WO1999004439A1 - Element transformateur thermoelectrique a rendement eleve et utilisation dudit element - Google Patents
Element transformateur thermoelectrique a rendement eleve et utilisation dudit element Download PDFInfo
- Publication number
- WO1999004439A1 WO1999004439A1 PCT/CH1998/000290 CH9800290W WO9904439A1 WO 1999004439 A1 WO1999004439 A1 WO 1999004439A1 CH 9800290 W CH9800290 W CH 9800290W WO 9904439 A1 WO9904439 A1 WO 9904439A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- particular according
- cooling
- dielectric
- thermoelectric
- Prior art date
Links
- 238000001816 cooling Methods 0.000 claims abstract description 75
- 238000010438 heat treatment Methods 0.000 claims abstract description 30
- 239000000463 material Substances 0.000 claims description 46
- 239000004020 conductor Substances 0.000 claims description 35
- 239000002131 composite material Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 20
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 16
- 239000004917 carbon fiber Substances 0.000 claims description 15
- 239000007788 liquid Substances 0.000 claims description 15
- 239000004065 semiconductor Substances 0.000 claims description 13
- 229920000642 polymer Polymers 0.000 claims description 12
- 239000002887 superconductor Substances 0.000 claims description 11
- 239000007789 gas Substances 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 10
- 239000004033 plastic Substances 0.000 claims description 9
- 229920003023 plastic Polymers 0.000 claims description 9
- 238000010521 absorption reaction Methods 0.000 claims description 8
- 229910000679 solder Inorganic materials 0.000 claims description 8
- 239000000919 ceramic Substances 0.000 claims description 7
- 238000007710 freezing Methods 0.000 claims description 7
- 230000008014 freezing Effects 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 239000000835 fiber Substances 0.000 claims description 6
- 239000012530 fluid Substances 0.000 claims description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 6
- 230000005678 Seebeck effect Effects 0.000 claims description 5
- 230000000712 assembly Effects 0.000 claims description 5
- 238000000429 assembly Methods 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 230000002787 reinforcement Effects 0.000 claims description 5
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 4
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 229910003460 diamond Inorganic materials 0.000 claims description 4
- 239000010432 diamond Substances 0.000 claims description 4
- 238000010292 electrical insulation Methods 0.000 claims description 4
- 238000005516 engineering process Methods 0.000 claims description 4
- 229920006380 polyphenylene oxide Polymers 0.000 claims description 4
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 claims description 3
- 235000013361 beverage Nutrition 0.000 claims description 3
- 229920001940 conductive polymer Polymers 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 229920002312 polyamide-imide Polymers 0.000 claims description 3
- 238000009418 renovation Methods 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 238000005476 soldering Methods 0.000 claims description 3
- 239000002918 waste heat Substances 0.000 claims description 3
- 229910052582 BN Inorganic materials 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000004809 Teflon Substances 0.000 claims description 2
- 229920006362 Teflon® Polymers 0.000 claims description 2
- 239000012267 brine Substances 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 239000002322 conducting polymer Substances 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 230000017525 heat dissipation Effects 0.000 claims description 2
- -1 polytetrafluoroethylene Polymers 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 claims description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 238000005496 tempering Methods 0.000 claims description 2
- 238000004377 microelectronic Methods 0.000 claims 4
- 239000002352 surface water Substances 0.000 claims 3
- 239000000284 extract Substances 0.000 claims 2
- 239000002689 soil Substances 0.000 claims 2
- 239000004962 Polyamide-imide Substances 0.000 claims 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 1
- 230000033228 biological regulation Effects 0.000 claims 1
- 229910002110 ceramic alloy Inorganic materials 0.000 claims 1
- 238000001514 detection method Methods 0.000 claims 1
- 239000003651 drinking water Substances 0.000 claims 1
- 235000020188 drinking water Nutrition 0.000 claims 1
- 239000012777 electrically insulating material Substances 0.000 claims 1
- 235000013305 food Nutrition 0.000 claims 1
- 239000011521 glass Substances 0.000 claims 1
- 230000035876 healing Effects 0.000 claims 1
- 238000005338 heat storage Methods 0.000 claims 1
- 230000002631 hypothermal effect Effects 0.000 claims 1
- 239000005457 ice water Substances 0.000 claims 1
- 229920005610 lignin Polymers 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 239000005300 metallic glass Substances 0.000 claims 1
- 150000002739 metals Chemical class 0.000 claims 1
- 229910017464 nitrogen compound Inorganic materials 0.000 claims 1
- 150000002830 nitrogen compounds Chemical class 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- 239000008188 pellet Substances 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 claims 1
- 239000002023 wood Substances 0.000 claims 1
- 229910002899 Bi2Te3 Inorganic materials 0.000 description 5
- 239000003989 dielectric material Substances 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 230000005679 Peltier effect Effects 0.000 description 1
- 229910017629 Sb2Te3 Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- ODWXUNBKCRECNW-UHFFFAOYSA-M bromocopper(1+) Chemical compound Br[Cu+] ODWXUNBKCRECNW-UHFFFAOYSA-M 0.000 description 1
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000004447 silicone coating Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
- H10N10/13—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
Definitions
- the present invention relates to a device for supplying or removing heat in or from a medium, such as a solid or a fluid. It comprises a thermo-electric current converter element with a highly heat-conducting dielectric and in or on the solid or in the fluid, i.e. a gas or a liquid, arranged heat conductor; a heat exchanger element, a cooling unit, a controllable heating / cooling with a thermostat, a heat store with an absorption and storage body of low thermal conductivity, all with a device according to the invention, and further uses of the devices according to the invention.
- a thermo-electric current converter element with a highly heat-conducting dielectric and in or on the solid or in the fluid, i.e. a gas or a liquid, arranged heat conductor
- a heat exchanger element a cooling unit, a controllable heating / cooling with a thermostat, a heat store with an absorption and storage body of low thermal conductivity, all with a device according to the invention, and further
- thermoelectric cooling As early as 1834, the French watchmaker Peltier discovered as a "counterpart" to the Seebeck effect, which had been known for 13 years at the time, that when direct current was passed through a thermocouple, heat was removed from the surroundings at one connection soldering point and transported to the other. In 1838, the German physicist demonstrated Lenz says that this newly discovered effect allows water to be frozen at a bismuth-antimony junction or that ice can be melted when the current flow is reversed, and attempts have been made to extract heat from one environment and supply it to another by means of so-called thermoelectric cooling .
- thermoelectric heating (not to be confused with the joule 'see resistance heating).
- thermoelectric materials Although known as a phenomenon, the Peltier effect could not be used for a long time due to the lack of good thermoelectric materials. Only the Seebeck effect for generating an electrical potential difference as a result of a temperature difference at the soldering points of a thermocouple was used in measuring devices (thermocouples for electronic temperature measurement), since the efficiency was irrelevant or could be compensated for by a higher sensitivity of the measuring electronics.
- thermoelectric cooling In line with the increasing need of ever broader sections of the population, in the mid-1950s and especially in the 1960s, a busy research and development activity in the field of thermoelectric cooling began.
- the heat absorbed on one side of such a block is transferred to the other side of the elements, where it then has to be dissipated, stored, for example by means of cooling fins or suitable cooling devices, or absorbed in the event of heat.
- the Joule 'see heat from the - as small as possible - electrical resistances of the element, the heat conduction through the material of the element in the opposite direction, the opposing Seebeck effect caused by the resulting temperature difference and heat conduction losses (proportional to the cable length) counteract this - limiting efficiency.
- thermocouples used to date.
- Adequate electrical insulation with at the same time the best possible heat conduction is usually achieved using aluminum layers [GB 2 247 348, EP 0 592 044], particle-reinforced resins [GB 1 025 687], silicone gels [EP 0 592 044] or polymers Thin films (THERMAL CLAD * ) [US 5,040,381] achieved.
- Peltier element In practice, the efficiency of a Peltier element could not be increased by more than 14%, although theoretically (i.e. neglecting all losses due to insulation and thermal loss when transitioning to and from the element) up to 50-70% would have been possible. Since then, Peltier elements have only been used for instruments such as dew point measuring devices, for special mobile cooling devices, for space travel purposes, etc., where the lowest performance is required or the efficiency is irrelevant.
- the problem is solved by means of a device according to the wording according to claim 1.
- thermoelectric current converter element such as a Peltier element
- a thermoelectric Peltier circuit is the embedding of the solder joints, such as from Thermocouples of the optimal combination Bi2Te3 / Sb2Te3 50/50 with Bi2Te3 / Bi2Se3 75/25 (doped with copper bromide) together with their electrical connections (eg copper or silver connections) in a dielectric, which at the same time has good thermal conductivity (> 10 Wm ⁇ K "1 ) having.
- the conventional dielectrics hinder the flow of heat, while the new materials proposed according to the invention conduct the heat optimally, but not the electrical current, so that a good heat-current flow design is possible even with relatively small temperature differences.
- the heat-conducting dielectric contains at least one of the following substances: aluminum nitride, boron nitride, carbon, silicon carbide, beryllium oxide, silicon oxynitride, aluminum oxynitride, silicon-aluminum nitride and / or composite materials or alloys thereof and / or diamond-structure ceramic and / or Diamond and / or carbon fiber composite materials and / or polymers and / or polymer systems (ideally with low water absorption capacity), in particular polytetrafluoroethylene (PTFE, Teflon), polyphenylene oxide (PPO), polyphenylene sulfide (PPS), polyamideimide (PAI) and / or fiber-offset / Reinforced polymers and / or filled plastics with directional thermal conductivity and / or functional gradient materials (material, which has gradually changing properties over a certain distance) according to Claim 8.
- PTFE polytetrafluoroethylene
- PPO polyphenylene oxide
- PPS
- pure beryllium oxide has a thermal conductivity coefficient of> 250 Wm ⁇ K "1
- silicon carbide has such a coefficient between 190 and 240 Wm ⁇ K '1
- aluminum nitride also has a thermal conductivity coefficient from about 180 to 220 m ⁇ K "1 on.
- the converter element is a Peltier element, a thermoelectric generator based on the Seebeck principle or a Joule 's resistance element, which consists of at least one heat conductor or a heat transport layer via the heat-conducting dielectric a highly thermally conductive material.
- the heat conductor or the heat transport layer can be made from a highly thermally conductive metal, such as copper, aluminum, silver or gold, or from the same material as the thermally conductive dielectric, ideally from a functional gradient material FGM with the outside in favor ever better thermal conductivity, steadily increasing electrical conductivity.
- HJ Goldsmid calculates that at an average ambient temperature of 300 K and a temperature difference of 30 K above the element, an optimal operating voltage of 0.045 V per Solder joint. With an ohmic resistance of 0.05 ⁇ , this corresponds to a current of 0.9 A. In order to arrive at reasonable voltage and power values (approx. 12 V operating voltage), around 270 elements would have to be connected in series (one block ). The individual elements can be kept as small as possible (and sensible in terms of electrical resistance). Under these conditions, a maximum efficiency of approx. 66% would be achievable according to Goldsmid models.
- the cascade elements achieved in this way are more efficient at higher temperature differences than tiered blocks.
- the improvement in efficiency is greater the closer the temperature difference generated by the element is to the maximum achievable temperature difference. For example, if the temperature difference during operation is 75% of the maximum, the efficiency of a two-stage cascade is about 1.5 times that of a one-stage block in the same environment. If the temperature difference is 95% of the maximum value, the cascade efficiency is about 5 times as high as that of the corresponding single-stage block.
- the maximum achievable temperature difference can theoretically be doubled with a cascade of two levels.
- the configuration according to the invention for example a Peltier element, makes it economical in competition with the well-known Linde refrigeration machine, since the heat losses become small and the theoretical efficiency of the element can be achieved up to a few percent. So that is the Peltier element is a sensible further development compared to classic chillers.
- the devices defined according to the invention are particularly suitable for the configuration of heat exchanger elements for heating or cooling a solid, a liquid or a gas.
- the heat conductor or directly the dielectric is connected in a heat-conducting manner to the material to be heated or cooled, and the converter element is designed to be operable and connected to the heat conductor in such a way that heat is supplied to or withdrawn from the material when an electrical direct current is applied to the converter element.
- Another use of the device according to the invention is in the controllable cooling or heating with a thermostat, the converter element being operable in both directions by switching over to cooling or heating by reversing the current flow through the element (polarity reversal).
- the thermal output can also be adapted to the respective requirements by regulating the current.
- thermoelectric generator for energy supply to remote objects (as a thermoelectric generator according to FIG. 3),
- heat-conducting polymer fibers such as carbon fibers
- the heat in the composite material by means of the fibers used for the reinforcement via a heat-conducting dielectric and at least one Peltier element connected thereto (by passing a current through the Peltier element) is withdrawn.
- heat dissipation is a critical factor, particularly in the case of parts subject to high stress, since, as is well known, classic plastics are poor heat conductors.
- the attachment of conventional (classic) cooling units in such composite materials is practically impossible, so that the device proposed according to the invention now offers a suitable solution.
- the carbon fibers or carbon fabrics used for reinforcement in these composite materials can, as suggested above, be
- 3a shows an example of a three-stage cascade thermocouple according to the invention
- 3b shows an example of a two-stage cascade thermocouple according to the invention
- FIG. 5 shows a transducer element, such as a Peltier element, with a heat-conducting layer arranged on one side and directed in a directional manner
- FIG. 6 shows a heat store with a Peltier element, analogous to a heat store according to EP 306 508,
- Fig. 7 shows the dependence of the efficiency of a Peltier element on the thermal conductivity of the Dielectric layers and the cooling power provided by the element and
- FIG. 1 shows a thennoelectric converter element designed according to the invention, the individual semiconductor thermocouples 1, electrically connected in series and thermally in parallel, being combined in three dimensions to form a block.
- the electrical connection between the individual semiconductor pieces is established via flat metallic conductor connections 3, the outermost conductor pieces at the beginning and at the end of the series circuit chain being provided with electrical connections 7 for supplying current.
- the block is closed to the outside in a heat-conducting but electrically insulating manner by layers of the heat-conducting dielectric 5 which are as thin as possible and heat conductors 9 of large surface area (for example cooling plates, cooling fins or heat exchangers) attached to both sides.
- Bolts with the lowest possible thermal conductivity (not shown) stretched between the final heat conductors 9 (not shown) can be used to mechanically stabilize the block in very large assemblies.
- the direction of the heat flow in the direction of the arrow is determined by the polarity of the voltage applied to the block, and its magnitude by the current intensity passed through the block.
- FIG. 2 shows a thermoelectric converter element according to FIG. 1, but without a separate thermally conductive dielectric. Rather, the dielectric and the final heat-conducting plates form a unitary block 11 from the same functional len gradient material FGM (material which has gradually changing properties over a certain distance).
- FGM functional len gradient material
- the electrical conductivity is close to zero in the vicinity of the element, that is to say the material acts as a dielectric, the thermal conductivity still being relatively good.
- the electrical conductivity increases sharply, in favor of an also increasing thermal conductivity.
- the heat transfer to the outside thus becomes better and better with increasing metal character of the material, which contributes to an increased heat flow through the element (minimization of boundary layers).
- FIG. 3a shows a pyramid-shaped three-stage cascade of thermocouples.
- the individual blocks 13, constructed analogously to FIG. 1, are one above the other, separated by plates made of heat-conducting dielectric 5a.
- the flat metallic conductor connections 3 known from FIG. 1 are pulled through the dielectric layers and supply all stages with current.
- On the top and bottom of the cascade there are in turn closing layers of the heat-conducting dielectric 5.
- the heat transport layers or cooling plates comprising the block are not shown here.
- the way the cascade works is based on the end temperatures that change with each stage.
- the bottom stage cools the warm end of the middle one, which lowers the temperature further towards its cold end and the top stage lowers it again.
- the total temperature difference on the cascade can therefore be much higher than for a single-stage block.
- the pyramid shape It makes sense, since the required power increases downwards (electrical loss heat generated in the element and heat radiated in from the outside must be removed from each stage) and a concentration on smaller areas
- thermocouple cascade analogous to FIG. 3a, the entire element being larger here and both stages being the same size.
- the separating layer 5a in turn consists of the thermally conductive dielectric.
- thermoelectric generator 4 shows an example of a thermoelectric generator using the Seebeck effect.
- a thermoelectric converter element 21 analogous to FIG. 1 which is arranged around the chimney 15.
- large-area cooling plates or cooling fins 23 are attached via the heat-conducting dielectric 5.
- Electrical connections 7 are provided at both ends of the thermocouple series.
- the inner fins 19 are heated by the hot exhaust gases of the burner 17 escaping in the direction of the arrow and form the warm side of the thermocouples 21. Outside, the cooling fins 23 are cooled by the ambient air (or by cooling water) and form the cold side. Due to the temperature difference at the converter element 21, an electrical voltage arises at the end connections 7; the generator produces electricity.
- FIG. 5 shows a thermoelectric converter element constructed analogously to FIG. 1, which on one side is provided with a heat conductor plate (cooling plate) 9, which is connected to the semiconductor thermocouples 1 via the heat-conducting dielectric 5.
- the heat-conducting dielectric 5 is connected directly to a flat layer of a heat conductor 25 with conductivity directed in the direction of the arrow.
- thermoelectric converter element 29 is connected to it via a heat-conducting dielectric and is fed by a direct current source 27 via the electrical connections 7.
- heat is supplied to the storage 33 via the converter element 29 and the heat transport layer 31 (charging the storage) or withdrawn (discharging the storage) or the difference between the storage temperature and the outside temperature can be used on the element 29 to generate electricity.
- FIG. 7 illustrates the dependency of the efficiency (COP) of a Peltier element on the thermal conductivity of the final dielectric layers and the cooling output provided.
- An example element with the following numerical values was used: The side length of the dielectric plates is 40 times as large as their thickness, the thermoelectric elements consist of Bi2Te3 semiconductors, the mean ambient temperature is 300K and the temperature difference generated by the element outside is 30K. In general, however, the same qualitative relationships also result from other numerical values.
- the efficiency increases strongly with increasing thermal conductivity of the dielectric, but decreases slightly with increasing cooling capacity.
- the maximum achievable at a certain efficiency also increases significantly with the thermal conductivity of the dielectric. The underlying mathematical results are explained in more detail in the following section.
- thermoelectric efficiency (after [60Gol]):
- thermoelectric material material constant
- thermocouple cascade N Number of stages in a thermocouple cascade
- the temperature difference [5] to be held internally by the element is decisive. This, in turn, depends on the data of the dielectric and the thermal performance provided by the element, whereby an optimal dielectric becomes more and more important with increasing performance.
- the efficiency calculated in this way applies to operation with optimal voltage [3] and is always below the theoretical maximum [1], which in turn is limited by the maximum efficiency of an ideal thermodynamic machine [7].
- the maximum temperature difference [4] that can be achieved with an element is only dependent on the ambient temperature and the Material data. It forms the upper limit for ⁇ T and the efficiency drops to zero when it is reached. With a cascade of N stages, the total theoretical efficiency (without dielectric losses) increases according to [2] and thus also the maximum achievable temperature difference.
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU79042/98A AU7904298A (en) | 1997-07-15 | 1998-07-03 | High efficiency thermoelectric converter and applications thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH1731/97 | 1997-07-15 | ||
CH173197 | 1997-07-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999004439A1 true WO1999004439A1 (fr) | 1999-01-28 |
Family
ID=4217284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CH1998/000290 WO1999004439A1 (fr) | 1997-07-15 | 1998-07-03 | Element transformateur thermoelectrique a rendement eleve et utilisation dudit element |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU7904298A (fr) |
WO (1) | WO1999004439A1 (fr) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000049664A1 (fr) * | 1999-02-19 | 2000-08-24 | Peltech S.R.L. | Dispositif thermoelectrique a solide |
WO2001082343A2 (fr) * | 2000-04-26 | 2001-11-01 | Wafermasters Incorporated | Gestion de la chaleur dans un equipement de traitement de tranches au moyen d'un dispositif thermoelectrique |
WO2002018852A1 (fr) * | 2000-08-31 | 2002-03-07 | Imi Vision Limited | Commande thermoelectrique de la temperature d'un fluide |
WO2003021165A1 (fr) * | 2001-09-03 | 2003-03-13 | Wolfram Bohnenkamp | Dispositif de refroidissement |
DE10022726C2 (de) * | 1999-08-10 | 2003-07-10 | Matsushita Electric Works Ltd | Thermoelektrisches Modul mit verbessertem Wärmeübertragungsvermögen und Verfahren zum Herstellen desselben |
DE102005057763A1 (de) * | 2005-12-02 | 2007-06-06 | BSH Bosch und Siemens Hausgeräte GmbH | Thermoelektrisches Modul |
DE102006046114A1 (de) * | 2006-09-28 | 2008-04-03 | Airbus Deutschland Gmbh | Kühlanordnung zur Kühlung eines Wärmekörpers für ein Luftfahrzeug |
DE102008031266A1 (de) | 2008-07-02 | 2010-01-14 | Eads Deutschland Gmbh | Thermogenerator |
DE102009051950A1 (de) * | 2009-11-04 | 2011-05-12 | Benteler Automobiltechnik Gmbh | Verbindung zwischen einem thermoelektrischen Element und einem Wärmetauscher |
DE102010018998A1 (de) * | 2010-05-03 | 2011-11-03 | Bayerische Motoren Werke Aktiengesellschaft | Thermostatventil für einen Kühlkreislauf eines Verbrennungsmotors |
DE102011080011A1 (de) * | 2011-07-28 | 2013-01-31 | Siemens Aktiengesellschaft | Thermoelektrischer Generator mit thermischem Energiespeicher |
DE102012018663A1 (de) | 2011-09-21 | 2013-03-21 | Volkswagen Aktiengesellschaft | Segmentiertes Flachrohr einer thermoelektrischen Wärmepumpe und thermoelektrische Wärmeübertragereinheit |
DE102012022328A1 (de) * | 2012-11-13 | 2014-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Thermoelektrisches Modul |
DE102012022864A1 (de) * | 2012-11-20 | 2014-05-22 | Astrium Gmbh | Thermoelektrischer Dünnfilm-Generator |
DE102013205526B3 (de) * | 2013-03-27 | 2014-09-11 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Thermoelektrisches System, Verfahren zum Herstellen eines thermoelektrischen Systems und Verwendung eines thermoelektrischen Systems |
DE102013214988A1 (de) * | 2013-07-31 | 2015-02-05 | Behr Gmbh & Co. Kg | Thermoelektrisches Modul |
DE102014002245A1 (de) * | 2014-02-21 | 2015-08-27 | Stiebel Eltron Gmbh & Co. Kg | Aufbau eines Peltiermoduls für Warmwasserspeicher |
DE102012209322B4 (de) * | 2012-06-01 | 2018-04-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Sonnenkollektor und Verfahren zur Herstellung desselben |
DE102017005914A1 (de) * | 2017-06-23 | 2018-12-27 | Voss Automotive Gmbh | Temperiereinrichtung, Verfahren zum Herstellen einer solchen Temperiereinrichtung sowie Verfahren zum Verbinden der Temperiereinrichtung mit einem zu temperierenden Gegenstand |
US10224474B2 (en) | 2013-01-08 | 2019-03-05 | Analog Devices, Inc. | Wafer scale thermoelectric energy harvester having interleaved, opposing thermoelectric legs and manufacturing techniques therefor |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1395661A (fr) * | 1964-02-27 | 1965-04-16 | Cie Generale Electro Ceramique | Perfectionnement aux dispositifs thermoélectriques |
GB1025687A (en) * | 1962-03-02 | 1966-04-14 | Philips Electronic Associated | Improvements in thermo-electric devices |
DE1539341A1 (de) * | 1965-03-11 | 1969-08-28 | Westinghouse Electric Corp | Thermogenerator |
EP0194358A1 (fr) * | 1985-01-11 | 1986-09-17 | Sumitomo Electric Industries, Ltd. | Dissipateur de chaleur utilisant un corps fritté ayant une haute conductibilité de chaleur et son prodédé de fabrication |
EP0339715A1 (fr) * | 1988-04-27 | 1989-11-02 | Theodorus Bijvoets | Dispositif thermo-électrique |
US4946511A (en) * | 1988-02-10 | 1990-08-07 | The State Of Israel, Atomic Energy Commission, Soreq Nuclear Research Center | Thermoelectric devices |
US5040381A (en) * | 1990-04-19 | 1991-08-20 | Prime Computer, Inc. | Apparatus for cooling circuits |
GB2247348A (en) * | 1990-07-17 | 1992-02-26 | Global Domestic Prod Ltd | Peltier devices |
EP0592044A2 (fr) * | 1992-10-05 | 1994-04-13 | Thermovonics Co., Ltd | Dispositif de refroidissement thermoélectrique pour réfriqérateur thermoélectrique et son procédé de fabrication |
-
1998
- 1998-07-03 WO PCT/CH1998/000290 patent/WO1999004439A1/fr active Application Filing
- 1998-07-03 AU AU79042/98A patent/AU7904298A/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1025687A (en) * | 1962-03-02 | 1966-04-14 | Philips Electronic Associated | Improvements in thermo-electric devices |
FR1395661A (fr) * | 1964-02-27 | 1965-04-16 | Cie Generale Electro Ceramique | Perfectionnement aux dispositifs thermoélectriques |
DE1539341A1 (de) * | 1965-03-11 | 1969-08-28 | Westinghouse Electric Corp | Thermogenerator |
EP0194358A1 (fr) * | 1985-01-11 | 1986-09-17 | Sumitomo Electric Industries, Ltd. | Dissipateur de chaleur utilisant un corps fritté ayant une haute conductibilité de chaleur et son prodédé de fabrication |
US4946511A (en) * | 1988-02-10 | 1990-08-07 | The State Of Israel, Atomic Energy Commission, Soreq Nuclear Research Center | Thermoelectric devices |
EP0339715A1 (fr) * | 1988-04-27 | 1989-11-02 | Theodorus Bijvoets | Dispositif thermo-électrique |
US5040381A (en) * | 1990-04-19 | 1991-08-20 | Prime Computer, Inc. | Apparatus for cooling circuits |
GB2247348A (en) * | 1990-07-17 | 1992-02-26 | Global Domestic Prod Ltd | Peltier devices |
EP0592044A2 (fr) * | 1992-10-05 | 1994-04-13 | Thermovonics Co., Ltd | Dispositif de refroidissement thermoélectrique pour réfriqérateur thermoélectrique et son procédé de fabrication |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000049664A1 (fr) * | 1999-02-19 | 2000-08-24 | Peltech S.R.L. | Dispositif thermoelectrique a solide |
US6548750B1 (en) | 1999-02-19 | 2003-04-15 | Peltech S.R.L. | Solid state thermoelectric device |
DE10022726C2 (de) * | 1999-08-10 | 2003-07-10 | Matsushita Electric Works Ltd | Thermoelektrisches Modul mit verbessertem Wärmeübertragungsvermögen und Verfahren zum Herstellen desselben |
WO2001082343A2 (fr) * | 2000-04-26 | 2001-11-01 | Wafermasters Incorporated | Gestion de la chaleur dans un equipement de traitement de tranches au moyen d'un dispositif thermoelectrique |
WO2001082343A3 (fr) * | 2000-04-26 | 2002-02-28 | Wafermasters Inc | Gestion de la chaleur dans un equipement de traitement de tranches au moyen d'un dispositif thermoelectrique |
WO2002018852A1 (fr) * | 2000-08-31 | 2002-03-07 | Imi Vision Limited | Commande thermoelectrique de la temperature d'un fluide |
GB2384624A (en) * | 2000-08-31 | 2003-07-30 | Imi Vision Ltd | Thermoelectric control of fluid temperature |
WO2003021165A1 (fr) * | 2001-09-03 | 2003-03-13 | Wolfram Bohnenkamp | Dispositif de refroidissement |
DE102005057763A1 (de) * | 2005-12-02 | 2007-06-06 | BSH Bosch und Siemens Hausgeräte GmbH | Thermoelektrisches Modul |
US8869543B2 (en) | 2006-09-28 | 2014-10-28 | Airbus Operations Gmbh | Cooling assembly for cooling a thermal body for an aircraft |
DE102006046114A1 (de) * | 2006-09-28 | 2008-04-03 | Airbus Deutschland Gmbh | Kühlanordnung zur Kühlung eines Wärmekörpers für ein Luftfahrzeug |
DE102006046114B4 (de) * | 2006-09-28 | 2012-02-02 | Airbus Operations Gmbh | Kühlanordnung zur Kühlung eines Wärmekörpers für ein Luftfahrzeug |
DE102008031266B4 (de) * | 2008-07-02 | 2013-05-29 | Eads Deutschland Gmbh | Verwendung eines Thermogenerators an einem Luftfahrzeug |
DE102008031266A1 (de) | 2008-07-02 | 2010-01-14 | Eads Deutschland Gmbh | Thermogenerator |
DE102009051950A1 (de) * | 2009-11-04 | 2011-05-12 | Benteler Automobiltechnik Gmbh | Verbindung zwischen einem thermoelektrischen Element und einem Wärmetauscher |
DE102010018998A1 (de) * | 2010-05-03 | 2011-11-03 | Bayerische Motoren Werke Aktiengesellschaft | Thermostatventil für einen Kühlkreislauf eines Verbrennungsmotors |
DE102011080011A1 (de) * | 2011-07-28 | 2013-01-31 | Siemens Aktiengesellschaft | Thermoelektrischer Generator mit thermischem Energiespeicher |
DE102012018663A1 (de) | 2011-09-21 | 2013-03-21 | Volkswagen Aktiengesellschaft | Segmentiertes Flachrohr einer thermoelektrischen Wärmepumpe und thermoelektrische Wärmeübertragereinheit |
EP2573831A2 (fr) | 2011-09-21 | 2013-03-27 | Volkswagen Aktiengesellschaft | Tuyau plat segmenté d'une pompe à chaleur thermoélectrique et unité caloporteuse thermoélectrique |
DE102012209322B4 (de) * | 2012-06-01 | 2018-04-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Sonnenkollektor und Verfahren zur Herstellung desselben |
DE102012022328A1 (de) * | 2012-11-13 | 2014-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Thermoelektrisches Modul |
DE102012022328B4 (de) | 2012-11-13 | 2018-05-09 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Thermoelektrisches Modul |
DE102012022864A1 (de) * | 2012-11-20 | 2014-05-22 | Astrium Gmbh | Thermoelektrischer Dünnfilm-Generator |
US10224474B2 (en) | 2013-01-08 | 2019-03-05 | Analog Devices, Inc. | Wafer scale thermoelectric energy harvester having interleaved, opposing thermoelectric legs and manufacturing techniques therefor |
DE102013205526B3 (de) * | 2013-03-27 | 2014-09-11 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Thermoelektrisches System, Verfahren zum Herstellen eines thermoelektrischen Systems und Verwendung eines thermoelektrischen Systems |
DE102013214988A1 (de) * | 2013-07-31 | 2015-02-05 | Behr Gmbh & Co. Kg | Thermoelektrisches Modul |
US9728704B2 (en) | 2013-07-31 | 2017-08-08 | Mahle International Gmbh | Thermoelectric module |
DE102014002245A1 (de) * | 2014-02-21 | 2015-08-27 | Stiebel Eltron Gmbh & Co. Kg | Aufbau eines Peltiermoduls für Warmwasserspeicher |
DE102017005914A1 (de) * | 2017-06-23 | 2018-12-27 | Voss Automotive Gmbh | Temperiereinrichtung, Verfahren zum Herstellen einer solchen Temperiereinrichtung sowie Verfahren zum Verbinden der Temperiereinrichtung mit einem zu temperierenden Gegenstand |
Also Published As
Publication number | Publication date |
---|---|
AU7904298A (en) | 1999-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1999004439A1 (fr) | Element transformateur thermoelectrique a rendement eleve et utilisation dudit element | |
EP3169946B1 (fr) | Dispositif de climatisation équipé d'au moins un caloduc, en particulier un thermosiphon | |
Selvam et al. | Transient performance of a Peltier super cooler under varied electric pulse conditions with phase change material | |
EP1515376A2 (fr) | Dispositif pour la génération d'énergie électrique | |
AT507533B1 (de) | Vorrichtung zur umwandlung von wärmeenergie in elektrische energie | |
DE3314472A1 (de) | Magnetische kuehlvorrichtung | |
Ren et al. | TSV-integrated thermoelectric cooling by holey silicon for hot spot thermal management | |
DE1464132A1 (de) | Verfahren zum Herstellen von Thermoelementen bzw.-teilen | |
DE102010007420A1 (de) | Vorrichtung zur Umwandlung von thermischer in elektrische Energie | |
DE3735410A1 (de) | Energiequelle, die waermeenergie in elektrische energie umwandelt | |
DE19527674C2 (de) | Kühleinrichtung | |
WO2017016691A1 (fr) | Procédé et dispositif de climatisation, notamment de refroidissement, d'un support au moyen d'un matériau électrocalorique ou magnétocalorique | |
DE1514551C3 (de) | Kühleinrichtung für Gleichrichterzellen für hohe Ströme | |
DE10018169C2 (de) | Vorrichtung zur Kühlung mindestens eines elektrischen Betriebselements in mindestens einem Kryostaten | |
DE19954077C1 (de) | Tieftemperaturkühlvorrichtung | |
DE102005013926B4 (de) | Vorrichtung und Verfahren zur Temperaturregelung eines Temperiergutes | |
DE2347457A1 (de) | Stabfoermige anordnung von thermoelementpaaren | |
EP1423648B1 (fr) | Dispositif de refroidissement | |
DE2003393A1 (de) | Kuehlvorrichtung fuer Halbleiterbauelemente | |
EP0694200B1 (fr) | Alimentation en courant a basse temperature avec echangeur de chaleur | |
DE102015202638A1 (de) | Stromzuführung für eine supraleitende Spuleneinrichtung | |
EP3700036B1 (fr) | Élément de transition raccordant un conducteur de courant normal à un supraconducteur électro-conducteur | |
DE2423717A1 (de) | Kuehlsystem fuer unterirdische elektrische energieleitungen | |
EP3885674B1 (fr) | Dispositif de production de froid et d'électricité selon le principe de peltier | |
DE69201829T2 (de) | Elektrische Stromleiterstruktur für eine bei sehr niedrigen Temperaturen arbeitende Einrichtung. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: KR |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |