO), polyphenylene sulfide (PPS), polyamideimide (PAI) and / or fiber-offset / Reinforced polymers and / or filled plastics with directional thermal conductivity and / or functional gradient materials (material, which has gradually changing properties over a certain distance) according to Claim 8.
  • PTFE polytetrafluoroethylene
  • PPO polyphenylene oxide
  • PPS
  • pure beryllium oxide has a thermal conductivity coefficient of> 250 Wm ⁇ K "1
  • silicon carbide has such a coefficient between 190 and 240 Wm ⁇ K '1
  • aluminum nitride also has a thermal conductivity coefficient from about 180 to 220 m ⁇ K "1 on.
  • the converter element is a Peltier element, a thermoelectric generator based on the Seebeck principle or a Joule 's resistance element, which consists of at least one heat conductor or a heat transport layer via the heat-conducting dielectric a highly thermally conductive material.
  • the heat conductor or the heat transport layer can be made from a highly thermally conductive metal, such as copper, aluminum, silver or gold, or from the same material as the thermally conductive dielectric, ideally from a functional gradient material FGM with the outside in favor ever better thermal conductivity, steadily increasing electrical conductivity.
  • HJ Goldsmid calculates that at an average ambient temperature of 300 K and a temperature difference of 30 K above the element, an optimal operating voltage of 0.045 V per Solder joint. With an ohmic resistance of 0.05 ⁇ , this corresponds to a current of 0.9 A. In order to arrive at reasonable voltage and power values (approx. 12 V operating voltage), around 270 elements would have to be connected in series (one block ). The individual elements can be kept as small as possible (and sensible in terms of electrical resistance). Under these conditions, a maximum efficiency of approx. 66% would be achievable according to Goldsmid models.
  • the cascade elements achieved in this way are more efficient at higher temperature differences than tiered blocks.
  • the improvement in efficiency is greater the closer the temperature difference generated by the element is to the maximum achievable temperature difference. For example, if the temperature difference during operation is 75% of the maximum, the efficiency of a two-stage cascade is about 1.5 times that of a one-stage block in the same environment. If the temperature difference is 95% of the maximum value, the cascade efficiency is about 5 times as high as that of the corresponding single-stage block.
  • the maximum achievable temperature difference can theoretically be doubled with a cascade of two levels.
  • the configuration according to the invention for example a Peltier element, makes it economical in competition with the well-known Linde refrigeration machine, since the heat losses become small and the theoretical efficiency of the element can be achieved up to a few percent. So that is the Peltier element is a sensible further development compared to classic chillers.
  • the devices defined according to the invention are particularly suitable for the configuration of heat exchanger elements for heating or cooling a solid, a liquid or a gas.
  • the heat conductor or directly the dielectric is connected in a heat-conducting manner to the material to be heated or cooled, and the converter element is designed to be operable and connected to the heat conductor in such a way that heat is supplied to or withdrawn from the material when an electrical direct current is applied to the converter element.
  • Another use of the device according to the invention is in the controllable cooling or heating with a thermostat, the converter element being operable in both directions by switching over to cooling or heating by reversing the current flow through the element (polarity reversal).
  • the thermal output can also be adapted to the respective requirements by regulating the current.
  • thermoelectric generator for energy supply to remote objects (as a thermoelectric generator according to FIG. 3),
  • heat-conducting polymer fibers such as carbon fibers
  • the heat in the composite material by means of the fibers used for the reinforcement via a heat-conducting dielectric and at least one Peltier element connected thereto (by passing a current through the Peltier element) is withdrawn.
  • heat dissipation is a critical factor, particularly in the case of parts subject to high stress, since, as is well known, classic plastics are poor heat conductors.
  • the attachment of conventional (classic) cooling units in such composite materials is practically impossible, so that the device proposed according to the invention now offers a suitable solution.
  • the carbon fibers or carbon fabrics used for reinforcement in these composite materials can, as suggested above, be
  • 3a shows an example of a three-stage cascade thermocouple according to the invention
  • 3b shows an example of a two-stage cascade thermocouple according to the invention
  • FIG. 5 shows a transducer element, such as a Peltier element, with a heat-conducting layer arranged on one side and directed in a directional manner
  • FIG. 6 shows a heat store with a Peltier element, analogous to a heat store according to EP 306 508,
  • Fig. 7 shows the dependence of the efficiency of a Peltier element on the thermal conductivity of the Dielectric layers and the cooling power provided by the element and
  • FIG. 1 shows a thennoelectric converter element designed according to the invention, the individual semiconductor thermocouples 1, electrically connected in series and thermally in parallel, being combined in three dimensions to form a block.
  • the electrical connection between the individual semiconductor pieces is established via flat metallic conductor connections 3, the outermost conductor pieces at the beginning and at the end of the series circuit chain being provided with electrical connections 7 for supplying current.
  • the block is closed to the outside in a heat-conducting but electrically insulating manner by layers of the heat-conducting dielectric 5 which are as thin as possible and heat conductors 9 of large surface area (for example cooling plates, cooling fins or heat exchangers) attached to both sides.
  • Bolts with the lowest possible thermal conductivity (not shown) stretched between the final heat conductors 9 (not shown) can be used to mechanically stabilize the block in very large assemblies.
  • the direction of the heat flow in the direction of the arrow is determined by the polarity of the voltage applied to the block, and its magnitude by the current intensity passed through the block.
  • FIG. 2 shows a thermoelectric converter element according to FIG. 1, but without a separate thermally conductive dielectric. Rather, the dielectric and the final heat-conducting plates form a unitary block 11 from the same functional len gradient material FGM (material which has gradually changing properties over a certain distance).
  • FGM functional len gradient material
  • the electrical conductivity is close to zero in the vicinity of the element, that is to say the material acts as a dielectric, the thermal conductivity still being relatively good.
  • the electrical conductivity increases sharply, in favor of an also increasing thermal conductivity.
  • the heat transfer to the outside thus becomes better and better with increasing metal character of the material, which contributes to an increased heat flow through the element (minimization of boundary layers).
  • FIG. 3a shows a pyramid-shaped three-stage cascade of thermocouples.
  • the individual blocks 13, constructed analogously to FIG. 1, are one above the other, separated by plates made of heat-conducting dielectric 5a.
  • the flat metallic conductor connections 3 known from FIG. 1 are pulled through the dielectric layers and supply all stages with current.
  • On the top and bottom of the cascade there are in turn closing layers of the heat-conducting dielectric 5.
  • the heat transport layers or cooling plates comprising the block are not shown here.
  • the way the cascade works is based on the end temperatures that change with each stage.
  • the bottom stage cools the warm end of the middle one, which lowers the temperature further towards its cold end and the top stage lowers it again.
  • the total temperature difference on the cascade can therefore be much higher than for a single-stage block.
  • the pyramid shape It makes sense, since the required power increases downwards (electrical loss heat generated in the element and heat radiated in from the outside must be removed from each stage) and a concentration on smaller areas
  • thermocouple cascade analogous to FIG. 3a, the entire element being larger here and both stages being the same size.
  • the separating layer 5a in turn consists of the thermally conductive dielectric.
  • thermoelectric generator 4 shows an example of a thermoelectric generator using the Seebeck effect.
  • a thermoelectric converter element 21 analogous to FIG. 1 which is arranged around the chimney 15.
  • large-area cooling plates or cooling fins 23 are attached via the heat-conducting dielectric 5.
  • Electrical connections 7 are provided at both ends of the thermocouple series.
  • the inner fins 19 are heated by the hot exhaust gases of the burner 17 escaping in the direction of the arrow and form the warm side of the thermocouples 21. Outside, the cooling fins 23 are cooled by the ambient air (or by cooling water) and form the cold side. Due to the temperature difference at the converter element 21, an electrical voltage arises at the end connections 7; the generator produces electricity.
  • FIG. 5 shows a thermoelectric converter element constructed analogously to FIG. 1, which on one side is provided with a heat conductor plate (cooling plate) 9, which is connected to the semiconductor thermocouples 1 via the heat-conducting dielectric 5.
  • the heat-conducting dielectric 5 is connected directly to a flat layer of a heat conductor 25 with conductivity directed in the direction of the arrow.
  • thermoelectric converter element 29 is connected to it via a heat-conducting dielectric and is fed by a direct current source 27 via the electrical connections 7.
  • heat is supplied to the storage 33 via the converter element 29 and the heat transport layer 31 (charging the storage) or withdrawn (discharging the storage) or the difference between the storage temperature and the outside temperature can be used on the element 29 to generate electricity.
  • FIG. 7 illustrates the dependency of the efficiency (COP) of a Peltier element on the thermal conductivity of the final dielectric layers and the cooling output provided.
  • An example element with the following numerical values was used: The side length of the dielectric plates is 40 times as large as their thickness, the thermoelectric elements consist of Bi2Te3 semiconductors, the mean ambient temperature is 300K and the temperature difference generated by the element outside is 30K. In general, however, the same qualitative relationships also result from other numerical values.
  • the efficiency increases strongly with increasing thermal conductivity of the dielectric, but decreases slightly with increasing cooling capacity.
  • the maximum achievable at a certain efficiency also increases significantly with the thermal conductivity of the dielectric. The underlying mathematical results are explained in more detail in the following section.
  • thermoelectric efficiency (after [60Gol]):
  • thermoelectric material material constant
  • thermocouple cascade N Number of stages in a thermocouple cascade
  • the temperature difference [5] to be held internally by the element is decisive. This, in turn, depends on the data of the dielectric and the thermal performance provided by the element, whereby an optimal dielectric becomes more and more important with increasing performance.
  • the efficiency calculated in this way applies to operation with optimal voltage [3] and is always below the theoretical maximum [1], which in turn is limited by the maximum efficiency of an ideal thermodynamic machine [7].
  • the maximum temperature difference [4] that can be achieved with an element is only dependent on the ambient temperature and the Material data. It forms the upper limit for ⁇ T and the efficiency drops to zero when it is reached. With a cascade of N stages, the total theoretical efficiency (without dielectric losses) increases according to [2] and thus also the maximum achievable temperature difference.

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

L'invention concerne un dispositif pour refroidir/réchauffer un objet au moyen d'un organe transformateur thermoélectrique relié audit objet de façon thermoconductrice. Ce dispositif peut également être utilisé pour produire un courant électrique au moyen d'un générateur thermoélectrique.
PCT/CH1998/000290 1997-07-15 1998-07-03 Element transformateur thermoelectrique a rendement eleve et utilisation dudit element WO1999004439A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU79042/98A AU7904298A (en) 1997-07-15 1998-07-03 High efficiency thermoelectric converter and applications thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1731/97 1997-07-15
CH173197 1997-07-15

Publications (1)

Publication Number Publication Date
WO1999004439A1 true WO1999004439A1 (fr) 1999-01-28

Family

ID=4217284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1998/000290 WO1999004439A1 (fr) 1997-07-15 1998-07-03 Element transformateur thermoelectrique a rendement eleve et utilisation dudit element

Country Status (2)

Country Link
AU (1) AU7904298A (fr)
WO (1) WO1999004439A1 (fr)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049664A1 (fr) * 1999-02-19 2000-08-24 Peltech S.R.L. Dispositif thermoelectrique a solide
WO2001082343A2 (fr) * 2000-04-26 2001-11-01 Wafermasters Incorporated Gestion de la chaleur dans un equipement de traitement de tranches au moyen d'un dispositif thermoelectrique
WO2002018852A1 (fr) * 2000-08-31 2002-03-07 Imi Vision Limited Commande thermoelectrique de la temperature d'un fluide
WO2003021165A1 (fr) * 2001-09-03 2003-03-13 Wolfram Bohnenkamp Dispositif de refroidissement
DE10022726C2 (de) * 1999-08-10 2003-07-10 Matsushita Electric Works Ltd Thermoelektrisches Modul mit verbessertem Wärmeübertragungsvermögen und Verfahren zum Herstellen desselben
DE102005057763A1 (de) * 2005-12-02 2007-06-06 BSH Bosch und Siemens Hausgeräte GmbH Thermoelektrisches Modul
DE102006046114A1 (de) * 2006-09-28 2008-04-03 Airbus Deutschland Gmbh Kühlanordnung zur Kühlung eines Wärmekörpers für ein Luftfahrzeug
DE102008031266A1 (de) 2008-07-02 2010-01-14 Eads Deutschland Gmbh Thermogenerator
DE102009051950A1 (de) * 2009-11-04 2011-05-12 Benteler Automobiltechnik Gmbh Verbindung zwischen einem thermoelektrischen Element und einem Wärmetauscher
DE102010018998A1 (de) * 2010-05-03 2011-11-03 Bayerische Motoren Werke Aktiengesellschaft Thermostatventil für einen Kühlkreislauf eines Verbrennungsmotors
DE102011080011A1 (de) * 2011-07-28 2013-01-31 Siemens Aktiengesellschaft Thermoelektrischer Generator mit thermischem Energiespeicher
DE102012018663A1 (de) 2011-09-21 2013-03-21 Volkswagen Aktiengesellschaft Segmentiertes Flachrohr einer thermoelektrischen Wärmepumpe und thermoelektrische Wärmeübertragereinheit
DE102012022328A1 (de) * 2012-11-13 2014-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermoelektrisches Modul
DE102012022864A1 (de) * 2012-11-20 2014-05-22 Astrium Gmbh Thermoelektrischer Dünnfilm-Generator
DE102013205526B3 (de) * 2013-03-27 2014-09-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermoelektrisches System, Verfahren zum Herstellen eines thermoelektrischen Systems und Verwendung eines thermoelektrischen Systems
DE102013214988A1 (de) * 2013-07-31 2015-02-05 Behr Gmbh & Co. Kg Thermoelektrisches Modul
DE102014002245A1 (de) * 2014-02-21 2015-08-27 Stiebel Eltron Gmbh & Co. Kg Aufbau eines Peltiermoduls für Warmwasserspeicher
DE102012209322B4 (de) * 2012-06-01 2018-04-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sonnenkollektor und Verfahren zur Herstellung desselben
DE102017005914A1 (de) * 2017-06-23 2018-12-27 Voss Automotive Gmbh Temperiereinrichtung, Verfahren zum Herstellen einer solchen Temperiereinrichtung sowie Verfahren zum Verbinden der Temperiereinrichtung mit einem zu temperierenden Gegenstand
US10224474B2 (en) 2013-01-08 2019-03-05 Analog Devices, Inc. Wafer scale thermoelectric energy harvester having interleaved, opposing thermoelectric legs and manufacturing techniques therefor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1395661A (fr) * 1964-02-27 1965-04-16 Cie Generale Electro Ceramique Perfectionnement aux dispositifs thermoélectriques
GB1025687A (en) * 1962-03-02 1966-04-14 Philips Electronic Associated Improvements in thermo-electric devices
DE1539341A1 (de) * 1965-03-11 1969-08-28 Westinghouse Electric Corp Thermogenerator
EP0194358A1 (fr) * 1985-01-11 1986-09-17 Sumitomo Electric Industries, Ltd. Dissipateur de chaleur utilisant un corps fritté ayant une haute conductibilité de chaleur et son prodédé de fabrication
EP0339715A1 (fr) * 1988-04-27 1989-11-02 Theodorus Bijvoets Dispositif thermo-électrique
US4946511A (en) * 1988-02-10 1990-08-07 The State Of Israel, Atomic Energy Commission, Soreq Nuclear Research Center Thermoelectric devices
US5040381A (en) * 1990-04-19 1991-08-20 Prime Computer, Inc. Apparatus for cooling circuits
GB2247348A (en) * 1990-07-17 1992-02-26 Global Domestic Prod Ltd Peltier devices
EP0592044A2 (fr) * 1992-10-05 1994-04-13 Thermovonics Co., Ltd Dispositif de refroidissement thermoélectrique pour réfriqérateur thermoélectrique et son procédé de fabrication

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1025687A (en) * 1962-03-02 1966-04-14 Philips Electronic Associated Improvements in thermo-electric devices
FR1395661A (fr) * 1964-02-27 1965-04-16 Cie Generale Electro Ceramique Perfectionnement aux dispositifs thermoélectriques
DE1539341A1 (de) * 1965-03-11 1969-08-28 Westinghouse Electric Corp Thermogenerator
EP0194358A1 (fr) * 1985-01-11 1986-09-17 Sumitomo Electric Industries, Ltd. Dissipateur de chaleur utilisant un corps fritté ayant une haute conductibilité de chaleur et son prodédé de fabrication
US4946511A (en) * 1988-02-10 1990-08-07 The State Of Israel, Atomic Energy Commission, Soreq Nuclear Research Center Thermoelectric devices
EP0339715A1 (fr) * 1988-04-27 1989-11-02 Theodorus Bijvoets Dispositif thermo-électrique
US5040381A (en) * 1990-04-19 1991-08-20 Prime Computer, Inc. Apparatus for cooling circuits
GB2247348A (en) * 1990-07-17 1992-02-26 Global Domestic Prod Ltd Peltier devices
EP0592044A2 (fr) * 1992-10-05 1994-04-13 Thermovonics Co., Ltd Dispositif de refroidissement thermoélectrique pour réfriqérateur thermoélectrique et son procédé de fabrication

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049664A1 (fr) * 1999-02-19 2000-08-24 Peltech S.R.L. Dispositif thermoelectrique a solide
US6548750B1 (en) 1999-02-19 2003-04-15 Peltech S.R.L. Solid state thermoelectric device
DE10022726C2 (de) * 1999-08-10 2003-07-10 Matsushita Electric Works Ltd Thermoelektrisches Modul mit verbessertem Wärmeübertragungsvermögen und Verfahren zum Herstellen desselben
WO2001082343A2 (fr) * 2000-04-26 2001-11-01 Wafermasters Incorporated Gestion de la chaleur dans un equipement de traitement de tranches au moyen d'un dispositif thermoelectrique
WO2001082343A3 (fr) * 2000-04-26 2002-02-28 Wafermasters Inc Gestion de la chaleur dans un equipement de traitement de tranches au moyen d'un dispositif thermoelectrique
WO2002018852A1 (fr) * 2000-08-31 2002-03-07 Imi Vision Limited Commande thermoelectrique de la temperature d'un fluide
GB2384624A (en) * 2000-08-31 2003-07-30 Imi Vision Ltd Thermoelectric control of fluid temperature
WO2003021165A1 (fr) * 2001-09-03 2003-03-13 Wolfram Bohnenkamp Dispositif de refroidissement
DE102005057763A1 (de) * 2005-12-02 2007-06-06 BSH Bosch und Siemens Hausgeräte GmbH Thermoelektrisches Modul
US8869543B2 (en) 2006-09-28 2014-10-28 Airbus Operations Gmbh Cooling assembly for cooling a thermal body for an aircraft
DE102006046114A1 (de) * 2006-09-28 2008-04-03 Airbus Deutschland Gmbh Kühlanordnung zur Kühlung eines Wärmekörpers für ein Luftfahrzeug
DE102006046114B4 (de) * 2006-09-28 2012-02-02 Airbus Operations Gmbh Kühlanordnung zur Kühlung eines Wärmekörpers für ein Luftfahrzeug
DE102008031266B4 (de) * 2008-07-02 2013-05-29 Eads Deutschland Gmbh Verwendung eines Thermogenerators an einem Luftfahrzeug
DE102008031266A1 (de) 2008-07-02 2010-01-14 Eads Deutschland Gmbh Thermogenerator
DE102009051950A1 (de) * 2009-11-04 2011-05-12 Benteler Automobiltechnik Gmbh Verbindung zwischen einem thermoelektrischen Element und einem Wärmetauscher
DE102010018998A1 (de) * 2010-05-03 2011-11-03 Bayerische Motoren Werke Aktiengesellschaft Thermostatventil für einen Kühlkreislauf eines Verbrennungsmotors
DE102011080011A1 (de) * 2011-07-28 2013-01-31 Siemens Aktiengesellschaft Thermoelektrischer Generator mit thermischem Energiespeicher
DE102012018663A1 (de) 2011-09-21 2013-03-21 Volkswagen Aktiengesellschaft Segmentiertes Flachrohr einer thermoelektrischen Wärmepumpe und thermoelektrische Wärmeübertragereinheit
EP2573831A2 (fr) 2011-09-21 2013-03-27 Volkswagen Aktiengesellschaft Tuyau plat segmenté d'une pompe à chaleur thermoélectrique et unité caloporteuse thermoélectrique
DE102012209322B4 (de) * 2012-06-01 2018-04-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sonnenkollektor und Verfahren zur Herstellung desselben
DE102012022328A1 (de) * 2012-11-13 2014-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermoelektrisches Modul
DE102012022328B4 (de) 2012-11-13 2018-05-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermoelektrisches Modul
DE102012022864A1 (de) * 2012-11-20 2014-05-22 Astrium Gmbh Thermoelektrischer Dünnfilm-Generator
US10224474B2 (en) 2013-01-08 2019-03-05 Analog Devices, Inc. Wafer scale thermoelectric energy harvester having interleaved, opposing thermoelectric legs and manufacturing techniques therefor
DE102013205526B3 (de) * 2013-03-27 2014-09-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermoelektrisches System, Verfahren zum Herstellen eines thermoelektrischen Systems und Verwendung eines thermoelektrischen Systems
DE102013214988A1 (de) * 2013-07-31 2015-02-05 Behr Gmbh & Co. Kg Thermoelektrisches Modul
US9728704B2 (en) 2013-07-31 2017-08-08 Mahle International Gmbh Thermoelectric module
DE102014002245A1 (de) * 2014-02-21 2015-08-27 Stiebel Eltron Gmbh & Co. Kg Aufbau eines Peltiermoduls für Warmwasserspeicher
DE102017005914A1 (de) * 2017-06-23 2018-12-27 Voss Automotive Gmbh Temperiereinrichtung, Verfahren zum Herstellen einer solchen Temperiereinrichtung sowie Verfahren zum Verbinden der Temperiereinrichtung mit einem zu temperierenden Gegenstand

Also Published As

Publication number Publication date
AU7904298A (en) 1999-02-10

Similar Documents

Publication Publication Date Title
WO1999004439A1 (fr) Element transformateur thermoelectrique a rendement eleve et utilisation dudit element
EP3169946B1 (fr) Dispositif de climatisation équipé d'au moins un caloduc, en particulier un thermosiphon
Selvam et al. Transient performance of a Peltier super cooler under varied electric pulse conditions with phase change material
EP1515376A2 (fr) Dispositif pour la génération d'énergie électrique
AT507533B1 (de) Vorrichtung zur umwandlung von wärmeenergie in elektrische energie
DE3314472A1 (de) Magnetische kuehlvorrichtung
Ren et al. TSV-integrated thermoelectric cooling by holey silicon for hot spot thermal management
DE1464132A1 (de) Verfahren zum Herstellen von Thermoelementen bzw.-teilen
DE102010007420A1 (de) Vorrichtung zur Umwandlung von thermischer in elektrische Energie
DE3735410A1 (de) Energiequelle, die waermeenergie in elektrische energie umwandelt
DE19527674C2 (de) Kühleinrichtung
WO2017016691A1 (fr) Procédé et dispositif de climatisation, notamment de refroidissement, d'un support au moyen d'un matériau électrocalorique ou magnétocalorique
DE1514551C3 (de) Kühleinrichtung für Gleichrichterzellen für hohe Ströme
DE10018169C2 (de) Vorrichtung zur Kühlung mindestens eines elektrischen Betriebselements in mindestens einem Kryostaten
DE19954077C1 (de) Tieftemperaturkühlvorrichtung
DE102005013926B4 (de) Vorrichtung und Verfahren zur Temperaturregelung eines Temperiergutes
DE2347457A1 (de) Stabfoermige anordnung von thermoelementpaaren
EP1423648B1 (fr) Dispositif de refroidissement
DE2003393A1 (de) Kuehlvorrichtung fuer Halbleiterbauelemente
EP0694200B1 (fr) Alimentation en courant a basse temperature avec echangeur de chaleur
DE102015202638A1 (de) Stromzuführung für eine supraleitende Spuleneinrichtung
EP3700036B1 (fr) Élément de transition raccordant un conducteur de courant normal à un supraconducteur électro-conducteur
DE2423717A1 (de) Kuehlsystem fuer unterirdische elektrische energieleitungen
EP3885674B1 (fr) Dispositif de production de froid et d'électricité selon le principe de peltier
DE69201829T2 (de) Elektrische Stromleiterstruktur für eine bei sehr niedrigen Temperaturen arbeitende Einrichtung.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA