WO1999004384A1 - Liquid crystal device, method for driving the same, and projection display and electronic equipment made using the same - Google Patents

Liquid crystal device, method for driving the same, and projection display and electronic equipment made using the same Download PDF

Info

Publication number
WO1999004384A1
WO1999004384A1 PCT/JP1997/003600 JP9703600W WO9904384A1 WO 1999004384 A1 WO1999004384 A1 WO 1999004384A1 JP 9703600 W JP9703600 W JP 9703600W WO 9904384 A1 WO9904384 A1 WO 9904384A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential
liquid crystal
data signal
voltage
precharge
Prior art date
Application number
PCT/JP1997/003600
Other languages
French (fr)
Japanese (ja)
Inventor
Toru Aoki
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to JP51551598A priority Critical patent/JP3704716B2/en
Priority to US09/254,873 priority patent/US6266039B1/en
Publication of WO1999004384A1 publication Critical patent/WO1999004384A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0248Precharge or discharge of column electrodes before or after applying exact column voltages
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • G09G2320/0214Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display with crosstalk due to leakage current of pixel switch in active matrix panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0219Reducing feedthrough effects in active matrix panels, i.e. voltage changes on the scan electrode influencing the pixel voltage due to capacitive coupling

Definitions

  • Patent application title Liquid crystal device and driving method thereof, and projection display device and electronic apparatus using the same
  • the present invention relates to a liquid crystal device and a driving method thereof, and a projection display device and an electronic apparatus using the same.
  • an operation of writing data to a liquid crystal layer of each pixel through a switching element such as a TFT (thin film transistor) connected to one scanning signal line is performed by dot sequential driving.
  • a switching element such as a TFT (thin film transistor) connected to one scanning signal line
  • a polarity inversion drive for inverting the polarity of the voltage applied to the liquid crystal at a predetermined timing is performed. Have been done.
  • the polarity inversion drive is a drive in which a voltage of a different polarity (positive or negative polarity) is applied to one end of the liquid crystal with reference to a potential applied to the other end of the liquid crystal.
  • polarity in the present specification means the polarity of a voltage applied to both ends of the liquid crystal.
  • polarity inversion a so-called line-by-line inversion in which the polarity is inverted each time a scanning signal line is selected, or a so-called dot in which the polarity is inverted for each pixel connected to one scanning signal line
  • a polarity inversion driving method in which each inversion is combined is known.
  • FIGS. 11 and 12 are schematic diagrams for explaining the polarity inversion driving method.
  • a conventional active matrix type liquid crystal device dot-sequential driving and pixel-by-pixel
  • a method of precharging data signal lines in a batch during the immediately preceding blanking period is adopted.
  • S 1 to S 4 indicate data signal lines
  • H 1 to H 4 indicate scan signal lines.
  • "10" and "-" of each pixel indicate the voltage applied to the liquid crystal of the pixel and the polarity of the precharge potential supplied to the data signal line immediately before.
  • FIG. 11 shows the voltage polarity of each pixel in the N field
  • FIG. 12 shows the voltage polarity of each pixel in the N + 1 field.
  • polarity inversion driving for each pixel and each line different polarities are set for each adjacent pixel connected to the same data signal line (for each vertically adjacent pixel in Figs. 11 and 12). Voltage is applied.
  • each black pixel is used for polarity inversion driving.
  • the signal levels of the data are different.
  • the signal line itself since the signal line itself has a parasitic capacitance, it takes time to change the potential of the data signal line from the black level potential on the positive side to the black level potential on the negative side.
  • C 10 indicates a parasitic capacitance of the data signal line S 1 (that is, an equivalent capacitance of the data signal line S 1).
  • “ ⁇ ” And “ten” on the left side of FIG. 13 indicate the polarity of the voltage written to the pixels 22 and 24. Note that pixels 22 and 24 both display “black”.
  • Each pixel includes a storage capacitor and a pixel electrode to which a data signal is supplied via a switching element, and a liquid crystal layer to which a voltage is applied between the pixel electrode and the common electrode.
  • a black level potential B1 is applied to one end of the pixel 22 to display black, and in the next horizontal scanning period T2, black is applied to one end of the pixel 24.
  • black display is performed by applying the level potential B2.
  • the common potential set between the black level potentials Bl and B2 is applied to the other ends of the pixels 22 and 24, a negative voltage is applied to the pixel 22.
  • a positive voltage is applied to pixel 24
  • the potential difference between the black level potentials B1 and B2 is the largest as compared with the case of other gray scale displays.
  • the parasitic capacitance C10 of the data signal line S1 is charged (or discharged) by the image data signal itself, and the data is discharged as shown by "R1" in the figure.
  • the potential of the evening signal line must be changed from black level potential B1 to B2.
  • the precharge of the same polarity as that of the data signal is performed before the supply of the data signal, the precharge is performed before the horizontal scanning period T2, and the data signal line is supplied. If S1 is held at the high second precharge potential PV2, the potential of the data signal line is changed from the second precharge potential PV2 to the black level potential as indicated by "R2" in the figure. It only needs to be changed to B2, and the amount of charge (discharge) of the parasitic capacitance C10 of the data signal line S1 can be small. Therefore, the driving speed of the liquid crystal is increased.
  • the black level potentials Bl and B2 are set to 1 V and 1 IV
  • the white level potentials Wl and W2 are set to 5 V and 7 V, respectively
  • the precharge potentials PV 1 and PV 2 are set.
  • 4V and 8V are voltages applied to one end of the liquid crystal via the switching element at the halftone display level, and T1 which indicates the relationship between the liquid crystal applied voltage (V) and the transmittance (T) of the liquid crystal device.
  • V liquid crystal applied voltage
  • T transmittance
  • This corresponds to the potential level when the V force is the steepest.
  • 4V and 8V correspond to the potential level when the change in transmittance with respect to the change in the voltage applied to the liquid crystal is the largest.
  • optical crosstalk is a problem. What is optical crosstalk? A carrier is generated by light in a switching element formed on the substrate, for example, a TFT (thin film transistor), and a charge stored in a pixel connected to the TF ⁇ ⁇ ⁇ leaks and is connected to the TF ⁇ . This is a phenomenon in which the charge stored in the pixel fluctuates due to the influence of the potential of the source line (data signal line). Although this problem is known per se, the present inventors have clarified the relationship between the optical crosstalk and the precharge potential. This will be described with reference to FIGS.
  • FIG. 15 shows a screen in which the central area ⁇ is displayed in black and the surrounding area B is displayed in halftone.
  • the data signal line Sn is connected to only pixels that display halftone, and the data signal line Sn + i is connected to pixels that display halftone and black.
  • the pixel connected to the data signal line S n is A (m, n)
  • the pixel connected to the data signal line S n + i is A (m , n + i).
  • FIG. 16 is a schematic diagram for explaining charge leakage when both the pixel A (m, n) and the pixel A (m, n + i) are driven at a positive voltage.
  • FIG. 16 is a schematic diagram for explaining charge leakage when both the pixel A (m, n) and the pixel A (m, n + i) are driven at a positive voltage.
  • each pixel is The liquid crystal layer is actually charged with a voltage lower than 8 V by AV1.
  • the switching element is a ⁇ -channel transistor, a high voltage is applied to the gate of the transistor to turn it on, and when charging the pixel, the gate-drain of the transistor (pixel electrode side electrode) This is because, when the transistor is turned off, the charge charged in the parasitic capacitance flows into the storage capacitor and the pixel electrode side, causing a voltage drop AV1.
  • the pixel A (m, n) to which a charging voltage lower than 8 V is applied via the switching element has a precharge potential lower than or higher than the charging voltage and a data signal potential of 4 V. Or, leakage occurs in the switching element under the influence of the potential of the data signal line Sn to which 8 V is applied.
  • the black level data signal voltage 1 V or 11 V which is lower or higher than the charge voltage is applied. Is applied to the data signal line S n + i, and leakage occurs in the switching element.
  • both pixels A (m, n) and A (m, n + i) have higher and lower precharge potentials than the charge voltage when the positive halftone display voltage is charged. Or a data signal line to which a higher and lower data signal potential is applied, and the charge charged in the pixel is alternately charged and discharged through the switching element, resulting in a result. It is hardly affected by the potential of the data signal line.
  • FIG. 17 is a schematic diagram for explaining charge leakage when the pixel A (m, n) and the pixel A (m, n + i) are charged with a negative voltage.
  • FIG. 17 when it is attempted to supply a voltage of 4 V to the pixel A (m, n) and the pixel A (m, n + i) via the data signal lines Sn, Sn + i, the liquid crystal layer of each pixel is In practice, a voltage lower than 4 V by ⁇ 1 is applied. The reason is the same as above.
  • the pixel A (m, n) charged to a charge voltage lower than 4 V is a data signal line to which a precharge potential higher than the charge voltage and a data signal potential of 4 V or 8 V are applied.
  • Leakage occurs in the switching element under the influence of the potential of Sn. Therefore, in the case of the pixel A (m, n) in the case of the negative voltage driving, a leak always occurs between the pixel A (m, n) and the data signal line having a potential higher than the charge voltage, and charges are charged from the data signal line. Therefore, the charge voltage always fluctuates in the positive direction.
  • the pixel A (m, n + i) charged to a charge voltage lower than 4 V receives the lower or higher black level data signal potential of 1 V or 11 V. Under the influence of the potential of the data line Sn + i, leakage occurs in the switching element. Therefore, in the pixel A (m, n + i), when the negative voltage is charged, the charged voltage fluctuates in both positive and negative directions. Less susceptible to line potential.
  • the present inventors have clarified that the deterioration of the image quality due to the optical crosstalk is particularly remarkable when the negative voltage described in FIG. 17 is applied.
  • the reason is that the voltage charged to the pixel A (m, n) always changes unidirectionally to the positive polarity direction, that is, to the white side on the display when the negative polarity image voltage is applied. This is because a display gradation difference occurs between the pixel A (m, n) to be formed and the pixel A (m, n + i), and the gradation difference between the two becomes large.
  • FIG. 17 shows the case of positive voltage driving.
  • the pixel A (m, n) in FIG. 17 has a positive charge voltage (corresponding to the lower side in FIG. 17).
  • An object of the present invention is to provide a liquid crystal device and a liquid crystal display method capable of reducing image quality deterioration caused by optical crosstalk, and a projection display device and an electronic device using the same. To provide.
  • Another object of the present invention is to improve the image quality by supplying a voltage faithful to the original data signal to the liquid crystal layer by suppressing a write failure of the data signal due to a higher frequency of the data sampling signal. It is an object of the present invention to provide a liquid crystal device, a liquid crystal display method, and a projection display device and an electronic device using the same. ⁇
  • a switching element electrically connected to a liquid crystal layer is arranged in each of a plurality of pixels formed by intersections of a plurality of data signal lines and a plurality of scanning signal lines, and is applied to the liquid crystal layer.
  • a liquid crystal device driven by inverting the polarity of the voltage every predetermined period,
  • Scanning-side driving means for supplying a scanning signal for selecting at least one of the plurality of scanning signal lines to the plurality of scanning signal lines;
  • a data driver for supplying the data signal to each of the plurality of data signal lines
  • a positive polarity or a negative polarity Prior to supplying the data signal to each of the plurality of data signal lines, a positive polarity or a negative polarity having the same polarity as the polarity of the voltage applied to the liquid crystal layer of the pixel based on the data signal.
  • a plurality of precharge switching means for precharging each of the plurality of data signal lines at a precharge potential;
  • the data signal When applying a negative voltage to the liquid crystal layer, the data signal changes within a range of a negative data voltage amplitude between a first potential and a second potential that is higher than the first potential.
  • a positive voltage When a positive voltage is applied to the positive electrode, the voltage changes within a range of a positive data voltage amplitude between a third potential higher than the second potential and a fourth potential higher than the third potential,
  • the positive and negative precharge potentials are set asymmetrically with respect to a central potential of a voltage amplitude between the first and fourth potentials, and the negative precharge potential is set to
  • the characteristic data voltage is set so as to be closer to the first potential than the center potential of the characteristic data voltage amplitude.
  • the negative signal line is precharged by the negative precharge potential set closer to the first potential than the potential for halftone display. That is, in the present invention, a precharge potential close to the first potential is periodically applied to the data signal line irrespective of the gradation level of the pixel connected to the data signal line.
  • the data signal line to which the pixel is connected is:
  • the negative precharge potential lower than the charged charge voltage is applied periodically, and the positive precharge potential and data signal potential higher than the charge voltage are applied periodically.
  • the potential does not unilaterally change to the positive polarity side, and the deterioration of the image quality due to the leakage of the switching element is reduced.
  • the present invention can be applied to a case where each of a plurality of switching elements is formed by an N-channel transistor.
  • the precharge potential PVI in FIG. 17 is changed to a value close to the first potential (B 1) as shown in FIG. 2, the switching elements of the pixel A (m, ⁇ ) and the pixel A (m, n + i) If the pixel leaks due to light, the data signal lines S n and S n + i to which the pixel is connected are both negative polarity pre-charges having a potential close to the first potential (black level potential B 1 in FIG. 2).
  • a charge potential and a positive precharge potential are applied periodically.
  • both pixels A (m, n) and A (m, n + i) are different from FIG. Leakage occurs between the data line and the data line to which positive and negative voltages are alternately applied. For this reason, it is possible to reduce deterioration in image quality due to optical crosstalk.
  • the negative precharge potential is higher than the first potential. This is because when the negative precharge potential is lower than the first potential, the voltage difference between the gate and the source of the N-channel transistor disappears and leakage occurs.
  • the positive precharge potential is preferably lower than the third potential.
  • the above-described switching noise acts to shorten the time for charging the potential of the data signal line in the positive direction. For this reason, even if the potential of the data signal line is set to any of the third and fourth potentials after the precharge at the positive precharge potential lower than the third potential, It is only necessary to charge the signal line overnight, and this charging can be accelerated using switching noise.
  • the positive precharge potential can be set closer to the fourth potential than the center potential of the positive data voltage amplitude.
  • the data signal line is precharged by the positive precharge potential set closer to the fourth potential than the potential for halftone display. Therefore, even if optical crosstalk occurs in the pixel switching element, the pixel is affected by the potential of the data signal line that is alternately set to the positive precharge potential and the negative precharge potential close to the fourth potential. As described above, the potential does not fluctuate unilaterally to the negative polarity side as described above, and the deterioration of image quality due to leakage of the switching element is reduced.
  • the present invention can be applied when each of a plurality of switching elements is formed by a P-channel transistor.
  • the positive polarity potential PV 1 is changed to a value close to the fourth potential as shown in FIG. 7 described later, the pixel A (m, n) and the pixel A (m, n + i) are charged. Even if the voltage is affected by the potential of the data signal line due to the light leakage of the switching element, the data signal lines S n and S n + i have the fourth potential (black level potential B 2 in FIG. 7). Near positive polarity —Di potential and negative precharge potential are applied periodically.
  • both pixels A (m, n) and A (m, n + i) alternately change to a positive and negative voltage with respect to that voltage. Leakage occurs between the set data line and the data line, so it is less affected by the data line. Therefore, it is possible to reduce the deterioration of the image quality due to the optical crosstalk.
  • the positive precharge potential When the positive precharge potential is set as described above, it is effective even when each of the plurality of sampling switching means is formed by a P-channel transistor. In this case, when the sampling switching means is turned on, switching noise is generated, which is superimposed on the data signal line.
  • the switching noise has an adverse effect such as prolonging the time for charging the potential of the data signal line in the positive direction.
  • the potential of the data signal line becomes higher at the highest data signal potential during the sampling period. Prevents charging to a certain fourth potential. Therefore, by bringing the positive polarity precharge potential closer to the fourth potential and reducing the potential difference from the positive precharge potential to the fourth potential, the data signal line becomes the fourth potential within the sampling period. To compensate. '
  • the positive precharge potential is preferably lower than the fourth potential. If the positive precharge potential is higher than the fourth potential, the voltage difference between the gate and the source of the P-channel transistor disappears, and leakage occurs.
  • the negative precharge potential is preferably higher than the second rank.
  • the above-described switching noise acts to shorten the time for discharging the potential of the data signal line in the negative direction. For this reason, even if the potential of the data signal line is set to any data signal potential between the second potential and the first potential after precharging with the negative precharge potential higher than the second potential, the data signal line is always This is because it is only necessary to discharge, and this discharge can be hastened by using switching noise.
  • the switching element used in the present invention is not limited to the thin film transistor described in the embodiment, but may be constituted by a MOS transistor when the element forming substrate of the liquid crystal panel substrate is formed by a single crystal silicon substrate. be able to. It can also be formed by a two-terminal nonlinear element such as MIM.
  • the present invention is preferably applied to a projection display device using the liquid crystal device of the present invention as a light valve that modulates light from a light source, particularly from the viewpoint of reducing image quality deterioration due to optical crosstalk.
  • the present invention is also effective for various electronic devices provided with a transmission type or reflection type liquid crystal device using light from a light source.
  • FIG. 1 is a schematic explanatory view of an active matrix type liquid crystal device of the present invention.
  • FIG. 2 is a schematic explanatory diagram showing a potential of a pixel and a potential of a data signal line at a leakage destination when a liquid crystal is driven with a negative voltage according to the first embodiment of the present invention.
  • FIG. 3 is a schematic explanatory diagram showing a potential of a pixel and a potential of a data line at a leakage destination when a liquid crystal is driven with a positive polarity voltage in the first embodiment of the present invention.
  • FIG. 4 is a schematic explanatory diagram schematically showing a pixel A (m-1, n) and a pixel A (m, n).
  • FIG. 5 is a timing chart showing the potential change of the pixel A (m-1, n) shown in FIG. 4 and the data signal line Sn connected to the pixel A (m, n).
  • FIG. 6 is a timing chart of Comparative Example 1 in which the precharge potential in FIG. 5 is changed.
  • FIG. 5 is a schematic diagram showing the potential of the pixel and the potential of the data line at the leakage destination when the liquid crystal is driven at the negative and positive voltages, respectively, in the second embodiment of the present invention.
  • FIG. 8 is a schematic explanatory diagram for explaining a leak when the precharge potential in FIG. 7 is changed.
  • FIG. 9 is a timing chart illustrating the operation of the second embodiment of the present invention.
  • FIG. 10 is a timing chart of Comparative Example 2 in which the precharge potential in FIG. 9 is changed.
  • FIG. 11 is a schematic explanatory diagram showing the polarity of the voltage applied to the liquid crystal of each pixel in N fields.
  • Figure 12 shows the polarity of the voltage applied to the liquid crystal of each pixel in the N + 1 field FIG.
  • FIG. 13 is a schematic explanatory diagram showing two pixels connected to the same data signal line.
  • FIG. 14 is a characteristic diagram showing a potential change of the data signal line when the same black data is written to the two pixels shown in FIG. ⁇
  • FIG. 15 is a schematic view of a liquid crystal screen for explaining optical crosstalk.
  • FIG. 16 is a schematic explanatory diagram of a conventional example showing the potential of a pixel when the liquid crystal is driven with a negative voltage and the potential of a leakage signal line at the leakage destination.
  • FIG. 17 is a schematic explanatory view of a conventional example showing a potential of a pixel when a liquid crystal is driven by a positive voltage and a potential of a data line at a leakage destination thereof.
  • FIG. 18 is a schematic diagram of an electronic device configured using the image display device according to the present invention.
  • FIG. 19 is a schematic diagram of a liquid crystal projector to which the present invention is applied.
  • FIG. 20 is a schematic diagram of a personal computer (PC) to which the present invention is applied.
  • PC personal computer
  • FIG. 1 shows an overall outline of the liquid crystal device according to the first embodiment.
  • this liquid crystal device is a small liquid crystal device used as a light valve of an electronic device such as a liquid crystal projector, and includes a liquid crystal panel block 10, a timing circuit block 20, and a data processing block. It is roughly divided into 30.
  • the timing circuit block 20 receives the clock signal CLK and the synchronizing signal SYNC and outputs a predetermined evening timing signal such as a shift start signal, a shift clock signal, and a precharge signal.
  • the data processing circuit block 30 is a circuit block for processing data by amplifying and inverting data so as to be suitable for a liquid crystal display.
  • This data processing block At 30 the data signal corresponding to each pixel is inverted with respect to the polarity-inversion reference potential for each pixel. This polarity inversion is inverted every vertical scanning period (every field or every frame).
  • the liquid crystal panel block 10 has liquid crystal sealed between a pair of substrates, and includes a pixel region 100, a scanning drive circuit 102, and a data drive circuit 104 on one substrate.
  • a common electrode is provided on the other substrate facing this.
  • a polarizing plate is arranged outside the pair of liquid crystal panel substrates. Note that these driving circuits may be configured as external ICs separately from the liquid crystal panel substrate.
  • the total number of the scanning signal lines 110 is set to 492 and the total number of the data signal lines 112 is set to 652. The number is not particularly limited.
  • a switching element 114 and a pixel 120 are connected in series to constitute a display element.
  • Each pixel 120 is formed together on one substrate, and is formed between a pixel electrode connected to the switching element 114 and a scanning signal line or a capacitor line adjacent to each pixel electrode. It is composed of a storage capacitor 117, a common electrode formed on the other opposing substrate, and a liquid crystal layer 116 sandwiched between the two electrodes.
  • a period during which the switching element 114 of each pixel 120 is turned on is referred to as a selection period, and a period during which the switching element 114 is turned off is referred to as a non-selection period.
  • a storage capacitor 117 that stores the voltage supplied to the pixel 120 via the switching element 114 during the selection period during the non-selection period is connected to the pixel 120.
  • the switching element 114 is, for example, a three-terminal switching element, for example, a TFT (thin film transistor).
  • a MOS transistor that is another three-terminal switching element, or a two-terminal switching element such as a MIM (metal-insulation-metal) element or an MIS (metal-insulation-semiconductor) element can be used.
  • MIM metal-insulation-metal
  • MIS metal-insulation-semiconductor
  • the scanning side driving circuit 102 outputs a scanning signal in which a selection period for sequentially selecting at least one of the plurality of scanning signal lines 110 is set. is there.
  • the data side driving circuit 104 is an output line of the data processing circuit block 30, for example, one signal line and a data signal line 1 1 2 a, 1 1 2 b, A sampling signal for driving the pixel area 100 in a point-sequential manner is output to the sampling switches 106 arranged between.
  • the output lines of the data output circuit block 30 have the same number of output lines as the number of phase expansions.
  • the phase expansion circuit samples and holds the image data signal as serial data according to a sampling period set based on a reference clock, and expands the serial data for each fixed pixel.
  • a plurality of data signals whose one data output period from the data processing circuit block 30 has been converted to an integral multiple of the reference clock are output in parallel.
  • the precharge switches 1 7 2 a, 1 7 2 b,... are turned on at a predetermined timing by a precharge signal, and the first (negative) precharge power supply line 1 7 4 a Alternatively, connect the second (positive polarity) precharge power supply line 1 7 4 b to each data line 1 1 2 a, 1 1 2 b This is for practicing.
  • the polarity of the precharge power supply voltage is based on the common electrode potential applied to the common electrode.
  • the first and second precharge oven power supply lines 174a and 174b are connected to a first precharge potential PV1 and a second precharge voltage via a precharge power supply switch 190, respectively.
  • the precharge potential PV 2 is switched and supplied every time the scanning signal line 110 is selected (for each horizontal scan).
  • the switching timing of the power supply switch 190 is set at least before the precharge switch 1 ⁇ 2 is turned on. It is.
  • the odd-numbered data signal lines 17 2 a, 17 2 c since the polarity inversion driving is performed, for example, in the odd-numbered horizontal scanning period, the odd-numbered data signal lines 17 2 a, 17 2 c,.
  • the supply line 174a is connected, and the even-numbered data signal lines 172b, 172d,... Are connected to the second precharge power supply line 174b.
  • the odd-numbered data signal lines 17 2 a, 17 2 c,... are connected to the second precharge power supply line 17 4 b, and the even-numbered data signal lines 17 2 a, 17 2 c,.
  • the first precharge power supply line 174b The details of this precharge operation will be described later.
  • the polarity inversion driving is performed for each pixel in the direction in which the scanning signal line extends, and the polarity inversion driving is performed for each line (for each scanning signal line) in the direction in which the data signal line extends. Therefore, the polarity inversion timing is determined to match this. That is, the polarity of the precharge potential and the data signal applied to each data signal line and each pixel are inverted not only for each scanning signal line or pixel, but also for each vertical scanning period. Note that the case where precharging is required is a case where polarity inversion driving is performed at least for each line, and is not limited to polarity inversion for each pixel.
  • a shift start signal formed based on the clock CLK and the synchronization signal SYNC is input to the shift register of the data drive circuit 1G4, and the data drive circuit 104 generates a sampling signal.
  • the sampling of the data signal is performed by sequentially turning on the sampling switches 106a to 106g based on the sampling signal.
  • the voltage applied to the pixel based on the data signal sampled in the sampling period during the blanking period (retrace period) before each sampling period described above for each data signal line is described.
  • the polarity is the same as that of, and each data line is precharged at the same time.
  • the pixels are marked based on the data signal.
  • the polarity of the applied voltage is the polarity with respect to the common electrode potential.
  • FIG. 2 shows a data signal potential and a precharge potential when an N-channel TFT is used as the switching element 114 and a normally white display is performed.
  • the potential of the first signal B1 (IV) and the second potential W1 (5 V) are changed according to the gradation value. Varies between.
  • the normally white display the first potential B1 corresponds to black display, and the second potential W1 corresponds to white display. In the display of normally black, the relationship is opposite to the above.
  • the overnight signal potential is changed to a third potential W2 (7 V) and a fourth potential B 2 (11 V) according to the gradation value. It changes between.
  • the second potential W2 corresponds to white display
  • the fourth potential B2 corresponds to black display.
  • the relationship is opposite to the above.
  • the amplitude center Vc of the data signal potential is 6 V.
  • the center potential VC1 of the amplitude (B1 to W1) in the case of the negative voltage drive is 3 V
  • the center potential VC2 of the amplitude (W2 to B2) in the case of the positive voltage drive is 9 V.
  • the first precharge potential PV1 is set to 1.5V
  • the second precharge potential PV2 is set to 6.5V.
  • the first and second precharge potentials: P V1 and PV2 are set asymmetrically with respect to the amplitude center V c of the overnight signal potential.
  • the first precharge potential PV 1 (1.5 V) is closer to the first potential (IV) than the amplitude center VC 1 (3 V) of the data signal potential in the negative voltage drive. Is set.
  • the second precharge potential PV2 (6.5 V) is set to a value smaller than the third potential W2 (7 V) of the positive voltage drive.
  • the capacitance between the gate and drain of the switching element (TFT) 114 is CGD1
  • the capacitance of the liquid crystal layer 116 is CLC
  • the storage capacitance 117 is CSTG
  • the capacitance is applied to the gate of the TFT 114.
  • the potential difference between the selection period and the non-selection period of the scanning signal is Vg
  • the voltage drop 1 occurs due to the parasitic capacitance of the TFT 114 immediately after the charge voltage is applied to the pixel in the selection period.
  • AV1 is approximated by the following equation.
  • V l [CGD1 / (CGD + CCL + CSTG)] xVg
  • TFT gate-drain parasitic capacitance of the sampling switch 106.
  • the gate-drain parasitic capacitance of TFT106 is CGD2
  • the parasitic capacitance of the data signal line is CD2
  • the potential difference between the sampling period and the non-sampling period of the sampling signal applied to the gate of TFT 106 is Vg2.
  • the voltage drop 2 is approximated by the following equation.
  • FIG. 2 differs from the conventional FIG. 17 in this point.
  • Conventional Figure 1 In the method shown in Fig. 7, the charge voltage of pixel A (m, n) fluctuates only in the positive direction due to leakage at the TFT, but in the case of Fig. 2, it is higher than the charge voltage on the data signal line. Since the potential is applied alternately to the lower potential, the charge voltage fluctuates so as to alternately shift in both positive and negative directions.
  • Pixel A (m, n) and pixel A (m, n + i) are the same in that the charge voltage fluctuates so as to alternately shift between positive and negative. Therefore, if pixel A (m, n + i) shifts toward black on the display, pixel A (m, n) also shifts toward black on the display, and the effect of optical crosstalk is displayed. Offset above. Similarly, if pixel A (m, n + i) is shifted in the direction in which it becomes white on the display, pixel A (m, n) is similarly shifted in the direction in which it becomes white on the display, and optical crosstalk is reduced. The effects are offset on the display.
  • optical crosstalk can be made inconspicuous on display, and the image quality can be improved.
  • the liquid crystal layer is driven by a positive voltage, the result is as shown in FIG. 3, and no problem occurs as in the conventional case.
  • the operation of the second precharge potential PV2 will be described later.
  • FIG. 5 shows a timing chart of the liquid crystal device of the present invention when all the sampling switches 106 and the switching elements 114 in FIG. 1 are formed by N-channel transistors.
  • FIG. 5 shows that the pixel 120 of the pixel A (m, ⁇ ) shown in FIG. 4 and the pixel 120 of the pixel A (m, n) shown in FIG. 4 both display black.
  • the data signal line of FIG. also, in FIG. 5, during a period in which the precharge signal PC is high in the m-1st horizontal scanning period, the data signal line Sn is precharged with the positive potential, and the precharge in the mth horizontal scanning period is performed. In the description, it is assumed that the data signal line Sn is precharged with the negative potential during the period when the signal PC is high.
  • the first precharge potential PV1 is set to, for example, 1.5 V
  • the second precharge potential PV2 is set to, for example, 6.5 V. I have.
  • the horizontal scanning signal (m-1) goes high when the first horizontal synchronization signal SYNC is input. Therefore, all the switching elements 114 connected to the scanning signal line Hm-1 are turned on. Thereafter, the precharge signal PC becomes high, and all the precharge switches 172 are turned on. As a result, the first precharge potential PV from the first precharge power supply 174a is applied to the odd-numbered data signal lines S1, S3, -Sn-1, Sn + 1, Sn + 3,. 1 (1.5 V) is supplied. On the other hand, the even-numbered data signal lines S2, S4, -Sn, Sn + 2, Sn + 6,... Are connected to the second precharge potential PV2 (6.5 V ) Is supplied.
  • the potential of the data signal line Sn shown in FIG. 5 becomes black level potential B 1 (1 V) if the pixel A (m-2, n) performs black display before this precharge operation. It is near. Thereafter, since the above-described precharge operation is started, the overnight signal line Sn is precharged to the second precharge potential PV2 (6.5 V). Since the data signal line Sn has a parasitic capacitance CD2, the data signal line Sn maintains the second precharge potential PV2 even after the precharge period ends. Thereafter, sampling of the data signal is started for all the pixels connected to the scanning signal line Hm-1 in FIG.
  • the data signals are sampled sequentially from the leftmost data signal line for each data signal line according to the sampling signal. It is done by the method. Then, in order to display black on pixel A (m ⁇ 1, ⁇ ), the black level potential ⁇ 2 (1) on the positive polarity side is applied to the data signal line Sn via the sampling switch 106 during the sampling period. IV) is supplied. Then, the storage capacitor 1 17 and the liquid crystal layer 1 16 in the pixel A (m ⁇ 1, n) are charged with electric charge, and black display is performed.
  • the switching noise causes the charging noise to increase. Acts in the direction of hastening. For this reason, even if the second precharge potential PV2 is set to 6.5 V, which is lower than the conventional 8 V, the situation that the original data signal potential is not charged before the sampling period ends is reduced.
  • the sampling switch 106 When this sampling signal falls, the sampling switch 106 is turned off. At this time, the voltage drop 2 described above is caused by the parasitic capacitance of the sampling switch 106, and the potential of the data signal line Sn is reduced as shown in FIG. Descend. For this reason, the voltage charged in the pixel A (m-1, n) is a low voltage based on the above-described voltage drop ⁇ 1 with respect to the original data signal potential. Further, the above-described voltage drop AV2 also occurs in the pixel. However, if the common electrode potential applied to the common electrode formed on the opposite substrate is lowered in consideration of these voltage drops, a voltage required for black display of the pixel can be applied to the liquid crystal layer of the pixel.
  • sampling switch 106 has a CMOS transistor structure, such a voltage drop can be prevented.
  • the horizontal scanning signal (m ⁇ l) goes low and the horizontal scanning signal (m) goes high. Thereby, the scanning signal line Hm shown in FIG. 4 is selected, and all the switching elements 114 connected to the horizontal scanning line Hm are turned on.
  • the precharge operation and the overnight write operation are performed in the same manner as the scanning signal line Hm-1.
  • both the precharge operation and the data write operation in the m-th horizontal scanning period are performed with a negative voltage. Therefore, the switch 190 in FIG. 1 is switched before the precharge operation.
  • Potential PV 2 (6.5 V) is supplied.
  • the first precharge potential PVI (1.5 V) from the second precharge power supply 174a is supplied to +4.
  • the potential of the data signal line Sn in the m-th horizontal scanning period is first changed to a first precharge potential PV 1 (1.5 V) from a potential for performing black display at the pixel A (m ⁇ 1, ⁇ ). Is done. Thereafter, as shown in the timing chart of FIG. 5, when the sampling switch 106 is turned on at the rise of the sampling signal, switching noise occurs, and is superimposed on the data signal line S ⁇ . You.
  • the switching noise generated when the sampling switch 106 is turned on acts in the direction of temporarily increasing the potential of the data signal line S ⁇ , and the precharge causes the potential of the data signal line S ⁇ to become black level. It acts in the direction opposite to the direction of discharging to the potential B l (IV).
  • the switching noise acts to delay the operation of discharging the data signal line Sn so as to have the black level potential B1.
  • the first precharge potential PV 1 is set to 1.5 V, and the difference from the black level potential Bl (1.5 V) is 0.5 V. During this time, the data signal line Sn can reach the black level potential B1.
  • the sampling switch 106 is an N-channel type transistor, the switching noise has an adverse effect when the data signal line Sn is discharged.
  • the most severe condition for discharging the data signal line Sn is when the data signal line Sn is set to the black level potential Bl (IV). Therefore, in the present embodiment, the first precharge potential PV1 is set to 1.5 V, which is close to the black level potential B1 (IV). If the first precharge potential PV1 is lower than the black level potential B1, the gate potential and the source potential of the sampling switch 106 become equal, which may cause a leak.
  • the first precharge potential PV 1 is preferably set to be always higher than the black level potential B 1 and to be as close as possible to the black level potential B 1 in consideration of variations in circuit constants and the like. .
  • the second precharge potential PV2 is a positive voltage drive. Is set to 6.5 V, which is lower than the white level potential W2 (7 V) at the time.
  • the data signal line Sn is always charged from the 6.5 V second precharge voltage PV2, so that the white level potential W2 This is because any data signal potential between (7 V) and the black level potential B 2 (1 IV) can be set.
  • the switching noise at the start of the sampling period acts to accelerate the charging. Therefore, even if the second precharge voltage PV2 is not set to 8 V as in the conventional case, the data signal line Sn can be charged to the original data signal potential within the sampling period in the present embodiment. Can be.
  • the setting of the second precharge potential PV2 is based on the difference between the first and second precharge potentials PV1 and PV2 in the present embodiment being the same as the conventional first and second precharge potentials PV1 and PV2.
  • Various values can be set as long as 4 V or more, which is the potential difference between PV2 and PV, can be secured. By doing so, the potential difference from the second precharge potential to the data signal potential in the range of the positive polarity data amplitude (W2 to B2) can be limited to the potential difference that can be charged and discharged during the sampling period. Because. In particular, when the image data is phase-expanded as described above, even if there is some variation in the sampling period for sampling each image data, each data line is connected to the data signal potential.
  • the above-described voltage drop AV1 occurs when the sampling switch 172 is turned off, and as shown in FIG. 5, the potential of the data signal line Sn is set to a voltage lower than the black level potential B1. Is as described above.
  • FIG. 6 shows a timing chart of Comparative Example 1 when the first and second precharge potentials PV 1 and PV 2 shown in FIG. 5 are set to 4 V and 8 V, respectively, in the related art.
  • the potential of the signal line Sn is discharged from the first precharge potential PV 1 (4 V) to the black level potential B 1 due to the adverse effect of switching noise.
  • the sunring period has ended. Therefore, the potential of the data signal line Sn becomes the potential Va which is not the data signal potential corresponding to the original black, and the pixel A It can be seen that (m, n) is charged with a charge that does not reflect the original data, degrading the image quality.
  • the first precharge potential PV 1 is set to 5.5 V
  • the second precharge potential PV2 is set to 10.5 V.
  • the first and second precharge potentials PV1 and PV2 are set asymmetrically with respect to the amplitude center Vc of the overnight signal potential.
  • the second precharge potential PV2 is set closer to the second potential (1 IV) than the amplitude center VC2 (9 V) of the data signal potential in positive voltage driving.
  • the first precharge potential PV1 is set to a value larger than the second potential W1 (5 V) of the voltage drive of the negative polarity.
  • pixel A (m, n) and pixel A (m, n + i) shown in Fig. 14 are driven by a positive voltage, and one end of the pixel has a voltage for halftone display. (8V) will be described.
  • a voltage higher than 8 V by AV3 is applied to the liquid crystal layer as shown in FIG. Will be The rising voltage AV3 is determined in the same manner as the above-described equation for determining the drop voltage AV1 in the N-channel type transistor, with the switching element 114a in FIG. 4 being a channel type transistor.
  • FIG. 7 differs from the conventional FIG. 8 in this respect.
  • the charge voltage of the pixel A (m, n) to which the positive polarity voltage is written is leaked to the signal line Sn by the light due to the TFT leaking by light.
  • the pixel A (m, n) is affected by the potential higher and lower than the charge voltage applied to the data signal line. In response to this, it fluctuates in both positive and negative directions. For this reason, if pixel A (m, n + i) is shifted in the direction to become black on the display, pixel A (m, n) is similarly shifted in the direction to become black on the display, and optical crosstalk is reduced. The effects are offset on the display. Similarly, if pixel A (m, n + i) is shifted in the direction of whitening on the display, pixel A (m, n) is also shifted in the direction of whitening on the display, and optical crosstalk is reduced.
  • the optical crosstalk can be made inconspicuous on display, and the image quality can be improved.
  • the liquid crystal layer is driven by a negative voltage, the result is as shown in FIG. 7, and no problem occurs as in the conventional case.
  • FIG. 9 shows a timing chart of the liquid crystal device of the present invention in a case where all the sampling switches 106 and the switching elements 114 in FIG. 1 are all formed by P-channel transistors.
  • FIG. 9 shows, similarly to FIG. 5, the pixel 120 of the pixel A (m ⁇ 1, n) shown in FIG. 4 and the pixel 120 of the pixel A (m, n) shown in FIG. , Are both displayed in black to explain the change in potential at the data signal line at that time.
  • the sampling switch 106 which is a P-channel transistor is turned on when the sampling signal is low
  • the switching element 1 16 which is a P-channel transistor is turned on when the scanning signal is low. It is turned on.
  • the first precharge potential PV1 is set to 5.5 V, for example
  • the second precharge potential PV2 is set to 10.5 V, for example.
  • the horizontal scanning signal (m-1) becomes low by inputting the m-th horizontal synchronizing signal SYNC, so that all the switching elements 114 connected to the scanning signal line Hm are turned on. Thereafter, the precharge signal PC becomes high, and all the precharge switches 172 are turned on. As a result, the odd-numbered data signal lines S l, S 3, -S n -1, Sn + 1, S n + 3... Are supplied with the first precharge potential PV 1 ( 5.5 V) is supplied. On the other hand, the even-numbered data signal lines S2, S4, -Sn, Sn + 2, Sn + 4,... Are connected to the second precharge potential PV2 ( 10.5 V) is supplied.
  • the pixel A (m ⁇ 2, n) performs black display before the precharge operation
  • the potential of the data signal line Sn shown in FIG. 9 becomes black level potential B 1 (1 V).
  • the overnight signal line Sn is precharged to the second precharge potential PV2 (10.5 V).
  • sampling of the data signal is started for all the pixels connected to the scanning signal line Hm-1 in FIG.
  • the black level potential B 2 (1 IV) on the positive polarity side is applied to the data signal line Sn via the sampling switch 106 during the sampling period. Is supplied. Then, a voltage is charged to the pixel A (m-1, n), and a black display is performed.
  • the sampling switch 106 is a P-channel transistor
  • the switching noise has an adverse effect when the data signal line Sn is charged.
  • the most severe condition for discharging the overnight signal line Sn is when the data signal line Sn is set to the black level potential B 2 (1 IV). Therefore, in the present embodiment, the second precharge potential PV2 is set to 10.5 V, which is close to the black level potential B2 (11 V). If the second precharge potential PV2 exceeds the black level potential B2, the gate potential and the source potential of the sampling switch 106 become equal, and there is a possibility that leakage occurs.
  • the second precharge potential PV2 may be set to be always lower than the black level potential B2 and to be as close as possible to the black level potential B2 in consideration of variations in circuit constants and the like. preferable.
  • the sampling switch 106 is turned off. At this time, a voltage rise occurs contrary to the voltage drop described for the switching element 114, and the data signal line is turned off as shown in FIG.
  • the potential of Sn rises.
  • the rising voltage ⁇ V4 is obtained by the same equation as the falling voltage ⁇ 2 described in the first embodiment. For this reason, the voltage charged in the liquid crystal layer of the pixel A (m-1, n) is higher than the original data signal potential by the above-mentioned rising voltage ⁇ 3 and AV 4.
  • the potential of the common electrode applied to the common electrode formed on the opposite substrate is set high in anticipation of the rising voltage, a voltage necessary for black display of the pixel can be applied to the liquid crystal layer. If the sampling switch 106 has a CMOS transistor structure, such a rise in voltage can be prevented.
  • the horizontal scanning signal (m-1) goes high and the horizontal scanning signal (m) goes low. Thereby, the scanning signal line Hm shown in FIG. 4 is selected, and all the switching elements 114 connected to the horizontal scanning line Hm are turned on.
  • the precharge operation and the data write operation are performed in the same manner as the scanning signal line Hm-1.
  • both the precharge operation and the data write operation this time are performed at positive voltage.
  • the switch 190 in FIG. 1 is switched.
  • the second precharge potential PV 2 from the second precharge power supply 174b is applied to the odd-numbered data signal lines S1, S3, -Sn-1, Sn + 1, Sn + 3,. (5.5 V) is supplied.
  • even-numbered The first precharge potential PV1 (10.5 V) from the first precharge power supply 174a is supplied to the signal lines S2, S4, -Sn, Sn + 1, Sn + 3,. .
  • the potential of the data signal line Sn is precharged to a first precharge potential PV 1 (5.5 V) from a potential for performing black display at the pixel A (m-1, n). Is done. Thereafter, as shown in the timing chart of FIG. 9, when the sampling switch 106 is turned on at the falling edge of the sampling signal, switching noise occurs, and the switching noise is generated on the data signal line Sn. Superimposed.
  • the switching noise generated when the sampling switch 106 is turned on acts in the direction of temporarily reducing the potential of the data signal line Sn, and the precharge causes the potential of the data signal line Sn to become black level potential. Acts in the same direction as the discharge direction to B l (IV).
  • the above-described switching noise acts to accelerate the discharge at which the data signal line Sn becomes the black level potential B1. Therefore, even if the first precharge potential PV1 is higher than the conventional 4 V, the potential of the data signal line Sn is set from the first precharge potential to the data signal potential within the sampling period. can do.
  • the first precharge potential P V1 is set to 5.5 V, which is higher than the white level potential W 1 (5 V) during negative voltage drive.
  • the white level potential Wl 5V
  • FIG. 10 shows the first and second precharge potentials PV 1 and PV 2 shown in FIG.
  • the timing chart of Comparative Example 1 when the conventional 4 V and 8 V are set is shown.
  • the potential of the data signal line Sn is charged from the first precharge potential PV 1 (4 V) to the black level potential B 1 due to the adverse effect of switching noise.
  • the potential of the data signal line Sn becomes the potential Vb which is not the data signal potential corresponding to the original black, and the pixel A (m-1, n) is charged with a charge that does not reflect the original data. It can be seen that the image quality deteriorates.
  • An electronic device including the liquid crystal device according to each of the above-described embodiments includes a display information output source 100000, a display information processing circuit 1002, a display driving circuit 1004 illustrated in FIG. It is configured to include a display panel 106 such as a liquid crystal panel, a clock generation circuit 1008, and a power supply circuit 110.10.
  • the display information output source 100 00 includes a memory such as a ROM and a RAM, a tuning circuit that tunes and outputs a television signal, and the like, and a clock generation circuit 10 corresponding to the timing circuit block 20 described above. Outputs display information such as video signals based on the clock from 08.
  • the display information processing circuit 1002 corresponds to the data processing circuit block 30 in each of the above-described embodiments, and processes and outputs display information based on a clock from the clock generation circuit 1008.
  • the display information processing circuit 102 can include a gamma correction circuit, a clamp circuit, and the like, in addition to the above-described amplification / polarity inversion circuit, phase expansion circuit, rotation circuit, and the like.
  • the drive circuit 104 includes the above-described scan-side drive circuit 102, data-side drive circuit 104, and precharge drive circuit 160, or data-side drive circuit 104, and includes a pixel region. 1006 is driven for display.
  • the power supply circuit 110 supplies power to each of the circuits described above.
  • the electronic devices having such a configuration include a liquid crystal projector shown in FIG. 19, a personal computer (PC) and an engineering 'workstation (EWS)', a pager or a mobile phone for multimedia shown in FIG.
  • Video processor with a processor, television, viewfinder or monitor Examples include a coder, an electronic organizer, an electronic desk calculator, a car navigation device, a POS terminal, and a device equipped with a touch panel.
  • the liquid crystal projector shown in FIG. 19 is a projection type projector using a transmissive liquid crystal panel as a light valve, and uses, for example, an optical system of a prism combining method.
  • the projection light emitted from the lamp unit 1102 of the white light source is provided inside the light guide 1104 by a plurality of mirrors 1106 and 2 sheets.
  • the three dichroic mirrors 111, 108, R, G, and B separate the three primary colors, and each of the three active-matrix-type LCD panels that displays an image of each color.
  • the light modulated by 1110B is incident on the Die-Croitsk prism 1112 from three directions.
  • the personal computer 1200 shown in FIG. 20 has a main body 1204 provided with a keyboard 122 and a liquid crystal display screen 1206.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention.
  • the present invention is not limited to being applied to the driving of the above-mentioned various liquid crystal panels, but is also applicable to an image display device using electoran luminescence, a plasma display device, a CRT, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)

Abstract

A liquid crystal device which can reduce the deterioration of the picture quality caused by optical crosstalk. Data signals supplied to a data signal line (Sn) change within the range of the negative data voltage amplitude between a first potential (B1) and a second potential (W2) when a negative voltage is applied across a liquid crystal layer, and change within the range of the positive data voltage amplitude between a third potential (W2) and a fourth potential (B2) when a positive voltage is applied across the liquid crystal layer. The data signal line (Sn) is precharged with a negative precharging potential (PV1) or a positive precharging potential (PV2) before the data signals are supplied to the line (Sn). The positive and the negative precharging potentials are asymmetrically set with respect to the center potential (VC) of the data voltage amplitude between the first and the fourth potentials. In addition, the negative precharging potential (PC1) is set closed to the first potential (B1) than the center potential (VC1) of the positive data voltage amplitude.

Description

明 細 液晶装置及びその駆動方法、 並びにそれを用いた投写型表示装置及び電子機器  Patent application title: Liquid crystal device and driving method thereof, and projection display device and electronic apparatus using the same
[技術分野] ― [Technical field] -
本発明は、 液晶装置及びその駆動方法、 並びにそれを用いた投写型表示装置及 び電子機器に関する。  The present invention relates to a liquid crystal device and a driving method thereof, and a projection display device and an electronic apparatus using the same.
[背景技術] [Background technology]
例えば、 アクティブマトリクス型の液晶装置では、 一走査信号線に複数接続さ れた T F T (薄膜トランジスタ) 等のスイッチング素子を介して、 各画素の液晶 層にデータを書き込む動作を点順次駆動により実施している。  For example, in an active matrix type liquid crystal device, an operation of writing data to a liquid crystal layer of each pixel through a switching element such as a TFT (thin film transistor) connected to one scanning signal line is performed by dot sequential driving. I have.
また、 液晶にかかる電圧の偏りによる表示むらをなく し、 液晶にかかる直流電 流による液晶の劣化などを防ぐために、 液晶に印加される電圧の極性を所定の夕 ィミングで反転させる極性反転駆動が行われている。  In addition, in order to eliminate display unevenness due to bias of the voltage applied to the liquid crystal and to prevent deterioration of the liquid crystal due to the DC current applied to the liquid crystal, a polarity inversion drive for inverting the polarity of the voltage applied to the liquid crystal at a predetermined timing is performed. Have been done.
極性反転駆動とは、 液晶の一端に、 液晶の他端に印加される電位を基準として 異なる極性 (正または負の極性) の電圧を印加する駆動である。 尚、 本明細書に おける 「極性」 とは、 液晶の両端に印加される電圧の極性を意味する。 極性反転 駆動するには、 T F Tを用いたアクティブマトリクス型では、 液晶を挟んで画素 電極と対向する共通電極に印加する電位を変化させるか、 あるいは、 画素電極に 印加される画像データ信号の電圧振幅の中間電位を基準として画像デ一夕信号の 電位レベルを変化させている。  The polarity inversion drive is a drive in which a voltage of a different polarity (positive or negative polarity) is applied to one end of the liquid crystal with reference to a potential applied to the other end of the liquid crystal. It should be noted that “polarity” in the present specification means the polarity of a voltage applied to both ends of the liquid crystal. In order to drive the polarity inversion, in an active matrix type using a TFT, the potential applied to the common electrode facing the pixel electrode with the liquid crystal interposed is changed, or the voltage amplitude of the image data signal applied to the pixel electrode The potential level of the image data signal is changed with reference to the intermediate potential of.
ここで、 前記極性反転においては、 走査信号線を選択するごとに極性反転を行 ういわゆるライン毎の反転、 あるいはこれに、 一走査信号線に接続された画素毎 に極性反転を行ういわゆるドッ ト毎の反転を組み合わせた極性反転駆動方式が知 られている。  Here, in the polarity inversion, a so-called line-by-line inversion in which the polarity is inverted each time a scanning signal line is selected, or a so-called dot in which the polarity is inverted for each pixel connected to one scanning signal line A polarity inversion driving method in which each inversion is combined is known.
図 1 1、 図 1 2に、 極性反転駆動方式について説明するための模式図を示す。 従来のアクティブマトリクス型の液晶装置では、 点順次駆動でかつ画素毎 (ライ ン毎も含む) の極性反転駆動方式を採用し、 また、 データ信号線のプリチャージ は直前のブランキング期間に一括して行う方式を採用している。 FIGS. 11 and 12 are schematic diagrams for explaining the polarity inversion driving method. In a conventional active matrix type liquid crystal device, dot-sequential driving and pixel-by-pixel In addition, a method of precharging data signal lines in a batch during the immediately preceding blanking period is adopted.
図 1 1、 図 1 2において、 S 1〜S 4はデータ信号線を示し、 H 1〜H 4は走 査信号線を示している。 各画素の 「十」 , 「―」 は、 該画素の液晶に印加される 電圧およびその直前にデータ信号線に供給されるプリチヤ一ジ電位め極性を示し ている。 図 1 1は Nフィールドでの各画素の電圧極性を、 図 1 2は N + 1フィ一 ルドでの各画素の電圧極性を示している。 画素毎及びライン毎の極性反転駆動に おいては、 同一データ信号線と接続された隣合う画素毎 (図 1 1 , 図 1 2で縦方 向にて隣接する画素毎) に、 異なる極性にて電圧が印加されるようになっている。 この場合、 同一データ信号線に接続され、 かつ、 異なる走査信号線に接続され た隣り合う 2つの画素に、 表示上で例えば同じ黒データを書き込む場合でも、 極 性反転駆動のために各々の黒データの信号レベルは異なっている。 このとき、 デ 一夕信号線自体が寄生容量を持っため、 データ信号線の電位を、 正極性側の黒レ ベル電位から負極性側の黒レベル電位に変化させるのに時間を要する。  In FIGS. 11 and 12, S 1 to S 4 indicate data signal lines, and H 1 to H 4 indicate scan signal lines. "10" and "-" of each pixel indicate the voltage applied to the liquid crystal of the pixel and the polarity of the precharge potential supplied to the data signal line immediately before. FIG. 11 shows the voltage polarity of each pixel in the N field, and FIG. 12 shows the voltage polarity of each pixel in the N + 1 field. In the polarity inversion driving for each pixel and each line, different polarities are set for each adjacent pixel connected to the same data signal line (for each vertically adjacent pixel in Figs. 11 and 12). Voltage is applied. In this case, even if, for example, the same black data is written on two adjacent pixels connected to the same data signal line and connected to different scanning signal lines, each black pixel is used for polarity inversion driving. The signal levels of the data are different. At this time, since the signal line itself has a parasitic capacitance, it takes time to change the potential of the data signal line from the black level potential on the positive side to the black level potential on the negative side.
図 1 3、 図 1 4を参照して、 同一のデータ信号線に接続された隣り合う 2つの 画素に、 それぞれ同じ黒を書き込む動作を場合のデータ信号線の電位の変化につ いて説明する。  With reference to FIGS. 13 and 14, a description will be given of a change in the potential of the data signal line in an operation of writing the same black to two adjacent pixels connected to the same data signal line.
図 1 3において、 C 1 0はデ一夕信号線 S 1に寄生する容量 (つまり、 データ 信号線 S 1の等価容量) を示す。 また、 図 1 3の左側に記載の 「―」 , 「十」 は、 画素 2 2 , 2 4に書き込まれる電圧の極性を示している。 なお、 画素 2 2, 2 4 は共に 「黒」 を表示するものとする。 画素はスイッチング素子を介してデ一夕信 号が供給される蓄積容量及び画素電極と、 画素電極と共通電極の間で電圧印加さ れる液晶層とからなる。  In FIG. 13, C 10 indicates a parasitic capacitance of the data signal line S 1 (that is, an equivalent capacitance of the data signal line S 1). “−” And “ten” on the left side of FIG. 13 indicate the polarity of the voltage written to the pixels 22 and 24. Note that pixels 22 and 24 both display “black”. Each pixel includes a storage capacitor and a pixel electrode to which a data signal is supplied via a switching element, and a liquid crystal layer to which a voltage is applied between the pixel electrode and the common electrode.
図 1 4に示すように、 水平走査期間 T 1において、 画素 2 2の一端に黒レベル 電位 B 1を印加して黒表示し、 次の水平走査期間 T 2において、 画素 2 4の一端 に黒レベル電位 B 2を印加して同様に黒表示する。 この場合、 画素 2 2 , 2 4の 他端には、 各黒レベル電位 B l , B 2間に設定された共通電位が印加されている ため、 画素 2 2には負極性の電圧が印加され、 画素 2 4には正極性の電圧が印加 され、 同じ黒表示でも液晶への印加電圧の極性が反転されている。 しかも、 上記 のようなノーマリホワイ 卜の表示では、 それそれの黒レベル電位 B 1と B 2との 電位差が、 他の階調表示の場合と比較して最も大きくなる。 よって、 プリチヤ一 ジを行わなければ、 画像デ一夕信号自体によってデ一夕信号線 S 1の寄生容量 C 10を充電 (あるいは放電) して、 図中 「R 1」 で示すようにデ一夕信号線の電 位を黒レベル電位 B 1から B 2へと変化させなければならない。 As shown in FIG. 14, in the horizontal scanning period T1, a black level potential B1 is applied to one end of the pixel 22 to display black, and in the next horizontal scanning period T2, black is applied to one end of the pixel 24. Similarly, black display is performed by applying the level potential B2. In this case, since the common potential set between the black level potentials Bl and B2 is applied to the other ends of the pixels 22 and 24, a negative voltage is applied to the pixel 22. A positive voltage is applied to pixel 24 Thus, even in the same black display, the polarity of the voltage applied to the liquid crystal is inverted. Moreover, in the normally white display as described above, the potential difference between the black level potentials B1 and B2 is the largest as compared with the case of other gray scale displays. Therefore, unless pre-clearing is performed, the parasitic capacitance C10 of the data signal line S1 is charged (or discharged) by the image data signal itself, and the data is discharged as shown by "R1" in the figure. The potential of the evening signal line must be changed from black level potential B1 to B2.
これに対し、 データ信号の供給に先立ち、 デ一夕信号の極性と同じ極性のプリ チャージを行っておけば、 つまり、 水平走査期間 T 2の前にプリチャージを行つ てデ一夕信号線 S 1を高電位の第 2のプリチャージ電位 P V 2に保持しておけば、 図中 「R 2」 で示すように、 データ信号線の電位を第 2のプリチャージ電位 PV 2から黒レベル電位 B 2へと変化させるだけで良く、 デ一夕信号線 S 1の寄生容 量 C 10の充電 (放電) の量が小さくて良い。 ゆえに、 液晶の駆動が高速化され る。  On the other hand, if the precharge of the same polarity as that of the data signal is performed before the supply of the data signal, the precharge is performed before the horizontal scanning period T2, and the data signal line is supplied. If S1 is held at the high second precharge potential PV2, the potential of the data signal line is changed from the second precharge potential PV2 to the black level potential as indicated by "R2" in the figure. It only needs to be changed to B2, and the amount of charge (discharge) of the parasitic capacitance C10 of the data signal line S1 can be small. Therefore, the driving speed of the liquid crystal is increased.
ところで、 従来の液晶装置においては、 黒レベル電位 B l , B 2をそれぞれ 1 V, 1 I Vとし、 白レベル電位 Wl , W2をそれそれ 5V, 7Vとし、 プリチヤ ージ電位 PV 1 , PV 2をそれそれ 4V, 8Vに設定していた。 すなわち、 プリ チャージ電位 PV 1, PV2は、 ビデオ振幅である黒レベル電位 B 1 , B 2間の 中心電位 (6V) に対して対称に設定していた。  By the way, in the conventional liquid crystal device, the black level potentials Bl and B2 are set to 1 V and 1 IV, the white level potentials Wl and W2 are set to 5 V and 7 V, respectively, and the precharge potentials PV 1 and PV 2 are set. Each was set to 4V, 8V. That is, the precharge potentials PV 1 and PV 2 are set symmetrically with respect to the center potential (6 V) between the black level potentials B 1 and B 2 which is the video amplitude.
この 4V, 8Vは、 中間調表示レベルの時に液晶の一端にスイッチング素子を 介して印加される電圧であり、 液晶印加電圧 (V) と液晶装置の透過率 (T) と の関係を示す T一 V力一ブが最も急峻となる時の電位レベルに相当している。 換 言すれば、 この 4V, 8Vは、 液晶への印加電圧の変化に対する透過率変化が最 も大きい時の電位レベルに相当している。 プリチャージ電位 PV 1 , PV2をこ のように設定すると、 プリチャージ電位から中間調表示のための電位になるまで データ信号線を短時間で充放電でき、 サンプリング期間が短くなつても正確な中 間調表示が可能となる。  These 4V and 8V are voltages applied to one end of the liquid crystal via the switching element at the halftone display level, and T1 which indicates the relationship between the liquid crystal applied voltage (V) and the transmittance (T) of the liquid crystal device. This corresponds to the potential level when the V force is the steepest. In other words, 4V and 8V correspond to the potential level when the change in transmittance with respect to the change in the voltage applied to the liquid crystal is the largest. By setting the precharge potentials PV1 and PV2 in this way, the data signal line can be charged and discharged in a short time from the precharge potential to the potential for halftone display, and accurate data can be obtained even if the sampling period is short. The halftone display can be performed.
ところで、 光源光を用いて液晶表示を行う液晶装置例えばプロジェクタなどの 投写型液晶装置では、 光クロス トークが問題となっている。 光クロストークとは、 基板上に形成されたスイッチング素子例えば T F T (薄膜トランジスタ) に光に よってキヤリァが発生して、 その T F Τに接続された画素にて蓄積されていた電 荷がリークし、 その T F Τに接続されたソース線 (データ信号線) の電位の影響 を受けて画素に蓄積された電荷が変動する現象である。 この問題自体は公知であ るが、 本発明者はこの光クロストークとプリチャージ電位との関係を解明した。 このことを、 図 1 5〜図 1 7を参照して説明する。 In a liquid crystal device that performs liquid crystal display using light from a light source, for example, a projection type liquid crystal device such as a projector, optical crosstalk is a problem. What is optical crosstalk? A carrier is generated by light in a switching element formed on the substrate, for example, a TFT (thin film transistor), and a charge stored in a pixel connected to the TF リ ー ク leaks and is connected to the TF Τ. This is a phenomenon in which the charge stored in the pixel fluctuates due to the influence of the potential of the source line (data signal line). Although this problem is known per se, the present inventors have clarified the relationship between the optical crosstalk and the precharge potential. This will be described with reference to FIGS.
図 1 5は、 中央領域 Αを黒表示し、 その周囲領域 Bを中間調表示した画面を示 している。 データ信号線 Snは、 中間調表示される画素のみと接続され、 データ 信号線 S n+ iには中間調表示及び黒表示される画素に接続されている。 また、 中間調表示領域 Bの画素のうち、 デ一夕信号線 S nに接続された画素を A (m, n) とし、 デ一夕信号線 S n+ iに接続された画素を A (m, n+ i) とする。 図 1 6は、 画素 A (m, n) 及び画素 A (m, n+ i) を共に正極性の電圧に て駆動するときの電荷のリークを説明するための概略説明図である。 図 16にお いて、 画素 A (m, n) 及び画素 A (m, n+ i) の一端に 8 Vの電圧を、 デー 夕信号線 Sn, S n+ iを介して供給しょうとすると、 各画素の液晶層には実際 には 8 Vよりも AV 1だけ低い電圧が充電される。 その理由は、 スイッチング素 子を Νチャンネル型トランジスタとすると、 このトランジス夕のゲートに高電圧 を印加してオンさせ、 画素に充電する際に、 そのトランジスタのゲート一ドレイ ン (画素電極側電極) 間の寄生容量に充電された電荷がトランジスタがオフにな つた際に蓄積容量及び画素電極側に流れ込んで電圧降下 AV 1が生ずるからであ る。  Fig. 15 shows a screen in which the central area Α is displayed in black and the surrounding area B is displayed in halftone. The data signal line Sn is connected to only pixels that display halftone, and the data signal line Sn + i is connected to pixels that display halftone and black. Also, of the pixels in the halftone display area B, the pixel connected to the data signal line S n is A (m, n), and the pixel connected to the data signal line S n + i is A (m , n + i). FIG. 16 is a schematic diagram for explaining charge leakage when both the pixel A (m, n) and the pixel A (m, n + i) are driven at a positive voltage. In FIG. 16, when a voltage of 8 V is supplied to one end of pixel A (m, n) and pixel A (m, n + i) via the data signal line Sn, Sn + i, each pixel is The liquid crystal layer is actually charged with a voltage lower than 8 V by AV1. The reason is that if the switching element is a Ν-channel transistor, a high voltage is applied to the gate of the transistor to turn it on, and when charging the pixel, the gate-drain of the transistor (pixel electrode side electrode) This is because, when the transistor is turned off, the charge charged in the parasitic capacitance flows into the storage capacitor and the pixel electrode side, causing a voltage drop AV1.
他の理由は、 各データ信号線 Sn, S n+ iに接続されたサンプリングスイツ チを Nチャンネル型トランジスタとすると、 上記と同様の作用により、 そのトラ ンジス夕のゲート—ドレイン (デ一夕線側電極) 間の寄生容量に起因した電圧降 下 AV 2が生ずるからである。  Another reason is that if the sampling switch connected to each data signal line Sn, Sn + i is an N-channel transistor, the gate-drain (data line side) of the transistor will be operated in the same manner as above. This is because a voltage drop AV2 occurs due to the parasitic capacitance between the electrodes.
スィツチング素子及びサンプリングスィツチの双方を Nチヤンネル型トランジ ス夕とすると、 上記の 2種の電圧降下により、 液晶層に充電される電圧はサンプ リングされる前のデータ電圧より低下している。 電圧降下 は 二 1 + △ V 2により近似される。 ただし、 以下の説明では、 スイッチング素子での電圧 降下のみを考慮して説明する。 Assuming that both the switching element and the sampling switch are N-channel type transistors, the voltage charged in the liquid crystal layer is lower than the data voltage before sampling due to the above two types of voltage drops. Voltage drop is 2 1 + Approximated by V2. However, in the following description, only the voltage drop in the switching element will be considered.
ここで、 スィツチング素子を介して 8 Vより低いチヤ一ジ電圧が印加された画 素 A (m, n) は、 チャージ電圧よりも低いまたは高いプリチャージ電位及びデ 一夕信号電位である 4 Vまたは 8 Vが印加されるデータ信号線 S nの電位の影響 を受けて、 スイッチング素子においてリークが生ずる。 また、 スイッチング素子 を介して 8 Vより低いチャージ電圧が印加された画素 A (m, n+ i ) では、 チ ャ一ジ電圧より低いまたは高い黒レベルデ一夕信号電位である 1 Vまたは 1 1 V が印加されるデータ信号線 S n + iの電位の影響を受けて、 スィツチング素子に おいてリークが生ずる。 すなわち、 両画素 A (m, n) 、 A (m, n+ i ) は、 正極性の中間調表示の電圧がチャージされている場合には、 このチャージ電圧よ り電位の高い及び低いプリチャージ電位、 またはこれより高い及び低いデ一夕信 号電位が印加されるデータ信号線との間でリークが生じ、 画素に充電された電荷 がスィツチング素子を介して交互に充電 ·放電されるので、 結果としてデータ信 号線の電位の影響を受けにくい。  Here, the pixel A (m, n) to which a charging voltage lower than 8 V is applied via the switching element has a precharge potential lower than or higher than the charging voltage and a data signal potential of 4 V. Or, leakage occurs in the switching element under the influence of the potential of the data signal line Sn to which 8 V is applied. In pixel A (m, n + i) to which a charge voltage lower than 8 V is applied via the switching element, the black level data signal voltage 1 V or 11 V which is lower or higher than the charge voltage is applied. Is applied to the data signal line S n + i, and leakage occurs in the switching element. That is, both pixels A (m, n) and A (m, n + i) have higher and lower precharge potentials than the charge voltage when the positive halftone display voltage is charged. Or a data signal line to which a higher and lower data signal potential is applied, and the charge charged in the pixel is alternately charged and discharged through the switching element, resulting in a result. It is hardly affected by the potential of the data signal line.
図 17は、 画素 A (m, n) 及び画素 A (m, n+ i) に負極性の電圧を充電 したときの電荷のリークを説明するための概略説明図である。 図 1 7において、 画素 A (m, n) 及び画素 A (m, n+ i) に 4 Vの電圧をデータ信号線 S n, Sn+ iを介して供給しょうとすると、 各画素の液晶層には実際には 4 Vよりも 低い Δν 1だけ低い電圧が印加される。 その理由は上記と同じである。  FIG. 17 is a schematic diagram for explaining charge leakage when the pixel A (m, n) and the pixel A (m, n + i) are charged with a negative voltage. In FIG. 17, when it is attempted to supply a voltage of 4 V to the pixel A (m, n) and the pixel A (m, n + i) via the data signal lines Sn, Sn + i, the liquid crystal layer of each pixel is In practice, a voltage lower than 4 V by Δν 1 is applied. The reason is the same as above.
ここで、 4 Vより低いチャージ電圧に充電された画素 A (m, n) は、 チヤ一 ジ電圧より高いプリチャージ電位及びデータ信号電位である 4 Vまたは 8 Vが印 加されるデータ信号線 S nの電位の影響を受け、 スィツチング素子においてリー クが生ずる。 従って、 負極性電圧駆動の場合の画素 A (m, n) は、 常にチヤ一 ジ電圧よりも高い電位となっているデータ信号線との間でリークが生じ、 データ 信号線から電荷がチャージされて常に正方向にチャージ電圧が変動してしまう。 一方、 4 Vより低いチャージ電圧に充電された画素 A (m, n+ i) は、 それ よりも低いまたは高い黒レベルデータ信号電位である 1 Vまたは 1 1 Vが印加さ れるデ一夕信号線 S n+ iの電位の影響を受けて、 スィツチング素子にてリーク が生ずる。 従って、 画素 A (m, n+ i) では、 負極性の電圧がチャージされて いる場合には、 充電されていたチャージ電圧が正負の双方に交互に変動すること になり、 結果としてデ一夕信号線の電位の影響を受けにくい。 Here, the pixel A (m, n) charged to a charge voltage lower than 4 V is a data signal line to which a precharge potential higher than the charge voltage and a data signal potential of 4 V or 8 V are applied. Leakage occurs in the switching element under the influence of the potential of Sn. Therefore, in the case of the pixel A (m, n) in the case of the negative voltage driving, a leak always occurs between the pixel A (m, n) and the data signal line having a potential higher than the charge voltage, and charges are charged from the data signal line. Therefore, the charge voltage always fluctuates in the positive direction. On the other hand, the pixel A (m, n + i) charged to a charge voltage lower than 4 V receives the lower or higher black level data signal potential of 1 V or 11 V. Under the influence of the potential of the data line Sn + i, leakage occurs in the switching element. Therefore, in the pixel A (m, n + i), when the negative voltage is charged, the charged voltage fluctuates in both positive and negative directions. Less susceptible to line potential.
本発明者は、 以上のことから、 光クロストークによる画質の劣化が、 特に図 1 7で説明した負極性電圧印加時に顕著であると解明した。 その理由は、 負極性画 電圧印加時には画素 A (m, n) に充電された電圧が常に正極性方向つまり表示 上で白側に一方的に変動するため、 本来、 同一の階調表示がなされるべき画素 A (m, n) と画素 A (m, n+ i) との間で表示階調差が生じ、 両者の階調差が 大きくなるからである。  From the above, the present inventors have clarified that the deterioration of the image quality due to the optical crosstalk is particularly remarkable when the negative voltage described in FIG. 17 is applied. The reason is that the voltage charged to the pixel A (m, n) always changes unidirectionally to the positive polarity direction, that is, to the white side on the display when the negative polarity image voltage is applied. This is because a display gradation difference occurs between the pixel A (m, n) to be formed and the pixel A (m, n + i), and the gradation difference between the two becomes large.
なお、 スィツチング素子を Pチャンネル型トランジスタにて形成した場合には、 トランジスタの寄生容量に起因するシフ ト 1は、 画素に充電されたチャージ 電圧を AV 1分電圧上昇させることになる。 つまり、 図 1 6、 図 1 7において電 圧 Vcを基準とした電位関係を逆転させ、 電圧 Vcの上側を負極性、 下側を正極 性とした電位関係になるので、 図 1 6が負極性電圧駆動時、 図 17が正極性電圧 駆動時となる。 このような場合は、 図 1 7の画素 A (m, n) において、 チヤ一 ジ電圧が正極性の場合 (図 17での下側に相当) 上記したのと同様の現象を受け てデ一夕信号線に電荷が流れだし画素 A (m, n) のチャージ電圧が一方的に負 方向 (図の上側に相当) へ変動することになつて、 正極性電圧駆動時に光クロス トークの起因した画質の劣化が目立つことが判明した。  When the switching element is formed of a P-channel transistor, the shift 1 caused by the parasitic capacitance of the transistor increases the charge voltage charged to the pixel by one AV. In other words, the potential relationship based on the voltage Vc in FIGS. 16 and 17 is reversed, and the potential relationship is such that the upper side of the voltage Vc is negative and the lower side is the positive polarity. At the time of voltage driving, FIG. 17 shows the case of positive voltage driving. In such a case, the pixel A (m, n) in FIG. 17 has a positive charge voltage (corresponding to the lower side in FIG. 17). Electric charge starts flowing in the evening signal line, and the charge voltage of pixel A (m, n) unilaterally fluctuates in the negative direction (corresponding to the upper side of the figure), causing optical crosstalk during positive voltage drive. It was found that the deterioration of the image quality was noticeable.
さらに他の課題について説明すると、 近年では高精細な液晶表示が求められ、 一走査線上の画素数が増加するにつれ、 データ信号のサンプリング信号が高周波 数化される。 このとき、 高周波数のサンプリング信号にて駆動されるサンプリン グスィツチによりスィツチングノイズが生じ、 これがデータ信号線に重畳される。 サンプリング期間が短いと、 スィヅチングノイズの影響がなくなる前にサンプリ ングが終了するため、 本来のデ一夕を液晶層に印加することができなくなる。 本発明の目的は、 光クロストークに起因した画質の劣化を低減することができ る液晶装置及び液晶表示方法並びにそれを用いた投写型表示装置及び電子機器を 提供することにある。 To explain another problem, in recent years, a high-definition liquid crystal display is required, and as the number of pixels on one scanning line increases, the frequency of sampling signals of data signals increases. At this time, switching noise is generated by the sampling switch driven by the high frequency sampling signal, and is superimposed on the data signal line. If the sampling period is short, the sampling ends before the influence of the switching noise is eliminated, so that the original data cannot be applied to the liquid crystal layer. An object of the present invention is to provide a liquid crystal device and a liquid crystal display method capable of reducing image quality deterioration caused by optical crosstalk, and a projection display device and an electronic device using the same. To provide.
本発明の他の目的は、 データサンプリング信号の高周波数化に伴う、 デ一夕信 号の書き込み不良を抑えることにより、 本来のデータ信号に忠実な電圧を液晶層 に供給して画質を向上することができる液晶装置及び液晶表示方法並びにそれを 用いた投写型表示装置及び電子機器を提供することにある。 ―  Another object of the present invention is to improve the image quality by supplying a voltage faithful to the original data signal to the liquid crystal layer by suppressing a write failure of the data signal due to a higher frequency of the data sampling signal. It is an object of the present invention to provide a liquid crystal device, a liquid crystal display method, and a projection display device and an electronic device using the same. ―
[発明の開示] [Disclosure of the Invention]
本発明の一態様によれば、  According to one aspect of the present invention,
複数のデータ信号線と複数の走査信号線の交差により形成される複数の画素の 各々に、 液晶層に電気的に接続されたスイ ッチング素子を配置して成り、 前記液 晶層に印加される電圧の極性を所定期間毎に反転させて駆動する液晶装置におい て、  A switching element electrically connected to a liquid crystal layer is arranged in each of a plurality of pixels formed by intersections of a plurality of data signal lines and a plurality of scanning signal lines, and is applied to the liquid crystal layer. In a liquid crystal device driven by inverting the polarity of the voltage every predetermined period,
前記複数の走査信号線の少なくとも 1本を選択する走査信号を、 前記複数の走 査信号線に供給する走査側駆動手段と、  Scanning-side driving means for supplying a scanning signal for selecting at least one of the plurality of scanning signal lines to the plurality of scanning signal lines;
前記複数のデータ信号線の各々に前記データ信号を供給するためのデ一夕側駆 動手段と、  A data driver for supplying the data signal to each of the plurality of data signal lines;
前記複数のデータ信号線の各々に前記データ信号を供給するのに先立って、 当 該デ一夕信号に基づいて前記画素の液晶層に印加される電圧の極性と同一極性の 正極性又は負極性プリチヤージ電位にて、 前記複数のデータ信号線の各々をプリ チャージする複数のプリチャージ用スィヅチング手段と、 を有し、  Prior to supplying the data signal to each of the plurality of data signal lines, a positive polarity or a negative polarity having the same polarity as the polarity of the voltage applied to the liquid crystal layer of the pixel based on the data signal. A plurality of precharge switching means for precharging each of the plurality of data signal lines at a precharge potential;
前記データ信号は、 前記液晶層に負極性の電圧を印加する際には第 1電位とそ れょりも高い第 2電位との間の負極性データ電圧振幅の範囲で変化し、 前記液晶 層に正極性の電圧を印加する際には前記第 2電位よりも高い第 3電位とそれより も高い第 4電位との間の正極性データ電圧振幅の範囲で変化し、  When applying a negative voltage to the liquid crystal layer, the data signal changes within a range of a negative data voltage amplitude between a first potential and a second potential that is higher than the first potential. When a positive voltage is applied to the positive electrode, the voltage changes within a range of a positive data voltage amplitude between a third potential higher than the second potential and a fourth potential higher than the third potential,
前記正極性及び負極性プリチャージ電位は、 前記第 1, 第 4電位間のデ一夕電 圧振幅の中心電位に対して非対称に設定され、 かつ、 前記負極性プリチャージ電 位を、 前記負極性データ電圧振幅の中心電位よりも、 前記第 1電位に近づけて設 定したことを特徴とする。 本発明によれば、 中間調表示のための電位よりも第 1電位に近づけて設定され た負極性のプリチャージ電位により、 デ一夕信号線がプリチャージされる。 すな わち、 本発明では、 データ信号線に接続された画素の階調レベルとは関係なく、 周期的に第 1電位に近いプリチャージ電位をデータ信号線に印加する。 従って、 画素に中間階調表示の負極性のチャージ電圧が充電された場合に、 画素のスィッ チング素子に光クロストークが生じたとしても、 その画素が接続されるデ一夕信 号線には、 充電されたチャージ電圧よりも低い負極性プリチャージ電位が周期的 に印加され、 さらにチャージ電圧よりも高い正極性プリチヤ一ジ電位及びデータ 信号電位が周期的に印加されるので、 図 1 7にて説明したように正極性側に一方 的に電位変動してしまうことがなく、 スィツチング素子のリークによる画質の劣 化が低減される。 The positive and negative precharge potentials are set asymmetrically with respect to a central potential of a voltage amplitude between the first and fourth potentials, and the negative precharge potential is set to The characteristic data voltage is set so as to be closer to the first potential than the center potential of the characteristic data voltage amplitude. According to the present invention, the negative signal line is precharged by the negative precharge potential set closer to the first potential than the potential for halftone display. That is, in the present invention, a precharge potential close to the first potential is periodically applied to the data signal line irrespective of the gradation level of the pixel connected to the data signal line. Therefore, even if optical crosstalk occurs in the switching element of a pixel when the pixel is charged with the negative charge voltage of the halftone display, the data signal line to which the pixel is connected is: The negative precharge potential lower than the charged charge voltage is applied periodically, and the positive precharge potential and data signal potential higher than the charge voltage are applied periodically. As described above, the potential does not unilaterally change to the positive polarity side, and the deterioration of the image quality due to the leakage of the switching element is reduced.
より具体的には、 本発明は複数のスイッチング素子の各々が、 Nチャンネル型 トランジスタにより形成された場合に適用できる。 例えば図 1 7のプリチャージ 電位 P V Iを、 図 2の通り第 1電位 (B 1 ) に近い値に変更すれば、 画素 A ( m , η ) 及び画素 A ( m , n + i ) のスイッチング素子が光によりリークしたとし ても、 その画素が接続されたデータ信号線 S n, S n + iは共に、 その後、 第 1 電位 (図 2の黒レベル電位 B 1 ) に近い電位の負極性プリチャージ電位と正極性 プリチャージ電位とが周期的に印加される。 従って、 負極性の中間階調表示の電 圧を画素に印加する場合であっても、 両画素 A ( m , n ) 、 A ( m, n + i ) は、 図 1 7とは異なり、 その電圧に対して正及び負の電圧が交互に印加されるデ一夕 信号線との間でリークが生じる。 このため、 光クロストークに起因した画質の劣 化を低減できる。  More specifically, the present invention can be applied to a case where each of a plurality of switching elements is formed by an N-channel transistor. For example, if the precharge potential PVI in FIG. 17 is changed to a value close to the first potential (B 1) as shown in FIG. 2, the switching elements of the pixel A (m, η) and the pixel A (m, n + i) If the pixel leaks due to light, the data signal lines S n and S n + i to which the pixel is connected are both negative polarity pre-charges having a potential close to the first potential (black level potential B 1 in FIG. 2). A charge potential and a positive precharge potential are applied periodically. Therefore, even when the voltage of the halftone display of negative polarity is applied to the pixel, both pixels A (m, n) and A (m, n + i) are different from FIG. Leakage occurs between the data line and the data line to which positive and negative voltages are alternately applied. For this reason, it is possible to reduce deterioration in image quality due to optical crosstalk.
上述した通りに負極性プリチヤ一ジ電位を設定すると、 複数のサンプリング用 スィッチング手段の各々を Nチャンネル型トランジスタにより形成した場合にも 効果がある。 この場合、 サンプリング用スイッチング手段をオンすると、 スイツ チングノイズが生じて、 これがデータ信号線に重畳する。 ここで、 このスィッチ ングノイズは、 データ信号線の電位を負方向に放電させる時間を長くするように 悪影響を与え、 特にデ一夕信号線の電位が、 サンプリング期間内に最も低いデ一 夕信号電位である第 1電位となるまで放電されるのを妨げる。 そこで、 負極性プ リチヤ一ジ電位を第 1電位に近づけ、 この負極性プリチャージ電位から第 1電位 までの電位差を少なくすることで、 サンプリング期間内にてデータ信号線が第 1 電位となることを補償している。 Setting the negative polarity precharge potential as described above has an effect even when each of the plurality of sampling switching means is formed by an N-channel transistor. In this case, when the sampling switching means is turned on, switching noise is generated and is superimposed on the data signal line. Here, this switching noise has an adverse effect such as prolonging the time for discharging the potential of the data signal line in the negative direction, and in particular, the potential of the data signal line has the lowest data rate during the sampling period. Prevents discharge until the first potential, which is the evening signal potential. Therefore, the negative signal potential is brought closer to the first potential, and the potential difference from the negative precharge potential to the first potential is reduced, so that the data signal line becomes the first potential during the sampling period. Is compensated.
ここで、 負極性プリチャージ電位は第 1電位よりも高いことが好ましい。 負極 性プリチヤージ電位が第 1電位より低くなると、 Nチャンネル型トランジスタの ゲートーソース間の電圧差がなくなりリークが生ずるからである。  Here, it is preferable that the negative precharge potential is higher than the first potential. This is because when the negative precharge potential is lower than the first potential, the voltage difference between the gate and the source of the N-channel transistor disappears and leakage occurs.
また、 正極性プリチャージ電位は第 3電位より低いことが好ましい。 上述した スィツチングノイズは、 デ一夕信号線の電位を正方向に充電させる時間を短くす るように作用する。 このため、 第 3電位より低い正極性プリチャージ電位にてプ リチヤージ後に、 デ一夕信号線の電位を第 3電位及び第 4電位間のいずれのデ一 夕信号電位に設定する場合も、 常にデ一夕信号線を充電させれば良く、 スィッチ ングノイズを利用してこの充電を早められるからである。  Also, the positive precharge potential is preferably lower than the third potential. The above-described switching noise acts to shorten the time for charging the potential of the data signal line in the positive direction. For this reason, even if the potential of the data signal line is set to any of the third and fourth potentials after the precharge at the positive precharge potential lower than the third potential, It is only necessary to charge the signal line overnight, and this charging can be accelerated using switching noise.
本発明の他の態様によれば、 正極性プリチャージ電位を、 正極性データ電圧振 幅の中心電位よりも、 第 4電位に近づけて設定することができる。  According to another aspect of the present invention, the positive precharge potential can be set closer to the fourth potential than the center potential of the positive data voltage amplitude.
この場合、 中間調表示のための電位よりも第 4電位に近づけて設定された正極 性のプリチャージ電位により、 デ一夕信号線がプリチャージされる。 従って、 画 素のスィツチング素子に光クロストークが生じたとしても、 その画素は第 4電位 に近い正極性プリチャージ電位と負極性プリチャージ電位とに交互に設定される データ信号線の電位の影響を交互に受けるので、 先に説明したように負極性側に 一方的に電位変動してしまうことがなく、 スィツチング素子のリークによる画質 の劣化が低減される。  In this case, the data signal line is precharged by the positive precharge potential set closer to the fourth potential than the potential for halftone display. Therefore, even if optical crosstalk occurs in the pixel switching element, the pixel is affected by the potential of the data signal line that is alternately set to the positive precharge potential and the negative precharge potential close to the fourth potential. As described above, the potential does not fluctuate unilaterally to the negative polarity side as described above, and the deterioration of image quality due to leakage of the switching element is reduced.
より具体的には、 本発明は複数のスイッチング素子の各々が、 Pチャンネル型 トランジスタにより形成された場合に適用できる。 例えば正極性プリチヤ一ジ電 位 P V 1を、 後述する図 7の通り第 4電位に近い値に変更すれば、 画素 A ( m , n ) 及び画素 A ( m , n + i ) にチャージされた電圧が、 スイッチング素子の光 リークによりデータ信号線の電位の影響を受けたとしても、 そのデータ信号線 S n , S n + iには、 第 4電位 (図 7の黒レベル電位 B 2 ) に近い正極性プリチヤ —ジ電位と、 負極性プリチャージ電位とが周期的に印加される。 従って、 正極性 の電圧を画素に充電する場合であっても、 両画素 A ( m, n ) 、 A ( m , n + i ) は、 その電圧に対して正及び負極性の電圧に交互に設定されるデ一夕信号線と の間でリークが生じるので、 デ一夕信号線の影響を受けにく くなる。 このため、 光クロストークに起因した画質の劣化を低減できる。 More specifically, the present invention can be applied when each of a plurality of switching elements is formed by a P-channel transistor. For example, if the positive polarity potential PV 1 is changed to a value close to the fourth potential as shown in FIG. 7 described later, the pixel A (m, n) and the pixel A (m, n + i) are charged. Even if the voltage is affected by the potential of the data signal line due to the light leakage of the switching element, the data signal lines S n and S n + i have the fourth potential (black level potential B 2 in FIG. 7). Near positive polarity —Di potential and negative precharge potential are applied periodically. Therefore, even when a pixel is charged with a positive voltage, both pixels A (m, n) and A (m, n + i) alternately change to a positive and negative voltage with respect to that voltage. Leakage occurs between the set data line and the data line, so it is less affected by the data line. Therefore, it is possible to reduce the deterioration of the image quality due to the optical crosstalk.
上述した通りに正極性プリチャージ電位を設定すると、 複数のサンプリング用 スィツチング手段の各々を Pチャンネル型トランジスタにより形成した場合にも 効果がある。 この場合、 サンプリング用スイッチング手段をオンすると、 スイツ チングノイズが生じて、 これがデ一夕信号線に重畳する。 ここで、 このスィッチ ングノイズは、 データ信号線の電位を正方向に充電させる時間を長くするように 悪影響を与え、 特にデ一夕信号線の電位が、 サンプリング期間内に最も高いデー 夕信号電位である第 4電位となるまで充電されるのを妨げる。 そこで、 正極性プ リチヤージ電位を第 4電位に近づけ、 この正極性プリチャージ電位から第 4位ま での電位差を少なくすることで、 サンプリング期間内にてデ一夕信号線が第 4電 位となることを補償している。 '  When the positive precharge potential is set as described above, it is effective even when each of the plurality of sampling switching means is formed by a P-channel transistor. In this case, when the sampling switching means is turned on, switching noise is generated, which is superimposed on the data signal line. Here, the switching noise has an adverse effect such as prolonging the time for charging the potential of the data signal line in the positive direction. In particular, the potential of the data signal line becomes higher at the highest data signal potential during the sampling period. Prevents charging to a certain fourth potential. Therefore, by bringing the positive polarity precharge potential closer to the fourth potential and reducing the potential difference from the positive precharge potential to the fourth potential, the data signal line becomes the fourth potential within the sampling period. To compensate. '
ここで、 正極性プリチャージ電位は第 4電位よりも低いことが好ましい。 正極 性プリチャージ電位が第 4の電位より高くなると、 Pチャンネル型トランジスタ のゲートーソース間の電圧差がなくなり リークが生ずるからである。  Here, the positive precharge potential is preferably lower than the fourth potential. If the positive precharge potential is higher than the fourth potential, the voltage difference between the gate and the source of the P-channel transistor disappears, and leakage occurs.
また、 負極性プリチャージ電位は第 2位より高いことが好ましい。 上述したス ィツチングノィズは、 データ信号線の電位を負方向に放電させる時間を短くする ように作用する。 このため、 第 2電位より高い負極性プリチャージ電位にてプリ チャージ後に、 データ信号線の電位を第 2電位及び第 1電位間のいずれのデータ 信号電位に設定する場合も、 常にデータ信号線を放電させれば良く、 スィッチン グノィズを利用してこの放電を早められるからである。  Further, the negative precharge potential is preferably higher than the second rank. The above-described switching noise acts to shorten the time for discharging the potential of the data signal line in the negative direction. For this reason, even if the potential of the data signal line is set to any data signal potential between the second potential and the first potential after precharging with the negative precharge potential higher than the second potential, the data signal line is always This is because it is only necessary to discharge, and this discharge can be hastened by using switching noise.
なお、 本発明にて用いられるスイッチング素子は、 実施の形態にて示される薄 膜トランジス夕だけでなく、 液晶パネル基板の素子形成基板を単結晶シリコン基 板で形成した場合は M O S トランジスタで構成することができる。 また、 M I M などの 2端子型非線形素子により形成することもできる。 本発明は、 特に光クロストークに起因した画質の劣化を低減する観点から言え ば、 上記発明の液晶装置を光源光を変調するライ トバルブとして用いる投写型表 示装置に適用するものが好ましい。 この他、 光源光を用いた透過型または反射型 の液晶装置を備えた種々の電子機器にも本発明は有効である。 The switching element used in the present invention is not limited to the thin film transistor described in the embodiment, but may be constituted by a MOS transistor when the element forming substrate of the liquid crystal panel substrate is formed by a single crystal silicon substrate. be able to. It can also be formed by a two-terminal nonlinear element such as MIM. The present invention is preferably applied to a projection display device using the liquid crystal device of the present invention as a light valve that modulates light from a light source, particularly from the viewpoint of reducing image quality deterioration due to optical crosstalk. In addition, the present invention is also effective for various electronic devices provided with a transmission type or reflection type liquid crystal device using light from a light source.
[図面の簡単な説明] [Brief description of drawings]
図 1は、 本発明のアクティブマトリクス型液晶装置の概略説明図である。  FIG. 1 is a schematic explanatory view of an active matrix type liquid crystal device of the present invention.
図 2は、 本発明の実施の形態 1にて負極性電圧にて液晶を駆動したときの画素 の電位とそのリーク先のデ一夕信号線の電位とを示す概略説明図である。  FIG. 2 is a schematic explanatory diagram showing a potential of a pixel and a potential of a data signal line at a leakage destination when a liquid crystal is driven with a negative voltage according to the first embodiment of the present invention.
図 3は、 本発明の実施の形態 1にて正極性電圧にて液晶を駆動したときの画素 の電位とそのリーク先のデ一夕信号線の電位とを示す概略説明図である。  FIG. 3 is a schematic explanatory diagram showing a potential of a pixel and a potential of a data line at a leakage destination when a liquid crystal is driven with a positive polarity voltage in the first embodiment of the present invention.
図 4は、 画素 A ( m— 1 , n ) と画素 A ( m , n ) を模式的に示す概略説明図 である。  FIG. 4 is a schematic explanatory diagram schematically showing a pixel A (m-1, n) and a pixel A (m, n).
図 5は、 図 4に示す画素 A ( m— 1 , n ) , 画素 A ( m, n ) に接続されたデ 一夕信号線 S nの電位変化を示すタイミングチャートである。  FIG. 5 is a timing chart showing the potential change of the pixel A (m-1, n) shown in FIG. 4 and the data signal line Sn connected to the pixel A (m, n).
図 6は、 図 5のプリチャージ電位を変更した比較例 1のタイ ミングチャートで ある。  FIG. 6 is a timing chart of Comparative Example 1 in which the precharge potential in FIG. 5 is changed.
図 Ίは、 本発明の実施の形態 2にて負極性及び正極性電圧にてそれそれ液晶を 駆動したときの画素の電位とそのリーク先のデ一夕信号線の電位とを示す概略説 明図である。  FIG. 5 is a schematic diagram showing the potential of the pixel and the potential of the data line at the leakage destination when the liquid crystal is driven at the negative and positive voltages, respectively, in the second embodiment of the present invention. FIG.
図 8は、 図 7のプリチャージ電位を変更したときのリークを説明するための概 略説明図である。  FIG. 8 is a schematic explanatory diagram for explaining a leak when the precharge potential in FIG. 7 is changed.
図 9は、 本発明の実施の形態 2の動作を説明するタイミングチャートである。 図 1 0は、 図 9のプリチャージ電位を変更した比較例 2のタイミングチャート である。  FIG. 9 is a timing chart illustrating the operation of the second embodiment of the present invention. FIG. 10 is a timing chart of Comparative Example 2 in which the precharge potential in FIG. 9 is changed.
図 1 1は、 Nフィールドでの各画素の液晶に印加される電圧の極性を示す概略 説明図である。  FIG. 11 is a schematic explanatory diagram showing the polarity of the voltage applied to the liquid crystal of each pixel in N fields.
図 1 2は、 N + 1フィ一ルドでの各画素の液晶に印加される電圧の極性を示す 概略説明図である。 Figure 12 shows the polarity of the voltage applied to the liquid crystal of each pixel in the N + 1 field FIG.
図 1 3は、 同一のデ一夕信号線に接続された 2つの画素を示す概略説明図であ る。  FIG. 13 is a schematic explanatory diagram showing two pixels connected to the same data signal line.
図 1 4は、 図 1 3に示す 2つの画素に、 それそれ同じ黒データを書き込む場合 のデータ信号線の電位変化を示す特性図である。 ―  FIG. 14 is a characteristic diagram showing a potential change of the data signal line when the same black data is written to the two pixels shown in FIG. ―
図 1 5は、 光クロストークを説明するための液晶画面の模式図である。  FIG. 15 is a schematic view of a liquid crystal screen for explaining optical crosstalk.
図 1 6は、 負極性電圧にて液晶を駆動したときの画素の電位とそのリーク先の デ一夕信号線の電位とを示す従来例の概略説明図である。  FIG. 16 is a schematic explanatory diagram of a conventional example showing the potential of a pixel when the liquid crystal is driven with a negative voltage and the potential of a leakage signal line at the leakage destination.
図 1 7は、 正極性電圧にて液晶を駆動したときの画素の電位とそのリーク先の デ一夕信号線の電位とを示す従来例の概略説明図である。  FIG. 17 is a schematic explanatory view of a conventional example showing a potential of a pixel when a liquid crystal is driven by a positive voltage and a potential of a data line at a leakage destination thereof.
図 1 8は、 本発明による画像表示装置を用いて構成される電子機器の概略図で ある。  FIG. 18 is a schematic diagram of an electronic device configured using the image display device according to the present invention.
図 1 9は、 本発明が適用される液晶プロジェクタの概略図である。  FIG. 19 is a schematic diagram of a liquid crystal projector to which the present invention is applied.
図 2 0は、 本発明が適用されるパーソナルコンピュータ (P C ) の概略図であ る。  FIG. 20 is a schematic diagram of a personal computer (PC) to which the present invention is applied.
[発明を実施するための最良の形態] [Best Mode for Carrying Out the Invention]
く実施の形態 1 > Embodiment 1>
(装置の概略構成)  (Schematic configuration of device)
図 1に、 実施の形態 1に係る液晶装置の全体概要が示されている。 図 1に示す ように、 この液晶装置は、 電子機器例えば液晶プロジェクタのライ トバルブとし て用いる小型液晶装置であり、 液晶パネルブロック 1 0と、 タイミング回路プロ ック 2 0と、 デ一夕処理ブロック 3 0とに大別される。  FIG. 1 shows an overall outline of the liquid crystal device according to the first embodiment. As shown in FIG. 1, this liquid crystal device is a small liquid crystal device used as a light valve of an electronic device such as a liquid crystal projector, and includes a liquid crystal panel block 10, a timing circuit block 20, and a data processing block. It is roughly divided into 30.
タイミング回路プロック 2 0は、 クロック信号 C L Kと同期信号 S Y N Cとが 入力され、 シフトスタート信号、 シフトクロック信号、 プリチャージ信号等、 所 定の夕イミング信号を出力するものである。  The timing circuit block 20 receives the clock signal CLK and the synchronizing signal SYNC and outputs a predetermined evening timing signal such as a shift start signal, a shift clock signal, and a precharge signal.
データ処理回路ブロック 3 0は、 液晶表示に適するようにデータの増幅, 反転 等によりデ一夕を処理する回路プロックである。 なお、 このデ一夕処理ブロック 3 0において、 各画素に対応するデ一夕信号を、 極性反転基準電位を基準として —画素ごとに極性反転している。 また、 この極性反転は、 垂直走査期間毎 (フィ 一ルド毎あるいはフレーム毎) 反転される。 The data processing circuit block 30 is a circuit block for processing data by amplifying and inverting data so as to be suitable for a liquid crystal display. This data processing block At 30, the data signal corresponding to each pixel is inverted with respect to the polarity-inversion reference potential for each pixel. This polarity inversion is inverted every vertical scanning period (every field or every frame).
液晶パネルブロック 1 0は、 一対の基板間に液晶が封入され、 一方の基板上に 画素領域 1 0 0と、 走査側駆動回路 1 0 2と、 デ一夕側駆動回路 1 0 4とを備え、 これと対向する他方の基板上に共通電極を備えて構成される。 一対の液晶パネル 基板の外側には偏光板が配置される。 なお、 これらの駆動回路は、 液晶パネル基 板とは分離して、 外付け I Cとして構成しても良い。  The liquid crystal panel block 10 has liquid crystal sealed between a pair of substrates, and includes a pixel region 100, a scanning drive circuit 102, and a data drive circuit 104 on one substrate. A common electrode is provided on the other substrate facing this. A polarizing plate is arranged outside the pair of liquid crystal panel substrates. Note that these driving circuits may be configured as external ICs separately from the liquid crystal panel substrate.
画素領域 1 0 0上には、 例えば、 図 1の行方向に沿って延びる複数の走査信号 線 1 1 0と、 例えば、 列方向に沿って延びる複数のデ一夕信号線 1 1 2とが形成 されている。 なお、 本実施の形態では、 走査信号線 1 1 0の総数を 4 9 2本とし、 データ信号線 1 1 2の総数を 6 5 2本として説明するが、 前記走査信号線および データ信号線の本数は特に限定されない。  On the pixel area 100, for example, a plurality of scanning signal lines 110 extending in the row direction of FIG. 1 and a plurality of data signal lines 112 extending in the column direction, for example, are provided. It is formed. In this embodiment, the total number of the scanning signal lines 110 is set to 492 and the total number of the data signal lines 112 is set to 652. The number is not particularly limited.
この各走査信号線 1 1 0 , デ一夕信号線 1 1 2が交差する各位置には、 スイツ チング素子 1 1 4と画素 1 2 0とが直列に接続されて表示要素が構成されている。 各画素 1 2 0は、 一方の基板上に共に形成される、 スイッチング素子 1 1 4と接 続される画素電極、 及び各画素電極と隣接する走査信号線や容量線との間に形成 される蓄積容量 1 1 7と、 対向する他方の基板状に形成される共通電極と、 両電 極の間に挟持される液晶層 1 1 6とから構成される。  At each position where the scanning signal line 110 and the data signal line 112 intersect, a switching element 114 and a pixel 120 are connected in series to constitute a display element. . Each pixel 120 is formed together on one substrate, and is formed between a pixel electrode connected to the switching element 114 and a scanning signal line or a capacitor line adjacent to each pixel electrode. It is composed of a storage capacitor 117, a common electrode formed on the other opposing substrate, and a liquid crystal layer 116 sandwiched between the two electrodes.
各画素 1 2 0のスィツチング素子 1 1 4がオンする期間を選択期間と称し、 ォ フする期間を非選択期間と称する。 選択期間にスイッチング素子 1 1 4を介して 画素 1 2 0に供給された電圧を、 非選択期間にて蓄積する蓄積容量 1 1 7が画素 1 2 0に接続されている。  A period during which the switching element 114 of each pixel 120 is turned on is referred to as a selection period, and a period during which the switching element 114 is turned off is referred to as a non-selection period. A storage capacitor 117 that stores the voltage supplied to the pixel 120 via the switching element 114 during the selection period during the non-selection period is connected to the pixel 120.
本実施の形態では、 スイッチング素子 1 1 4を、 例えば、 3端子型スィッチン グ素子としており、 例えば T F T (薄膜トランジスタ) にて構成している。 これ に限らず、 他の 3端子型スイッチング素子である M O S トランジスタ、 あるいは 2端子型スイッチング素子例えば、 M I M (金属—絶縁—金属) 素子、 M I S ( 金属一絶縁—半導体) 素子などを用いることができる。 なお、 本実施の形態の画 素領域 1 0 0は、 2端子型または 3端子型のスィツチングを用いたァクティブマ トリクス型の液晶表示パネルに限らず、 単純マトリクス型の液晶表示パネルなど、 他の種々の液晶パネルであってもよい。 In the present embodiment, the switching element 114 is, for example, a three-terminal switching element, for example, a TFT (thin film transistor). However, the present invention is not limited to this. For example, a MOS transistor that is another three-terminal switching element, or a two-terminal switching element such as a MIM (metal-insulation-metal) element or an MIS (metal-insulation-semiconductor) element can be used. . Note that the image of this embodiment is The element region 100 is not limited to an active matrix type liquid crystal display panel using two-terminal or three-terminal switching, but may be various other liquid crystal panels such as a simple matrix type liquid crystal display panel. .
走査側駆動回路 1 0 2は、 複数の走査信号線 1 1 0の中から少なくとも 1本の 走査信号線 1 1 0を順次選択するための選択期間が設定された走査信号を出力す るものである。  The scanning side driving circuit 102 outputs a scanning signal in which a selection period for sequentially selecting at least one of the plurality of scanning signal lines 110 is set. is there.
データ側駆動回路 1 0 4は、 データ処理回路プロック 3 0の出力線である例え ば 1本の信号ラインと、 画素領域 1 0 0のデ一夕信号線 1 1 2 a , 1 1 2 b , · • · との間にそれぞれ配置されたサンプリングスィッチ 1 0 6に対して、 画素領 域 1 0 0を点順次駆動するためのサンプリング信号を出力するものである。 なお、 データ処理回路ブロック 3 0が、 公知の相展開回路を有する場合には、 デ一夕出 力回路ブロック 3 0の出力線は、 その相展開数と同じ本数の出力線となる。 ここ で、 相展開回路とは、 シリアルデータとしての画像データ信号を、 基準クロック に基づいて設定されたサンプリング期間に従ってサンプルホ一ルドし、 かつ、 一 定の画素毎に前記シリアルデ一夕を展開して、 データ処理回路ブロック 3 0から の 1デ一夕出力期間が基準クロックの整数倍に変換された複数のデータ信号をパ ラレル出力するものである。  The data side driving circuit 104 is an output line of the data processing circuit block 30, for example, one signal line and a data signal line 1 1 2 a, 1 1 2 b, A sampling signal for driving the pixel area 100 in a point-sequential manner is output to the sampling switches 106 arranged between. When the data processing circuit block 30 has a known phase expansion circuit, the output lines of the data output circuit block 30 have the same number of output lines as the number of phase expansions. Here, the phase expansion circuit samples and holds the image data signal as serial data according to a sampling period set based on a reference clock, and expands the serial data for each fixed pixel. Thus, a plurality of data signals whose one data output period from the data processing circuit block 30 has been converted to an integral multiple of the reference clock are output in parallel.
プリチャージ用スィッチ 1 7 2 a , 1 7 2 b , · · ·は、 プリチャージ信号に より所定のタイミングにてオンし、 第 1 (負極性) のプリチャージ電源供給用ラ イン 1 7 4 aまたは第 2 (正極性) のプリチャージ電源供給用ライン 1 7 4 bを、 各デ一夕信号線 1 1 2 a , 1 1 2 b · · ·に接続して、 データ信号線 1 1 2をプ リチヤ一ジするためのものである。 プリチャージ電源電圧の極性は、 共通電極に 印加される共通電極電位を基準としての極性である。  The precharge switches 1 7 2 a, 1 7 2 b,... Are turned on at a predetermined timing by a precharge signal, and the first (negative) precharge power supply line 1 7 4 a Alternatively, connect the second (positive polarity) precharge power supply line 1 7 4 b to each data line 1 1 2 a, 1 1 2 b This is for practicing. The polarity of the precharge power supply voltage is based on the common electrode potential applied to the common electrode.
この第 1 , 第 2プリチャージ竃源供給ライン 1 7 4 a , 1 7 4 bには、 プリチ ャ一ジ電源供給用スィツチ 1 9 0を介して第 1のプリチヤ一ジ電位 P V 1 , 第 2 のプリチャージ電位 P V 2が、 走査信号線 1 1 0を選択するごと (一水平走査ご と) に切り換えられて供給される。 なお、 電源供給用スィッチ 1 9 0の切り換え タイミングは、 少なくともプリチャージ用スィツチ 1 Ί 2のオンする前に設定さ れる。 The first and second precharge oven power supply lines 174a and 174b are connected to a first precharge potential PV1 and a second precharge voltage via a precharge power supply switch 190, respectively. The precharge potential PV 2 is switched and supplied every time the scanning signal line 110 is selected (for each horizontal scan). The switching timing of the power supply switch 190 is set at least before the precharge switch 1Ί2 is turned on. It is.
本実施の形態では、 極性反転駆動を実施することから、 例えば奇数番目の水平 走査期間では、 奇数番目のデータ信号線 1 7 2 a , 1 7 2 c , · · ·は第 1のプ リチャージ電源供給ライン 1 7 4 aに接続され、 偶数番目のデ一夕信号線 1 7 2 b, 1 7 2 d , · · ·は第 2のプリチャージ電源供給ライン 1 7 4 bに接続され る。 また、 偶数番目の水平走査期間では、 奇数番目のデータ信号線 1 7 2 a , 1 7 2 c , · · ·は第 2のプリチャージ電源供給用ライン 1 7 4 bに接続され、 偶 数番目のデータ信号線 1 7 2 b , 1 7 2 d , · · 'は第 1のプリチャージ電源供 給用ライン 1 7 4 bに接続される。 なお、 このプリチャージ動作の詳細について は後述する。  In the present embodiment, since the polarity inversion driving is performed, for example, in the odd-numbered horizontal scanning period, the odd-numbered data signal lines 17 2 a, 17 2 c,. The supply line 174a is connected, and the even-numbered data signal lines 172b, 172d,... Are connected to the second precharge power supply line 174b. In the even-numbered horizontal scanning period, the odd-numbered data signal lines 17 2 a, 17 2 c,... Are connected to the second precharge power supply line 17 4 b, and the even-numbered data signal lines 17 2 a, 17 2 c,. Are connected to the first precharge power supply line 174b. The details of this precharge operation will be described later.
すなわち、 本実施の形態では、 走査信号線の延びる方向での 1画素ごとに極性 反転駆動し、 かつ、 データ信号線の延びる方向で 1ラインごと (一走査信号線毎 ) に極性反転駆動しており、 これに合うように極性反転タイミングが定められて いる。 すなわち、 各データ信号線と各画素へ印加するプリチヤ一ジ電位とデ一夕 信号の極性は、 走査信号線毎あるいは画素毎、 だけでなく垂直走査期間毎でも反 転されている。 なお、 プリチャージが必要な場合とは、 少なくとも 1ラインごと に極性反転駆動している場合であり、 1画素毎の極性反転に限定されるものでは ない。  That is, in the present embodiment, the polarity inversion driving is performed for each pixel in the direction in which the scanning signal line extends, and the polarity inversion driving is performed for each line (for each scanning signal line) in the direction in which the data signal line extends. Therefore, the polarity inversion timing is determined to match this. That is, the polarity of the precharge potential and the data signal applied to each data signal line and each pixel are inverted not only for each scanning signal line or pixel, but also for each vertical scanning period. Note that the case where precharging is required is a case where polarity inversion driving is performed at least for each line, and is not limited to polarity inversion for each pixel.
そして、 クロック C L K , 同期信号 S Y N Cに基づいて形成されたシフ トスタ —ト信号がデ一夕側駆動回路 1 G 4のシフトレジス夕に入力され、 データ側駆動 回路 1 0 4はサンプリング信号を生成する。 このサンプリング信号に基づいて、 順にサンプリングスィツチ 1 0 6 a〜 1 0 6 gがオンされることにより、 データ 信号のサンプリングが行われている。  Then, a shift start signal formed based on the clock CLK and the synchronization signal SYNC is input to the shift register of the data drive circuit 1G4, and the data drive circuit 104 generates a sampling signal. The sampling of the data signal is performed by sequentially turning on the sampling switches 106a to 106g based on the sampling signal.
(光クロストークの悪影響を低減したプリチャージ動作について)  (About precharge operation that reduces the adverse effects of optical crosstalk)
実施の形態 1では、 各デ一夕信号線についての上述した各サンプリング期間の 前のブランキング期間 (帰線期間) に、 そのサンプリング期間にてサンプリング されるデータ信号に基づき画素に印加される電圧の極性と同一極性で、 各々のデ —夕信号線を同時にプリチャージしている。 なお、 デ一夕信号に基づき画素に印 加される電圧の極性とは、 共通電極電位と基準とした極性である。 In the first embodiment, the voltage applied to the pixel based on the data signal sampled in the sampling period during the blanking period (retrace period) before each sampling period described above for each data signal line is described. The polarity is the same as that of, and each data line is precharged at the same time. The pixels are marked based on the data signal. The polarity of the applied voltage is the polarity with respect to the common electrode potential.
このプリチャージ電位とデータ信号電位の関係について図 2を参照して説明す る。 図 2は、 スィツチング素子 1 14として Nチャンネル型 T F Tを用い、 かつ、 ノ一マリホワイ 卜の表示を行う場合のデータ信号電位とプリチャージ電位とを示 している。 図 2において、 液晶を負極性の電圧で駆動する場合には、'デ一夕信号 電位は、 その階調値に応じて第 1電位 B 1 ( I V) と第 2電位 W1 (5 V) の間 で変化する。 ノーマリホワイ トの表示では、 第 1の電位 B 1が黒表示に対応し、 第 2の電位 W 1が白表示に対応する。 なお、 ノーマリブラックの表示では、 上記 とは逆の関係となる。  The relationship between the precharge potential and the data signal potential will be described with reference to FIG. FIG. 2 shows a data signal potential and a precharge potential when an N-channel TFT is used as the switching element 114 and a normally white display is performed. In FIG. 2, when the liquid crystal is driven by a voltage having a negative polarity, the potential of the first signal B1 (IV) and the second potential W1 (5 V) are changed according to the gradation value. Varies between. In the normally white display, the first potential B1 corresponds to black display, and the second potential W1 corresponds to white display. In the display of normally black, the relationship is opposite to the above.
図 2において、 液晶を正極性の電圧で駆動する場合には、 デ一夕信号電位は、 その階調値に応じて第 3電位 W2 ( 7 V) と第 4電位 B 2 ( 1 1 V) との間で変 化する。 ノ一マリホワイ トの表示では、 第 2の電位 W2が白表示に対応し、 第 4 の電位 B 2が黒表示に対応する。 なお、 ノーマリブラックの表示では、 上記とは 逆の関係となる。  In FIG. 2, when driving the liquid crystal with a positive voltage, the overnight signal potential is changed to a third potential W2 (7 V) and a fourth potential B 2 (11 V) according to the gradation value. It changes between. In the normally white display, the second potential W2 corresponds to white display, and the fourth potential B2 corresponds to black display. In the display of normally black, the relationship is opposite to the above.
従って、 このデータ信号電位の振幅中心 Vcは 6 Vである。 また、 負極性電圧 駆動の場合の振幅 (B 1〜W1 ) の中心電位 VC1は 3 Vであり、 正極性電圧駆動 の場合の振幅 (W2〜B 2) の中心電位 VC2は 9 Vとなる。  Therefore, the amplitude center Vc of the data signal potential is 6 V. The center potential VC1 of the amplitude (B1 to W1) in the case of the negative voltage drive is 3 V, and the center potential VC2 of the amplitude (W2 to B2) in the case of the positive voltage drive is 9 V.
上記の関係は、 図 1 6及び図 17の場合と同じであるが、 本実施の形態では第 1のプリチャージ電位 PV 1と第 2のプリチャージ電位 PV 2とを従来とは異な らせている。  The above relationship is the same as in FIGS. 16 and 17, but in the present embodiment, the first precharge potential PV1 and the second precharge potential PV2 are different from those in the conventional case. I have.
本実施の形態では、 第 1のプリチヤへジ電位 PV 1は 1. 5Vに設定され、 第 2のプリチャージ電位 PV 2は 6. 5 Vに設定されている。 このように、 第 1 , 第 2のプリチャージ電位: P V 1 , PV2は、 デ一夕信号電位の振幅中心 V cに対 して非対称に設定されている。  In the present embodiment, the first precharge potential PV1 is set to 1.5V, and the second precharge potential PV2 is set to 6.5V. As described above, the first and second precharge potentials: P V1 and PV2 are set asymmetrically with respect to the amplitude center V c of the overnight signal potential.
さらに、 本実施の形態では、 第 1のプリチャージ電位 P V 1 ( 1. 5V) は、 負極性電圧駆動におけるデータ信号電位の振幅中心 VC1 (3 V) よりも第 1電位 ( I V) に近づけて設定されている。 第 2のプリチャージ電位 PV2 ( 6. 5 V ) は、 正極性電圧駆動の第 3電位 W 2 ( 7 V) よりも小さい値に設定されている。 ここで、 図 15に示す画素 A (m, n) と画素 A (m, n+ i) の液晶を負極 性の電圧にて駆動する場合であって、 画素の一端に中間調表示のための電圧 (4 V) を印加する場合について説明する。 この場合、 図 2に示す通り、 4VよりもFurther, in the present embodiment, the first precharge potential PV 1 (1.5 V) is closer to the first potential (IV) than the amplitude center VC 1 (3 V) of the data signal potential in the negative voltage drive. Is set. The second precharge potential PV2 (6.5 V) is set to a value smaller than the third potential W2 (7 V) of the positive voltage drive. Here, a case where the liquid crystal of the pixel A (m, n) and the pixel A (m, n + i) shown in FIG. 15 are driven by a negative voltage, and one end of the pixel is provided with a voltage for halftone display. The case where (4 V) is applied will be described. In this case, as shown in Figure 2,
△ VIだけ降下した電圧が画素にチヤ一ジされる。 この理由を、 図 4を参照して説 明する。 ― Δ The voltage dropped by VI is charged to the pixel. The reason is explained with reference to FIG. ―
図 4において、 スイッチング素子 (T F T) 1 14のゲート—ドレイン間の容 量を CGD1とし、 液晶層 1 16の容量を CLCとし、 蓄積容量 1 1 7を CSTGとし、 TFT 1 14のゲートに印加される走査信号の選択期間と非選択期間の電位差を Vgとすると、 選択期間において画素にチャージ電圧を印加した直後には、 TF T 1 14の寄生容量により電圧降下 1が発生する。 その AV 1は次の式によ り近似される。  In Fig. 4, the capacitance between the gate and drain of the switching element (TFT) 114 is CGD1, the capacitance of the liquid crystal layer 116 is CLC, the storage capacitance 117 is CSTG, and the capacitance is applied to the gate of the TFT 114. Assuming that the potential difference between the selection period and the non-selection period of the scanning signal is Vg, the voltage drop 1 occurs due to the parasitic capacitance of the TFT 114 immediately after the charge voltage is applied to the pixel in the selection period. AV1 is approximated by the following equation.
△ V l = [CGD1/ ( CGD+ CCL+ CSTG) ] xVg  △ V l = [CGD1 / (CGD + CCL + CSTG)] xVg
すなわち、 選択期間に CGDに蓄積された電荷が、 走査信号が非選択期間の非選択 電位になると、 CLCと CSTGに流れ込み、 CLCと CSTGの蓄積電圧を降下させるの である。 That is, when the charge accumulated in the CGD during the selection period becomes a non-selection potential during the non-selection period, the charge flows into the CLC and the CSTG to lower the storage voltage of the CLC and the CSTG.
また、 サンプリングスィッチ ( T F T ) 1 06のゲート一ドレイン間寄生容量 による電圧降下 2も存在する。 TF T 1 06のゲ一ト—ドレイン間寄生容量 を CGD2とし、 データ信号線の寄生容量を CD2とし、 T F T 106のゲートに印加 されるサンプリング信号のサンプリング期間と非サンプリング期間の電位差を V g2すると、 その電圧降下 2は次の式により近似される。  In addition, there is a voltage drop 2 due to the gate-drain parasitic capacitance of the sampling switch (TFT) 106. When the gate-drain parasitic capacitance of TFT106 is CGD2, the parasitic capacitance of the data signal line is CD2, and the potential difference between the sampling period and the non-sampling period of the sampling signal applied to the gate of TFT 106 is Vg2. The voltage drop 2 is approximated by the following equation.
△ V2= [ C GD2/ (CGD2+CD2) ] xVg2  △ V2 = [C GD2 / (CGD2 + CD2)] xVg2
従って、 サンプリングされる前のデ一夕信号電位と画素の液晶層に実際に印加 される電位との間には、 1と 2の加算により近似される の電圧降下 が発生する。  Therefore, a voltage drop approximated by the addition of 1 and 2 occurs between the data signal potential before sampling and the potential actually applied to the liquid crystal layer of the pixel.
ところで、 図 1 5に示す画素 A (m, n) では、 デ一夕信号線 S nに接続され た全ての画素にて中間調表示がなされるため、 負極性電圧駆動の前のプリチヤ一 ジ期間では、 デ一夕線 S nが第 1のプリチャージ電位 P V 1 ( 1. 5 V) にプリ チャージされる。 図 2が従来の図 1 7と相違する点はこの点である。 従来の図 1 7の方式では、 画素 A (m, n) のチャージ電圧は、 TFTにてリークが生ずる ことで、 正方向にのみ変動するが、 図 2の場合には、 データ信号線にチャージ電 圧より高い電位、 低い電位に交互に印加されるので、 チャージ電圧が正負の双方 向に交互にシフトするように変動する。 チャージ電圧が正負の双方に交互にシフ トするように変動する点で、 画素 A (m, n) と画素 A (m, n+ i) は同じと なる。 このため、 画素 A (m, n+ i) が表示上で黒くなる方向にシフトすると、 画素 A (m, n) においても同様に表示上で黒くなる方向にシフトし、 光クロス トークの影響が表示上で相殺される。 同様に、 画素 A (m, n+ i ) が表示上白 くなる方向にシフ トすると、 画素 A (m, n) においても同様に表示上で白くな る方向にシフ トし、 光クロストークの影響が表示上で相殺される。 このようにし て、 本実施の形態では光クロストークを表示上目立たなくさせることができ、 画 質が向上する。 なお、 液晶層を正極性の電圧にて駆動する場合には、 図 3の通り であり、 従来と同様に問題は生じない。 また、 第 2のプリチャージ電位 PV2の 作用については後述する。 By the way, in the pixel A (m, n) shown in FIG. 15, since all pixels connected to the data signal line Sn perform halftone display, the precharge before negative voltage driving is performed. During this period, the data line Sn is precharged to the first precharge potential PV1 (1.5 V). FIG. 2 differs from the conventional FIG. 17 in this point. Conventional Figure 1 In the method shown in Fig. 7, the charge voltage of pixel A (m, n) fluctuates only in the positive direction due to leakage at the TFT, but in the case of Fig. 2, it is higher than the charge voltage on the data signal line. Since the potential is applied alternately to the lower potential, the charge voltage fluctuates so as to alternately shift in both positive and negative directions. Pixel A (m, n) and pixel A (m, n + i) are the same in that the charge voltage fluctuates so as to alternately shift between positive and negative. Therefore, if pixel A (m, n + i) shifts toward black on the display, pixel A (m, n) also shifts toward black on the display, and the effect of optical crosstalk is displayed. Offset above. Similarly, if pixel A (m, n + i) is shifted in the direction in which it becomes white on the display, pixel A (m, n) is similarly shifted in the direction in which it becomes white on the display, and optical crosstalk is reduced. The effects are offset on the display. In this manner, in the present embodiment, optical crosstalk can be made inconspicuous on display, and the image quality can be improved. When the liquid crystal layer is driven by a positive voltage, the result is as shown in FIG. 3, and no problem occurs as in the conventional case. The operation of the second precharge potential PV2 will be described later.
(プリチャージの全体動作について)  (Overall precharge operation)
次に、 サンプリングスィツチでのスィヅチングノィズによる悪影響をも低減し たプリチャージの全体動作について説明する。  Next, a description will be given of the overall precharge operation in which the adverse effect of the switching noise in the sampling switch is also reduced.
図 1におけるすべてのサンプリングスイッチ 106及びスィ ヅチング素子 1 1 4が Nチャンネル型トランジスタにて形成されていた場合の、 本発明の液晶装置 のタイミングチャートを図 5に示す。 ここで図 5は、 図 4に示される画素 A (m , η) の画素 120と、 図 4に示される画素 A (m, n) の画素 1 20にて、 共 に黒表示し、 そのときのデータ信号線における電位の変化を説明するものである。 また、 図 5では、 m— 1番目の水平走査期間におけるプリチャージ信号 P Cが ハイである期間においては、 データ信号線 Snを正極性電位でプリチャージし、 m 番目の水平走査期間におけるプリチヤ一ジ信号 P Cがハイである期間においては、 デー夕信号線 S nを負極性電位でプリチャージするものとして説明する。  FIG. 5 shows a timing chart of the liquid crystal device of the present invention when all the sampling switches 106 and the switching elements 114 in FIG. 1 are formed by N-channel transistors. Here, FIG. 5 shows that the pixel 120 of the pixel A (m, η) shown in FIG. 4 and the pixel 120 of the pixel A (m, n) shown in FIG. 4 both display black. Of the data signal line of FIG. Also, in FIG. 5, during a period in which the precharge signal PC is high in the m-1st horizontal scanning period, the data signal line Sn is precharged with the positive potential, and the precharge in the mth horizontal scanning period is performed. In the description, it is assumed that the data signal line Sn is precharged with the negative potential during the period when the signal PC is high.
本実施の形態においては、 上述した通り、 第 1のプリチャージ電位 PV 1をた とえば 1. 5 V、 第 2のプリチャージ電位 PV 2をたとえば 6. 5Vに設定して いる。 In the present embodiment, as described above, the first precharge potential PV1 is set to, for example, 1.5 V, and the second precharge potential PV2 is set to, for example, 6.5 V. I have.
m— 1番目の水平同期信号 SYNCが入力されることによって、 水平走査信号 (m- 1 ) がハイになる。 このため、 走査信号線 Hm-1に接続された全てのスイツ チング素子 1 14がオンする。 この後、 プリチャージ信号 P Cがハイとなり、 全 てのプリチャージスィッチ 1 72がオンされる。 これにより、 奇数番目のデータ 信号線 S l、 S 3、 -S n - 1 , Sn+ 1、 Sn + 3…には、 第 1のプリチヤ一 ジ電源 1 74 aからの第 1のプリチャージ電位 PV 1 ( 1. 5 V) が供給される。 一方、 偶数番目のデータ信号線 S 2、 S 4、 -S n, Sn+2、 Sn+ 6…には、 第 2のプリチャージ電源 174 bからの第 2のプリチャージ電位 PV2 (6. 5 V) が供給される。  m — The horizontal scanning signal (m-1) goes high when the first horizontal synchronization signal SYNC is input. Therefore, all the switching elements 114 connected to the scanning signal line Hm-1 are turned on. Thereafter, the precharge signal PC becomes high, and all the precharge switches 172 are turned on. As a result, the first precharge potential PV from the first precharge power supply 174a is applied to the odd-numbered data signal lines S1, S3, -Sn-1, Sn + 1, Sn + 3,. 1 (1.5 V) is supplied. On the other hand, the even-numbered data signal lines S2, S4, -Sn, Sn + 2, Sn + 6,... Are connected to the second precharge potential PV2 (6.5 V ) Is supplied.
ここで図 5に示すデータ信号線 S nの電位は、 このプリチャージ動作以前に、 画素 A (m— 2, n) にて黒表示を行っていたとすると、 黒レベル電位 B 1 ( 1 V) の付近となっている。 その後、 上述したプリチャージ動作が開始されるため、 デ一夕信号線 Snは第 2のプリチャージ電位 PV2 ( 6. 5 V) にプリチャージさ れる。 なお、 デ一夕信号線 Snは寄生容量 CD2を有するため、 プリチャージ期間 が終了した後もデータ信号線 S nは第 2のプリチャージ電位 PV 2を維持する。 さらにその後、 図 4の走査信号線 Hm-1と接続された全ての画素に対し、 データ 信号のサンプリングが開始される。 データ信号のサンプリングは、 たとえばデー 夕信号線 1 1 2の総数が 652本であれば、 例えば左端のデータ信号線から順に、 サンプリング信号に応じてデータ信号線毎にデータ信号を順次サンプリングする 点順次方式によって行われる。 そして、 画素 A (m- 1 , η) には黒を表示する ため、 サンプリング期間に豆ってサンプリングスィツチ 1 06を介してデ一夕信 号線 Snに正極性側の黒レベル電位 Β 2 ( 1 I V) が供給される。 そして、 画素 A (m— 1 , n) における蓄積容量 1 1 7及び液晶層 1 1 6に電荷を充電させ、 黒 表示が行われる。  Here, the potential of the data signal line Sn shown in FIG. 5 becomes black level potential B 1 (1 V) if the pixel A (m-2, n) performs black display before this precharge operation. It is near. Thereafter, since the above-described precharge operation is started, the overnight signal line Sn is precharged to the second precharge potential PV2 (6.5 V). Since the data signal line Sn has a parasitic capacitance CD2, the data signal line Sn maintains the second precharge potential PV2 even after the precharge period ends. Thereafter, sampling of the data signal is started for all the pixels connected to the scanning signal line Hm-1 in FIG. For example, if the total number of data signal lines 112 is 652, for example, the data signals are sampled sequentially from the leftmost data signal line for each data signal line according to the sampling signal. It is done by the method. Then, in order to display black on pixel A (m−1, η), the black level potential 正極 2 (1) on the positive polarity side is applied to the data signal line Sn via the sampling switch 106 during the sampling period. IV) is supplied. Then, the storage capacitor 1 17 and the liquid crystal layer 1 16 in the pixel A (m−1, n) are charged with electric charge, and black display is performed.
このとき、 図 5のタイミングチャートに示されるように、 サンプリング信号の 立ち上がりにてサンプリングスィッチ 1 06をオンする時に、 スイッチングノィ ズが発生し、 それがデ一夕信号線 S nに重畳される。 このサンプリングスィッチ 106のオン時に発生するスィツチングノイズは、 デ一夕信号線 S nの電位を一 時的に増加させる方向に作用する。 At this time, as shown in the timing chart of FIG. 5, when the sampling switch 106 is turned on at the rise of the sampling signal, a switching noise is generated, which is superimposed on the data signal line Sn. This sampling switch Switching noise generated when the switch 106 is on acts in a direction to temporarily increase the potential of the data signal line Sn.
このように、 サンプリングスィツチ 1 06に Nチャンネル型トランジスタを用 いると、 第 2のプリチャージ電位 PV 2からデータ信号電位にデ一夕信号線 S n を充電させるときに、 スィツチングノイズはその充電を早める方向に作用する。 このため、 第 2のプリチャージ電位 PV2を従来の 8 Vよりも低い 6. 5Vに設 定しても、 サンプリング期間が終了する前に本来のデータ信号電位まで充電され ないという事態は低減する。  As described above, when an N-channel transistor is used for the sampling switch 106, when the data line S n is charged from the second precharge potential PV 2 to the data signal potential, the switching noise causes the charging noise to increase. Acts in the direction of hastening. For this reason, even if the second precharge potential PV2 is set to 6.5 V, which is lower than the conventional 8 V, the situation that the original data signal potential is not charged before the sampling period ends is reduced.
このサンプリング信号が立ち下がると、 サンプリングスィツチ 1 06がオフさ れるが、 このとき先に説明した電圧降下 2がサンプリングスィッチ 106の 寄生容量により生じ、 図 5に示すようにデータ信号線 Snの電位が降下する。 こ のため、 画素 A (m— 1, n) に充電される電圧は、 本来のデ一夕信号電位に対 して、 上述した降下電圧 Δν 1に基づく低い電圧となる。 さらに画素においても 上述した降下電圧 AV 2が発生する。 ただし、 これらの降下電圧を見込んで対向 基板に形成した共通電極に印加する共通電極電位を低くしておけば、 画素の液晶 層には該画素の黒表示に必要な電圧を印加できる。  When this sampling signal falls, the sampling switch 106 is turned off. At this time, the voltage drop 2 described above is caused by the parasitic capacitance of the sampling switch 106, and the potential of the data signal line Sn is reduced as shown in FIG. Descend. For this reason, the voltage charged in the pixel A (m-1, n) is a low voltage based on the above-described voltage drop Δν 1 with respect to the original data signal potential. Further, the above-described voltage drop AV2 also occurs in the pixel. However, if the common electrode potential applied to the common electrode formed on the opposite substrate is lowered in consideration of these voltage drops, a voltage required for black display of the pixel can be applied to the liquid crystal layer of the pixel.
なお、 サンプリングスィツチ 106を CMOS トランジスタ構造で構成してお けば、 このような電圧降下を防止することができる。  If the sampling switch 106 has a CMOS transistor structure, such a voltage drop can be prevented.
その後、 水平走査信号 (m— l) がロウとなり、 水平走査信号 (m) がハイと なる。 これにより、 図 4に示す走査信号線 Hmが選択されて、 この水平走査線 H mに接続された全てのスィツチング素子 1 14がオンする。  Thereafter, the horizontal scanning signal (m−l) goes low and the horizontal scanning signal (m) goes high. Thereby, the scanning signal line Hm shown in FIG. 4 is selected, and all the switching elements 114 connected to the horizontal scanning line Hm are turned on.
そして、 以下、 走査信号線 Hm-1と同様にしてプリチャージ動作及びデ一夕書き 込み動作が実施される。 ただし、 m番目の水平走査期間でのプリチャージ動作及 びデータ書き込み動作はいずれも負極性の電圧にて実施される。 このため、 プリ チャージ動作前に図 1のスィツチ 1 90が切り換えられる。 この結果、 奇数番目 のデ一夕信号線 S l、 S 3、 -S n- 1 , S n+ 1、 Sn+3…には、 第 2のプ リチャージ電源 1 74 bからの第 2のプリチャージ電位 PV 2 (6. 5V) が供 給される。 一方、 偶数番目のデータ信号線 S 2、 S 4, -Sn, S n+ 2、 Sn + 4…には、 第 2のプリチャージ電源 1 74 aからの第 1のプリチャージ電位 P V I ( 1. 5 V) が供給される。 Thereafter, the precharge operation and the overnight write operation are performed in the same manner as the scanning signal line Hm-1. However, both the precharge operation and the data write operation in the m-th horizontal scanning period are performed with a negative voltage. Therefore, the switch 190 in FIG. 1 is switched before the precharge operation. As a result, the odd-numbered signal lines S1, S3, -Sn-1, Sn + 1, Sn + 3,. Potential PV 2 (6.5 V) is supplied. On the other hand, even-numbered data signal lines S2, S4, -Sn, Sn + 2, Sn The first precharge potential PVI (1.5 V) from the second precharge power supply 174a is supplied to +4.
この m番目の水平走査期間でのデータ信号線 Snの電位について検討する。 この データ信号線 S nの電位は、 画素 A (m- 1 , η) にて黒表示を行なうための電 位から、 まず第 1のプリチャージ電位 PV 1 ( 1. 5 V) にプリチヤ一ジされる。 この後、 図 5のタイミングチャートに示されるように、 サンプリング信号の立ち 上がりにてサンプリングスィツチ 1 06をオンする時に、 スィツチングノィズが 発生し、 それがデ一夕信号線 S ηに重畳される。 このサンプリングスィッチ 10 6のオン時に発生するスィツチングノイズは、 デ一夕信号線 S ηの電位を一時的 に増加させる方向に作用し、 プリチャージによってデ一夕信号線 S ηの電位を黒 レベル電位 B l ( I V) まで放電させる方向とは逆方向に作用する。  Consider the potential of the data signal line Sn in the m-th horizontal scanning period. The potential of the data signal line Sn is first changed to a first precharge potential PV 1 (1.5 V) from a potential for performing black display at the pixel A (m−1, η). Is done. Thereafter, as shown in the timing chart of FIG. 5, when the sampling switch 106 is turned on at the rise of the sampling signal, switching noise occurs, and is superimposed on the data signal line Sη. You. The switching noise generated when the sampling switch 106 is turned on acts in the direction of temporarily increasing the potential of the data signal line Sη, and the precharge causes the potential of the data signal line Sη to become black level. It acts in the direction opposite to the direction of discharging to the potential B l (IV).
従って m番目の水平走査期間では、 上述のスイッチングノイズが、 データ信号 線 S nが黒レベル電位 B 1の電位となるように放電する動作を遅らせるように作 用する。 しかしながら、 本実施の形態では第 1のプリチャージ電位 PV 1を 1. 5 Vに設定し、 黒レベル電位 B l ( 1. 5 V) との差が 0. 5 Vであるので、 サ ンプリング期間中にデータ信号線 S nを黒レベル電位 B 1に到達させることがで きる。  Therefore, in the m-th horizontal scanning period, the switching noise acts to delay the operation of discharging the data signal line Sn so as to have the black level potential B1. However, in the present embodiment, the first precharge potential PV 1 is set to 1.5 V, and the difference from the black level potential Bl (1.5 V) is 0.5 V. During this time, the data signal line Sn can reach the black level potential B1.
このように、 サンプリングスィッチ 1 06が Nチャンネル型トランジス夕の場 合には、 そのスイッチングノイズはデータ信号線 S nを放電させる場合に悪影響 を及ぼす。 データ信号線 S nを放電させる場合の最も過酷な条件は、 データ信号 線 S nを黒レベル電位 B l ( I V) に設定するときである。 従って、 本実施の形 態では、 第 1のプリチャージ電位 PV 1を、 黒レベル電位 B 1 ( I V) に近い 1 . 5 Vに設定している。 なお、 第 1のプリチャージ電位 PV 1が黒レベル電位 B 1を下回ると、 サンプリングスィッチ 1 06のゲート電位とソース電位とが等し くなり、 リークが生ずる恐れがある。 このため、 第 1のプリチャージ電位 PV 1 は、 回路定数のばらつき等も考慮して常に黒レベル電位 B 1より高く、 しかも黒 レベル電位 B 1になるべく近い値となるように設定することが好ましい。  As described above, when the sampling switch 106 is an N-channel type transistor, the switching noise has an adverse effect when the data signal line Sn is discharged. The most severe condition for discharging the data signal line Sn is when the data signal line Sn is set to the black level potential Bl (IV). Therefore, in the present embodiment, the first precharge potential PV1 is set to 1.5 V, which is close to the black level potential B1 (IV). If the first precharge potential PV1 is lower than the black level potential B1, the gate potential and the source potential of the sampling switch 106 become equal, which may cause a leak. For this reason, the first precharge potential PV 1 is preferably set to be always higher than the black level potential B 1 and to be as close as possible to the black level potential B 1 in consideration of variations in circuit constants and the like. .
また、 第 2のプリチャージ電位 PV2は、 本実施の形態では正極性の電圧駆動 時での白レベル電位 W2 ( 7 V) よりも低い 6. 5Vに設定している。 その理由 の一つは、 図 5の m番目の水平走査期間では、 この 6. 5 Vの第 2のプリチヤ一 ジ電位 PV2より、 常にデータ信号線 S nを充電することで、 白レベル電位 W2 (7 V) 及び黒レベル電位 B 2 ( 1 I V) 間のいずれかデータ信号電位に設定で きるからである。 このとき、 サンプリング期間開始時のスイッチングノイズは、 その充電を早める方向に作用する。 従って、 従来のように第 2のプリチヤ一ジ電 位 P V 2を 8 Vに設定しなくても、 本実施の形態でもサンプリング期間内に本来 のデータ信号電位までデータ信号線 S nを充電させることができる。 In the present embodiment, the second precharge potential PV2 is a positive voltage drive. Is set to 6.5 V, which is lower than the white level potential W2 (7 V) at the time. One of the reasons is that, during the m-th horizontal scanning period in FIG. 5, the data signal line Sn is always charged from the 6.5 V second precharge voltage PV2, so that the white level potential W2 This is because any data signal potential between (7 V) and the black level potential B 2 (1 IV) can be set. At this time, the switching noise at the start of the sampling period acts to accelerate the charging. Therefore, even if the second precharge voltage PV2 is not set to 8 V as in the conventional case, the data signal line Sn can be charged to the original data signal potential within the sampling period in the present embodiment. Can be.
なお、 第 2のプリチャージ電位 PV2の設定に関しては、 本実施の形態の第 1 , 第 2のプリチャージ電位 PV 1 , PV2間の電位差が、 従来の第 1 , 第 2のプ リチャージ電位 PV 1, PV 2間の電位差である 4 V以上確保できる条件であれ ば、 種々の値に設定し得る。 こうすれば、 第 2のプリチヤ一ジ電位から正極性デ —夕電圧振幅 (W2〜B 2) の範囲のデータ信号電位までの電位差を、 サンプリ ング期間内に充放電できる電位差に止めることができるからである。 特に、 画像 データを上述したように相展開した場合には、 その各画像デ一夕をサンプリング するためのサンプリング期間に多少のバラツキがあつたとしても、 それぞれのデ 一夕信号線をデータ信号電位になるまで充放電することができる。 この結果、 サ ンプリング期間のバラツキに起因した縦縞が画面に生ずることを低減できる。 なお、 m番目の水平走査期間においても、 サンプリングスィッチ 172のオフ 時に上述した降下電圧 AV 1が生じ、 図 5に示す通りデ一夕信号線 Snの電位が 黒レベル電位 B 1よりも低い電圧となることは、 上述した通りである。  Note that the setting of the second precharge potential PV2 is based on the difference between the first and second precharge potentials PV1 and PV2 in the present embodiment being the same as the conventional first and second precharge potentials PV1 and PV2. Various values can be set as long as 4 V or more, which is the potential difference between PV2 and PV, can be secured. By doing so, the potential difference from the second precharge potential to the data signal potential in the range of the positive polarity data amplitude (W2 to B2) can be limited to the potential difference that can be charged and discharged during the sampling period. Because. In particular, when the image data is phase-expanded as described above, even if there is some variation in the sampling period for sampling each image data, each data line is connected to the data signal potential. Charge and discharge until As a result, it is possible to reduce the occurrence of vertical stripes on the screen due to variations in the sampling period. Note that, also during the m-th horizontal scanning period, the above-described voltage drop AV1 occurs when the sampling switch 172 is turned off, and as shown in FIG. 5, the potential of the data signal line Sn is set to a voltage lower than the black level potential B1. Is as described above.
(比較例 1の説明)  (Description of Comparative Example 1)
図 6は、 図 5に示す第 1 , 第 2のプリチャージ電位 P V 1 , PV 2をそれぞれ、 従来の 4 V, 8 Vに設定した場合の比較例 1のタイミングチャートを示している。 図 6の m番目の水平走査期間では、 スイッチングノイズの悪影響により、 デ一夕 信号線 S nの電位が第 1のプリチャージ電位 P V 1 ( 4 V) から黒レベル電位 B 1に放電される前にサンリング期間が終了している。 このため、 デ一夕信号線 S nの電位は、 本来の黒に対応するデータ信号電位でない電位 V aとなり、 画素 A (m, n) には本来のデータを反映しない電荷がチャージされ、 画質が劣化する ことが分かる。 FIG. 6 shows a timing chart of Comparative Example 1 when the first and second precharge potentials PV 1 and PV 2 shown in FIG. 5 are set to 4 V and 8 V, respectively, in the related art. In the m-th horizontal scanning period in FIG. 6, before the potential of the signal line Sn is discharged from the first precharge potential PV 1 (4 V) to the black level potential B 1 due to the adverse effect of switching noise. The sunring period has ended. Therefore, the potential of the data signal line Sn becomes the potential Va which is not the data signal potential corresponding to the original black, and the pixel A It can be seen that (m, n) is charged with a charge that does not reflect the original data, degrading the image quality.
<実施の形態 2 > <Embodiment 2>
次に、 図 1及び図 4に示すスイツチング素子 1 14またはサンプリングスイツ チ 1 06を Pチャンネル型トランジスタにて形成した実施の形態 2について説明 する。  Next, a second embodiment in which the switching element 114 or the sampling switch 106 shown in FIGS. 1 and 4 is formed by a P-channel transistor will be described.
(光クロストークの悪影響を低減したプリチャージ動作について)  (About precharge operation that reduces the adverse effects of optical crosstalk)
まず、 スィヅチング素子 1 14を Pチャンネル型トランジスタとした場合の、 光クロス トークによる画質の劣化を低減する手法について説明する。  First, a method for reducing the deterioration of image quality due to optical crosstalk when the switching element 114 is a P-channel transistor will be described.
この場合には、 図 7に示すように、 第 1のプリチャージ電位 P V 1は 5. 5 V に設定され、 第 2のプリチャージ電位 PV2は 1 0. 5Vに設定されている。 こ のように、 第 1 , 第 2のプリチャージ電位 P V 1 , PV2は、 デ一夕信号電位の 振幅中心 V cに対して非対称に設定されている。  In this case, as shown in FIG. 7, the first precharge potential PV 1 is set to 5.5 V, and the second precharge potential PV2 is set to 10.5 V. As described above, the first and second precharge potentials PV1 and PV2 are set asymmetrically with respect to the amplitude center Vc of the overnight signal potential.
さらに、 本実施の形態では、 第 2のプリチャージ電位 PV2は、 正極性の電圧 駆動におけるデータ信号電位の振幅中心 VC2 (9 V) よりも第 2電位 ( 1 I V) に近づけて設定されている。 第 1のプリチャージ電位 P V 1は、 負極性の電圧駆 動の第 2電位 W1 ( 5 V) よりも大きい値に設定されている。  Further, in the present embodiment, the second precharge potential PV2 is set closer to the second potential (1 IV) than the amplitude center VC2 (9 V) of the data signal potential in positive voltage driving. . The first precharge potential PV1 is set to a value larger than the second potential W1 (5 V) of the voltage drive of the negative polarity.
ここで、 図 14に示す画素 A (m, n) と画素 A (m, n+ i) を正極性の電 圧にて駆動する場合であって、 その画素の一端に中間調表示のための電圧 (8V ) を印加する場合について説明する。 この場合、 Nチャンネル型トランジスタを 用いた場合とは異なり、 Pチャンネル型トランジス夕にてスィツチング素子を形 成すると、 図 7に示す通り、 8 Vよりも AV3だけ上昇した電圧が液晶層にチヤ —ジされる。 この上昇電圧 AV 3は、 図 4のスィヅチング素子 1 14 aを Ρチヤ ンネル型トランジス夕として、 上述した Nチャンネル型トランジス夕での降下電 圧 AV 1を求めた式と同様にして求められる。  Here, pixel A (m, n) and pixel A (m, n + i) shown in Fig. 14 are driven by a positive voltage, and one end of the pixel has a voltage for halftone display. (8V) will be described. In this case, unlike the case where an N-channel transistor is used, when a switching element is formed by a P-channel transistor, a voltage higher than 8 V by AV3 is applied to the liquid crystal layer as shown in FIG. Will be The rising voltage AV3 is determined in the same manner as the above-described equation for determining the drop voltage AV1 in the N-channel type transistor, with the switching element 114a in FIG. 4 being a channel type transistor.
ところで、 図 1 5に示す画素 A (m, n) では、 デ一夕信号線 S nに接続され た全ての画素にて中間調表示がなされるため、 正極性電圧駆動の前のプリチヤー ジ時には、 デ一夕線 S nが第 2のプリチヤ一ジ電位 P V 1 ( 10. 5 V) にプリ チャージされる。 図 7が従来の図 8と相違する点はこの点である。 従来の図 8の 方式では、 正極性の電圧が書き込まれた画素 A (m, n) のチヤ一ジ電圧は、 光 によって TFTにてリークが生することで、 デ一夕信号線 S nに印加されるチヤ —ジ電圧より低い第 1 , 第 2プリチャージ電位の影響を受けて、 負極性電圧方向 のみに一方的に変動する。 しかし、 図 7の場合には、 プリチヤ一ジ電位 PV 2が チャージ電圧より高いため、 画素 A (m, n) はデ一夕信号線に印加されるチヤ —ジ電圧より高い及び低い電位の影響を受けて、 正負の双方向にするように変動 し、 この点で画素 A (m, n+ i) と同様の変動条件となる。 このため、 画素 A (m, n+ i) が表示上で黒くなる方向にシフ トすると、 画素 A (m, n) にお いても同様に表示上で黒くなる方向にシフトし、 光クロストークの影響が表示上 で相殺される。 同様に、 画素 A (m, n+ i) が表示上白くなる方向にシフ トす ると、 画素 A (m, n) においても同様に表示上で白くなる方向にシフ トし、 光 クロストークの影響が表示上で相殺される。 このようにして、 本実施の形態では 光クロスト一クを表示上目立たなくさせることができ、 画質が向上する。 なお、 液晶層を負極性の電圧にて駆動する場合には、 図 7の通りであり、 従来と同様に 問題は生じない。 By the way, in the pixel A (m, n) shown in FIG. 15, since all pixels connected to the data signal line Sn perform halftone display, the precharge before positive voltage driving is performed. At this time, the data line Sn is precharged to the second precharge potential PV1 (10.5 V). FIG. 7 differs from the conventional FIG. 8 in this respect. In the conventional method of Fig. 8, the charge voltage of the pixel A (m, n) to which the positive polarity voltage is written is leaked to the signal line Sn by the light due to the TFT leaking by light. Under the influence of the first and second precharge potentials lower than the applied charge voltage, the voltage fluctuates unilaterally only in the negative voltage direction. However, in the case of FIG. 7, since the precharge voltage PV 2 is higher than the charge voltage, the pixel A (m, n) is affected by the potential higher and lower than the charge voltage applied to the data signal line. In response to this, it fluctuates in both positive and negative directions. For this reason, if pixel A (m, n + i) is shifted in the direction to become black on the display, pixel A (m, n) is similarly shifted in the direction to become black on the display, and optical crosstalk is reduced. The effects are offset on the display. Similarly, if pixel A (m, n + i) is shifted in the direction of whitening on the display, pixel A (m, n) is also shifted in the direction of whitening on the display, and optical crosstalk is reduced. The effects are offset on the display. In this manner, in this embodiment, the optical crosstalk can be made inconspicuous on display, and the image quality can be improved. When the liquid crystal layer is driven by a negative voltage, the result is as shown in FIG. 7, and no problem occurs as in the conventional case.
(プリチャージの全体動作について)  (Overall precharge operation)
図 1におけるすべてのサンプリングスィッチ 106及びスイツチング素子 1 1 4が全て Pチャンネル型トランジスタにて形成されていた場合の、 本発明の液晶 装置のタイミングチャートを図 9に示す。 ここで図 9は、 図 5と同様に、 図 4に 示される画素 A (m— 1 , n) の画素 1 20と、 図 4に示される画素 A (m, n ) の画素 1 20にて、 共に黒表示し、 そのときのデータ信号線における電位の変 化を説明するものである。  FIG. 9 shows a timing chart of the liquid crystal device of the present invention in a case where all the sampling switches 106 and the switching elements 114 in FIG. 1 are all formed by P-channel transistors. Here, FIG. 9 shows, similarly to FIG. 5, the pixel 120 of the pixel A (m−1, n) shown in FIG. 4 and the pixel 120 of the pixel A (m, n) shown in FIG. , Are both displayed in black to explain the change in potential at the data signal line at that time.
なお、 図 9では、 図 5と異なり、 Pチャンネル型トランジスタであるサンプリ ングスィッチ 106はサンプリング信号がロウのときにオンされ、 Pチャンネル 型トランジスタであるスィツチング素子 1 1 6は走査信号がロウのときにオンさ れる。 本実施の形態においては、 上述した通り、 第 1のプリチャージ電位 PV 1をた とえば 5. 5 V、 第 2のプリチャージ電位 PV2をたとえば 1 0. 5Vに設定し ている。 In FIG. 9, unlike FIG. 5, the sampling switch 106 which is a P-channel transistor is turned on when the sampling signal is low, and the switching element 1 16 which is a P-channel transistor is turned on when the scanning signal is low. It is turned on. In the present embodiment, as described above, the first precharge potential PV1 is set to 5.5 V, for example, and the second precharge potential PV2 is set to 10.5 V, for example.
m— 1番目の水平同期信号 SYNCが入力されることによって、 水平走査信号 (m— 1 ) がロウになるため、 走査信号線 Hmに接続された全てのスイッチング 素子 1 14がオンする。 この後、 プリチャージ信号 P Cがハイとなり、 全てのプ リチャージスィッチ 1 72がオンされる。 これにより、 奇数番目のデータ信号線 S l、 S 3、 -S n - 1 , Sn+ 1、 S n+ 3…には、 第 1のプリチャージ電源 174 aからの第 1のプリチャージ電位 PV 1 (5. 5 V) が供給される。 一方、 偶数番目のデータ信号線 S 2、 S 4、 -S n, S n+ 2、 S n + 4…には、 第 2 のプリチャージ電源 174 bからの第 2のプリチヤ一ジ電位 PV 2 ( 1 0. 5 V ) が供給される。  The horizontal scanning signal (m-1) becomes low by inputting the m-th horizontal synchronizing signal SYNC, so that all the switching elements 114 connected to the scanning signal line Hm are turned on. Thereafter, the precharge signal PC becomes high, and all the precharge switches 172 are turned on. As a result, the odd-numbered data signal lines S l, S 3, -S n -1, Sn + 1, S n + 3... Are supplied with the first precharge potential PV 1 ( 5.5 V) is supplied. On the other hand, the even-numbered data signal lines S2, S4, -Sn, Sn + 2, Sn + 4,... Are connected to the second precharge potential PV2 ( 10.5 V) is supplied.
ここで図 9に示すデ一夕信号線 S nの電位は、 このプリチャージ動作以前に、 画素 A (m— 2, n) にて黒表示を行っていたとすると、 黒レベル電位 B 1 ( 1 V) の付近となっている。 その後、 上述したプリチャージ動作が開始されるため、 デ一夕信号線 Snは第 2のプリチャージ電位 PV2 ( 1 0. 5V) にプリチヤ一ジ される。  Here, assuming that the pixel A (m−2, n) performs black display before the precharge operation, the potential of the data signal line Sn shown in FIG. 9 becomes black level potential B 1 (1 V). Thereafter, since the above-described precharge operation is started, the overnight signal line Sn is precharged to the second precharge potential PV2 (10.5 V).
さらにその後、 図 4の走査信号線 Hm-1と接続された全ての画素に対し、 データ 信号のサンプリングが開始される。 画素 A (m— 1 , n) には黒を表示するため、 サンプリング期間に豆ってサンプリングスィツチ 106を介してデ一夕信号線 S nに正極性側の黒レベル電位 B 2 ( 1 I V) が供給される。 そして、 画素 A (m— 1 , n) に電圧を充電し、 黒表示が行われる。  Thereafter, sampling of the data signal is started for all the pixels connected to the scanning signal line Hm-1 in FIG. In order to display black on pixel A (m-1, n), the black level potential B 2 (1 IV) on the positive polarity side is applied to the data signal line Sn via the sampling switch 106 during the sampling period. Is supplied. Then, a voltage is charged to the pixel A (m-1, n), and a black display is performed.
このとき、 図 9のタイミングチャートに示されるように、 サンプリング信号の 立ち下がりにてサンプリングスィツチ 1 06をオンする時に、 スィツチングノィ ズが発生し、 それがデ一夕信号線 S nに重畳される。 このサンプリングスィッチ 106のオン時に発生するスィツチングノイズは、 デ一夕信号線 S nの電位を一 時的に減少させる方向に作用する。  At this time, as shown in the timing chart of FIG. 9, when the sampling switch 106 is turned on at the falling edge of the sampling signal, switching noise is generated and is superimposed on the data signal line Sn. The switching noise generated when the sampling switch 106 is turned on acts in a direction to temporarily reduce the potential of the data signal line Sn.
このように、 サンプリングスイッチ 1 06が Pチャンネル型トランジスタの場 合には、 そのスィツチングノイズはデータ信号線 S nを充電させる場合に悪影響 を及ぼす。 デ一夕信号線 S nを放電させる場合の最も過酷な条件は、 データ信号 線 Snを黒レベル電位 B 2 ( 1 I V) に設定するときである。 従って、 本実施の 形態では、 第 2のプリチャージ電位 PV2を、 黒レベル電位 B 2 ( 1 1 V) に近 い 1 0. 5 Vに設定している。 なお、 第 2のプリチャージ電位 PV2が黒レベル 電位 B 2を上回ると、 サンプリングスィツチ 106のゲート電位とソース電位と が等しくなり、 リークが生ずる恐れがある。 このため、 第 2のプリチヤ一ジ電位 PV2は、 回路定数のばらつき等も考慮して常に黒レベル電位 B 2より低く、 し かも黒レベル電位 B 2になるべく近い値となるように設定することが好ましい。 このサンプリング信号が立ち上がると、 サンプリングスィッチ 1 06がオフさ れるが、 このときスイッチング素子 1 14にて説明した電圧降下とは逆に電圧上 昇が生じ、 図 9に示すようにデ一夕信号線 S nの電位が上昇する。 この上昇電圧 △ V4は、 実施の形態 1にて説明した降下電圧 Δν 2と同様な式にて求められる。 このため、 画素 A (m— 1 , n) の液晶層に充電される電圧は、 本来のデ一夕 信号電位よりも、 上述した上昇電圧 Δν 3及び AV4分高い電圧となる。 ただし、 この上昇電圧を見込んで対向基板に形成した共通電極に印加される共通電極電位 も高くしておけば、 液晶層には該画素の黒表示に必要な電圧を印加できる。 なお、 サンプリングスィツチ 106を CMO S トランジス夕構造としておけば、 このよ うな電圧上昇を防止することができる。 Thus, when the sampling switch 106 is a P-channel transistor, In this case, the switching noise has an adverse effect when the data signal line Sn is charged. The most severe condition for discharging the overnight signal line Sn is when the data signal line Sn is set to the black level potential B 2 (1 IV). Therefore, in the present embodiment, the second precharge potential PV2 is set to 10.5 V, which is close to the black level potential B2 (11 V). If the second precharge potential PV2 exceeds the black level potential B2, the gate potential and the source potential of the sampling switch 106 become equal, and there is a possibility that leakage occurs. For this reason, the second precharge potential PV2 may be set to be always lower than the black level potential B2 and to be as close as possible to the black level potential B2 in consideration of variations in circuit constants and the like. preferable. When this sampling signal rises, the sampling switch 106 is turned off. At this time, a voltage rise occurs contrary to the voltage drop described for the switching element 114, and the data signal line is turned off as shown in FIG. The potential of Sn rises. The rising voltage ΔV4 is obtained by the same equation as the falling voltage Δν2 described in the first embodiment. For this reason, the voltage charged in the liquid crystal layer of the pixel A (m-1, n) is higher than the original data signal potential by the above-mentioned rising voltage Δν 3 and AV 4. However, if the potential of the common electrode applied to the common electrode formed on the opposite substrate is set high in anticipation of the rising voltage, a voltage necessary for black display of the pixel can be applied to the liquid crystal layer. If the sampling switch 106 has a CMOS transistor structure, such a rise in voltage can be prevented.
その後、 水平走査信号 (m— 1) がハイとなり、 水平走査信号 (m) がロウと なる。 これにより、 図 4に示す走査信号線 Hmが選択されて、 この水平走査線 H mに接続された全てのスィツチング素子 1 14がオンする。  Thereafter, the horizontal scanning signal (m-1) goes high and the horizontal scanning signal (m) goes low. Thereby, the scanning signal line Hm shown in FIG. 4 is selected, and all the switching elements 114 connected to the horizontal scanning line Hm are turned on.
そして、 以下、 走査信号線 Hm— 1と同様にしてプリチャージ動作及びデータ 書き込み動作が実施される。 ただし、 今回のプリチャージ動作及びデータ書き込 み動作はいずれも正極性の電圧にて実施される。 このため、 図 1のスィッチ 19 0が切り換えられる。 この結果、 奇数番目のデ一夕信号線 S 1、 S 3、 -Sn- 1 , Sn+ 1、 S n+ 3…には、 第 2のプリチャージ電源 174 bからの第 2の プリチャージ電位 PV 2 ( 5. 5 V) が供給される。 一方、 偶数番目のデ一夕信 号線 S 2、 S 4、 -S n, Sn+ 1、 S n+ 3…には、 第 1のプリチャージ電源 174 aからの第 1のプリチヤ一ジ電位 PV 1 ( 10. 5 V) が供給される。 この m番目の水平走査期間でのデータ信号線 S nの電位について検討する。 この デ一夕信号線 S nの電位は、 画素 A (m— 1 , n) にて黒表示を行なうための電 位から、 第 1のプリチャージ電位 P V 1 (5. 5 V) にプリチャージされる。 こ の後、 図 9のタイミングチャートに示されるように、 サンプリング信号の立ち下 がりにてサンプリングスィッチ 1 06をオンする時に、 スイッチングノィズが発 生し、 それがデ一夕信号線 S nに重畳される。 このサンプリングスィッチ 1 06 のオン時に発生するスィツチングノイズは、 データ信号線 S nの電位を一時的に 減少させる方向に作用し、 プリチャージによってデ一夕信号線 S nの電位を黒レ ベル電位 B l ( I V) まで放電させる方向と同方向に作用する。 Thereafter, the precharge operation and the data write operation are performed in the same manner as the scanning signal line Hm-1. However, both the precharge operation and the data write operation this time are performed at positive voltage. For this reason, the switch 190 in FIG. 1 is switched. As a result, the second precharge potential PV 2 from the second precharge power supply 174b is applied to the odd-numbered data signal lines S1, S3, -Sn-1, Sn + 1, Sn + 3,. (5.5 V) is supplied. On the other hand, even-numbered The first precharge potential PV1 (10.5 V) from the first precharge power supply 174a is supplied to the signal lines S2, S4, -Sn, Sn + 1, Sn + 3,. . Consider the potential of the data signal line Sn during the m-th horizontal scanning period. The potential of the data signal line Sn is precharged to a first precharge potential PV 1 (5.5 V) from a potential for performing black display at the pixel A (m-1, n). Is done. Thereafter, as shown in the timing chart of FIG. 9, when the sampling switch 106 is turned on at the falling edge of the sampling signal, switching noise occurs, and the switching noise is generated on the data signal line Sn. Superimposed. The switching noise generated when the sampling switch 106 is turned on acts in the direction of temporarily reducing the potential of the data signal line Sn, and the precharge causes the potential of the data signal line Sn to become black level potential. Acts in the same direction as the discharge direction to B l (IV).
従って m番目の水平走査期間では、 上述のスイッチングノイズが、 デ一夕信号 線 S nが黒レベル電位 B 1の電位となる放電を早めるように作用する。 このため、 第 1のプリチヤ一ジ電位 PV 1を従来の 4 Vよりも高くしても、 サンプリング期 間内にデータ信号線 S nの電位を、 第 1のプリチャージ電位からデータ信号電位 に設定することができる。  Therefore, in the m-th horizontal scanning period, the above-described switching noise acts to accelerate the discharge at which the data signal line Sn becomes the black level potential B1. Therefore, even if the first precharge potential PV1 is higher than the conventional 4 V, the potential of the data signal line Sn is set from the first precharge potential to the data signal potential within the sampling period. can do.
特に、 第 1のプリチャージ電位 P V 1は、 負極性の電圧駆動時での白レベル電 位 W 1 ( 5 V) よりも高い 5. 5Vに設定している。 その理由は、 図 9の m番目 の水平走査期間では、 この 5. 5 Vの第 1のプリチャージ電位 P V 1より、 常に デ一夕信号線 Snを放電させることで、 白レベル電位 Wl ( 5V) 及び黒レベル 電位 B 1 ( I V) 間のいずれかデータ信号電位に設定できるからである。 このと き、 サンプリング期間開始時のスイッチングノイズは、 その放電を早める方向に 作用する。  In particular, the first precharge potential P V1 is set to 5.5 V, which is higher than the white level potential W 1 (5 V) during negative voltage drive. The reason is that during the m-th horizontal scanning period in Fig. 9, the white level potential Wl (5V ) And the black level potential B 1 (IV). At this time, the switching noise at the start of the sampling period acts to accelerate the discharge.
なお、 m番目の水平走査期間においても、 サンプリングスィッチ 172のオフ 時に上述した上昇電圧△ V 4が生じ、 図 9に示す通りデータ信号線 S nの電位が 黒レベル電位 B 1よりも高い電圧となることは、 上述した通りである。  Note that, also during the m-th horizontal scanning period, when the sampling switch 172 is turned off, the above-described rising voltage △ V4 is generated, and as shown in FIG. 9, the potential of the data signal line Sn becomes higher than the black level potential B1. Is as described above.
(比較例 2の説明)  (Description of Comparative Example 2)
図 10は、 図 9に示す第 1 , 第 2のプリチヤ一ジ電位 P V 1 , PV2をそれそ れ、 従来の 4 V , 8 Vに設定した場合の比較例 1のタイミングチャートを示して いる。 図 1 0の m— 1番目の水平走査期間では、 スイッチングノイズの悪影響に より、 データ信号線 S nの電位が第 1のプリチャージ電位 P V 1 ( 4 V ) から黒 レベル電位 B 1に充電される前にサンリング期間が終了している。 このため、 デ 一夕信号線 S nの電位は、 本来の黒に対応するデータ信号電位でない電位 V bと なり、 画素 A ( m— 1 , n ) には本来のデータを反映しない電荷がチャージされ、 画質が劣化することが分かる。 FIG. 10 shows the first and second precharge potentials PV 1 and PV 2 shown in FIG. In addition, the timing chart of Comparative Example 1 when the conventional 4 V and 8 V are set is shown. In the m-th horizontal scanning period in Figure 10, the potential of the data signal line Sn is charged from the first precharge potential PV 1 (4 V) to the black level potential B 1 due to the adverse effect of switching noise. Before the sunring period has ended. As a result, the potential of the data signal line Sn becomes the potential Vb which is not the data signal potential corresponding to the original black, and the pixel A (m-1, n) is charged with a charge that does not reflect the original data. It can be seen that the image quality deteriorates.
く実施の形態 3 > Embodiment 3>
上述の各実施の形態の液晶装置を用いて構成される電子機器は、 図 1 8に示す 表示情報出力源 1 0 0 0、 表示情報処理回路 1 0 0 2、 表示駆動回路 1 0 0 4、 液晶パネルなどの表示パネル 1 0 0 6、 クロック発生回路 1 0 0 8および電源回 路 1 0 1 0を含んで構成される。 表示情報出力源 1 0 0 0は、 R O M、 R A M, などのメモリ、 テレビ信号を同調して出力する同調回路などを含んで構成され、 上述のタイミング回路プロック 2 0に相当するクロック発生回路 1 0 0 8からの クロックに基づいて、 ビデオ信号などの表示情報を出力する。  An electronic device including the liquid crystal device according to each of the above-described embodiments includes a display information output source 100000, a display information processing circuit 1002, a display driving circuit 1004 illustrated in FIG. It is configured to include a display panel 106 such as a liquid crystal panel, a clock generation circuit 1008, and a power supply circuit 110.10. The display information output source 100 00 includes a memory such as a ROM and a RAM, a tuning circuit that tunes and outputs a television signal, and the like, and a clock generation circuit 10 corresponding to the timing circuit block 20 described above. Outputs display information such as video signals based on the clock from 08.
表示情報処理回路 1 0 0 2は、 上述の各実施の形態のデータ処理回路プロック 3 0に相当し、 クロック発生回路 1 0 0 8からのクロックに基づいて表示情報を 処理して出力する。 この表示情報処理回路 1 0 0 2は、 上述の増幅 ·極性反転回 路、 相展開回路、 ローテーション回路等の他、 ガンマ補正回路およびクランプ回 路等を含むことができる。  The display information processing circuit 1002 corresponds to the data processing circuit block 30 in each of the above-described embodiments, and processes and outputs display information based on a clock from the clock generation circuit 1008. The display information processing circuit 102 can include a gamma correction circuit, a clamp circuit, and the like, in addition to the above-described amplification / polarity inversion circuit, phase expansion circuit, rotation circuit, and the like.
駆動回路 1 0 0 4は、 上述の走査側駆動回路 1 0 2、 データ側駆動回路 1 0 4 およびプリチャージ駆動回路 1 6 0、 あるいはデータ側駆動回路 1 0 4を含んで 構成され、 画素領域 1 0 0 6を表示駆動する。 電源回路 1 0 1 0は、 上述の各回 路に電力を供給する。  The drive circuit 104 includes the above-described scan-side drive circuit 102, data-side drive circuit 104, and precharge drive circuit 160, or data-side drive circuit 104, and includes a pixel region. 1006 is driven for display. The power supply circuit 110 supplies power to each of the circuits described above.
このような構成の電子機器として、 図 1 9に示す液晶プロジェクタ、 図 2 0に 示すマルチメディア対応のパーソナルコンピュータ (P C ) およびエンジニアリ ング ' ワークステーション (E W S ) 、 ページャ、 あるいは携帯電話、 ヮ一ドプ ロセッサ、 テレビ、 ビューファインダー型またはモニタ直視型のビデオテープレ コーダ、 電子手帳、 電子卓上計算機、 カーナビゲーシヨン装置、 P O S端末、 夕 ツチパネルを備えた装置などを挙げることができる。 The electronic devices having such a configuration include a liquid crystal projector shown in FIG. 19, a personal computer (PC) and an engineering 'workstation (EWS)', a pager or a mobile phone for multimedia shown in FIG. Video processor with a processor, television, viewfinder or monitor Examples include a coder, an electronic organizer, an electronic desk calculator, a car navigation device, a POS terminal, and a device equipped with a touch panel.
図 1 9に示す液晶プロジェクタは、 透過型液晶パネルをライ トバルブとして用 いた投写型プロジェクタであり、 例えば、 プリズム合成方式の光学系を用いてい る。 図 1 9において、 プロジェクタ 1 1 0 0では、 白色光源のランプュニッ ト 1 1 0 2から射出された投写光がライ トガイ ド 1 1 0 4の内部で、 複数のミラ一 1 1 0 6および 2枚のダイクロイツクミラー 1 1 0 8によって R、 G、 Bの 3原色 に分けられ、 それぞれの色の画像を表示する 3枚のァクティブマトリクス型液晶 パネル 1 1 1 0 R、 1 1 1 0 Gおよび 1 1 1 0 Bによって変調された光は、 ダイ クロイツクプリズム 1 1 1 2に 3方向から入射される。  The liquid crystal projector shown in FIG. 19 is a projection type projector using a transmissive liquid crystal panel as a light valve, and uses, for example, an optical system of a prism combining method. In FIG. 19, in the projector 110, the projection light emitted from the lamp unit 1102 of the white light source is provided inside the light guide 1104 by a plurality of mirrors 1106 and 2 sheets. The three dichroic mirrors 111, 108, R, G, and B separate the three primary colors, and each of the three active-matrix-type LCD panels that displays an image of each color. The light modulated by 1110B is incident on the Die-Croitsk prism 1112 from three directions.
ダイクロイツクプリズム 1 1 1 2では、 レツ ド Rおよびブル一 Bの光が 9 0 ° 曲げられ、 グリーン Gの光が直進するので各色の画像が合成され、 投写レンズ 1 1 1 4を通してスクリーンなどにカラ一画像が投写される。 本実施の形態の投写 型プロジェク夕においては、 実施の形態 1および 2に示される液晶装置を適用し ているために、 前記第 1のプリチャージ電位 P V 1と、 前記第 2のプリチャージ 電位 P V 2が、 画素に印加する電圧振幅の中間電位に対して非対称とされている ために、 投写型表示装置における光クロストークを防止することができる。 図 2 0に示すパーソナルコンピュータ 1 2 0 0は、 キーボード 1 2 0 2を備え た本体部 1 2 0 4と、 液晶表示画面 1 2 0 6とを有する。  In the dichroic prism 1 1 1 2, the light of red R and blue B is bent 90 °, and the light of green G goes straight, so that the images of each color are synthesized, and it is projected on the screen through the projection lens 1 1 1 4. A blank image is projected. In the projection type projector according to the present embodiment, since the liquid crystal device described in Embodiments 1 and 2 is applied, the first precharge potential PV1 and the second precharge potential PV Since 2 is asymmetric with respect to the intermediate potential of the voltage amplitude applied to the pixel, optical crosstalk in the projection display device can be prevented. The personal computer 1200 shown in FIG. 20 has a main body 1204 provided with a keyboard 122 and a liquid crystal display screen 1206.
なお、 本発明は上記実施の形態に限定されるものではなく、 本発明の要旨の範 囲内で種々の変形実施が可能である。 例えば、 本発明は上述の各種の液晶パネル の駆動に適用されるものに限らず、 エレクト口ルミネッセンス、 プラズマデイス プレー装置、 C R T等を用いた画像表示装置にも適用可能である。  Note that the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention. For example, the present invention is not limited to being applied to the driving of the above-mentioned various liquid crystal panels, but is also applicable to an image display device using electoran luminescence, a plasma display device, a CRT, or the like.

Claims

請 求 の 範 囲 The scope of the claims
( 1 ) 複数のデータ信号線と複数の走査信号線の交差により形成される複数の 画素の各々に、 液晶層に電気的に接続されたスィツチング素子を配置して成り、 前記液晶層に印加される電圧の極性を所定期間毎に反転させて駆動する液晶装置 において、  (1) A switching element electrically connected to a liquid crystal layer is arranged in each of a plurality of pixels formed by intersections of a plurality of data signal lines and a plurality of scanning signal lines, and is applied to the liquid crystal layer. A liquid crystal device driven by inverting the polarity of the
前記複数の走査信号線の少なくとも 1本を選択する走査信号を、 前記複数の走 査信号線に供給する走査側駆動手段と、  Scanning-side driving means for supplying a scanning signal for selecting at least one of the plurality of scanning signal lines to the plurality of scanning signal lines;
前記複数のデータ信号線の各々に前記データ信号を供給するためのデータ側駆 動手段と、  Data-side driving means for supplying the data signal to each of the plurality of data signal lines;
前記複数のデータ信号線の各々に前記データ信号を供給するのに先立って、 当 該データ信号に基づいて前記画素の液晶層に印加される電圧の極性と同一極性の 正極性又は負極性プリチャージ電位にて、 前記複数のデータ信号線の各々をプリ チャージする複数のプリチヤ一ジ用スィツチング手段と、 を有し、  Prior to supplying the data signal to each of the plurality of data signal lines, a positive or negative precharge having the same polarity as the polarity of the voltage applied to the liquid crystal layer of the pixel based on the data signal. A plurality of precharging switching means for precharging each of the plurality of data signal lines with a potential;
前記データ信号は、 前記液晶層に負極性の電圧を印加する際には第 1電位とそ れょりも高い第 2電位との間の負極性データ電圧振幅の範囲で変化し、 前記液晶 層に正極性の電圧を印加する際には前記第 2電位よりも高い第 3電位とそれより も高い第 4電位との間の正極性データ電圧振幅の範囲で変化し、  When applying a negative voltage to the liquid crystal layer, the data signal changes within a range of a negative data voltage amplitude between a first potential and a second potential that is higher than the first potential. When a positive voltage is applied to the positive electrode, the voltage changes within a range of a positive data voltage amplitude between a third potential higher than the second potential and a fourth potential higher than the third potential,
前記正極性及び負極性プリチャージ電位は、 前記第 1, 第 4電位間のデ一夕電 圧振幅の中心電位に対して非対称に設定され、 かつ、 前記負極性プリチャージ電 位を、 前記負極性データ電圧振幅の中心電位よりも、 前記第 1電位に近づけて設 定したことを特徴とする液晶装置。  The positive and negative precharge potentials are set asymmetrically with respect to a central potential of a voltage amplitude between the first and fourth potentials, and the negative precharge potential is set to A liquid crystal device characterized in that the liquid crystal device is set closer to the first potential than to the central potential of the characteristic data voltage amplitude.
( 2 ) 請求項 1において、  (2) In claim 1,
前記複数のスィツチング素子の各々を、 Nチャンネル型トランジス夕により形 成したことを特徴とする液晶装置。  A liquid crystal device, wherein each of the plurality of switching elements is formed by an N-channel type transistor.
( 3 ) 請求項 1または 2において、  (3) In claim 1 or 2,
前記各デ一夕信号線に供給する前記デ一夕信号を、 前記データ側駆動手段から 出力されるサンプリング信号に基づきサンプリングする複数のサンプリング用ス イッチング手段を有し、 該サンプリング用スイッチング手段の各々を、 Nチャン ネル型トランジスタにより形成したことを特徴とする液晶装置。 A plurality of sampling switching means for sampling the data signal supplied to each of the data signal lines based on a sampling signal output from the data-side driving means; The N Chang A liquid crystal device formed by a flannel transistor.
( 4 ) 請求項 2または 3において、  (4) In claim 2 or 3,
前記 Nチャンネル型トランジスタは、 M O S トランジスタまたは薄膜トランジ ス夕であることを特徴とする液晶装置。  A liquid crystal device, wherein the N-channel transistor is a MOS transistor or a thin film transistor.
( 5 ) 請求項 1乃至 4のいずれかにおいて、  (5) In any one of claims 1 to 4,
前記負極性プリチャージ電位は、 前記第 1電位よりも高いことを特徴とする液 曰曰 ^  The negative precharge potential is higher than the first potential.
( 6 ) 請求項 1乃至 5のいずれかにおいて、  (6) In any one of claims 1 to 5,
前記正極性プリチャージ電位は、 前記第 3電位より低いことを特徴とする液晶  The positive precharge potential is lower than the third potential.
( 7 ) 複数のデータ信号線と複数の走査信号線の交差により形成される複数の 画素の各々に、 液晶層に電気的に接続されたスィツチング素子を配置して成り、 前記液晶層に印加される電圧の極性を所定期間毎に反転させて駆動する液晶装置 において、 (7) A switching element electrically connected to a liquid crystal layer is arranged in each of a plurality of pixels formed by intersections of a plurality of data signal lines and a plurality of scanning signal lines, and is applied to the liquid crystal layer. A liquid crystal device driven by inverting the polarity of the
前記複数の走査信号線の少なくとも 1本を選択する走査信号を、 前記複数の走 査信号線に供給する走査側駆動手段と、  Scanning-side driving means for supplying a scanning signal for selecting at least one of the plurality of scanning signal lines to the plurality of scanning signal lines;
前記複数のデータ信号線の各々に前記データ信号を供給するためのデ一夕側駆 動手段と、  A data driver for supplying the data signal to each of the plurality of data signal lines;
前記複数のデータ信号線の各々に前記デ一夕信号を供給するのに先立って、 当 該デ一夕信号に基づいて前記画素の液晶層に印加される電圧の極性と同一極性の 正極性又は負極性プリチヤージ電位にて、 前記複数のデ一夕信号線の各々をプリ チャージする複数のプリチャージ用スィツチング手段と、 を有し、  Prior to supplying the data signal to each of the plurality of data signal lines, a positive polarity or the same polarity as the polarity of the voltage applied to the liquid crystal layer of the pixel based on the data signal is provided. A plurality of precharge switching means for precharging each of the plurality of data signal lines at a negative polarity precharge potential;
前記デ一夕信号は、 前記液晶層に負極性の電圧を印加する際には第 1電位とそ れょりも高い第 2電位との間の負極性デ一夕電圧振幅の範囲で変化し、 前記液晶 層に正極性の電圧を印加する際には前記第 2電位よりも高い第 3電位とそれより も高い第 4電位との間の正極性デ一夕電圧振幅の範囲で変化し、  When the negative voltage is applied to the liquid crystal layer, the data signal changes within a range of the negative data voltage amplitude between the first potential and the second potential which is higher than the first potential. When a positive voltage is applied to the liquid crystal layer, the voltage changes within a range of a positive polarity temporary voltage amplitude between a third potential higher than the second potential and a fourth potential higher than the third potential,
前記正極性及び負極性プリチャージ電位は、 前記第 1 , 第 4電位間のデ一夕電 圧振幅の中心電位に対して非対称に設定され、 かつ、 前記正極性プリチャージ電 位を、 前記正極性データ電圧振幅の中心電位よりも、 前記第 4電位に近づけて設 定したことを特徴とする液晶装置。 The positive and negative precharge potentials are set asymmetrically with respect to the central potential of the data voltage amplitude between the first and fourth potentials, and A liquid crystal device, wherein a potential is set closer to the fourth potential than to a center potential of the positive polarity data voltage amplitude.
( 8 ) 請求項 7において、  (8) In claim 7,
前記複数のスィツチング素子の各々を、 Pチャンネル型トランジスタにより形 成したことを特徴とする液晶装置。  A liquid crystal device, wherein each of the plurality of switching elements is formed by a P-channel transistor.
( 9 ) 請求項 7または 8において、  (9) In claim 7 or 8,
前記各データ信号線に供給する前記データ信号を、 前記データ側駆動手段から 出力されるサンプリング信号に基づきサンプリングする複数のサンプリング用ス イッチング手段を有し、 該サンプリング用スイッチング手段の各々を、 Pチャン ネル型トランジスタにより形成したことを特徴とする液晶装置。  A plurality of sampling switching means for sampling the data signal to be supplied to each of the data signal lines based on a sampling signal output from the data side driving means; A liquid crystal device formed by a flannel transistor.
( 1 0 ) 請求項 8または 9において、  (10) In claim 8 or 9,
前記 Pチャンネル型トランジスタは、 M O S トランジスタまたは薄膜トランジ ス夕であることを特徴とする液晶装置。  A liquid crystal device, wherein the P-channel transistor is a MOS transistor or a thin film transistor.
( 1 1 ) 請求項 7乃至 1 0のいずれかにおいて、  (11) In any one of claims 7 to 10,
前記負極性プリチャージ電位は、 前記第 4電位よりも低いことを特徴とする液 曰曰- The liquid, wherein the negative precharge potential is lower than the fourth potential.
( 1 2 ) 請求項 7乃至 1 1のいずれかにおいて、 (12) In any one of claims 7 to 11,
前記負極性プリチャージ電位は、 前記第 2電位よりも高いことを特徴とする液 曰曰  The negative polarity precharge potential is higher than the second potential.
( 1 3 ) 請求項 1乃至 1 2のいずれかにおいて、  (13) In any one of claims 1 to 12,
奇数本目の前記データ信号線に前記正極性または負極性プリチヤ一ジ電位を供 給する前記プリチャージ用スィツチング手段に接続された第 1のプリチャージラ インと、  A first precharge line connected to the precharge switching means for supplying the positive or negative precharge voltage to the odd-numbered data signal lines;
偶数本目の前記デ一夕信号線に前記正極性または負極性プリチャージ電位を供 給する前記プリチャージ用スィ ヅチング手段に接続された第 2プリチャージライ ンとを有し、  A second precharge line connected to the precharge switching means for supplying the positive or negative precharge potential to the even-numbered data line.
前記複数の走査信号線の少なくとも一本を選択する毎に、 前記第 1及び第 2プ リチャージラインと、 前記正極性及び負極性プリチャージ電位との接続の組合せ が切り換えられる Each time at least one of the plurality of scanning signal lines is selected, a combination of connection between the first and second precharge lines and the positive and negative precharge potentials Is switched
ことを特徴とする液晶装置。  A liquid crystal device characterized by the above-mentioned.
( 1 4 ) 光源と、 該光源から射出された光を変調する請求項 1乃至 1 3のいず れかに記載の液晶装置と、 該液晶装置より変調された光を投写する投写光学手段 と、 を有することを特徴とする投写型表示装置。  (14) A light source, the liquid crystal device according to any one of claims 1 to 13, which modulates light emitted from the light source, and projection optical means for projecting light modulated by the liquid crystal device. A projection display device comprising:
( 1 5 ) 請求項 1乃至 1 3のいずれかに記載の液晶装置を有することを特徴と する電子機器。  (15) An electronic apparatus comprising the liquid crystal device according to any one of claims 1 to 13.
( 1 6 ) 複数のデータ信号線と複数の走査信号線の交差により形成される複数 の画素の各々に、 液晶層に電気的に接続されたスィツチング素子を有する液晶装 置を、 前記液晶層に印加される電圧の極性を所定期間毎に反転させて駆動する液 晶装置の駆動方法において、  (16) A liquid crystal device having a switching element electrically connected to a liquid crystal layer is provided in each of a plurality of pixels formed by intersections of a plurality of data signal lines and a plurality of scanning signal lines, and the liquid crystal layer is provided in the liquid crystal layer. In a driving method of a liquid crystal device which drives by inverting the polarity of an applied voltage every predetermined period,
前記複数の走査信号線の少なくとも 1本を選択する走査信号を、 前記複数の走 査信号線に供給し、  Supplying a scanning signal for selecting at least one of the plurality of scanning signal lines to the plurality of scanning signal lines;
前記複数のデータ信号線の各々に前記データ信号を供給し、  Supplying the data signal to each of the plurality of data signal lines;
前記複数のデ一夕信号線の各々に前記データ信号を供給するのに先立って、 当 該デ一夕信号に基づいて前記画素の液晶層に印加される電圧の極性と同一極性の 正極性又は負極性プリチャージ電位にて、 前記複数のデー夕信号線の各々をプリ チャージし、  Prior to supplying the data signal to each of the plurality of data signal lines, a positive polarity or the same polarity as the polarity of a voltage applied to the liquid crystal layer of the pixel based on the data signal is provided. Precharging each of the plurality of data signal lines with a negative precharge potential;
前記データ信号は、 前記液晶層に負極性の電圧を印加する際には第 1電位とそ れょりも高い第 2電位との間の負極性データ電圧振幅の範囲で変化し、 前記液晶 層に正極性の電圧を印加する際には前記第 2電位よりも高い第 3電位とそれより も高い第 4電位との間の正極性データ電圧振幅の範囲で変化し、  When applying a negative voltage to the liquid crystal layer, the data signal changes within a range of a negative data voltage amplitude between a first potential and a second potential that is higher than the first potential. When a positive voltage is applied to the positive electrode, the voltage changes within a range of a positive data voltage amplitude between a third potential higher than the second potential and a fourth potential higher than the third potential,
前記正極性及び負極性プリチャージ電位は、 前記第 1 , 第 4電位間のデ一夕電 圧振幅の中心電位に対して非対称に設定され、 かつ、 前記負極性プリチヤ一ジ電 位を、 前記負極性デ一夕電圧振幅の中心電位よりも、 前記第 1電位に近づけて設 定される  The positive and negative precharge potentials are set asymmetrically with respect to the central potential of the data voltage amplitude between the first and fourth potentials, and the negative precharge potential is It is set closer to the first potential than the central potential of the negative polarity overnight voltage amplitude.
ことを特徴とする液晶装置の駆動方法。  A method for driving a liquid crystal device, comprising:
( 1 7 ) 複数のデータ信号線と複数の走査信号線の交差により形成される複数 の画素の各々に、 液晶層に電気的に接続されたスィツチング素子を有する液晶装 置を、 前記液晶層に印加される電圧の極性を所定期間毎に反転させて駆動する液 晶装置の駆動方法において、 (17) A plurality formed by intersections of a plurality of data signal lines and a plurality of scanning signal lines A method of driving a liquid crystal device, which drives a liquid crystal device having a switching element electrically connected to a liquid crystal layer in each of the pixels by inverting the polarity of a voltage applied to the liquid crystal layer every predetermined period At
前記複数の走査信号線の少なくとも 1本を選択する走査信号を、 前記複数の走 査信号線に供給し、  Supplying a scanning signal for selecting at least one of the plurality of scanning signal lines to the plurality of scanning signal lines;
前記複数のデ一夕信号線の各々に前記デ一夕信号を供給し、  Supplying the data signal to each of the plurality of data signal lines;
前記複数のデータ信号線の各々に前記データ信号を供給するのに先立って、 当 該デ一夕信号に基づいて前記画素の液晶層に印加される電圧の極性と同一極性の 正極性又は負極性プリチャージ電位にて、 前記複数のデー夕信号線の各々をプリ チャージし、  Prior to supplying the data signal to each of the plurality of data signal lines, a positive polarity or a negative polarity having the same polarity as the polarity of the voltage applied to the liquid crystal layer of the pixel based on the data signal. At a precharge potential, each of the plurality of data signal lines is precharged,
前記データ信号は、 前記液晶層に負極性の電圧を印加する際には第 1電位とそ れよりも高い第 2電位との間の負極性データ電圧振幅の範囲で変化し、 前記液晶 層に正極性の電圧を印加する際には前記第 2電位よりも高い第 3電位とそれより も高い第 4電位との間の正極性データ電圧振幅の範囲で変化し、  When applying a negative voltage to the liquid crystal layer, the data signal changes within a range of a negative data voltage amplitude between a first electric potential and a second electric potential higher than the first electric potential. When a positive voltage is applied, the voltage changes within a positive data voltage amplitude range between a third potential higher than the second potential and a fourth potential higher than the third potential,
前記正極性及び負極性プリチャージ電位は、 前記第 1 , 第 4電位間のデ一夕電 圧振幅の中心電位に対して非対称に設定され、 かつ、 前記正極性プリチャージ電 位を、 前記正極性デ一夕電圧振幅の中心電位よりも、 前記第 4電位に近づけて設 定されることを特徴とする液晶装置の駆動方法。  The positive and negative precharge potentials are set asymmetrically with respect to the central potential of the voltage amplitude between the first and fourth potentials, and the positive precharge potential is set to A method for driving a liquid crystal device, characterized in that the liquid crystal device is set to be closer to the fourth potential than the central potential of the voltage amplitude of the characteristic voltage.
PCT/JP1997/003600 1997-07-14 1997-10-08 Liquid crystal device, method for driving the same, and projection display and electronic equipment made using the same WO1999004384A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP51551598A JP3704716B2 (en) 1997-07-14 1997-10-08 Liquid crystal device and driving method thereof, and projection display device and electronic apparatus using the same
US09/254,873 US6266039B1 (en) 1997-07-14 1997-10-08 Liquid crystal device, method for driving the same, and projection display and electronic equipment made using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/203792 1997-07-14
JP20379297 1997-07-14

Publications (1)

Publication Number Publication Date
WO1999004384A1 true WO1999004384A1 (en) 1999-01-28

Family

ID=16479835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003600 WO1999004384A1 (en) 1997-07-14 1997-10-08 Liquid crystal device, method for driving the same, and projection display and electronic equipment made using the same

Country Status (3)

Country Link
US (1) US6266039B1 (en)
JP (1) JP3704716B2 (en)
WO (1) WO1999004384A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292771A (en) * 1999-03-30 2000-10-20 Hyundai Electronics Ind Co Ltd Device and method for driving column of liquid crystal display device
JP2005148304A (en) * 2003-11-13 2005-06-09 Seiko Epson Corp Method for driving electrooptical device, electrooptical device, and electronic equipment
US8248344B2 (en) 2000-12-20 2012-08-21 Lg Display Co., Ltd. Method and apparatus for driving a liquid crystal display panel in a dot inversion system
US9741312B2 (en) 2013-12-02 2017-08-22 Seiko Epson Corporation Electro-optical apparatus, method of driving electro-optical apparatus, and electronic equipment
CN111161688A (en) * 2019-12-17 2020-05-15 福建华佳彩有限公司 Pixel driving method
US10825369B2 (en) 2018-08-01 2020-11-03 Seiko Epson Corporation Electro-optical device and electronic apparatus
US10878765B2 (en) 2013-11-08 2020-12-29 Seiko Epson Corporation Electro-optic device, method of driving electro-optic device, and electronic apparatus
US11107442B2 (en) 2018-05-24 2021-08-31 Seiko Epson Corporation Electro-optical device, driving method for electro-optical device, and electronic apparatus

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6600473B1 (en) * 1999-01-20 2003-07-29 Fuji Xerox Co., Ltd. Photoconductive switching element, device using it, and apparatus, recording apparatus, and recording method in which the device is incorporated
TW521241B (en) * 1999-03-16 2003-02-21 Sony Corp Liquid crystal display apparatus, its driving method, and liquid crystal display system
KR100344186B1 (en) * 1999-08-05 2002-07-19 주식회사 네오텍리서치 source driving circuit for driving liquid crystal display and driving method is used for the circuit
KR100634827B1 (en) * 1999-09-07 2006-10-17 엘지.필립스 엘시디 주식회사 Apparatus for Compensating Gamma Voltage of Liquid Crystal Display and Method Thereof
TW526464B (en) * 2000-03-10 2003-04-01 Sharp Kk Data transfer method, image display device and signal line driving circuit, active-matrix substrate
KR100685942B1 (en) * 2000-08-30 2007-02-23 엘지.필립스 엘시디 주식회사 Liquid crystal display device and method for driving the same
US6985141B2 (en) * 2001-07-10 2006-01-10 Canon Kabushiki Kaisha Display driving method and display apparatus utilizing the same
JP2003043520A (en) * 2001-07-27 2003-02-13 Alps Electric Co Ltd Display device
JP3642042B2 (en) * 2001-10-17 2005-04-27 ソニー株式会社 Display device
CN1301499C (en) * 2002-11-29 2007-02-21 统宝光电股份有限公司 Driving method and circuit for liquid crystal display panel
JP4007239B2 (en) * 2003-04-08 2007-11-14 ソニー株式会社 Display device
KR100549983B1 (en) * 2003-07-30 2006-02-07 엘지.필립스 엘시디 주식회사 Liquid crystal display device and driving method of the same
JP2005202159A (en) * 2004-01-15 2005-07-28 Seiko Epson Corp Electrooptical device and the driving circuit and method for driving the same, and electrooptical equipment
JP4419603B2 (en) * 2004-02-25 2010-02-24 日本電気株式会社 Driving method of liquid crystal display device
JP4847702B2 (en) * 2004-03-16 2011-12-28 ルネサスエレクトロニクス株式会社 Display device drive circuit
JP4466185B2 (en) * 2004-04-27 2010-05-26 セイコーエプソン株式会社 Electro-optical device and electronic apparatus
KR101157251B1 (en) * 2005-06-28 2012-06-15 엘지디스플레이 주식회사 Liquid Crystal Display and Driving Method thereof
JP2007093660A (en) * 2005-09-27 2007-04-12 Hitachi Displays Ltd Display device
KR101244656B1 (en) * 2006-06-19 2013-03-18 엘지디스플레이 주식회사 Liquid Crystal Display
KR100819946B1 (en) * 2006-07-06 2008-04-10 엘지.필립스 엘시디 주식회사 Light Emitting Display and Method for Driving the same
KR101351386B1 (en) * 2007-03-23 2014-01-14 엘지디스플레이 주식회사 A liquid crystal display device and a method for driving the same
TWI416499B (en) * 2010-12-30 2013-11-21 Au Optronics Corp Image displaying method for flat panel display device
JP2012189765A (en) 2011-03-10 2012-10-04 Panasonic Liquid Crystal Display Co Ltd Liquid crystal display device
JP5414725B2 (en) * 2011-03-30 2014-02-12 株式会社ジャパンディスプレイ Display device having data selector circuit
US8564519B2 (en) * 2011-08-10 2013-10-22 Chimei Innolux Corporation Operating method and display panel using the same
CN104882105B (en) * 2015-05-28 2017-05-17 武汉华星光电技术有限公司 Liquid crystal drive circuit and liquid crystal display device
JP2017032974A (en) * 2015-08-05 2017-02-09 Nltテクノロジー株式会社 Display device and program
CN105047166A (en) 2015-08-28 2015-11-11 深圳市华星光电技术有限公司 Drive method for liquid crystal display panel and liquid crystal display apparatus
US10490154B2 (en) 2016-12-01 2019-11-26 Seiko Epson Corporation Electro-optical device and electronic device
US11189241B2 (en) * 2020-03-27 2021-11-30 Tcl China Star Optoelectronics Technology Co., Ltd Method for charging pixels and display panel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04321093A (en) * 1991-04-22 1992-11-11 Nec Corp Projection type display device
JPH05224625A (en) * 1992-02-12 1993-09-03 Nec Corp Driving method for liquid crystal display device
JPH06337400A (en) * 1993-05-31 1994-12-06 Sharp Corp Matrix type display device and method for driving it

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2579467B2 (en) 1986-08-07 1997-02-05 セイコーエプソン株式会社 Liquid crystal display device and driving method thereof
JP2830004B2 (en) 1989-02-02 1998-12-02 ソニー株式会社 Liquid crystal display device
JPH03168617A (en) * 1989-11-28 1991-07-22 Matsushita Electric Ind Co Ltd Method for driving display device
US5426447A (en) * 1992-11-04 1995-06-20 Yuen Foong Yu H.K. Co., Ltd. Data driving circuit for LCD display
US5510807A (en) * 1993-01-05 1996-04-23 Yuen Foong Yu H.K. Co., Ltd. Data driver circuit and associated method for use with scanned LCD video display
US5555001A (en) * 1994-03-08 1996-09-10 Prime View Hk Limited Redundant scheme for LCD display with integrated data driving circuit
JP2743841B2 (en) * 1994-07-28 1998-04-22 日本電気株式会社 Liquid crystal display
JP3110980B2 (en) * 1995-07-18 2000-11-20 インターナショナル・ビジネス・マシーンズ・コーポレ−ション Driving device and method for liquid crystal display device
JPH09258169A (en) * 1996-03-26 1997-10-03 Toshiba Corp Active matrix type liquid crystal display device
US5949398A (en) * 1996-04-12 1999-09-07 Thomson Multimedia S.A. Select line driver for a display matrix with toggling backplane
JP2792511B2 (en) * 1996-09-26 1998-09-03 日本電気株式会社 Display driver
US5973658A (en) * 1996-12-10 1999-10-26 Lg Electronics, Inc. Liquid crystal display panel having a static electricity prevention circuit and a method of operating the same
US6078303A (en) * 1996-12-19 2000-06-20 Colorado Microdisplay, Inc. Display system having electrode modulation to alter a state of an electro-optic layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04321093A (en) * 1991-04-22 1992-11-11 Nec Corp Projection type display device
JPH05224625A (en) * 1992-02-12 1993-09-03 Nec Corp Driving method for liquid crystal display device
JPH06337400A (en) * 1993-05-31 1994-12-06 Sharp Corp Matrix type display device and method for driving it

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292771A (en) * 1999-03-30 2000-10-20 Hyundai Electronics Ind Co Ltd Device and method for driving column of liquid crystal display device
US8248344B2 (en) 2000-12-20 2012-08-21 Lg Display Co., Ltd. Method and apparatus for driving a liquid crystal display panel in a dot inversion system
JP2005148304A (en) * 2003-11-13 2005-06-09 Seiko Epson Corp Method for driving electrooptical device, electrooptical device, and electronic equipment
US7639221B2 (en) 2003-11-13 2009-12-29 Seiko Epson Corporation Method of driving electro-optical device, electro-optical device, and electronic apparatus
US10878765B2 (en) 2013-11-08 2020-12-29 Seiko Epson Corporation Electro-optic device, method of driving electro-optic device, and electronic apparatus
US9741312B2 (en) 2013-12-02 2017-08-22 Seiko Epson Corporation Electro-optical apparatus, method of driving electro-optical apparatus, and electronic equipment
US11107442B2 (en) 2018-05-24 2021-08-31 Seiko Epson Corporation Electro-optical device, driving method for electro-optical device, and electronic apparatus
US10825369B2 (en) 2018-08-01 2020-11-03 Seiko Epson Corporation Electro-optical device and electronic apparatus
US11170676B2 (en) 2018-08-01 2021-11-09 Seiko Epson Corporation Electro-optical device and electronic apparatus
CN111161688A (en) * 2019-12-17 2020-05-15 福建华佳彩有限公司 Pixel driving method

Also Published As

Publication number Publication date
JP3704716B2 (en) 2005-10-12
US6266039B1 (en) 2001-07-24

Similar Documents

Publication Publication Date Title
JP3704716B2 (en) Liquid crystal device and driving method thereof, and projection display device and electronic apparatus using the same
JP3661193B2 (en) Liquid crystal device and driving method thereof, and projection display device and electronic apparatus using the same
JP3832125B2 (en) Electro-optical device and electronic apparatus
US7352348B2 (en) Driving circuit and driving method for electro-optical device
JP4168339B2 (en) Display drive device, drive control method thereof, and display device
KR100234720B1 (en) Driving circuit of tft-lcd
EP2071553B1 (en) Liquid crystal display apparatus, driver circuit, driving method and television receiver
US8497831B2 (en) Electro-optical device, driving method therefor, and electronic apparatus
US6356253B2 (en) Active-matrix display device and method for driving the display device to reduce cross talk
US20050264505A1 (en) Shift register and liquid crystal display device using the same
US20050206597A1 (en) Electro-optical device, method for driving electro-optical device, driving circuit, and electronic apparatus
KR100462958B1 (en) Driving circuit for driving electrooptical device, electrooptical device and electronic apparatus
US20120120044A1 (en) Liquid crystal display device and method for driving the same
JP3687344B2 (en) Liquid crystal device and driving method thereof, and projection display device and electronic apparatus using the same
US20070103421A1 (en) Liquid-crystal display, projector system, portable terminal unit, and method of driving liquid-crystal display
US7369187B2 (en) Liquid crystal display device and method of driving the same
US6639576B2 (en) Display device
US6862014B2 (en) Display driving apparatus and driving control method
JP2003029726A (en) Liquid crystal display device and its driving method
JP2001159883A (en) Driving method for optoelectronic device, drive circuit therefor, and optoelectronic device as well as electronic apparatus
JP2008216425A (en) Electrooptical device, driving method, and electronic equipment
JP2003202847A (en) Liquid crystal device and driving method therefor, and projection type display device and electronic equipment using the same
JP2008216426A (en) Electrooptical device, supply circuit and supply method for data signal, and electronic equipment
JP2000098982A (en) Driving circuit for electrooptical device, electrooptical device, and driving method for electrooptical device
US20070097766A1 (en) Electro-optic device, method for driving the same, and electronic device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 09254873

Country of ref document: US