WO1999003588A1 - Desintegrateur - Google Patents

Desintegrateur Download PDF

Info

Publication number
WO1999003588A1
WO1999003588A1 PCT/GB1998/002090 GB9802090W WO9903588A1 WO 1999003588 A1 WO1999003588 A1 WO 1999003588A1 GB 9802090 W GB9802090 W GB 9802090W WO 9903588 A1 WO9903588 A1 WO 9903588A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
disintegrated
openings
particles
wall
Prior art date
Application number
PCT/GB1998/002090
Other languages
English (en)
Inventor
Uri Andres
Original Assignee
Imperial College Innovations Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imperial College Innovations Limited filed Critical Imperial College Innovations Limited
Priority to AU83504/98A priority Critical patent/AU8350498A/en
Priority to GB0000892A priority patent/GB2342304B/en
Publication of WO1999003588A1 publication Critical patent/WO1999003588A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • B02C2019/183Crushing by discharge of high electrical energy

Definitions

  • This invention relates to the disintegration of material by the application of high voltage electrical pulses.
  • the invention is especially suitable for disintegrating brittle materials having components with different electrical characteristics or different dielectric characteristics, but the invention is not limited exclusively to this.
  • the invention is especially suitable for disintegrating rock for the extraction of native metal, metallic ores, industrial minerals and precious stones.
  • GB-A-2,120,579 which describes a two-rod electrode system. This technique has been used at the Sandowana Mine in Moscow for the commercial liberation of emeralds. It would be desirable to provide improvements to the known technology, in order to improve the disintegration performance of high voltage electrical pulse systems, and to make the techniques more attractive for commercial exploitation.
  • one aspect of the present invention is to use first and second electrode walls between which an electrical field is generated when the high voltage pulses are applied.
  • Such an arrangement can enable discharges through the material at a far greater range of positions than an apparatus employing a rod electrode.
  • a rod electrode When a rod electrode is used, it provides only one contact site to the material at which the electrical discharge must take place.
  • first and second wall electrodes By using first and second wall electrodes, a far greater range of contact sites can be obtained.
  • the above feature is extremely important, because the discharge path of the electrical pulse, and the thermal/electrical breakdown of the material (evident by explosive disintegration of the solid material) generally takes place in the material along the interface or interfaces between different components of the material (especially components having different dielectric characteristics).
  • the discharge path occurs in the areas of highest electrical field. These areas are located at the interfaces of, for example, mineral grains with different permitivity and electrical conductivity. It is this mechanism which can enable different components of the material to be liberated from each other. Therefore, the use of first and second wall electrodes (instead of rod electrodes) enables the discharges to occur at the optimum sites for disintegration or liberation (corresponding to the inter-component boundaries), instead of only at specific sites corresponding to the position of the rod electrode(s).
  • the term "wall” is to be interpreted broadly to encompass any wall structure providing electrical conduction at possible conduction positions distributed on the wall.
  • the wall may substantially entirely be conductive, or it may include conductive elements and intervening non- conductive elements.
  • the electrode wall may comprise a plurality of elongate conductive bars arranged together to form a grill.
  • the electrode wall may comprise a plurality of individual, relatively small conductive elements mounted in a non-conducting substrate, for example, in a grid pattern.
  • the non- conduction substrate may itself be constructed as a plurality of individual insulators.
  • the small conductive elements may be point-like, or they may be flat elements.
  • the wall electrodes may be impervious, for example, for very fine disintegration. However, it is preferred that at least one of the electrodes comprises a plurality of openings to enable the disintegrated material to pass therethrough. In many cases, both electrodes will comprise such openings.
  • the wall electrodes may have dimensions of up to several square metres, or more.
  • the electrodes may be flat and parallel, or may be at an angle towards each other (i.e. converging or diverging).
  • the electrodes may be arranged horizontally, vertically and may be flat or curvilinear.
  • the apparatus is configured to enable replacement, or adjustment, of one or more electrodes or wall(s), for dete ⁇ riining the size or sizes of openings in the electrode(s) or wall(s), respectively.
  • the invention may provide an apparatus comprising at least one wall electrode, having a plurality of openings, dimensioned to allow the passage of particles therethrough of a size up to a first characteristic size.
  • the apparatus is configured to enable replacement of the first electrode wall, by a second electrode wall having a plurality of openings dimensioned to allow the passage of particles up to a second characteristic size different from the first characteristic size.
  • the apparatus can be set to allow the passage of particles from the disintegration chamber, only once the material has been disintegrated to a certain particle size.
  • the particle size may be selected by employing the appropriate wall electrode having apertures for that particle size. This can allow the same apparatus to be "tuned” to suit variations in the same material being disintegrated, or to suit disintegration of a completely different material having a completely different component particle size.
  • the wall electrodes comprise openings in the form of slots, the width of the slots defining the maximum size of particle able to pass through the slots.
  • the invention provides a non-parallel (i.e. convergent or divergent) arrangement of first and second electrode means in a disintegration apparatus.
  • the arrangement is convergent, the spacing between the first and second electrode means becoming smaller the further the material to be disintegrated travels.
  • Such an arrangement can provide automatic compensation for the dirninishing size of the units of material, as the material is progressively disintegrated.
  • the invention provides for the generation of high voltage electrical pulses to be applied to a disintegration apparatus for disintegrating material, wherein each electrical pulse has a rise time of not significantly greater than about 20 nanoseconds.
  • the rise time is the time for the pulse to reach about 80% of its maximum voltage magnitude.
  • the invention provides means for evacuating disintegrated particles from the, or a, disintegration chamber.
  • such means may be provided in the form of water (or other liquid) flow through the chamber. Additionally, or alternatively, the evacuation may be achieved by mechanical vibration of the materials in the chamber.
  • the purpose of the evacuation means is to improve the extraction of the fine particles from the chamber.
  • the fine particles might otherwise become trapped, or not be in a suitable position, to pass through the openings, for example, in one or more of the electrodes.
  • Figure 1 is a schematic section through a first embodiment of disintegration apparatus
  • Figure 2 is a schematic section through a second embodiment of disintegration apparatus
  • Figure 3 is a schematic representation of the layout for a further embodiment of disintegration apparatus
  • Figure 4 is a schematic section illustrating an alternative construction of a wall electrode
  • Figure 5 is a schematic section illustrating a first technique for removing disintegrated particles from the disintegration chamber
  • Figure 6 is a schematic section illustrating a second technique for removing disintegrated particles from the disintegration chamber
  • Figure 7 is a graph illustrating the characteristics of the electrical pulses.
  • FIG 8 is a comparative table illustrating the results of different disintegration techniques.
  • the disintegration apparatus 10 consists of a housing 12 which is divided into an upper chamber 14 and a lower chamber 16 by means of a first electrode wall 18.
  • the upper chamber 14 is a disintegration chamber into which material to be disintegrated is loaded by means of a chute 20.
  • the lower chamber 16 serves as a collection chamber for collecting the particles of material after disintegration.
  • the first wall electrode 18 includes a plurality of openings (slots 22 in the present embodiment) through which the disintegrated material falls once it has been disintegrated to a suitable small particle size able to pass through the slots 22.
  • a second electrode 24 is positioned above the first electrode 18, for the creation of an electric field therebetween, when an electrical pulse is applied to one of the electrodes.
  • the second electrode 24 is in the form of a wall electrode which extends from a position adjacent to the mouth region 26 of the upper chamber 14, to a narrow end region 28.
  • the second wall electrode 24 is formed by a plurality of transverse conductive rods 30 joined by a conductive connector 32.
  • the housing 12 is filled to a fill level 36 with a partially conducting medium, such as water (indicated by the fluid lines 38 in the upper and lower chambers).
  • a partially conducting medium such as water (indicated by the fluid lines 38 in the upper and lower chambers).
  • the material to be disintegrated is loaded using the chute 20, and a high voltage generator 40 is operated to generate high voltage electrical pulses.
  • the high voltage electrical pulses are applied to the second wall electrode 24, and the first wall electrode 18 is connected to earth.
  • both the first and second wall electrodes 18 and 24 provides a large range of contact positions with the material to be disintegrated. This provides a much greater probability that the high voltage pulses will be applied at an optimum position corresponding to the high concentration of the electrical field at the interface of different materials (for example, minerals) having different electrical characteristics.
  • the material will thus tend to split along the interface, thereby separating the different components of materials.
  • the material forms particles which become progressively smaller.
  • Particles which do not yet have a sufficient size pass further towards the narrow end region 28 of the disintegration chamber. It will be appreciated that, at the narrow end, the electric field is stronger, and the smaller spacing between the electrodes can still provide intimate contact with the smaller particles, to provide the optimum direct-electrical- contact disintegration characteristics.
  • the first electrode 18 is designed to be replaceable.
  • the electrode 18 can either be withdrawn through the mouth region 26, or a hatch could be provided to allow the electrode to be withdrawn through a wall of the housing 12.
  • the electrode 18 can then be replaced by a further electrode having slots of a different characteristic size, to allow the end-size of the disintegrated particles to be controlled. This can enable the apparatus to be "tuned” to compensate for variations in the same material being disintegrated. Alternatively, it can allow the apparatus to be configured to disintegrate a completely different material.
  • the size of the openings could be made to be controllable or adjustable.
  • FIG. 2 shows schematically an alternative disintegration chamber formed by parallel (for example, horizontal) first and second electrodes 18a and 24a.
  • the upper electrode 24a is generally solid, and the lower electrode 18a includes slots similar to those described above.
  • the lower electrode 18a is formed of triangular shaped metal bars 42. The bars 42 are arranged with the tip 44 of each triangle pointing downwardly. Such a construction can avoid any tendency for the slots to become clogged, and is particularly suitable for slots having a very fine width (for example, less than 0.2 millimetres).
  • the lower electrode 18a is earthed, and high voltage electrical pulses are applied to the upper electrode 24a from a pulse generator 40a.
  • Figure 3 shows schematically the electrode layout for a yet further embodiment.
  • the first and second electrodes 18b and 24b define a convergent chute.
  • the electrodes 18b and 24b both have apertures (for example slots) for allowing particles having a suitable small size to be discharged from the disintegration chamber. Material to be disintegrated is loaded into the mouth 46 of the chute, and the disintegrated material is collected from beneath the chute.
  • FIG 4 illustrates schematically an alternative construction of a wall electrode usable, for example, as the apertured first electrode 18.
  • the electrode wall comprises an insulating substrate 53 having through holes 55 for allowing disintegrated material to pass through the wall.
  • a plurality of individual electrode pins 57 project through the substrate 53 to form a distributed electrode matrix.
  • the tips 59 of the pins 57 stand proud of the substrate, but this is not essential.
  • the spacing between the pins 57 may be typically about 10mm, but the spacing may be increased or decreased as desired.
  • the rear ends of the electrode pins are connected together electrically by a conductor 61, for connection to earth or the high voltage signal generator.
  • At least one of the electrodes is apertured, to allow the fully disintegrated material to exit from the disintegration chamber.
  • neither electrode might be apertured.
  • a downstream exit grill would be provided to allow separation of disintegrated material from the non-disintegrated material after leaving the disintegration chamber.
  • the material to be disintegrated generally moves through the disintegration chamber under gravity.
  • additional propulsion may be provided, for example, by mechanical vibration.
  • Such propulsion would be needed, for example, for the second embodiment.
  • means be provided for releasing, or evacuating, the disintegrated particles, so that the particles can escape from the disintegration chamber.
  • Fig. 5 where the same reference numerals represent features described in earlier embodiments.
  • Water is pumped around the circuit by means of a pump 48.
  • the flow of high pressure water in the disintegration chamber 14 urges any small disintegrated particles to pass through the openings in the electrode 18, and to pass into the collection chamber 16.
  • the fine particles are filtered out of the water flow by a filter 49, before the water returns through the pump 48.
  • a filter 49 a filter
  • Fig. 6 illustrates a mechanical vibration arrangement for "shaking" the fine disintegrated particles, so that they can escape from the disintegration chamber 14.
  • the earthed electrode 18 sits as a movable floor which is driven by a mechanical driver (shown schematically at 51).
  • the electrode 18 might be movable vertically and/or horizontally, as desired.
  • the effect of the vibrations is to enable the fine disintegrated particles to migrate towards the electrode 18 and the openings therein.
  • the disintegration chamber rather than merely the electrode wall 18, could be vibrated.
  • vibration technique could be combined with the liquid flow technique illustrated in Fig. 5.
  • FIG 7 illustrates the voltage waveform of the pulses generated by the pulse generator 40 in the above embodiments.
  • the pulse waveform is indicated generally by the reference numeral 50.
  • the pulse has a fast rising characteristic, with a rise time of no more than about 20 nanoseconds. Such a fast rise characteristic is extremely desirable, as it reduces the amount of energy wasted before the pulse reaches the discharge threshold 52. Before the discharge threshold is reached, the energy of the pulse is wasted by conductance through the water in the discharge chamber. Once the discharge threshold 52 is reached, there is sufficient voltage to generate a conductive path through the material to be disintegrated.
  • the threshold voltage will depend on the characteristics of the material being disintegrated, and can vary widely from one material to another.
  • the broken line 54 represents a comparative pulse having a slower rise characteristic.
  • the area under the line 54 (before it reaches the discharge threshold 52) represents the amount of energy wasted. It can be seen that such a slower rise characteristic results in considerably higher energy wastage, leading to less efficient disintegration.
  • pulse voltages in the range of 100 kv - 200 kv are used.
  • the energy, per pulse, supplied by the pulse generator is controlled depending on the electrical and mechanical properties and size of the material being disintegrated, and on the desired end-size after disintegration.
  • an energy of between 300 and 500 joules is typical.
  • a pulse energy of between 3 and 10 joules is more appropriate, about 5 joules being typical.
  • Figure 8 illustrates a comparison between the results of mechanical disintegration techniques, and electrical pulse application techniques, for producing mineral concentrates for iron extraction from hematite and magnatite.
  • the mechanical techniques consisted of milling and tumbling the material to crush it to a fine particle size in a conventional manner.
  • the electrical discharge technique was tested using the apparatus illustrated in Figure 1.

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

L'invention concerne un désintégrateur permettant de désagréger des matériaux (par exemple, des roches contenant minerais et minéraux) par application d'impulsions électriques haute tension. Selon un de ses aspects, l'invention prévoit une première (18) et une seconde (24) parois d'électrode, qui permettent d'obtenir un contact optimal avec la roche en vue de l'application d'une décharge électrique au niveau des interfaces naturelles du rocher. Selon un autre aspect de l'invention, l'une des parois d'électrode au moins peut être remplacée par une autre paroi d'électrode pourvue d'ouvertures (22) de taille différente, d'où la possibilité de régler la taille finale de la désintégration. Selon un autre aspect de l'invention, les électrodes opposées ne sont pas parallèles, et forment, de préférence, une chambre à convergence. Selon encore un autre aspect de l'invention, le temps de montée des impulsions électriques est inférieur à 20 nanosecondes environ, ce qui permet d'éviter les pertes d'énergie dues à la conduction de l'eau environnante.
PCT/GB1998/002090 1997-07-16 1998-07-16 Desintegrateur WO1999003588A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU83504/98A AU8350498A (en) 1997-07-16 1998-07-16 Disintegration apparatus
GB0000892A GB2342304B (en) 1997-07-16 1998-07-16 Disintegration apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB9714833.2A GB9714833D0 (en) 1997-07-16 1997-07-16 Disintegration of brittle dielectrics by high voltage electrical pulses in disintegration chamber
GB9714833.2 1997-07-16

Publications (1)

Publication Number Publication Date
WO1999003588A1 true WO1999003588A1 (fr) 1999-01-28

Family

ID=10815843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1998/002090 WO1999003588A1 (fr) 1997-07-16 1998-07-16 Desintegrateur

Country Status (3)

Country Link
AU (1) AU8350498A (fr)
GB (2) GB9714833D0 (fr)
WO (1) WO1999003588A1 (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013053066A1 (fr) * 2011-10-10 2013-04-18 Selfrag Ag Procédé destiné à fragmenter et/ou à pré-affaiblir un matériau au moyen de décharges à haute tension
WO2015024048A1 (fr) * 2013-08-19 2015-02-26 Technological Resources Pty. Limited Appareil et procédé de traitement de matière extraite
CN105618230A (zh) * 2016-02-22 2016-06-01 沈阳理工大学 一种高压脉冲破碎岩矿装置
CN105764614A (zh) * 2013-10-25 2016-07-13 泽尔弗拉格股份公司 通过高压放电打碎和/或弱化材料的方法
US9604225B2 (en) 2011-03-30 2017-03-28 Selfrag Ag Electrode arrangement for an electrodynamic fragmentation plant
RU2667750C1 (ru) * 2015-02-27 2018-09-24 Зельфраг Аг Способ и устройство для дробления и/или ослабления сыпучего материала с помощью высоковольтных разрядов
WO2018232438A1 (fr) 2017-06-21 2018-12-27 The University Of Queensland Système de séparateur intégré et procédé pour la préconcentration et le prétraitement d'un matériau
US10233514B2 (en) 2012-09-05 2019-03-19 Xellia Pharmaceuticals Aps Method of mineral leaching
WO2019234109A1 (fr) * 2018-06-06 2019-12-12 Impulstec Gmbh Procédé et dispositif de comminution et de fractionnement d'un produit
CN111632994A (zh) * 2020-05-28 2020-09-08 西安交通大学 基于高压脉冲水中放电的废弃太阳能电池板的回收方法
US10792670B2 (en) 2015-02-27 2020-10-06 Selfrag Ag Method and device for fragmenting and/or weakening pourable material by means of high-voltage discharge
CN111921604A (zh) * 2020-07-15 2020-11-13 中国矿业大学 一种辅助井下矸石充填的等离子体破碎装置及方法
WO2021003758A1 (fr) * 2019-07-05 2021-01-14 东北大学 Dispositif d'impulsion électrique haute tension pour prétraitement de comminution de minerai
US10919045B2 (en) 2015-02-27 2021-02-16 Selfrag Ag Method and device for fragmenting and/or weakening pourable material by means of high-voltage discharges

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2660260C1 (ru) * 2017-09-15 2018-07-05 Общество с ограниченной ответственностью "научно-производственное предприятие "СибТрансНаука" Электрогидроимпульсный способ разрушения железобетонных изделий с применением пинч-эффекта
RU2673265C1 (ru) * 2018-01-10 2018-11-23 Общество с ограниченной ответственностью "Научно-производственная фирма ЭлектроГидроДинамика" Электрогидравлическая установка

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3460766A (en) * 1966-06-13 1969-08-12 Small Business Administ Rock breaking method and apparatus
US3966127A (en) * 1974-11-01 1976-06-29 Raymond Pytlewski Centrifugal device and process for concurrently rupturing and pulverizing granular material, particularly cereal grain
SU940842A1 (ru) * 1973-11-30 1982-07-07 Всесоюзный Ордена Трудового Красного Знамени Научно-Исследовательский И Проектный Институт Механической Обработки Полезных Ископаемых Устройство дл дроблени различных материалов электрическими разр дами
GB2120579A (en) * 1982-05-21 1983-12-07 De Beers Ind Diamond Method and apparatus for crushing materials such as minerals
US5311067A (en) * 1992-06-15 1994-05-10 The United States Of America As Represented By The Secretary Of The Navy High performance pulse generator
JPH09192526A (ja) * 1996-01-12 1997-07-29 Kobe Steel Ltd 放電破砕装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3460766A (en) * 1966-06-13 1969-08-12 Small Business Administ Rock breaking method and apparatus
SU940842A1 (ru) * 1973-11-30 1982-07-07 Всесоюзный Ордена Трудового Красного Знамени Научно-Исследовательский И Проектный Институт Механической Обработки Полезных Ископаемых Устройство дл дроблени различных материалов электрическими разр дами
US3966127A (en) * 1974-11-01 1976-06-29 Raymond Pytlewski Centrifugal device and process for concurrently rupturing and pulverizing granular material, particularly cereal grain
GB2120579A (en) * 1982-05-21 1983-12-07 De Beers Ind Diamond Method and apparatus for crushing materials such as minerals
US5311067A (en) * 1992-06-15 1994-05-10 The United States Of America As Represented By The Secretary Of The Navy High performance pulse generator
JPH09192526A (ja) * 1996-01-12 1997-07-29 Kobe Steel Ltd 放電破砕装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section PQ Week 8319, Derwent World Patents Index; Class P41, AN 83-G3968K, XP002079245 *
PATENT ABSTRACTS OF JAPAN vol. 97, no. 11 28 November 1997 (1997-11-28) *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9604225B2 (en) 2011-03-30 2017-03-28 Selfrag Ag Electrode arrangement for an electrodynamic fragmentation plant
WO2013053066A1 (fr) * 2011-10-10 2013-04-18 Selfrag Ag Procédé destiné à fragmenter et/ou à pré-affaiblir un matériau au moyen de décharges à haute tension
AU2011379145B2 (en) * 2011-10-10 2016-10-20 Selfrag Ag Method for fragmenting and/or pre-weakening material using high-voltage discharges
US10029262B2 (en) 2011-10-10 2018-07-24 Selfrag Ag Method of fragmenting and/or weakening of material by means of high voltage discharges
CN103857471A (zh) * 2011-10-10 2014-06-11 泽尔弗拉格股份公司 用于借助高压放电击碎和/或预弱化材料的方法
US10233514B2 (en) 2012-09-05 2019-03-19 Xellia Pharmaceuticals Aps Method of mineral leaching
WO2015024048A1 (fr) * 2013-08-19 2015-02-26 Technological Resources Pty. Limited Appareil et procédé de traitement de matière extraite
CN105764614A (zh) * 2013-10-25 2016-07-13 泽尔弗拉格股份公司 通过高压放电打碎和/或弱化材料的方法
RU2667750C1 (ru) * 2015-02-27 2018-09-24 Зельфраг Аг Способ и устройство для дробления и/или ослабления сыпучего материала с помощью высоковольтных разрядов
US10730054B2 (en) 2015-02-27 2020-08-04 Selfrag Ag Method and device for fragmenting and/or weakening pourable material by means of high-voltage discharges
US10919045B2 (en) 2015-02-27 2021-02-16 Selfrag Ag Method and device for fragmenting and/or weakening pourable material by means of high-voltage discharges
US10792670B2 (en) 2015-02-27 2020-10-06 Selfrag Ag Method and device for fragmenting and/or weakening pourable material by means of high-voltage discharge
CN105618230B (zh) * 2016-02-22 2018-06-01 沈阳理工大学 一种高压脉冲破碎岩矿装置
CN105618230A (zh) * 2016-02-22 2016-06-01 沈阳理工大学 一种高压脉冲破碎岩矿装置
WO2018232438A1 (fr) 2017-06-21 2018-12-27 The University Of Queensland Système de séparateur intégré et procédé pour la préconcentration et le prétraitement d'un matériau
CN111344065A (zh) * 2017-06-21 2020-06-26 昆士兰大学 用于材料的预富集和预处理的集成分离器系统和方法
AU2018286638B2 (en) * 2017-06-21 2023-07-13 The University Of Queensland An integrated separator system and process for preconcentration and pretreatment of a material
US11628449B2 (en) 2017-06-21 2023-04-18 The University Of Queensland Integrated separator system and process for preconcentration and pretreatment of a material
WO2019234109A1 (fr) * 2018-06-06 2019-12-12 Impulstec Gmbh Procédé et dispositif de comminution et de fractionnement d'un produit
WO2021003758A1 (fr) * 2019-07-05 2021-01-14 东北大学 Dispositif d'impulsion électrique haute tension pour prétraitement de comminution de minerai
US11278911B2 (en) 2019-07-05 2022-03-22 Northeastern University High-voltage electric pulse device for crushing pretreatment of ores
CN111632994A (zh) * 2020-05-28 2020-09-08 西安交通大学 基于高压脉冲水中放电的废弃太阳能电池板的回收方法
CN111921604B (zh) * 2020-07-15 2022-03-04 中国矿业大学 一种辅助井下矸石充填的等离子体破碎装置及方法
CN111921604A (zh) * 2020-07-15 2020-11-13 中国矿业大学 一种辅助井下矸石充填的等离子体破碎装置及方法

Also Published As

Publication number Publication date
GB2342304B (en) 2001-08-29
GB0000892D0 (en) 2000-03-08
AU8350498A (en) 1999-02-10
GB2342304A (en) 2000-04-12
GB9714833D0 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
WO1999003588A1 (fr) Desintegrateur
CA1207376A (fr) Methode et installations de broyage de matieres du genre minerai
JPH0975769A (ja) 非金属成分または部分的に金属成分から凝結された固体の細分化および粉砕方法
AU2010212878B2 (en) Method and system for reusing materials and/or products by pulsed power
JP5963871B2 (ja) 高電圧放電を用いて材料を破片化及び/又は予備弱化する方法
CN104984807B (zh) 一种用于连续放电破碎矿石的装置及其破碎矿石的方法
CA2976964C (fr) Procede et dispositif de fragmentation et / ou d'affaiblissement d'un materiau coulant au moyen de decharges a haute tension
GB2421203A (en) Aggregate breakdown by high voltage electrical pulses
EP3801912B1 (fr) Procédé et dispositif de comminution et de fractionnement d'un produit
KR101468275B1 (ko) 고전압 펄스를 이용한 선택적 파분쇄 장치 및 방법
JP5675812B2 (ja) パルスパワーによって材料及び/又は製品を再利用する方法及びシステム
CN111344065B (zh) 用于材料的预富集和预处理的集成分离器系统和方法
US4416771A (en) Mine ore concentrator
JP3825889B2 (ja) 電気破砕方法及び装置
RU2080933C1 (ru) Промывочный прибор пгнвк
GB2120579A (en) Method and apparatus for crushing materials such as minerals
RU2315662C1 (ru) Сепаратор
CN113301998B (zh) 借助于电脉冲对颗粒施力的设备
EP1243339B1 (fr) Procédé pour la séparation sélective des particules d'une suspension
RU2191631C1 (ru) Способ дезинтеграции и обогащения твердых материалов и устройство для его осуществления
SU1538929A1 (ru) Устройство дл дезинтеграции руд цветных металлов
CN104624339B (zh) 用于印刷线路板的低能耗处理方法
RU2802344C1 (ru) Установка для селективной дезинтеграции твердых материалов
RU2198032C2 (ru) Промывочно-обогатительный прибор для глинистых металлоносных песков
EA043278B1 (ru) Устройство для воздействия на частицы с помощью электрических импульсов

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: GB

Ref document number: 200000892

Kind code of ref document: A

Format of ref document f/p: F

NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA