WO1998056727A1 - Functional material laminate and process for production thereof - Google Patents

Functional material laminate and process for production thereof Download PDF

Info

Publication number
WO1998056727A1
WO1998056727A1 PCT/JP1998/002517 JP9802517W WO9856727A1 WO 1998056727 A1 WO1998056727 A1 WO 1998056727A1 JP 9802517 W JP9802517 W JP 9802517W WO 9856727 A1 WO9856727 A1 WO 9856727A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional material
functional
substrates
laminate according
glass
Prior art date
Application number
PCT/JP1998/002517
Other languages
French (fr)
Japanese (ja)
Inventor
Hidekazu Kuromatsu
Kazuhisa Danno
Keiji Imajo
Kenji Kurimoto
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to AU75517/98A priority Critical patent/AU7551798A/en
Publication of WO1998056727A1 publication Critical patent/WO1998056727A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing

Definitions

  • the present invention relates to a functional material laminate in which a liquid or wet gel-like functional material is sealed between transparent plates, and to a method for producing the same.
  • photochromic glass that reversibly controls light rays physicochemically includes liquid crystal, electrochromic, fine particle polarization orientation, photochromic, thermochromic, and photochromic glass.
  • weather resistance light
  • light shielding and practical area
  • Japanese Patent Application Laid-Open No. 6-255016 discloses a temperature rise between two glass sheets arranged in parallel.
  • a thermopic pick dimming glass filled with an aqueous solution of a picky-mouth pick polymer which becomes cloudy due to the above is described.
  • thermostatic pick dimming glass is now in the spotlight, because it is more durable, has better light-shielding properties, and is less expensive than those using liquid crystal or the like.
  • the aqueous thermopick polymer aqueous solution with fluidity is sealed between the glass sheets, the aqueous solution gradually descends due to its own weight and the glass sheet bends unless the glass surface is used horizontally.
  • the layer thickness of the aqueous solution becomes larger toward the lower side, there arise problems such as that the refractive index of the light control glass varies depending on the portion and that the light shielding state becomes uneven. It is said that it is hardly applicable to modern buildings where the window openings are designed as wide as possible because the difference in layer thickness of the aqueous solution tends to increase as the area of the light control glass increases. This is the actual situation.
  • Structural and mechanical methods include adhering and fixing the adjacent sheet glass in the plane of the sheet glass with an adhesive or the like in a dotted or linear manner from the inside, or a spherical or linear glass with the same diameter as the required gap.
  • an adhesive or the like in a dotted or linear manner from the inside, or a spherical or linear glass with the same diameter as the required gap.
  • the lines and points of this bonded part are visually impaired.
  • stress concentration may occur at the bonded part or the part corresponding to the spacer, and the glass sheet may be easily broken, which may significantly limit the place where the glass sheet can be used. It has become.
  • the high-viscosity liquid used for such a light control glass changes its physical properties such as the temperature at which the state changes and the light-shielding properties according to its concentration. For this reason, it is necessary to prevent the fluctuation of the concentration of the highly viscous liquid due to the inflow and outflow of water vapor, and to seal the space between the glass sheets in a state where the inflow and outflow of water vapor are shut off so that the expected characteristics are maintained.
  • the glass sheets are bonded together directly or via low-melting glass, the entrance and exit of water vapor at the glass bonding part can be reliably blocked, and the concentration of the highly viscous liquid can be maintained semi-permanently constant. .
  • the dimensional accuracy is poor because the glass sheet is exposed to high temperatures, and the processing time is prolonged. The productivity of the stratum is also poor.
  • the high-viscosity liquid laminated between the sheet glasses cannot withstand the melting temperature of the glass, the sheet glass must be filled after being melt-bonded.
  • a highly viscous liquid is usually very high in viscosity, it is difficult to fill it with a liquid between glass sheets. For this reason, this sealing method was not feasible.
  • a sealing material containing a saturated hydrocarbon polymer such as polyisobutylene resin as a main component is used, and since these sealing materials have low adhesiveness to glass, they are used in a laminate. When deformed by applying stress, the sealing material separates from the glass, causing a problem that the durability of the laminate is reduced and the performance of blocking water vapor is reduced.
  • coated glass such as heat-reflective glass or LOW-E glass as one sheet glass, the adhesiveness of the sealing material to the coated surface is smaller than that of the sheet glass.
  • a sealing material mainly composed of polybutylene resin, which has excellent water vapor blocking performance, and a sealing material, which has excellent adhesion to sheet glass, are arranged in parallel between the glass periphery and inside and outside.
  • Laminates with a structure have also been proposed.
  • the amount of the sealing materials used is increased, and the filling operation of the sealing materials becomes complicated, and the number of processes is reduced. And the manufacturing cost of the laminate increases.
  • the two types of sealing materials are arranged in parallel inside and outside between the peripheral portions of the sheet glass, the overall width of the sealing portion is increased, and the lamination area of the high viscosity liquid is reduced.
  • double-glazed glass not only has its thermal insulation effect, but also controls the outflow of thermal energy such as the radiant heat of indoor heating in cold regions, and radiant heat due to the reflection of sunlight in warm regions.
  • thermal energy such as the radiant heat of indoor heating in cold regions, and radiant heat due to the reflection of sunlight in warm regions.
  • LOW-E glass low radiation film
  • the above-mentioned light control glass can control the inflow of solar energy by shading sunlight, there is a problem that the inflow and outflow of radiant heat and the inflow of radiant heat due to the reflection of sunlight cannot be sufficiently suppressed.
  • double-glazing can control the heat insulation effect and the inflow and outflow of radiant heat, but cannot control the inflow of solar energy, which accounts for the majority of solar energy during high temperatures such as summer. There is. In other words, conventional windows had no idea of controlling solar energy and radiant heat at the same time, and it could not be said that natural energy could be used effectively.
  • the temperature of the thermotropic material rises due to the radiant heat of room heating and is maintained in a high temperature state, and the light control glass is unnecessarily blocked from light. Because of the tendency, the basic function of the glass, such as securing the field of view, was impaired, and when used in warm areas, the temperature of the thermotropic material rapidly increased due to external radiant heat and the temperature increased. It is maintained and the light control glass tends to be unnecessarily shaded, which may impair the basic function of the glass, such as securing a view.
  • At least one part or the whole is transparent.
  • a liquid or wet gel-like functional material is sealed between the substrates, and a spacer is provided so that the gap between the substrates is uniform.
  • a locking member made of a soft or plastic material is provided between the spacers, and the spacer is fixed between the bases by the locking member.
  • the gap between the substrates is uniformly maintained through the spacer, so that the functional material is prevented from lowering, and the refractive index of the functional material laminate over the entire surface.
  • the locking member is made of a material softer than the spacer, the spacer is pressed into contact with the base via the locking member and physically engages with the base. The sedimentation of the stirrer is prevented, and the fall of the functional material due to the sedimentation of the stirrer is prevented.
  • the functional material laminate according to claim 2 is the functional material laminate according to claim 1, wherein, as the locking member, at least one of the bases is softer than the spacer on a surface facing the functional material. It is obtained by laminating various locking films. In this case, the spacer is locked to the locking film in such a manner as to sink into the locking film, and its settling is prevented.
  • a functional material laminate according to a third aspect is the functional material laminate according to the second aspect, wherein the thickness of the locking film is 30 to 100; t / m.
  • the thickness of the locking film should be set as thin as possible within the range in which the desired performance is exhibited by preliminary examination, taking into account the variation in the particle size of the spacer and the layer thickness of the functional material. Is preferred. In other words, if the film thickness is unnecessarily thick, the spacer is excessively immersed, and as a result, it is difficult for the spacer to maintain the layer thickness of the functional material. On the other hand, if the film thickness is small, the variation in the spread may exceed the film thickness of the locking film, and the layer thickness of the functional material becomes larger than the set value.
  • the function of the spacer is dependent on its function and the particle size is large, and the spacer with a small particle size does not adhere to the locking film and easily sinks and cannot fulfill its role. . For this reason, it is preferable to set 30 to 100 / m.
  • the functional material laminate according to claim 4 is the functional material laminate according to claim 2 or 3, wherein the locking film has an ultraviolet shielding function or an ultraviolet absorbing function. is there.
  • the locking film has an ultraviolet shielding function or an ultraviolet absorbing function. is there.
  • deterioration of the functional material and the sealing material used for encapsulating it between the substrates due to ultraviolet rays is suppressed, and the durability of the functional material laminate is improved.
  • the functional material laminate according to claim 5 is the functional material laminate according to any one of claims 2 to 4, wherein the main component of the locking film is polyester.
  • the functional material laminate according to claim 6 is the functional material laminate according to any one of claims 2 to 5, wherein the main constituent component of the locking film is polyethylene terephthalate. Things.
  • As the locking film those made of various materials can be used as long as the material is softer than the spacer, but in consideration of durability for building materials, industrial availability, price, etc., claim 5 or As described in 6, it is preferable to use a film mainly composed of polyester, more preferably polyethylene terephthalate (PET).
  • the functional material laminate according to claim 4 is the functional material laminate according to any one of claims 2 to 6, wherein the spacer is spherical. If the shape of the souser is not spherical, the workability during spraying and placement will be significantly reduced. When a shape other than a spherical shape, such as a rod, is used, workability is improved, but a spacer inside the functional material laminate is conspicuous, resulting in visual defects in the functional material laminate. Become. On the other hand, if the shape of the spacer is spherical, the spacer itself has no direction, so it is only necessary to disperse it in a functional material in advance or to appropriately dispose it on the functional material applied to the substrate. However, it is possible to arrange an efficient spacer, and it is possible to improve the workability at the time of dispersing and arranging the spacer, as compared with other shapes.
  • the functional material laminate according to claim 8 is the functional material laminate according to any one of claims 2 to 6, wherein the particle size of the spacer is larger than the layer thickness in which the functional material exists. It is large and smaller than the sum of the layer thickness of the functional material and the thickness of the locking film. If the particle size of the spacer is smaller than the functional material layer thickness, the spacer is in non-contact with the adjacent substrate, and unless the functional material laminate is used in a horizontal state, the spacer is used. It sinks to the bottom of the functional material stack and does not play its role. On the other hand, if the thickness of the functional material is greater than the sum of the Even if it is held in such a state that it sinks into the film, the layer thickness of the functional material will be larger than the set value.
  • the particle size is set so as to be larger than the thickness of the layer in which the functional material is enclosed, and smaller than the sum of the thickness of the functional material and the thickness of the locking film.
  • a functional material laminate according to claim 9 is the functional material laminate according to any one of claims 2 to 8, wherein the spacer is a glass bead.
  • the material of the spacer must have a function as a spacer, have durability as a building material, have no adverse effect on the functional material that comes into contact with it, and have a visual sense of the functional material laminate. It is necessary to satisfy the conditions such as not to cause a general defect, and in view of these, it is preferable to use glass beads.
  • the functional material laminate according to claim 10 is the functional material laminate according to claim 1, in which an exterior material made of a soft or plastic material is coated on a spreader as a locking member. It is. In this case, even if there is a difference in specific gravity between the spacer and the functional material, the exterior material comes into close contact with the base and the movement of the spacer is physically restricted. It does not sink or float and is not biased. Since the exterior material acts as a cushioning material, the occurrence of stress concentration at a position corresponding to the spacer on the base can be further reduced.
  • the functional material laminate according to claim 11 is the functional material laminate according to any one of claims 1 to 10, wherein a spacer having a size smaller than a required interval between substrates is used, The spacer defines the minimum distance between the substrates. With this configuration, even when external force is applied to the substrate, the spacer ensures the minimum necessary thickness of the functional material layer, and stress concentration at a position corresponding to the spacer of the substrate. Is minimized.
  • the functional material laminate according to claim 12 is the functional material laminate according to any one of claims 1 to 11, wherein the specific gravity of the spacer is 90% to 1% of the specific gravity of the functional material. It is set to 100%, and the viscosity of the functional material is set to 100 voids or more. In this case, the specific gravity of the functional material and the spacer becomes almost the same, Bias of the souser due to surfacing and floating can be prevented.
  • the functional material laminate according to claim 13 is the functional material laminate according to any one of claims 1 to 12, wherein one sealing material is disposed between peripheral portions of the base, and The peripheral parts of the bases are bonded and fixed to each other with a sealing material, and the functional material is sealed between the bases.
  • the restriction on the material for the sealing material is increased, but the lamination width of the sealing material can be reduced as much as possible, and the lamination area of the functional material can be set large.
  • the assemblability is improved, and the production cost can be reduced by using as little sealing material as possible.
  • the functional material laminate according to claim 14 is the functional material laminate according to any one of claims 1 to 12, wherein the sealing material having excellent gas barrier properties is provided between peripheral portions of the base. And at least two sealing materials having excellent adhesion to the substrate are arranged in parallel inside and outside. With this configuration, the laminated area of the functional material is slightly reduced, and the functional material can be securely sealed by the inner sealing material, and the substrates can be securely bonded to each other by the outer sealing material. It becomes possible.
  • the functional material laminate according to claim 15 is the functional material laminate according to claim 13, wherein the sealing material has at least one crosslinkable reactive group in a molecule. It uses a sealing material containing from 0 to 300,000 saturated hydrocarbon polymers as an essential component.
  • the sealing material used for this functional material laminate has excellent adhesiveness to a substrate such as glass and also has excellent barrier properties against water vapor, so that two types of sealing materials are not used as in the past. Using two types of sealing materials, two substrates are firmly adhered to each other, and the flow of water vapor from the laminated portion of the sealing material is blocked to prevent fluctuations in properties due to changes in the concentration of the functional material. Becomes possible.
  • the lamination width of the sealing material can be reduced as much as possible, and the lamination area of the functional material can be set large. The assemblability of the laminate is improved, and the production cost can be reduced by minimizing the amount of sealing material used.
  • the functional material laminate according to claim 16 is the functional material laminate according to any one of claims 13 to 15, wherein a sealing material made of a material that is cured by post-processing is used. Things. In other words, when the base materials are bonded to each other with the sealing material, the area that can be filled with the functional material can be set as large as possible, and a functional material laminate suitable as a window glass can be realized.
  • the functional material laminate according to claim 17 is the functional material laminate according to any one of claims 13 to 15, wherein a sealing material containing a reactive gay group is used as the sealing material. It was what was. In other words, such a sealing material has excellent weather resistance due to its excellent hydrolysis resistance at the cross-linking points, and also has excellent adhesiveness to the substrate, so that the durability of the functional material laminate is improved.
  • the functional material laminate according to claim 18 is the functional material laminate according to any one of claims 1 to 17, wherein the functional material has a light-transmitting state and a light-shielding state due to a temperature change between the substrates.
  • a dimming layer enclosing the squeezing material is formed, and at least one of the substrates disposed on the outside or indoor side of the dimming layer is made of functional glass having a low radiation function. It is composed.
  • the functional glass more indoors than the dimming layer makes it suitable for use in cold areas. That is, in a cold region, if the amount of radiant heat generated by indoor heating increases, the temperature of the light control layer becomes too high or is maintained at a high temperature, and the functional material laminate is unnecessarily shaded. It may be. For this reason, by placing the functional glass on the indoor side of the light control layer, the radiant heat from indoor heating is reflected by the functional glass before it reaches the light control layer, and the abnormal temperature rise of the light control layer is suppressed. In addition, the functional material laminate can be maintained in a light-transmitting state, so that the field of view as the opening and the sense of openness can be secured. preferable.
  • the functional glass is placed outside the light control layer, it will be suitable for use in warm areas. That is, in a warm region, the amount of radiant heat due to the reflection of sunlight increases, and the temperature of the light control layer becomes too high or is maintained at a high temperature, and the functional material laminate is unnecessarily shaded. May be in a state. For this reason, by disposing the functional glass on the outdoor side of the light control layer, the radiant heat from the outside is reflected by the functional glass before reaching the light control layer, and the abnormal temperature rise of the light control layer is suppressed. However, it is preferable because the inflow of solar energy by the functional material laminate can be appropriately adjusted, and the field of view as the opening and the sense of openness can be secured. In addition, it is preferable to dispose the functional glass on the outside of the room rather than the light control layer because the glass has excellent responsiveness in the light-transmitting and light-shielding state according to the room temperature.
  • the functional material laminate according to claim 19 is the functional material laminate according to any one of claims 1 to 18, wherein three or more substrates are laminated and the functional material is filled. At least one of the gaps other than the gap between them is formed by sealing the space between the outer edges of the base with a sealing material to form an air layer. With such a configuration, the air layer can further improve the heat insulating properties of the functional material laminate.
  • the functional material laminate according to claim 20 is the functional material laminate according to claim 19, wherein at least one of the substrates facing the air layer has a function of forming a low-emission film on the surface of the substrate. It is made of functional glass, and functional glass is arranged so that the low-emissivity film is in contact with the air layer. In other words, in order to protect the low emission film from damage due to physical contact and the like and deterioration due to environmental factors, it is preferable to arrange the surface provided with the low emission film on the air layer side.
  • the functional material laminate according to claim 21 is the functional material laminate according to any one of claims 1 to 20, wherein the state reversibly changes between a cloudy state and a transparent state due to a temperature change.
  • This is a material using a satomoto pick material.
  • the temperature changes cause the functional material to switch between a light-transmitting state and a light-shielding state, thereby controlling the inflow of solar energy.
  • the functional material laminate according to claim 22 is the functional material laminate according to any one of claims 1 to 21, wherein a main component of the functional material is a water-soluble polymer compound. A nonionic surfactant and a cloud or cloud point controlling substance, and water.
  • the functional material having such a configuration functions as a thermopic pick material that switches between a light-transmitting state and a light-shielding state due to a change in temperature. That is, the functional material laminate in which these functional materials are encapsulated can be used as a light control glass that switches between a light-transmitting state and a light-shielding state by a change in temperature, and can control the inflow of solar energy.
  • a method for producing a functional material laminate according to claim 23 is characterized in that the functional material is applied to the bases, and a gap larger than a required gap between the bases is provided so that the bases can be hermetically sealed.
  • the process and the superimposed substrate are set in a reduced-pressure atmosphere, and the sealing material is brought into close contact with the substrate so that the enclosed space is airtight while maintaining the enclosed space in a substantially vacuum state.
  • a closed space having a larger capacity than the functional material filled between the bases is formed between the bases by the sealing material, and the closed space is filled with the functional material, and the inside of the closed space is substantially evacuated.
  • the sealing material is deformed, the base material is pressed while deforming the sealing material, and the closed space is filled with the functional material.Therefore, no bubbles are mixed in the functional material or the plastic functional material such as gel. Thus, it is possible to fill the space between the substrates.
  • a method of manufacturing a functional material laminate according to claim 24 is the manufacturing method according to claim 23, wherein the functional material and the sealing material are adhered only to one of the substrates in the setting step.
  • the method for producing a functional material laminate according to claim 5 is the method for producing a functional material according to claim 23, wherein the functional material and the sealing material are overlapped with each other in the substrate polymerization step.
  • the functional material is applied to the substrate in a uniform film shape so that the distance between them is 5 cm or less.
  • the method for producing a functional material laminate according to claim 26 is the method according to any one of claims 23 to 25.
  • the functional material in the setting process, the functional material is point-like or linear-like or a mixture thereof with respect to the substrate, and the distance L between adjacent points is 5 cm. It is applied so as to be as follows. By coating in this manner, a functional material laminate having almost no bubbles can be produced.
  • the manufacturing method according to claim 27 is the manufacturing method according to any one of claims 23 to 26, wherein the minimum distance between the substrates is defined in at least one of the functional material and the sealing material.
  • a spacer is provided. In other words, when an external force acts on the bases, the gap between the bases may fluctuate. Therefore, by providing a spacer for defining the minimum distance between the bases, a minimum necessary functional material layer is provided. The thickness of the substrate is ensured, and the occurrence of stress concentration at a position corresponding to the spacer on the substrate is minimized.
  • the manufacturing method according to claim 28 is the manufacturing method according to any one of claims 23 to 27, wherein a spacer for uniformly setting a gap between the bases in the functional material is provided.
  • at least one of the bases facing the functional material is laminated with a locking film softer than a spacer.
  • the spacer is in close contact with the locking film, and the movement of the spacer is regulated. Further, the locking film can be easily formed on the base by lamination.
  • the manufacturing method according to claim 29 is the manufacturing method according to claim 27, wherein the spacer disposed on the functional material is covered with a covering material made of a soft or plastic material, and The sensor is fixed between the substrates.
  • the functional material laminate manufactured by this manufacturing method even if there is a difference in specific gravity between the functional material and the spreader, the movement of the spreader is physically restricted by the exterior material. As a result, the spacer does not settle or float to be biased, and since the exterior material acts as a cushioning material, the occurrence of stress concentration at a position corresponding to the base spacer can be further reduced.
  • the manufacturing method according to claim 30 is the manufacturing method according to any one of claims 23 to 29, wherein at least a part is partitioned by a flexible film body in the reduced-pressure adhesion step, Using a decompression device having a decompression tank, set the superimposed substrates in one decompression tank, depressurize both decompression tanks, bring the closed space into a substantially vacuum state, and then close.
  • the other depressurizing tank is at normal pressure so that the chain space is airtight, and the substrate is pressed with a film to press the sealing material in close contact with the substrate.
  • a well-known decompression device it is possible to produce a functional material laminate having no bubbles and high quality.
  • the manufacturing method according to claim 31 is the manufacturing method according to claim 20, wherein a thickness substantially equal to a required thickness of the functional material is provided around the base set in a reduced pressure tank of the pressure reducing device.
  • the production method according to claim 32 is the production method according to any one of claims 23 to 31, wherein in the substrate polymerization step, the closed space formed between the substrates is communicated with the outside, and the reduced pressure contact is performed.
  • the sealing material is provided in close contact with the base so that the enclosed space is airtight.
  • grooves or depressions and projections may be formed in the sealing material, or a part of the sealing material may be lost so that the enclosed space is not hermetically sealed by the sealing material.
  • the closed space can be easily brought into a substantially vacuum state.
  • the grooves, irregularities, and missing portions formed in the sealing material are closed when the sealing material is deformed in the pressing step, and the closed space is hermetically sealed.
  • the manufacturing method according to claim 33 is the manufacturing method according to any one of claims 23 to 32, wherein the functional material and the sealing material are respectively laminated between the substrates in the substrate polymerization step.
  • the sealant was pre-cured.
  • the two substrates can be temporarily bonded with a pre-cured sealing material, so that even when a large pressure is applied during lamination of the two substrates, the two substrates and the sealing material are not easily displaced, so that the dimensional accuracy is excellent.
  • the obtained functional material laminate is obtained.
  • Fig. 1 is a vertical sectional view of the main part of a functional material laminate
  • Fig. 2 is a functional material laminate of another configuration
  • Fig. 3 is a vertical sectional view of a main part of a light control glass using low-emission glass
  • Fig. 4 is a vertical cross-sectional view of a main part of another embodiment of the light control glass
  • Fig. 5 is a low-emission glass
  • Fig. 6 is a vertical sectional view of a main part of a multi-layer type light control glass of another embodiment.
  • Fig. 6 is a vertical cross-sectional view of a main part of a multi-layer light control glass of another embodiment.
  • FIG. 1 is a vertical sectional view of the main part of a functional material laminate
  • Fig. 2 is a functional material laminate of another configuration
  • Fig. 3 is a vertical sectional view of a main part of a light control glass using low-emission glass
  • Fig. 4 is a vertical cross-sectional
  • FIG. 8 is a vertical sectional view of a main part of a light control glass of another type
  • FIG. 8 is a vertical cross-sectional view of a main part of a light control glass of a multilayer type according to another embodiment
  • FIG. 10 is a longitudinal sectional view of a principal part of a multi-layer type light control glass of another embodiment
  • FIG. 11 is a longitudinal sectional view of a principal part of a light control glass using a glass having an ultraviolet shielding function.
  • Fig. 12, Fig. 12 is a longitudinal sectional view of a main part of a light control glass using a glass having an ultraviolet shielding function according to another embodiment
  • Fig. 13 is a glass having an ultraviolet shielding function according to another embodiment.
  • FIG. 12 is a longitudinal sectional view of a main part of a light control glass using a glass having an ultraviolet shielding function according to another embodiment
  • Fig. 13 is a glass having an ultraviolet shielding function according to another embodiment.
  • FIG. 12 is a longitudinal section
  • FIG. 14 is a longitudinal sectional view of a main part of a light control glass
  • FIG. 14 is a vertical cross sectional view of a main part of a light control glass using a glass having an ultraviolet shielding function of another embodiment.
  • FIG. 15 is an ultraviolet shielding of another embodiment.
  • Fig. 16 is an explanatory view of a method of applying a functional material to a substrate
  • Fig. 17 is an explanatory view of a method of applying a functional material to a substrate
  • Fig. 16 is an explanatory view of a method of applying the functional material to the substrate.
  • FIG. 18 is a longitudinal sectional view of the functional material laminate in the substrate polymerization step
  • FIG. 19 is a schematic configuration diagram of the decompression device
  • FIG. 20 is an explanatory diagram of the operation of the decompression device
  • FIG. Fig. 22 is a longitudinal sectional view of the functional material laminate in Fig. 22
  • Fig. 22 is a longitudinal sectional view of the functional material laminate in the pressing step in the case where a deformation preventing spacer is provided in the pressure reducing device
  • Fig. 24 is a vertical cross-sectional view of the functional material laminate in the pressing step when a molding die is provided in FIG. Illustration of another method of manufacturing the potential material laminate, 2 5 is an explanatory diagram of another method for producing a functional material laminate.
  • the functional material laminate 1 has two flat substrates 2 and 3 arranged side by side in parallel, and the outer edges of the substrates 2 and 3 are sealed with a sealing material 4. Then, the functional material 5 is sealed between the bases 2 and 3, and further, the functional material 5 is provided with a spacer 6 so that the gap between the bases 2 and 3 is uniform. In order to fix the support 6 at a predetermined position between the bases 2 and 3, a locking film 7 which is softer than the spacer 6 is provided on at least one of the bases 2 and 3 (the base 3 in the illustrated example). It is laminated on the surface facing 5.
  • the bases 2 and 3 can be appropriately selected from ordinary plate glass made of an inorganic material, and organic glass made of polycarbonate, ataryl resin, vinyl chloride resin or the like as an organic material.
  • the flat glass can be colored glass, float flat glass, netted glass, lined glass, heat ray reflective glass, low radiation glass, laminated glass, tempered glass, double strength glass, UV cut glass, mesh What is necessary is just to select suitably from glass containing, template glass, ground glass, etc.
  • the bases 2 and 3 are usually transparent.
  • a part of the bases 2 and 3 may be opaque, and the building may be a building. When used as an outer wall or the like, at least one of them may be made of an opaque glass plate or a metal plate. The case where low-emission glass is used as the substrates 2 and 3 will be described later in detail.
  • the substrates 2 and 3 may be of the same type or of different types. It is also possible to use a template glass in which a pattern or the like is dug deeply, a glass molded body such as a bent glass or a glass bottle, or glass in which at least one is formed in a block shape such as a glass block.
  • a samurai mouth pick material that changes state between a cloudy state and a transparent state due to a temperature change is used as the functional material 5.
  • thermopick materials include nonionic surfactants exhibiting a cloud point phenomenon and isotropic aqueous solutions of nonionic water-soluble polymers.
  • nonionic surfactants exhibiting a cloud point phenomenon
  • isotropic aqueous solutions of nonionic water-soluble polymers include polyvinyl alcohol partial acetal, polyvinyl alcohol partial acetate, polyvinyl methyl ether, methyl cellulose, polyethylene oxide, polypropylene oxide, a copolymer of ethylene oxide and propylene oxide, and a hydroxypropyl group
  • Polysaccharide derivatives eg, hydroxypropylcellulose, etc.
  • polyvinylmethyloxazolidinone polyN-substituted acrylamide derivatives (eg, polyN-isopropylacrylamide, polyN-ethoxyxylacrylamide, etc.)
  • An aqueous solution of a water-soluble polymer such as a poly N, N-disubstituted acrylamide derivative
  • a water-soluble polymer having a hydroxypropyl group having a good hydrophobic-hydrophilic balance is preferable from the viewpoint of sufficiently shielding sunlight.
  • Hydroxypropylcellulose which has primarily stable cellulose in the main chain, is preferable because it has excellent weather resistance and stability and is relatively inexpensive.
  • phase change may occur when the state changes to cloudy.
  • phase separation can be suppressed by adding an amphipathic molecule such as a nonionic surfactant having both a hydrophilic part and a hydrophobic part to this, and such an amphipathic molecule can be further added.
  • an amphipathic molecule such as a nonionic surfactant having both a hydrophilic part and a hydrophobic part
  • an amphipathic molecule can be further added.
  • amphipathic molecule those having a molecular weight of about 300 or less, more preferably about 1000 or less in the oligomer region are easily used, and the ionic group has a very hydrophilic group. As it is large, the higher alkyl group is better for the hydrophobic group to balance.
  • polyoxypropylene 2-ethyl-2-hydroxymethyl-1,3-propanediol polyoxypropylene trimethylolpropane ether
  • polypropylene glycol diethylene glycol monobutyl ether
  • polyoxypropylene glycerin polyoxypropylene glycerin
  • sodium laurinolate sulfate. Etc. and any other substance having the same action can be used.
  • thermopick material changes state is also within the scope of the present invention. Thereby, the temperature at which the state changes can be shifted to a lower temperature side.
  • the constituent substances of the thermotropic material and the compounding ratio thereof may be determined by preliminary examination in consideration of required characteristics such as a state change temperature.
  • the thickness differs depending on the type of the bases 2 and 3 used and the thickness of the layer in which the thermopick material is present. Is about 300 ⁇ m to 1 mm, and the solar transmittance from about 70% or more in the light-transmitting state is reduced to about 40% or less in the light-shielded state. It has become clear that the amount of flow can be adjusted.
  • a gel obtained by crosslinking a part of these water-soluble polymers and swelling in a solvent such as water is used. It may be used as a material for a thermotoque pick.
  • a gel obtained by partially cross-linking the above-mentioned polymer solution for example, a portion of a hydroxyethyl methacrylate-hydroxyethyl acrylate copolymer
  • a gel thermopick material comprising a crosslinked product and water is one of preferred examples.
  • various materials other than those described above may be used as long as they are liquid or wet gel-like thermotropic materials that change between a cloudy state and a transparent state due to a temperature change.
  • the functional material 5 is a liquid or wet gel-like material, a photomixer material whose light transmittance changes according to a change in light, or an electrifying material whose light transmittance changes according to a voltage change
  • Various light modulating materials such as mouth chromic materials can be used.
  • the functional material 5 a material having a function other than the material whose light transmittance changes can be laminated.
  • a shock absorbing gel such as ⁇ -gel
  • the functional material laminate 1 can be used as a sound insulating glass.
  • a liquid containing a solvent such as water, a gel or a solid absorbing these liquids can be used as the functional material 5, in addition to the above-described polymer solution or gel.
  • any general polymer adhesive or any sealing material that is plastic and solid can be used.
  • Epoxy resin with excellent adhesive strength and weather resistance Acryl-based, PVC-based, cyanoacrylate-based adhesives, silicone-based, modified silicone-based sealing materials, and (2) butyl rubber-based, polyisobutylene-based, and polysulfide-based sealing materials for double-layer glass sealing materials Or 3 Transparent acryl rubber or silicone rubber rubber material is preferred.
  • a plastic solid such as clay or gelatin, retains its shape without being deformed by its own weight in a small amount, but can be deformed into an arbitrary shape by applying pressure and release the pressure. It shows the one that does not return to its original shape. High viscosity liquids may be used.
  • a highly viscous liquid with a size of 0 or more or a plastic gel, or a plastic rubber.
  • a sealing material which is heated or high-frequency heated, irradiated with UV, irradiated with ultrasonic waves, irradiated with EB (electron beam), or left at room temperature or cured naturally by moisture.
  • a sealing material made of a material having low gas permeability and low moisture permeability as shown in 2 and a material shown in 1 having excellent adhesion to the bases 2 and 3 1
  • At least two types of sealing materials may be arranged in parallel between the peripheral portions of the bases 2 and 3 inside and outside. In this case, the restriction on the material of the sealing material for sealing the functional material 5 is reduced, and the fluctuation of the composition of the functional material 5 due to evaporation of moisture can be more effectively prevented, so that the appearance has excellent durability. A good functional material laminate can be obtained. Therefore, such a sealing method is also preferable and is within the scope of the present invention.
  • a saturated hydrocarbon polymer having a molecular weight of 500,000 to 300,000 containing at least one crosslinkable reactive group in the molecule is an essential component, and has an adhesive property to substrates 2 and 3 and a water vapor barrier property.
  • Those which are excellent, have sufficient weather resistance, have sufficient strength for practical use, and have low solvent permeability are preferable.
  • a modified silicone-based sealing material is preferable because it has excellent adhesion to glass and water vapor barrier properties.
  • the reactive group capable of crosslinking may be any reactive group such as an alkenyl group, an alkynyl group, an acrylic group, a methacryl group, a vinyl group, an aryl group, or another functional group having an unsaturated bond.
  • a reactive group forming an ether bond, an ester bond, a urethane bond, an amide bond, an imido bond, etc. for example, an epoxy group, a hydroxyl group, an amino group, an isocyanate group, a carboxyl group, an acid anhydride group, a urine group,
  • An acid halide group such as a sulfonyl group and a carbonyl group, and a reactive gay group are preferable because the adhesion to substrates 2 and 3 such as a glass plate is improved.
  • reactive groups those that react under relatively low temperature conditions such as heating at 0 ° C or more and 100 ° C or less or standing at room temperature, high-frequency heating, light irradiation, electron beam irradiation, etc. Since the curing process of the material 4 can be performed under mild conditions, the functional material 5 is not thermally degraded by heating, and the functional material laminate 1 having excellent dimensional accuracy can be obtained.
  • the manner in which the crosslinkable reactive groups react to crosslink the saturated hydrocarbon-based polymer is as follows: (1) Even if the reactive groups contained in the saturated hydrocarbon-based polymer react and crosslink with each other, Or (2) a saturated hydrocarbon-based polymer and a curing agent containing a functional group capable of reacting with a reactive group contained therein are mixed, and the saturated hydrocarbon-based polymer is crosslinked via the curing agent. It does not matter.
  • R 1 and R 2 are both an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and a carbon number? ⁇ 20 aralkyl groups or (R ') 3Si0- (R' is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and the three R's may be the same or different And when two or more R 1 or R 2 are present, they may be the same or different, and X is a hydroxyl group or a hydroxyl group.
  • decomposable groups when two or more are present, they may be the same or different; a is 0, 1, 2 or 3, b is 0, 1 or 2, provided that a + mb ⁇ l, and b in each reactive group does not need to be the same, m is 0 or an integer of 1 to 19.
  • the introduction form of the reactive gay group may be (1) the saturated hydrocarbon polymer constituting the main chain may be a saturated hydrocarbon polymer containing a reactive gay group, (2) A saturated hydrocarbon polymer having a functional group capable of reacting with a reactive hydrocarbon group, wherein the saturated hydrocarbon polymer constituting the main chain is a reactive hydrocarbon group.
  • the contained curing agent may be mixed.
  • sealing material 4 As the sealing material 4, as disclosed in Japanese Patent Application Laid-Open No. (A) a saturated hydrocarbon polymer having a molecular weight of 500 to 300,000 having at least one alkenyl group in the molecule, (B) a curing agent having at least two hydrosilyl groups in the molecule, (C ) The sealing material containing the hydrosilylation catalyst and (D) the adhesion-imparting agent has a fast curing property, so that the hardening time of the sealing material can be shortened. It is particularly preferable because the production efficiency of the can be improved.
  • sealing material 4 a saturated material having a molecular weight of 500 to 300,000 containing at least (A) a reactive gayne group in a molecule disclosed in Japanese Patent Application Laid-Open No. 8-231758 is disclosed.
  • a hydrocarbon-based polymer and (B) a sealing material containing the following chemical formula 2 are particularly preferable because they have excellent storage stability and can reduce raw material loss of the sealing material.
  • R is a hydrogen atom or a substituted or unsubstituted hydrocarbon group
  • R ' is a substituted or unsubstituted hydrocarbon group
  • the three R's may be the same or different. It may be.
  • the saturated hydrocarbon polymer constituting the main chain has a molecular weight of 500,000 to 300,000, and preferably has a number average molecular weight of about 500 to 100,000.
  • a viscous liquid having a fluidity of about 1000 to 40,000 is preferred from the viewpoint of easy handling.
  • the saturated hydrocarbon polymer is a concept meaning a polymer in which the main skeleton does not substantially contain a carbon-carbon unsaturated bond other than the aromatic ring, and the repeating unit constituting the main chain is It means composed of saturated hydrocarbon.
  • Saturated hydrocarbon polymers constituting the main chain are: 1) polymerizing olefinic compounds having 2 to 6 carbon atoms such as ethylene, propylene, 1-butene and isobutylene as main monomers; 2) butadiene and isoprene It can be obtained by homopolymerizing a gen-based compound, or copolymerizing the above-mentioned olefinic compound and a gen-based compound, and then hydrogenating.
  • an isobutylene-based polymer a hydrogenated polybutadiene-based polymer, or a hydrogenated polyisoprene-based polymer is preferable.
  • the above isoprene-based polymer may be a homopolymer or a copolymer, but when the liquid 4 is an aqueous liquid or a wet gel, the isobutylene unit is 50% (% by weight, hereinafter the same) or more in the polymer. Is preferable, 70% or more is more preferable, and 90% or more is most preferable.
  • the copolymerizable monomer unit may be used. May be contained.
  • additives are added to these sealing materials 4 as required in addition to the above components.
  • additives include, for example, curing accelerators, plasticizers, fillers, adhesion improvers, deterioration inhibitors, radical inhibitors, ultraviolet absorbers, light stabilizers, phosphorous peroxides
  • decomposers include decomposers, lubricants, pigments, and foaming agents.
  • the positional relationship with the layer in which the functional material 5 exists is not particularly limited.
  • the locking film 7 is provided with a film 7 to prevent light deterioration of the sealing material 4 and the functional material 5 due to ultraviolet light. It is necessary to laminate on a substrate disposed on the outdoor side of the layer where the functional material 5 is present.
  • the locking finolem 7 may not be formed at the portion where the sealing material 4 is provided. It should be noted that it is necessary to select a material made of a soft material.
  • the locking film 7 a film having an ultraviolet shielding function or an ultraviolet absorbing function can be used.
  • the locking film 7 is laminated on a substrate outside the layer where the functional material 5 is present, in order to prevent the deterioration of the sealing material 4 and the functional material 5 due to ultraviolet rays.
  • a film having an ultraviolet shielding function or an ultraviolet absorbing function may be used, and fine particles such as zinc oxide and titanium oxide may be dispersed in the film. It is also possible to use a coated or coated material. An appropriate selection may be made in consideration of required characteristics and price.
  • a spacer 8 is provided in the center of the sealing material 4 so as to be embedded, and the sealing material 4 is attached to the spacer 6 instead of the locking film 7.
  • An exterior material 9 having the same composition and exhibiting plasticity may be covered. In this case, when the exterior material 9 comes into close contact with the bases 2 and 3, the floating and sinking of the spacer 6 is regulated, and the spacer 6 is fixed to a predetermined position of the functional material 5.
  • the specific gravity of the spacer 6 and that of the functional material 5 are set to be substantially the same, the floating and sinking of the spacer 6 is prevented, so that the locking film 7 and the exterior material 9 may be omitted.
  • a photochromic gel composed of 30% by weight of HPC (hydroxypropylcellulose) and water (specific gravity of about 1.2, viscosity of about 200 Voids) is added with a spherical sensor made of vinyl chloride having a specific gravity of about 1.2.
  • the locking film 7 and the exterior material 9 may be omitted.
  • the spacers 6 and 8 may be fixed to at least one of the bases 2 and 3 with an adhesive or the like. Further, when the size of the bases 2 and 3 is relatively small or when the strength and rigidity of the bases 2 and 3 are high, the spacer 8 or the spacers 6 and 8 may be omitted.
  • the spacers 6 and 8 are used to set the gap T between the bases 2 and 3 to a uniform layer over the entire area of 1 A by stacking the functional material, and the diameter of the spacers 6 and 8 D is set smaller than the gap, and the lower limit of the gap T is regulated by the diameter D by spacers 6 and 8. It is configured as follows. In other words, even if an external force acts on the bases 2 and 3 and the gap T is locally reduced, the spacers 6 and 8 are applied until the gap T becomes the same as the diameter D. Since there is no contact with the bases 2 and 3 at the same time, no stress concentration occurs on the bases 2 and 3 at the positions corresponding to the spacers 6 and 8. Since the external force is absorbed to some extent by the locking film 7 in the functional material laminate 1 and by the sealing material 4 and the exterior material 9 in the functional material laminate 1A, the base material 2 against the external force is removed. , 3 can be increased in strength.
  • the spacers 6 and 8 various materials such as plastics and metals can be used as long as the lower limit of the gap T can be regulated and is not corroded by the functional material.
  • the shapes of the spacers 6 and 8 can be in the form of particles such as spheres, wires, or plates. It may be opaque, but if the functional material 5 is transparent, it is preferable that the spacers 6 and 8 are also transparent. Further, if the spacers 6 and 8 have a refractive index close to that of the functional material 5, the spacers 6 and 8 are most inconspicuous. Examples of such spacers 6 and 8 include glass beads and resin beads. When a material that becomes cloudy due to a temperature change or the like is used as the functional material 5, the spacers 6 and 8 may be configured to be white so as not to be conspicuous.
  • a sealing material 4 having a diameter of about 2 mm obtained by coating a stainless steel wire 8 having a diameter of about 0.5 mm with butyl rubber is used.
  • Acrylic rubber is applied to a functional material 5 with a thickness of about 0.8 mm, or (2) a spacer 6 made of polystyrene beads having a diameter of about 0.4 mm, and dried to form an exterior material 9. It is preferable that the material which is coated and formed into a spherical shape of about 0.8 mm is mixed with the functional material 5 so that the functional material 5 has a thickness of about 0.5 mm.
  • the spacer 6 used in the functional material laminates 1 and 1 A may be mixed into the functional material 5 in advance and filled between the bases 2 and 3, or may be sprayed on the bases 2 and 3 And may be arranged regularly. Further, from the viewpoint of preventing warpage of the bases 2 and 3, it is desirable that the spacers 6 and 8 are arranged at an interval of 10 cm or less, preferably 5 cm or less in the plane.
  • Hydroxypropylcellulose (HPC-L, manufactured by Nippon Soda Co., Ltd.): Polyoxypropylene trimethylolpropane ether (Sannic Triol T-P400 manufactured by Sanyo Chemical Industries, Ltd.): A 3% sodium chloride aqueous solution mixed at a weight ratio of 5: 1: 9 is used as the thermotropic material.
  • the bases 2 and 3 are made of JIS standard float plate glass with a thickness of 3 mm.
  • the locking film is made of polyethylene terephthalate. Glass beads spacers (UNI-BEADS SPL-500, particle size: 500 m, manufactured by Union Co., Ltd.) were used as the spacers.
  • the layer in which the functional material is present was sealed with a photosensitive adhesive after encapsulating the functional material via a plastic resin.
  • the functional glass laminated with the functional material laminated with the functional material having such a structure is transparent and translucent under normal conditions due to the effect of the functional material having thermotropic function enclosed between the glasses. It is in a state where visibility and openness comparable to ordinary glass are secured.
  • the temperature of the functional material exceeds approximately 36 ° C due to a high temperature or strong sunlight, the functional material gradually becomes cloudy, becomes almost completely cloudy at 38 ° C, and becomes light-shielded, It is possible to suppress the inflow of solar radiation energy into the indoor side.
  • the material when the temperature of the functional material falls below approximately 36 ° C due to a decrease in temperature or a decrease in solar radiation, the material returns to a light-transmitting state again, so that solar energy can be obtained and sufficient visibility and light can be obtained. A feeling of openness can be obtained.
  • the functional material laminates 1 and 1A of the present invention are used in a vertical plane as a building material for windows and the like, the effect of maintaining the functional material layer thickness by the spacer is achieved. , And the retaining effect of the spacer by the locking film makes it possible to keep the layer thickness of the functional material having a thermotropic function constant for a long period of time. No unevenness is caused by this, and an excellent appearance can be maintained.
  • Low-radiation glass refers to radiant heat due to reflection of sunlight or indoor heating, and a far-infrared region of about 200 nm or more. It has a function of reflecting energy having a wavelength of.
  • a low-emissivity film 11 made of a transparent special metal film (Low-E mittance film) used for double-glazing is applied to the indoor side.
  • Low-emission glass 12 (commonly referred to as “L 0 W—E glass”) coated on the substrate 2 may be used.
  • the low-emissivity film 11 is transparent, transmits almost all of the wavelengths in the solar radiation region, particularly in the visible light region, and selectively reflects only those having higher wavelengths. Therefore, there is no adverse effect on ensuring visibility and openness.
  • the use of the low-emission glass 12 provided with the low-emission film 11 is preferable from the viewpoint of its effect and easy industrial availability.
  • a transparent special metal film having a reflection function of low radiation a five-layer film composed of an Ag film and a ZnO film can be exemplified. More specifically, high performance (high heat insulation) products such as “Sun Reine Silver” and “Sun Reine Green” manufactured by Asahi Glass Co., Ltd. and “Pairex Heat Guard” manufactured by Central Glass Co., Ltd. Low-emission films used for laminated glass can be used.
  • the positional relationship is not particularly limited as long as it is only for the purpose of suppressing the inflow of radiant heat from the room to the outside.
  • the low-emissivity glass 12 is installed closer to the room than the functional material 5, the temperature of the pick-up material increases due to the effect of the radiant heat from the indoor heating reflected by the low-emission glass 12. Easier to maintain at high temperatures. That is, the light control glass 10 becomes unnecessarily light-shielded, which causes inconvenience in terms of ensuring visibility and openness as the opening. For this reason, it is preferable to arrange the low-emission glass 12 outside the functional material 5 outside the functional material 5 to suppress an abnormal temperature rise of the functional material 5 due to radiant heat generated by indoor heating.
  • the temperature change causes the functional material 5 to switch between a light-shielding state and a light-transmitting state, and the solar radiation energy flowing into the room is adjusted.
  • the radiant heat due to reflections and room heating is reflected, and the radiant heat entering and exiting the room is suppressed.
  • the action of the thermopic mouth pick material autonomously shields them in the visible light region of 380 nm to 780 nm and in the solar region of 340 nm to 180 nm. And control the inflow.
  • the low radiation function can suppress the inflow of radiant heat having a wavelength of 2000 nm or more to the outside of the room.
  • the low-emissivity glass 1 and 2 are disposed closer to the room than the functional material 5, an abnormal rise in temperature of the functional material 5 due to indoor heating is suppressed, and the amount of solar energy inflow is reduced by the functional material 5.
  • the functional material 5 By properly adjusting it, it is possible to provide a comfortable indoor space by ensuring the field of view and open feeling as the opening, and to significantly reduce the heating load, especially in winter.
  • the low-emission glass 12 may be arranged so that the low-emission film 11 is located on the indoor side.
  • the low-emissivity film 11 is exposed to the indoor side, which is an undesirable force from the viewpoint of protecting the low-emission film 11. Since the radiant heat due to indoor heating is efficiently reflected on the inner surface, it is possible to more effectively suppress the unnecessary shielding of the functional material 5 from the functional material 5, which is preferable.
  • the dimming glass 20 shown in FIG. 5 is made of a thermotropic material in which three substrates 2 arranged adjacently and in parallel and a pair of substrates 2 on the indoor side are sealed with a sealing material 4 therebetween. Functional material 5 and an air layer 22 sealed between the pair of substrates 2 on the indoor side via a sealing material 21, and are disposed more outdoor than the functional material 5.
  • the low-emissivity glass 12 is provided by coating the low-emissivity film 11 on the outdoor surface of the base 2 at the center.
  • the same operation and effect as those of the light control glass 10 and 10A of the above embodiment can be obtained.
  • the heat insulation properties of the light control glass 20 are further enhanced by the air layer 22.
  • the most indoor side of the three bases 2 placed in parallel is the low emission layer 11 with the low emission film 11 facing the outside.
  • a functional material 5 is sealed between a pair of substrates 2 on the indoor side, and the outer edges of the pair of substrates 2 on the outdoor side are sealed with a sealing material 21 to seal the substrate 2.
  • An air layer 22 may be formed between them.
  • the most indoor side of the three substrates 2 arranged in parallel is placed on the low emission layer 11 with the low emission film 11 facing the outside.
  • An air layer 22 is formed between a pair of substrates 2 on the indoor side, and the outer edges of the pair of substrates 2 on the outdoor side are sealed with a sealing material 21 to form the substrate.
  • a functional material 5 may be enclosed between the two.
  • the most indoor substrate of the three substrates 2 arranged in parallel is the low-emission substrate 11 with the low-emission film 11 facing the interior.
  • the functional material 5 is sealed between a pair of substrates 2 on the indoor side, and the outer edges of the pair of substrates 2 on the outdoor side are sealed with a sealing material 21 to form the substrate.
  • An air space 22 may be formed between the two.
  • the light-emitting glass 20E shown in Fig. 10 has three substrates 2 arranged in parallel. It is made of glass 12 and seals between outer edges of a pair of bases 2 on the indoor side with a sealing material 21 to form an air layer 22 between the bases 2 and a pair of bases on the outdoor side
  • the functional material 5 may be enclosed between the two.
  • the light control glass 20, 20 A, 20 B, 20 E has a low emission film 11 on the outer surface. This is preferable because it is not exposed and damage due to contact with other objects can be prevented.
  • the light control glass 20B and 20E are preferable because the low emission film 11 is located in the air layer 22 and there is no risk of corrosion or the like due to contact with the thermopick material.
  • the spectral characteristics of the low-emissivity film 11 differ between the front and back of the low-emission film 11.
  • the inflow of radiant heat from the surface of the low-emission film 11 is efficiently reflected, It is difficult to say that radiant heat from the backside of 1 can always be efficiently reflected. Therefore, in consideration of the reflection of radiant heat, it is preferable to use light control glass 20C to 20E in which the low emission film 11 is provided on the outdoor surface of the low emission glass 12.
  • the configuration of the light control glass 20E is preferable because it has both excellent practical characteristics and an effect of suppressing radiation heat from flowing out of the room.
  • the light control glass 20 to 20E can be provided by reversing the inside and outside of the room.
  • the dimming glass is unnecessarily blocked in the winter due to radiant heat from a heater or the like as described above.
  • the abnormal temperature rise of the functional material 5 due to the solar radiation is suppressed, and the inflow of solar energy can be appropriately adjusted by the functional material 5, so that the field of view and the feeling of opening as an opening in summer can be improved.
  • a comfortable indoor space can be provided, and the cooling load can be significantly reduced.
  • the low-emission glass 12 be disposed outside the functional material 5 outside the functional material 5 because the response in the light-transmitting / light-shielding state according to the indoor temperature is excellent.
  • the locking film 7 is omitted. Is possible. Further, in the light control glass 10, 10 A, 20, 2 OA, the locking film 7 may be formed on the surface of the base 2 facing the functional material 5 with the functional material 5 interposed therebetween. .
  • this light control glass 30 is composed of two sheets A substrate 2 having a base material 2 and a functional material 5 made of a pick-up material that is sealed between the substrates 2 with a sealing material 4 interposed therebetween. Then, using a low-emissivity glass 12 coated with a low-emission film 11 on the indoor side surface thereof, as a substrate 2 disposed outside the functional material 5 on the indoor side, an ultraviolet shielding layer 3 is provided on the indoor side surface.
  • the ultraviolet shielding glass 32 formed with 1 is used.
  • the ultraviolet shielding layer 31 is formed of a coating film having an ultraviolet shielding function, a film having an ultraviolet shielding function, or the like.
  • the coating film is used to prevent a chemical reaction between the coating film and the thermopick material and to prevent scratches due to external contact when installed outdoors. May be protected.
  • inorganic compounds such as titanium oxide, zinc oxide and cerium oxide, and organic compounds such as benzophenone derivatives and benzotriazole derivatives can be used.
  • examples of the method for coating the glass with an ultraviolet absorber include dry methods such as vacuum evaporation, ion plating, and sputtering, and a method in which the ultraviolet absorber is dissolved or dispersed in a solvent together with a binder on the glass surface. A wet method of applying, drying and curing the solvent is also applicable.
  • the ultraviolet light is blocked by the ultraviolet light shielding film, and the deterioration of the thermostat picking material and the sealing material 4 due to the ultraviolet light is prevented, so that the durability of the light control glass 30 can be improved.
  • a light control glass 3OA is used as the most indoor-side substrate 2 of the three substrates 2 arranged in parallel.
  • the low-emission glass 11 with the low-emission film 11 formed thereon using the ultraviolet-shielding glass 32 with the ultraviolet-shielding film 31 formed on the indoor side as the outermost substrate 2, and using a pair of indoor-side
  • the air layer 22 is formed between the bases 2 and 3 and the functional material 5 is filled between the pair of bases 2 on the outdoor side.
  • the low-emissivity film 11 and the ultraviolet shielding film 31 are different from each other on the base 2. Although they are formed independently on the surfaces, they may be formed on the same surface in a laminated manner.
  • a light control glass 4OA is used as a central base 2 of three bases 2 arranged in parallel, and a low radiation outside the room.
  • a functional glass 40 A in which a film 11 is formed and an ultraviolet shielding film 31 is formed on the indoor side, an air layer 22 is formed between a pair of substrates 2 and 3 on the outdoor side, and The functional material 5 is sealed between the pair of substrates 2 and 3 on the indoor side.
  • the substrate at the center of the substrate may be made of low-emissivity glass 12, and an ultraviolet shielding film 31 may be formed on the indoor side of the most outdoor substrate 2. In this case, it is more preferable that the ultraviolet shielding film 31 is prevented from being corroded by the thermopick material.
  • the ultraviolet shielding film 31 is made of a material softer than the spacer 6, the locking film 7 is used. It can be omitted.
  • the locking film 7 is formed on the surface of the base 2 facing the functional material 5 with the functional material 5 interposed therebetween. May be.
  • the functional material laminate of the present invention is used not only in combination with a sash for building materials such as windows, but also in combination with a frame or unit according to the purpose of use, and can be used for automobiles, ships, aircraft, vehicles, etc. It can also be used for closures. Building materials such as windows include window-type windows, sliding windows, bay windows, outside windows, sideways windows, dress windows, double-ended windows, vertical sliding windows, corner windows, terrace doors, waist panel doors, It can be used, for example, for high-end windows, patio doors, skylights in solariums, members of greenhouses, trap lights such as atriums and arcades.
  • the functional material laminate 1 will be described.
  • the functional material 5 can be similarly laminated between the bases in the other functional material laminates and the light control glass described above.
  • a required amount of the functional material 5 is applied to the substrate 3 and a sealing material 4 is attached to the substrate 3.
  • the functional material 5 may be applied to the substrate 3 and the sealing material 4 may be attached to the substrate 2, or the functional material 5 may be applied to the substrate 3 and the sealing material 4 may be applied to the opposing surface of the substrates 2 and 3.
  • the base film 3 is preliminarily illuminated with the locking film 7, and the functional material 5 is applied on the locking film 7.
  • the spacer 6 may be mixed in the functional material 5 in advance, or may be uniformly disposed on the functional material 5 applied to the base 3 by spraying or the like in this setting step.
  • the functional material 5 may be applied in the form of a film on the central part of the base 3 as shown in FIG. 16, but as shown in FIGS. 17 (a) and (b) It may be applied in a spiral or grid shape, as shown in FIGS. 1 (c) and (d).
  • the distance W between the functional material 5 and the sealing material 4 is 5 cm or less
  • the distance Pw between adjacent points or the distance Lw between lines is 5 cm or less in order to prevent air bubbles from entering as much as possible. It is preferable to apply so that Further, it is preferable to apply the functional material 5 as evenly as possible.
  • the reason for setting the size to 5 cm or less is as follows: 1 If bubbles larger than 5 cm remain when the closed space 59 is formed as described later, bubbles of 1 mm or more will eventually remain, but 5 cm If it is less than the above, the force to eventually become very small bubbles, and if left still, the residual air in the functional material 5 dissolves and the bubbles disappear. (2) If the decompressed air bubbles of 5 cm or more remain, the thin substrates 2 and 3 of about 3 mm thickness will warp the substrates 2 and 3 in the air bubble portion, and the thickness accuracy of the functional material 5 will be deteriorated. As shown in FIG.
  • the functional material 5 is applied by applying a coater such as a bar coater or a knife coater, transferring a roll of gravure, or extruding a T-die. It is preferable to apply. Unnecessary portions may be masked and applied. When applying as shown in Fig. 17, apply mass to unnecessary parts.
  • the coating may be performed by applying a king, but is preferably performed quantitatively by a dispenser.
  • the sealing material 4 may be pre-cured between the time when the sealing material 4 is applied to at least one of the substrates 2 and 3 and the time when the two substrates 2 and 3 are laminated. In this case, even if the two substrates 2 and 3 are strongly pressed during lamination, the layer of the sealing material 4 is not broken, so that the processing conditions can be easily adjusted, and when the viscosity of the functional material 5 is high. This is suitable because it can be developed quickly. However, since the adhesive strength between the pre-cured portion and the substrates 2 and 3 is generally weak, the sealing material 4 is applied to both the substrates 2 and 3 to increase the adhesive strength of the substrates 2 and 3, and the pre-curing is performed. When the two substrates 2 and 3 are laminated in this way, it is preferable that the pre-cured portions are brought into close contact with each other to bond the two substrates 2 and 3 together.
  • the pre-curing means a state in which some of the crosslinkable reactive groups contained in the sealing material 4 have reacted but the rest have not reacted, and there is no fluidity but adhesiveness, so-called epoxy bonding
  • This is a step of curing the sealing material 4 to the B stage state of the agent or the like.
  • the conditions for this pre-curing may be appropriately selected according to the type of the sealing material 4.
  • a closed space 59 surrounded by the sealing material 4 is formed between the bases 2 and 3 by interposing the material 5 and the sealing material 4 therebetween.
  • a sealing material 4 in which an uneven portion or a groove or a hole is formed in advance is used, or a part of the sealing material 4 arranged in an annular shape is used. It is preferable to make a deletion.
  • the decompression and adhesion step as shown in FIG. 19, using a decompression device 50 having two adjacent decompression tanks 52 and 53 partitioned by a flexible film body 51, The combined substrates 2 and 3 are set in the lower decompression tank 53 and both the decompression tanks 52 and 53 are depressurized to make the closed space 59 substantially vacuum.
  • the upper depressurizing tank 52 is pressed at normal pressure or pressure to press the base 2 with the film body 5 1 so that the closed space 59 is airtight, and the sealing material 4 is tightly closed to the base 2.
  • the pressure reducing device 50 for example, a laminator for manufacturing a solar cell panel manufactured by Spire (USA) can be adopted.
  • the decompression time is preferably 10 seconds or more and 2 minutes or less at 2 Torr. In other words, if the time is shorter than 10 seconds, it is not possible to sufficiently remove the air bubbles mixed during the lamination of the functional material 5, and if the time exceeds 2 minutes, the solvent is evaporated in the aqueous functional material 5 and a white film is formed on the surface. Tens seconds to 2 minutes are preferred because tension and good laminates cannot be obtained.
  • the functional body 5 is filled in the closed space 59 while deforming the sealing material 4 by further pressing the base 2 with the film body 51 from the state shown in FIG.
  • the depressurizing and adhering step of depressurizing the closed space 59 and adhering the sealing material 4 to the base 2 and the pressing step of filling the functional material 5 into the closed space 59 are performed under reduced pressure. Since these steps can be performed continuously in the apparatus 50, both steps can be performed easily and efficiently.
  • the substrates 2 and 3 are hermetically sealed via the sealing material 4, in the pressing step, the laminate is taken out of the pressure reducing device 50 and is pressed by a pressing device such as a hydraulic press.
  • the base material 2 or 3 is pressed by the atmospheric pressure, and the functional material 5 is placed in the closed space 59. Can be charged.
  • the film 51 outside the substrates 2 and 3 tries to adhere to the mounting table 54, and the substrate 2 Since a large load acts on the outer edge of the base material, as shown in Fig. 22, the required thickness of the functional material laminate 1
  • a metal or plastic rod-shaped deformation preventing spacer 55 having substantially the same thickness as that of the functional material laminate 1 may be disposed to prevent deformation of the side edge of the functional material laminate 1 due to film thickness.
  • a molding die 56 made of a rigid body conforming to the shape of the base 2 and having a larger area than the base 2 is provided between the film body 51 and the bases 2 and 3, and the functional material is provided.
  • product The layer body 1 may be pressed in a well-balanced manner.
  • the film 51 may be deformed by the weight of the forming die 56, so that the film 51 may be deformed through an elastic member such as a coil panel. It is preferable to support the mold 56.
  • a pressure reducing / pressing device incorporating a pressing means such as a high-precision hydraulic press or the like in the pressure reducing tank is used.
  • the steps may be performed continuously.
  • the substrates 2 and 3 superposed in the decompression tank of the decompression and pressing device are set and decompressed, and the closed space 59 is brought into a substantially vacuum state.
  • the bases 2 and 3 are pressed by the pressing die so that 9 becomes airtight, and the sealing material 4 is brought into close contact with the base 2.
  • the bases 2 and 3 are further pressed by the forming die to provide functionality. Material 5 will fill the enclosed space 59.
  • the sealing material 4 is cured by a curing method such as heating, high-frequency heating, or standing at room temperature.
  • the sealing material 4 adheres the peripheral portions of the two substrates 2 and 3 together with the solvent.
  • the functional material 5 is sealed between the bases 2 and 3 so as not to fly, and the functional material laminate 1 shown in FIG. 1 is obtained.
  • the sealing material 4 may be cured while being pressed by the film body 51 of the pressure reducing device 50 or the mold of the pressure reducing / pressing device.
  • the functional material laminate 1 in which the functional material 5 is laminated between the two substrates 2 and 3 and the method of manufacturing the same have been described.
  • a laminate of functional materials having three or more substrates can be manufactured in the same manner by laminating the same in the body 1 with the same or different functional materials interposed therebetween.
  • Another method for producing the functional material laminate 1 will be described.
  • a sealing material 4 is applied to a peripheral portion thereof, and a functional material 5 is applied to a central portion thereof.
  • the substrate 2 is laminated on the functional material 5 and the sealing material 4 applied to the substrate 3 so that no air bubbles remain in the functional material 5 and the sealing material 4.
  • spacers may be interposed at the four corners of the bases 2 and 3 so that the gap between the bases 2 and 3 is uniform.
  • the sealing material 4 is cured by a curing method such as heating, high-frequency heating, or standing at room temperature.
  • the sealing material 4 adheres the peripheral portions of the two substrates 2 and 3 together with the solvent.
  • the functional material 5 is sealed between the bases 2 and 3 so as not to fly, and the functional material laminate 1 shown in FIG. 1 is obtained.
  • both the bases 2 and 3 may be laminated.
  • the optimum conditions for applying the sealing material 4 to the bases 2 and 3 can be set regardless of the state of the functional material 5, air bubbles are generated between the bases 2 and 3 and the sealing material 4. This is preferable because the adhesiveness between the two is less likely to be entangled and the adhesiveness between the two is stabilized.
  • the sealing material 4 may be pre-cured between the time when the sealing material 4 is applied to at least one of the substrates 2 and 3 and the time when the two substrates 2 and 3 are laminated. In this case, even if the two substrates 2 and 3 are strongly pressed during lamination, the layer of the sealing material 4 is not broken, so that the processing conditions can be easily adjusted, and even if the viscosity of the functional material 5 is high, This is suitable because it can be developed quickly. However, since the adhesive strength between the pre-cured portion and the substrates 2 and 3 is generally weak, the sealing material 4 is applied to both the substrates 2 and 3 to increase the adhesive strength of the substrates 2 and 3, and the pre-curing is performed. When the two substrates 2 and 3 are laminated in this way, it is preferable that the pre-cured portions are brought into close contact with each other to bond the two substrates 2 and 3 together.
  • the pre-curing means a state in which some of the crosslinkable reactive groups contained in the sealing material 4 have reacted but the rest have not reacted, and there is no fluidity but adhesiveness, so-called epoxy bonding
  • This is a step of curing the sealing material 4 to the B stage state of the agent or the like.
  • the condition of the pre-curing may be appropriately selected depending on the type of the sealing material 4.
  • a vent hole is formed in advance in a part of the sealing material 4 and the functional material 5 is laminated between the bases 2 and 3
  • the conductive material 5 may be stacked by being developed under pressure, and then the air holes may be sealed.
  • the functional material 5 has a low viscosity
  • a method is used in which the sealing material 4 is laminated between the bases 2 and 3 and then the functional material 5 is filled between the bases 2 and 3 by injection or the like. It does not matter. After laminating the sealing material 4 and the precursor of the low-viscosity functional material 5 between the bases 2 and 3, the precursor is allowed to react. Thus, the functional material 5 may be laminated between the bases 2 and 3.
  • the present invention is configured as described above, and exhibits the following effects.
  • the functional material laminated body which concerns on this invention, it becomes possible to set the clearance gap between bases uniformly by a spacer.
  • the sedimentation and floating of the sprinkler due to the difference in specific gravity between the functional material and the sprinkler are physically locked by the locking member, so that the functional material laminate can be oriented vertically or inclined. It is possible to effectively prevent a change in the layer thickness of the functional material when installed.
  • the locking member since the locking member is made of a soft or plastic material, the deformation of the locking member between the bases absorbs the variation in the particle size of the spacer, and the gap between the bases is absorbed. That is, it is possible to set the layer thickness of the functional material uniformly.
  • the locking member functions as a cushioning material, the occurrence of stress concentration at a position corresponding to the spacer of the base can be further reduced. Because of these excellent effects, even if the functional material laminate is formed into a large area and applied to window glass, etc., the functional material laminate due to the change in the layer thickness of the functional material can be used over time. Quality degradation will be effectively prevented.
  • the thickness of the locking film is set to 30 to 100 zm, the amount of penetration of the spacer into the locking film is set appropriately, and the particle size of the spacer varies. Is effectively absorbed, and the layer thickness of the functional material is easily maintained properly.
  • a film having an ultraviolet shielding function or an ultraviolet absorbing function is used as the locking film, it is possible to suppress the deterioration of the functional material and the sealing material used for enclosing the functional material with ultraviolet light. Thus, the durability of the functional material laminate can be further improved.
  • the workability at the time of spraying and disposing the spacer can be improved, and the functional material laminate can be efficiently manufactured. Since the spacer can be uniformly dispersed in the functional material, the thickness of the functional material can be uniformly applied to the entire surface of the functional material laminate. It works.
  • the sedimentation of the soother is suppressed without being largely influenced by the variation of the particle size at the time of manufacturing the soother.
  • the spacer when the spacer is covered with an exterior material made of a soft or plastic material, even if there is a difference in specific gravity between the spacer and the functional material, the spacer is applied by the exterior material. Movement is regulated, so that the spacer does not sink or float and be biased. Since the exterior material acts as a cushioning material, the occurrence of stress concentration at a position corresponding to the spacer on the base can be further reduced. In addition, the gap between the substrates can be set uniformly without being affected by the size or shape of the substrates.
  • the spacer can cope with the spacer of the base. Since the occurrence of stress concentration at the position where the stress occurs is minimized, breakage of the functional material laminate due to the stress concentration can be effectively prevented.
  • floating and sinking can prevent the bias of the spacer, and can reliably and uniformly set the thickness of the functional material laminate.
  • the sealing material in the case where the sealing material is arranged in a single strip between the peripheral portions of the base, the sealing material has a greater restriction on the material, but the lamination width of the sealing material is large.
  • the lamination area of the functional material can be set as large as possible, the assemblability of the functional material laminate can be improved, and the use amount of the sealing material can be reduced as much as possible to reduce the manufacturing cost.
  • the laminated area of the functional material is increased.
  • the functional material can be securely sealed by the inner sealing material, and the substrates can be securely bonded to each other by the outer sealing material.
  • restrictions on the sealing material are reduced, and sealing materials made of various combinations of materials can be used.
  • a sealing material As described in claim 15, as a sealing material provided between the peripheral portions of the substrate, a saturated hydrocarbon having a molecular weight of 500 to 300,000 containing one or more crosslinkable reactive groups in a molecule.
  • a sealing material When a sealing material is used as an essential component and has excellent adhesiveness to a transparent plate such as a glass plate, and also has an excellent barrier property against water vapor, it does not require two types of sealing materials as in the past.
  • one type of sealing material enables two transparent plates to be firmly bonded together, and also shuts out and out of water vapor from the laminated portion of the sealing material, and changes in properties due to changes in the concentration of functional materials Can be prevented.
  • the lamination width of the sealing material can be reduced as much as possible, and the lamination area of the functional material can be set large.
  • the assemblability of the laminate is improved, and the amount of sealing material used is reduced as much as possible, thereby reducing manufacturing costs.
  • this type of sealing material has excellent adhesion to the coating surface of heat-reflective glass and LOW-E glass, the coating film is removed to improve the adhesion as before. In this case, complicated processing is not required.
  • the functional material can be easily and efficiently laminated between the substrates using a decompression device as described below.
  • the sealing material when a sealing material containing a reactive gay group is used as the sealing material, the sealing material has improved weather resistance and adhesiveness. The durability is greatly improved.
  • this functional material laminate is used as a window glass, the light-modulating layer is in a light-shielding state when the temperature of the light-modulating layer rises due to an increase in solar radiation, and the solar radiation is weakened to reduce the solar radiation.
  • the temperature of the solar cell falls, it becomes translucent, so that solar energy is actively taken into the room.
  • the radiant heat due to the reflection of sunlight and indoor heating is reflected by the functional glass having a low radiation function, so that entering and exiting the room can be suppressed.
  • thermopick material will not be unnecessarily blocked due to the adverse effects of radiant heat from the outside, and will transmit light at an appropriate temperature. And the light-shielding state can be switched autonomously. In other words, in a warm area where the inflow of energy from the outside is severe, the amount of energy inflow can be controlled to provide a comfortable indoor space, and the cooling load in summer can be significantly reduced, contributing greatly to energy saving.
  • thermotropic material is prevented from being unnecessarily shaded by the radiant heat caused by room heating, and is transparent at an appropriate temperature. It can be configured such that the light state and the light-shielded state are switched autonomously. In a cold area where energy is leaked from the room, the energy flow can be reduced and a comfortable indoor space can be provided, while the cooling load in summer and the heating load in winter can be significantly reduced, greatly contributing to energy saving. In addition, by preventing the light control layer from unnecessarily blocking light during heating, it is possible to secure a field of view and a sense of openness as an opening.
  • the heat insulating property of the light control glass is further improved by the air layer, which can greatly contribute to energy saving.
  • the functional glass such that the low-emissivity film is in contact with the air layer, it is possible to prevent the low-emission film from being damaged by contact with other objects and to make the low-emission film a functional material. Corrosion of the low-emission film due to contact with the surface can be prevented, and the durability of the low-emission film can be improved.
  • thermopick material When the thermopick material is used as the functional material as described in claim 21, the solar energy acquisition rate can be adjusted according to the outside air temperature, so that a functional material laminate capable of reducing the cooling / heating load can be realized.
  • a functional material laminate having a dimming function By using the functional material having the constituent components as described in claim 22, a functional material laminate having a dimming function can be realized, and the solar energy can be efficiently obtained and suppressed, thereby greatly contributing to energy saving. Contribute.
  • a closed space having a larger capacity than the functional material to be filled between the substrates is formed between the substrates by the sealing material, and the functional material is filled in the closed spaces.
  • the inside of the enclosed space is made substantially vacuum, and then the base material is pressed while deforming the sealing material, and the functional material is filled in the enclosed space, so that the liquid like high viscosity liquid or gel Even a plastic functional material can be filled between substrates so that air bubbles are not mixed, and a beautiful functional material laminate without air bubbles can be manufactured.
  • the functional material and the sealing material can be attached simultaneously in parallel.
  • the manufacturing time of the functional material laminate can be reduced. Also, during the setup process,
  • the distance between the functional material and the sealing material is 5 cm or less.
  • the setting step when the functional material is applied to the substrate in the form of dots, lines, or a mixture thereof, there is a distance between adjacent points. If the distance between the lines is set so that the distance between the point and the line is 5 cm or less, air bubbles can be more effectively prevented from being mixed into the functional material.
  • the necessary minimum thickness of the functional material is secured.
  • the thickness of the functional material can be set uniformly.
  • the occurrence of stress concentration at the position corresponding to the spacer of the base can be minimized, and the breakage of the base can be effectively prevented.
  • the spacer is formed by the locking film.
  • the movement of the spreader is tightly adhered to, and the thickness of the functional material can be set uniformly, and the locking film acts as a cushioning material, so that the spreader position can be adjusted.
  • the occurrence of stress concentration in the substrate can be reduced, and damage to the substrate due to the stress concentration can be more effectively prevented.
  • Such a locking film can be easily formed by laminating the base material, and the manufacturing process of the functional material laminate does not become complicated.
  • the spacer when the spacer is covered with an exterior material made of a soft or plastic material, the spacer can be prevented from settling or floating, and the thickness of the functional material can be set uniformly.
  • the exterior material acts as a cushioning material, the occurrence of stress concentration at the spacer position is reduced, and damage to the substrate due to the stress concentration can be more effectively prevented. Further, the gap between the substrates can be set uniformly without being affected by the size or shape of the substrates.
  • the decompression and adhesion step when a decompression device having two adjacent decompression tanks, at least a part of which is partitioned by a flexible film, is used, the pressure in the closed space is reduced, and then the pressure is reduced.
  • the ring material is brought into close contact with the substrate in an airtight manner, the membrane is pressed against the substrate as it is, and the functional material is filled in the enclosed space. Since it is possible to perform the operation, the filling operation of the functional material can be performed more efficiently.
  • providing a spacer for preventing deformation or providing a molding die can prevent the side edges of the functional material from becoming thin, and reduce the thickness of the entire functional material to the required thickness. This makes it possible to set the values with high accuracy.
  • the sealing material is configured as described in claim 32, it is possible to easily bring the closed space into a substantially vacuum state in the pressure-reducing and contacting step.
  • the two substrates can be temporarily bonded with the pre-cured sealing material, the two substrates and the sealing material are hardly displaced even when a large pressure is applied during lamination of the two substrates.
  • a functional material laminate having excellent dimensional accuracy can be obtained.

Abstract

A functional material laminate having a liquid or wet gel-like functional material sealed between substrates, at least one of which is transparent either partially or entirely, and spacers so disposed between the substrates as to make the gap between the substrates uniform, wherein anchoring members made of a flexible or plastic material is disposed between the substrates and the spacers in such a manner as to fix the spacers between the substrates. The anchoring member is formed by applying an anchoring film made of a flexible or plastic material onto the substrate, or by covering the spacer with a flexible or plastic armoring material. A process for producing a functional material laminate comprising a setting step for applying the functional material to the substrates and attaching the sealing material, a substrate superposing step, and a vacuum adhesion step and a pressing step for rendering the sealed space of the superposed substrates air-tight and filling the functional material.

Description

明糸田:  Akitoda:
機能性材料積層体及びその製造方法 技術分野  Functional material laminate and method for producing the same
本発明は、 透明板間に液状或 、は湿潤なゲル状の機能性材料を封入した機能性 材料積層体及びその製造方法に関するものである。 背景技術  The present invention relates to a functional material laminate in which a liquid or wet gel-like functional material is sealed between transparent plates, and to a method for producing the same. Background art
近年、 物理化学的に光線を可逆的に制御する調光ガラスとして、 液晶、 エレク トロクロミック、 微粒子分極配向、 フォ トクロミック、 サ一モク口ミック、 サ一 モト口ピック等の方式からなる調光ガラスが提案されている力 \ 液晶、 エレク ト 口クロミック、 微粒子分極配向、 フォ トクロミック、 サ一モクロミツク方式によ る調光ガラスは、 そのいずれもが耐候 (光) 性、 遮光性、 実用的な面積の確保等 の技術的な課題を抱えるとともに、 非常に高価であることから極限られた分野に しか実用されていないのが現状である。  In recent years, photochromic glass that reversibly controls light rays physicochemically includes liquid crystal, electrochromic, fine particle polarization orientation, photochromic, thermochromic, and photochromic glass. Liquid crystal, electoric chromic, fine particle polarization orientation, photochromic, and thermochromic dimming glass, all of which have weather resistance (light), light shielding, and practical area In addition to the technical issues such as security of such equipment, it is very expensive and currently used only in very limited fields.
一方、 複数の板ガラス間に、 液体あるいは湿潤なゲルを充填した調光ガラスと して、 例えば特開平 6— 2 5 5 0 1 6号公報には、 平行配置した 2枚の板ガラス 間に温度上昇により白濁するサ一モト口ピック高分子水溶液を充塡したサーモト 口ピック調光ガラスが記載されている。  On the other hand, as a light control glass filled with a liquid or wet gel between a plurality of glass sheets, for example, Japanese Patent Application Laid-Open No. 6-255016 discloses a temperature rise between two glass sheets arranged in parallel. A thermopic pick dimming glass filled with an aqueous solution of a picky-mouth pick polymer which becomes cloudy due to the above is described.
このようなサーモト口ピック調光ガラスは、 液晶等を用いたものよりも耐久性 、 遮光性に優れ、 しかも安価であることから、 今、 最も脚光を浴びている。 しか しな力 ら、 流動性を有するサーモト口ピック高分子水溶液を板ガラス間に封入し ているため、 ガラス面を水平にして使用しない限り、 水溶液がその自重により徐 々に下降して板ガラスがたわみ、 下側程水溶液の層厚が大きくなつて、 調光ガラ スの屈折率が部位によって異なったり、 遮光状態にムラが生じたりすると言った 問題が発生する。 し力、も、 調光ガラスの面積を大きく設定するほど水溶液の層厚 の差が大きくなる傾向を示すので、 窓の開口を極力広く設計した昨今の建築物に 対してはほとんど適用できないと言うのが実状である。  Such thermostatic pick dimming glass is now in the spotlight, because it is more durable, has better light-shielding properties, and is less expensive than those using liquid crystal or the like. However, because the aqueous thermopick polymer aqueous solution with fluidity is sealed between the glass sheets, the aqueous solution gradually descends due to its own weight and the glass sheet bends unless the glass surface is used horizontally. However, when the layer thickness of the aqueous solution becomes larger toward the lower side, there arise problems such as that the refractive index of the light control glass varies depending on the portion and that the light shielding state becomes uneven. It is said that it is hardly applicable to modern buildings where the window openings are designed as wide as possible because the difference in layer thickness of the aqueous solution tends to increase as the area of the light control glass increases. This is the actual situation.
このようなことから、 流動性をもつサ一モト口ピック高分子水溶液などの高粘 調液を板ガラス間に封入した調光ガラスにおいては、 高粘調液の層厚を均一に保 つ技術が、 実用的な面積を確保する上で、 非常に重要な課題になっている。 現在、 この問題を解決するための方法として、 次のような、 化学的な方法や構 造的、 機械的な方法が提案されている。 For this reason, highly viscous liquids such as a liquid polymer solution with fluidity are used. For light control glass in which the liquid preparation is sealed between plate glass, the technology to keep the layer thickness of the high viscosity liquid uniform has become a very important issue in securing a practical area. At present, the following chemical, structural, and mechanical methods have been proposed to solve this problem.
ィ匕学的な方法としては、 高粘調液の構成成分として使用する高分子を部分的に 架橋させることにより、 架橋型の膨潤ゲルとしてその流動を抑制する方法が提案 されている。 しかしながら、 高粘調液の下降を防止できる程度まで架橋密度を上 げると、 本来の機能性、 耐久性等に影響が生じ、 調光ガラス本来の可逆安定性が 充分得られないといった、 致命的な欠点が生じることとなる。  As a dangling method, a method has been proposed in which a polymer used as a component of a highly viscous liquid is partially crosslinked to suppress the flow as a crosslinked swelling gel. However, if the crosslink density is increased to such an extent that the drop of the highly viscous liquid can be prevented, the original functionality and durability will be affected, and the reversible stability inherent in the light control glass will not be sufficiently obtained. Disadvantages occur.
また、 構造的、 機械的な方法としては、 板ガラスの面内において接着剤等によ り隣接する板ガラスを点状や線状に内側から接着固定したり、 要求隙間と同じ直 径の球状や線状のスぺーサを板ガラス間に配置させたりして、 層厚を維持すると いった方法が提案されている力 窓等への使用を考慮すると、 この接着部分の線 や点が視覚的な欠陥となったり、 板ガラスに外力が作用したときに、 接着部分や スぺーザに対応する部分に応力集中が発生し、 板ガラスが破損し易くなることも 考えられ、 その使用場所が著しく限定される要因になっている。  Structural and mechanical methods include adhering and fixing the adjacent sheet glass in the plane of the sheet glass with an adhesive or the like in a dotted or linear manner from the inside, or a spherical or linear glass with the same diameter as the required gap. Considering the proposed method of maintaining the layer thickness by placing a spacer in the shape of a plate between the glass sheets, and considering the use of this method in a window such as a window, the lines and points of this bonded part are visually impaired. Or when an external force is applied to the glass sheet, stress concentration may occur at the bonded part or the part corresponding to the spacer, and the glass sheet may be easily broken, which may significantly limit the place where the glass sheet can be used. It has become.
一方、 このような調光ガラスに用いる高粘調液は、 その濃度に応じて、 状態変 化する温度や遮光特性等の物性が変化する。 このため、 水蒸気の出入りによる高 粘調液の濃度の変動を防止して、 所期の特性が維持されるように、 板ガラス間に 対して水蒸気の出入りを遮断した状態に封入する必要がある。  On the other hand, the high-viscosity liquid used for such a light control glass changes its physical properties such as the temperature at which the state changes and the light-shielding properties according to its concentration. For this reason, it is necessary to prevent the fluctuation of the concentration of the highly viscous liquid due to the inflow and outflow of water vapor, and to seal the space between the glass sheets in a state where the inflow and outflow of water vapor are shut off so that the expected characteristics are maintained.
このようなことから、 高粘調液を板ガラス間に封止するための方法として、 板 ガラス同士を直接あるいは低融点ガラスを介して溶融接着して封止する方法と、 比較的低温での加工可能で、 かつ水蒸気透過率が小さい、 ポリイソブチレン樹脂 などの飽和炭化水素重合体を主成分としたシ一リング材を用いて封止する方法と が提案されている。  For this reason, there are two methods to seal the high viscosity liquid between the glass sheets: a method of melting and bonding the glass sheets directly or through a low melting point glass, and a method of processing at a relatively low temperature. A method has been proposed in which sealing is performed using a sealing material that is possible and has a low water vapor transmission rate and that is mainly composed of a saturated hydrocarbon polymer such as polyisobutylene resin.
前者の封止方法では、 板ガラス同士を直接あるいは低融点ガラスを介して溶融 接着するので、 ガラス接着部における水蒸気の出入りを確実に遮断でき、 高粘調 液の濃度を半永久的に一定に維持できる。 しかしながら、 この封止方法は、 板ガ ラスが高温に曝されるためその寸法精度が悪く、 しかも加工時間が長くなつて積 層体の生産性も悪い。 また、 板ガラス間に積層する高粘調液は扳ガラスの溶融温 度に耐えられないため、 板ガラスを溶融接着した後に積層体内に充塡しなければ ならない。 しかしながら高粘調液は通常非常に粘度が高いため、 これを板ガラス 間に注入等により充塡することは困難である。 このようなことから、 この封止方 法は、 実現性に乏しい方法であった。 In the former sealing method, since the glass sheets are bonded together directly or via low-melting glass, the entrance and exit of water vapor at the glass bonding part can be reliably blocked, and the concentration of the highly viscous liquid can be maintained semi-permanently constant. . However, in this sealing method, the dimensional accuracy is poor because the glass sheet is exposed to high temperatures, and the processing time is prolonged. The productivity of the stratum is also poor. In addition, since the high-viscosity liquid laminated between the sheet glasses cannot withstand the melting temperature of the glass, the sheet glass must be filled after being melt-bonded. However, since a highly viscous liquid is usually very high in viscosity, it is difficult to fill it with a liquid between glass sheets. For this reason, this sealing method was not feasible.
また、 後者の封止方法では、 ポリイソプチレン樹脂などの飽和炭化水素重合体 を主成分としたシ一リング材を用いており、 これらのシーリング材はガラスに対 する接着性が小さいため、 積層体に応力がかかって変形した場合に、 シーリ ング 材がガラスから剝離し、 積層体の耐久性が低下したり、 水蒸気の遮断性能が低下 するという問題がある。 し力、も、 一方の板ガラスとして熱線反射ガラスや L OW - Eガラスのようにコ一ティングされたガラスを用いる場合には、 コーティング 面に対するシ一リング材の接着性が板ガラス以上に小さいため、 シ一リング材を コーティング面に密着させる場合には、 コ一ティング膜を除去する工程が必要で めった。  Also, in the latter sealing method, a sealing material containing a saturated hydrocarbon polymer such as polyisobutylene resin as a main component is used, and since these sealing materials have low adhesiveness to glass, they are used in a laminate. When deformed by applying stress, the sealing material separates from the glass, causing a problem that the durability of the laminate is reduced and the performance of blocking water vapor is reduced. When using coated glass such as heat-reflective glass or LOW-E glass as one sheet glass, the adhesiveness of the sealing material to the coated surface is smaller than that of the sheet glass. When the sealing material was brought into close contact with the coating surface, a step of removing the coating film was required.
このため、 水蒸気の遮断性能に優れたポリィソブチレン樹脂を主成分としたシ ーリング材と、 板ガラスに対する接着性に優れたシーリング材とを扳ガラスの周 縁部間に内外に平行配置させた二重シール構造の積層体も提案されている。 しかしながらこの方法では、 2種類にシーリング材を板ガラスに対して充塡す る必要があるので、 シーリング材の使用量が増えるとともに、 シ一リング材の充 塡作業が煩雑になったり、 工程数が増加し、 積層体の製造コストが増大する。 ま た、 2種類のシ一リング材を板ガラスの周縁部間に内外に平行配置させる関係上 、 封止部分の全体的な幅が広くなり、 高粘調液の積層面積が小さくなる。  For this reason, a sealing material mainly composed of polybutylene resin, which has excellent water vapor blocking performance, and a sealing material, which has excellent adhesion to sheet glass, are arranged in parallel between the glass periphery and inside and outside. Laminates with a structure have also been proposed. However, in this method, since two types of sealing materials need to be applied to the sheet glass, the amount of the sealing materials used is increased, and the filling operation of the sealing materials becomes complicated, and the number of processes is reduced. And the manufacturing cost of the laminate increases. Further, since the two types of sealing materials are arranged in parallel inside and outside between the peripheral portions of the sheet glass, the overall width of the sealing portion is increased, and the lamination area of the high viscosity liquid is reduced.
また、 近年においては、 地球環境の保全や省エネルギーの観点から、 自然エネ ルギ一の積極的な活用、 および、 石油に代表される化石エネルギーの使用量削減 等に強く関心が持たれている。 住宅等の建築物においても、 断熱性に優れる外壁 材ゃ室内外のエネルギーの流出入をコントロールするような省エネルギー化に寄 与する工法等が普及しつつあり、 その関心は高まっている。 一方で、 窓等の開口 部においては視界および開放感の確保とエネルギーの流出入のコントロールとい う相反する効果を実現する技術がなく、 その技術確立が期待されている。 しかし ながら、 徐々にではある力野放しであった感の強い住宅の窓等の開口部において も、 断熱効果の高い複層ガラスが急速に普及する等、 その対策が見直されている 。 特に複層ガラスにおいては、 その断熱効果のみならず、 寒冷地においては、 室 内の暖房の輻射熱等の熱エネルギーの流出を抑制するため、 また、 温暖地におい ては、 太陽光の照り返しによる輻射熱による熱エネルギーの流入を抑制するため に、 複層ガラスを構成するガラスとして、 低放射膜を形成したガラス (L OW— Eガラス) を使用する例も少なくない。 In recent years, from the viewpoint of preserving the global environment and conserving energy, there has been strong interest in actively utilizing natural energy and reducing the use of fossil energy represented by petroleum. Also in buildings such as houses, construction methods that contribute to energy saving, such as exterior wall materials with excellent heat insulation and control of the flow of energy into and out of the room, are spreading, and their interest is growing. On the other hand, there is no technology to achieve the opposing effects of ensuring visibility and openness and controlling energy inflow and outflow in windows and other openings, and the establishment of such technology is expected. However However, measures have been reexamined, such as the rapid spread of double-glazed glass with high heat-insulating effects, even in openings such as windows of houses that have a strong sensation of looseness gradually. In particular, double-glazed glass not only has its thermal insulation effect, but also controls the outflow of thermal energy such as the radiant heat of indoor heating in cold regions, and radiant heat due to the reflection of sunlight in warm regions. In order to suppress the inflow of thermal energy due to heat, there are many examples of using a glass with a low radiation film (LOW-E glass) as the glass that composes the multi-layer glass.
前述の調光ガラスでは、 日射遮光し、 その日射エネルギーの流入量をコント口 ールできるものの、 輻射熱の流入、 流出や太陽光の照り返しによる輻射熱の流入 を充分に抑制できないという問題があった。 また、 複層ガラスでは、 断熱効果や 輻射熱の流入'流出をコントロールできるが、 夏季のような気温が高い時期に、 その太陽エネルギーの大部分を占める日射エネルギーの流入量をコントロールで きないという問題がある。 つまり、 従来の窓では、 日射エネルギーと輻射熱を同 時にコントロールすると言った発想がなく、 自然エネルギーを十分に有効活用で きるとは言えないものであった。  Although the above-mentioned light control glass can control the inflow of solar energy by shading sunlight, there is a problem that the inflow and outflow of radiant heat and the inflow of radiant heat due to the reflection of sunlight cannot be sufficiently suppressed. In addition, double-glazing can control the heat insulation effect and the inflow and outflow of radiant heat, but cannot control the inflow of solar energy, which accounts for the majority of solar energy during high temperatures such as summer. There is. In other words, conventional windows had no idea of controlling solar energy and radiant heat at the same time, and it could not be said that natural energy could be used effectively.
また、 前記調光ガラスでは、 寒冷な地域での使用時に、 室内暖房の輻射熱によ りサ一モトロピック材料の温度が上昇して高温状態に維持され、 調光ガラスが不 必要に遮光状態になる傾向を示すので、 視野を確保すると言ったガラスとしての 基本的な機能を損ねたり、 温暖な地域での使用時に、 外部の輻射熱によりサ一モ トロピック材料の温度が急速に上昇して高温状態に維持され、 調光ガラスが不必 要に遮光状態になる傾向を示すので、 視野を確保すると言ったガラスとしての基 本的な機能を損ねることがある。  Further, in the light control glass, when used in a cold region, the temperature of the thermotropic material rises due to the radiant heat of room heating and is maintained in a high temperature state, and the light control glass is unnecessarily blocked from light. Because of the tendency, the basic function of the glass, such as securing the field of view, was impaired, and when used in warm areas, the temperature of the thermotropic material rapidly increased due to external radiant heat and the temperature increased. It is maintained and the light control glass tends to be unnecessarily shaded, which may impair the basic function of the glass, such as securing a view.
し力、も、 このようなサーモト口ピックな高粘調液は、 液晶と比較して粘度の高 レ、液状やゲル状の物質なので、 液晶のように真空注入法などにより板ガラス間に 充塡することができず、 気泡なく効率的に充塡する技術は、 まだ確立されていな いのが実状である。 発明の開示  Since such a high viscosity liquid with a thermostatic opening has a higher viscosity than a liquid crystal, it is a liquid or gel-like substance, it is filled between glass sheets by a vacuum injection method like liquid crystal. In fact, technology that can not be used and that efficiently fills without air bubbles has not yet been established. Disclosure of the invention
請求項 1に係る機能性材料積層体は、 少なくとも一方の一部又は全部を透明と なした基体間に、 液状或いは湿潤なゲル状の機能性材料を封入するとともに、 基 体間の隙間が一様になるようにスぺーサを配した機能性材料積層体において、 基 体とスぺ一サ間に軟質或いは可塑性を示す材料からなる係止部材を設け、 この係 止部材によりスぺ一サを基体間に固定したものである。 In the functional material laminate according to claim 1, at least one part or the whole is transparent. A liquid or wet gel-like functional material is sealed between the substrates, and a spacer is provided so that the gap between the substrates is uniform. A locking member made of a soft or plastic material is provided between the spacers, and the spacer is fixed between the bases by the locking member.
この機能性材料積層体では、 スぺーサを介して基体間の隙間が一様に維持され るので、 機能性材料の下降が防止され、 機能性材料積層体の屈折率がその全面に 亙って一様に維持されるとともに、 機能性材料による調光機能等のバラツキも防 止できる。 また、 係止部材がスぺ一ザよりも軟質な素材で構成されているので、 スぺ一サは係止部材を介して基体に圧接されて、 基体に対して物理的に係合する ので、 スぺ一ザの沈降が防止されて、 スぺーザの沈降に伴う機能性材料の下降が 未然に防止される。  In this functional material laminate, the gap between the substrates is uniformly maintained through the spacer, so that the functional material is prevented from lowering, and the refractive index of the functional material laminate over the entire surface. In addition to maintaining uniformity, it is possible to prevent variations in the dimming function due to the functional material. Further, since the locking member is made of a material softer than the spacer, the spacer is pressed into contact with the base via the locking member and physically engages with the base. The sedimentation of the stirrer is prevented, and the fall of the functional material due to the sedimentation of the stirrer is prevented.
請求項 2記載の機能性材料積層体は、 請求項 1記載の機能性材料積層体におい て、 係止部材として、 少なくとも一方の基体の機能性材料に臨む面に、 スぺ一サ よりも軟質な係止フィルムをラミネートしたものである。 この場合には、 スぺー サは係止フィルムにめり込むような形態で係止フィルムに係止され、 その沈降が 防止される。  The functional material laminate according to claim 2 is the functional material laminate according to claim 1, wherein, as the locking member, at least one of the bases is softer than the spacer on a surface facing the functional material. It is obtained by laminating various locking films. In this case, the spacer is locked to the locking film in such a manner as to sink into the locking film, and its settling is prevented.
請求項 3記載の機能性材料積層体は、 請求項 2記載の機能性材料積層体におい て、 係止フィルムの膜厚が、 3 0〜1 0 0; t/ mであるものである。 係止フィルム の膜厚は、 本来は、 スぺーザの粒径のバラツキや機能性材料の層厚を充分考慮し 、 予備検討によって、 所望の性能が発現される範囲において、 できるだけ薄く設 定するのが好ましい。 つまり、 膜厚が必要以上に厚い場合には、 スぺーザが過度 にめり込み、 結果的にスぺーサによる機能性材料の層厚の維持が困難となる。 一 方、 膜厚が薄い場合には、 スぺ一ザのバラツキが係止フィルムの膜厚を越える恐 れがあり、 機能性材料の層厚が設定値よりも大きくなつてしまう。 さらには、 ス ぺーサの機能力く粒径の大きいものに依存することとなり、 粒径の小さいスぺ一サ は、 係止フィルムに密着しなくなって簡単に沈降し、 その役割を果たしえない。 このため、 3 0〜 1 0 0 / mに設定することが好ましい。  A functional material laminate according to a third aspect is the functional material laminate according to the second aspect, wherein the thickness of the locking film is 30 to 100; t / m. Originally, the thickness of the locking film should be set as thin as possible within the range in which the desired performance is exhibited by preliminary examination, taking into account the variation in the particle size of the spacer and the layer thickness of the functional material. Is preferred. In other words, if the film thickness is unnecessarily thick, the spacer is excessively immersed, and as a result, it is difficult for the spacer to maintain the layer thickness of the functional material. On the other hand, if the film thickness is small, the variation in the spread may exceed the film thickness of the locking film, and the layer thickness of the functional material becomes larger than the set value. Furthermore, the function of the spacer is dependent on its function and the particle size is large, and the spacer with a small particle size does not adhere to the locking film and easily sinks and cannot fulfill its role. . For this reason, it is preferable to set 30 to 100 / m.
請求項 4記載の機能性材料積層体は、 請求項 2又は 3記載の機能性材料積層体 において、 係止フィルムが、 紫外線遮蔽機能又は紫外線吸収機能を有するもので ある。 これを室外側に配した場合、 機能性材料やそれを基体間に封入するために 使用するシール材の紫外線による劣化が抑制され、 機能性材料積層体の耐久性が 向上する。 また、 室内外のいずれに配した場合にも、 力一テンや家具、 更には人 体の紫外線による日焼けを防止でき好ましい。 The functional material laminate according to claim 4 is the functional material laminate according to claim 2 or 3, wherein the locking film has an ultraviolet shielding function or an ultraviolet absorbing function. is there. When this is disposed on the outdoor side, deterioration of the functional material and the sealing material used for encapsulating it between the substrates due to ultraviolet rays is suppressed, and the durability of the functional material laminate is improved. In addition, it is preferable to place the lamp in both indoors and outdoors because it can prevent sunburn caused by ultraviolet rays on furniture, furniture, and the human body.
請求項 5記載の機能性材料積層体は、 請求項 2 ~ 4のレ、ずれか 1項記載の機能 性材料積層体において、 係止フィルムの主たる構成成分が、 ポリエステルである ものである。 また、 請求項 6記載の機能性材料積層体は、 請求項 2〜 5のいずれ か 1項記載の機能性材料積層体において、 係止フィルムの主たる構成成分が、 ポ リエチレンテレフタレ一トであるものである。 係止フィルムとしては、 スぺーサ よりも軟質であれば種々の素材からなるものを使用できるが、 建材用途としての 耐久性、 工業的入手の容易さ、 価格等を考慮すると、 請求項 5又は 6記載のよう に、 ポリエステル、 より好ましくはポリエチレンテレフタレート (P E T ) を主 たる構成成分としてなるフィルムを用いることが好ましい。  The functional material laminate according to claim 5 is the functional material laminate according to any one of claims 2 to 4, wherein the main component of the locking film is polyester. The functional material laminate according to claim 6 is the functional material laminate according to any one of claims 2 to 5, wherein the main constituent component of the locking film is polyethylene terephthalate. Things. As the locking film, those made of various materials can be used as long as the material is softer than the spacer, but in consideration of durability for building materials, industrial availability, price, etc., claim 5 or As described in 6, it is preferable to use a film mainly composed of polyester, more preferably polyethylene terephthalate (PET).
請求項 Ί記載の機能性材料積層体は、 請求項 2〜 6のいずれか 1項記載の機能 性材料積層体において、 スぺーザが、 球状であるものである。 スぺーザの形状が 球状でない場合は、 散布、 配置時における作業性が著しく低下する。 また、 球状 以外の形態、 例えば棒状のものを使用すると、 作業性は向上するが機能性材料積 層体の内部のスぺーザが目立ち、 機能性材料積層体に視覚的な欠陥が生じる結果 となる。 一方、 スぺーザの形態が球状であれば、 スぺ一サ自体に方向性がないの で、 予め機能性材料に分散させたり、 基体に塗布した機能性材料に適当に配置す るだけで、 効率的のスぺ一サを配置させることが可能となり、 他の形状に比して 、 スぺ一ザの散布、 配置時における作業性を向上できる。  The functional material laminate according to claim 4 is the functional material laminate according to any one of claims 2 to 6, wherein the spacer is spherical. If the shape of the souser is not spherical, the workability during spraying and placement will be significantly reduced. When a shape other than a spherical shape, such as a rod, is used, workability is improved, but a spacer inside the functional material laminate is conspicuous, resulting in visual defects in the functional material laminate. Become. On the other hand, if the shape of the spacer is spherical, the spacer itself has no direction, so it is only necessary to disperse it in a functional material in advance or to appropriately dispose it on the functional material applied to the substrate. However, it is possible to arrange an efficient spacer, and it is possible to improve the workability at the time of dispersing and arranging the spacer, as compared with other shapes.
請求項 8記載の機能性材料積層体は、 請求項 2〜 6のいずれか 1項記載の機能 性材料積層体において、 スぺ一ザの粒径が、 機能性材料の存在する層厚よりも大 きく、 機能性材料の存在する層厚と係止フィルムの膜厚の和よりも小さいもので ある。 スぺーザの粒径が機能性材料の層厚よりも小さい場合には、 スぺ一サは隣 接する基体と非接触状態となり、 機能性材料積層体を水平状態にして使用しない 限り、 スぺーサは機能性材料積層体の下部に沈降し、 その役割を果たさない。一 方、 機能性材料の層厚と係止フィルムの膜厚の和よりも大きい場合には、 係止フ ィルムにめり込むような状態で保持されたとしても、 機能性材料の層厚が設定値 より大きくなつてしまう。 即ち、 その粒径を機能性材料の封入された層厚よりも 大きく、 機能性材料の層厚と係止フィルムの膜厚の和よりも小さくなるように設 定し、 スぺ一ザが係止フィルムに若干めり込んだ状態となって保持されるように 構成することで、 スぺ一ザの沈降が抑制され、 かつ、 所望の高粘調液の層厚に制 御することが可能となる。 The functional material laminate according to claim 8 is the functional material laminate according to any one of claims 2 to 6, wherein the particle size of the spacer is larger than the layer thickness in which the functional material exists. It is large and smaller than the sum of the layer thickness of the functional material and the thickness of the locking film. If the particle size of the spacer is smaller than the functional material layer thickness, the spacer is in non-contact with the adjacent substrate, and unless the functional material laminate is used in a horizontal state, the spacer is used. It sinks to the bottom of the functional material stack and does not play its role. On the other hand, if the thickness of the functional material is greater than the sum of the Even if it is held in such a state that it sinks into the film, the layer thickness of the functional material will be larger than the set value. That is, the particle size is set so as to be larger than the thickness of the layer in which the functional material is enclosed, and smaller than the sum of the thickness of the functional material and the thickness of the locking film. By being configured to be held slightly indented in the stop film, it is possible to suppress the settling of the stirrer and to control the layer thickness of the desired highly viscous liquid. .
請求項 9記載の機能性材料積層体は、 請求項 2〜 8のいずれか 1項記載の機能 性材料積層体において、 スぺ一ザが、 ガラスビーズであるものである。 スぺ一サ の材質は、 スぺ一ザとしての機能を有すること、 建材としての耐久性を有するこ と、 接触する機能性材料と相互に悪影響を及ぼさないこと、 機能性材料積層体の 視覚的な欠陥とならないこと等の条件を満たす必要があり、 これらを考慮すると ガラスビーズを用いることが好ましい。  A functional material laminate according to claim 9 is the functional material laminate according to any one of claims 2 to 8, wherein the spacer is a glass bead. The material of the spacer must have a function as a spacer, have durability as a building material, have no adverse effect on the functional material that comes into contact with it, and have a visual sense of the functional material laminate. It is necessary to satisfy the conditions such as not to cause a general defect, and in view of these, it is preferable to use glass beads.
請求項 1 0記載の機能性材料積層体は、 請求項 1記載の機能性材料積層体にお いて、 係止部材として、 軟質あるいは可塑性の材料からなる外装材をスぺ一ザに 被覆したものである。 この場合には、 スぺ一ザと機能性材料とに比重差があって も、 外装材が基体に密着して、 スぺ一ザの移動が物理的に規制されるので、 スぺ 一ザが沈降したり浮上したしして偏ることはない。 し力、も、 外装材が緩衝材とし て作用するので、 基体のスぺーサに対応する位置における応力集中の発生を一層 少なくできる。  The functional material laminate according to claim 10 is the functional material laminate according to claim 1, in which an exterior material made of a soft or plastic material is coated on a spreader as a locking member. It is. In this case, even if there is a difference in specific gravity between the spacer and the functional material, the exterior material comes into close contact with the base and the movement of the spacer is physically restricted. It does not sink or float and is not biased. Since the exterior material acts as a cushioning material, the occurrence of stress concentration at a position corresponding to the spacer on the base can be further reduced.
請求項 1 1記載の機能性材料積層体は、 請求項 1〜 1 0のいずれか 1項記載の 機能性材料積層体において、 基体間の要求間隔よりも小さなサイズのスぺ—サを 用い、 スぺーサにより基体間の最小間隔を規定したものである。 このように構成 することで、 基体に外力が加わった塲合でも、 スぺーサにより必要最小限の機能 性材料層の厚みが確保され、 しかも基体のスぺ一ザに対応する位置における応力 集中の発生が最小限に抑えられる。  The functional material laminate according to claim 11 is the functional material laminate according to any one of claims 1 to 10, wherein a spacer having a size smaller than a required interval between substrates is used, The spacer defines the minimum distance between the substrates. With this configuration, even when external force is applied to the substrate, the spacer ensures the minimum necessary thickness of the functional material layer, and stress concentration at a position corresponding to the spacer of the substrate. Is minimized.
請求項 1 2記載の機能性材料積層体は、 請求項 1〜1 1のいずれか 1項記載の 機能性材料積層体において、 スぺーザの比重を機能性材料の比重の 9 0 %〜1 1 0 %に設定するとともに、 機能性材料の粘度を 1 0 0ボイズ以上に設定したもの である。 この場合には、 機能性材料とスぺーザの比重が略同じになるので、 沈降 や浮上によるスぺーザの偏りを防止できる。 The functional material laminate according to claim 12 is the functional material laminate according to any one of claims 1 to 11, wherein the specific gravity of the spacer is 90% to 1% of the specific gravity of the functional material. It is set to 100%, and the viscosity of the functional material is set to 100 voids or more. In this case, the specific gravity of the functional material and the spacer becomes almost the same, Bias of the souser due to surfacing and floating can be prevented.
請求項 1 3記載の機能性材料積層体は、 請求項 1〜 1 2のいずれか 1項記載の 機能性材料積層体において、 基体の周縁部間に 1条のシーリング材を配して、 シ ーリング材により基体の周縁部同士を接着固定するとともに、 基体間に機能性材 料を封止したものである。 このように構成する場合には、 シーリング材に素材に 対する制約は大きくなるが、 シーリング材の積層幅を極力狭くして、 機能性材料 の積層面積を大きく設定できるとともに、 機能性材料積層体の組立性が向上し、 しかもシーリング材の使用量を極力少なく して製作コス卜を低減できる。  The functional material laminate according to claim 13 is the functional material laminate according to any one of claims 1 to 12, wherein one sealing material is disposed between peripheral portions of the base, and The peripheral parts of the bases are bonded and fixed to each other with a sealing material, and the functional material is sealed between the bases. In such a configuration, the restriction on the material for the sealing material is increased, but the lamination width of the sealing material can be reduced as much as possible, and the lamination area of the functional material can be set large. The assemblability is improved, and the production cost can be reduced by using as little sealing material as possible.
請求項 1 4記載の機能性材料積層体は、 請求項 1〜 1 2のいずれか 1項記載の 機能性材料積層体において、 基体の周縁部間に、 ガス遮断性に優れたシ一リング 材と、 基体に対する接着性に優れたシーリング材の少なくとも 2条のシ一リング 材を内外に並列状に配したものである。 このように構成すると、 機能性材料の積 層面積は多少狭くなる力く、 内側のシーリング材により機能性材料を確実に封止で き、 外側のシーリング材により基体同士を確実に接着することが可能となる。 請求項 1 5記載の機能性材料積層体は、 請求項 1 3記載の機能性材料積層体に おいて、 シーリング材として、 分子中に 1個以上の架橋しうる反応基を含有する 分子量 5 0 0〜3 0万の飽和炭化水素系重合体を必須成分とするシーリング材を 用いたものである。 この機能性材料積層体に用いられるシーリング材は、 ガラス などの基体に対する接着性に優れ、 しかも水蒸気の遮断性に優れているので、 従 来のように 2種類のシーリング材を用いることなく、 1種類のシ一リング材によ り、 2枚の基体を強固に接着し、 しかもシーリング材の積層部分からの水蒸気の 出入りを遮断して、 機能性材料の濃度変化による特性の変動を防止することが可 能となる。 また、 このように 1種類のシーリング材により十分な接着力を確保で きるので、 シ一リング材の積層幅を極力狭くして、 機能性材料の積層面積を大き く設定できるとともに、 機能性材料積層体の組立性が向上し、 しかもシ一リング 材の使用量を極力少なくして製作コストを低減できる。 さらに、 この種にシ一リ ング材は、 熱線反射ガラスゃ L OW - Eガラスのコーティ ング面に対する接着性 にも優れているので、 従来のように接着性を向上させるためにコーティング膜を 除去したりすると言つた煩雑な処理が不要となる。 請求項 1 6記載の機能性材料積層体は、 請求項 1 3〜 1 5のいずれか 1項記載 の機能性材料積層体において、 シーリング材として後処理により硬化する素材か らなるものを用いたものである。 つまり、 シーリング材で基体同士を接着すると 、 機能性材料の充塡可能な面積を極力大きく設定することが可能となり、 窓ガラ スとして好適な機能性材料積層体を実現できる。 The functional material laminate according to claim 14 is the functional material laminate according to any one of claims 1 to 12, wherein the sealing material having excellent gas barrier properties is provided between peripheral portions of the base. And at least two sealing materials having excellent adhesion to the substrate are arranged in parallel inside and outside. With this configuration, the laminated area of the functional material is slightly reduced, and the functional material can be securely sealed by the inner sealing material, and the substrates can be securely bonded to each other by the outer sealing material. It becomes possible. The functional material laminate according to claim 15 is the functional material laminate according to claim 13, wherein the sealing material has at least one crosslinkable reactive group in a molecule. It uses a sealing material containing from 0 to 300,000 saturated hydrocarbon polymers as an essential component. The sealing material used for this functional material laminate has excellent adhesiveness to a substrate such as glass and also has excellent barrier properties against water vapor, so that two types of sealing materials are not used as in the past. Using two types of sealing materials, two substrates are firmly adhered to each other, and the flow of water vapor from the laminated portion of the sealing material is blocked to prevent fluctuations in properties due to changes in the concentration of the functional material. Becomes possible. In addition, since a single type of sealing material can secure sufficient adhesive strength, the lamination width of the sealing material can be reduced as much as possible, and the lamination area of the functional material can be set large. The assemblability of the laminate is improved, and the production cost can be reduced by minimizing the amount of sealing material used. Furthermore, since the sealing material of this type has excellent adhesiveness to the coating surface of the heat ray reflective glass LOW-E glass, the coating film is removed to improve the adhesiveness as in the past. Or the complicated processing that is said to be performed becomes unnecessary. The functional material laminate according to claim 16 is the functional material laminate according to any one of claims 13 to 15, wherein a sealing material made of a material that is cured by post-processing is used. Things. In other words, when the base materials are bonded to each other with the sealing material, the area that can be filled with the functional material can be set as large as possible, and a functional material laminate suitable as a window glass can be realized.
請求項 1 7記載の機能性材料積層体は、 請求項 1 3〜 1 5のいずれか 1項記載 の機能性材料積層体において、 シーリング材として、 反応性ゲイ素基を含有する シーリング材を用いたものである。 つまり、 このようなシーリング材は、 架橋点 の耐加水分解性が優れるため耐候性に優れ、 かつ基板との接着性にも優れるので 、 機能性材料積層体の耐久性が向上する。  The functional material laminate according to claim 17 is the functional material laminate according to any one of claims 13 to 15, wherein a sealing material containing a reactive gay group is used as the sealing material. It was what was. In other words, such a sealing material has excellent weather resistance due to its excellent hydrolysis resistance at the cross-linking points, and also has excellent adhesiveness to the substrate, so that the durability of the functional material laminate is improved.
請求項 1 8記載の機能性材料積層体は、 請求項 1〜 1 7のいずれか 1項記載の 機能性材料積層体において、 機能性材料として、 基体間に温度変化により透光状 態と遮光状態に切りかわるサ一モト口ピック材料を封入した調光層を形成し、 調 光層よりも室外側又は室内側に配される基体の少なくとも 1枚を低放射機能を有 する機能性ガラスで構成したものである。  The functional material laminate according to claim 18 is the functional material laminate according to any one of claims 1 to 17, wherein the functional material has a light-transmitting state and a light-shielding state due to a temperature change between the substrates. A dimming layer enclosing the squeezing material is formed, and at least one of the substrates disposed on the outside or indoor side of the dimming layer is made of functional glass having a low radiation function. It is composed.
この機能性材料積層体では、 日射が強くなつて調光層の温度が上昇すると、 サ —モト口ピック材料が状態変化して、 機能性材料積層体が遮光状態となり、 室内 への日射エネルギーの流入が抑制され、 日射が弱くなつて調光層の温度が下降す ると、 サ一モト口ピック材料が状態変化して、 機能性材料積層体が透光状態とな り、 室内に対して日射エネルギーが積極的に取り込まれることになる。 また、 太 陽光の照り返しや室内暖房による輻射熱は、 低放射機能を有する機能性ガラスに より反射されて、 室内外への出入りが抑制されことになる。  In this functional material laminate, when the temperature of the dimming layer rises due to intensified solar radiation, the state of the moto-mouth pick material changes, and the functional material laminate becomes light-shielded, and the indoor solar radiation energy is reduced. When the inflow is suppressed and the sunlight decreases, the temperature of the dimming layer decreases, and the state of the pick-up material changes state, and the functional material laminate enters a light-transmitting state, and the room becomes transparent. Solar radiation energy will be actively taken in. In addition, the radiant heat due to the reflection of sunlight and the indoor heating is reflected by the functional glass having a low radiation function, so that entering and exiting the room can be suppressed.
機能性ガラスを調光層よりも室内側に配置すると、 寒冷な地域での使用に適し たものとなる。 即ち、 寒冷な地域では、 室内暖房による輻射熱の量が多くなつて 、 調光層の温度が、 上昇しやすくなりすぎたり、 高温状態に維持され、 機能性材 料積層体が不必要に遮光状態となることがある。 このため、 機能性ガラスを調光 層よりも室内側に配置させることで、 室内暖房による輻射熱を調光層に到達する 前に機能性ガラスで反射させ、 調光層の異常な温度上昇を抑制し、 機能性材料積 層体を透光状態に維持して、 開口部としての視野および開放感を確保できるので 好ましい。 Placing the functional glass more indoors than the dimming layer makes it suitable for use in cold areas. That is, in a cold region, if the amount of radiant heat generated by indoor heating increases, the temperature of the light control layer becomes too high or is maintained at a high temperature, and the functional material laminate is unnecessarily shaded. It may be. For this reason, by placing the functional glass on the indoor side of the light control layer, the radiant heat from indoor heating is reflected by the functional glass before it reaches the light control layer, and the abnormal temperature rise of the light control layer is suppressed. In addition, the functional material laminate can be maintained in a light-transmitting state, so that the field of view as the opening and the sense of openness can be secured. preferable.
また、 機能性ガラスを調光層よりも室外側に配置すると、 温暖な地域での使用 に適したものとなる。 即ち、 温暖な地域では、 太陽光の照り返しによる輻射熱の 量が多くなつて、 調光層の温度が、 上昇しやすくなりすぎたり、 高温状態に維持 され、 機能性材料積層体が不必要に遮光状態となることがある。 このため、 機能 性ガラスを調光層よりも室外側に配置させることで、 外部からの輻射熱を調光層 に到達する前に機能性ガラスで反射させ、 調光層の異常な温度上昇を抑制し、 機 能性材料積層体による日射エネルギーの流入量を適正に調整して、 開口部として の視野および開放感を確保できるので好ましい。 また、 機能性ガラスを調光層よ りも室外側に配置すると、 室内温度に応じた透光一遮光状態の応答性に優れたも のとなり、 好ましい。  In addition, if the functional glass is placed outside the light control layer, it will be suitable for use in warm areas. That is, in a warm region, the amount of radiant heat due to the reflection of sunlight increases, and the temperature of the light control layer becomes too high or is maintained at a high temperature, and the functional material laminate is unnecessarily shaded. May be in a state. For this reason, by disposing the functional glass on the outdoor side of the light control layer, the radiant heat from the outside is reflected by the functional glass before reaching the light control layer, and the abnormal temperature rise of the light control layer is suppressed. However, it is preferable because the inflow of solar energy by the functional material laminate can be appropriately adjusted, and the field of view as the opening and the sense of openness can be secured. In addition, it is preferable to dispose the functional glass on the outside of the room rather than the light control layer because the glass has excellent responsiveness in the light-transmitting and light-shielding state according to the room temperature.
請求項 1 9記載の機能性材料積層体は、 請求項 1〜 1 8のいずれか 1項記載の 機能性材料積層体において、 基体を 3枚以上積層させ、 機能性材料を充塡した基 体間の隙間以外の隙間の少なくとも 1つに、 基体の外縁部間をシール材でシール して空気層を形成したものである。 このように構成すると、 空気層により機能性 材料積層体の断熱特性を一層向上させることが可能となる。  The functional material laminate according to claim 19 is the functional material laminate according to any one of claims 1 to 18, wherein three or more substrates are laminated and the functional material is filled. At least one of the gaps other than the gap between them is formed by sealing the space between the outer edges of the base with a sealing material to form an air layer. With such a configuration, the air layer can further improve the heat insulating properties of the functional material laminate.
請求項 2 0記載の機能性材料積層体は、 請求項 1 9記載の機能性材料積層体に おいて、 空気層に臨む基体の少なくとも一方を、 基体の表面に低放射膜を形成し た機能性ガラスで構成し、 低放射膜が空気層に接するように機能性ガラスを配置 したものである。 つまり、 物理的接触等による傷や環境的要因による劣化から低 放射膜を保護するため、 低放射膜を設けた面を空気層側に配置することが好まし い。  The functional material laminate according to claim 20 is the functional material laminate according to claim 19, wherein at least one of the substrates facing the air layer has a function of forming a low-emission film on the surface of the substrate. It is made of functional glass, and functional glass is arranged so that the low-emissivity film is in contact with the air layer. In other words, in order to protect the low emission film from damage due to physical contact and the like and deterioration due to environmental factors, it is preferable to arrange the surface provided with the low emission film on the air layer side.
請求項 2 1記載の機能性材料積層体は、 請求項 1 ~ 2 0のいずれか 1項記載の 機能性材料積層体において、 温度変化により白濁状態と透明状態とに可逆的に状 態変化するサ一モト口ピック材料を用いたものである。 この機能性材料積層体で は、 温度変化により機能性材料が透光状態と遮光状態とに切りかわり、 日射エネ ルギ一の流入量がコントロールされる。  The functional material laminate according to claim 21 is the functional material laminate according to any one of claims 1 to 20, wherein the state reversibly changes between a cloudy state and a transparent state due to a temperature change. This is a material using a satomoto pick material. In this functional material laminate, the temperature changes cause the functional material to switch between a light-transmitting state and a light-shielding state, thereby controlling the inflow of solar energy.
請求項 2 2記載の機能性材料積層体は、 請求項 1〜 2 1のいずれか 1項記載の 機能性材料積層体において、 機能性材料の主たる構成成分が、 水溶性高分子化合 物と、 非イオン性界面活性剤およびノまたは曇り点制御物質と、 水であるもので ある。 これらの構成から成る機能性材料は、 温度変化により、 透光状態と遮光状 態とに切りかわるサーモト口ピック材料として機能する。 つまり、 これらの機能 性材料を封入した機能性材料積層体は、 温度変化により透光状態と遮光状態とに 切りかわる調光ガラスとして利用でき、 日射エネルギーの流入量をコントロール することができる。 The functional material laminate according to claim 22 is the functional material laminate according to any one of claims 1 to 21, wherein a main component of the functional material is a water-soluble polymer compound. A nonionic surfactant and a cloud or cloud point controlling substance, and water. The functional material having such a configuration functions as a thermopic pick material that switches between a light-transmitting state and a light-shielding state due to a change in temperature. That is, the functional material laminate in which these functional materials are encapsulated can be used as a light control glass that switches between a light-transmitting state and a light-shielding state by a change in temperature, and can control the inflow of solar energy.
請求項 2 3に係る機能性材料積層体の製造方法は、 基体に対して機能性材料を 塗布するとともに、 基体間の要求隙間よりも大きな隙間をあけて基体間を気密状 にシール可能な高さのシーリング材を基体に付着させるセッ トェ程と、 基体を重 ね合わせて基体間に機能性材料及びシーリング材を介装させ、 基体間にシーリン グ材で取り囲まれる閉鎖空間を形成する基体重合工程と、 重ね合わせた基体を減 圧雰囲気下にセッ 卜して、 閉鎖空間を略真空状態に維持しながら、 閉鎖空間が気 密状になるように、 シ一リング材を基体に密着させる減圧密着工程と、 閉鎖空間 の容積が基体に塗布した機能性材料の容積と略同じになるように基体を押圧して 、 シーリング材を変形させつつ、 機能性材料を閉鎖空間内に充満させる押圧工程 とを備えたものである。  A method for producing a functional material laminate according to claim 23 is characterized in that the functional material is applied to the bases, and a gap larger than a required gap between the bases is provided so that the bases can be hermetically sealed. The setting process of attaching the sealing material to the substrate, and the polymerization of the substrate in which the functional materials and the sealing material are interposed between the substrates by overlapping the substrates to form a closed space surrounded by the sealing material between the substrates. The process and the superimposed substrate are set in a reduced-pressure atmosphere, and the sealing material is brought into close contact with the substrate so that the enclosed space is airtight while maintaining the enclosed space in a substantially vacuum state. A pressing step of pressing the base so that the volume of the closed space is substantially the same as the volume of the functional material applied to the base, deforming the sealing material, and filling the closed space with the functional material; And Those were.
このように、 基体間に充塡する機能性材料よりも大きな容量の閉鎖空間をシー リング材により基体間に形成し、 この閉鎖空間に機能性材料を充填して、 閉鎖空 間内を略真空状態にしてから、 シーリング材を変形させながら基体を押圧し、 閉 鎖空間内に機能性材料の充塡するので、 機能性材料体やゲルのような可塑性の機 能性材料でも気泡が混入しないように基体間に充填することが可能となる。 請求項 2 4記載の機能性材料積層体の製造方法は、 請求項 2 3記載の製造方法 において、 セット工程において、 一方の基体のみに機能性材料とシーリング材を 付着させるものである。  As described above, a closed space having a larger capacity than the functional material filled between the bases is formed between the bases by the sealing material, and the closed space is filled with the functional material, and the inside of the closed space is substantially evacuated. After the sealing material is deformed, the base material is pressed while deforming the sealing material, and the closed space is filled with the functional material.Therefore, no bubbles are mixed in the functional material or the plastic functional material such as gel. Thus, it is possible to fill the space between the substrates. A method of manufacturing a functional material laminate according to claim 24 is the manufacturing method according to claim 23, wherein the functional material and the sealing material are adhered only to one of the substrates in the setting step.
請求項 5記載の機能性材料積層体の製造方法は、 請求項 2 3又は 2 4記載の 製造方法において、 基体重合工程において基体を重ね合わせた状態で、 機能性材 料とシ一リング材との間隔が 5 c m以下になるように、 セット工程において機能 性材料を基体に対して均一な膜状に塗布するものである。 また、 請求項 2 6記載 の機能性材料積層体の製造方法は、 請求項 2 3 - 2 5のいずれか 1項記載の製造 方法において、 セッ トェ程において、 機能性材料を基体に対して点状あるいは線 状あるいはその混合状に、 かつ隣接する点間距離ある L、は線間距離あるいは点と 線間の距離が 5 c m以下になるように塗布するものである。 このように塗布する ことで、 気泡のほとんどな 、機能性材料積層体を作製できる。 The method for producing a functional material laminate according to claim 5 is the method for producing a functional material according to claim 23, wherein the functional material and the sealing material are overlapped with each other in the substrate polymerization step. In the setting step, the functional material is applied to the substrate in a uniform film shape so that the distance between them is 5 cm or less. The method for producing a functional material laminate according to claim 26 is the method according to any one of claims 23 to 25. In the method, in the setting process, the functional material is point-like or linear-like or a mixture thereof with respect to the substrate, and the distance L between adjacent points is 5 cm. It is applied so as to be as follows. By coating in this manner, a functional material laminate having almost no bubbles can be produced.
請求項 2 7記載の製造方法は、 請求項 2 3〜 2 6のいずれか 1項記載の製造方 法において、 機能性材料あるいはシーリング材との少なくとも一方に基体同士の 最小間隔を規定するためのスぺーサを設けたものである。 つまり、 基体に対して 外力が作用すると、 基体間の隙間が変動することも考えられるので、 基体同士の 最小間隔を規定するためのスぺーサを設けることで、 必要最小限の機能性材料層 の厚みが確保され、 しかも基体のスぺーザに対応する位置における応力集中の発 生が最小限に抑えられる。  The manufacturing method according to claim 27 is the manufacturing method according to any one of claims 23 to 26, wherein the minimum distance between the substrates is defined in at least one of the functional material and the sealing material. A spacer is provided. In other words, when an external force acts on the bases, the gap between the bases may fluctuate. Therefore, by providing a spacer for defining the minimum distance between the bases, a minimum necessary functional material layer is provided. The thickness of the substrate is ensured, and the occurrence of stress concentration at a position corresponding to the spacer on the substrate is minimized.
請求項 2 8記載の製造方法は、 請求項 2 3〜 2 7のいずれか 1項記載の製造方 法において、 機能性材料に基体間の隙間を一様に設定するためのスぺ一サを設け るととに、 少なくとも一方の基体の機能性材料に臨む面に、 スぺーザよりも軟質 な係止フィルムをラミネートしたものである。 この製造方法により製作した機能 性材料積層体は、 スぺ一ザが係止フィルムに密着してスぺ一ザの移動が規制され る。 また、 係止フィルムは基体に対してラミネートにより容易に形成することが 可能である。  The manufacturing method according to claim 28 is the manufacturing method according to any one of claims 23 to 27, wherein a spacer for uniformly setting a gap between the bases in the functional material is provided. In addition, at least one of the bases facing the functional material is laminated with a locking film softer than a spacer. In the functional material laminate manufactured by this manufacturing method, the spacer is in close contact with the locking film, and the movement of the spacer is regulated. Further, the locking film can be easily formed on the base by lamination.
請求項 2 9記載の製造方法は、 請求項 2 7記載の製造方法において、 機能性材 料に配するスぺーザに軟質あるいは可塑性の材料からなる外装材で被覆し、 外装 材を介してスぺ一サを基体間に固定したものである。 この製造方法により製作し た機能性材料積層体は、 機能性材料に配するスぺ一ザと機能性材料とに比重差が あっても、 外装材によりスぺーザの移動が物理的に規制されるので、 スぺーザが 沈降したり浮上して偏ることはないし、 外装材が緩衝材として作用するので、 基 体のスぺーサに対応する位置における応力集中の発生を一層少なくできる。 請求項 3 0記載の製造方法は、 請求項 2 3〜 2 9のいずれか 1項記載の製造方 法において、 減圧密着工程において、 少なくとも一部分が柔軟な膜体で仕切られ た、 隣接する 2つの減圧槽を有する減圧装置を用い、 一方の減圧槽内に重ね合わ せた基体をセッ 卜して両減圧槽を減圧し、 閉鎖空間を略真空状態にしてから、 閉 鎖空間が気密状になるように、 他方の減圧槽を常圧ある 、は加圧して膜体で基体 を押圧し、 シーリング材を基体に密着させるものである。 この場合には、 周知の 減圧装置を用いて、 気泡を有しな 、品質のよ 、機能性材料積層体を製造すること カ坷能となる。 The manufacturing method according to claim 29 is the manufacturing method according to claim 27, wherein the spacer disposed on the functional material is covered with a covering material made of a soft or plastic material, and The sensor is fixed between the substrates. In the functional material laminate manufactured by this manufacturing method, even if there is a difference in specific gravity between the functional material and the spreader, the movement of the spreader is physically restricted by the exterior material. As a result, the spacer does not settle or float to be biased, and since the exterior material acts as a cushioning material, the occurrence of stress concentration at a position corresponding to the base spacer can be further reduced. The manufacturing method according to claim 30 is the manufacturing method according to any one of claims 23 to 29, wherein at least a part is partitioned by a flexible film body in the reduced-pressure adhesion step, Using a decompression device having a decompression tank, set the superimposed substrates in one decompression tank, depressurize both decompression tanks, bring the closed space into a substantially vacuum state, and then close. The other depressurizing tank is at normal pressure so that the chain space is airtight, and the substrate is pressed with a film to press the sealing material in close contact with the substrate. In this case, using a well-known decompression device, it is possible to produce a functional material laminate having no bubbles and high quality.
請求項 3 1記載の製造方法は、 請求項 2 0記載の製造方法において、 減圧装置 の一方の減圧槽内に重ね合わせてセッ卜した基体の周辺に、 機能性材料の要求厚 さと略同じ厚みを有し、 膜圧による機能性材料の側縁の変形を防止する変形防止 用スぺーサを配置するか、 または減圧装置の膜体と基体間に基体の形状に沿った 剛体からなる成形型を設けたものである。 このように構成することで、 機能性材 料の側縁が薄肉になることを防止できるとともに、 機能性材料全体の厚さを要求 厚さに精度よく設定すること可能となる。  The manufacturing method according to claim 31 is the manufacturing method according to claim 20, wherein a thickness substantially equal to a required thickness of the functional material is provided around the base set in a reduced pressure tank of the pressure reducing device. A spacer for preventing deformation of the side edge of the functional material due to the film pressure, or a mold that consists of a rigid body following the shape of the substrate between the film and the substrate of the decompression device Is provided. With this configuration, it is possible to prevent the side edge of the functional material from being thinned, and it is possible to accurately set the thickness of the entire functional material to the required thickness.
請求項 3 2記載の製造方法は、 請求項 2 3〜3 1のいずれか 1項記載の製造方 法において、 基体重合工程において、 基体間に形成される閉鎖空間が外部と連通 し、 減圧密着工程において、 シーリング材を基体に密着して、 閉鎖空間が気密状 になるようにシーリング材を設けたものである。 例えば、 シーリング材に溝や凹 凸を形成したり、 シーリング材の一部を欠損させて、 閉鎖空間がシーリング材で 気密状に密閉されないように構成することになるが、 このように構成すると、 減 圧密着工程において、 閉鎖空間を容易に略真空状態にすることが可能となる。 但 し、 シ一リング材に形成した溝や凹凸や欠損部分は、 押圧工程においてシ一リン グ材を変形させたときに閉鎖され、 閉鎖空間は気密性に密閉される。  The production method according to claim 32 is the production method according to any one of claims 23 to 31, wherein in the substrate polymerization step, the closed space formed between the substrates is communicated with the outside, and the reduced pressure contact is performed. In the process, the sealing material is provided in close contact with the base so that the enclosed space is airtight. For example, grooves or depressions and projections may be formed in the sealing material, or a part of the sealing material may be lost so that the enclosed space is not hermetically sealed by the sealing material. In the pressure reduction contacting step, the closed space can be easily brought into a substantially vacuum state. However, the grooves, irregularities, and missing portions formed in the sealing material are closed when the sealing material is deformed in the pressing step, and the closed space is hermetically sealed.
請求項 3 3記載の製造方法は、 請求項 2 3〜3 2のいずれか 1項記載の製造方 法において、 基体重合工程において、 機能性材料及びシーリング材を基体間にそ れぞれ積層する前に、 シーリング材を予備硬化させたものである。 この場合には 、 2つの基体を予備硬化させたシ一リング材で仮接着できるので、 両基体の積層 時に大きな圧力を負荷した場合でも、 両基体およびシーリング材がずれ難いため 、 寸法精度の優れた機能性材料積層体が得られる。 図面の簡単な説明  The manufacturing method according to claim 33 is the manufacturing method according to any one of claims 23 to 32, wherein the functional material and the sealing material are respectively laminated between the substrates in the substrate polymerization step. Previously, the sealant was pre-cured. In this case, the two substrates can be temporarily bonded with a pre-cured sealing material, so that even when a large pressure is applied during lamination of the two substrates, the two substrates and the sealing material are not easily displaced, so that the dimensional accuracy is excellent. The obtained functional material laminate is obtained. BRIEF DESCRIPTION OF THE FIGURES
図 1は機能性材料積層体の要部縦断面図、 図 2は他の構成の機能性材料積層体 の要部縦断面図、 図 3は低放射ガラスを用いた調光ガラスの要部縦断面図、 図 4 は同調光ガラスの他の実施例の要部縦断面図、 図 5は低放射ガラスを用いた複層 タイプの調光ガラスの要部縦断面図、 図 6は他の実施例の複層タイプの調光ガラ スの要部縦断面図、 図 7は他の実施例の複層タィプの調光ガラスの要部縦断面図 、 図 8は他の実施例の複層タィプの調光ガラスの要部縦断面図、 図 9は他の実施 例の複層タィプの調光ガラスの要部縦断面図、 図 1 0は他の実施例の複層タイプ の調光ガラスの要部縦断面図、 図 1 1は紫外線遮蔽機能を有するガラスを用いた 調光ガラスの要部縦断面図、 図 1 2は他の実施例の紫外線遮蔽機能を有するガラ スを用いた調光ガラスの要部縦断面図、 図 1 3は他の実施例の紫外線遮蔽機能を 有するガラスを用いた調光ガラスの要部縦断面図、 図 1 4は他の実施例の紫外線 遮蔽機能を有するガラスを用いた調光ガラスの要部縦断面図、 図 1 5は他の実施 例の紫外線遮蔽機能を有するガラスを用いた調光ガラスの要部縦断面図、 図 1 6 は基板に対する機能性材料の塗布方法の説明図、 図 1 7は基板に対する機能性材 料の塗布方法の説明図、 図 1 8は基板重合工程における機能性材料積層体の縦断 面図、 図 1 9は減圧装置の概略構成図、 図 2 0は減圧装置の作動説明図、 図 2 1 は減圧密着工程及び押圧工程における機能性材料積層体の縦断面図、 図 2 2は減 圧装置に変形防止用スぺーサを設けた場合における押圧工程での機能性材料積層 体の縦断面図、 図 2 3は減圧装置に成形型を設けた場合における押圧工程での機 能性材料積層体の縦断面図、 図 2 4は機能性材料積層体の他の製造方法の説明図 、 図 2 5は機能性材料積層体の他の製造方法の説明図である。 Fig. 1 is a vertical sectional view of the main part of a functional material laminate, and Fig. 2 is a functional material laminate of another configuration. Fig. 3 is a vertical sectional view of a main part of a light control glass using low-emission glass, Fig. 4 is a vertical cross-sectional view of a main part of another embodiment of the light control glass, and Fig. 5 is a low-emission glass. Fig. 6 is a vertical sectional view of a main part of a multi-layer type light control glass of another embodiment. Fig. 6 is a vertical cross-sectional view of a main part of a multi-layer light control glass of another embodiment. FIG. 8 is a vertical sectional view of a main part of a light control glass of another type, FIG. 8 is a vertical cross-sectional view of a main part of a light control glass of a multilayer type according to another embodiment, and FIG. FIG. 10 is a longitudinal sectional view of a principal part of a multi-layer type light control glass of another embodiment, and FIG. 11 is a longitudinal sectional view of a principal part of a light control glass using a glass having an ultraviolet shielding function. Fig. 12, Fig. 12 is a longitudinal sectional view of a main part of a light control glass using a glass having an ultraviolet shielding function according to another embodiment, and Fig. 13 is a glass having an ultraviolet shielding function according to another embodiment. FIG. 14 is a longitudinal sectional view of a main part of a light control glass, and FIG. 14 is a vertical cross sectional view of a main part of a light control glass using a glass having an ultraviolet shielding function of another embodiment. FIG. 15 is an ultraviolet shielding of another embodiment. Fig. 16 is an explanatory view of a method of applying a functional material to a substrate, Fig. 17 is an explanatory view of a method of applying a functional material to a substrate, and Fig. 16 is an explanatory view of a method of applying the functional material to the substrate. FIG. 18 is a longitudinal sectional view of the functional material laminate in the substrate polymerization step, FIG. 19 is a schematic configuration diagram of the decompression device, FIG. 20 is an explanatory diagram of the operation of the decompression device, and FIG. Fig. 22 is a longitudinal sectional view of the functional material laminate in Fig. 22; Fig. 22 is a longitudinal sectional view of the functional material laminate in the pressing step in the case where a deformation preventing spacer is provided in the pressure reducing device; Fig. 24 is a vertical cross-sectional view of the functional material laminate in the pressing step when a molding die is provided in FIG. Illustration of another method of manufacturing the potential material laminate, 2 5 is an explanatory diagram of another method for producing a functional material laminate.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
図 1に示すように、 機能性材料積層体 1は、 平板状の 2枚の基体 2、 3を隣接 させて平行配置し、 基体 2、 3の外縁部間をシ一リング材 4で封止して、 基体 2 、 3間に機能性材料 5を封入し、 更に基体 2、 3間の隙間が一様になるように機 能性材料 5にスぺ一サ 6の設けるとともに、 スぺ一サ 6を基体 2、 3間の所定位 置に固定するため、 スぺーサ 6よりも軟質な係止フィルム 7を基体 2、 3の少な くとも一方 (図例では基体 3 ) の機能性材料 5に臨む面にラミネートしたもので ある。  As shown in FIG. 1, the functional material laminate 1 has two flat substrates 2 and 3 arranged side by side in parallel, and the outer edges of the substrates 2 and 3 are sealed with a sealing material 4. Then, the functional material 5 is sealed between the bases 2 and 3, and further, the functional material 5 is provided with a spacer 6 so that the gap between the bases 2 and 3 is uniform. In order to fix the support 6 at a predetermined position between the bases 2 and 3, a locking film 7 which is softer than the spacer 6 is provided on at least one of the bases 2 and 3 (the base 3 in the illustrated example). It is laminated on the surface facing 5.
先ず、 基体 2、 3について説明する。 基体 2、 3は、 無機材料で構成されるものとしては通常の板ガラス、 有機材料 で構成されるものとしては、 ポリカーボネート、 アタリル樹脂、 塩化ビニル樹脂 等の有機ガラスを、 適宜選択することができる。 板ガラスは、 使用目的に応じて 、 着色ガラス、 フロート板ガラス、 網入扳ガラス、 線入扳ガラス、 熱線反射ガラ ス、 低放射ガラス、 合わせガラス、 強化ガラス、 倍強度ガラス、 U Vカツ トガラ ス、 網入りガラス、 型板ガラス、 すりガラス等から適宜選択すれば良い。 基体 2 、 3は、 機能性材料積層体 1を調光ガラスとして使用するときには、 通常は透明 に構成することになる力 基体 2、 3の一部は不透明に構成してもよいし、 建築 物の外壁等として使用する場合には、 少なくとも一方を不透明なガラス板ゃ金属 板等で構成してもよい。 尚、 基体 2、 3として低放射ガラスを用いる場合につい ては、 後で詳細に説明する。 First, the bases 2 and 3 will be described. The bases 2 and 3 can be appropriately selected from ordinary plate glass made of an inorganic material, and organic glass made of polycarbonate, ataryl resin, vinyl chloride resin or the like as an organic material. Depending on the purpose of use, the flat glass can be colored glass, float flat glass, netted glass, lined glass, heat ray reflective glass, low radiation glass, laminated glass, tempered glass, double strength glass, UV cut glass, mesh What is necessary is just to select suitably from glass containing, template glass, ground glass, etc. When the functional material laminate 1 is used as a light control glass, the bases 2 and 3 are usually transparent. A part of the bases 2 and 3 may be opaque, and the building may be a building. When used as an outer wall or the like, at least one of them may be made of an opaque glass plate or a metal plate. The case where low-emission glass is used as the substrates 2 and 3 will be described later in detail.
また、 基体 2、 3は同種のものを使用しても良いし、 異種のものを使用しても よい。 また、 模様等を深く掘った型板ガラスや、 曲げガラス、 ガラス瓶のような ガラス成形体、 或いは少なくとも一方をガラスブロックのようなプロック状に構 成したガラスを採用することも可能である。  The substrates 2 and 3 may be of the same type or of different types. It is also possible to use a template glass in which a pattern or the like is dug deeply, a glass molded body such as a bent glass or a glass bottle, or glass in which at least one is formed in a block shape such as a glass block.
次に、 機能性材料 5について説明する。  Next, the functional material 5 will be described.
この機能性材料積層体 1を調光ガラスとして用いる場合には、 機能性材料 5と して、 温度変化により白濁状態と透明状態とに状態変化するサ一モト口ピック材 料を用いることになる。  When the functional material laminate 1 is used as a light control glass, a samurai mouth pick material that changes state between a cloudy state and a transparent state due to a temperature change is used as the functional material 5. .
このようなサーモト口ピック材料としては、 曇点現象を示す非ィォン性界面活 性剤や非イオン性水溶性高分子の等方性水溶液がある。 具体的には、 ポリビニル アルコール部分ァセタール物、 ポリビニルアルコール部分酢化物、 ポリビニルメ チルエーテル、 メチルセルロース、 ポリエチレンォキシド、 ポリプロピレンォキ シド、 エチレンォキシドとプロピレンォキシドの共重合体、 ヒ ドロキシプロピル 基を有する多糖類誘導体 (例えばヒ ドロキシプロピルセルロース等) 、 ポリビニ ルメチルォキサゾリディノン、 ポリ N—置換ァクリルァミ ド誘導体 (例えばポリ N—イソプロピルアクリルアミ ド、 ポリ N—エトキシェチルアクリルアミ ド等) 、 ポリ N, N—ジ置換アクリルアミ ド誘導体 (例えばポリ N—メチルー N—ェチ ルアクリルアミ ド等) 、 あるいはこれらの共重合体などの水溶性高分子の水溶液 や、 アルコール等を溶媒とした高分子溶液等が例示できるが、 太陽光を充分に遮 光するという点では、 疎水一親水バランスがよいヒドロキシプロピル基をもつ水 溶性高分子が好適であり、 構造的に安定性のあるセルロースを主鎖にもつヒドロ キシプロピルセルロースが、 耐候性や安定性に優れ、 比較的に安価であるため好 適である。 Examples of such thermopick materials include nonionic surfactants exhibiting a cloud point phenomenon and isotropic aqueous solutions of nonionic water-soluble polymers. Specifically, polyvinyl alcohol partial acetal, polyvinyl alcohol partial acetate, polyvinyl methyl ether, methyl cellulose, polyethylene oxide, polypropylene oxide, a copolymer of ethylene oxide and propylene oxide, and a hydroxypropyl group Polysaccharide derivatives (eg, hydroxypropylcellulose, etc.), polyvinylmethyloxazolidinone, polyN-substituted acrylamide derivatives (eg, polyN-isopropylacrylamide, polyN-ethoxyxylacrylamide, etc.) ), An aqueous solution of a water-soluble polymer such as a poly N, N-disubstituted acrylamide derivative (eg, poly N-methyl-N-ethyl acrylamide, etc.), or a copolymer thereof. And a polymer solution using alcohol or the like as a solvent.A water-soluble polymer having a hydroxypropyl group having a good hydrophobic-hydrophilic balance is preferable from the viewpoint of sufficiently shielding sunlight. Hydroxypropylcellulose, which has primarily stable cellulose in the main chain, is preferable because it has excellent weather resistance and stability and is relatively inexpensive.
一方、 ヒドロキシプロピルセルロースの水溶液等を単体で使用すると、 状態変 化して白濁した時に相分離を起こす場合がある。 しかしながらこれに、 親水部と 疎水部を併せ持つ非ィォン性の界面活性剤等の両親媒性分子を添加することで相 分離を抑制することができ、 このような両親媒性分子を更に添加することも本発 明の範疇であり好ましい。 このような両親媒性分子は、 オリゴマー領域の約 3 0 0 0以下の分子量、 より好ましくは約 1 0 0 0以下の分子量のものが使用しやす く、 イオン性基は親水性基が非常に大きいので、 バランスをとるため、 疎水基は 高級アルキル基がよい。 具体例としては、 ポリオキシプロピレン 2—ェチルー 2 ーヒドロキシメチルー 1, 3—プロパンジオール (ポリオキシプロピレントリメ チロールプロパンエーテル) やポリプロピレングリコール、 ジエチレングリコー ルモノブチルエーテル、 ポリオキシプロピレングリセリン、 ラウリノレ硫酸ナトリ ゥム等が例示でき、 その他にも同様の作用を有する物質であれば使用することが できる。  On the other hand, when an aqueous solution of hydroxypropylcellulose or the like is used alone, phase change may occur when the state changes to cloudy. However, phase separation can be suppressed by adding an amphipathic molecule such as a nonionic surfactant having both a hydrophilic part and a hydrophobic part to this, and such an amphipathic molecule can be further added. Are also within the scope of the present invention and are preferred. As such an amphipathic molecule, those having a molecular weight of about 300 or less, more preferably about 1000 or less in the oligomer region are easily used, and the ionic group has a very hydrophilic group. As it is large, the higher alkyl group is better for the hydrophobic group to balance. Specific examples include polyoxypropylene 2-ethyl-2-hydroxymethyl-1,3-propanediol (polyoxypropylene trimethylolpropane ether), polypropylene glycol, diethylene glycol monobutyl ether, polyoxypropylene glycerin, sodium laurinolate sulfate. Etc., and any other substance having the same action can be used.
また、 上記サーモト口ピック材料が状態変化する温度を制御するため、 塩化ナ トリウム等の電解質を添加することも本発明の範疇である。 これにより、 状態変 化する温度を低温側にシフトさせることができる。  The addition of an electrolyte such as sodium chloride to control the temperature at which the thermopick material changes state is also within the scope of the present invention. Thereby, the temperature at which the state changes can be shifted to a lower temperature side.
上記サーモトロピック材料の構成物質およびその配合比は、 状態変化温度等の 要求特性を考慮し、 予備検討して決定すればよい。 これらの材料を封入した調光 ガラスの光学特性を J I S R 3 1 0 6に従って評価すると、 使用する基体 2、 3の種類およびサ一モト口ピック材料の存在する層の厚さによって異なるが、 層 厚が 3 0 0〃m〜 1 mm程度のもので、 透光状態においておおよそ 7 0 %以上で あった日射透過率が、 遮光状態においてはおおよそ 4 0 %以下にまで減少し、 太 陽光の日射エネルギーの流人量を調節できることが明らかとなっている。  The constituent substances of the thermotropic material and the compounding ratio thereof may be determined by preliminary examination in consideration of required characteristics such as a state change temperature. When the optical properties of the light control glass in which these materials are encapsulated are evaluated in accordance with JISR 3106, the thickness differs depending on the type of the bases 2 and 3 used and the thickness of the layer in which the thermopick material is present. Is about 300 μm to 1 mm, and the solar transmittance from about 70% or more in the light-transmitting state is reduced to about 40% or less in the light-shielded state. It has become clear that the amount of flow can be adjusted.
また、 これらの水溶性高分子の一部を架橋し、 水等の溶媒に膨潤させたゲルを サーモト口ピック材料として用いても良い。 例えば、 米国特許 5 3 7 7 0 4 2号 に記載されているような、 前述の高分子溶液を一部架橋したゲル、 例えばヒドロ キシェチルメタクリレートーヒドロキシェチルァクリレート共重合体の部分架橋 物と水からなるゲル状のサーモト口ピック材料は好ましい例の一つである。 但し 、 温度変化により白濁状態と透明状態とに状態変化する液状あるいは湿潤なゲル 状のサ一モトロピック材料であれば、 前記以外の種々の材料を使用してもかまわ ない。 Also, a gel obtained by crosslinking a part of these water-soluble polymers and swelling in a solvent such as water is used. It may be used as a material for a thermotoque pick. For example, as described in US Pat. No. 5,377,042, a gel obtained by partially cross-linking the above-mentioned polymer solution, for example, a portion of a hydroxyethyl methacrylate-hydroxyethyl acrylate copolymer A gel thermopick material comprising a crosslinked product and water is one of preferred examples. However, various materials other than those described above may be used as long as they are liquid or wet gel-like thermotropic materials that change between a cloudy state and a transparent state due to a temperature change.
また、 機能性材料 5として、 液状あるいは湿潤なゲル状の材料であれば、 光の 変化に応じて光透過率が変化するフォトク口ミツク材料や、 電圧変化に応じて光 透過率が変化するェレクト口クロミック材料などの様々な調光材料を用いること が可能である。  In addition, if the functional material 5 is a liquid or wet gel-like material, a photomixer material whose light transmittance changes according to a change in light, or an electrifying material whose light transmittance changes according to a voltage change Various light modulating materials such as mouth chromic materials can be used.
さらに、 機能性材料 5として、 光透過率が変化するもの以外の機能を有する材 料を積層することも可能である。 例えば、 α—ゲル等の衝撃吸収ゲルを機能材料 4として積層すれば、 機能性材料積層体 1を遮音ガラスとして用いることが可能 となる。  Further, as the functional material 5, a material having a function other than the material whose light transmittance changes can be laminated. For example, if a shock absorbing gel such as α-gel is laminated as the functional material 4, the functional material laminate 1 can be used as a sound insulating glass.
さらに、 機能性材料 5としては前記の高分子溶液あるいはゲル以外にも、 水な どの溶媒を含んだ液体や、 これらの液体を吸収しているゲルや固体を使用するこ とができる。  Further, as the functional material 5, in addition to the above-described polymer solution or gel, a liquid containing a solvent such as water, a gel or a solid absorbing these liquids can be used.
次に、 シーリング材 4について説明する。  Next, the sealing material 4 will be described.
シ一リング材 4としては、 一般的な高分子系の接着剤 · シ一リング材で可塑性 を有する固体ならばすベてのものが使用できるが、 ①接着力と耐候性の優れたェ ポキシ系、 ァクリル系、 塩ビ系、 シァノアクリレート系の接着剤、 シリコ一ン系 、 変性シリコーン系のシ一リング材や、 ②複層ガラスのシーリング材であるプチ ルゴム系、 ポリィソブチレン系、 ポリサルファィド系のシーリング材、 あるいは ③透明なァクリルゴム系、 シリコーンゴム系のゴム材料が好ましい。 ここで可塑 性の固体とは、 粘土やゼラチンのように、 少量の場合には自重で変形したりせず に形状を保持するが、 加圧により任意の形状に変形でき、 圧力を開放してももと の形状に戻らないものを示している。 高粘度の液体でもかまわない。 物性で規定 するのは困難であるカ^ あえて言えば、 粘度 2 0 0ボイズ以上、 好ましくは 5 0 0ボイズ以上の高粘調液体、 あるいは可塑性のゲル、 あるいは可塑性のゴムとい える。 また、 加熱や高周波加熱、 U V照射、 超音波、 E B (電子線) 照射、 ある いは室温放置や湿分により自然硬化するシーリング材の使用が好ましい。 As the sealing material 4, any general polymer adhesive or any sealing material that is plastic and solid can be used. (1) Epoxy resin with excellent adhesive strength and weather resistance , Acryl-based, PVC-based, cyanoacrylate-based adhesives, silicone-based, modified silicone-based sealing materials, and (2) butyl rubber-based, polyisobutylene-based, and polysulfide-based sealing materials for double-layer glass sealing materials Or ③ Transparent acryl rubber or silicone rubber rubber material is preferred. Here, a plastic solid, such as clay or gelatin, retains its shape without being deformed by its own weight in a small amount, but can be deformed into an arbitrary shape by applying pressure and release the pressure. It shows the one that does not return to its original shape. High viscosity liquids may be used. It is difficult to specify by physical properties. It is called a highly viscous liquid with a size of 0 or more, or a plastic gel, or a plastic rubber. In addition, it is preferable to use a sealing material which is heated or high-frequency heated, irradiated with UV, irradiated with ultrasonic waves, irradiated with EB (electron beam), or left at room temperature or cured naturally by moisture.
また、 シ一リング材 4に代えて、 ガス透過性及び透湿性の低い②に示したよう な材料からなるシーリング材と、 基体 2、 3に対する接着力に優れた①に示した ような材料からなるシ一リング材との少なくとも 2種類のシーリング材を基体 2 、 3の周縁部間に内外に並列状に配置してもよい。 この場合には、 機能性材料 5 をシールするためのシーリング材の素材に対する制約が少なくなり、 水分の蒸発 による機能性材料 5の組成の変動を一層効果的に防止でき、 耐久性に優れた外観 良好な機能性材料積層体を得ることができる。 従って、 このようなシール方法も 好ましく、 本発明の範疇である。  Further, instead of the sealing material 4, a sealing material made of a material having low gas permeability and low moisture permeability as shown in ②, and a material shown in ① having excellent adhesion to the bases 2 and 3 ① At least two types of sealing materials may be arranged in parallel between the peripheral portions of the bases 2 and 3 inside and outside. In this case, the restriction on the material of the sealing material for sealing the functional material 5 is reduced, and the fluctuation of the composition of the functional material 5 due to evaporation of moisture can be more effectively prevented, so that the appearance has excellent durability. A good functional material laminate can be obtained. Therefore, such a sealing method is also preferable and is within the scope of the present invention.
特に、 分子中に 1個以上の架橋しうる反応基を含有する分子量 5 0 0〜3 0万 の飽和炭化水素系重合体を必須成分とし、 基体 2、 3への接着性及び水蒸気遮断 性に優れ、 耐候性が十分あり、 強度が実用に耐えるもので、 溶媒の透過率が小さ いものが好適である。 例えば、 変性シリコーン系シーリング材は、 ガラスに対す る接着性と水蒸気遮断性に優れているため好適である。  In particular, a saturated hydrocarbon polymer having a molecular weight of 500,000 to 300,000 containing at least one crosslinkable reactive group in the molecule is an essential component, and has an adhesive property to substrates 2 and 3 and a water vapor barrier property. Those which are excellent, have sufficient weather resistance, have sufficient strength for practical use, and have low solvent permeability are preferable. For example, a modified silicone-based sealing material is preferable because it has excellent adhesion to glass and water vapor barrier properties.
架橋しうる反応基としては、 アルケニル基、 アルキニル基、 アクリル基、 メタ クリル基、 ビニル基、 ァリル基などの不飽和結合を有する官能基等あらゆる反応 基が考えられるが、 架橋後に極性を有する結合、 例えばエーテル結合、 エステル 結合、 ウレタン結合、 アミ ド結合、 イミ ド結合等を形成する反応基、 例えばェポ キシ基、 水酸基、 アミノ基、 イソシァネート基、 カルボキシル基、 酸無水基、 尿 素基、 スルホニル基、 クロ口カルボニル基などの酸ハロゲン化物基、 反応性ゲイ 素基等が、 ガラス板等の基体 2、 3との接着性が向上するので好ましい。  The reactive group capable of crosslinking may be any reactive group such as an alkenyl group, an alkynyl group, an acrylic group, a methacryl group, a vinyl group, an aryl group, or another functional group having an unsaturated bond. For example, a reactive group forming an ether bond, an ester bond, a urethane bond, an amide bond, an imido bond, etc., for example, an epoxy group, a hydroxyl group, an amino group, an isocyanate group, a carboxyl group, an acid anhydride group, a urine group, An acid halide group such as a sulfonyl group and a carbonyl group, and a reactive gay group are preferable because the adhesion to substrates 2 and 3 such as a glass plate is improved.
これらの反応基の中でも、 0 °C以上 1 0 0 °C以下の加熱あるいは室温放置や、 高周波加熱、 光照射、 電子線照射等の比較的低温の条件で反応する反応基は、 シ —リング材 4の硬化工程を穏やかな条件で行えるので、 加熱による機能性材料 5 の熱劣化もなく、 また寸法精度に優れる機能性材料積層体 1が得られるので好適 あ 。  Among these reactive groups, those that react under relatively low temperature conditions such as heating at 0 ° C or more and 100 ° C or less or standing at room temperature, high-frequency heating, light irradiation, electron beam irradiation, etc. Since the curing process of the material 4 can be performed under mild conditions, the functional material 5 is not thermally degraded by heating, and the functional material laminate 1 having excellent dimensional accuracy can be obtained.
これらの反応基を飽和炭化水素系重合体中に導入する方法としては、 公知の方 法が使用できる。 As a method for introducing these reactive groups into a saturated hydrocarbon polymer, a known method is used. Law can be used.
これらの架橋しうる反応基が反応して飽和炭化水素系重合体が架橋する様式と しては、 ( 1 ) 飽和炭化水素系重合体に含有される反応基同士が反応して架橋し てもよいし、 (2 ) 飽和炭化水素系重合体と、 これに含有される反応基と反応で きる官能基を含有する硬化剤を混合し、 この硬化剤を介して飽和炭化水素系重合 体を架橋してもかまわない。  The manner in which the crosslinkable reactive groups react to crosslink the saturated hydrocarbon-based polymer is as follows: (1) Even if the reactive groups contained in the saturated hydrocarbon-based polymer react and crosslink with each other, Or (2) a saturated hydrocarbon-based polymer and a curing agent containing a functional group capable of reacting with a reactive group contained therein are mixed, and the saturated hydrocarbon-based polymer is crosslinked via the curing agent. It does not matter.
特に、 特開平 8— 9 1 8 8 0号公報に記載されているような、 下記の化学式 1 で表される反応性ゲイ素基を含有するシ一リング材を用いた場合には、 架橋型の 飽和炭化水素系架橋後に極性を有しかつ架橋点の耐加水分解性がよいのでシーリ ング材 4の耐候性が良好になるため、 好ましい。  In particular, when a sealing material containing a reactive gayne group represented by the following chemical formula 1 is used, as described in JP-A-8-91880, This is preferable since the material has polarity after the saturated hydrocarbon-based crosslinking and has good hydrolysis resistance at the crosslinking point, so that the weather resistance of the sealing material 4 is improved.
(化学式 1 )
Figure imgf000021_0001
(Chemical formula 1)
Figure imgf000021_0001
但し、 ィ匕学式 1において、 R 1および R 2はいずれも炭素数 1〜2 0のアルキ ル基、 炭素数 6〜 2 0のァリール基、 炭素数?〜 2 0のァラルキル基または (R ') 3 S i 0 - (R' は炭素数 1 ~ 2 0の 1価の炭化水素基であり、 3個の R ' は同じであってもよく、 異なっていてもよい) で示されるトリオルガノシロキサ ン基であり、 R 1または R 2が 2個以上存在するとき、 それらは同じであっても よく、 異なっていてもよい、 Xは水酸基または加水分解性基であり、 2個以上存 在するとき、 それらは同じであってもよく、 異なっていてもよい、 aは 0、 1、 2または 3、 bは 0、 1または 2、 ただし a +m b≥ l、 また各反応基における bは同じである必要はない、 mは 0または 1 ~ 1 9の整数である。  However, in Formula 1, R 1 and R 2 are both an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and a carbon number? ~ 20 aralkyl groups or (R ') 3Si0- (R' is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and the three R's may be the same or different And when two or more R 1 or R 2 are present, they may be the same or different, and X is a hydroxyl group or a hydroxyl group. Are decomposable groups, and when two or more are present, they may be the same or different; a is 0, 1, 2 or 3, b is 0, 1 or 2, provided that a + mb≥l, and b in each reactive group does not need to be the same, m is 0 or an integer of 1 to 19.
ここで反応性ゲイ素基の導入形態としては、 ( 1 ) 主鎖を構成する飽和炭化水 素系重合体が反応性ゲイ素基を含有する飽和炭化水素系重合体であってもかまわ ないし、 ( 2 ) 主鎖を構成する飽和炭化水素系重合体が反応性ゲイ素基と反応す ることができる官能基を含有する飽和炭化水素系重合体であって、 これに反応性 ケィ素基を含有する硬化剤を混合してもかまわない。  Here, the introduction form of the reactive gay group may be (1) the saturated hydrocarbon polymer constituting the main chain may be a saturated hydrocarbon polymer containing a reactive gay group, (2) A saturated hydrocarbon polymer having a functional group capable of reacting with a reactive hydrocarbon group, wherein the saturated hydrocarbon polymer constituting the main chain is a reactive hydrocarbon group. The contained curing agent may be mixed.
シーリング材 4として、 特開平 8 - 1 9 8 6 4 4号公報に開示された、 少なく とも (A) 分子中に少なくとも 1個のアルケニル基を有する分子量 5 0 0〜 3 0 万の飽和炭化水素系重合体、 (B ) 分子中に少なくとも 2個のヒドロシリル基を 有する硬化剤、 (C ) ヒドロシリル化触媒、 および (D) 接着性付与剤を含有す るシーリング材は、 速硬化性を有するためシーリング材の硬ィヒ時間を短縮するこ とができ、 その結果機能性材料積層体 1の生産効率を向上することができるため 特に好ましい。 As the sealing material 4, as disclosed in Japanese Patent Application Laid-Open No. (A) a saturated hydrocarbon polymer having a molecular weight of 500 to 300,000 having at least one alkenyl group in the molecule, (B) a curing agent having at least two hydrosilyl groups in the molecule, (C ) The sealing material containing the hydrosilylation catalyst and (D) the adhesion-imparting agent has a fast curing property, so that the hardening time of the sealing material can be shortened. It is particularly preferable because the production efficiency of the can be improved.
また、 シーリング材 4として、 特開平 8— 2 3 1 7 5 8号公報に開示された、 少なくとも (A) 分子中に反応性ゲイ素基を含有する分子量 5 0 0〜3 0万の飽 和炭化水素系重合体と、 (B ) 下記の化学式 2を含有するシ一リング材は、 貯蔵 安定性に優れており、 シーリング材の原料ロスが低減できるため特に好ましい。  Further, as the sealing material 4, a saturated material having a molecular weight of 500 to 300,000 containing at least (A) a reactive gayne group in a molecule disclosed in Japanese Patent Application Laid-Open No. 8-231758 is disclosed. A hydrocarbon-based polymer and (B) a sealing material containing the following chemical formula 2 are particularly preferable because they have excellent storage stability and can reduce raw material loss of the sealing material.
(化学式 2 ) (Chemical formula 2)
R C (O R ') 3  R C (O R ') 3
但し、 化学式 2において、 Rは水素原子または置換あるいは非置換の炭化水素 基、 R 'は置換あるいは非置換の炭化水素基であり、 3個の R 'は同じであって もよいし、 異なるものであってもよい。  However, in Chemical Formula 2, R is a hydrogen atom or a substituted or unsubstituted hydrocarbon group, R 'is a substituted or unsubstituted hydrocarbon group, and the three R's may be the same or different. It may be.
主鎖を構成する飽和炭化水素系重合体は、 前述したとおり、 分子量 5 0 0 - 3 0万のものが用いられるが、 数平均分子量が 5 0 0〜1 0万程度のものが好まし く、 特に 1 0 0 0〜 4万程度の流動性を有する粘調な液体であるものが取り扱い やすさ等の点から好ましい。  As described above, the saturated hydrocarbon polymer constituting the main chain has a molecular weight of 500,000 to 300,000, and preferably has a number average molecular weight of about 500 to 100,000. In particular, a viscous liquid having a fluidity of about 1000 to 40,000 is preferred from the viewpoint of easy handling.
ここで飽和炭化水素系重合体とは、 主骨格に芳香環以外の炭素一炭素不飽和結 合を実質的に含有しな 、重合体を意味する概念であり、 主鎖を構成する繰り返し 単位が飽和炭化水素から構成されることを意味する。  Here, the saturated hydrocarbon polymer is a concept meaning a polymer in which the main skeleton does not substantially contain a carbon-carbon unsaturated bond other than the aromatic ring, and the repeating unit constituting the main chain is It means composed of saturated hydrocarbon.
主鎖を構成する飽和炭化水素系重合体は、 1 ) エチレン、 プロピレン、 1ーブ テン、 イソブチレン等の炭素数 2〜 6のォレフイン系化合物を主モノマーとして 重合させる、 2 ) ブタジエン、 イソプレン等のジェン系化合物を単独重合させた り、 あるいは上記ォレフィン系化合物とジェン系化合物を共重合させたりした後 、 水素添加するなどの方法により得ることができる。  Saturated hydrocarbon polymers constituting the main chain are: 1) polymerizing olefinic compounds having 2 to 6 carbon atoms such as ethylene, propylene, 1-butene and isobutylene as main monomers; 2) butadiene and isoprene It can be obtained by homopolymerizing a gen-based compound, or copolymerizing the above-mentioned olefinic compound and a gen-based compound, and then hydrogenating.
これらの方法により得られる重合体のうち、 末端に官能基を導入しやすい、 末 端官能基の数を多く導入することができる等の点から、 イソブチレン系重合体や 水添ポリブタジェン系重合体または水添ポリィソプレン系重合体が望ましい。 上記ィソプチレン系重合体は、 ホモポリマ一でもコポリマ一でもかまわないが 、 液体 4が水系の液体あるいは湿潤なゲルである場合には、 イソプチレン単位が ポリマー中に 5 0 % (重量%、 以下同様) 以上が好ましく、 7 0 %以上がさらに 好ましく、 9 0 %以上が最も好ましい。 Of the polymers obtained by these methods, it is easy to introduce a functional group into the terminal. From the viewpoint that a large number of terminal functional groups can be introduced, an isobutylene-based polymer, a hydrogenated polybutadiene-based polymer, or a hydrogenated polyisoprene-based polymer is preferable. The above isoprene-based polymer may be a homopolymer or a copolymer, but when the liquid 4 is an aqueous liquid or a wet gel, the isobutylene unit is 50% (% by weight, hereinafter the same) or more in the polymer. Is preferable, 70% or more is more preferable, and 90% or more is most preferable.
また、 前記水添ポリブタジェン系重合体や他の炭化水素系重合体においても、 上記ィソブチレン系重合体の場合と同様に、 主成分となる単量体単位の他にその 共重合性単量体単位を含有させてもよい。  Further, in the hydrogenated polybutadiene-based polymer and other hydrocarbon-based polymers, similarly to the case of the above-mentioned isobutylene-based polymer, in addition to the main monomer unit, the copolymerizable monomer unit may be used. May be contained.
これらのシ一リング材 4には、 前記の成分の他に必要に応じて各種添加剤が添 加される。 このような添加剤の例としては、 例えば、 硬化促進剤、 可塑剤、 充塡 剤、 接着性向上剤、 劣化防止剤、 ラジカル禁止剤、 紫外線吸収剤、 光安定剤、 リ ン系過酸化物分解剤、 滑剤、 顔料、 発泡剤などがあげられる。  Various additives are added to these sealing materials 4 as required in addition to the above components. Examples of such additives include, for example, curing accelerators, plasticizers, fillers, adhesion improvers, deterioration inhibitors, radical inhibitors, ultraviolet absorbers, light stabilizers, phosphorous peroxides Examples include decomposers, lubricants, pigments, and foaming agents.
次に、 スぺ一サ 6と係止フィルム 7について説明する。  Next, the spacer 6 and the locking film 7 will be described.
係止フィルム 7の使用目的が、 スぺ一サ 6の沈降を防止するのみであれば、 機 能性材料 5の存在する層との位置関係は特に限定されない。 しかしながら、 係止 フィルム 7に紫外線遮蔽機能や紫外線吸収機能を有するものを使用する場合にお いては、 シーリング材 4及び機能性材料 5の紫外線による光劣化を防止すべく、 係止フイルム 7は、 機能性材料 5の存在する層よりも室外側に配置される基体に ラミネートする必要がある。 但し、 係止フィルム 7の剥離を防止するため、 シ一 リング材 4を設ける部分には係止フイノレム 7を形成しないように構成してもよい また、 係止フィルム 7は、 スぺーサ 6よりも軟質の材料からなるものを選択す る必要があることを付記しておく。 それは、 スぺーサ 6を保持する際にスぺ一サ 6が係止フィルム 7にめり込む状態と成ることが必須要件となるからである。 ま た、 建材としての耐久性や工業的入手の容易さ、 価格等を考慮する必要がある。 ポリエチレン、 セロファン、 ポリプロピレン、 ポリエステル、 ポリカーボネート 、 ナイロン、 ポリ塩化ビニル、 ポリエチレンテレフタレート等のフィルムを採用 できるが、 建材としての耐久性や工業的入手の容易さ、 価格等を考慮すると、 ポ リエステルやポリエチレンテレフ夕レート (P E T) を主たる構成成分としてな るものを使用するのが好ましい。 As long as the purpose of using the locking film 7 is only to prevent the sinker 6 from settling, the positional relationship with the layer in which the functional material 5 exists is not particularly limited. However, when a film having an ultraviolet shielding function or an ultraviolet absorbing function is used as the locking film 7, the locking film 7 is provided with a film 7 to prevent light deterioration of the sealing material 4 and the functional material 5 due to ultraviolet light. It is necessary to laminate on a substrate disposed on the outdoor side of the layer where the functional material 5 is present. However, in order to prevent the locking film 7 from peeling off, the locking finolem 7 may not be formed at the portion where the sealing material 4 is provided. It should be noted that it is necessary to select a material made of a soft material. The reason is that when the spacer 6 is held, it is an essential requirement that the spacer 6 be cut into the locking film 7. In addition, it is necessary to consider the durability, ease of industrial availability, and price as building materials. Films of polyethylene, cellophane, polypropylene, polyester, polycarbonate, nylon, polyvinyl chloride, polyethylene terephthalate, etc. can be used, but considering the durability as building materials, the ease of industrial availability, the price, etc. It is preferable to use one that mainly comprises polyester or polyethylene terephthalate (PET).
更に、 係止フイルム 7として、 紫外線遮蔽機能や紫外線吸収機能を有するもの を使用することも可能である。 この場合には、 シーリング材 4及び機能性材料 5 の紫外線による光劣化を防止すベく、 機能性材料 5の存在する層よりも室外側の 基体に係止フィルム 7をラミネートすることが好ましい。 また、 このような係止 フィルム 7としては、 それ自身が、 紫外線遮蔽機能や紫外線吸収機能を有するも のを使用しても構わないし、 酸化亜鉛や酸化チタン等の微粒子をフィルム内に分 散させたものや塗布したもの等を使用しても構わない。 要求特性や価格等を考慮 して、 適宜選択すれば良い。  Further, as the locking film 7, a film having an ultraviolet shielding function or an ultraviolet absorbing function can be used. In this case, it is preferable that the locking film 7 is laminated on a substrate outside the layer where the functional material 5 is present, in order to prevent the deterioration of the sealing material 4 and the functional material 5 due to ultraviolet rays. Further, as such a locking film 7, a film having an ultraviolet shielding function or an ultraviolet absorbing function may be used, and fine particles such as zinc oxide and titanium oxide may be dispersed in the film. It is also possible to use a coated or coated material. An appropriate selection may be made in consideration of required characteristics and price.
次に、 基体 2、 3間の間隔を一様に設定するための他の実施例について説明す る。 但し、 前記実施例と同一部材には同一符号を付してその詳細な説明を省略す る。  Next, another embodiment for uniformly setting the interval between the substrates 2 and 3 will be described. However, the same members as those of the above-described embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
図 2に示す機能性材料積層体 1 Aのように、 シ一リング材 4の中央部にスぺー サ 8を埋設状に設け、 係止フィルム 7に代えてスぺーサ 6にシーリング材 4と同 じ組成からなる可塑性を示す外装材 9を被覆してもよい。 この場合には、 外装材 9が基体 2、 3に密着することで、 スぺーサ 6の浮沈が規制され、 機能性材料 5 の所定位置に固定されることになる。  As in the functional material laminate 1 A shown in FIG. 2, a spacer 8 is provided in the center of the sealing material 4 so as to be embedded, and the sealing material 4 is attached to the spacer 6 instead of the locking film 7. An exterior material 9 having the same composition and exhibiting plasticity may be covered. In this case, when the exterior material 9 comes into close contact with the bases 2 and 3, the floating and sinking of the spacer 6 is regulated, and the spacer 6 is fixed to a predetermined position of the functional material 5.
尚、 スぺーサ 6と機能性材料 5の比重を略同じに設定する場合には、 スぺ一サ 6の浮沈が防止されるので、 係止フィルム 7や外装材 9は省略してもよい。 例え ば、 H P C (ヒドロキシプロピルセルロース) 3 0重量%と水からなる調光ゲル (比重約 1 . 2、 粘度約 2 0 0ボイズ) に比重約 1 . 2の塩化ビニル製の球状ス ぺーサを用いる場合には、 係止フィルム 7や外装材 9は省略してもよい。 また、 スぺーサ 6、 8は基体 2、 3の少なくとも一方に接着剤等で固定してもよい。 更 に、 基体 2、 3のサイズが比較的小さい場合や基体 2、 3の強度、 剛性が高い場 合には、 スぺ一サ 8又はスぺーサ 6、 8は省略してもよい。  When the specific gravity of the spacer 6 and that of the functional material 5 are set to be substantially the same, the floating and sinking of the spacer 6 is prevented, so that the locking film 7 and the exterior material 9 may be omitted. . For example, a photochromic gel composed of 30% by weight of HPC (hydroxypropylcellulose) and water (specific gravity of about 1.2, viscosity of about 200 Voids) is added with a spherical sensor made of vinyl chloride having a specific gravity of about 1.2. When used, the locking film 7 and the exterior material 9 may be omitted. The spacers 6 and 8 may be fixed to at least one of the bases 2 and 3 with an adhesive or the like. Further, when the size of the bases 2 and 3 is relatively small or when the strength and rigidity of the bases 2 and 3 are high, the spacer 8 or the spacers 6 and 8 may be omitted.
スぺーサ 6、 8は、 基体 2、 3間の隙間 Tを機能性材料積層体し 1 Aの全域 の亙って一様に設定するためのもので、 スぺ一サ 6、 8の直径 Dは隙間丁よりも 小さく設定され、 スぺーサ 6、 8により隙間 Tの下限値が直径 Dに規制されるよ うに構成されている。 つまり、 基体 2、 3に対して外力が作用して、 隙間 Tが局 部的に小さくなつても、 隙間 Tが直径 Dと同じになるまでは、 スぺーサ 6、 8力く 両基体 2、 3に同時に接することはないので、 スぺーサ 6、 8に対応する位置に おいて基体 2、 3に応力集中が発生することはない。 し力、も、 機能性材料積層体 1においては係止フィルム 7で、 また機能性材料積層体 1 Aにおいてはシーリン グ材 4及び外装材 9で外力がある程度吸収されるので、 外力に対する基体 2、 3 の強度を高めることが可能となる。 The spacers 6 and 8 are used to set the gap T between the bases 2 and 3 to a uniform layer over the entire area of 1 A by stacking the functional material, and the diameter of the spacers 6 and 8 D is set smaller than the gap, and the lower limit of the gap T is regulated by the diameter D by spacers 6 and 8. It is configured as follows. In other words, even if an external force acts on the bases 2 and 3 and the gap T is locally reduced, the spacers 6 and 8 are applied until the gap T becomes the same as the diameter D. Since there is no contact with the bases 2 and 3 at the same time, no stress concentration occurs on the bases 2 and 3 at the positions corresponding to the spacers 6 and 8. Since the external force is absorbed to some extent by the locking film 7 in the functional material laminate 1 and by the sealing material 4 and the exterior material 9 in the functional material laminate 1A, the base material 2 against the external force is removed. , 3 can be increased in strength.
スぺ一サ 6、 8は、 隙間 Tの下限値を規制可能で且つ機能性材料に腐食されな いものものであれば、 プラスチックや金属などの種々の材料を使用できる。 スぺ —サ 6、 8の形状は、 球などの粒状、 針金状、 板状等が考えられる。 不透明でも 構わないが、 機能性材料 5が透明な場合にはスぺーサ 6、 8も透明に構成するこ とが好ましい。 さらに、 スぺーサ 6、 8の屈折率が機能性材料 5に近ければスぺ ーサ 6、 8が目立たないため最も好適なものとなる。 このようなスぺーサ 6、 8 としては、 ガラスビーズや樹脂ビーズを例示できる。 また、 機能性材料 5として 温度変化等により白濁するものを用いる場合には、 目立たないようにスぺーサ 6 、 8を白色に構成してもよい。  As the spacers 6 and 8, various materials such as plastics and metals can be used as long as the lower limit of the gap T can be regulated and is not corroded by the functional material. The shapes of the spacers 6 and 8 can be in the form of particles such as spheres, wires, or plates. It may be opaque, but if the functional material 5 is transparent, it is preferable that the spacers 6 and 8 are also transparent. Further, if the spacers 6 and 8 have a refractive index close to that of the functional material 5, the spacers 6 and 8 are most inconspicuous. Examples of such spacers 6 and 8 include glass beads and resin beads. When a material that becomes cloudy due to a temperature change or the like is used as the functional material 5, the spacers 6 and 8 may be configured to be white so as not to be conspicuous.
機能性材料積層体 1 Aの具体例としては、 直径約 0 . 5 mmのステンレス製針 金からなるスぺ一サ 8をブチルゴムでコ一ティングした直径約 2 mmのシーリン グ材 4を用い、 機能性材料 5の厚みを約 0 . 8 mmとしたものや、 ②直径約 0 · 4 mmのポリスチレンビーズからなるスぺ一サ 6に、 アクリルゴムを溶液塗布し て乾燥して外装材 9を被覆して、 約 0 . 8 mmの球状に形成したものを機能性材 料 5中に混合し、 機能性材料 5の厚みを約 0 . 5 mmとしたものが好適である。 機能性材料積層体 1、 1 Aで用いたスぺーサ 6は、 機能性材料 5に予め混入さ せて基体 2、 3間に充塡してもよいし、 基体 2、 3面上に散布したり、 規則的に 配置してもよい。 また、 基体 2、 3の反りを防止するという観点からは、 スぺ一 サ 6、 8が面内で 1 0 c m以下、 好ましくは 5 c m以下の間隔で配置されている ことが望ましい。  As a specific example of the functional material laminate 1A, a sealing material 4 having a diameter of about 2 mm obtained by coating a stainless steel wire 8 having a diameter of about 0.5 mm with butyl rubber is used. Acrylic rubber is applied to a functional material 5 with a thickness of about 0.8 mm, or (2) a spacer 6 made of polystyrene beads having a diameter of about 0.4 mm, and dried to form an exterior material 9. It is preferable that the material which is coated and formed into a spherical shape of about 0.8 mm is mixed with the functional material 5 so that the functional material 5 has a thickness of about 0.5 mm. The spacer 6 used in the functional material laminates 1 and 1 A may be mixed into the functional material 5 in advance and filled between the bases 2 and 3, or may be sprayed on the bases 2 and 3 And may be arranged regularly. Further, from the viewpoint of preventing warpage of the bases 2 and 3, it is desirable that the spacers 6 and 8 are arranged at an interval of 10 cm or less, preferably 5 cm or less in the plane.
次に、 機能性材料積層体 1を調光ガラスとして使用する場合の具体的な一例に ついて説明する。 Next, a specific example when the functional material laminate 1 is used as a light control glass will be described. explain about.
機能性材料として、 ヒ ドロキシプロピルセルロース (日本曹達 (株) 製 H P C - L ) :ポリオキシプロピレントリメチロールプロパンエーテル (三洋化成工業 (株) 製サンニックストリオ一ル T一 P 4 0 0 ) : 3 %塩化ナトリウム水溶液 5 : 1 : 9の重量比で混合したサ一モトロピック材料を、 基体 2、 3として、 J I S規格品フロート板ガラスの 3 mm厚のものを、 係止フィルムとして、 ポリエ チレンテレフタレート製の 5 0〃mのものを、 スぺ一サとして、 ガラスビーズス ぺ一サ ( (株) ユニオン製ュニビーズ S P L— 5 0 0、 粒径 5 0 0 m) をそれ ぞれ使用した。  Hydroxypropylcellulose (HPC-L, manufactured by Nippon Soda Co., Ltd.): Polyoxypropylene trimethylolpropane ether (Sannic Triol T-P400 manufactured by Sanyo Chemical Industries, Ltd.): A 3% sodium chloride aqueous solution mixed at a weight ratio of 5: 1: 9 is used as the thermotropic material. The bases 2 and 3 are made of JIS standard float plate glass with a thickness of 3 mm. The locking film is made of polyethylene terephthalate. Glass beads spacers (UNI-BEADS SPL-500, particle size: 500 m, manufactured by Union Co., Ltd.) were used as the spacers.
また、 機能性材料の存在する層は、 可塑性の樹脂を介して機能性材料を封入し た後、 さらにその外側を感光性の接着剤で接着し、 シールした。  The layer in which the functional material is present was sealed with a photosensitive adhesive after encapsulating the functional material via a plastic resin.
このような構成の機能性材料を封入した機能性材料積層体は、 ガラス間に封入 したサ一モトロピック機能を有する機能性材料の効果により、 通常の条件におい て、 機能性ガラスは透明で透光状態となっており、 通常のガラスと同程度の視界 及び開放感が確保されている。 気温が高温になったり、 強い日射により、 機能性 材料の温度がおおよそ 3 6 °Cを越えると、 機能性材料は徐々に白濁し、 3 8 °Cで ほぼ完全に白濁し、 遮光状態となり、 室内側への日射エネルギーの流入を抑制す ることができる。 また、 気温が低下したり、 日射が弱くなることにより、 機能性 材料の温度がおおよそ 3 6 °Cを下回ると、 再び透光状態となり、 日射エネルギー を取得できるようになるとともに、 充分な視界および開放感を得ることができる 加えて、 窓等の建築材料として鉛直面に本発明の機能性材料積層体 1、 1 Aを 使用する場合、 スぺ一サによる機能性材料の層厚の維持効果、 および、 係止フィ ルムによるスぺーザの保持効果により、 サーモトロピック機能を有する機能性材 料の層厚を長期間一定に保つことが可能となり、 特に白濁時においては、 層厚の 厚み差によるムラの発生がなく、 優れた外観を維持できる。  Under the normal conditions, the functional glass laminated with the functional material laminated with the functional material having such a structure is transparent and translucent under normal conditions due to the effect of the functional material having thermotropic function enclosed between the glasses. It is in a state where visibility and openness comparable to ordinary glass are secured. When the temperature of the functional material exceeds approximately 36 ° C due to a high temperature or strong sunlight, the functional material gradually becomes cloudy, becomes almost completely cloudy at 38 ° C, and becomes light-shielded, It is possible to suppress the inflow of solar radiation energy into the indoor side. In addition, when the temperature of the functional material falls below approximately 36 ° C due to a decrease in temperature or a decrease in solar radiation, the material returns to a light-transmitting state again, so that solar energy can be obtained and sufficient visibility and light can be obtained. A feeling of openness can be obtained. In addition, when the functional material laminates 1 and 1A of the present invention are used in a vertical plane as a building material for windows and the like, the effect of maintaining the functional material layer thickness by the spacer is achieved. , And the retaining effect of the spacer by the locking film makes it possible to keep the layer thickness of the functional material having a thermotropic function constant for a long period of time. No unevenness is caused by this, and an excellent appearance can be maintained.
次に、 機能性材料積層体 1を用いた調光ガラスにおいて、 基体の少なくとも 1 枚を低放射ガラスで構成する場合について説明する。 尚、 前記実施例と同一部材 には、 同一符号を付してその詳細な説明を省略する。 また、 前記実施例では、 2 枚の基体を異なる符号 2、 3で示したが、 ここでは符号 2で示すものとする。 更 に、 機能性材料積層体 1 Aに関しても、 以下説明する実施例を同様に適用できる 低放射ガラスとは、 太陽光の照り返しや室内暖房による輻射熱、 概ね 2 0 0 0 n m以上の遠赤外線領域の波長をもつエネルギーを反射する機能を有するもので める。 Next, a case where at least one of the substrates in the light control glass using the functional material laminate 1 is made of low-emission glass will be described. The same members as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. In the above embodiment, Although the two substrates are indicated by different reference numerals 2 and 3, here, they are indicated by reference numeral 2. Further, the embodiment described below can be applied to the functional material laminate 1A in a similar manner. Low-radiation glass refers to radiant heat due to reflection of sunlight or indoor heating, and a far-infrared region of about 200 nm or more. It has a function of reflecting energy having a wavelength of.
具体的には、 図 3に示す調光ガラス 1 0のように、 複層ガラスに使用されてい る透明な特殊金属膜 (L o w— E m i t t a n c e f i l m) などからなる低 放射膜 1 1を室内側の基体 2にコーティングした低放射ガラス 1 2 (通称 「 L 0 W— Eガラス」 ) を使用すればよい。 この低放射膜 1 1は透明であり、 日射領域 、 特に可視光領域の波長に関しては、 ほとんど透過し、 より高波長のものだけが 選択的に反射される。 従って、 視界や開放感の確保には、 何ら悪影響を及ぼさな い。 これらの低放射膜 1 1を施した低放射ガラス 1 2の使用が、 現時点において は、 その効果および工業的入手の簡便さから好ましい。 ここで、 低放射の反射機 能を有した透明な特殊金属膜としては、 A g膜と Z n O膜とからなる 5層膜等が 例示できる。 より具体的には、 旭硝子 (株) 製の商品名" サンレーヌシルバー" 、 " サンレーヌグリーン" およびセントラル硝子 (株) 製の商品名" ペアレック スヒートガード" 等の高性能 (高断熱) 複層ガラスに使用される低放射膜を使用 できる。  Specifically, as shown in Fig. 3, a low-emissivity film 11 made of a transparent special metal film (Low-E mittance film) used for double-glazing is applied to the indoor side. Low-emission glass 12 (commonly referred to as “L 0 W—E glass”) coated on the substrate 2 may be used. The low-emissivity film 11 is transparent, transmits almost all of the wavelengths in the solar radiation region, particularly in the visible light region, and selectively reflects only those having higher wavelengths. Therefore, there is no adverse effect on ensuring visibility and openness. At this time, the use of the low-emission glass 12 provided with the low-emission film 11 is preferable from the viewpoint of its effect and easy industrial availability. Here, as a transparent special metal film having a reflection function of low radiation, a five-layer film composed of an Ag film and a ZnO film can be exemplified. More specifically, high performance (high heat insulation) products such as "Sun Reine Silver" and "Sun Reine Green" manufactured by Asahi Glass Co., Ltd. and "Pairex Heat Guard" manufactured by Central Glass Co., Ltd. Low-emission films used for laminated glass can be used.
次に、 調光ガラス 1 0における機能性材料 5と低放射ガラス 1 2との位置関係 について説明する。  Next, the positional relationship between the functional material 5 and the low-emission glass 12 in the light control glass 10 will be described.
室内から室外への輻射熱の流入を抑制する目的のみであれば、 その位置関係は 特に限定されない。 しかしながら、 低放射ガラス 1 2を機能性材料 5よりも室内 側に設置した場合、 低放射ガラス 1 2により反射された室内暖房による輻射熱の 影響により、 サ一モト口ピック材料の温度が、 上昇しやすく、 あるいは、 高温で 維持されやすくなる。 即ち、 調光ガラス 1 0が必要以上に遮光状態となり、 開口 部としての視界および開放感の確保といった点で不都合が生じる。 このため、 低 放射ガラス 1 2を機能性材料 5よりも室外側に配置させ、 室内暖房により発生す る輻射熱による機能性材料 5の異常な温度上昇を抑制することが好ましい。 この調光ガラス 1 0では、 温度変化により機能性材料 5力《遮光状態と透光状態 とに切り変わり、 室内に流入する日射エネルギーが調整されるとともに、 低放射 ガラス 1 2により、 太陽光の照り返しや室内暖房による輻射熱が反射されて、 輻 射熱の室内外への出入りが抑制されことになる。 具体的には、 サーモト口ピック 材料の作用により、 3 8 0 n m〜 7 8 0 n mの可視光領域および 3 4 0 n m〜 1 8 0 0 n mの日射領域において、 自律的にそれらを遮光することができ、 その流 入量をコントロールできる。 また、 低放射機能により 2 0 0 0 n m以上波長をも つ輻射熱の室外への流入を抑制できる。 The positional relationship is not particularly limited as long as it is only for the purpose of suppressing the inflow of radiant heat from the room to the outside. However, if the low-emissivity glass 12 is installed closer to the room than the functional material 5, the temperature of the pick-up material increases due to the effect of the radiant heat from the indoor heating reflected by the low-emission glass 12. Easier to maintain at high temperatures. That is, the light control glass 10 becomes unnecessarily light-shielded, which causes inconvenience in terms of ensuring visibility and openness as the opening. For this reason, it is preferable to arrange the low-emission glass 12 outside the functional material 5 outside the functional material 5 to suppress an abnormal temperature rise of the functional material 5 due to radiant heat generated by indoor heating. In the light control glass 10, the temperature change causes the functional material 5 to switch between a light-shielding state and a light-transmitting state, and the solar radiation energy flowing into the room is adjusted. The radiant heat due to reflections and room heating is reflected, and the radiant heat entering and exiting the room is suppressed. Specifically, the action of the thermopic mouth pick material autonomously shields them in the visible light region of 380 nm to 780 nm and in the solar region of 340 nm to 180 nm. And control the inflow. In addition, the low radiation function can suppress the inflow of radiant heat having a wavelength of 2000 nm or more to the outside of the room.
また、 低放射ガラス 1 2を機能性材料 5よりも室内側に配置させているので、 室内暖房による機能性材料 5の異常な温度上昇が抑制され、 機能性材料 5により 日射エネルギーの流入量を適正に調整して、 開口部としての視野および開放感を 確保して、 快適な室内空間が提供できるとともに、 特に冬季における暖房負荷を 著しく低減できる。  In addition, since the low-emissivity glass 1 and 2 are disposed closer to the room than the functional material 5, an abnormal rise in temperature of the functional material 5 due to indoor heating is suppressed, and the amount of solar energy inflow is reduced by the functional material 5. By properly adjusting it, it is possible to provide a comfortable indoor space by ensuring the field of view and open feeling as the opening, and to significantly reduce the heating load, especially in winter.
尚、 図 4に示す調光ガラス 1 0 Aのように、 低放射膜 1 1が室内側に位置する ように、 低放射ガラス 1 2を配置させてもよい。 このように構成すると、 低放射 膜 1 1が室内側に露出するので、 低放射膜 1 1を保護すると言う観点からは好ま しくない力 低放射膜 1 1が調光ガラス 1 0 Aの最も室内側の面に配置され、 室 内暖房による輻射熱が効率的に反射されるので、 機能性材料 5が不必要に遮光状 態になることを一層効果的に抑制できるので好ましい。  Note that, as in the case of the light control glass 10A shown in FIG. 4, the low-emission glass 12 may be arranged so that the low-emission film 11 is located on the indoor side. With this configuration, the low-emissivity film 11 is exposed to the indoor side, which is an undesirable force from the viewpoint of protecting the low-emission film 11. Since the radiant heat due to indoor heating is efficiently reflected on the inner surface, it is possible to more effectively suppress the unnecessary shielding of the functional material 5 from the functional material 5, which is preferable.
次に、 低放射性ガラス 1 2を用いて構成した複層タイプの調光ガラスについて 説明する。  Next, a multi-layer type light control glass composed of the low emissivity glass 12 will be described.
図 5に示す調光ガラス 2 0は、 隣接させて平行配置した 3枚の基体 2と、 室内 側の 1対の基体 2間にシ一リング材 4を介して封止したサ一モトロピック材料か らなる機能性材料 5と、 室内側の 1対の基体 2間にシール材 2 1を介して封止し た空気層 2 2とを有し、 機能性材料 5よりも室外側に配される中央部の基体 2の 室外側の面に、 低放射膜 1 1をコーティングして低放射ガラス 1 2が設けられて いる。  The dimming glass 20 shown in FIG. 5 is made of a thermotropic material in which three substrates 2 arranged adjacently and in parallel and a pair of substrates 2 on the indoor side are sealed with a sealing material 4 therebetween. Functional material 5 and an air layer 22 sealed between the pair of substrates 2 on the indoor side via a sealing material 21, and are disposed more outdoor than the functional material 5. The low-emissivity glass 12 is provided by coating the low-emissivity film 11 on the outdoor surface of the base 2 at the center.
この調光ガラス 2 0では、 前記実施例の調光ガラス 1 0、 1 0 Aと同様の作用 、 効果が得られる。 し力、も、 空気層 2 2により調光ガラス 2 0の断熱特性を一層 向上できるとともに、 低放射ガラス 1 2の室内側に空気層 2 2を配置することで 、 室内暖房による輻射熱の悪影響を一層受け難くすることが可能となる。 With this light control glass 20, the same operation and effect as those of the light control glass 10 and 10A of the above embodiment can be obtained. The heat insulation properties of the light control glass 20 are further enhanced by the air layer 22. By arranging the air space 22 on the indoor side of the low-radiation glass 12, it is possible to further reduce the adverse effect of radiant heat due to indoor heating.
次に、 調光ガラス 2 0の構成を部分的に変更した、 他の複層タイプの調光ガラ スについて説明する。  Next, another multi-layer type light control glass in which the configuration of the light control glass 20 is partially changed will be described.
( 1 ) 図 6に示す調光ガラス 2 0 Aのように、 平行配置した 3枚の基体 2のう ちの最も室内側の基体を、 低放射膜 1 1を室外側に向けて配置した低放射ガラス 1 で構成し、 室内側の 1対の基体 2間に機能性材料 5を封入するとともに、 室 外側の 1対の基体 2の外縁部間をシール材 2 1でシールして、 該基体 2間に空気 層 2 2を形成してもよい。  (1) Like the light control glass 20 A shown in Fig. 6, the most indoor side of the three bases 2 placed in parallel is the low emission layer 11 with the low emission film 11 facing the outside. A functional material 5 is sealed between a pair of substrates 2 on the indoor side, and the outer edges of the pair of substrates 2 on the outdoor side are sealed with a sealing material 21 to seal the substrate 2. An air layer 22 may be formed between them.
( 2 ) 図 7に示す調光ガラス 2 0 Bのように、 平行配置した 3枚の基体 2のう ちの最も室内側の基体を、 低放射膜 1 1を室外側に向けて配置した低放射ガラス 1 2で構成し、 室内側の 1対の基体 2間に空気層 2 2を形成するとともに、 室外 側の 1対の基体 2の外縁部間をシール材 2 1でシールして、 該基体 2間に機能性 材料 5を封入してもよい。  (2) Like the light control glass 20B shown in Fig. 7, the most indoor side of the three substrates 2 arranged in parallel is placed on the low emission layer 11 with the low emission film 11 facing the outside. An air layer 22 is formed between a pair of substrates 2 on the indoor side, and the outer edges of the pair of substrates 2 on the outdoor side are sealed with a sealing material 21 to form the substrate. A functional material 5 may be enclosed between the two.
( 3 ) 図 8に示す調光ガラス 2 0 Cのように、 平行配置した 3枚の基体 2のう ちの最も室内側の基体を、 低放射膜 1 1を室内側へ向けて配置した低放射ガラス 1 2で構成し、 室内側の 1対の基体 2間に空気層 2 2を形成するとともに、 室外 側の 1対の基体 2の外縁部間をシール材 2 1でシールして、 該基体 2間に機能性 材料 5を封入してもよい。  (3) As shown in FIG. 8, the most indoor substrate among the three substrates 2 arranged in parallel, as shown in FIG. An air layer 22 is formed between a pair of substrates 2 on the indoor side, and the outer edges of the pair of substrates 2 on the outdoor side are sealed with a sealing material 21 to form the substrate. A functional material 5 may be enclosed between the two.
( 4 ) 図 9に示す調光ガラス 2 0 Dのように、 平行配置した 3枚の基体 2のう ちの最も室内側の基体を、 低放射膜 1 1を室内側へ向けて配置した低放射ガラス 1 2で構成し、 室内側の 1対の基体 2間に機能性材料 5を封入するとともに、 室 外側の 1対の基体 2の外縁部間をシール材 2 1でシールして、 該基体 2間に空気 層 2 2を形成してもよい。  (4) Like the light control glass 20D shown in Fig. 9, the most indoor substrate of the three substrates 2 arranged in parallel is the low-emission substrate 11 with the low-emission film 11 facing the interior. The functional material 5 is sealed between a pair of substrates 2 on the indoor side, and the outer edges of the pair of substrates 2 on the outdoor side are sealed with a sealing material 21 to form the substrate. An air space 22 may be formed between the two.
( 5 ) 図 1 0に示す調光ガラス 2 0 Eのように、 平行配置した 3枚の基体 2の うちの中央部の基体を、 低放射膜 1 1を室内側へ向けて配置した低放射ガラス 1 2で構成し、 室内側の 1対の基体 2の外縁部間をシール材 2 1でシールして、 該 基体 2間に空気層 2 2を形成するとともに、 室外側の 1対の基体 2間に機能性材 料 5を封入してもよい。 このような複層タイプの調光ガラス 2 0、 2 0 A ~ 2 0 Eにおいて、 調光ガラ ス 2 0、 2 0 A、 2 0 B、 2 0 Eは、 低放射膜 1 1が外面に露出しておらず、 他 物との接触による破損が防止できるので好ましい。 特に、 調光ガラス 2 0 B、 2 0 Eは、 低放射膜 1 1を空気層 2 2内に位置させているので、 サーモト口ピック 材料との接触による腐食等の恐れもないので好ましい。 (5) As shown in Fig. 10, the light-emitting glass 20E shown in Fig. 10 has three substrates 2 arranged in parallel. It is made of glass 12 and seals between outer edges of a pair of bases 2 on the indoor side with a sealing material 21 to form an air layer 22 between the bases 2 and a pair of bases on the outdoor side The functional material 5 may be enclosed between the two. In such a multi-layer type light control glass 20, 20 A to 20 E, the light control glass 20, 20 A, 20 B, 20 E has a low emission film 11 on the outer surface. This is preferable because it is not exposed and damage due to contact with other objects can be prevented. In particular, the light control glass 20B and 20E are preferable because the low emission film 11 is located in the air layer 22 and there is no risk of corrosion or the like due to contact with the thermopick material.
また、 一般に低放射膜 1 1の分光光度特性は、 低放射膜 1 1の表裏で異なるも のであり、 低放射膜 1 1の表面からの輻射熱の流入は効率よく反射するものの、 低放射膜 1 1の裏面からの輻射熱は必ずしも効率的に反射できるとは言い難い。 従って、 輻射熱の反射を考慮すると、 低放射膜 1 1を低放射ガラス 1 2の室外側 の面に設けた調光ガラス 2 0 C〜2 0 Eの採用が好ましい。  In general, the spectral characteristics of the low-emissivity film 11 differ between the front and back of the low-emission film 11. Although the inflow of radiant heat from the surface of the low-emission film 11 is efficiently reflected, It is difficult to say that radiant heat from the backside of 1 can always be efficiently reflected. Therefore, in consideration of the reflection of radiant heat, it is preferable to use light control glass 20C to 20E in which the low emission film 11 is provided on the outdoor surface of the low emission glass 12.
以上を総合すると、 調光ガラス 2 0 Eの構成が、 実用特性、 輻射熱の室外への 流出抑制効果のいずれにも優れ、 好ましい。  Taken together, the configuration of the light control glass 20E is preferable because it has both excellent practical characteristics and an effect of suppressing radiation heat from flowing out of the room.
尚、 室内外を反転させて調光ガラス 2 0〜2 0 Eを設けることも可能である。 この場合には、 低放射ガラス 1 2が機能性材料 5よりも室外側に配置されるので 、 前述のように冬季において暖房器具等からの輻射熱により調光ガラスが必要以 上に遮光状態になる可能性はあるが、 日射による機能性材料 5の異常な温度上昇 力抑制され、 機能性材料 5により日射エネルギーの流入量を適正に調整できるの で、 夏季において開口部としての視野および開放感を確保して、 快適な室内空間 が提供でき、 しかも冷房負荷を著しく低減できる。 また、 低放射ガラス 1 2を機 能性材料 5よりも室外側に配置すると、 室内温度に応じた透光—遮光状態の応答 性に優れたものとなり、 好ましい。  It should be noted that the light control glass 20 to 20E can be provided by reversing the inside and outside of the room. In this case, since the low-emission glass 12 is disposed on the outdoor side of the functional material 5, the dimming glass is unnecessarily blocked in the winter due to radiant heat from a heater or the like as described above. Although there is a possibility, the abnormal temperature rise of the functional material 5 due to the solar radiation is suppressed, and the inflow of solar energy can be appropriately adjusted by the functional material 5, so that the field of view and the feeling of opening as an opening in summer can be improved. As a result, a comfortable indoor space can be provided, and the cooling load can be significantly reduced. In addition, it is preferable that the low-emission glass 12 be disposed outside the functional material 5 outside the functional material 5 because the response in the light-transmitting / light-shielding state according to the indoor temperature is excellent.
また、 調光ガラス 1 0、 2 0、 2 O Aにおいて、 低放射膜 1 1として、 スぺ一 サ 6よりも軟質な素材からなるものを用いる場合には、 係止フィルム 7を省略す ることが可能である。 更に、 調光ガラス 1 0、 1 0 A、 2 0、 2 O Aにおいて、 係止フィルム 7は、 機能性材料 5を挟んで対面する基体 2の機能性材料 5側の面 に形成してもよい。  Also, in the case of the light control glass 10, 20, 20 OA, when the low emission film 11 is made of a material softer than the spacer 6, the locking film 7 is omitted. Is possible. Further, in the light control glass 10, 10 A, 20, 2 OA, the locking film 7 may be formed on the surface of the base 2 facing the functional material 5 with the functional material 5 interposed therebetween. .
次に、 調光ガラスに対して低放射機能とともに紫外線遮蔽機能を付与する場合 について説明する。  Next, the case where the ultraviolet light shielding function is provided to the light control glass together with the low radiation function will be described.
図 1 1に示すように、 この調光ガラス 3 0は、 隣接させて平行配置した 2枚の 基体 2と、 基体 2間にシーリング材 4を介して封止したサ一モト口ピック材料か らなる機能性材料 5とを有し、 機能性材料 5よりも室内側に配される基体 2とし て、 その室内側の面に低放射膜 1 1をコーティングした低放射ガラス 1 2を用い 、 機能性材料 5よりも室外側に配される基体 2として、 その室内側の面に紫外線 遮蔽層 3 1を形成した紫外線遮蔽ガラス 3 2を用いたものである。 As shown in FIG. 11, this light control glass 30 is composed of two sheets A substrate 2 having a base material 2 and a functional material 5 made of a pick-up material that is sealed between the substrates 2 with a sealing material 4 interposed therebetween. Then, using a low-emissivity glass 12 coated with a low-emission film 11 on the indoor side surface thereof, as a substrate 2 disposed outside the functional material 5 on the indoor side, an ultraviolet shielding layer 3 is provided on the indoor side surface. The ultraviolet shielding glass 32 formed with 1 is used.
紫外線遮蔽層 3 1は、 紫外線遮蔽機能を有するコーティング膜や紫外線遮蔽機 能を有するフィルム等で形成されている。 前者の場合は、 コーティング膜がサ一 モト口ピック材料と相互に化学反応を生じないようにするためや、 室外に設置さ れた場合に、 外部接触等による傷等を防ぐため、 コーティング膜上に保護処理を 行ってもよい。  The ultraviolet shielding layer 31 is formed of a coating film having an ultraviolet shielding function, a film having an ultraviolet shielding function, or the like. In the former case, the coating film is used to prevent a chemical reaction between the coating film and the thermopick material and to prevent scratches due to external contact when installed outdoors. May be protected.
紫外線遮蔽層 3 1で用いる紫外線吸収剤としては、 酸化チタン、 酸化亜鉛、 酸 化セリゥム等の無機化合物、 ベンゾフヱノン誘導体、 ベンゾトリァゾール誘導体 等の有機化合物が使用できる。 紫外線吸収剤をガラスにコーティングする方法と しては、 真空蒸着法、 イオンプレーティング法、 スパッタリング法等の乾式法や 、 紫外線吸収剤をバインダ一とともに溶媒に溶解あるいは分散させた液をガラス 表面に塗布し、 溶媒を乾燥し硬化させる湿式法も適用できる。  As the ultraviolet absorber used in the ultraviolet shielding layer 31, inorganic compounds such as titanium oxide, zinc oxide and cerium oxide, and organic compounds such as benzophenone derivatives and benzotriazole derivatives can be used. Examples of the method for coating the glass with an ultraviolet absorber include dry methods such as vacuum evaporation, ion plating, and sputtering, and a method in which the ultraviolet absorber is dissolved or dispersed in a solvent together with a binder on the glass surface. A wet method of applying, drying and curing the solvent is also applicable.
この調光ガラス 3 0では、 紫外線遮蔽膜により紫外線が遮断され、 サーモト口 ピック材料やシ一リング材 4の紫外線による光劣化が防止されるので、 調光ガラ ス 3 0の耐久性を向上できる。  In the light control glass 30, the ultraviolet light is blocked by the ultraviolet light shielding film, and the deterioration of the thermostat picking material and the sealing material 4 due to the ultraviolet light is prevented, so that the durability of the light control glass 30 can be improved. .
また、 複層タイプの調光ガラスにおいては、 図 1 2に示す調光ガラス 3 O Aの ように、 平行配置した 3枚の基体 2のうちの最も室内側の基体 2として、 室内側 の面に低放射膜 1 1を形成した低放射ガラス 1 2を用い、 最も室外側の基体 2と して、 室内側に紫外線遮蔽膜 3 1を形成した紫外線遮蔽ガラス 3 2を用い、 室内 側の 1対の基体 2、 3間に空気層 2 2を形成するとともに、 室外側の 1対の基体 2間に機能性材料 5を充填することになる。  In the case of a multi-layer type light control glass, as shown in FIG. 12, a light control glass 3OA is used as the most indoor-side substrate 2 of the three substrates 2 arranged in parallel. Using the low-emission glass 11 with the low-emission film 11 formed thereon, using the ultraviolet-shielding glass 32 with the ultraviolet-shielding film 31 formed on the indoor side as the outermost substrate 2, and using a pair of indoor-side The air layer 22 is formed between the bases 2 and 3 and the functional material 5 is filled between the pair of bases 2 on the outdoor side.
尚、 高価になると思われるが、 紫外線遮蔽機能を果たす物質がサーモトロピッ ク材料 (特に溶液の場合) と相互に化学反応を生じる可能性が比較的少ない方法 として、 ガラス中に紫外線吸収剤を溶解または分散することも考えられる。 また、 前記実施例では、 低放射膜 1 1と紫外線遮蔽膜 3 1とを基体 2の異なる 面にそれぞれ独立に形成したが、 同じ面に積層状に形成してもよい。 Although it is likely to be expensive, a method of dissolving the UV absorber in the glass is to reduce the possibility that the substance that performs the UV shielding function will cause a chemical reaction with the thermotropic material (especially in the case of a solution). Dispersion is also conceivable. In the above embodiment, the low-emissivity film 11 and the ultraviolet shielding film 31 are different from each other on the base 2. Although they are formed independently on the surfaces, they may be formed on the same surface in a laminated manner.
更に、 前述のように低放射ガラス i 2を機能性材料 5よりも室外側に配置させ る場合には、 図 1 3に示す調光ガラス 4 0のように、 隣接させて平行配置した 2 枚の基体 2と、 基体 2間にシーリング材 4を介して封止したサーモト口ピック材 料からなる機能性材料 5とを有し、 機能性材料 5よりも室外側に配される基体 2 の室外側の面に低放射膜 1 1をコ一ティングし、 室内側の面に紫外線遮蔽膜 3 1 を形成して、 低放射機能と紫外線遮蔽機能とを有する機能性ガラス 4 1を設ける ことになる。 また、 複層タイプの調光ガラスにおいては、 図 1 4に示す調光ガラ ス 4 O Aのように、 平行配置した 3枚の基体 2のうちの中央部の基体 2として、 室外側に低放射膜 1 1を形成し、 室内側に紫外線遮蔽膜 3 1を形成した機能性ガ ラス 4 0 Aを用い、 室外側の 1対の基体 2、 3間に空気層 2 2を形成するととも に、 室内側の 1対の基体 2、 3間に機能性材料 5を封入することになる。  Furthermore, as described above, when the low-emission glass i2 is disposed outside the functional material 5 on the outdoor side, two sheets of light-adjusting glass 40 shown in FIG. And a functional material 5 formed of a thermopick material sealed between the substrates 2 with a sealing material 4 interposed therebetween, and the chamber of the substrate 2 disposed outside the functional material 5 outside the room. A low-emission film 11 is coated on the outer surface, and an ultraviolet-ray shielding film 31 is formed on the indoor surface, and a functional glass 41 having a low-emission function and an ultraviolet-shielding function is provided. . In the case of a multi-layer type light control glass, as shown in Fig. 14, a light control glass 4OA is used as a central base 2 of three bases 2 arranged in parallel, and a low radiation outside the room. By using a functional glass 40 A in which a film 11 is formed and an ultraviolet shielding film 31 is formed on the indoor side, an air layer 22 is formed between a pair of substrates 2 and 3 on the outdoor side, and The functional material 5 is sealed between the pair of substrates 2 and 3 on the indoor side.
また、 空気層 2 2を形成するためのシール材 2 1の紫外線による劣化を防止す るため、 図 1 5に示す調光ガラス 4 0 Bのように、 平行配置した 3枚の基体 2の うちの中央部の基体を低放射ガラス 1 2で構成し、 最も室外側の基体 2の室内側 に紫外線遮蔽膜 3 1を形成してもよい。 この場合には、 紫外線遮蔽膜 3 1がサー モト口ピック材料により腐食等することが防止されるので、 より好ましい。 尚、 調光ガラス 3 0、 3 0 A、 4 0、 4 O Aにおいて、 紫外線遮蔽膜 3 1とし て、 スぺーサ 6よりも軟質な素材からなるものを用いる場合には、 係止フィルム 7を省略することが可能である。 また、 調光ガラス 3 0、 3 0 A、 4 0、 4 O A 、 4 0 Bにおいて、 係止フィルム 7は、 機能性材料 5を挟んで対面する基体 2の 機能性材料 5側の面に形成してもよい。  Further, in order to prevent the deterioration of the sealing material 21 for forming the air layer 22 due to ultraviolet rays, as shown in FIG. 15, the light control glass 40B shown in FIG. The substrate at the center of the substrate may be made of low-emissivity glass 12, and an ultraviolet shielding film 31 may be formed on the indoor side of the most outdoor substrate 2. In this case, it is more preferable that the ultraviolet shielding film 31 is prevented from being corroded by the thermopick material. In the case of the light control glass 30, 30 A, 40, 4 OA, when the ultraviolet shielding film 31 is made of a material softer than the spacer 6, the locking film 7 is used. It can be omitted. Further, in the light control glass 30, 30 A, 40, 40 A, 40 B, the locking film 7 is formed on the surface of the base 2 facing the functional material 5 with the functional material 5 interposed therebetween. May be.
尚、 本発明の機能性材料積層体は、 サッシと組み合わせて窓等の建築材料に使 用するだけでなく、 使用目的に応じたフレームやユニッ トと組み合わせ、 自動車 、 船舶、 航空機、 車両等の閉口部に使用することもできる。 窓等の建築材料とし ては、 はめ殺しタイプの窓、 引き違い窓、 出窓、 外開き窓、 横滑り出し窓、 ドレ —キップ窓、 両開き窓、 上下スライド窓、 コーナー窓、 テラスドア、 腰パネルド ァ、 高所内倒し窓、 パティオドア、 更にはサンルームの天窓、 温室の部材、 アト リウム、 アーケード等のトラップライ ト、 等への使用が例示できる。 次に、 機能性材料積層体 1の製造方法について説明する。 但し、 前述した他の 機能性材料積層体や調光ガラスにおいても、 機能性材料 5を基体間に同様にして 積層することが可能である。 The functional material laminate of the present invention is used not only in combination with a sash for building materials such as windows, but also in combination with a frame or unit according to the purpose of use, and can be used for automobiles, ships, aircraft, vehicles, etc. It can also be used for closures. Building materials such as windows include window-type windows, sliding windows, bay windows, outside windows, sideways windows, dress windows, double-ended windows, vertical sliding windows, corner windows, terrace doors, waist panel doors, It can be used, for example, for high-end windows, patio doors, skylights in solariums, members of greenhouses, trap lights such as atriums and arcades. Next, a method for manufacturing the functional material laminate 1 will be described. However, the functional material 5 can be similarly laminated between the bases in the other functional material laminates and the light control glass described above.
まず、 セッ ト工程において、 図 1 6に示すように、 基体 3に対して要求量の機 能性材料 5を塗布するとともに、 基体 3にシーリング材 4を付着させる。 但し、 基体 3に機能性材料 5を塗布し、 基体 2にシーリング材 4を付着させてもよいし 、 基体 3に機能性材料 5を塗布し、 基体 2、 3の対向面にシーリング材 4を夫々 付着させてもよい。 尚、 基体 3には予め係止フィルム 7がランミネ一トされ、 係 止フィルム 7上に機能性材料 5が塗布される。 また、 スぺーサ 6は、 機能性材料 5に予め混入しておいてもよいし、 このセット工程において、 基体 3に塗布した 機能性材料 5に散布等により一様に配置させてもよい。  First, in the setting step, as shown in FIG. 16, a required amount of the functional material 5 is applied to the substrate 3 and a sealing material 4 is attached to the substrate 3. However, the functional material 5 may be applied to the substrate 3 and the sealing material 4 may be attached to the substrate 2, or the functional material 5 may be applied to the substrate 3 and the sealing material 4 may be applied to the opposing surface of the substrates 2 and 3. Each may be attached. Note that the base film 3 is preliminarily illuminated with the locking film 7, and the functional material 5 is applied on the locking film 7. In addition, the spacer 6 may be mixed in the functional material 5 in advance, or may be uniformly disposed on the functional material 5 applied to the base 3 by spraying or the like in this setting step.
機能性材料 5は、 図 1 6に示すように、 基体 3の中央部に膜状に塗布してもよ いが、 図 1 7 ( a ) 、 ( b ) に示すように、 独立した点状や線状、 或いは図 1 Ί ( c ) 、 ( d ) に示すように、 渦巻き状や格子状などに塗布してもよい。 いずれ にしても、 気泡の混入を極力防止するため、 機能性材料 5とシーリング材 4との 間隔 Wが 5 c m以下で、 且つ隣接する点間距離 P wあるいは線間距離 L wが 5 c m以下になるように塗布することが好ましい。 また、 機能性材料 5はできるだけ 均等に塗布することが好ましい。 5 c m以下に設定する理由は、 ①後述のように 閉鎖空間 5 9を形成したときに 5 c mよりも大きな気泡が残存していると、 最終 的に 1 mm以上の気泡が残るが、 5 c m以下であると最終的に非常に小さい気泡 になる力、、 さらに放置しておくと機能性材料 5中に残存空気が溶解して気泡がな くなる。 ② 5 c m以上の減圧の気泡が残ると、 3 mm厚程度の薄い基体 2、 3で は気泡部分の基体 2、 3に反りが発生し、 機能性材料 5の厚み精度が悪くなる。 機能性材料 5の塗布方法としては、 図 1 6に示すように塗布する場合には、 バ ーコ一ターやナイフコーター等のコ一ター塗布、 グラビア等のロール転写、 Tダ ィ押し出し等により、 塗布することが好ましい。 また、 不要部分にマスキングを 施して塗布してもよい。 図 1 7に示すように塗布する場合には、 不要部分にマス キングを施して塗布してもよいが、 ディスペンザ一により定量的に塗布すること が好ましい。 The functional material 5 may be applied in the form of a film on the central part of the base 3 as shown in FIG. 16, but as shown in FIGS. 17 (a) and (b) It may be applied in a spiral or grid shape, as shown in FIGS. 1 (c) and (d). In any case, the distance W between the functional material 5 and the sealing material 4 is 5 cm or less, and the distance Pw between adjacent points or the distance Lw between lines is 5 cm or less in order to prevent air bubbles from entering as much as possible. It is preferable to apply so that Further, it is preferable to apply the functional material 5 as evenly as possible. The reason for setting the size to 5 cm or less is as follows: ① If bubbles larger than 5 cm remain when the closed space 59 is formed as described later, bubbles of 1 mm or more will eventually remain, but 5 cm If it is less than the above, the force to eventually become very small bubbles, and if left still, the residual air in the functional material 5 dissolves and the bubbles disappear. (2) If the decompressed air bubbles of 5 cm or more remain, the thin substrates 2 and 3 of about 3 mm thickness will warp the substrates 2 and 3 in the air bubble portion, and the thickness accuracy of the functional material 5 will be deteriorated. As shown in FIG. 16, the functional material 5 is applied by applying a coater such as a bar coater or a knife coater, transferring a roll of gravure, or extruding a T-die. It is preferable to apply. Unnecessary portions may be masked and applied. When applying as shown in Fig. 17, apply mass to unnecessary parts. The coating may be performed by applying a king, but is preferably performed quantitatively by a dispenser.
また、 シーリング材 4を基体 2、 3の少なくとも一方に塗布してから、 両基体 2、 3を積層するまでの間に、 シーリング材 4を予備硬化させてもよい。 この場 合には、 両基体 2、 3を積層時に強く加圧してもシ一リング材 4の層が破壊され ないため加工条件の調節が容易になり、 また機能性材料 5の粘度が高い場合にも これをすばやく展開できるため、 好適である。 但し、 予備硬化した部分と基体 2 、 3との接着力は一般的に弱いので、 両基体 2、 3の接着強度を高めるため、 両 基体 2、 3にシーリング材 4をそれぞれ塗布し、 予備硬化させて両基体 2、 3を 積層するときに、 予備硬化部分同士を密着させて、 両基体 2、 3を接着すること が好ましい。  Further, the sealing material 4 may be pre-cured between the time when the sealing material 4 is applied to at least one of the substrates 2 and 3 and the time when the two substrates 2 and 3 are laminated. In this case, even if the two substrates 2 and 3 are strongly pressed during lamination, the layer of the sealing material 4 is not broken, so that the processing conditions can be easily adjusted, and when the viscosity of the functional material 5 is high. This is suitable because it can be developed quickly. However, since the adhesive strength between the pre-cured portion and the substrates 2 and 3 is generally weak, the sealing material 4 is applied to both the substrates 2 and 3 to increase the adhesive strength of the substrates 2 and 3, and the pre-curing is performed. When the two substrates 2 and 3 are laminated in this way, it is preferable that the pre-cured portions are brought into close contact with each other to bond the two substrates 2 and 3 together.
ここで予備硬化とは、 シーリング材 4に含有される架橋しうる反応基の一部は 反応しているが残部は未反応であり、 流動性はないが接着性は有する状態、 いわ ゆるェポキシ接着剤等の Bステージ状態までシーリング材 4を硬化させる工程で ある。 この予備硬化の条件は、 シーリング材 4の種類により適宜選択すればよい 次に、 基体重合工程において、 図 1 8に示すように、 基体 2、 3を重ね合わせ て基体 2、 3間に機能性材料 5及びシ一リング材 4を介装させ、 基体 2、 3間に シーリング材 4で取り囲まれる閉鎖空間 5 9を形成する。 但し、 この段階で、 閉 鎖空間 5 9が気密状にならないように、 シーリング材 4として予め凹凸部や溝部 ゃ孔を形成したものを用いたり、 環状に配置させたシーリング材 4の一部を欠損 させることが好ましい。  Here, the pre-curing means a state in which some of the crosslinkable reactive groups contained in the sealing material 4 have reacted but the rest have not reacted, and there is no fluidity but adhesiveness, so-called epoxy bonding This is a step of curing the sealing material 4 to the B stage state of the agent or the like. The conditions for this pre-curing may be appropriately selected according to the type of the sealing material 4. Next, in the substrate polymerization step, as shown in FIG. A closed space 59 surrounded by the sealing material 4 is formed between the bases 2 and 3 by interposing the material 5 and the sealing material 4 therebetween. However, at this stage, in order to prevent the closed space 59 from being airtight, a sealing material 4 in which an uneven portion or a groove or a hole is formed in advance is used, or a part of the sealing material 4 arranged in an annular shape is used. It is preferable to make a deletion.
次に、 減圧密着工程において、 図 1 9に示すように、 柔軟性を有する膜体 5 1 で仕切られた、 隣接する 2つの減圧槽 5 2、 5 3を有する減圧装置 5 0を用い、 重ね合わせた基体 2、 3を下側の減圧槽 5 3内にセットして両減圧槽 5 2、 5 3 を減圧し、 閉鎖空間 5 9を略真空状態にしてから、 図 2 0、 図 2 1に示すように 、 閉鎖空間 5 9が気密状になるように、 上側の減圧槽 5 2を常圧あるいは加圧し て膜体 5 1で基体 2を押圧し、 シーリング材 4を基体 2に隙間なく密着させる。 減圧装置 5 0としては、 例えば s p i r e社 (米) 製の太陽電池パネル作製用 のラミネータを採用できる。 Next, in the decompression and adhesion step, as shown in FIG. 19, using a decompression device 50 having two adjacent decompression tanks 52 and 53 partitioned by a flexible film body 51, The combined substrates 2 and 3 are set in the lower decompression tank 53 and both the decompression tanks 52 and 53 are depressurized to make the closed space 59 substantially vacuum. As shown in, the upper depressurizing tank 52 is pressed at normal pressure or pressure to press the base 2 with the film body 5 1 so that the closed space 59 is airtight, and the sealing material 4 is tightly closed to the base 2. Adhere. As the pressure reducing device 50, for example, a laminator for manufacturing a solar cell panel manufactured by Spire (USA) can be adopted.
減圧時における両減圧槽 5 2、 5 3の内圧は、 小さいほど閉鎖空間 5 9の真空 度が高くなつて気泡が減少するので、 5 0 T o r r以下、 好ましくは 1 0 T o r r以下、 もっとも好ましくは 2 T o r r以下に設定することになる。 減圧時間は 、 2 T o r rでは 1 0秒以上、 2分以下が好ましい。 つまり、 1 0秒よりも短い と機能性材料 5の積層時に混入した気泡を十分に除去できず、 2分を越えると水 系の機能性材料 5では溶媒が蒸発してその表面に白い皮膜が張り、 良好な積層板 が得られないので、 1 0秒から 2分が好ましい。  As the internal pressure of both depressurizing tanks 52 and 53 during depressurization decreases, bubbles decrease as the degree of vacuum in the closed space 59 increases and the pressure decreases. Will be set to 2 Torr or less. The decompression time is preferably 10 seconds or more and 2 minutes or less at 2 Torr. In other words, if the time is shorter than 10 seconds, it is not possible to sufficiently remove the air bubbles mixed during the lamination of the functional material 5, and if the time exceeds 2 minutes, the solvent is evaporated in the aqueous functional material 5 and a white film is formed on the surface. Tens seconds to 2 minutes are preferred because tension and good laminates cannot be obtained.
次に、 押圧工程において、 図 2 0に示す状態から、 膜体 5 1によりさらに基体 2を押圧して、 シーリング材 4を変形させつつ、 機能性材料 5を閉鎖空間 5 9内 に充満させる。 つまり、 閉鎖空間 5 9を減圧するとともに基体 2に対してシ一リ ング材 4を密着させる減圧密着工程と、 閉鎖空間 5 9内へ機能性材料 5を充塡す る押圧工程とを、 減圧装置 5 0内にて連続的に行えるので、 両工程を容易に且つ 効率的に行うことが可能となる。 但し、 基体 2、 3はシーリング材 4を介して気 密状にシールされているので、 押圧工程において、 減圧装置 5 0から積層体を取 り出して、 油圧プレス等の押圧装置で、 基体 2、 3を厚さ方向に押圧して、 機能 性材料 5を閉鎖空間 5 9内に充満させることも可能である。 また、 閉鎖空間 5 9 内は略真空状態になってるので、 減圧装置 5 0から取り出して放置するだけでも 、 大気圧により基体 2、 3力押圧されて、 閉鎖空間 5 9内に機能性材料 5を充満 できる。  Next, in the pressing step, the functional body 5 is filled in the closed space 59 while deforming the sealing material 4 by further pressing the base 2 with the film body 51 from the state shown in FIG. In other words, the depressurizing and adhering step of depressurizing the closed space 59 and adhering the sealing material 4 to the base 2 and the pressing step of filling the functional material 5 into the closed space 59 are performed under reduced pressure. Since these steps can be performed continuously in the apparatus 50, both steps can be performed easily and efficiently. However, since the substrates 2 and 3 are hermetically sealed via the sealing material 4, in the pressing step, the laminate is taken out of the pressure reducing device 50 and is pressed by a pressing device such as a hydraulic press. , 3 can be pressed in the thickness direction to fill the closed space 59 with the functional material 5. In addition, since the inside of the closed space 59 is substantially in a vacuum state, even if it is taken out of the pressure reducing device 50 and left alone, the base material 2 or 3 is pressed by the atmospheric pressure, and the functional material 5 is placed in the closed space 59. Can be charged.
また、 膜体 5 1で基体 2、 3を押圧するときに、 図 2 1に示すように、 基体 2 、 3の外方の膜体 5 1は、 設置台 5 4に密着しょうとして、 基体 2の外側縁に対 して大きな荷重が作用するので、 図 2 2に示すように、 減圧槽 5 3内に重ね合わ せてセットした基体 2、 3の周辺に、 機能性材料積層体 1の要求厚さと略同じ厚 さの金属製やプラスチック製の棒状の変形防止用スぺ一サ 5 5を配置し、 膜圧に よる機能性材料積層体 1の側縁の変形を防止してもよい。  Also, when the substrates 2 and 3 are pressed by the film 51, as shown in FIG. 21, the film 51 outside the substrates 2 and 3 tries to adhere to the mounting table 54, and the substrate 2 Since a large load acts on the outer edge of the base material, as shown in Fig. 22, the required thickness of the functional material laminate 1 A metal or plastic rod-shaped deformation preventing spacer 55 having substantially the same thickness as that of the functional material laminate 1 may be disposed to prevent deformation of the side edge of the functional material laminate 1 due to film thickness.
更に、 図 2 3に示すように、 膜体 5 1と基体 2、 3間に基体 2の形状に沿った 剛体からなり、 且つ基体 2よりも大きな面積の成形型 5 6を設け、 機能性材料積 層体 1がバランス良く押圧されるようにしてもよい。 但し、 膜体 5 1に対して成 形型 5 6を固定する場合には、 成形型 5 6の自重で膜体 5 1が変形することも考 えられるので、 コイルパネなどの弾性部材を介して成形型 5 6を支承することが 好ましい。 Further, as shown in FIG. 23, a molding die 56 made of a rigid body conforming to the shape of the base 2 and having a larger area than the base 2 is provided between the film body 51 and the bases 2 and 3, and the functional material is provided. product The layer body 1 may be pressed in a well-balanced manner. However, when the forming die 56 is fixed to the film 51, the film 51 may be deformed by the weight of the forming die 56, so that the film 51 may be deformed through an elastic member such as a coil panel. It is preferable to support the mold 56.
減圧装置 5 0に代えて、 減圧槽内に高精度な油圧プレス等からなる押圧手段を 組み込んだ減圧兼押圧装置を用い、 減圧装置 5 0を用いた場合と同様に、 減圧密 着工程と押圧工程を連続的に行ってもよい。 この場合には、 減圧密着工程におい て、 減圧兼押圧装置の減圧槽内に重ね合わせた基体 2、 3をセッ トして減圧し、 閉鎖空間 5 9を略真空状態にしてから、 閉鎖空間 5 9が気密状になるように押圧 手段の成形型で基体 2、 3を押圧し、 シーリング材 4を基体 2に密着させ、 押圧 工程において、 成形型により基体 2、 3をさらに押圧して機能性材料 5を閉鎖空 間 5 9内に充満させることになる。  Instead of the pressure reducing device 50, a pressure reducing / pressing device incorporating a pressing means such as a high-precision hydraulic press or the like in the pressure reducing tank is used. The steps may be performed continuously. In this case, in the decompression and adhesion step, the substrates 2 and 3 superposed in the decompression tank of the decompression and pressing device are set and decompressed, and the closed space 59 is brought into a substantially vacuum state. The bases 2 and 3 are pressed by the pressing die so that 9 becomes airtight, and the sealing material 4 is brought into close contact with the base 2. In the pressing step, the bases 2 and 3 are further pressed by the forming die to provide functionality. Material 5 will fill the enclosed space 59.
次に、 硬化工程において、 加熱または高周波加熱あるいは常温放置等の硬化方 法によりシーリング材 4を硬化させ、 シーリング材 4により、 2枚の基体 2、 3 の周縁部同士を接着するとともに、 溶媒が飛ばないように機能性材料 5を基体 2 、 3間に封止して、 図 1に示す機能性材料積層体 1を得る。 但し、 接着強度を高 めるため、 減圧装置 5 0の膜体 5 1や減圧兼押圧装置の成形型で押圧しながら、 シーリング材 4を硬化させてもよい。  Next, in the curing step, the sealing material 4 is cured by a curing method such as heating, high-frequency heating, or standing at room temperature. The sealing material 4 adheres the peripheral portions of the two substrates 2 and 3 together with the solvent. The functional material 5 is sealed between the bases 2 and 3 so as not to fly, and the functional material laminate 1 shown in FIG. 1 is obtained. However, in order to increase the adhesive strength, the sealing material 4 may be cured while being pressed by the film body 51 of the pressure reducing device 50 or the mold of the pressure reducing / pressing device.
尚、 本実施例では、 2枚の基体 2、 3間に機能性材料 5を積層した機能性材料 積層体 1及びその製造方法について説明したが、 更に 1乃至複数枚の基体を機能 性材料積層体 1に、 同種又は異種の機能性材料を介在させた状態で積層し、 3枚 以上の基体を有する機能性材料積層体も同様の製造することが可能である。 次に、 機能性材料積層体 1の他の製造方法について説明する。  In this embodiment, the functional material laminate 1 in which the functional material 5 is laminated between the two substrates 2 and 3 and the method of manufacturing the same have been described. A laminate of functional materials having three or more substrates can be manufactured in the same manner by laminating the same in the body 1 with the same or different functional materials interposed therebetween. Next, another method for producing the functional material laminate 1 will be described.
まず、 積層工程において、 図 2 4に示すように、 基体 3の一方のガラス面にお いて、 その周縁部にシーリング材 4を塗布するとともに、 その中央部に機能性材 料 5を塗布し、 機能性材料 5及びシーリング材 4内に気泡が残留しないように、 基体 2を基体 3に塗布した機能性材料 5及びシ一リング材 4に積層する。 但し、 このとき基体 2、 3間の隙間が一様になるように、 基体 2、 3の四隅等にスぺー サを介装させるなどしてもよい。 次に、 硬化工程において、 加熱または高周波加熱あるいは常温放置等の硬化方 法によりシーリング材 4を硬化させ、 シーリング材 4により、 2枚の基体 2、 3 の周縁部同士を接着するとともに、 溶媒が飛ばないように機能性材料 5を基体 2 、 3間に封止して、 図 1に示す機能性材料積層体 1を得る。 First, in the laminating step, as shown in FIG. 24, on one glass surface of the base 3, a sealing material 4 is applied to a peripheral portion thereof, and a functional material 5 is applied to a central portion thereof. The substrate 2 is laminated on the functional material 5 and the sealing material 4 applied to the substrate 3 so that no air bubbles remain in the functional material 5 and the sealing material 4. However, at this time, spacers may be interposed at the four corners of the bases 2 and 3 so that the gap between the bases 2 and 3 is uniform. Next, in the curing step, the sealing material 4 is cured by a curing method such as heating, high-frequency heating, or standing at room temperature. The sealing material 4 adheres the peripheral portions of the two substrates 2 and 3 together with the solvent. The functional material 5 is sealed between the bases 2 and 3 so as not to fly, and the functional material laminate 1 shown in FIG. 1 is obtained.
ここで、 前記積層工程において、 図 2 5に示すように、 基体 2の側にもシ一リ ング材 4を塗布した後、 両基体 2、 3を積層してもよい。 この場合には、 シーリ ング材 4を基体 2、 3に塗布する条件として、 機能性材料 5の状態に関係なく最 適な条件を設定できるため、 基体 2、 3とシーリング材 4の間に気泡等が巻き込 まれ難く両者の接着性が安定するため、 好適である。  Here, in the laminating step, as shown in FIG. 25, after the sealing material 4 is applied also on the side of the base 2, both the bases 2 and 3 may be laminated. In this case, since the optimum conditions for applying the sealing material 4 to the bases 2 and 3 can be set regardless of the state of the functional material 5, air bubbles are generated between the bases 2 and 3 and the sealing material 4. This is preferable because the adhesiveness between the two is less likely to be entangled and the adhesiveness between the two is stabilized.
また、 シーリング材 4を基体 2、 3の少なくとも一方に塗布してから、 両基体 2、 3を積層するまでの間に、 シーリング材 4を予備硬化させてもよい。 この場 合には、 両基体 2、 3を積層時に強く加圧してもシーリング材 4の層が破壊され ないため加工条件の調節が容易になり、 また機能性材料 5の粘度が高い場合にも これをすばやく展開できるため、 好適である。 但し、 予備硬化した部分と基体 2 、 3との接着力は一般的に弱いので、 両基体 2、 3の接着強度を高めるため、 両 基体 2、 3にシーリング材 4をそれぞれ塗布し、 予備硬化させて両基体 2、 3を 積層するときに、 予備硬化部分同士を密着させて、 両基体 2、 3を接着すること が好ましい。  Further, the sealing material 4 may be pre-cured between the time when the sealing material 4 is applied to at least one of the substrates 2 and 3 and the time when the two substrates 2 and 3 are laminated. In this case, even if the two substrates 2 and 3 are strongly pressed during lamination, the layer of the sealing material 4 is not broken, so that the processing conditions can be easily adjusted, and even if the viscosity of the functional material 5 is high, This is suitable because it can be developed quickly. However, since the adhesive strength between the pre-cured portion and the substrates 2 and 3 is generally weak, the sealing material 4 is applied to both the substrates 2 and 3 to increase the adhesive strength of the substrates 2 and 3, and the pre-curing is performed. When the two substrates 2 and 3 are laminated in this way, it is preferable that the pre-cured portions are brought into close contact with each other to bond the two substrates 2 and 3 together.
ここで予備硬化とは、 シーリング材 4に含有される架橋しうる反応基の一部は 反応しているが残部は未反応であり、 流動性はないが接着性は有する状態、 いわ ゆるェポキシ接着剤等の Bステージ状態までシーリング材 4を硬化させる工程で ある。 この予備硬化の条件は、 シーリング材 4の種類により適宜選択すればよい また、 シーリング材 4の一部分にあらかじめ空気抜き穴を形成し、 機能性材料 5を基体 2、 3間に積層するときに、 機能性材料 5を加圧展開させて積層し、 そ の後で空気穴を封止してもよい。 また、 機能性材料 5が低粘度であれば、 基体 2 、 3間にシーリング材 4を積層させた後、 基体 2、 3間に機能 'ί生材料 5を注入等 により充塡する方法を採用してもかまわない。 また、 基体 2、 3間にシーリング 材 4及び低粘度な機能性材料 5の前駆体を積層させた後、 前駆体を反応させるこ とで、 基体 2、 3間に機能性材料 5を積層させても良い。 Here, the pre-curing means a state in which some of the crosslinkable reactive groups contained in the sealing material 4 have reacted but the rest have not reacted, and there is no fluidity but adhesiveness, so-called epoxy bonding This is a step of curing the sealing material 4 to the B stage state of the agent or the like. The condition of the pre-curing may be appropriately selected depending on the type of the sealing material 4. In addition, when a vent hole is formed in advance in a part of the sealing material 4 and the functional material 5 is laminated between the bases 2 and 3, The conductive material 5 may be stacked by being developed under pressure, and then the air holes may be sealed. If the functional material 5 has a low viscosity, a method is used in which the sealing material 4 is laminated between the bases 2 and 3 and then the functional material 5 is filled between the bases 2 and 3 by injection or the like. It does not matter. After laminating the sealing material 4 and the precursor of the low-viscosity functional material 5 between the bases 2 and 3, the precursor is allowed to react. Thus, the functional material 5 may be laminated between the bases 2 and 3.
産業上の利用可能性  Industrial applicability
本発明は上述したように構成され、 次のような効果を発現する。  The present invention is configured as described above, and exhibits the following effects.
本発明に係る機能性材料積層体によれば、 スぺーサにより基体間の隙間を一様 に設定することが可能となる。 しかも、 機能性材料とスぺ一ザとの比重差による スぺ一ザの沈降や浮上が、 係止部材により物理的に係止されるので、 機能性材料 積層体を縦向きや傾斜状に設置したときにおける機能性材料の層厚の変化を効果 的に防止できる。 また、 係止部材は、 軟質或いは可塑性を示す材料で構成されて いるので、 基体間において係止部材が変形することで、 スぺーザの粒径のバラッ キを吸収して、 基体間の隙間、 つまり機能性材料の層厚を一様に設定することが 可能となる。 更に、 係止部材が緩衝材として作用するので、 基体のスぺ一ザに対 応する位置における応力集中の発生を一層少なくできる。 このように優れた効果 を有するので、 機能性材料積層体を大面積に構成し、 これを窓ガラス等に適用し ても、 機能性材料の層厚変化による機能性材料積層体の経年的な品質低下は効果 的に防止されることになる。  ADVANTAGE OF THE INVENTION According to the functional material laminated body which concerns on this invention, it becomes possible to set the clearance gap between bases uniformly by a spacer. In addition, the sedimentation and floating of the sprinkler due to the difference in specific gravity between the functional material and the sprinkler are physically locked by the locking member, so that the functional material laminate can be oriented vertically or inclined. It is possible to effectively prevent a change in the layer thickness of the functional material when installed. In addition, since the locking member is made of a soft or plastic material, the deformation of the locking member between the bases absorbs the variation in the particle size of the spacer, and the gap between the bases is absorbed. That is, it is possible to set the layer thickness of the functional material uniformly. Further, since the locking member functions as a cushioning material, the occurrence of stress concentration at a position corresponding to the spacer of the base can be further reduced. Because of these excellent effects, even if the functional material laminate is formed into a large area and applied to window glass, etc., the functional material laminate due to the change in the layer thickness of the functional material can be used over time. Quality degradation will be effectively prevented.
請求項 2記載のように、 係止部材として、 基体に係止フィルムをラミネートす る場合には、 一様な膜厚の係止部材を容易に設けることが可能となり、 基体間の 隙間を容易に一様に設定できる。  As described in claim 2, when a locking film is laminated on the base as the locking member, it is possible to easily provide a locking member having a uniform film thickness, thereby facilitating the gap between the bases. Can be set uniformly.
請求項 3記載のように、 係止フィルムの膜厚を 3 0〜1 0 0 z mに設定すると 、 係止フィルムに対するスぺーサのめり込み量を適正に設定して、 スぺーザの粒 径のバラツキを効果的に吸収し、 機能性材料の層厚を適正に維持し易くなる。 請求項 4記載のように、 係止フィルムとして紫外線遮蔽機能又は紫外線吸収機 能を有するものを用いると、 機能性材料やそれを封入するために使用するシール 材の紫外線劣化を抑制することが可能となり、 機能性材料積層体の耐久性を一層 向上できる。  As described in claim 3, when the thickness of the locking film is set to 30 to 100 zm, the amount of penetration of the spacer into the locking film is set appropriately, and the particle size of the spacer varies. Is effectively absorbed, and the layer thickness of the functional material is easily maintained properly. As described in claim 4, when a film having an ultraviolet shielding function or an ultraviolet absorbing function is used as the locking film, it is possible to suppress the deterioration of the functional material and the sealing material used for enclosing the functional material with ultraviolet light. Thus, the durability of the functional material laminate can be further improved.
請求項 5または請求項 6記載のように、 係止フィルムとしてポリエステルゃポ リエチレンテレフタレートを主たる構成成分としたものを用いると、 サーモト口 ピック高分子水溶液等の機能性材料と接触しても相互に悪影響を及ぼすことがな いので、 機能性材料積層体の耐久性を向上でき、 しかも安価に入手可能なので機 能性材料積層体の製作コストを低減できる。 As described in claim 5 or claim 6, when a film having polyester poly (ethylene terephthalate) as a main constituent component is used as the locking film, even if it comes into contact with a functional material such as a thermopick aqueous polymer solution, the film is not reciprocal. Since there is no adverse effect, the durability of the functional material laminate can be improved, and it can be obtained at low cost. The production cost of the functional material laminate can be reduced.
請求項 7記載のように球状のスぺ一サを用いると、 スぺ一ザの散布、 配置時に おける作業性を向上でき、 機能性材料積層体を効率良く製作することが可能とな る。 し力、も、 機能性材料に対してスぺーサを一様に分散させることが可能なので 、 機能性材料の層厚を機能性材料積層体全面に亙って一様に作用させることが可 能となる。  When a spherical spacer is used as described in claim 7, the workability at the time of spraying and disposing the spacer can be improved, and the functional material laminate can be efficiently manufactured. Since the spacer can be uniformly dispersed in the functional material, the thickness of the functional material can be uniformly applied to the entire surface of the functional material laminate. It works.
請求項 8記載のようにスぺーザの粒径を設定すると、 スぺーザの製作時等にお ける粒径のバラツキに大きく左右されることなく、 スぺーザの沈降を抑制し、 か つ、 所望の厚さに機能性材料の層厚を制御することが可能となる。  When the particle size of the souser is set as described in claim 8, the sedimentation of the soother is suppressed without being largely influenced by the variation of the particle size at the time of manufacturing the soother. However, it is possible to control the thickness of the functional material to a desired thickness.
請求項 9記載のようにガラスビーズ製のスぺ一サを用いると、 機能性材料に接 触することによるスぺーザの変色等の劣化が防止され、 機能性材料積層体の耐久 性を向上できるとともに、 スぺーサ部分における視覚的欠陥を少なくして、 機能 性材料積層体の品質を向上できる。  By using a glass bead spacer as described in claim 9, deterioration of the spacer due to contact with the functional material is prevented, and the durability of the functional material laminate is improved. In addition, the quality of the functional material laminate can be improved by reducing visual defects in the spacer portion.
請求項 1 0記載のように、 軟質或いは可塑性の材料からなる外装材でスぺーサ を被覆すると、 スぺ一ザと機能性材料とに比重差があっても、 外装材によりスぺ —ザの移動が規制されるので、 スぺーザが沈降したり浮上して偏ることはない。 し力、も、 外装材が緩衝材として作用するので、 基体のスぺーザに対応する位置に おける応力集中の発生を一層少なくできる。 また、 基体のサイズや形状に影響を 受けることなく、 基体間の隙間を一様に設定することが可能となる。  As described in claim 10, when the spacer is covered with an exterior material made of a soft or plastic material, even if there is a difference in specific gravity between the spacer and the functional material, the spacer is applied by the exterior material. Movement is regulated, so that the spacer does not sink or float and be biased. Since the exterior material acts as a cushioning material, the occurrence of stress concentration at a position corresponding to the spacer on the base can be further reduced. In addition, the gap between the substrates can be set uniformly without being affected by the size or shape of the substrates.
請求項 1 1記載のように、 スぺーサとして、 基体間の要求間隔よりも小さなサ ィズのスぺ一サを用いると、 基体に外力が加わった場合でも、 基体のスぺーザに 対応する位置における応力集中の発生が最小限に抑えられるので、 応力集中によ る機能性材料積層体の破損を効果的に防止できる。  As described in claim 11, if a spacer having a size smaller than the required interval between the bases is used as the spacer, even if an external force is applied to the base, the spacer can cope with the spacer of the base. Since the occurrence of stress concentration at the position where the stress occurs is minimized, breakage of the functional material laminate due to the stress concentration can be effectively prevented.
請求項 1 2記載のように、 スぺーザの比重を機能性材料の比重の 9 0 %〜1 1 0 %に設定するとともに、 機能性材料の粘度を 1 0 0ボイズ以上に設定すると、 浮沈によるスぺーザの偏りを防止でき、 機能性材料積層体の厚さを確実に一様に 設定できる。  As set forth in claim 12, when the specific gravity of the spacer is set to 90% to 110% of the specific gravity of the functional material and the viscosity of the functional material is set to 100% or more, floating and sinking Can prevent the bias of the spacer, and can reliably and uniformly set the thickness of the functional material laminate.
請求項 1 3記載のように、 基体の周縁部間に 1条にシーリング材を配する場合 には、 シ一リング材に素材に対する制約は大きくなるが、 シーリング材の積層幅 を極力狭くして、 機能性材料の積層面積を大きく設定できるとともに、 機能性材 料積層体の組立性が向上し、 しかもシ一リング材の使用量を極力少なくして製作 コストを低減できる。 As described in claim 13, in the case where the sealing material is arranged in a single strip between the peripheral portions of the base, the sealing material has a greater restriction on the material, but the lamination width of the sealing material is large. As a result, the lamination area of the functional material can be set as large as possible, the assemblability of the functional material laminate can be improved, and the use amount of the sealing material can be reduced as much as possible to reduce the manufacturing cost.
請求項 1 4記載のように、 基体の周縁部間にガス遮断性と基体に対する接着性 とに優れた 2条のシ一リング材を内外に並列状に配すると、 機能性材料の積層面 積は多少狭くなるが、 内側のシ一リング材により機能性材料を確実に封止でき、 外側のシーリング材により基体同士を確実に接着することが可能となる。 また、 シーリング材に対する制約が少なくなり、 種々の組み合わせの素材からなるシー リング材を利用できる。  As described in claim 14, when two sealing materials having excellent gas barrier properties and adhesiveness to the substrate are arranged in parallel between the periphery of the substrate inside and outside, the laminated area of the functional material is increased. Although the material is slightly narrower, the functional material can be securely sealed by the inner sealing material, and the substrates can be securely bonded to each other by the outer sealing material. In addition, restrictions on the sealing material are reduced, and sealing materials made of various combinations of materials can be used.
請求項 1 5記載のように、 基体の周縁部間に設けるシ一リング材として、 分子 中に 1個以上の架橋しうる反応基を含有する分子量 5 0 0〜 3 0万の飽和炭化水 素系重合体を必須成分とし、 ガラス板などの透明板に対する接着性に優れ、 しか も水蒸気の遮断性に優れたシーリング材を用いると、 従来のように 2種類のシ一 リング材を用いることなく、 1種類のシーリング材により、 2枚の透明板を強固 に接着することが可能となり、 しかもシーリング材の積層部分からの水蒸気の出 入りを遮断して、 機能性材料の濃度変化による特性の変動を防止できる。 また、 このように 1種類のシーリング材により十分な接着力を確保できるので、 シーリ ング材の積層幅を極力狭く して、 機能性材料の積層面積を大きく設定できるとと もに、 機能性材料積層体の組立性が向上し、 しかもシーリング材の使用量を極力 少なく して製作コストを低減できる。 さらに、 この種のシーリング材は、 熱線反 射ガラスや L OW - Eガラスのコ一ティング面に対する接着性にも優れているの で、 従来のように接着性を向上させるためにコーティング膜を除去したりすると 、つた煩雑な処理が不要となる。  As described in claim 15, as a sealing material provided between the peripheral portions of the substrate, a saturated hydrocarbon having a molecular weight of 500 to 300,000 containing one or more crosslinkable reactive groups in a molecule. When a sealing material is used as an essential component and has excellent adhesiveness to a transparent plate such as a glass plate, and also has an excellent barrier property against water vapor, it does not require two types of sealing materials as in the past. In addition, one type of sealing material enables two transparent plates to be firmly bonded together, and also shuts out and out of water vapor from the laminated portion of the sealing material, and changes in properties due to changes in the concentration of functional materials Can be prevented. Also, since a single type of sealing material can secure sufficient adhesive strength, the lamination width of the sealing material can be reduced as much as possible, and the lamination area of the functional material can be set large. The assemblability of the laminate is improved, and the amount of sealing material used is reduced as much as possible, thereby reducing manufacturing costs. In addition, since this type of sealing material has excellent adhesion to the coating surface of heat-reflective glass and LOW-E glass, the coating film is removed to improve the adhesion as before. In this case, complicated processing is not required.
請求項 1 6記載のように、 シーリング材として後処理により硬化する素材から なるものを用いると、 後述のような減圧装置を用いて、 容易に且つ効率的に機能 性材料を基体間に積層できる。  When a material made of a material that is cured by post-processing is used as the sealing material as described in claim 16, the functional material can be easily and efficiently laminated between the substrates using a decompression device as described below. .
請求項 1 7記載のように、 シーリング材として、 反応性ゲイ素基を含有するシ —リング材を用いると、 シ一リング材の耐候性や接着性が向上するので、 機能性 材料積層体の耐久性が大幅に向上する。 請求項 1 8記載のように構成し、 この機能性材料積層体を窓ガラスとして使用 すると、 日射が強くなつて調光層の温度が上昇すると遮光状態となり、 日射が弱 くなって調光層の温度が下降すると透光状態となるので、 室内に対して日射エネ ルギ一が積極的に取り込まれることになる。 また、 太陽光の照り返しや室内暖房 による輻射熱は、 低放射機能を有する機能性ガラスにより反射されて、 室内外へ の出入りが抑制されことになる。 As described in claim 17, when a sealing material containing a reactive gay group is used as the sealing material, the sealing material has improved weather resistance and adhesiveness. The durability is greatly improved. When this functional material laminate is used as a window glass, the light-modulating layer is in a light-shielding state when the temperature of the light-modulating layer rises due to an increase in solar radiation, and the solar radiation is weakened to reduce the solar radiation. When the temperature of the solar cell falls, it becomes translucent, so that solar energy is actively taken into the room. In addition, the radiant heat due to the reflection of sunlight and indoor heating is reflected by the functional glass having a low radiation function, so that entering and exiting the room can be suppressed.
一方、 機能性ガラスを調光層よりも室外側に設置すると、 サーモト口ピック材 料が、 外部からの輻射熱の悪影響で必要以上に遮光状態となることを防止して、 適正温度で透光状態と遮光状態が自律的に切りかわるように構成できる。 つまり 、 室外からのエネルギー流入が激しい温暖な地域において、 そのエネルギー流入 量をコントロールし、 快適な室内空間を提供するとともに、 夏季の冷房負荷を著 しく低減でき、 省エネルギー化に大きく寄与できる。  On the other hand, if the functional glass is installed outside of the light control layer, the thermopick material will not be unnecessarily blocked due to the adverse effects of radiant heat from the outside, and will transmit light at an appropriate temperature. And the light-shielding state can be switched autonomously. In other words, in a warm area where the inflow of energy from the outside is severe, the amount of energy inflow can be controlled to provide a comfortable indoor space, and the cooling load in summer can be significantly reduced, contributing greatly to energy saving.
また、 この機能性ガラスを調光層よりも室内側に設置すると、 サ一モトロピッ ク材料が、 室内暖房による輻射熱の悪影響で必要以上に遮光状態となることを防 止して、 適正温度で透光状態と遮光状態が自律的に切りかわるように構成できる 。 室内からのエネルギー流出が激しい寒冷な地域において、 そのエネルギー流出 量を抑制し、 快適な室内空間を提供するとともに、 夏季の冷房負荷および冬季の 暖房負荷を著しく低減でき、 省エネルギー化に大きく寄与できる。 また、 暖房時 において調光層が不必要に遮光状態にならないようにして、 開口部としての視野 および開放感を確保できる。  In addition, if this functional glass is installed closer to the room than the light control layer, the thermotropic material is prevented from being unnecessarily shaded by the radiant heat caused by room heating, and is transparent at an appropriate temperature. It can be configured such that the light state and the light-shielded state are switched autonomously. In a cold area where energy is leaked from the room, the energy flow can be reduced and a comfortable indoor space can be provided, while the cooling load in summer and the heating load in winter can be significantly reduced, greatly contributing to energy saving. In addition, by preventing the light control layer from unnecessarily blocking light during heating, it is possible to secure a field of view and a sense of openness as an opening.
請求項 1 9記載のように構成すると、 空気層により調光ガラスの断熱特性が一 層向上し、 省エネルギー化に大きく貢献できる。  With the configuration according to claim 19, the heat insulating property of the light control glass is further improved by the air layer, which can greatly contribute to energy saving.
請求項 2 0記載のように、 低放射膜が空気層に接するように機能性ガラスを配 置すると、 他物との接触による低放射膜の破損を防止できるとともに、 低放射膜 が機能性材料に接触することによる、 低放射膜の腐食等を防止でき、 低放射膜の 耐久性を向上できる。  By arranging the functional glass such that the low-emissivity film is in contact with the air layer, it is possible to prevent the low-emission film from being damaged by contact with other objects and to make the low-emission film a functional material. Corrosion of the low-emission film due to contact with the surface can be prevented, and the durability of the low-emission film can be improved.
請求項 2 1記載のように機能性材料として、 サーモト口ピック材料を用いると 、 外気温度に応じて日射エネルギー取得率を調整できるので、 冷暖房負荷を低減 可能な機能性材料積層体を実現できる。 請求項 2 2記載のような構成成分の機能性材料を用いると、 調光機能を有する 機能性材料積層体を実現でき、 日射エネルギーを効率的に取得'抑制して、 省ェ ネルギー化に大きく寄与する。 When the thermopick material is used as the functional material as described in claim 21, the solar energy acquisition rate can be adjusted according to the outside air temperature, so that a functional material laminate capable of reducing the cooling / heating load can be realized. By using the functional material having the constituent components as described in claim 22, a functional material laminate having a dimming function can be realized, and the solar energy can be efficiently obtained and suppressed, thereby greatly contributing to energy saving. Contribute.
本発明に係る機能性材料積層体の製造方法によれば、 基体間に充填する機能性 材料よりも大きな容量の閉鎖空間をシーリング材により基体間に形成し、 この閉 鎖空間に機能性材料を充填して、 閉鎖空間内を略真空状態にしてから、 シ一リン グ材を変形させながら基体を押圧し、 閉鎖空間内に機能性材料を充填するので、 高粘調液体やゲルのような可塑性の機能性材料でも気泡が混入しないように基体 間に充填することが可能となり、 気泡のない綺麗な機能性材料積層体を製作でき る。  According to the method of manufacturing a functional material laminate according to the present invention, a closed space having a larger capacity than the functional material to be filled between the substrates is formed between the substrates by the sealing material, and the functional material is filled in the closed spaces. After filling, the inside of the enclosed space is made substantially vacuum, and then the base material is pressed while deforming the sealing material, and the functional material is filled in the enclosed space, so that the liquid like high viscosity liquid or gel Even a plastic functional material can be filled between substrates so that air bubbles are not mixed, and a beautiful functional material laminate without air bubbles can be manufactured.
請求項 2 4記載のように、 セッ ト工程において、 一方の基体のみに機能性材料 とシーリング材とを付着させると、 機能性材料とシ一リング材とを並行して同時 に付着できるので、 機能性材料積層体の作製時間を短縮できる。 また、 セッ トェ 程において、  As set forth in claim 24, in the setting step, if the functional material and the sealing material are attached only to one of the substrates, the functional material and the sealing material can be attached simultaneously in parallel. The manufacturing time of the functional material laminate can be reduced. Also, during the setup process,
請求項 2 5記載のように、 セッ ト工程において機能性材料を基体に対して均一 な膜状に塗布する場合には、 機能性材料とシ一リング材との間隔が 5 c m以下に なるように、 また請求項 2 6記載のように、 セッ ト工程において、 機能性材料を 基体に対して点状あるいは線状あるいはその混合状に塗布する場合には、 隣接す る点間距離ある 、は線間距離ある 、は点と線間の距離が 5 c m以下になるように 設定すると、 機能性材料への気泡の混入を一層効果的に防止できる。  As set forth in claim 25, when the functional material is applied to the substrate in a uniform film in the setting step, the distance between the functional material and the sealing material is 5 cm or less. In the setting step, when the functional material is applied to the substrate in the form of dots, lines, or a mixture thereof, there is a distance between adjacent points. If the distance between the lines is set so that the distance between the point and the line is 5 cm or less, air bubbles can be more effectively prevented from being mixed into the functional material.
請求項 2 7記載のように、 機能性材料あるいはシーリング材との少なくとも一 方に基体同士の最小間隔を規定するためのスぺーサを設けると、 必要最小限の機 能性材料の厚みを確保して、 機能性材料の厚みを一様に設定できる。 しかも、 基 体のスぺーザに対応する位置における応力集中の発生を最小限に抑えて、 基体の 破損を効果的に防止できる。  As described in claim 27, if a spacer is provided at least at least one of the functional material and the sealing material to define the minimum distance between the bases, the necessary minimum thickness of the functional material is secured. Thus, the thickness of the functional material can be set uniformly. In addition, the occurrence of stress concentration at the position corresponding to the spacer of the base can be minimized, and the breakage of the base can be effectively prevented.
請求項 2 8記載のように、 機能性材料にスぺ一サを設け、 少なくとも一方の基 体にスぺーザよりも軟質な係止フィルムをラミネ一卜すると、 スぺーザが係止フ ィルムに密着してスぺ一ザの移動が規制され、 機能性材料の厚さを一様に設定で きるとともに、 係止フィルムが緩衝材として作用することで、 スぺ一サ位置にお ける応力集中の発生を少なくして、 応力集中による基体の破損を一層効果的に防 止できる。 し力、も、 このような係止フィルムは、 基体に対してラミネートにより 容易に形成でき、 機能性材料積層体の製造工程が複雑になることもない。 As described in claim 28, when the functional material is provided with a spacer and at least one of the bases is laminated with a locking film softer than the spacer, the spacer is formed by the locking film. The movement of the spreader is tightly adhered to, and the thickness of the functional material can be set uniformly, and the locking film acts as a cushioning material, so that the spreader position can be adjusted. The occurrence of stress concentration in the substrate can be reduced, and damage to the substrate due to the stress concentration can be more effectively prevented. Such a locking film can be easily formed by laminating the base material, and the manufacturing process of the functional material laminate does not become complicated.
請求項 2 9記載のように、 スぺーサを軟質あるいは可塑性の材料からなる外装 材で被覆すると、 スぺーザの沈降や浮上を防止して、 機能性材料の厚さを一様に 設定できるとともに、 外装材が緩衝材として作用することで、 スぺーサ位置にお ける応力集中の発生を少なくして、 応力集中による基体の破損を一層効果的に防 止できる。 また、 基体のサイズや形状に影響を受けることなく、 基体間の隙間を 一様に設定することが可能となる。  As described in claim 29, when the spacer is covered with an exterior material made of a soft or plastic material, the spacer can be prevented from settling or floating, and the thickness of the functional material can be set uniformly. In addition, since the exterior material acts as a cushioning material, the occurrence of stress concentration at the spacer position is reduced, and damage to the substrate due to the stress concentration can be more effectively prevented. Further, the gap between the substrates can be set uniformly without being affected by the size or shape of the substrates.
請求項 3 0記載のように、 減圧密着工程において、 少なくとも一部分が柔軟な 膜体で仕切られた、 隣接する 2つの減圧槽を有する減圧装置を用いると、 閉鎖空 間を減圧してからシ一リング材を基体に気密状に密着させ、 そのまま膜体を基体 に対して圧接させて、 密閉された閉鎖空間内に機能性材料を充満させることで、 減圧密着工程と押圧工程とを連続的に行うことが可能となるので、 機能性材料の 充塡作業を一層効率的に行うことが可能となる。  As described in claim 30, in the decompression and adhesion step, when a decompression device having two adjacent decompression tanks, at least a part of which is partitioned by a flexible film, is used, the pressure in the closed space is reduced, and then the pressure is reduced. The ring material is brought into close contact with the substrate in an airtight manner, the membrane is pressed against the substrate as it is, and the functional material is filled in the enclosed space. Since it is possible to perform the operation, the filling operation of the functional material can be performed more efficiently.
請求項 3 1記載のように、 変形防止用スぺーサを設けたり、 成形型を設けると 機能性材料の側縁が薄肉になることを防止できるとともに、 機能性材料全体の厚 さを要求厚さに精度よく設定すること可能となる。  As described in claim 31, providing a spacer for preventing deformation or providing a molding die can prevent the side edges of the functional material from becoming thin, and reduce the thickness of the entire functional material to the required thickness. This makes it possible to set the values with high accuracy.
請求項 3 2記載のようにシーリング材を構成すると、 減圧密着工程にお 、て、 閉鎖空間を容易に略真空状態にすることが可能となる。  When the sealing material is configured as described in claim 32, it is possible to easily bring the closed space into a substantially vacuum state in the pressure-reducing and contacting step.
請求項 3 3記載のように構成すると、 2つの基体を予備硬化させたシーリング 材で仮接着できるので、 両基体の積層時に大きな圧力を負荷した場合でも、 両基 体およびシーリング材がずれ難いため、 寸法精度の優れた機能性材料積層体が得 られる。  According to the structure described in claim 33, since the two substrates can be temporarily bonded with the pre-cured sealing material, the two substrates and the sealing material are hardly displaced even when a large pressure is applied during lamination of the two substrates. Thus, a functional material laminate having excellent dimensional accuracy can be obtained.

Claims

請求の範囲 The scope of the claims
1 . 少なくとも一方の一部又は全部を透明となした基体間に、 液状或いは湿潤な ゲル状の機能性材料を封入するとともに、 基体間の隙間が一様になるようにスぺ —サを配した機能性材料積層体において、 基体とスぺーサ間に軟質或いは可塑性 を示す材料からなる係止部材を設け、 この係止部材によりスぺ一サを基体間に固 定したことを特徴とする機能性材料積層体。  1. A liquid or wet gel-like functional material is sealed between at least one or all of the transparent substrates, and spacers are arranged so that the gaps between the substrates are uniform. In the functional material laminate described above, a locking member made of a soft or plastic material is provided between the base and the spacer, and the spacer is fixed between the base by the locking member. Functional material laminate.
2 . 前記係止部材として、 少なくとも一方の基体の機能性材料に臨む面に、 スぺ —ザよりも軟質な係止フィルムをラミネ一トしたことを特徴とする請求項 1記載 の機能性材料積層体。  2. The functional material according to claim 1, wherein, as the locking member, a locking film softer than a spacer is laminated on a surface of at least one of the bases facing the functional material. Laminate.
3 . 前記係止フィルムの膜厚が、 3 0〜 1 0 0 mであることを特徴とする請求 項 2記載の機能性材料積層体。 3. The functional material laminate according to claim 2, wherein the thickness of the locking film is 30 to 100 m.
4 . 前記係止フィルムが、 紫外線遮蔽機能又は紫外線吸収機能を有することを特 徴とする請求項 2又は 3記載の機能性材料積層体。  4. The functional material laminate according to claim 2, wherein the locking film has an ultraviolet shielding function or an ultraviolet absorbing function.
5 . 前記係止フィルムの主たる構成成分が、 ポリエステルであることを特徴とす る請求項 2 ~ 4のいずれか 1項記載の機能性材料積層体。  5. The functional material laminate according to any one of claims 2 to 4, wherein a main component of the locking film is polyester.
6 . 前記係止フィルムの主たる構成成分が、 ポリエチレンテレフタレートである ことを特徴とする請求項 2〜 5のいずれか 1項記載の機能性材料積層体。  6. The functional material laminate according to any one of claims 2 to 5, wherein a main component of the locking film is polyethylene terephthalate.
7 . 前記スぺーザが、 球状であることを特徴とする請求項 2〜 6のいずれか 1項 記載の機能性材料積層体。  7. The functional material laminate according to any one of claims 2 to 6, wherein the souser is spherical.
8 . 前記スぺ一ザの粒径が、 機能性材料の存在する層厚よりも大きく、 機能性材 料の層厚と係止フィルムの膜厚の和よりも小さいことを特徴とする請求項 2〜 7 のいずれか 1項記載の機能性材料積層体。  8. The particle size of the splicer is larger than the layer thickness of the functional material, and smaller than the sum of the layer thickness of the functional material and the film thickness of the locking film. 8. The functional material laminate according to any one of 2 to 7.
9 . 前記スぺーザが、 ガラスビーズであることを特徴とする請求項 2〜 8のいず れか 1項記載の機能性材料積層体。  9. The functional material laminate according to any one of claims 2 to 8, wherein the soother is a glass bead.
1 0 . 前記係止部材として、 軟質あるいは可塑性の材料からなる外装材をスベー サに被覆したことを特徴とする請求項 1記載の機能性材料積層体。  10. The functional material laminate according to claim 1, wherein an exterior material made of a soft or plastic material is coated on a spacer as the locking member.
1 1 . 前記スぺ一サを基体間の要求間隔よりも小さなサイズに構成し、 スぺ一サ により基体間の最小間隔を規定したことを特徴とする請求項 1〜1 0のいずれか 1項記載の機能性材料積層体。 11. The device according to claim 1, wherein the spacer is configured to have a size smaller than a required interval between the substrates, and a minimum interval between the substrates is defined by the spacer. 13. The functional material laminate according to the above item.
1 2 . 前記スぺ一ザの比重を機能性材料の比重の 9 0 %〜1 1 0 %に設定すると ともに、 機能性材料の粘度を 1 0 0ボイズ以上に設定したことを特徴とする請求 項 1〜 1 1のいずれか 1項記載の機能性材料積層体。 12. The specific gravity of the above-mentioned sprinkler is set to 90% to 110% of the specific gravity of the functional material, and the viscosity of the functional material is set to more than 100 Boys. Item 1. The functional material laminate according to any one of Items 1 to 11.
1 3 . 前記基体の周縁部間に 1条のシーリング材を配して、 シ一リング材により 基体の周縁部同士を接着固定するとともに、 基体間に機能性材料を封止したこと を特徴とする請求項 1〜 1 2のいずれか 1項記載の機能性材料積層体。  13. A sealing material is disposed between the peripheral portions of the base, and the peripheral portions of the substrates are bonded and fixed by the sealing material, and a functional material is sealed between the substrates. The functional material laminate according to any one of claims 1 to 12, wherein the functional material laminate is formed.
1 4 . 前記基体の周縁部間に、 ガス遮断性に優れたシ一リング材と、 基体に対す る接着性に優れたシ一リング材の少なくとも 2条のシ一リング材を内外に並列状 に配したことを特徴とする請求項 1 ~ 1 2のいずれか 1項記載の機能性材料積層 体。  14. At least two sealing materials, a sealing material with excellent gas barrier properties and a sealing material with excellent adhesion to the substrate, are arranged in parallel between the periphery of the base. The functional material laminate according to any one of claims 1 to 12, wherein the functional material laminate is arranged in a manner as described below.
1 5 . シーリング材として、 分子中に 1個以上の架橋しうる反応基を含有する分 子量 5 0 0 ~ 3 0万の飽和炭化水素系重合体を必須成分とするシーリング材を用 いたことを特徴とする請求項 1 3記載の機能性材料積層体。  15. As a sealing material, a sealing material containing a saturated hydrocarbon polymer with a molecular weight of 500 to 300,000 containing one or more crosslinkable reactive groups in the molecule as an essential component was used. 14. The functional material laminate according to claim 13, wherein:
1 6 . 前記シーリング材として後処理により硬化する素材からなるものを用いた ことを特徴とする請求項 1 3〜 1 5のいずれか 1項記載の機能性材料積層体。 16. The functional material laminate according to any one of claims 13 to 15, wherein a material made of a material that is cured by post-processing is used as the sealing material.
1 7 . 前記シ一リング材として、 反応性ケィ素基を含有するシ一リング材を用 ヽ たことを特徴とする請求項 1 3〜1 5のいずれか 1項記載の機能性材料積層体。17. The functional material laminate according to any one of claims 13 to 15, wherein a sealing material containing a reactive silicon group is used as the sealing material. .
1 8 . 前記機能性材料として、 基体間に温度変化により透光状態と遮光状態に切 り換わるサ一モト口ピック材料を封入し、 機能性材料よりも室外側又は室内側に 配される基体の少なくとも 1枚を低放射機能を有する機能性ガラスで構成したこ とを特徴とする請求項 1〜 1 7のいずれか 1項記載の機能性材料積層体。 18. The functional material is filled with a thermopic pick material that switches between a light-transmitting state and a light-shielding state due to a temperature change between the substrates, and the substrate is disposed outside or inside the room rather than the functional material. The functional material laminate according to any one of claims 1 to 17, wherein at least one of the functional material laminates is made of a functional glass having a low radiation function.
1 9 . 前記基体を 3枚以上積層させ、 機能性材料を充塡した基体間の隙間以外の 隙間の少なくとも 1つに、 基体の外縁部間をシール材でシールして空気層を形成 したことを特徴とする請求項 1〜 1 8記載の機能性材料積層体。  1 9. An air layer was formed by laminating three or more of the bases and sealing the outer edges of the bases with a sealing material in at least one of the gaps other than the gap between the bases filled with the functional material. The functional material laminate according to any one of claims 1 to 18, characterized in that:
2 0 . 前記空気層に臨む基体の少なくとも一方を、 基体の表面に低放射膜を形成 した機能性ガラスで構成し、 低放射膜が空気層に接するように機能性ガラスを配 置したことを特徴とする請求項 1 9記載の機能性材料積層体。  20. At least one of the substrates facing the air layer is made of functional glass having a low-emissivity film formed on the surface of the substrate, and the functional glass is arranged such that the low-emission film is in contact with the air layer. 10. The functional material laminate according to claim 19, wherein:
2 1 . 機能す生材料として、 温度変化により白濁状態と透明状態とに可逆的に状態 変化するサーモト口ピック材料を用いたことを特徴とする請求項 1 ~ 2 0のいず れか 1項記載の機能性材料積層体。 21. A thermopick material that reversibly changes between a cloudy state and a transparent state due to a temperature change as a functioning raw material, according to any one of claims 1 to 20. 9. The functional material laminate according to claim 1.
2 2 . 機能性材料の主たる構成成分が、 水溶性高分子化合物と、 非イオン性界面 活性剤および Zまたは曇り点制御物質と、 水であることを特徴とする請求項 1〜 1のいずれか 1項記載の機能性材料積層体。  2. The main constituents of the functional material are a water-soluble polymer compound, a nonionic surfactant and a Z or cloud point controlling substance, and water. 2. The functional material laminate according to item 1.
2 3 . 基体に対して機能性材料を塗布するとともに、 基体間の要求隙間よりも大 きな隙間をあけて基体間を気密状にシール可能な高さのシーリング材を基体に付 着させるセッ ト工程と、 2 3. A functional material is applied to the bases, and a sealing material is attached to the bases at a height that allows air-tight sealing between the bases with a gap larger than the required gap between the bases. Process
基体を重ね合わせて基体間に機能性材料及びシ一リング材を介装させ、 基体間 にシーリング材で取り囲まれる閉鎖空間を形成する基体重合工程と、  A substrate polymerization step of superimposing the substrates, interposing a functional material and a sealing material between the substrates, and forming a closed space surrounded by the sealing material between the substrates;
重ね合わせた基体を減圧雰囲気下にセッ 卜して、 閉鎖空間を略真空状態に維持 しな力くら、 閉鎖空間が気密状になるように、 シーリング材を基体に密着させる減 圧密着工程と、  Setting the superposed substrates in a reduced-pressure atmosphere to maintain the enclosed space in a substantially vacuum state, and a pressure-reducing adhesion step in which the sealing material is adhered to the substrate so that the enclosed space is airtight.
閉鎖空間の容積が基体に塗布した機能性材料の容積と略同じになるように基体 を押圧して、 シーリング材を変形させつつ、 機能性材料を閉鎖空間内に充満させ る押圧工程と、  A pressing step of pressing the base so that the volume of the closed space is substantially the same as the volume of the functional material applied to the base to deform the sealing material and fill the closed space with the functional material;
を備えたことを特徴とする機能性材料積層体の製造方法。  A method for producing a functional material laminate, comprising:
2 4 . セッ ト工程において、 一方の基体のみに機能性材料とシ一リング材を付着 させることを特徴とする請求項 2 3記載の機能性材料積層体の製造方法。  24. The method for producing a functional material laminate according to claim 23, wherein in the setting step, the functional material and the sealing material are attached to only one of the substrates.
2 5 . 基体重合工程において基体を重ね合わせた状態で、 機能性材料とシ一リン グ材との間隔が 5 c m以下になるように、 セッ ト工程において機能性材料を基体 に対して均一な膜状に塗布することを特徴とする請求項 2 3又は 2 4記載の機能 性材料積層体の製造方法。  25. In the setting process, the functional material is uniformly applied to the substrate so that the distance between the functional material and the sealing material is 5 cm or less with the substrates superimposed in the substrate polymerization process. 25. The method for producing a functional material laminate according to claim 23, wherein the method is applied in a film form.
2 6 . セッ ト工程において、 機能性材料を基体に対して点状あるいは線状あるい はその混合状に、 力、つ隣接する点間距離あるいは線間距離あるいは点と線間の距 離が 5 c m以下になるように塗布することを特徴とする請求項 2 3〜2 5のいず れか 1項記載の機能性材料積層体の製造方法。  26. In the setting process, the force, the distance between adjacent points or the distance between adjacent lines, or the distance between points and lines is applied to the functional material in the form of dots or lines or a mixture thereof. The method for producing a functional material laminate according to any one of claims 23 to 25, wherein the method is applied so that the thickness is 5 cm or less.
2 7 . 前記機能性材料あるいはシーリング材の少なくとも一方に基体同士の最小 間隔を規定するためのスぺーサを設けたことを特徴とする請求項 2 3 ~〜 2 6の いずれか 1項記載の機能性材料積層体の製造方法。 27. The spacer according to any one of claims 23 to 26, wherein a spacer is provided on at least one of the functional material and the sealing material for defining a minimum distance between the substrates. A method for producing a functional material laminate.
2 8 . 前記機能性材料に基体間の隙間を一様に設定するためのスぺ一サを設ける ととに、 少なくとも一方の基体の機能性材料に臨む面に、 スぺ一ザよりも軟質な 係止フィルムをラミネートした請求項 2 3〜 2 7のいずれか 1項記載の機能性材 料積層体の製造方法。 28. A spacer is provided on the functional material to uniformly set the gap between the bases, and at least one of the bases facing the functional material is softer than the spacer. 28. The method for producing a functional material laminate according to any one of claims 23 to 27, wherein a locking film is laminated.
2 9 . 前記機能性材料に配するスぺ一ザに軟質あるいは可塑性の材料からなる外 装材で被覆し、 外装材を介してスぺ一サを基体間に固定したことを特徴とする請 求項 2 7記載の機能性材料積層体の製造方法。 29. A contractor characterized in that a spreader provided on the functional material is covered with an outer material made of a soft or plastic material, and the spacer is fixed between bases via the outer material. 28. The method for producing a functional material laminate according to claim 27.
3 0 . 減圧密着工程において、 少なくとも一部分が柔軟な膜体で仕切られた、 隣 接する 2つの減圧槽を有する減圧装置を用い、 一方の減圧槽内に重ね合わせた基 体をセッ 卜して両減圧槽を減圧し、 閉鎖空間を略真空状態にしてから、 閉鎖空間 が気密状になるように、 他方の減圧槽を常圧あるいは加圧して膜体で基体を押圧 し、 シーリング材を基体に密着させることを特徴とする請求項 2 3〜2 9のいず れか 1項記載の機能性材料積層体の製造方法。  30. In the reduced pressure adhesion step, using a decompression device having two adjacent decompression tanks, at least a part of which is separated by a flexible film, set the superimposed substrates in one decompression tank and set both After decompressing the decompression tank to make the enclosed space substantially in a vacuum state, the other decompression tank is subjected to normal pressure or pressure to press the substrate with a film so that the enclosed space is airtight, and the sealing material is applied to the substrate. The method for producing a functional material laminate according to any one of claims 23 to 29, wherein the functional material laminate is adhered.
3 1 . 減圧装置の一方の減圧槽内に重ね合わせてセッ卜した基体の周辺に、 機能 性材料の要求厚さと略同じ厚みを有し、 膜圧による機能性材料の側縁の変形を防 止する変形防止用スぺ一サを配置するか、 または減圧装置の膜体と基体間に基体 の形状に沿つた剛体からなる成形型を設けたことを特徴とする請求項 3 0記載の 機能性材料積層体の製造方法。  3 1. The thickness of the base material, which is set approximately equal to the required thickness of the functional material, is set around the substrate set in a vacuum tank of one of the decompression devices to prevent deformation of the side edge of the functional material due to film pressure. 31. The function according to claim 30, wherein a deformation preventing spacer for stopping is provided, or a forming die made of a rigid body along the shape of the base is provided between the film body and the base of the pressure reducing device. A method for producing a conductive material laminate.
3 2 . 基体重合工程において、 基体間に形成される閉鎖空間が外部と連通し、 減 圧密着工程において、 シーリング材を基体に密着して、 閉鎖空間が気密状になる ようにシーリング材を設けたことを特徴とする請求項 2 3〜3 1のいずれか 1項 記載の機能性材料積層体の製造方法。  32. In the substrate polymerization process, a closed space formed between the substrates communicates with the outside, and in the pressure reduction contacting process, a sealing material is provided in close contact with the substrate so that the closed space is airtight. The method for producing a functional material laminate according to any one of claims 23 to 31, wherein:
3 3 . 基体重合工程において、 機能性材料及びシ一リング材を基体間にそれぞれ 積層する前に、 シーリング材を予備硬化させることを特徴とする請求項 2 3〜3 2のレ、ずれか 1項記載の機能性材料積層体の製造方法。  33. In the substrate polymerization step, the sealing material is pre-cured before laminating the functional material and the sealing material between the substrates, respectively. The method for producing a functional material laminate according to the above item.
PCT/JP1998/002517 1997-06-09 1998-06-05 Functional material laminate and process for production thereof WO1998056727A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU75517/98A AU7551798A (en) 1997-06-09 1998-06-05 Functional material laminate and process for production thereof

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP9/151276 1997-06-09
JP15127697 1997-06-09
JP18383097 1997-07-09
JP9/183830 1997-07-09
JP24411097 1997-09-09
JP9/244111 1997-09-09
JP9/244110 1997-09-09
JP24411197 1997-09-09
JP9/264100 1997-09-29
JP26410097 1997-09-29

Publications (1)

Publication Number Publication Date
WO1998056727A1 true WO1998056727A1 (en) 1998-12-17

Family

ID=27527947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002517 WO1998056727A1 (en) 1997-06-09 1998-06-05 Functional material laminate and process for production thereof

Country Status (2)

Country Link
AU (1) AU7551798A (en)
WO (1) WO1998056727A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002127308A (en) * 2000-10-19 2002-05-08 Dainippon Printing Co Ltd Manufacturing method for composite
KR101605570B1 (en) 2007-11-21 2016-03-22 리쿠아비스타 비.브이. Method of making an electrowetting device, apparatus for carrying out the method and electrowetting device
JP2017502903A (en) * 2014-07-14 2017-01-26 サン−ゴバン グラス フランス Smart glass structure and window glass for transportation
JPWO2017056418A1 (en) * 2015-09-29 2018-08-02 パナソニックIpマネジメント株式会社 Glass panel unit, glass window provided with the same, and method for manufacturing glass panel unit
WO2018179994A1 (en) * 2017-03-31 2018-10-04 パナソニックIpマネジメント株式会社 Glass panel unit, and glass window
WO2022085638A1 (en) * 2020-10-21 2022-04-28 Agc株式会社 Method for producing glass plate structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05330863A (en) * 1992-05-28 1993-12-14 Sekisui Chem Co Ltd Production of laminated plate
JPH0634983A (en) * 1992-07-17 1994-02-10 Sharp Corp Sticking device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05330863A (en) * 1992-05-28 1993-12-14 Sekisui Chem Co Ltd Production of laminated plate
JPH0634983A (en) * 1992-07-17 1994-02-10 Sharp Corp Sticking device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002127308A (en) * 2000-10-19 2002-05-08 Dainippon Printing Co Ltd Manufacturing method for composite
JP4568417B2 (en) * 2000-10-19 2010-10-27 大日本印刷株式会社 Composite substrate and manufacturing method thereof
KR101605570B1 (en) 2007-11-21 2016-03-22 리쿠아비스타 비.브이. Method of making an electrowetting device, apparatus for carrying out the method and electrowetting device
JP2017502903A (en) * 2014-07-14 2017-01-26 サン−ゴバン グラス フランス Smart glass structure and window glass for transportation
JPWO2017056418A1 (en) * 2015-09-29 2018-08-02 パナソニックIpマネジメント株式会社 Glass panel unit, glass window provided with the same, and method for manufacturing glass panel unit
US10988973B2 (en) 2015-09-29 2021-04-27 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit, glass window provided with same, and method for manufacturing glass panel unit
WO2018179994A1 (en) * 2017-03-31 2018-10-04 パナソニックIpマネジメント株式会社 Glass panel unit, and glass window
JPWO2018179994A1 (en) * 2017-03-31 2020-05-14 パナソニックIpマネジメント株式会社 Glass panel unit and glass window
WO2022085638A1 (en) * 2020-10-21 2022-04-28 Agc株式会社 Method for producing glass plate structure

Also Published As

Publication number Publication date
AU7551798A (en) 1998-12-30

Similar Documents

Publication Publication Date Title
US20180321567A1 (en) Glazing having switchable optical properties
US20170028686A1 (en) Durable and lightweight glazing units
JP6491351B2 (en) Combined glazing with improved moisture resistance
US20090181203A1 (en) Laminated glazing and sealing and peripheral reinforcing means for same
CN101900908B (en) Energy-saving dimming glass
CN201600528U (en) Automobile smart glass
FR2815374A1 (en) Multiple glazing system comprises two substrates with active system between and is provided with moisture-proofing joint based on thermo-fusible polymer such as ethylene-vinyl acetate or on mastic such as polyurethane
FR2712840A1 (en) Glazing and method of manufacturing such a glazing.
WO1998056727A1 (en) Functional material laminate and process for production thereof
JPH10287449A (en) Polymer aqueous solution laminate and its production
JP2001030391A (en) Functional material laminate and manufacture thereof
JP2000017956A (en) Functional material laminate and its manufacture
EP3601186B1 (en) Infrared rays (ir) reflective laminated glass for a window
JP2001125151A (en) Laminated body of functional material and method of producing the same
JP3431286B2 (en) Glass laminate
TWM526952U (en) Thin type energy-saving translucent panel
KR100516029B1 (en) UV curable light-modulating film for light control structure and preparation thereof
CN215804128U (en) EVA/PVB laminated glass protection liquid crystal base film structure and glass unit for window
KR102620804B1 (en) Smart windows assembly
JP2001075132A (en) Functional material laminate
JP2000008741A (en) Dimming glass and window using it
JP2000185947A (en) Laminate of functional material and production of the same
JP2000203894A (en) Production of light-controlling glass and light- controlling glass produced thereby
JPH10175269A (en) Aqueous polymer solution laminate and its manufacture
JP2000191344A (en) Light-controlling glass and window using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA