WO1998057949A1 - Novel tricyclic sulfonamide inhibitors of farnesyl-protein transferase - Google Patents
Novel tricyclic sulfonamide inhibitors of farnesyl-protein transferase Download PDFInfo
- Publication number
- WO1998057949A1 WO1998057949A1 PCT/US1998/011508 US9811508W WO9857949A1 WO 1998057949 A1 WO1998057949 A1 WO 1998057949A1 US 9811508 W US9811508 W US 9811508W WO 9857949 A1 WO9857949 A1 WO 9857949A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- alkyl
- cells
- heteroaryl
- tumor cells
- Prior art date
Links
- OIPRWQHOCYCEBQ-UHFFFAOYSA-N Clc1cc(Br)c(C(C2CCNCC2)c(c(CC2)c3)ncc3Br)c2c1 Chemical compound Clc1cc(Br)c(C(C2CCNCC2)c(c(CC2)c3)ncc3Br)c2c1 OIPRWQHOCYCEBQ-UHFFFAOYSA-N 0.000 description 3
- LMKKPKXKTJPOHV-UHFFFAOYSA-N CCCc1cc(Br)c(C(c(nc2)c(CC3)cc2Br)N2CCNCC2)c3c1 Chemical compound CCCc1cc(Br)c(C(c(nc2)c(CC3)cc2Br)N2CCNCC2)c3c1 LMKKPKXKTJPOHV-UHFFFAOYSA-N 0.000 description 1
- 0 CS(*(CC1)CCC1C(c(c(CCc1c2)cc(Cl)c3)c3Cl)c1ncc2Br)(=O)=O Chemical compound CS(*(CC1)CCC1C(c(c(CCc1c2)cc(Cl)c3)c3Cl)c1ncc2Br)(=O)=O 0.000 description 1
- ZZCQJSGXXMHELD-UHFFFAOYSA-N Cc1cnc(C(C(CC2)CCN2S(C)(=O)=O)c(c(CC2)cc(Cl)c3)c3Br)c2c1 Chemical compound Cc1cnc(C(C(CC2)CCN2S(C)(=O)=O)c(c(CC2)cc(Cl)c3)c3Br)c2c1 ZZCQJSGXXMHELD-UHFFFAOYSA-N 0.000 description 1
- WXBHOUYXTMTWMC-UHFFFAOYSA-N Clc(cc1CCc2cc(Br)cnc22)cc(Br)c1C2=C1CCNCC1 Chemical compound Clc(cc1CCc2cc(Br)cnc22)cc(Br)c1C2=C1CCNCC1 WXBHOUYXTMTWMC-UHFFFAOYSA-N 0.000 description 1
- OIPRWQHOCYCEBQ-GOSISDBHSA-N Clc1cc(Br)c([C@@H](C2CCNCC2)c(c(CC2)c3)ncc3Br)c2c1 Chemical compound Clc1cc(Br)c([C@@H](C2CCNCC2)c(c(CC2)c3)ncc3Br)c2c1 OIPRWQHOCYCEBQ-GOSISDBHSA-N 0.000 description 1
- OIPRWQHOCYCEBQ-SFHVURJKSA-N Clc1cc(Br)c([C@H](C2CCNCC2)c(nc2)c(CC3)cc2Br)c3c1 Chemical compound Clc1cc(Br)c([C@H](C2CCNCC2)c(nc2)c(CC3)cc2Br)c3c1 OIPRWQHOCYCEBQ-SFHVURJKSA-N 0.000 description 1
- HRHIWANNFSPGCY-UHFFFAOYSA-N Clc1cc(Cl)c(C(C2CCNCC2)c(c(CC2)c3)ncc3Br)c2c1 Chemical compound Clc1cc(Cl)c(C(C2CCNCC2)c(c(CC2)c3)ncc3Br)c2c1 HRHIWANNFSPGCY-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D221/00—Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
- C07D221/02—Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
- C07D221/04—Ortho- or peri-condensed ring systems
- C07D221/06—Ring systems of three rings
- C07D221/16—Ring systems of three rings containing carbocyclic rings other than six-membered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
Definitions
- Patent application WO 95/00497 published 5 January 1995 under the Patent Cooperation Treaty describes compounds which inhibit the enzyme, famesyl-protein transferase (FTase) and the famesylation of the oncogene protein Ras.
- Oncogenes frequently encode protein components of signal transduction pathways which lead to stimulation of cell growth and mitogenesis.
- Oncogene expression in cultured cells leads to cellular transformation, characterized by the ability of cells to grow in soft agar and the growth of cells as dense foci lacking the contact inhibition exhibited by non-transformed cells. Mutation and/or overexpression of certain oncogenes is frequently associated with human cancer.
- Ras oncoprotein To acquire transforming potential, the precursor of the Ras oncoprotein must undergo famesylation of the cysteine residue located in a carboxyl-terminal tetrapeptide. Inhibitors of the enzyme that catalyzes this modification, farnesyl protein transferase, have therefore been suggested as anticancer agents for tumors in which Ras contributes to transformation. Mutated, oncogenic forms of Ras are frequently found in many human cancers, most notably in more than 50% of colon and pancreatic carcinomas (Kohl et al., Science, Vol. 260, 1834 to 1837, 1993).
- this invention provides a method for inhibiting farnesyl protein transferase using tricyclic compounds of this invention which: (i) potently inhibit farnesyl protein transferase, but not geranylgeranyl protein transferase I, in vitro; (ii) block the phenotypic change induced by a form of transforming Ras which is a farnesyl acceptor but not by a form of transforming Ras engineered to be a geranylgeranyl acceptor; (iii) block intracellular processing of Ras which is a farnesyl acceptor but not of Ras engineered to be a geranylgeranyl acceptor; and (iv) block abnormal cell growth in culture induced by transforming Ras.
- This invention provides a method for inhibiting the abnormal growth of cells, including transformed cells, by administering an effective amount of a compound of this invention.
- Abnormal growth of cells refers to cell growth independent of normal regulatory mechanisms (e.g., loss of contact inhibition). This includes the abnormal growth of: (1) tumor cells (tumors) expressing an activated Ras oncogene; (2) tumor cells in which the Ras protein is activated as a result of oncogenic mutation in another gene; and (3) benign and malignant cells of other proliferative diseases in which aberrant Ras activation occurs.
- A represents N or N-oxide
- X represents N, CH or C, such that when X is N or CH, there is a single bond to carbon atom 11 as represented by the solid line; or when X is C, there is a double bond to carbon atom 11 , as represented by the solid and dotted lines;
- X 1 and X 2 are independently selected from bromo, iodo or chloro;
- X 3 and X 4 are independently selected from bromo, iodo, chloro, fluro or hydrogen provided only one of X 3 or X 4 is hydrogen;
- R 5 , R 6 , R 7 and R 8 each independently represents hydrogen, alkyl, aryl, or
- R can represent alkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl or -NR 10 R 11 ,
- R 10 and R 1 1 can independently represent hydrogen, alkenyl, alkyl, aryl, aralkyl, heteroaryl, heteroarylalkyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl or heterocycloalkylalkyl.
- X is CH; R 5 , R 6 , R 7 and R 8 are hydrogen; X 1 , X 2 and X 3 are bromo or chloro and X 4 is hydrogen; and R is alkyl, trifluoromethyl, alkenyl, aryl, heteroaryl or
- R 10 and R 1 1 are independently selected from hydrogen and alkyl.
- R is alkyl
- an optional substituent on the alkyl group may be trifluoromethyl.
- R is heteroaryl
- optional substituents on the heteroaryl group may include alkyl or heteroaryl.
- Preferred compounds include those of Examples 1 , 3, 4, 5, 6, 9, 10, 11 and 13.
- the present invention is directed toward a pharmaceutical composition for inhibiting the abnormal growth of cells comprising an effective amount of compound (1.0) in combination with a pharmaceutically acceptable carrier.
- the present invention is directed toward a method for inhibiting the abnormal growth of cells, including transformed cells, comprising administering an effective amount of compound (1.0) to a mammal (e.g., a human) in need of such treatment.
- Abnormal growth of cells refers to cell growth independent of normal regulatory mechanisms (e.g., loss of contact inhibition).
- these compounds may function either through the inhibition of G-protein function, such as ras p21 , by blocking G-protein isoprenylation, thus making them useful in the treatment of proliferative diseases such as tumor growth and cancer, or through inhibition of ras farnesyl protein transferase, thus making them useful for their antiproliferative activity against ras transformed cells.
- the cells to be inhibited can be tumor cells expressing an activated ras oncogene.
- the types of cells that may be inhibited include pancreatic tumor cells, lung cancer cells, myeloid leukemia tumor cells, thyroid follicular tumor cells, myelodysplastic tumor cells, epidermal carcinoma tumor cells, bladder carcinoma tumor cells, prostate tumor cells, breast tumor cells or colon tumors cells.
- the inhibition of the abnormal growth of cells by the treatment with compound (1.0) may be by inhibiting ras farnesyl protein transferase.
- the inhibition may be of tumor cells wherein the Ras protein is activated as a result of oncogenic mutation in genes other than the Ras gene.
- compounds (1.0) may inhibit tumor cells activated by a protein other than the Ras protein.
- This invention also provides a method for inhibiting tumor growth by administering an effective amount of compound (1.0) to a mammal (e.g., a human) in need of such treatment.
- a mammal e.g., a human
- this invention provides a method for inhibiting the growth of tumors expressing an activated Ras oncogene by the administration of an effective amount of the above described compounds.
- tumors which may be inhibited include, but are not limited to, lung cancer (e.g., lung adenocarcinoma), pancreatic cancers (e.g., pancreatic carcinoma such as, for example, exocrine pancreatic carcinoma), colon cancers (e.g., colorectal carcinomas, such as, for example, colon adenocarcinoma and colon adenoma), myeloid leukemias (for example, acute myelogenous leukemia (AML)), thyroid follicular cancer, myelodysplastic syndrome (MDS), bladder carcinoma, prostate carcinoma and breast carcinoma and epidermal carcinoma.
- lung cancer e.g., lung adenocarcinoma
- pancreatic cancers e.g., pancreatic carcinoma such as, for example, exocrine pancreatic carcinoma
- colon cancers e.g., colorectal carcinomas, such as, for example, colon adenocarcinoma and colon adenoma
- this invention also provides a method for inhibiting proliferative diseases, both benign and malignant, wherein Ras proteins are aberrantly activated as a result of oncogenic mutation in other genes--i.e., the Ras gene itself is not activated by mutation to an oncogenic form-with said inhibition being accomplished by the administration of an effective amount of the N- substituted urea compounds (1.0) described herein, to a mammal (e.g., a human) in need of such treatment.
- a mammal e.g., a human
- the benign proliferative disorder neurofibromatosis, or tumors in which Ras is activated due to mutation or overexpression of tyrosine kinase oncogenes may be inhibited by the N-substituted urea compounds (1.0).
- the present invention is directed toward a method for inhibiting ras farnesyl protein transferase and the famesylation of the oncogene protein Ras by administering an effective amount of compound (1.0) to mammals, especially humans.
- the administration of the compounds of this invention to patients, to inhibit farnesyl protein transferase, is useful in the treatment of the cancers described above.
- M + represents the molecular ion of the molecule in the mass spectrum
- MH+ represents the molecular ion plus hydrogen of the molecule in the mass spectrum
- Bu-represents butyl; Et-represents ethyl; Me-represents methyl; Ph-represents phenyl; benzotriazol-1-yloxy represents
- alkyl-(including the alkyl portions of alkoxy, alkylamino and dialkylamino)-represents straight and branched carbon chains and contains from one to twenty carbon atoms, preferably one to six carbon atoms; for example methyl, ethyl, propyl, iso-propyl, n-butyl, t-butyl, n-pentyl, isopentyl, hexyl and the like; wherein said alkyl group may be optionally and independently substituted with one, two, three or more of the following: halo, alkyl, aryl, cycloalkyl, cyano, -CF 3 , oxy ( 0), aryloxy, -OR 10 , -OCF 3 , heterocycloalkyl, heteroaryl, -NR 10 R 12 , -NHS0 2 R 10 , -S0 2 NH 2 , -S0 2 NHR 1 °, -S0 2 R
- heteroaryl groups can include, for example, furanyl, imidazoyl, pyrimidinyl, triazolyl, 2-, 3- or 4-pyridyl or 2-, 3- or 4-pyridyl N-oxide wherein pyridyl N-oxide can be represented as:
- solvents and reagents are referred to herein by the abbreviations indicated: tetrahydrofuran (THF); ethanol (EtOH); methanol (MeOH); acetic acid (HOAc or AcOH); ethyl acetate (EtOAc); N,N- dimethylformamide (DMF); trifluoroacetic acid (TFA); trifluoroacetic anhydride (TFAA); 1 -hydroxybenzotriazole (HOBT); m-chloroperbenzoic acid (MCPBA); thethylamine (Et 3 N); diethyl ether (Et 2 0); ethyl chloroformate (CIC0 2 Et); and 1- (3-dimethylaminopropyl)-3-ethyl carbodiimide hydrochloride (DEC).
- THF tetrahydrofuran
- EtOH ethanol
- MeOH methanol
- acetic acid HOAc or AcOH
- Certain compounds of the invention may exist in different stereoisomeric forms (e.g., enantiomers, diastereoisomers and atropisomers).
- the invention contemplates all such stereoisomers both in pure form and in mixture, including racemic mixtures.
- the carbon atom at the C-1 1 position can be in the S or R stereoconfiguration.
- Certain tricyclic compounds will be acidic in nature, e.g. those compounds which possess a carboxyl or phenolic hydroxyl group. These compounds may form pharmaceutically acceptable salts. Examples of such salts may include sodium, potassium, calcium, aluminum, gold and silver salts. Also contemplated are salts formed with pharmaceutically acceptable amines such as ammonia, alkyl amines, hydroxyalkylamines, N-methylglucamine and the like.
- Certain basic tricyclic compounds also form pharmaceutically acceptable salts, e.g., acid addition salts.
- the pyrido-nitrogen atoms may form salts with strong acid, while compounds having basic substituents such as amino groups also form salts with weaker acids.
- suitable acids for salt formation are hydrochloric, sulfuric, phosphoric, acetic, citric, oxalic, malonic, salicylic, malic, fumaric, succinic, ascorbic, maleic, methanesulfonic and other mineral and carboxylic acids well known to those skilled in the art.
- the salts are prepared by contacting the free base form with a sufficient amount of the desired acid to produce a salt in the conventional manner.
- the free base forms may be regenerated by treating the salt with a suitable dilute aqueous base solution such as dilute aqueous NaOH, potassium carbonate, ammonia and sodium bicarbonate.
- a suitable dilute aqueous base solution such as dilute aqueous NaOH, potassium carbonate, ammonia and sodium bicarbonate.
- the free base forms differ from their respective salt forms somewhat in certain physical properties, such as solubility in polar solvents, but the acid and base salts are otherwise equivalent to their respective free base forms for purposes of the invention. All such acid and base salts are intended to be pharmaceutically acceptable salts within the scope of the invention and all acid and base salts are considered equivalent to the free forms of the corresponding compounds for purpopses of the invention.
- compounds of formula (1.0) can be prepared by reacting the compound of formula (5.0, 5.01 , 6.0 or 10.9) with the corresponding sulfonyl chloride reagent of formula (2.6) with a base and aprotic solvent such as THF, dioxane, toluene, methylene chloride (CH 2 CI 2 ), acetonitrile, or DMF at temperatures which can range from 0° to 100°C, or reflux of the reaction mixture.
- the amount of sulfonyl chloride (2.6) can range from 1 to about 10 moles per mole of compound (5.0, 5.01 , 6.0 or 10.9).
- the compounds of formula (1.0) wherein R is -NR 10 R 11 can be prepared by reacting the compound of formula (5.0, 5.01 , 6.0 or 10.9) with thionyl chloride in an aprotic solvent as described above, in the presence of a base, followed by reaction with an amine of the formula HNR 10 R 1 1 (2.8) in an aprotic solvent wherein R 10 and R 1 1 are defined hereinbefore, at a temperatures from 0° to 100°C or reflux of the reaction mixture.
- the amount of the thionyl chloride or amine (2.8) can range from about 1 to 10 moles per mole of compound (5.0, 5.01 , 6.0 or 10.9).
- the compounds of formula (1.0) wherein R is -NH 2 can be prepared by reacting compound (2.0) with the sulfonamide SO(NH 2 ) 2 in a protic solvent such as water at temperatures ranging from 50° to 100°C.
- Compounds of fomula (1.0) can be isolated from the reaction mixture using conventional procedures, such as, for example, extraction of the reaction mixture from water with organic solvents, evaporation of the organic solvents, followed by chromatography on silica gel or other suitable chromatographic media.
- compounds (1.0) can be dissolved in a water-miscible solvent, such as methanol, the methanol solution is added to water to precipitate the compound, and the precipitate is isolated by filtration or centrifugation.
- (+)-lsomers of compounds of formula (5.0, 6.0 and 10.9) wherein X is CH can be prepared with high enantioselectivity by using a process comprising enzyme catalyzed transesterification.
- a racemic compound of formula (5.0, 6.0 and 10.9) wherein X is C, the double bond is present and X 3 is not H, is reacted with an enzyme such as Toyobo LIP-300 and an acylating agent such as trifluoroethly isobutyrate; the resultant (+)-amide is then hydrolyzed, for example by refluxing with an acid such as H 2 S ⁇ 4, to obtain the corresponding optically enriched (+)-isomer wherein X is CH and R 3 is not H.
- a racemic compound of formula (5.0, 6.0 and 10.9) wherein X is C, the double bond is present and R 3 is not H, is first reduced to the corresponding racemic compound of formula (5.0, 6.0 and 10.9) wherein X is CH and then treated with the enzyme (Toyobo LIP-300) and acylating agent as described above to obtain the (+)- amide, which is hydrolyzed to obtain the optically enriched (+)-isomer.
- the enzyme Toyobo LIP-300
- Example 1 1 (+)-4-(3,10-Dibromo-8-chloro-11 -dihydro-5H- benzo[5,6]cyclohepta[1 ,2-b]pyridin-1 1 -yl)-1 -(vinylsulfonyl)pipiridine
- Alternative mechanistic pathways and analogous structures within the scope of the invention may be apparent to those skilled in the art.
- Step A Scheme IV
- compounds of formula (10.0) can be prepared by reacting the compounds of formula (11.0) with a nitrating agent and/or optional protic or aprotic solvent such as those described hereinbefore.
- compound (11.0) is reacted with about an equimolar amount of a nitrate salt, such as potassium nitrate, and acid, such as sulfuric acid at temperatures ranging from about -20° to +5° C.
- a nitrate salt such as potassium nitrate
- acid such as sulfuric acid
- compound (11.0) is treated with a mixture comprised of about two equivalents of tnfluoromethanesulfonic acid and about one equivalent nitric acid in a solvent such as tnfluoromethanesulfonic acid.
- compound (11.0) is treated with a mixture comprised of about one equivalent of fuming nitric acid and about ten equivalents of tnfluoromethanesulfonic anhydride in a solvent such as nitromethane.
- compound (11.0) is treated with a nitronium salt, such as nitronium tetrafluoroborate, in a solvent, such as sulfolane.
- Step B(Scheme IV) compounds of formula (9.0) can be prepared by reacting compounds of the formula (10.0) with a reducing agent.
- compound (10.0) can be reacted with about ten equivalents of a metal, such as iron, in a solvent, such as ethanol, in the presence of a salt, such as calcium chloride, at temperatures ranging from about 0° to +80° C.
- compound (10.0) in a second procedure, can be reacted with about ten equivalents of a metal, such as zinc, in a solvent, such as ethanol, in the presence of an acid, such as acetic acid at temperatures ranging from about 0° to +80° C.
- compound (10.0) in a third procedure, can be reacted with about five equivalents of stannous chloride hydrate in a solvent, such as ethyl acetate.
- compound (10.0) in a fourth procedure, can be reacted with about ten equivalents of a metal, such as tin, in a solvent, such as ethanol, in the presence of an acid, such as hydrochloric acid.
- compounds of formula (8.0) can be prepared by reacting compounds of the formula (9.0) with a halogenating agent.
- a halogenating agent such as acetic acid
- compound (9.0) can be reacted with an excess of an elemental halogen, such as bromine, in a suitable solvent, such as acetic acid at temperatures ranging from about 0° to 20° C.
- compound (9.0) can be reacted with a salt, such as pyridinium bromide perbromide, in a solvent, such as THF, at temperatures from about 0° to +40° C.
- compound (9.0) can be reacted with a halogen, such as chlorine, in the presence of a Lewis acid, such as iron(lll) chloride, in a suitable solvent, such as dichloromethane.
- compounds of formula (7.0) can be prepared by reacting compounds of the formula (8.0) with an oxidizing agent followed by a reducing agent, or by reacting compounds of the formula (8.0) with an oxidizing agent in the presence of a hydrogen atom source.
- compound (8.0) can be reacted with a diazotizing agent, such as t-butyl nitrite, in a solvent and hydrogen atom source, such as DMF at temperatures from about 0° to +100° C.
- a diazotizing agent such as t-butyl nitrite
- compound (8.0) can be reacted with a diazotizing agent, such as sodium nitrite, and an acid, such as hydrochloric acid, and a reducing agent, such as hypophosphorous acid at temperatures from about -15° to +50° C.
- compound (8.0) can be reacted with a diazotizing agent, such as sodium nitrite, and an acid, such as aqueous sulfuric acid, followed by treatment with a metal, such as copper.
- compound (8.0) can be reacted with a diazotizing agent, such as sodium nitrite, and an acid, such as fluoboric acid, followed by treatment with a reducing agent, such as sodium borohydride.
- compounds of formula (6.0) can be prepared by reacting compounds of the formula (7.0) under hydrolysis conditions.
- compound (7.0) can be reacted with an acid, such as hydrochloric acid, at temperatures from about 20° to +90° C.
- compound (7.0) can be reacted with a base, such as aqueous sodium hydroxide, in a suitable solvent, such as ethanol, at temperatures from about 20° to +90° C.
- compound (7.0) can be reacted with a nucleophile, such as hydrazine hydrate, in a solvent, such as ethanol, with an optional base, such as sodium hydroxide, at temperatures from about 20° to +90° C.
- compound (7.0) can be reacted with a silyl chloride, such as trimethylsilyl chloride, in a solvent, such as THF or CH 2 CI 2 at temperatures ranging from about 0°C to reflux.
- compound (7.0) can be reacted with an acid, such as trifluoroacetic acid, in an aprotic solvent, such as
- Compound (6.0) can be reacted with an alkyl-metal hydride, such as diisobutyl aluminum hydride or lithium aluminum hydride (LAH), in a solvent, such as toluene or THF, at temperatures from about 0° to +90° C.
- an alkyl-metal hydride such as diisobutyl aluminum hydride or lithium aluminum hydride (LAH)
- LAH lithium aluminum hydride
- Step G(Scheme IV) compounds of formula (1.0) can be prepared as described previously for Scheme I.
- Step K(Scheme IV) compounds of formula (6.1) can be prepared by reacting the compound of formula (5.9) with a nitrating agent and/or optional protic or aprotic solvent according to the procedures described in Step A (Scheme IV).
- Step L compounds of formula (6.2) can be prepared by reacting the compound of formula (6.1) with a reducing agent according to the procedures described in Step B (Scheme IV).
- compounds of formula (6.31) can be prepared by reacting the compound of formula (6.2) with a halogenating agent according to the procedures described in Step C (Scheme IV).
- compounds of formula (6.3) can be prepared by reacting the compound of formula (6.31 ) with an oxidizing agent followed by a reducing agent, or by reacting compounds of the formula (6.31) with an oxidizing agent in the presence of a hydrogen atom source according to the procedures described in Step D (Scheme IV).
- compounds of formula (6.5) can be prepared by reacting compounds of formula (6.3) with sodium borohydride (NaBH- in a solvent such as ethanol/toluene under reflux conditions for 10 minutes or at 25°C for two hours or more.
- sodium borohydride NaBH- in a solvent such as ethanol/toluene under reflux conditions for 10 minutes or at 25°C for two hours or more.
- compounds of formula (6.7) can be prepared by reacting compounds of formula (6.5) with SOCI 2 in a solvent such as CH 2 CI 2 at a temperature of about 25°C for about 4 hours or more.
- compounds of formula (10.3) can be prepared by reacting compound of formula (10.0) with 1 ,3-dibromo-5,5-dimethylhydantoin in an acid, such as trifluoromethane sulfonic acid or sulfuric acid for about 24 h or more at 25°C.
- an acid such as trifluoromethane sulfonic acid or sulfuric acid for about 24 h or more at 25°C.
- Step BB Scheme V
- compounds of the formula (10.5) can be prepared by treating the compounds of formula (10.3) with a reducing agent, using the procedures taught in Scheme IV, Step B.
- compounds of formula (10.7) can be prepared by reacting compounds of formula (10.5) with sodium nitrite (NaN0 2 ) in concentrated aqueous HCI at temperatures ranging from about -10°C to 0°C for about 2 h or more, then treating the reaction mixture with phosphorous acid (H 3 P0 ) at 0°C for 4 h or more.
- compounds of formula (10.9) can be prepared by reacting compounds of formula (10.7) with concentrated aqueous HCI at about 85°C for about 18 h or more.
- Compound (10.9) can be reacted using the same procedures described in Scheme IV for treating compound (5.0) and (6.0) and subsequent intermediates therefrom, in order to obtain the desired compounds of formula (1.0).
- Step EE compounds of formula (10.8) can be prepared by reacting compound of formula (10.7) with Nal ⁇ 4 and Ru0 2 in acetonitrile and water for about 18 to 24 h or more at 25°C.
- Compound (10.9) can be reacted with an alkyl-metal hydride, such as diisobutyl aluminum hydride, in a solvent, such as toluene, at temperatures from about 0° to +90° C.
- Step GG(Scheme V) compounds of formula (1.0) can be prepared using the methods as described in Scheme I, hereinbefore.
- compounds of formula (6.51) can be prepared by reacting compounds of formula (10.8) with sodium borohydride (NaBH-i) in a solvent such as ethanol/toluene under reflux conditions for 10 minutes or at 25°C for two hours or more.
- NaBH-i sodium borohydride
- compounds of formula (6.71 ) can be prepared by reacting compounds of formula (6.51) with SOCI 2 in a solvent such as CH 2 CI at a temperature of about 25°C for about 4 hours or more.
- a solvent such as THF
- temperatures can range from 0° to 100°C, or reflux of the reaction mixture and amounts of the reagents (e.g. compound 2.6) can range from 1 to about 10 moles per mole of reactant (e.g. compound 5.0 or 6.0).
- Step C Combine 6.69 g (13.1 mmol) of the product of Step A and 100 mL of 85% EtOH/water, then add 0.66 g (5.9 mmol) of CaCI 2 and 6.56 g (1 17.9 mmol) of Fe and heat the mixture at reflux overnight. Filter the hot reaction mixture through Celite® and rinse the filter cake with hot EtOH. Concentrate the filtrate in vacuo to give 7.72 g of the product.
- Step D Combine 7.70 g of the product of Step B and 35 mL of HOAc, then add 45 mL of a solution of Br 2 in HOAc and stir the mixture at room temperature overnight. Add 300 mL of 1 N NaOH (aqueous) , then 75 mL of 50% NaOH (aqueous) and extract with EtOAc. Dry the extract over MgS ⁇ 4 and concentrate in vacuo to a residue. Chromatograph the residue (silica gel, 20%-30% EtOAc/hexane) to give 3.47 g of the product (along with another 1.28 g of partially purified product).
- Step D Step D:
- Step E Combine 0.557 g (5.4 mmol) of t-butylnitrite and 3 mL of DMF, and heat the mixture at to 60°-70°C. Slowly add (dropwise) a mixture of 2.00 g (3.6 mmol) of the product of Step C and 4 mL of DMF, then cool the mixture to room temperature. Add another 0.64 mL of t-butylnitrite at 40°C and reheat the mixture to 60°-70°C for 0.5 hrs. Cool to room temperature and pour the mixture into 150 mL of water. Extract with CH CI 2 , dry the extract over MgS04 and concentrate in vacuo to a residue. Chromatograph the residue (silica gel, 10%-20% EtOAc/hexane) to give 0.74 g of the product. Step E:
- the racemic title compound of Preparative Example 1 is separated by preparative chiral chromatography (Chiralpack AD, 5 cm X 50 cm column, using 20% iPrOH/hexane + 0.2% diethylamine), to give the (+)-isomer and the (-)-isomer of the title compound.
- the enantiomers can also be separated by crystallization with an amino acid such as N-acetylphenylalanine.
- the racemic title compound of Step C is separated by preparative chiral chromatography (Chiralpack AD, 5 cm X 50 cm column, flow rate 100 mLJmin., 20% iPrOH/hexane + 0.2% diethylamine), to give 9.14 g of the (+)-enantiomer and 9.30 g of the (-)-enantiomer.
- racemic title compound of Step A is separated by preparative chiral chromatography (Chiralpack AD, 5 cm X 50 cm column, using 5% iPrOH/hexane + 0.2% diethylamine), to give the (+)-enantiomer and the (-)-enantiomer of the title compound.
- Step D Dissolve 3.9 g of the product of Step D in 100 mL cone. HCI and reflux overnight. Cool the mixture, basify with 50 % w/w NaOH and extract the resultant mixture with CH2CI2. Dry the CH2CI2 layer over MgS ⁇ 4, evaporate the solvent and dry under vacuum to obtain 3.09 g of the desired product.
- FPT IC50 inhibition of farnesyl protein transferase, in vitro enzyme assay
- FPT IC50 inhibition of farnesyl protein transferase, in vitro enzyme assay
- the data demonstrate that the compounds of the invention are inhibitors of Ras-CVLS famesylation by partially purified rat brain farnesyl protein transferase (FPT).
- the data also show that there are compounds of the invention which can be considered as potent (IC50 ⁇ 10 ⁇ M) inhibitors of Ras-CVLS famesylation by partially purified rat brain FPT.
- COS IC50 values refer to the COS cells activity inhibition of Ras processing, are determined by the methods disclosed in WO/10515 or WO 95/10516.
- inert, pharmaceutically acceptable carriers can be either solid or liquid.
- Solid form preparations include powders, tablets, dispersible granules, capsules, cachets and suppositories.
- the powders and tablets may be comprised of from about 5 to about 70 percent active ingredient.
- Suitable solid carriers are known in the art, e.g. magnesium carbonate, magnesium stearate, talc, sugar, lactose. Tablets, powders, cachets and capsules can be used as solid dosage forms suitable for oral administration.
- a low melting wax such as a mixture of fatty acid glycerides or cocoa butter is first melted, and the active ingredient is dispersed homogeneously therein as by stirring. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool and thereby solidify.
- Liquid form preparations include solutions, suspensions and emulsions. As an example may be mentioned water or water-propylene glycol solutions for parenteral injection.
- Liquid form preparations may also include solutions for intranasal administration.
- Aerosol preparations suitable for inhalation may include solutions and solids in powder form, which may be in combination with a pharmaceutically acceptable carrier, such as an inert compressed gas.
- a pharmaceutically acceptable carrier such as an inert compressed gas.
- solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for either oral or parenteral administration.
- liquid forms include solutions, suspensions and emulsions.
- the compounds of the invention may also be deliverable transdermally.
- transdermal compositions can take the form of creams, lotions, aerosols and/or emulsions and can be included in a transdermal patch of the matrix or reservoir type as are conventional in the art for this purpose.
- the compound is administered orally.
- the pharmaceutical preparation is in unit dosage form. In such form, the preparation is subdivided into unit doses containing appropriate quantities of the active component, e.g., an effective amount to achieve the desired purpose.
- the quantity of active compound in a unit dose of preparation may be varied or adjusted from about 0.1 mg to 1000 mg, more preferably from about 1 mg. to 300 mg, according to the particular application.
- the actual dosage employed may be varied depending upon the requirements of the patient and the severity of the condition being treated. Determination of the proper dosage for a particular situation is within the skill of the art. Generally, treatment is initiated with smaller dosages which are less than the optimum dose of the compound. Thereafter, the dosage is increased by small increments until the optimum effect under the circumstances is reached. For convenience, the total daily dosage may be divided and administered in portions during the day if desired.
- a typical recommended dosage regimen is oral administration of from 10 mg to 2000 mg/day preferably 10 to 1000 mg/day, in two to four divided doses to block tumor growth.
- the compounds are non-toxic when administered within this dosage range.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Plural Heterocyclic Compounds (AREA)
- Other In-Based Heterocyclic Compounds (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IL13339398A IL133393A0 (en) | 1997-06-17 | 1998-06-15 | Novel tricyclic sulfonamide inhibitors of farnesyl-protein transferase |
JP54752198A JP2002507192A (en) | 1997-06-17 | 1998-06-15 | Novel tricyclic sulfonamide inhibitors of farnesyl protein transferase |
HU0004627A HUP0004627A2 (en) | 1997-06-17 | 1998-06-15 | Novel tricyclic sulfonamide inhibitors of farnesyl-protein transferase and medicaments containing the compounds |
EP98932718A EP0989980A1 (en) | 1997-06-17 | 1998-06-15 | Novel tricyclic sulfonamide inhibitors of farnesyl-protein transferase |
NZ501619A NZ501619A (en) | 1997-06-17 | 1998-06-15 | Tricyclic sulfonamide inhibitors of farnesyl-protein transferase |
CA002293358A CA2293358C (en) | 1997-06-17 | 1998-06-15 | Tricyclic sulfonamide inhibitors of farnesyl-protein transferase |
AU82536/98A AU8253698A (en) | 1997-06-17 | 1998-06-15 | Novel tricyclic sulfonamide inhibitors of farnesyl-protein transferase |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US87705097A | 1997-06-17 | 1997-06-17 | |
US08/877,050 | 1997-06-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998057949A1 true WO1998057949A1 (en) | 1998-12-23 |
Family
ID=25369146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1998/011508 WO1998057949A1 (en) | 1997-06-17 | 1998-06-15 | Novel tricyclic sulfonamide inhibitors of farnesyl-protein transferase |
Country Status (14)
Country | Link |
---|---|
EP (1) | EP0989980A1 (en) |
JP (1) | JP2002507192A (en) |
KR (1) | KR20010013826A (en) |
CN (1) | CN1267290A (en) |
AR (1) | AR012989A1 (en) |
AU (1) | AU8253698A (en) |
CA (1) | CA2293358C (en) |
CO (1) | CO4940475A1 (en) |
HU (1) | HUP0004627A2 (en) |
IL (1) | IL133393A0 (en) |
NZ (1) | NZ501619A (en) |
PE (1) | PE86199A1 (en) |
WO (1) | WO1998057949A1 (en) |
ZA (1) | ZA985218B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002044164A1 (en) * | 2000-11-29 | 2002-06-06 | Schering Corporation | 0ovel farnesyl protein transferase inhibitors |
US6689789B2 (en) | 1997-06-17 | 2004-02-10 | Schering Corporation | Compounds useful for inhibition of farnesyl protein transferase |
US7342016B2 (en) | 2000-08-30 | 2008-03-11 | Schering Corporation | Farnesyl protein transferase inhibitors as antitumor agents |
US7494999B2 (en) | 2004-10-29 | 2009-02-24 | Kalypsys, Inc | Sulfonyl-substituted bicyclic compounds as modulators of PPAR |
US7517884B2 (en) | 1998-03-30 | 2009-04-14 | Kalypsys Inc. | Sulfonyl-substituted bicyclic compounds as modulators of PPAR |
US7863276B2 (en) | 2005-10-25 | 2011-01-04 | Kalypsys, Inc | Salts of modulators of PPAR and methods of treating metabolic disorders |
US9463189B2 (en) | 2007-01-23 | 2016-10-11 | Bpv Holdings, Llc | Sulfonyl-substituted bicyclic compounds as PPAR modulators for the treatment of non-alcoholic steatohepatitis |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014130534A1 (en) * | 2013-02-19 | 2014-08-28 | Icahn School Of Medicine At Mount Sinai | Tricyclic heterocycles as anticancer agents |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995010514A1 (en) * | 1993-10-15 | 1995-04-20 | Schering Corporation | Tricyclic sulfonamide compounds useful for inhibition of g-protein function and for treatment of proliferative diseases |
WO1996031505A1 (en) * | 1995-04-07 | 1996-10-10 | Pharmacopeia, Inc. | Tricyclic compounds useful for inhibition of g-protein function and for treatment of proliferative diseases |
WO1996031478A1 (en) * | 1995-04-07 | 1996-10-10 | Schering Corporation | Tricyclic compounds useful for inhibition of g-protein function and for treatment of proliferative diseases |
-
1998
- 1998-06-15 CN CN98808186A patent/CN1267290A/en active Pending
- 1998-06-15 HU HU0004627A patent/HUP0004627A2/en unknown
- 1998-06-15 NZ NZ501619A patent/NZ501619A/en unknown
- 1998-06-15 PE PE1998000508A patent/PE86199A1/en not_active Application Discontinuation
- 1998-06-15 KR KR1019997011846A patent/KR20010013826A/en not_active Application Discontinuation
- 1998-06-15 JP JP54752198A patent/JP2002507192A/en active Pending
- 1998-06-15 ZA ZA985218A patent/ZA985218B/en unknown
- 1998-06-15 CA CA002293358A patent/CA2293358C/en not_active Expired - Fee Related
- 1998-06-15 AU AU82536/98A patent/AU8253698A/en not_active Abandoned
- 1998-06-15 EP EP98932718A patent/EP0989980A1/en not_active Withdrawn
- 1998-06-15 WO PCT/US1998/011508 patent/WO1998057949A1/en not_active Application Discontinuation
- 1998-06-15 IL IL13339398A patent/IL133393A0/en unknown
- 1998-06-16 CO CO98034142A patent/CO4940475A1/en unknown
- 1998-06-16 AR ARP980102859A patent/AR012989A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995010514A1 (en) * | 1993-10-15 | 1995-04-20 | Schering Corporation | Tricyclic sulfonamide compounds useful for inhibition of g-protein function and for treatment of proliferative diseases |
WO1996031505A1 (en) * | 1995-04-07 | 1996-10-10 | Pharmacopeia, Inc. | Tricyclic compounds useful for inhibition of g-protein function and for treatment of proliferative diseases |
WO1996031478A1 (en) * | 1995-04-07 | 1996-10-10 | Schering Corporation | Tricyclic compounds useful for inhibition of g-protein function and for treatment of proliferative diseases |
Non-Patent Citations (3)
Title |
---|
BUSS J E ET AL: "FARNESYL TRANSFERASE INHIBITORS: THE SUCCESSES AND SURPRISES OF A NEW CLASS OF POTENTIAL CANCER CHEMOTHERAPEUTICS", CHEMISTRY AND BIOLOGY, vol. 118, no. 2, December 1995 (1995-12-01), pages 787 - 791, XP002056549 * |
NJOROGE F G ET AL: "DISCOVERY OF NOVEL NENPEPTIDE TRICYCLIC INHIBITORS OF RAS FARNESYL PROTEIN TRANSFERASE", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 5, no. 1, 1997, pages 101 - 113, XP002056551 * |
NJOROGE F G ET AL: "NOVEL TRICYCLIC AMINOACETYL AND SULFONAMIDE INHIBITORS OF RAS FARNESYL PROTEIN TRANSFERASE", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 6, no. 24, 1996, pages 2977 - 2982, XP002056550 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6689789B2 (en) | 1997-06-17 | 2004-02-10 | Schering Corporation | Compounds useful for inhibition of farnesyl protein transferase |
US7517884B2 (en) | 1998-03-30 | 2009-04-14 | Kalypsys Inc. | Sulfonyl-substituted bicyclic compounds as modulators of PPAR |
US7342016B2 (en) | 2000-08-30 | 2008-03-11 | Schering Corporation | Farnesyl protein transferase inhibitors as antitumor agents |
WO2002044164A1 (en) * | 2000-11-29 | 2002-06-06 | Schering Corporation | 0ovel farnesyl protein transferase inhibitors |
JP2004514717A (en) * | 2000-11-29 | 2004-05-20 | シェーリング コーポレイション | Novel farnesyl protein transferase inhibitors |
US7494999B2 (en) | 2004-10-29 | 2009-02-24 | Kalypsys, Inc | Sulfonyl-substituted bicyclic compounds as modulators of PPAR |
US7834004B2 (en) | 2004-10-29 | 2010-11-16 | Kalypsys, Inc | Sulfonyl-substituted bicyclic compounds as modulators of PPAR |
US7915253B2 (en) | 2004-10-29 | 2011-03-29 | Kalypsys, Inc | Sulfonyl-substituted bicyclic compounds as modulators of PPAR |
US7863276B2 (en) | 2005-10-25 | 2011-01-04 | Kalypsys, Inc | Salts of modulators of PPAR and methods of treating metabolic disorders |
US9463189B2 (en) | 2007-01-23 | 2016-10-11 | Bpv Holdings, Llc | Sulfonyl-substituted bicyclic compounds as PPAR modulators for the treatment of non-alcoholic steatohepatitis |
Also Published As
Publication number | Publication date |
---|---|
CO4940475A1 (en) | 2000-07-24 |
CA2293358C (en) | 2008-08-05 |
PE86199A1 (en) | 1999-09-24 |
EP0989980A1 (en) | 2000-04-05 |
ZA985218B (en) | 1998-12-15 |
AU8253698A (en) | 1999-01-04 |
JP2002507192A (en) | 2002-03-05 |
CA2293358A1 (en) | 1998-12-23 |
IL133393A0 (en) | 2001-04-30 |
HUP0004627A2 (en) | 2001-10-28 |
NZ501619A (en) | 2002-02-01 |
CN1267290A (en) | 2000-09-20 |
AR012989A1 (en) | 2000-11-22 |
KR20010013826A (en) | 2001-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2293706C (en) | N-substituted urea inhibitors of farnesyl-protein transferase | |
US6358968B1 (en) | N-substituted urea inhibitors of farnesyl-protein transferase | |
WO1998057946A1 (en) | Carboxy piperidylacetamide tricyclic compounds useful for inhibition of g-protein function and for treatment of proliferative diseases (farnesyl protein transferase inhibitors) | |
EP0927181A1 (en) | Tricyclic compounds useful as fpt inhibitors | |
CA2293358C (en) | Tricyclic sulfonamide inhibitors of farnesyl-protein transferase | |
WO1998057947A1 (en) | Tricyclic keto amide derivatives useful as farnesyl protein transferase inhibitors | |
US6426352B1 (en) | Sulfonamide inhibitors of farnesyl-protein transferase | |
US6071907A (en) | Tricyclic compounds useful as FPT inhibitors | |
EP1019400A1 (en) | Benzo(5,6)cycloheptapyridine compounds useful as farnesyl protein transferase inhibitors | |
EP0931079A1 (en) | Substituted benzocycloheptapyridine derivatives useful for inhibition of farnesyl protein transferase | |
US6218401B1 (en) | Phenyl-substituted tricyclic inhibitors of farnesyl-protein transferase | |
EP0991644A1 (en) | Benzo(5,6)cycloheptapyridine cyclic ureas and lactams useful as farnesyl protein transferase inhibitors | |
US5945430A (en) | Aminooxyamide tricyclic inhibitors of farnesyl-protein transferase | |
EP0915869B1 (en) | Novel tricyclic n-cyanoimines useful as inhibitors of farnesyl-protein transferase | |
EP0991643B1 (en) | Novel aminooxyamide tricyclic inhibitors of farnesylprotein transferase | |
AU7815398A (en) | Benzo(5,6)cyclohepta(1,2B)pyridine derivatives useful for inhibition of farnesyl protein transferase | |
EP0927179B1 (en) | Substituted benzocycloheptapyridine derivatives useful for inhibition of farnesyl protein transferase | |
MXPA99012084A (en) | Novel tricyclic sulfonamide inhibitors of farnesyl-protein transferase | |
MXPA99012080A (en) | Novel aminooxyamide tricyclic inhibitors of farnesylprotein transferase | |
EP0989981A1 (en) | Novel phenyl-substituted tricyclic inhibitors of farnesyl-protein transferase | |
MXPA99012069A (en) | Novel n-substituted urea inhibitors of farnesyl-protein transferase | |
MXPA99012079A (en) | Novel phenyl-substituted tricyclic inhibitors of farnesyl-protein transferase | |
MXPA99012066A (en) | Benzo(5,6)cycloheptapyridine compounds useful as farnesyl protein transferase inhibitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 133393 Country of ref document: IL Ref document number: 98808186.5 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AU AZ BA BB BG BR BY CA CN CZ EE GE GW HU ID IL IS JP KG KR KZ LC LK LR LT LV MD MG MK MN MX NO NZ PL RO RU SG SI SK SL TJ TM TR TT UA UZ VN YU |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 501619 Country of ref document: NZ |
|
ENP | Entry into the national phase |
Ref document number: 2293358 Country of ref document: CA Ref document number: 2293358 Country of ref document: CA Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 82536/98 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1019997011846 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/1999/012084 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1998932718 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1998932718 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1019997011846 Country of ref document: KR |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1019997011846 Country of ref document: KR |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1998932718 Country of ref document: EP |