WO1998055619A1 - Anti-gpiib/iiia rekombinante antikörper - Google Patents

Anti-gpiib/iiia rekombinante antikörper Download PDF

Info

Publication number
WO1998055619A1
WO1998055619A1 PCT/EP1998/003397 EP9803397W WO9855619A1 WO 1998055619 A1 WO1998055619 A1 WO 1998055619A1 EP 9803397 W EP9803397 W EP 9803397W WO 9855619 A1 WO9855619 A1 WO 9855619A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
ser
gly
acid sequence
nucleotide sequence
Prior art date
Application number
PCT/EP1998/003397
Other languages
English (en)
French (fr)
Inventor
Peter Berchtold
Robert F. A. Escher
Original Assignee
Asat Ag Applied Science & Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19820663A external-priority patent/DE19820663A1/de
Application filed by Asat Ag Applied Science & Technology filed Critical Asat Ag Applied Science & Technology
Priority to JP50154899A priority Critical patent/JP2001513652A/ja
Priority to CA002293693A priority patent/CA2293693A1/en
Priority to AU84367/98A priority patent/AU745965B2/en
Priority to EP98934922A priority patent/EP0990034A1/de
Priority to US09/424,840 priority patent/US6790938B1/en
Publication of WO1998055619A1 publication Critical patent/WO1998055619A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2839Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the integrin superfamily
    • C07K16/2848Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the integrin superfamily against integrin beta3-subunit-containing molecules, e.g. CD41, CD51, CD61
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy

Definitions

  • the invention relates to new nucleic acid sequences which code for human autoantibodies against platelet membrane proteins and for anti-idiotypic antibodies, new amino acid sequences of human antibodies and their use for the diagnosis and therapy of diseases.
  • Autoimmune thrombocytopenic purpura is an immune disease, which is defined by a low platelet count in normal or increased megakaryocytopoiesis. Due to the presence of anti-platelet autoantibodies, there is an increased destruction of platelets in the reticuloendothelial system (spleen, liver, bone marrow). These autoantibodies, which can be detected in approximately 75% of AlTP patients, are mainly directed against the platelet membrane glycoproteins (GP) llb / llla and Ib / IX. Several different auto-antibody specificities can be found in a single patient (see e.g.
  • Antibodies Hybridomas 1 (1 990), 83-95 The occurrence of natural autoantibodies against various self-antigens has also been reported in healthy persons, for example against intracellular and cytoskeletal components of human platelets (Guilbert et al., J. Immunol. 1 28 (1 982), 2779-2787; Hurez et al., Eur. J. Immunol. 23 (1 993), 783-789 and Pfueller et al., Clin. Exp. Immunol. 79 (1 990), 367-373). Some of these autoantibodies observed in the serum of healthy people can also be directed against platelet membrane proteins (Souberbielle, Eur. J. Haematol. 56 (1 996), 1 78-1 80). The role of these natural autoantibodies and their relationship to disease-associated autoantibodies is still unknown.
  • Corticosteroids can be used to treat AlTP. Approximately half of the patients respond to prednisone administration within 4 weeks, but long-term remissions are rarely found. In patients who have heavy bleeding or extremely low platelet counts, the administration of high doses of intravenous immunoglobulin (IVIgG) is recommended as an emergency treatment. This treatment is followed by a rapid, but usually only temporary, increase in platelet counts in most patients. The mechanisms of action of corticosteroids and IVIgG in the treatment of AlTP are still unknown.
  • IVIgG intravenous immunoglobulin
  • the problem underlying the present application is to identify new DNA sequences which are responsible for the binding of autoantibodies to GPIIb / llla.
  • new pharmaceutical preparations can be provided, which can be used to improve the diagnosis and therapy of AlTP.
  • binding sequences from autoantibodies were identified after production of a combinatorial phagemid display library of heavy and light chains of human antibodies using peripheral circulating B cells from a healthy human donor. After presentation of human heavy and light antibody Fab fragments on the surface of the filamentous phage M 1 3, phage clones could be identified which show a specific binding to GPIIb / llla.
  • the phagemid library was successively brought into contact with platelet platelets without GPIIb / llla (negative selection) and normal platelets (positive selection). After several rounds of selection and amplification by infection of E. coli, 23 clones were obtained which can bind to the GPIIb / llla complex. Inhibition studies using pools of monoclonal antibodies to GPIIb / llla revealed two groups of clones: both groups were inhibited by monoclonal antibodies specific for the GPIIb / llla complex and one group also by a GPIIb specific monoclonal antibody.
  • the phage clones contain the antigen binding sequences of natural autoantibodies that come from the genome of a healthy person, this finding can lead to new insights into the origin of platelet-associated autoantibodies in AlTP.
  • using the phage clones according to the invention it is possible to generate recombinant anti-idiotypic antibodies against anti-GPIIb / Illa autoantibodies, the anti-GPIIb / IIla phage clones being used as the antigen.
  • the recombinant anti-idiotypic antibodies obtainable in this way represent an interesting clinical alternative to the use of IVIgG.
  • nucleotide and derived amino acid sequences of the identified phage clones are in the sequence listing SEQ ID No.1 to 8 (autoantibodies) and SEQ ID No. 9 to 1 8 (anti-idiotypic antibodies).
  • a first aspect of the present invention relates to nucleic acids which code for autoantibodies.
  • the invention thus relates to a nucleic acid which codes for the heavy chain of a human antibody, a functional derivative or a fragment thereof and which comprises a CDR3 region selected from: (a) one for the amino acid sequence:
  • nucleic acid preferably further comprises a CDR1 region selected from
  • (c) a nucleotide sequence which codes for an amino acid sequence with a homology of at least 80% and preferably at least 90% to an amino acid sequence from (a) or (b).
  • the nucleic acid according to the invention preferably further comprises a CDR2 region selected:
  • (c) a nucleotide sequence which codes for an amino acid sequence with a homology of at least 80% and preferably of at least 90% to an amino acid sequence from (a) or (b).
  • a second aspect of the present invention is a nucleic acid encoding a human antibody light chain, a functional derivative or a fragment thereof and comprising a CDR3 region selected from: (a) one for the amino acid sequence:
  • a TW DDGLNG PV (VII) coding nucleotide sequence (b) one for the amino acid sequence:
  • a AW DDSLNG WV (VIII) coding nucleotide sequence (c) a nucleotide sequence which codes for an amino acid sequence with a homology of at least 80% and preferably of at least 90% to an amino acid sequence from (a) or (b) and (d) one Nucleotide sequence coding for an amino acid sequence with an equivalent binding ability to GPIIb / llla.
  • the nucleic acid according to the invention preferably further comprises a CDR1 region selected from:
  • nucleic acid according to the invention preferably further comprises a CDR2 region selected from: (a) one for the amino acid sequence:
  • SNNQRPS (XII) coding nucleotide sequence and (c) a nucleotide sequence which codes for an amino acid sequence with a homology of at least 80% and preferably at least 90% to an amino acid sequence from (a) or (b).
  • a second aspect of the present invention relates to nucleic acids which code for anti-idiotypic antibodies.
  • An object of the invention is thus a nucleic acid encoding the heavy chain of a human antibody, a functional derivative or a fragment thereof and comprising a CDR3 region selected from:
  • GSGSYLGYYFDY (XX) coding nucleotide sequence, (i) one for the amino acid sequence:
  • XXI coding nucleotide sequence
  • j a nucleotide sequence which is suitable for an amino acid sequence with a homology of at least 80% and preferably of at least 90% to an amino acid sequence from (a), (b), (c) or (d) encodes and (k) a nucleotide sequence for an amino acid sequence with an equivalent binding ability to autoantibodies against
  • the nucleic acid according to the invention preferably further comprises a CDR1 region selected from: a nucleotide sequence coding for the amino acid sequences NFAMS, SYTMH, DYALH or SHYWS shown in Table 7a, a nucleotide sequence coding for the amino acid sequence TYYWS, one for the amino acid sequences DYGM shown in Table 7b , SHTIS, KYAIH or ELSMH coding nucleotide sequence and a nucleotide sequence which codes for an amino acid sequence with a homology of at least 80% and preferably at least 90% to one of the aforementioned amino acid sequences.
  • the nucleic acid according to the invention preferably further comprises a CDR2 region selected from one for the amino acid sequences GISGGG LLT H YA (D / N) SVK G, LI SY DGSN KY YADSVKG, GI SW D STS IGYAD SV KG or FIYDGART RFN PSLRS for the amino acid sequences shown in Tab coding nucleotide sequence, a nucleotide sequence coding for the amino acid sequence YIYYSGNTNYNPSLKS, one for the Amino acid sequences shown in Table 7b AI SY DGSNK YYA DSVKG, GITPIFG TV N YA QKF QG, AISSNGG NTYYA DSVKG or G FD PE DGE TIY AQ KF QG and a nucleotide sequence coding for an amino acid sequence with preferably at least 80% and a homology of at least 80% encoded by at least 90% to one of the aforementioned amino acid sequences.
  • the present invention further provides a nucleic acid which codes for the light chain of a human antibody, a functional derivative or a fragment thereof and which comprises a CDR3 region selected from:
  • the nucleic acid according to the invention preferably further comprises a CDR1 region selected from a nucleotide sequence coding for the amino acid sequence TGTS SAI G NYN FVP shown in Table 7a, a nucleotide sequence coding for the amino acid sequence GGYKIGSKSVH shown in Table 7b and a nucleotide sequence containing an amino acid sequence a homology of at least 80% and preferably encoded by at least 90% of the aforementioned amino acid sequence.
  • the nucleic acid according to the invention preferably further comprises a CDR2 region selected from a nucleotide sequence coding for the amino acid sequence shown in Table 7a EGSKRPS, a nucleotide sequence coding for the amino acid sequence shown in Table 7b and a nucleotide sequence for an amino acid sequence with a homology of at least 80% and preferably at least 90% to the amino acid sequence mentioned above.
  • the term "functional derivative of a chain of a human antibody” in the sense of the present invention is to be understood as a polypeptide which comprises at least one CDR3 region of the heavy and / or light chain as defined above and optionally together with the respective complementary chain of the human Antibody (or a derivative of such a chain) can form an antibody derivative that has an equivalent recognition specificity for an antigen as the non-derivatized antibody.
  • Such an antibody derivative preferably has a binding constant of at least 10 6 l / mol, preferably of at least 10 8 l / mol, for the respective antigen.
  • Functional derivatives of chains of a human antibody can be produced, for example, by deletion, substitution and / or insertion of sections of the gene coding for the respective polypeptide by recombinant DNA techniques.
  • antibody chains or antibodies are single-chain antibodies, which for example consist of the variable ones
  • H and L chain or one or two H chain domains and optionally a constant domain can be composed.
  • the construction of such constructs is described in Hoogenboom et al., Immunol. Rev. 1 30 (1 992), 41-68; Barbas III, Methods: Companion Methods Enzymol. 2 (1 991), 1 1 9 and Plückthun, Immunochemistry (1 994), Marcel Dekker Inc., Chapter 9, 210-235.
  • equivalent binding ability means an identical binding affinity and / or specificity, i.e. To understand epitope recognition as in the specifically disclosed sequences.
  • the present invention furthermore relates to a vector which contains at least one copy of a nucleic acid according to the invention.
  • This vector can be a prokaryotic vector or a eukaryotic vector.
  • prokaryotic vectors are plasmids, cosmids and bacteriophages. Such vectors are, for example, by Sambrook et al., Molecular Cloning. A Laboratory Manual, 2nd Eddition (1 989), Cold Spring Harbor Laboratory Press, described in detail in Chapters 1 to 4.
  • a prokaryotic vector is preferably a plasmid or a phage.
  • the vector can also be a eukaryotic vector, e.g. a yeast vector, an insect vector (baculovirus) or a mammalian vector (plasmid vector or viral vector).
  • a eukaryotic vector e.g. a yeast vector, an insect vector (baculovirus) or a mammalian vector (plasmid vector or viral vector). Examples of eukaryotic vectors are described in Sambrook et al., Supra, chapter 1 6 and Winnacker, genes and clones, an introduction to genetic engineering (1 985), VCH publishing company, in particular chapters 5, 8 and 10.
  • Another object of the present invention is a cell which expresses a nucleic acid according to the invention, or a cell which is transformed with a nucleic acid according to the invention or with a vector according to the invention.
  • the cell can be a prokaryotic cell (for example a gram-negative bacterial cell, in particular E. coli) or a eukaryotic cell (for example a yeast, plant or mammalian cell). Examples for Suitable cells and methods for introducing the nucleic acid according to the invention into such cells can be found in the above references.
  • Another object of the present invention is a polypeptide which is encoded by a nucleic acid according to the invention, in particular a recombinant polypeptide.
  • the polypeptide particularly preferably contains the variable domain of the H or / and L chain of a human antibody.
  • a polypeptide which has antibody properties and is composed of a heavy chain or a functional derivative thereof and a light chain or a functional derivative thereof as subunits is particularly preferred.
  • the polypeptide can be composed of two separate chains or can be present as a single chain polypeptide.
  • Yet another object of the present invention is an antibody against a polypeptide according to the invention which is directed against a region of the polypeptide which is responsible for the recognition of the antigen.
  • This antibody can be a polyclonal antiserum, a monoclonal antibody or a fragment of a polyclonal or monoclonal antibody (for example a Fab, F (ab) 2 ,, Fab 'or F (ab') 2 fragment).
  • the antibody is preferably directed against the CDR3 region of the heavy and / or light antibody chain of the polypeptide according to the invention or a region thereof.
  • Antibodies of this type can be obtained by methods known per se by immunizing a test animal with a peptide or polypeptide which contains a CDR3 region according to the invention and obtaining the resulting polyclonal antibodies from the test animal. Furthermore, monoclonal antibodies can be obtained by fusing an antibody-producing B cell of the experimental animal with a leukemia cell according to the Köhler and Milstein method or a further development thereof. In addition, recombinant antibodies which are directed against the CDR3 region of the polypeptide according to the invention can also be obtained by patterning a suitable one Phagemid library, for example a phageimid library from a healthy human donor, can be obtained, a polypeptide according to the invention being used as the antigen.
  • a suitable one Phagemid library for example a phageimid library from a healthy human donor
  • the invention also relates to a pharmaceutical composition which contains a nucleic acid, a vector, a polypeptide, an antibody or a cell as mentioned above as the active component, optionally together with other active components and pharmaceutically customary auxiliaries, additives or carriers.
  • the pharmaceutical composition can be used to produce a diagnostic or therapeutic agent.
  • diagnostic applications are the diagnosis of AlTP or a predisposition to AlTP.
  • Another preferred diagnostic application is monitoring the course of the disease in AlTP.
  • the use of the pharmaceutical composition as a diagnostic agent can include, for example, the detection of a B cell subpopulation which expresses a polypeptide according to the invention as an antibody.
  • the detection of this antibody can, for example, at the nucleic acid level, e.g. by means of a nucleic acid hybridization assay, optionally with preceding amplification.
  • the detection can also be carried out at the protein level by an immunoassay using antigens or antibodies which react specifically with the polypeptide.
  • the pharmaceutical composition according to the invention can also be used in the therapeutic field, in particular for the prevention or therapy of AlTP.
  • This therapeutic application can be based, for example, on stimulating the production of anti-autoantibodies.
  • the autoantibody polypeptide according to the invention can be administered to a patient. thereby causing and / or stimulating the formation of anti-idiotypic antibodies.
  • This administration can be carried out according to customary immunization protocols (Fox et al., J. Pharmacol. Exp. Ther. 279 (1 996), 1 000-1 008; Whittum-Hudson et al., Nat. Med. 2 (1 996), 1 1 1 6-1 1 21; Jardieu, Curr. Opin. Immunol.
  • the expression of antibody genes can be specifically inhibited by administration of suitable antisense nucleic acids.
  • the antiidiotypic antibody polypeptide according to the invention can be administered to a patient in order to achieve a direct inhibition of autoantibody activity.
  • autoantibody polypeptides according to the invention show that they are surprisingly able to inhibit the binding of fibrinogen to platelets.
  • the autoantibody polypeptides and antidiotypic antibody polypeptides according to the invention can therefore optionally be used in combination as agents for modulating blood coagulation, in particular for preventing thrombosis, for example after heart attacks, strokes or in the case of venous thrombosis with pulmonary embolism or ischemia etc.
  • murine monoclonal antibodies fibrinogen antagonists, for example, were the monoclonal antibody 7E3 (see. Eg, US Patent 5,440,020) or fragments thereof (such as the commercially available Fab fragment ReoPro ®) or short synthetic peptides used for therapeutic purposes.
  • Murine monoclonal antibodies and antibody fragments have the disadvantage that they lead to undesirable side reactions in the treatment of human patients due to their immunogenicity, while short peptides are generally broken down very quickly.
  • polypeptides according to the invention have the advantage that they consist of amino acid sequences of human origin and therefore have fewer undesirable side effects than corresponding murine ones Antibodies or antibody fragments, and that their size does not cause them to break down as quickly as peptides.
  • the invention thus relates to the use of a nucleic acid according to the invention, in particular a nucleic acid coding for an autoantibody polyeptide, a vector containing this nucleic acid, a cell transformed with the nucleic acid or the vector, a polypeptide encoded by the nucleic acid or a pharmaceutical composition comprising a or contains several of the substances mentioned, for the preparation of an agent for influencing and in particular inhibiting the binding of fibrinogen to platelets.
  • the agent is preferably used to modulate blood coagulation, in particular for the dissolution of thrombi and / or for the prevention of thrombus formation.
  • the pharmaceutical composition according to the invention can be administered according to protocols already established for murine antibodies or antibody fragments.
  • Yet another object of the invention is a method for obtaining phagemid clones which express nucleic acids which code for autoantibodies against GPIIb / llla or for antiidiotypic antibodies directed against these autoantibodies, characterized in that a phagemid library made up of human lymphocytes Produces donors and wins the desired phagemid clones by affinity selection, including negative and positive selection steps.
  • the method also includes recovering antibody-encoding nucleic acids from the clones and / or using the antibody-encoding nucleic acids to express recombinant antibody chains, derivatives, or fragments thereof.
  • the invention is further illustrated by the following examples, figures and sequence protocols. Show it:
  • SEQ ID No. 1 The nucleotide sequence of the H chain of an antibody according to the invention (phagemid clone PDG7), where
  • CDR complement determining region
  • SEQ ID No. 2 the amino acid sequence to that in SEQ ID No. 1 nucleotide sequence shown, wherein FR1 from A.S. 1 -30, CDR1 by A.S. 31-35, FR2 by A.S. 36-49, CDR2 by A.S. 50-65, FR3 by A.S. 66-97, CDR3 by A.S. 98-
  • SEQ ID No. 3 shows the nucleotide sequence of the L chain of a polypeptide according to the invention (phagemid clone PDG7), FR1 from bp 1-60, CDR1 from bp 61-99, FR2 from bp 100-
  • SEQ ID No. 4 the amino acid sequence to that in SEQ ID No. 3 indicated nucleotide sequence, FR1 from A.S. 1 -20,
  • SEQ ID No. 5 shows the nucleotide sequence of the H chain of a polypeptide according to the invention (phagemid clone PDG 1 3), FR1 from bp 1-90, CDR1 from bp 91-109, FR2 from bp 1 06-1 47, CDR2 from bp 148-1 98, FR3 from bp 1 99-294, CDR3 from bp 295-336 and FR4 from bp 337-369 are sufficient,
  • SEQ ID No. 6 the amino acid sequence of the in SEQ ID No. 5 nucleotide sequence shown, wherein FR1 from A.S. 1 -30, CDR1 by A.S. 31-35, FR2 by A.S. 36-49, CDR2 by A.S. 50-66, FR3 by A.S. 67-98, CDR3 by A.S. 99-1 1 2 and FR4 by A.S. 1 1 3-1 23 is enough
  • SEQ ID No. 7 shows the nucleotide sequence of the L chain of a polypeptide according to the invention (phagemid clone PGD1 3), FR1 from bp 1 -60, CDR1 from bp 61 -99, FR2 from bp 1 00-144, CDR2 from bp 145-1 65, FR3 from bp 1 66-261, CDR3 from bp 262-294 and FR4 from bp 295-333 is sufficient,
  • SEQ ID No. 8 the amino acid sequence of the in SEQ ID No. 7 nucleotide sequence shown, wherein FR1 from A.S. 1 -20, CDR1 by A.S. 21-33, FR2 by A.S. 34-48, CDR2 by A.S. 49-55, FR3 by A.S. 56-87, CDR3 by A.S. 88-98 and FR4 by A.S. 99-1 1 1 is enough
  • SEQ ID No. 9 shows the nucleotide sequence of the H chain of a polypeptide according to the invention (phagemid clone AI-X1 6), FR1 from bp 1 -90, CDR1 from bp 91 -105, FR2 from bp 1 06-1 47, CDR2 from bp 148-1 98, FR3 from bp 1 99-288,
  • SEQ ID No. 10 the amino acid sequence of the in SEQ ID No. 9 nucleotide sequence shown, wherein FR1 from A.S. 1 -30, CDR1 by A.S. 31-35, FR2 by A.S. 36-49, CDR2 by A.S.
  • SEQ ID No. 1 1 the nucleotide sequence of the L chain of a polypeptide according to the invention (phagemid clone AI-X1 6), where FR1 from bp 1 to 60, CDR1 from bp 61-1 02, FR2 from bp 1 03-1 47, CDR2 from 1 48-1 68, FR3 from bp 1 69-264, CDR3 from 265-291 and FR4 from bp 292-375 are sufficient,
  • SEQ ID No. 1 2 the amino acid sequence of the in SEQ ID No. 1 1 nucleotide sequence shown, wherein FR1 from A.S. 1 -20, CDR1 by A.S. 21-34, FR2 by A.S. 35-49, CDR2 by A.S. 50-56, FR3 by A.S. 57-88, CDR3 by A.S. 89-97 and FR4 by A.S. 89-1 25 is enough
  • SEQ ID No. 1 3 the nucleotide sequence of the H chain of a polypeptide according to the invention (phagemid clone AI-X20), FR1 from bp 1-90, CDR1 from bp 91-105, FR2 from bp
  • SEQ ID No. 14 the amino acid sequence of the in SEQ ID No. 1 3 nucleotide sequence shown, wherein FR1 from A.S. 1 -30, CDR1 by A.S. 31-35, FR2 by A.S. 36-49, CDR2 by A.S. 50-65, FR3 by A.S. 66-97, CDR3 by A.S. 98-1 1 1 and FR4 by A.S. 1 1 2-1 22 is enough
  • SEQ ID No. 1 5 the nucleotide sequence of the H chain of a polypeptide according to the invention (phagemid clone AI-X39), FR1 from bp 1 -90, CDR1 from bp 91 -105, FR2 from bp 1 06-147, CDR2 from pb 1 48-1 98, FR3 from bp 1 99-294, CDR3 from bp 295-339 and FR4 from 340-372 ranges, SEQ ID No.
  • SEQ ID No. 17 the nucleotide sequence of the H chain of a polypeptide according to the invention (phagemid clone AI-X40), FR1 from bp 1-90, CDR1 from bp 91-105, FR2 from bp 106-147, CDR2 from bp 148-198, FR3 from bp 199 -297.
  • SEQ ID No. 18 the amino acid sequence of the in SEQ ID No. ⁇ nucleotide sequence shown, wherein FR1 from A.S. 1 to 30, CDR1 from A.S.31-35, FR2 from A.S.36-49, CDR2 from
  • SEQ ID No. 19 the nucleotide sequence of the H chain of a polypeptide according to the invention (phagemid clone AI-X2), FR1 from bp 1-90, CDR1 from bp 91-105, FR2 from bp 106-147, CDR2 from bp 148-195, FR3 from bp 196-291, CDR3 from bp 292-327 and FR4 from bp 328-360 are sufficient,
  • SEQ ID No.20 the amino acid sequence of the nucleotide sequence shown in SEQ ID No.19, where FR1 from A.S. 1 to 30, CDR1 by A.S.31-35, FR2 by A.S.36-49, CDR2 by A.S.50-65, FR3 by A.S.66-97, CDR3 by A.S.98-109 and FR4 by A.S. 110-120 is enough
  • SEQ ID No.21 the nucleotide sequence of the H chain of a polypeptide according to the invention (phagemid clone AI-B14), wherein FR1 by bp 1 -90, CDR1 by bp 91 -1 05, FR2 by bp 106-147, CDR2 by bp 1 48-1 98, FR3 by bp 1 99-294, CDR3 by bp 295-336 and FR4 by bp 337 -369 is enough;
  • Position 69 can be a T, position 76 a K, position 84 an N, position 85 an S and / and position 95 a Y.
  • SEQ ID No. 22 the amino acid sequence of the in SEQ ID No. 21 shown nucleotide sequence, FR1 from A.S. 1 to 30,
  • SEQ ID No. 23 the nucleotide sequence of the H chain of a polypeptide according to the invention (phagemid clone AI-B1 8), FR1 from bp 1 -90, CDR1 from bp 91 -105, FR2 from bp 106-1 47, CDR2 from bp 1 48-1 98, FR3 from bp 1 99-294, CDR3 from bp 295-333 and FR4 from bp 334-366 ranges; 0
  • a C can be at position 7 Position 1 3 a G, position 1 6 a C, position 56 an A, position 94 a T, position 97 a G, position 1 55 a T, position 1 73 a C, position 223 a T , a T or a C at position 252, a G at position 261, a G at position 267, a at position 271
  • Position 33 an A, position 52 an I, position 58 an A, position 75 an S, position 84 an S, position 87 an R, position 89 an E, position 91 an T, position 92 an A or / and a V at position 93 may be present.
  • SEQ ID No. 24 the amino acid sequence of the in SEQ ID No. 23 nucleotide sequence shown, wherein FR1 from A.S. 1 to 30, CDR1 by A.S. 31-35, FR2 by A.S. 36-49, CDR2 by A.S. 50-66, FR3 by A.S. 67-98, CDR3 by A.S. 99-
  • SEQ ID No. 25 the nucleotide sequence of the H chain of a polypeptide according to the invention (phagemid clone AI-B24), FR1 from bp 1-90, CDR1 from bp 91-105, FR2 from bp
  • Position 3 a Q position 5 a V, position 1 1 a V, position 1 6 an R, position 23 an A, position 30 an S, position 31 an S, position 33 a G, on Position 34 an M, position 47 a W, position 49 an A, position 50 a V, position 53 a Y, position 54 a D, position 56 an S, position 58 a K, position 79 an L, at position 84 an N, at position 97 an A or / and at position 98 a K.
  • SEQ ID No. 26 the amino acid sequence of the in SEQ ID No. 25 nucleotide sequence shown, wherein FR1 from A.S. 1 to 30, CDR1 by A.S. 31-35, FR2 by A.S. 36-49, CDR2 by A.S. 50-66, FR3 by A.S. 67-98, CDR3 by A.S. 99-1 10 and FR4 by A.S. 1 1 1 -1 21 is enough
  • SEQ ID No. 27 the nucleotide sequence of the L chain of a polypeptide according to the invention (phagemid clone AI-B24), FR1 from bp 1-60, CDR1 from bp 61-96, FR2 from bp 97-1 38, CDR2 from bp 1 39-1 59, FR3 from bp 1 60-255,
  • CDR3 from bp 256-282 and FR4 from bp 283-366 ranges; The following variations of the nucleotide sequence were also found: A C or a T at position 4, a G at position 37, an A at position 40, a G at position 50, an A at position 67, an A at position 72 Position 1 33 an A, position 1 36 a T, position
  • Position 94 may be an H.
  • SEQ ID No. 28 the amino acid sequence of the sequence shown in SEQ ID No. 27 nucleotide sequence shown, wherein FR1 from A.S. 1 to 20, CDR1 by A.S. 21-32, FR2 by A.S. 33-46, CDR2 by
  • SEQ ID No. 29 the nucleotide sequence of the H chain of a polypeptide according to the invention (phagemid clone AI-B38), where
  • SEQ ID No. 30 the amino acid sequence of the in SEQ ID No. 29 nucleotide sequence shown, wherein FR1 from A.S. 1 to 30, CDR1 by A.S. 31-35, FR2 by A.S. 36-49, CDR2 by A.S. 50-66, FR3 by A.S. 67-98, CDR3 by A.S. 99-
  • Figure 1 shows the inhibition of the binding of autoantibody phabs (PDG-X) to GPIIb / llla by adding the anti-idiotypic antibody Phab AI-X1 7.
  • FIG. 2 shows the inhibition of the binding of autoantibody phabs (PDG-B) to platelets by anti-idiotypic antibody phabs Al-B,
  • Figure 3 shows the binding of autoantibody phabs to untreated
  • FIG. 4 shows the inhibition of fibrinogen binding to GPIIb / llla by autoantibody phabs, Figure 5-7, the inhibition of the binding of autoantibody Phabs to GPIIb / IIIa by the antibody 7E3 and the antibody fragment ReoPro ®.
  • Platelet-enriched plasma was prepared from EDTA-anticoagulated blood samples from healthy human donors by differential centrifugation. The platelets were isolated by centrifugation at 2000 g for 15 minutes, washed six times in citric acid buffer (pH 6.2) with 50 mmol / l sodium citrate, 100 mmol / l NaCl and 125 mmol / l dextrose and finally resuspended in the same buffer .
  • Thrombasthenic platelets were obtained from a 14 year old boy suffering from Glanzmann type I thrombasthenia using the same enrichment protocol.
  • Murine monoclonal antibodies were used which recognize the complex form of GPIIb / llla as well as antibodies which selectively recognize GPIIb or GPIIIa. These antibodies were obtained using conventional immunization protocols using the appropriate antigens and are not associated with AlTP. The production of such antibodies is in Kouns et al. (J. Biol. Chem. 267 (1 992), 1 8844-1 8851), Steiner et al. (Biochim. Biophys. Acta 1 1 1 9 (1 992), 1 2-21) and Häring et al. (Proc. Natl. Acad. Sci. USA 82 (1 985), 4837-4841).
  • a combinatorial Fab library was developed according to the method described by Vogel et al. (Eur. J. Immunol. 24 (1 994), 1 200-1 207) using peripheral blood lymphocytes from a healthy pre-immunized human donor. All enzymes and oligonucleotides were obtained from Boehringer Mannheim GmbH (Mannheim, Germany) with the exception of Taq polymerase (Perkin Elmer, NJ, USA). The primer for the PCR amplification of the H and L chains of the Fab molecules, the VCSM 1 3 helper phage and the Escherichia coli strain XL-Blue were obtained from Stratacyte (La Jolla, CA, USA).
  • the phagemid pComb3 was obtained from the Scripps Research Institute (La Jolla, CA, USA). The cloning, the transformation into XL blue cells and the production of phabs were carried out as described by Barbas III and Lerner, Methods: Companion Methods Enzymol. 2 (1 991), 1 1 9). The phabs were precipitated with 4% (w / v) polyethylene glycol 8000 and 3% (w / v) NaCl and resuspended in PBS pH 7.4. The resulting expression library contains 1 x 10 7 specificities.
  • GPlIb / llla-specific phabs were prepared by a total of 5 rounds of affinity selection ("panning"). After pre-absorption (negative selection) with 5 x 10 7 thrombasthenic platelets, the phabs were incubated with 1 0 8 normal platelets for 45 min (positive selection). Bound phabs were then eluted with 0.05 mol / l sodium citrate pH 2.5 and neutralized with 1 mol / l Tris buffer. After each round of panning, the enrichment of GPIIb / llla specific phabs was followed by titration of the phage colony-forming units. After five rounds of selection, an enrichment of the eluted phabs by a factor of more than 100 was found.
  • the pool of phabs obtained after the fourth round of selection was analyzed in more detail for its GPIIb / llla specificity.
  • 40 Phab clones were selected at random and their binding specificity was determined in an immunodot assay.
  • 1 ul normal and thrombasthenic platelets (10 9 ml) and purified GPIIb / llla (500 ug / ml) were dropped on nitrocellulose strips (Millipore Corporation, Bedford, MA, USA). The strips were blocked in TBS with 0.15% casein (TBS-casein) and then incubated overnight with the phabs diluted in TBS-casein.
  • TBS-0.1% Tween 20 TBS-0.1% Tween 20
  • the bound phabs were washed with 4-chloro-1 - ⁇ - naphthol (Merck, Darmstadt, Germany) after incubation with horseradish peroxidase-conjugated polyclonal rabbit anti-phage antibody (Vogel et al., supra) diluted 1: 1000 in TBS-casein.
  • the binding of phabs to platelets and purified GPIIb / llla was also tested after denaturing the proteins by heating (70 ° C.) or by acid treatment (pH 2 with 0.5 N HCl) before the spotting.
  • the anti-GPIIb / llla phabs were dropped on nitrocellulose.
  • the filters were washed for 4 hours with peroxidase-labeled mouse anti-human-, -K (The Binding Site Limited, Birmingham, England) and -Fd antibodies (from myeloma cell line HP6045, ATCC1757, Rockville, MD, USA ) diluted 1: 1000 incubated in TBS casein and developed with chemiluminescence (ECL, Amersham, Switzerland, Zurich, Switzerland).
  • the epitope specificity of Phabs was determined by an inhibition test using various monoclonal antibodies (see point 4). 1 ⁇ l thawed normal and thrombasthenic platelets (1 0 9 / ml), purified GPIIb / llla (500 ⁇ g / ml), a peptide fragment of GPIIIa (amino acids 468-690, 500 ⁇ g / ml) and the cytoplasmic section of GPIIb / llla (500 ⁇ g / ml) were dripped in duplicate onto nitrocellulose strips. After blocking, the Phab clones (0.4 ug / ml Fab) were incubated overnight with or without monoclonal antibody (1 ug / ml). The bound phabs were detected by peroxidase-labeled anti-PHage antibodies and 4-chloro-1- ⁇ -naphthol.
  • the blocking of the binding of autoantibodies from patients to GPIIb / llla by the anti-GPIIb / llla phabs found was determined by inhibition tests.
  • two of the phabclones identified as described above (PDG 1 6, PDG31) were used.
  • Binding of autoantibodies from 8 AlTP patients was inhibited by anti-GPIIb / llla phabs.
  • the inhibition range was 10 to 46%, 32 to 60% and 20 to 67% for PTG1 6, PTG31 and the pool of the two phabs.
  • the binding of autoantibodies from 4 AlTP patients was not changed by these phabs.
  • Autoantibodies from patients with primary and disease-associated AlTP were in both groups.
  • Plasmid DNA was purified from four Phabklonen the group A and 4 clones of the group with the Nukleobon ® AX purification PC 20 (Macherey-Nagel AG, Oensingen, Switzerland). Nucleic acid sequencing was carried out on an ABI373A sequencing system using a PRISM Ready Reaction DyeDeoxy Terminator Cycle Sequencing Kit. The primers were obtained from Microsynth, Balgach, Switzerland. The following primers were used for sequencing the H chain: Ch 1 (5'-CGC TGT GCC CCC AGA GGT-3 ') and PCH (5'-GGC CGC AAA TTC TAT TTC AAG G-3').
  • the following primers were used for sequencing the L chain: C ⁇ (5'-GAG ACA CAC CAG TGT GGC-3 '), Ck (5'-CAC AAC AGA GGC AGT TCC-3') and PCL (5'-CTA AAC DAY CTA GTC TCC-3 ').
  • the amino acid sequences derived from the DNA sequence were compared with the GenEMBL library and assigned to parent lines VH and V ⁇ families.
  • VH and V ⁇ nucleotide sequences of the 4 phabclones in each group were analyzed by automated sequencing and with known stem lines -Generic sequences compared (Tables 3 and 4). Within each group there was 100% homology in the deduced amino acid sequences of the H and L chains. In contrast, the homology between groups A and B was only 36.9% for the H chain and 81.9% for the L chain amino acid sequences.
  • group A clones show the highest degree of sequence identity with the stem line gene VH4.1 1 of the V H 4 family (Sanz, et al. EMBO J. 8 (1 989), 3741-3748). There were 7 amino acid differences in the framework region (FR) and 8 in the complement-determining region (CDR). Group B clones differed from the most homologous stem line sequence 1.9111 of the V H 3 family (Berman et al., EMBO J. 7 (1 988), 727-738) by four amino acids in FR and one in CDR.
  • FR framework region
  • CDR complement determining region.
  • the upper sequences (VH4.1 1; 1.9111; DPL2) are given for comparison purposes and represent the deduced amino acid sequence for the most closely related published stem line gene sequence. Dashes 0 indicate identity.
  • M85255 refers to the EMPL / GenBank label number and means the deduced amino acid sequence of the human anti-GPIIb autoantibody 2E7 (Kunicki et al., J. Autoimmun. 4 (1991), 433-446).
  • the first three amino acids are determined by the vector sequence of pComb3.
  • Table 4 shows the assignment of clones of groups A and B to known stem lines V gene sequences according to the amino acid homology
  • sequences for anti-idiotypic antibodies were identified by the phagemid technique.
  • the clone PDG 16 selected in Example 1 was used as the antigen. There was no negative pre-selection.
  • a pool of combinatorial phab libraries the specificities of a nonimmune and a red blood cell immobilized library of peripheral B lymphocytes and a nonimmune library of B lymphocytes from tonsils were used.
  • the pool of phabs obtained after the fourth round of panning was analyzed. For this purpose, 40 Phab clones were selected at random and their binding specificity was determined. 25 of the selected clones reacted with anti-GPIIb / llla phab.
  • DNA sequence analysis of group I phab clones showed complete identity in the sequences coding for the heavy chain except for one amino acid in the CDR2 region and in those coding for the light chain Sequences a complete identity.
  • a comparison with known stem line gene sequences showed approx. 85% homology to the H chain sequence VH3 and approx. 90% homology to the sequence of the L chain family V- ⁇ ll.
  • DNA sequence analysis of the H chain gene was carried out on one representative of each of the Phab clones of groups II, III and IV. The results of this sequence analysis and the comparison with known stem line gene sequences are summarized in Tables 6 and 7a.
  • the result of an inhibition study is shown in FIG. 1.
  • the inhibition of the binding of AI-X1 7 to PDG-A by purified GPIIb / llla was determined by an immunodotassay. 660 and 220 ng PDG-A Phab were applied to nitrocellulose. The antigen was treated for 2 h with GPIIb / llla in concentrations in the range from 50 ⁇ g / ml to 50 ng / ml and with a buffer solution as a control and then for two more hours the phage clone AI-X1 7 (final concentration 10 12 / ml) incubated. The bound phages were detected with peroxidase-conjugated polyclonal rabbit anti-phage antibody and electrochemiluminescence.
  • Phab AI-X17 (Group I) can inhibit the binding of group A autoantibody phabs (PDG-X) to the glycoprotein llb / llla. This means that AI-X1 7 recognizes the antigen binding site on PDG-A.
  • Another clone AI-X2 which binds to PDG-A, was sequenced. Like the clones AI-X20, 39 and 40, this clone has only a heavy chain, but not an easy one.
  • the heavy chain can be alone, optionally as a dimer, with sufficient specificity and affinity for the antigen, i.e. PDG-A, bind.
  • Example 2.1 sequences for further anti-idiotypic antibodies were identified by the phagemid technique.
  • a clone PDG-B selected in Example 1 was used as the antigen.
  • Group 1 (14 clones) reacted only with group B autoantibody phab clones, while group II phab clones (8 clones in total) reacted with both group A and B phab clones.
  • the group III phab clones (a total of 1 2 clones) also reacted with murine monoclonal anti-GPIIb / llla antibodies, with purified serum immunoglobulin (IVIgG) or F (ab ') 2 fragments thereof and with Anti-IgE Fab.
  • group IV did not react with any of the substances mentioned. The results of these specificity studies are summarized in Table 5b.
  • AI-B1 4 and 1 7 are identical.
  • AI-B34 and 40 are also identical to AI-B1 8.
  • the inhibition of PDG-B binding to platelets by Al-B phabs is shown in FIG. 2.
  • a platelet-rich plasma (10 7 platelets in total) was incubated with biotinylated PDG-B in the presence or absence of Al-B phabs and using helper phages as a control.
  • the platelets were fixed with paraformaldehyde and bound PDG-B was detected with R-phycoerythrin (RPE) -labeled streptavidin. 1 0,000 events were counted in a FACScan device and the mean value of fluorescence ( ⁇ SD) was recorded.
  • the strongest inhibition (> 60%) was achieved with the clones AI-B1 8, 24 and 38.
  • the inhibition of binding shows an interaction of Al-B clones with the antigen-binding site on PDG-B.
  • V ⁇ family stem lines Al-X and Al-B) gen (%) * gen (%) * ""
  • AI-B14 V H 3 DP46 91 - - -
  • AI-B38 H 1 DP5 98 - - -
  • FR framework region
  • CDR complement determining region.
  • the upper sequences (DP47, DP49, DP31, DP71 and DPL10) are given for comparison purposes and represent the most closely related known parent line sequence. Dashes indicate identity.
  • the first three amino acids (QVK) are due to the vector sequence of
  • AI-B18 K-LE M -HT— -_T v PR — T-DDSGI EDGTTVPSQPLEF WGQGTRVTVSS
  • AI-B24 K-L L G S N K-AI- Y-S A — SN-G-T V S VR GSGSYLGYYFDY WGQGTLVTVSS
  • FR framework region
  • CDR complement determining region.
  • the upper sequences (DP46, DP10, DP49, DP5 and VL3h) are given for comparison purposes and represent the most closely related known parent line sequence. Dashes indicate identity.
  • the first three amino acids (QVK) are determined by the vector sequence of pComb3.
  • a platelet-rich plasma was incubated with 10 mM EDTA for 30 min. Biotinylated PDG-B and PDG-A polypeptides were added and incubated for 1 h at room temperature. The binding of PDG-A and PDG-B to platelets was measured by flow cytometric analysis using phycoerythrin-labeled streptavidin.
  • Plasma rich in platelets 250 x 10 9 / l was freshly prepared and kept under 5% CO 2 .
  • the plasma was activated by different dilutions of ADP (maximum concentration 410 // M) in the absence or in the presence of PDG-A or PDG-B (maximum amount 10 ⁇ g Fab).
  • the aggregation was measured in a Rodell 300BD-5 aggregometer (Baxter AG, Düdingen, CH).
  • polyclonal anti-Fab antiserum was added to the activated platelets after addition of PDG-A or PDG-B.
  • the bound fibrinogen was with Rat anti-human fibrogen antibody, biotinylated mouse anti-rat antibody and a conjugate of streptavidin and biotinylated horseradish peroxidase (Amersham Pharmacia Biotech Europe GmbH, D Wegdorf, CH) using an ELISA Easy reader (EAR340AT, SLT- Instruments, Austria) measured at 405 nm.
  • Platelet-rich plasma (230 x 10 9 / l) was treated for 1, 5 h with PDG-B or PDG-A (200 or 400 // g / ml) with or without the murine monoclonal antibody 7E3 or its Fab fragment ReoPro ® (total amount of Fab in the range of 10 14 to 10 10 ) incubated.
  • PDG-B and PDG-A to platelets was measured by flow cytometric analysis using phycoerythrin-labeled streptavidin.
  • the tested recombinant anti-GPIIb / llla Fab autoantibody fragments show no binding to platelets which had been pretreated with 10 mM EDTA. This shows that the autoantibody fragments recognize only an antigen that is intact in its conformation (FIG. 3).
  • CAG GTG AAA CTG CTC GAG TCT GGG GGA GGC GTG GTC CAG CCT GGG AGG 48 Gin Val Lys Leu Leu Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg 115 120 125
  • MOLECULE TYPE Protein
  • CAG GTG AAA CTG CTC GAG TCT GGG GGA GGC GTG GTC CAC CCT GGG AGG 48 Gin Val Lys Leu Leu Glu Ser Gly Gly Gly Val Val His Pro Gly Arg 125 130 135
  • GCA ATA CAC TGG GTC CGC CAG GCT CCA GGG AAG GGA CTG GAA TAT GTT 144 Ala Ile His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Tyr Val 155 160 165 170

Abstract

Die Erfindung betrifft neue Nukleinsäuresequenzen, die für humane Autoantikörper und antiidiotypische Antikörper gegen Blutplättchen-Membranproteine kodieren, neue Aminosäuresequenzen von humanen Antikörpern und deren Verwendung für die Diagnostik und Therapie von Krankheiten.

Description

ANTI-GPIIB/IIIA REKOMBINANTE ANTIKÖRPER
Beschreibung
Die Erfindung betrifft neue Nukleinsäuresequenzen, die für humane Autoantikörper gegen Blutplättchen-Membranproteine und für antiidioty- pische Antikörper kodieren, neue Aminosäuresequenzen von humanen Antikörpern und deren Verwendung für die Diagnostik und Therapie von Krankheiten.
Autoimmun-thrombozytopenische Purpura (AlTP) ist eine Immunkrankheit, die durch eine geringe Blutplättchenzahl bei normaler oder gesteigerter Megakaryozytopoiese definiert ist. Aufgrund des Vorhandenseins von Anti- Plättchen-Autoantikörpern findet eine verstärkte Zerstörung von Plättchen im reticuloendothelialen System (Milz, Leber, Knochenmark) statt. Diese Autoantikörper, die in etwa 75% der AlTP Patienten nachgewiesen werden können, sind überwiegend gegen die Plättchenmembran-Glykoproteine (GP) llb/llla und Ib/IX gerichtet. In einem einzigen Patienten können mehrere verschiedene Auto-Antikörper-Spezifitäten gefunden werden (vgl. z.B. Berchtold und Wenger, Blood 81 ( 1 993), 1 246-1 250; Kiefel et al., Br. J. Haematol. 79 ( 1 991 ), 256-262; McMillan et al., Blood 70 ( 1 987), 1040 und Fujisawa et al., Blood 79 (1 991 ); 1441 ). Die Charakterisierung von Bindeepitopen und die Ermittlung der pathogenetischen Signifikanz der Autoantikörper bleibt jedoch schwierig aufgrund der beschränkten Menge an Autoantikörpern, die aus AlTP Patienten erhältlich sind. Unter Verwendung der Hybridomatechnik konnten nur wenige humane monoklonale Antikörper aus Lymphozyten von AlTP Patienten erhalten werden, die mit GPIIb/llla reagieren (Kunicki et al., Hum. Antibodies Hybridomas 1 ( 1 990), 83-95) . Auch bei gesunden Personen wurde das Auftreten natürlicher Autoantikörper gegen verschiedene Selbstantigene berichtet, beispielsweise gegen intrazelluläre und zytoskelettale Komponenten humaner Plättchen (Guilbert et al., J. Immunol. 1 28 (1 982), 2779-2787; Hurez et al., Eur. J. Immunol. 23 ( 1 993), 783-789 und Pfueller et al., Clin. Exp. Immunol. 79 (1 990), 367-373). Einige dieser im Serum gesunder Personen beobachteten Autoantikörper können auch gegen Plättchenmembranproteine gerichtet sein (Souberbielle, Eur. J. Haematol. 56 ( 1 996), 1 78-1 80) . Die Rolle dieser natürlichen Autoantikörper sowie ihre Beziehung zu Krankheits-assoziierten Autoantikörpern ist jedoch noch unbekannt.
Zur Behandlung von AlTP können Corticosteroide eingesetzt werden. Etwa die Hälfte der Patienten reagiert auf eine Verabreichung von Prednison innerhalb von 4 Wochen, Langzeitremissionen werden jedoch nur selten gefunden. Bei Patienten, die starke Blutungen oder extrem geringe Plättchenzahlen aufweisen, wird als Notfallbehandlung die Verabreichung hoher Dosen von intravenösem Immunglubolin (IVIgG) empfohlen. Nach dieser Behandlung folgt ein schneller, aber üblicherweise nur vorübergehender Anstieg der Plättchenzahl bei den meisten Patienten. Die Wirkmechanismen von Corticosteroiden sowie von IVIgG bei der Behandlung der AlTP sind noch unbekannt. Durch Untersuchungen von Berchtold et al., (Blood 74 ( 1 989), 2414-241 7 und Berchtold und Wenger, Blood 81 (1 993), 1 246- 1 250) ist bekannt, daß die Bindung von Autoantikörpern an Plättchen- Glykoproteine durch antiidiotypische Antikörper in IVIgG gehemmt werden kann.
Das der vorliegenden Anmeldung zugrundeliegende Problem besteht darin, neue DNA Sequenzen zu identifizieren, welche für die Bindung von Autoantikörpern an GPIIb/llla verantwortlich sind. Auf diese Weise können neue pharmazeutische Präparate bereitgestellt werden, welche zur Verbesserung der Diagnose und Therapie von AlTP eingesetzt werden können. Die Identifizierung von Bindesequenzen aus Autoantikörpern gelang überraschenderweise nach Herstellung einer kombinatorischen Phagemid- Displaybibliothek von schweren und leichten Ketten humaner Antikörper unter Verwendung peripherer zirkulierender B-Zellen eines gesunden humanen Spenders. Nach Präsentation humaner schwerer und leichter Antikörper Fab-Fragmente an der Oberfläche des filamentösen Phagen M 1 3 konnten Phagen-Klone identifiziert werden, welche eine spezifische Bindung an GPIIb/llla zeigen.
Hierzu wurde die Phagemid-Bibliothek aufeinanderfolgend mit thrombasthe- nischen Plättchen ohne GPIIb/llla (negative Selektion) und normalen Plättchen (positive Selektion) in Kontakt gebracht. Nach mehreren Runden der Selektion und Amplifikation durch Infektion von E.coli wurden 23 Klone erhalten, die an den GPIIb/llla Komplex binden können. Inhibierungsstudien unter Verwendung Pools monoklonaler Antikörper gegen GPIIb/llla ergaben zwei Gruppen von Klonen: Beide Gruppen wurden durch monoklonale Antikörper, die spezifisch für den GPIIb/llla Komplex waren, inhibiert, und eine Gruppe auch durch einen GPIIb spezifischen monoklonalen Antikörper. Diese Befunde wurden durch DNA-Analyse der Klone bestätigt, die das Vorhandensein von 2 unterschiedlichen Anti-GPIIb/llla Phagen-Klonen ergab. Diese Ergebnisse zeigen, daß 2 GPIIb/llla spezifische Phagen-Klone, d.h. Autoantikörper, aus dem Genom einer gesunden Person kloniert werden können und daß diese Klone Konformationsepitope des GPIIb/llla Komplexes erkennen können. Durch Inhibierungsstudien wurde weiterhin festgestellt, daß beide Phagen-Klone die Bindung von Plättchen-assoziierten Autoantikörpern aus Patienten mit AlTP an gereinigtes GPIIb/llla hemmen und somit vermutlich AlTP-assoziierte Epitope von GPIIb/llla erkennen. Da die Phagen-Klone die Antigenbindesequenzen natürlicher Autoantikörper enthalten, die aus dem Genom einer gesunden Person stammen, kann dieser Befund zu neuen Erkenntnissen über den Ursprung Plättchen-assoziierter Autoantikörper in AlTP führen. Darüber hinaus ist es unter Verwendung der erfindungsgemäßen Phagen- Klone möglich, rekombinante antiidiotypische Antikörper gegen Anti- GPIIb/Illa Autoantikörper zu erzeugen, wobei die Anti-GPIIb/llla Phagen- Klone als Antigen verwendet werden. Die auf diese Weise erhältlichen rekombinanten antiidiotypischen Antikörper stellen eine interessante klinische Alternative zur Verwendung von IVIgG dar.
Die Nukleotid- und davon abgeleitete Aminosäuresequenzen der identifizierten Phagen-Klone sind in den Sequenzprotokollen SEQ ID No.1 bis 8 (Autoantikörper) bzw. SEQ ID No. 9 bis 1 8 (antiidiotypische Antikörper) dargestellt.
I . Autoantikörper
Ein erster Aspekt der vorliegenden Erfindung betrifft Nukleinsäuren, die für Autoantikörper kodieren. Ein Gegenstand der Erfindung ist somit eine Nukleinsäure, die für die schwere Kette eines humanen Antikörpers, ein funktionelles Derivat oder ein Fragment davon kodiert und eine CDR3- Region umfaßt, ausgewählt aus: (a) einer für die Aminosäuresequenz:
V L P F D P I S M D V (I) kodierenden Nukleotidsequenz,
(b) einer für die Aminosäuresequenz: A L G S W G G W D H Y M D V (II) kodierenden Nukleotidsequenz,
(c) einer Nukleotidsequenz, die für eine Aminosäuresequenz von mindestens 80% und vorzugsweise von mindestens 90% zu einer Aminosäuresequenz aus (a) oder (b) kodiert und
(d) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer äquivalenten Bindefähigkeit an GPIIb/llla kodiert. Die erfindungsgemäße Nukleinsäure umfaßt weiterhin vorzugsweise eine CDR1 -Region ausgewählt aus
(a) einer für die Aminosäuresequenz:
G Y S W R (III) kodierenden Nukleotidsequenz,
(b) einer für die Aminosäuresequenz:
S Y A M H QV) kodierenden Nukleotidsequenz und
(c) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% und vorzugsweise mindestens 90% zu einer Aminosäuresequenz aus (a) oder (b) kodiert.
Vorzugsweise umfaßt die erfindungsgemäße Nukleinsäure weiterhin eine CDR2-Region ausgewählt:
(a) einer für die Aminosäuresequenz: D I SY S G ST KY K P S L R S (V) kodierenden Nukleotidsequenz,
(b) einer für die Aminosäuresequenz: V I SY D G S N KYYA D SV K G (Vl) kodierenden Nukleotidsequenz und
(c) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% und vorzugsweise von mindestens 90% zu einer Aminosäuresequenz aus (a) oder (b) kodiert.
Ein zweiter Aspekt der vorliegenden Erfindung ist eine Nukleinsäure, die für die leichte Kette eines humanen Antikörpers, ein funktionelles Derivat oder ein Fragment davon kodiert und eine CDR3-Region umfaßt, ausgewählt aus: (a) einer für die Aminosäuresequenz:
A TW D D G L N G PV (VII) kodierenden Nukleotidsequenz, (b) einer für die Aminosäuresequenz:
A AW D D S L N G WV (VIII) kodierenden Nukleotidsequenz, (c) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% und vorzugsweise von mindestens 90% zu einer Aminosäuresequenz aus (a) oder (b) kodiert und (d) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer äquivalenten Bindefähigkeit an GPIIb/llla kodiert.
Vorzugsweise umfaßt die erfindungsgemäße Nukleinsäure weiterhin eine CDR1 -Region ausgewählt aus:
(a) einer für die Aminosäuresequenz: S G S S S N I R S N PV S (IX) kodierenden Nukleotidsequenz,
(b) einer für die Aminosäuresequenz: S G S S S N I G S N TV N (X) kodierenden Nukleotidsequenz und (c) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% und vorzugsweise von mindestens 90% zu einer Aminosäuresequenz aus (a) oder (b) kodiert.
Darüber hinaus umfaßt die erfindungsgemäße Nukleinsäure vorzugsweise weiterhin eine CDR2-Region ausgewählt aus: (a) einer für die Aminosäuresequenz:
G S H Q R P S (XI) kodierenden Nukleotidsequenz, (b) einer für die Aminosäuresequenz:
S N N Q R P S (XII) kodierenden Nukleotidsequenz und (c) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% und vorzugsweise mindestens 90% zu einer Aminosäuresequenz aus (a) oder (b) kodiert.
Antiidiotypische Antikörper
Ein zweiter Aspekt der vorliegenden Erfindung betrifft Nukleinsäuren, die für antiidiotypische Antikörper kodieren. Ein Gegenstand der.Erfindungist somit eine Nukleinsäure, die für die schwere Kette eines humanen Antikörpers, ein funktionelles Derivat oder ein Fragment davon kodiert, und eine CDR3- Region umfaßt, ausgewählt aus:
(a) einer für die Aminosäuresequenz: V R D LG Y RV LST FT F D I (XIII) kodierenden Nukleotidsequenz,
(b) einer für die Aminosäuresequenz: D G R S G SYA R F D G M DV (XIV) kodierenden Nukleotidsequenz,
(c) einer für die Aminosäuresequenz: M G S S V V A T Y N A F D I (XV) kodierenden Nukleotidsequenz,
(d) einer für die Aminosäuresequenz: D A D G D G F S PYY F PY (XVI) kodierenden Nukleotidsequenz, (e) einer für die Aminosäuresequenz:
L R N D G W N D G F D I (XVII) kodierenden Nukleotidsequenz,
(f) einer für die Aminosäuresequenz: D S E T A I A A A G R F D I (XVIII) kodierenden Nukleotidsequenz,
(g) einer für die Aminosäuresequenz: E D G TTV P S Q P LE F (XIX) kodierenden Nukleotidsequenz, (h) einer für die Aminosäuresequenz:
GSGSYLGYYFDY (XX) kodierenden Nukleotidsequenz, (i) einer für die Aminosäuresequenz:
G L R S Y N Y G R N L DY (XXI) kodierenden Nukleotidsequenz, (j) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% und vorzugsweise von mindestens 90% zu einer Aminosäuresequenz aus (a), (b), (c) oder (d) kodiert und (k) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer äquivalenten Bindefähigkeit an Autoantikörper gegen
GPIIb/llla kodiert.
Die erfindungsgemäße Nukleinsäure umfaßt weiterhin vorzugsweise eine CDR1 -Region ausgewählt aus: einer für die in Tab. 7a gezeigten Aminosäuresequenzen N F A M S, S Y T M H, D Y A L H oder S H Y W S kodierenden Nukleotidsequenz, einer für die Aminosäuresequenz T Y Y W S kodierenden Nukleotidsequenz, einer für die in Tab. 7b gezeigten Aminosäuresequenzen D Y G M H, S H T I S, K Y A I H oder E L S M H kodierenden Nukleotidsequenz und einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% und vorzugsweise mindestens 90% zu einer der zuvor genannten Aminosäurese- quenzen kodiert.
Vorzugsweise umfaßt die erfindungsgemäße Nukleinsäure weiterhin eine CDR2- Region ausgewählt aus einer für die in Tab.7a gezeigten Aminosäuresequenzen G I S G G G LLT H YA (D/N) SVK G, L I SY D G S N KY Y A D S V K G, G I SW D STS I G Y A D SV K G oder F I Y D G A R T RFN PSLRS kodierenden Nukleotidsequenz, einer für die Aminosäuresequenz YIYYSGNTNYNPSLKS kodierenden Nukleotidsequenz, einer für die in Tab.7b gezeigten Aminosäuresequenzen A I SY D G S N K YYA D S V K G, G I T P I F G TV N YA Q K F QG, A I S S N G G NTYYA D S V K G oder G FD PE D G E TIY AQ K F QG kodierenden Nukleotidsequenz und einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% und vorzugsweise von mindestens 90% zu einer der zuvor genannten Aminosäuresequenzen kodiert.
Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Nukleinsäure, die für die leichte Kette eines humanen Antikörpers, ein funktionelles Derivat oder ein Fragment davon kodiert und eine CDR3-Region umfaßt, ausgewählt aus:
(a) einer für die Aminosäuresequenz: C SYV H S ST N (XXII) kodierenden Nukleotidsequenz,
(b) einer für die Aminosäuresequenz: QVW D N T N D Q (XXIII) kodierenden Nukleotidsequenz,
(c) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% und vorzugsweise mindestens 90% zu einer Aminosäuresequenz aus (a) kodiert und
(d) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer äquivalenten Bindefähigkeit an Autoantikörper gegen GPIIb/llla kodiert.
Vorzugsweise umfaßt die erfindungsgemäße Nukleinsäure weiterhin eine CDR1 -Region ausgewählt aus einer für die in Tab.7a gezeigte Aminosäuresequenz TGTS SAI G NYN FVP kodierenden Nukleotidsequenz, einer für die in Tab. 7b gezeigte Aminosäuresequenz G G Y K I G S K S V H kodierenden Nukleotidsequenz und einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% und vorzugsweise von mindestens 90% zur der zuvor genannten Aminosäuresequenz kodiert.
Darüber hinaus umfaßt die erfindungsgemäße Nukleinsäure vorzugsweise weiterhin eine CDR2-Region ausgewählt aus einer für die in Tab. 7a gezeigte Aminosäuresequenz E G S K R P S kodierenden Nukleotidsequenz, einer für die in Tab. 7b gezeigte Aminosäuresequenz E D S Y R P S kodierenden Nukleotidsequenz und einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% und vorzugsweise mindestens 90% zu der zuvor genannten Aminosäuresequenz kodiert.
Unter dem Begriff "funktionelles Derivat einer Kette eines humanen Antikörpers" im Sinne der vorliegenden Erfindung ist ein Polypeptid zu verstehen, das mindestens eine CDR3-Region der schweren oder/und leichten Kette wie vorstehend definiert umfaßt und gegebenenfalls zusammen mit der jeweiligen komplementären Kette des humanen Antikörpers (oder einem Derivat einer solchen Kette) ein Antikörperderivat bilden kann, das eine äquivalente Erkennungsspezifität für ein Antigen wie der nicht derivatisierte Antikörper besitzt. Vorzugsweise weist ein derartiges Antikörperderivat eine Bindungskonstante von mindestens 1 0"6 l/mol, vorzugsweise von mindestens 10"8 l/mol für das jeweilige Antigen auf.
Die Herstellung funktioneller Derivate von Ketten eines humanen Antikörpers kann beispielsweise durch Deletion, Substitution oder/und Insertion von Abschnitten des für das jeweilige Polypeptid kodierenden Gens durch re- kombinante DNA-Techniken erfolgen.
Besonders bevorzugte funktioneile Derivate von Antikörperketten oder Antikörper sind Einzelkettenantikörper, die beispielsweise aus den variablen
Domänen der H- und L-Kette oder einer oder zwei H-Kettendomänen sowie gegebenenfalls einer konstanten Domäne zusammengesetzt sein können. Die Herstellung solcher Konstrukte ist bei Hoogenboom et al., Immunol. Rev. 1 30 ( 1 992), 41 -68; Barbas III, Methods: Companion Methods Enzymol. 2 ( 1 991 ), 1 1 9 und Plückthun, Immunochemistry (1 994), Marcel Dekker Inc., Kapitel 9, 210-235 beschrieben.
Unter dem Begriff "äquivalente Bindefähigkeit" im Sinne der vorliegenden Erfindung ist eine gleiche Bindeaffinität oder/und Spezifität, d.h. Epi- toperkennung wie in den konkret offenbarten Sequenzen zu verstehen.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Vektor, der mindestens eine Kopie einer erfindungsgemäßen Nukleinsäure enthält. Dieser Vektor kann ein prokaryontischer Vektor oder ein eukaryontischer Vektor sein. Beispiele für prokaryontische Vektoren sind Plasmide, Cosmide und Bakteriophagen. Derartige Vektoren sind beispielsweise bei Sambrook et al., Molecular Cloning. A Laboratory Manual, 2nd Eddition ( 1 989), Cold Spring Harbor Laboratory Press, in den Kapiteln 1 bis 4 ausführlich beschrieben. Vorzugsweise ist ein prokaryontischer Vektor ein Plasmid oder ein Phage.
Andererseits kann der Vektor auch ein eukaryontischer Vektor sein, z.B. ein Hefevektor, ein Insektenvektor (Baculovirus) oder ein Säugervektor (Plasmidvektor oder viraler Vektor). Beispiele für eukaryontische Vektoren sind bei Sambrook et al., supra, Kapitel 1 6 und Winnacker, Gene und Klone, Eine Einführung für die Gentechnologie ( 1 985), VCH Verlagsgesellschaft insbesondere Kapitel 5, 8 und 1 0, beschrieben.
Noch ein weiterer Gegenstand der vorliegenden Erfindung ist eine Zelle, die eine erfindungsgemäße Nukleinsäure exprimiert, oder eine Zelle, die mit einer erfindungsgemäßen Nukleinsäure oder mit einem erfindungsgemäßen Vektor transformiert ist. Die Zelle kann eine prokaryontische Zelle (z.B. eine gram-negative Bakterienzelle, insbesondere E.coli) oder eine eukaryontische Zelle (z.B. eine Hefe-, Pflanzen- oder Säugerzelle) sein. Beispiele für geeignete Zellen und Verfahren zum Einführen der erfindungsgemäßen Nukleinsäure in derartige Zellen finden sich den obigen Literaturstellen.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Polypeptid, das von einer erfindungsgemäßen Nukleinsäure kodiert ist, insbesondere ein rekombinantes Polypeptid. Besonders bevorzugt enthält das Polypeptid die variable Domäne der H- oder/und L-Kette eines humanen Antikörpers.
Besonders bevorzugt ist ein Polypeptid, das Antikörpereigenschaften aufweist und aus einer schweren Kette oder einem funktioneilen Derivat davon sowie aus einer leichten Kette oder einem funktionellen Derivat davon als Untereinheiten aufgebaut ist. Das Polypeptid kann aus zwei separaten Ketten zusammengesetzt sein oder als Einzelkettenpolypeptid vorliegen.
Noch ein weiterer Gegenstand der vorliegenden Erfindung ist ein Antikörper gegen ein erfindungsgemäßes Polypeptid, der gegen ein für die Erkennung des Antigens verantwortliche Region des Polypeptids gerichtet ist. Dieser Antikörper kann ein polyklonales Antiserum, ein monoklonaler Antikörper oder ein Fragment eines polyklonalen oder monoklonalen Antikörpers (z.B. ein Fab-, F(ab)2-, Fab'- oder F(ab')2 Fragment) sein. Vorzugsweise ist der Antikörper gegen die CDR3-Region der schweren oder/und leichten Antikörperkette des erfindungsgemäßen Polypeptids oder einen Bereich davon gerichtet. Derartige Antikörper können nach an sich bekannten Methoden durch Immunisierung eines Versuchstiers mit einem Peptid oder Polypeptid, welches eine erfindungsgemäße CDR3-Region enthält, und Gewinnung der resultierenden polyklonalen Antikörper aus dem Versuchstier erhalten werden. Weiterhin können monoklonale Antikörper durch Fusion einer Antikörper-produzierenden B-Zelle des Versuchstiers mit einer Leukämiezelle nach der Methode von Köhler und Milstein oder einer Weiterentwicklung davon erhalten werden. Darüber hinaus können rekombinante Antikörper, die gegen die CDR3-Region des erfindungsgemäßen Polypeptids gerichtet sind, auch durch Musterung einer geeigneten Phagemid-Bibliothek, z.B. einer Phageimid-Bibliothek aus einem gesunden humanen Spender, erhalten werden, wobei als Antigen ein erfindungsgemäßes Polypeptid verwendet wird.
Die Erfindung betrifft auch eine pharmazeutische Zusammensetzung, die eine Nukleinsäure, einen Vektor, ein Polypeptid, einen Antikörper oder eine Zelle wie zuvor genannt, als aktive Komponente, gegebenenfalls zusammen mit anderen aktiven Komponenten sowie pharmazeutisch üblichen Hilfs-, Zusatz- oder Trägerstoffe enthält.
Die pharmazeutische Zusammensetzung kann zur Herstellung eines diagnostischen odertherapeutischen Mittels eingesetzt werden. Beispielefür diagnostischen Anwendungen sind die Diagnose von AlTP oder einer Prädisposition für AlTP. Eine weitere bevorzugte diagnostische Anwendung ist die Überwachung des Krankheitsverlaufs bei AlTP.
Der Einsatz der pharmazeutischen Zusammensetzung als diagnostisches Mittel kann beispielsweise den Nachweis einer B-Zellsubpopulation umfassen, welche ein erfindungsgemäßen Polypeptid als Antikörper exprimiert. Der Nachweis dieses Antikörpers kann beispielsweise auf Nukleinsäureebene, z.B. durch einen Nukleinsäure-Hybridisierungs-Assay gegebenenfalls mit vorgeschalteter Amplifikation erfolgen. Andererseits kann der Nachweis auch auf Proteinebene durch einen Immunoassay unter Verwendung von spezifisch mit dem Polypeptid reagierenden Antigenen oder Antikörpern erfolgen.
Weiterhin kann die erfindungsgemäße pharmazeutische Zusammensetzung auch auf therapeutischem Gebiet angewandt werden, insbesondere zur Prävention oder Therapie von AlTP. Diese therapeutische Anwendung kann beispielsweise darauf beruhen, daß eine Stimulierung der Produktion von Anti-Autoantikörpern erfolgt. Hierzu kann beispielsweise das erfindungsgemäße Autoantikörper-Polypeptid einem Patienten verabreicht werden, wodurch die Bildung von antiidiotypischen Antikörpern hervorgerufen oder/und stimuliert wird. Diese Verabreichung kann dabei nach üblichen Immunisierungsprotokollen (Fox et al., J. Pharmacol. Exp. Ther. 279 ( 1 996), 1 000-1 008; Whittum-Hudson et al., Nat. Med. 2 ( 1 996), 1 1 1 6-1 1 21 ; Jardieu, Curr. Opin. Immunol. 7 ( 1 995), 779-782) erfolgen. Andererseits kann die Expression von Antikörpergenen spezifisch durch Verabreichung geeigneter Antisense-Nukleinsäuren gehemmt werden. Das erfindungsgemäße antiidiotypische Antikörper-Polypeptid kann einem Patienten verabreicht werden, um eine direkte Hemmung der Autoantikörper-Aktivität zu erreichen.
Untersuchungen der erfindungsgemäßen Autoantikörper-Polypeptide zeigten, daß diese überraschenderweise in der Lage sind, die Bindung von Fibrinogen an Blutplättchen zu hemmen. Die erfindungsgemäßen Auto- antikörper-Polypeptide und antidiotypischen Antikörper-Polypeptide können daher gegebenenfalls in Kombination als Mittel zur Modulation der Blutgerinnung eingesetzt werden, insbesondere zur Verhinderung einer Thrombose, beispielsweise nach Herzinfarkten, Schlaganfällen oder bei venösen Thrombosen mit Lungenembolien oder Ischämien etc.
Bisher wurden für therapeutische Zwecke als Fibrinogenantagonisten murine monoklonale Antikörper, z.B. der monoklonale Antikörper 7E3 (vgl. z.B. US- Patent 5,440,020) oder Fragmente davon (z.B. das kommerziell erhältliche Fab Fragment ReoPro®) oder kurze synthetische Peptide eingesetzt. Murine monoklonale Antikörper und Antikörperfragmente haben jedoch den Nachteil, daß sie bei der Behandlung von humanen Patienten aufgrund ihrer Immunogenität zu unerwünschten Nebenreaktionen führen, während kurze Peptide im allgemeinen sehr schnell abgebaut werden. Gegenüber diesen bekannten Mitteln haben die erfindungsgemäßen Polypeptide den Vorteil, daß sie aus Aminosäuresequenzen humanen Ursprungs bestehen und daher geringere unerwünschte Nebenwirkungen als entsprechende murine Antikörper oder Antikörperfragmente aufweisen, und daß sie aufgrund ihrer Größe nicht einem so schnellen Abbau wie Peptide unterliegen.
Die Erfindung betrifft somit die Verwendung einer erfindungsgemäßen Nukleinsäure, insbesondere einer für ein Autoantikörper-Polyeptid kodierenden Nukleinsäure, eines dieser Nukleinsäure enthaltenden Vektors, einer mit der Nukleinsäure oder dem Vektor transformierten Zelle, eines von der Nukleinsäure kodierten Polypeptids oder einer pharmazeutischen Zusammensetzung, die eine oder mehrere der genannten Substanzen enthält, zur Herstellung eines Mittel für die Beeinflussung und insbesondere die Hemmung der Bindung von Fibrinogen an Blutplättchen. Vorzugsweise wird das Mittel zur Modulation der Blutgerinnung eingesetzt, insbesondere für die Auflösung von Thromben oder/und für die Prävention der Thrombenbildung . Die Verabreichung der erfindungsgemäßen pharmazeutischen Zusammen- setzung kann nach bereits für murine Antikörper oder Antikörperfragmente etablierten Protokollen erfolgen.
Noch ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Gewinnung von Phagemid-Klonen, die Nukleinsäuren exprimieren, die für Autoantikörper gegen GPIIb/llla oder für gegen diese Autoantikörper gerichtete antiidiotypische Antikörper kodieren, dadurch gekennzeichnet, daß man eine Phagemid-Bibliothek aus Lymphozyten eines humanen Spenders herstellt und die gewünschten Phagemid-Klone durch Affinitätsselektion, umfassend negative und positive Selektionsschritte gewinnt. Vorzugsweise beinhaltet das Verfahren außerdem, daß man Antikörperkodierende Nukleinsäuren aus den Klonen gewinnt oder/und daß man die Antikörper-kodierenden Nukleinsäuren zur Expression von rekombinanten Antikörperketten, Derivaten oder Fragmenten davon verwendet. Weiterhin wird die Erfindung durch nachfolgende Beispiele, Figuren und Sequenzprotokolle erläutert. Es zeigen:
SEQ ID No. 1 Die Nukleotidsequenz der H-Kette eines erfindungs- gemäßen Antikörpers (Phagemidklon PDG7), wobei
Framework-Region (FR) 1 von bp 1 -90, Komplementbestimmende Region (CDR) 1 von bp 91 -105, FR2 von bp 106-1 47, CDR2 von bp 148-1 95, FR3 von bp 1 96- 291 , CDR3 von bp 292-324 und FR4 von bp 325-357 reicht,
SEQ ID No. 2 die Aminosäuresequenz zu der in SEQ ID No. 1 dargestellten Nukleotidsequenz, wobei FR1 von A.S. 1 -30, CDR1 von A.S. 31 -35, FR2 von A.S. 36-49, CDR2 von A.S. 50-65, FR3 von A.S. 66-97, CDR3 von A.S. 98-
1 08 und FR4 von A.S. 109-1 1 9 reicht,
SEQ ID No. 3 die Nukleotidsequenz der L-Kette eines erfindungsgemäßen Polypeptids (Phagemidklon PDG7), wobei FR1 von bp 1 -60, CDR1 von bp 61 -99, FR2 von bp 1 00-
144, CDR2 von bp 1 45-1 65, FR3 von bp 1 66-261 , CDR3 von bp 262-294 und FR4 von bp 295-333 reicht,
SEQ ID No. 4 die Aminosäuresequenz zu der in SEQ ID No. 3 angege- benen Nukleotidsequenz, wobei FR1 von A.S. 1 -20,
CDR1 von A.S. 21 -33, FR2 von A.S. 34-48, CDR2 von A.S. 49-55, FR3 von A.S. 56-87, CDR3 von A.S. 88-98 und FR4 von A.S. 99-1 1 reicht,
SEQ ID No. 5 die Nukleotidsequenz der H-Kette eines erfindungsgemäßen Polypeptids (Phagemidklon PDG 1 3), wobei FR1 von bp 1 -90, CDR1 von bp 91 -109, FR2 von bp 1 06-1 47, CDR2 von bp 148-1 98, FR3 von bp 1 99-294, CDR3 von bp 295-336 und FR4 von bp 337-369 reicht,
SEQ ID No. 6 die Aminosäuresequenz der in SEQ ID No. 5 dargestell- ten Nukleotidsequenz, wobei FR1 von A.S. 1 -30, CDR1 von A.S. 31 -35, FR2 von A.S. 36-49, CDR2 von A.S. 50-66, FR3 von A.S. 67-98, CDR3 von A.S. 99-1 1 2 und FR4 von A.S. 1 1 3-1 23 reicht,
SEQ ID No. 7 die Nukleotidsequenz der L-Kette eines erfindungsgemäßen Polypeptids (Phagemidklon PGD1 3), wobei FR1 von bp 1 -60, CDR1 von bp 61 -99, FR2 von bp 1 00-144, CDR2 von bp 145-1 65, FR3 von bp 1 66-261 , CDR3 von bp 262-294 und FR4 von bp 295-333 reicht,
SEQ ID No. 8 die Aminosäuresequenz der in SEQ ID No. 7 dargestellten Nukleotidsequenz, wobei FR1 von A.S. 1 -20, CDR1 von A.S. 21 -33, FR2 von A.S. 34-48, CDR2 von A.S. 49-55, FR3 von A.S. 56-87, CDR3 von A.S. 88-98 und FR4 von A.S. 99-1 1 1 reicht,
SEQ ID No. 9 die Nukleotidsequenz der H-Kette eines erfindungsgemäßen Polypeptids (Phagemidklon AI-X1 6), wobei FR1 von bp 1 -90, CDR1 von bp 91 -105, FR2 von bp 1 06-1 47, CDR2 von bp 148-1 98, FR3 von bp 1 99-288,
CDR3 von bp 289-336 und FR4 von bp 337-369 reicht,
SEQ ID No. 10 die Aminosäuresequenz der in SEQ ID No. 9 dargestellten Nukleotidsequenz, wobei FR1 von A.S. 1 -30, CDR1 von A.S. 31 -35, FR2 von A.S. 36-49, CDR2 von A.S.
50-66, FR3 von A.S. 67-96, CDR3 von A.S. 97-1 1 2 und FR4 von A.S. 1 1 3-1 23 reicht, SEQ ID No. 1 1 die Nukleotidsequenz der L-Kette eines erfindungsgemäßen Polypeptids (Phagemidklon AI-X1 6), wobei FR1 von bp 1 bis 60, CDR1 von bp 61 -1 02, FR2 von bp 1 03-1 47, CDR2 von 1 48-1 68, FR3 von bp 1 69-264, CDR3 von 265-291 und FR4 von bp 292-375 reicht,
SEQ ID No. 1 2 die Aminosäuresequenz der in SEQ ID No. 1 1 dargestellten Nukleotidsequenz, wobei FR1 von A.S. 1 -20, CDR1 von A.S. 21 -34, FR2 von A.S. 35-49, CDR2 von A.S. 50-56, FR3 von A.S. 57-88, CDR3 von A.S. 89-97 und FR4 von A.S. 89-1 25 reicht,
SEQ ID No. 1 3 die Nukleotidsequenz der H-Kette eines erfindungsgemäßen Polypeptids (Phagemidklon AI-X20), wobei FR1 von bp 1 -90, CDR1 von bp 91 -105, FR2 von bp
106-147, CDR2 von bp 148-1 95, FR3 von bp 1 96-291 , CDR3 von von bp 292-333 und FR4 von bp 334-366 reicht,
SEQ ID No. 14 die Aminosäuresequenz der in SEQ ID No. 1 3 dargestellten Nukleotidsequenz, wobei FR1 von A.S. 1 -30, CDR1 von A.S. 31 -35, FR2 von A.S. 36-49, CDR2 von A.S. 50-65, FR3 von A.S. 66-97, CDR3 von A.S. 98-1 1 1 und FR4 von A.S. 1 1 2-1 22 reicht,
SEQ ID No. 1 5 die Nukleotidsequenz der H-Kette eines erfindungsgemäßen Polypeptids (Phagemidklon AI-X39), wobei FR1 von bp 1 -90, CDR1 von bp 91 -105, FR2 von bp 1 06-147, CDR2 von pb 1 48-1 98, FR3 von bp 1 99-294, CDR3 von bp 295-339 und FR4 von 340-372 reicht, SEQ ID No. 16 die Aminosäuresequenz der in SEQ ID No.15 dargestellten Nukleotidsequenz, wobei FR1 von A.S.1-30, CDR1 von A.S.31-35, FR2 von A.S.36-49, CDR2 von A.S. 50-66, FR3 von A.S. 67-98, CDR3 von A.S. 99-113 und FR4 von A.S. 114-124 reicht,
SEQ ID No. 17 die Nukleotidsequenz der H-Kette eines erfindungsgemäßen Polypeptids (Phagemidklon AI-X40), wobei FR1 von bp 1-90, CDR1 von bp 91-105, FR2 von bp 106-147, CDR2 von bp 148-198, FR3 von bp 199-297,
CDR3 von bp 298-339 und FR4 von bp 340-372 reicht,
SEQ ID No. 18 die Aminosäuresequenz der in SEQ ID No. ^dargestellten Nukleotidsequenz, wobei FR1 von A.S. 1 bis 30, CDR1 von A.S.31-35, FR2 von A.S.36-49, CDR2 von
A.S.50-66, FR3 von A.S.67-99, CDR3 von A.S.100- 113 und FR4 von A.S. 114-124 reicht,
SEQ ID No. 19 die Nukleotidsequenz der H-Kette eines erfindungs- gemäßen Polypeptids (Phagemidklon AI-X2), wobei FR1 von bp 1-90, CDR1 von bp 91-105, FR2 von bp 106- 147, CDR2 von bp 148-195, FR3 von bp 196-291, CDR3 von bp 292-327 und FR4 von bp 328-360 reicht,
SEQ ID No.20 die Aminosäuresequenz der in SEQ ID No.19 dargestellten Nukleotidsequenz, wobei FR1 von A.S. 1 bis 30, CDR1 von A.S.31-35, FR2 von A.S.36-49, CDR2 von A.S.50-65, FR3 von A.S.66-97, CDR3 von A.S.98- 109 und FR4 von A.S. 110-120 reicht,
SEQ ID No.21 die Nukleotidsequenz der H-Kette eines erfindungsgemäßen Polypeptids (Phagemidklon AI-B14), wobei FR1 von bp 1 -90, CDR1 von bp 91 -1 05, FR2 von bp 106-147, CDR2 von bp 1 48-1 98, FR3 von bp 1 99-294, CDR3 von bp 295-336 und FR4 von bp 337-369 reicht;
5 Es wurden auch folgende Variationen der Sequenz gefunden: An Position 7 kann ein C, an Position 9 ein G, an Position 1 3 ein G, an Position 1 5 ein G, an Position 91 ein A, an Position 92 ein G, an Position 98 ein C, an Position 149 ein T, an Position 205 ein A, an 0 Position 228 ein A, an Position 251 ein A, an Position
253 ein T oder/und an Position 284 ein A vorliegen. Dies hat in der Aminosäuresequenz (vgl. SEQ ID No. 22) zur Folge, daß an Position 3 ein Q, an Position 5 ein V, an Position 31 ein S, an Position 33 ein A, an 5 Position 50 ein V, an Position 69 ein T, an Position 76 ein K, an Position 84 ein N, an Position 85 ein S oder/und an Position 95 ein Y vorliegen kann.
SEQ ID No. 22 die Aminosäuresequenz der in SEQ ID No. 21 dargestell- o ten Nukleotidsequenz, wobei FR1 von A.S. 1 bis 30,
CDR1 von A.S. 31 -35, FR2 von A.S. 36-49, CDR2 von A.S. 50-66, FR3 von A.S. 67-98, CDR3 von A.S. 99- 1 1 2 und FR4 von A.S. 1 1 3-1 23 reicht,
5 SEQ ID No. 23 die Nukleotidsequenz der H-Kette eines erfindungsgemäßen Polypeptids (Phagemidklon AI-B1 8), wobei FR1 von bp 1 -90, CDR1 von bp 91 -105, FR2 von bp 106-1 47, CDR2 von bp 1 48-1 98, FR3 von bp 1 99-294, CDR3 von bp 295-333 und FR4 von bp 334-366 reicht; 0
Es wurden auch folgende Variationen der Nukleotidsequenz gefunden: So kann an Position 7 ein C, an Position 1 3 ein G, an Position 1 6 ein C, an Position 56 ein A, an Position 94 ein T, an Position 97 ein G, an Position 1 55 ein T, an Position 1 73 ein C, an Position 223 ein T, an Position 252 ein T oder ein C, an Position 261 ein G, an Position 267 ein G, an Position 271 ein
A, an Position 275 ein C oder/und an Position 277 ein G vorliegen. Dies hat in der entsprechenden Aminosäuresequenz (vgl. SEQ ID No. 24) zur Folge, daß an Position 3 ein Q, an Position 5 ein V, an Position 6 ein Q, an Position 1 9 ein K, an Position 32 ein Y, an
Position 33 ein A, an Position 52 ein I, an Position 58 ein A, an Position 75 ein S, an Position 84 ein S, an Position 87 ein R, an Position 89 ein E, an Position 91 ein T, an Position 92 ein A oder/und an Position 93 ein V vorliegen kann.
SEQ ID No. 24 die Aminosäuresequenz der in SEQ ID No. 23 dargestellten Nukleotidsequenz, wobei FR1 von A.S. 1 bis 30, CDR1 von A.S. 31 -35, FR2 von A.S. 36-49, CDR2 von A.S. 50-66, FR3 von A.S. 67-98, CDR3 von A.S. 99-
1 1 1 und FR4 von A.S. 1 1 2-122 reicht,
SEQ ID No. 25 die Nukleotidsequenz der H-Kette eines erfindungsgemäßen Polypeptids (Phagemidklon AI-B24), wobei FR1 von bp 1 -90, CDR1 von bp 91 -105, FR2 von bp
106-147, CDR2 von bp 148-1 98, FR3 von bp 1 99-294, CDR3 von bp 295-330 und FR4 von bp 331 -363 reicht;
Es wurden auch folgende Variationen der Nukleotidse- quenz gefunden: An an Position 7 kann ein C, an
Position 9 ein G, an Position 1 3 ein G, an Position 1 5 ein G, an Position 31 ein G, an Position 46 ein A, an Position 67 ein G, an Position 89 ein G, an Position 92 ein G, an Position 93 ein C, an Position 98 ein G, an Position 1 02 ein G, an Position 140 ein G, an Position 1 41 ein G, an Position 145 ein G, an Position 1 49 ein T, an Position 1 57 ein T, an Position 1 58 ein A, an
Position 1 60 ein G, an Position 1 66 ein A, an Position 1 73 ein A, an Position 235 ein T, an Position 251 ein A, an Position 290 ein C oder/und an Position 293 ein A vorliegen. Dies hat in der entsprechenden Aminosäu- resequenz (vgl. SEQ ID No. 26) zur Folge, daß an
Position 3 ein Q, an Position 5 ein V, an Position 1 1 ein V, an Position 1 6 ein R, an Position 23 ein A, an Position 30 ein S, an Position 31 ein S, an Position 33 ein G, an Position 34 ein M, an Position 47 ein W, an Position 49 ein A, an Position 50 ein V, an Position 53 ein Y, an Position 54 ein D, an Position 56 ein S, an Position 58 ein K, an Position 79 ein L, an Position 84 ein N, an Position 97 ein A oder/und an Position 98 ein K vorliegen kann.
SEQ ID No. 26 die Aminosäuresequenz der in SEQ ID No. 25 dargestellten Nukleotidsequenz, wobei FR1 von A.S. 1 bis 30, CDR1 von A.S. 31 -35, FR2 von A.S. 36-49, CDR2 von A.S. 50-66, FR3 von A.S. 67-98, CDR3 von A.S. 99- 1 1 0 und FR4 von A.S. 1 1 1 -1 21 reicht,
SEQ ID No. 27 die Nukleotidsequenz der L-Kette eines erfindungsgemäßen Polypeptids (Phagemidklon AI-B24), wobei FR1 von bp 1 -60, CDR1 von bp 61 -96, FR2 von bp 97- 1 38, CDR2 von bp 1 39-1 59, FR3 von bp 1 60-255,
CDR3 von bp 256-282 und FR4 von bp 283-366 reicht; Es wurden auch folgende Variationen der Nukleotidsequenz gefunden: An Position 4 kann ein C oder ein T, an Position 37 ein G, an Position 40 ein A, an Position 50 ein G, an Position 67 ein A, an Position 72 ein T, an Position 1 33 ein A, an Position 1 36 ein T, an Position
1 38 ein T oder ein C, an Position 148 ein G, an Position 1 60 ein T, an Position 1 61 ein T, an Position 1 62 ein T oder ein C, an Position 200 ein C, an Position 21 7 ein T, an Position 21 8 ein G, an Position 220 ein A oder C, an Position 269 ein G, an Position 271 ein T, an Position 272 ein G, an Position 275 ein G oder/und an Position 282 ein T oder ein C vorliegen. Dies hat zu Folge, daß in der entsprechenden Aminosäuresequenz (vgl. SEQ ID No. 28) an Position 2 ein L, an Position 1 3 ein G, an Position 14 ein K, an Position 1 7 ein R, an
Position 23 ein N, an Position 24 ein N, an Position 45 ein I, an Position 47 ein Y, an Position 50 ein D, an Position 54 ein F, an Position 67 ein T, an Position 73 ein S, an Position 74 ein R, an Position 90 ein S, an Position 91 ein S, an Position 92 ein S oder/und an
Position 94 ein H vorliegen kann.
SEQ ID No. 28 die Aminosäuresequenz der in SEQ ID No. 27 dargestellten Nukleotidsequenz, wobei FR1 von A.S. 1 bis 20, CDR1 von A.S. 21 -32, FR2 von A.S. 33-46, CDR2 von
A.S. 47-53, FR3 von A.S. 54-85, CDR3 von A.S. 86-94 und FR4 von A.S. 95-1 22 reicht,
SEQ ID No. 29 die Nukleotidsequenz der H-Kette eines erfindungs- gemäßen Polypeptids (Phagemidklon AI-B38), wobei
FR1 von bp 1 -90, CDR1 von bp 91 -105, FR2 von bp 1 06-147, CDR2 von bp 148-1 98, FR3 von bp 1 99-294, CDR3 von bp 295-333 und FR4 von bp 334-366 reicht;
Es wurden auch folgende Variationen der Nukleotidse- quenz gefunden: Es kann an Position 7 ein C, an
Position 9 ein G, an Position 1 3 ein G, an Position 1 5 ein A oder/und an Position 1 6 ein C vorliegen. Dies hat zu Folge, daß in der entsprechenden Aminosäuresequenz an Position 3 ein Q, an Position 5 ein V oder/und an Position 6 ein Q vorliegen kann und
SEQ ID No. 30 die Aminosäuresequenz der in SEQ ID No. 29 dargestellten Nukleotidsequenz, wobei FR1 von A.S. 1 bis 30, CDR1 von A.S. 31 -35, FR2 von A.S. 36-49, CDR2 von A.S. 50-66, FR3 von A.S. 67-98, CDR3 von A.S. 99-
1 1 1 und FR4 von A.S. 1 1 2-1 22 reicht,
Figur 1 die Hemmung der Bindung von Autoantikörper-Phabs (PDG-X) an GPIIb/llla durch Zusatz des antiidiotypischen Antikörper- Phab AI-X1 7.
Figur 2 die Hemmung der Bindung von Autoantikörper-Phabs (PDG-B) an Blutplättchen durch antiidiotypische Antikörper-Phabs Al-B,
Figur 3 die Bindung von Autoantikörper-Phabs an unbehandelte und
EDTA-behandelte Blutplättchen,
Figur 4 die Hemmung der Fibrinogenbindung an GPIIb/llla durch Autoantikörper-Phabs, Figur 5-7 die Hemmung der Bindung von Autoantikörper-Phabs an GPIIb/llla durch den Antikörper 7E3 und das Antikörperfragment ReoPro®.
Beispiele
1 . Identifizierung von Autoantikörpersequenzen
1 .1 . Gewinnung von Autoantikörpern
Autoantikörper von 1 2 Patienten mit AlTP (8 mit primärer AlTP, 3 mit AlTP assoziiert mit SLE, 1 mit AlTP assoziiert mit Sjögren's Syndrom) wurden durch Inkubation von Patientenplasma über Nacht mit gereinigtem GPIIb/llla bei 4°C und anschließende Elution in 0,2 mol/l Glycin und 0, 1 5 mol/l NaCI pH 2, 5 für 1 5 min bei Raumtemperatur erhalten. Nach Zentrifugation für 30 min bei 100.000 g wurde der Überstand mit 1 mol/l Tris-HCI neutralisiert und über Nacht gegen Tris-gepufferte Salzlösung (TBS) dialysiert.
Zum Zeitpunkt der Plasmaentnahme waren alle Patienten thrombozytope- nisch (Plättchenzahl < 1 50 x 109/l) und hatten normale oder vergrößerte Megakaryozyten im Knochenmark und waren frei von anderen nachweisbaren Formen der Immunthrombozytopenie.
1 .2. Gewinnung gereinigter Antigene
Als Antigene wurden gereinigtes GPIIb/llla, ein zytoplasmatisches Fragment von GPIIIa (Aminosäuren 721 -744) und ein extrazelluläres Fragment von GPIIIa (Aminosäuren 468-690) verwendet (Beardsley, Blut 59 (1 989), 47-51 und Phillips et al., Methods Enzymol. 21 5 ( 1 992), 244-263). 1 .3. Gewinnung von Plättchen zum Panning und Immunoblotting
Aus EDTA-antikoagulierten Blutproben gesunder humander Spender wurde Plättchen-angereichertes Plasma durch differenzielle Zentrifugation hergestellt. Die Plättchen wurden durch Zentrifugation bei 2000 g für 1 5 min isoliert, sechsmal in Zitronensäurepuffer (pH 6,2) mit 50 mmol/l Natriumeitrat, 1 00 mmol/l NaCI und 1 25 mmol/l Dextrose gewaschen und schließlich im gleichen Puffer resuspendiert.
Thrombasthenische Plättchen wurden aus einem 14 Jahre alten an Thrombasthenie Glanzmann Typ I erkrankten Jungen unter Verwendung des gleichen Anreicherungsprotokolls erhalten.
1.4. Monoklonale Antikörper
Es wurden murine monoklonale Antikörper verwendet, welche die kom- plexierte Form von GPIIb/llla erkennen, sowie Antikörper, die selektiv GPIIb oder GPIIIa erkennen. Diese Antikörper wurden mit üblichen Immunisierungsprotokollen unter Verwendung der entsprechenden Antigene gewonnen und sind nicht AlTP-assoziiert. Die Gewinnung solcher Antikörper ist bei Kouns et al. (J. Biol. Chem. 267 ( 1 992), 1 8844-1 8851 ), Steiner et al. (Biochim. Biophys. Acta 1 1 1 9 (1 992), 1 2-21 ) und Häring et al. (Proc. Natl. Acad. Sei. USA 82 (1 985), 4837-4841 ) beschrieben.
1 .5. Phagemid-Bibliothek
Eine kombinatorische Fab-Bibliothek wurde nach der von Vogel et al. (Eur. J. Immunol. 24 ( 1 994), 1 200-1 207) beschriebenen Methode hergestellt, wobei periphere Blutlymphozyten aus einem gesunden präimmunisierten humanen Spender verwendet wurden. Alle Enzyme und Oligonukleotide wurden von Boehringer Mannheim GmbH (Mannheim, Deutschland) mit Ausnahme der Taq Polymerase (Perkin Eimer, NJ, USA) bezogen. Die Primer für die PCR-Amplifikation der H-und L-Ketten der Fab-Moleküle, der VCSM 1 3 Helferphage und der Escherichia coli Stamm XL-Blue wurden von Stratacyte (La Jolla, CA, USA) bezogen. Das Phagemid pComb3 wurde vom Scripps Research Institute (La Jolla, CA, USA) bezogen. Die Klonierung, die Transformation in XL-Blue-Zellen und die Herstellung von Phabs erfolgte wie von Barbas III und Lerner, Methods: Companion Methods Enzymol. 2 ( 1 991 ), 1 1 9) beschrieben. Die Phabs wurden mit 4% (w/v) Polyethylen- glykol 8000 und 3% (w/v) NaCI präzipitiert und in PBS pH 7,4 resuspendiert. Die resultierende Expressionsbibliothek enthält 1 x 107 Spezifitäten.
1 .6. Isolierung von GPIIb/llla-spezifischen Phabs
GPlIb/llla-spezifische Phabs wurden durch insgesamt 5 Runden einer Affinitätsselektion ("Panning") hergestellt. Nach Präabsorption (negative Selektion) mit 5 x 107 thrombasthenischen Plättchen wurden die Phabs mit 1 08 normalen Plättchen für 45 min inkubiert (positive Selektion) . Gebundene Phabs wurden dann mit 0,05 mol/l Natriumeitrat pH 2,5 eluiert und mit 1 mol/l Tris-Puffer neutralisiert. Nach jeder "Panning"-Runde wurde die Anreicherung von GPIIb/llla spezifischen Phabs durch Titration der Phagenkolonie-bildenden Einheiten verfolgt. Nach fünf Selektionsrunden wurde eine Anreicherung der eluierten Phabs um den Faktor von mehr als 100 gefunden.
Der nach der vierten Selektionsrunde erhaltene Pool von Phabs wurde näher auf seine GPIIb/llla Spezifität analysiert. Hierzu wurden 40 Phab-Klone zufällig ausgewählt und ihre Bindespezifität in einem Immunodot-Assay ermittelt. 1 μl normale und thrombasthenische Plättchen ( 109 ml) sowie gereinigtes GPIIb/llla (500μg/ml) wurden auf Nitrozellulosestreifen (Millipore Corporation, Bedford, MA, USA) getropft. Die Streifen wurden in TBS mit 0, 1 5% Casein (TBS-Casein) blockiert und dann über Nacht mit den in TBS- Casein verdünnten Phabs inkubiert. Nach drei Waschungen mit TBS-0, 1 % Tween 20 (TBS-Tween) wurden die gebundenen Phabs mit 4-Chlor-1 -σ- naphthol (Merck, Darmstadt, Deutschland) nach Inkubation mit Mee- rettichperoxidase-konjugiertem polyklonalem Kaninchen-Anti-Phage- Antikörper (Vogel et al., supra) verdünnt 1 : 1000 in TBS-Casein nachgewiesen.
Die Bindung von Phabs an Plättchen und gereinigtes GPIIb/llla wurde auch nach Denaturierung der Proteine durch Erhitzen (70°C) oder durch Säurebehandlung (pH 2 mit 0,5 N HCI) vor dem Auftropfen getestet.
Von den 40 zufällig ausgewählten Klonen reagierten 23 (57,5%) mit GPIIb/llla, während 17 keine Bindung zeigten. Nach Denaturierung des Antigens durch Hitze oder pH 2 vor der Inkubation wurde keine Bindung von Anti-GPIIb/llla an Phabs beobachtet, wodurch gezeigt wird, daß intaktes GPIIb/llla für die Phab-Bindung notwendig ist. Fab-Bestimmung an negativen Phabs zeigte keine Fab-Moleküle bei 15 Klonen (88 %). Die zwei Fabpositiven Klone ohne Bindung an GPIIb/llla könnten eine geringe Bindeaffinität für GPIIb/llla aufweisen.
1.7. Fab Analyse
Zum Test der positiven Phabs auf kappa (K) , lambda (Λ) und Fd-Ketten wurden die Anti-GPIIb/llla Phabs auf Nitrozellulose getropft. Die Filter wurden 4 Stunden lang mit Peroxidase-markiertem Maus-anti-Human-Λ-, -K- (The Binding Site Limited, Birmingham, England) und -Fd-Antikörper (aus der Myelomazellinie HP6045, ATCC1757, Rockville, MD, USA) verdünnt 1 : 1000 in TBS-Casein inkubiert und mit Chemielumineszenz (ECL, Amersham, Schweiz, Zürich, Schweiz) entwickelt. Ein Test von 1 5 zufällig ausgewählten Anti-GPIIb/llla Fab-Klonen auf K, λ und Fd-Ketten ergab das Vorhandensein einer Fd-Kette in 12 Klonen (80%) und der Λ-Kette in allen Klonen. Eine quantitative Bestimmung der Fab-Bindung an GPIIb/llla auf Plättchen erfolgt durch Präinkubation gepoolter Phabs mit Plättchen in verschiedenen Konzentrationen. Der Überstand wurde dann durch ein Immunodotverfahren analysiert. Dabei wurde festgestellt, daß 1 bis 3 x 1 04 Phabs pro Plättchen binden. Dies weist darauf hin, daß ungefähr 10 bis 50 % der GPIIb/llla Moleküle pro Plättchen durch Phabs besetzt werden können.
1 .8. Charakterisierung der Phab-Bindeepitope
Die Epitopspezifität von Phabs wurde durch einen Inhibitiontest unter Verwendung verschiedener monoklonaler Antikörper (siehe Punkt 4) bestimmt. 1 μl aufgetaute normale und thrombasthenische Plättchen ( 1 09/ml), gereinigtes GPIIb/llla (500μg/ml), ein Peptidfragment von GPIIIa (Aminosäuren 468-690, 500μg/ml) und der cytoplasmatische Abschnitt von GPIIb/llla (500 μg/ml) wurden jeweils in Doppelansätzen auf Nitrozellulosestreifen aufgetropft. Nach der Blockierung wurden die Phab-Klone (0,4 μg/ml Fab) über Nacht mit oder ohne monoklonalen Antikörper ( 1 μg/ml) inkubiert. Die gebundenen Phabs wurden durch Peroxidase- markierten Anti-PHage-Antikörper und 4-Chlor- 1 -σ-naphthol nachgewiesen.
Bei diesen Untersuchungen wurden 2 Gruppen von Phabklonen identifiziert. Gruppe A (5 Klone) wurde mäßig durch einen Pool aller Antikörper, aber stark durch GPIIb/llla-Komplex-spezifische Antikörper inhibiert. Anti-GPIIb Antikörper hatten keinen Effekt. Gruppe B ( 10 Klone) wurde vollständig durch den Pool aller Antikörper, aber weniger durch den komplexspezifischen Antikörper und auch durch den Mb spezifischen Antikörper inhibiert. Keine Gruppe zeigte Reaktion mit GPIIIa spezifischen Antikörpern. Gleiche Ergebnisse wurden bei Verwendung von Plättchen oder gereinigtem GPIIb/llla als Antigen erhalten. Es wurde keine Phab-Bindung an das cytoplasmatische Peptid oder das extrazelluläre Fragment von GPIIIa gefunden. Eine Zusammenfassung dieser Ergebnisse ist in Tabelle 1 gezeigt.
Tabelle 1
Figure imgf000032_0001
1 .9. Inhibierungsuntersuchungen
Die Blockierung der Bindung von Autoantikörpern aus Patienten an GPIIb/llla durch die gefundenen anti-GPIIb/llla Phabs wurde durch Inhibierungsuntersuchungen ermittelt. Hierzu wurden zwei der wie zuvor beschrieben identifizierten Phabklone (PDG 1 6, PDG31 ) verwendet.
Serielle Verdünnungen von 1 :3 bis 1 : 1000 der eluierten Autoantikörper aus Patienten wurden auf die Bindung an gereinigtes GPIIb/llla analysiert. Hierzu wurde ein Immunodotassay durchgeführt. 1 00 ng gereinigtes GPIIb/llla wurde in jeweils dreifachen Ansätzen auf Nitrozellulosestreifen getropft und die Filter mit TBS-Casein blockiert. Zur Blockierung der AlTP Autoantikörper- Bindung an GPIIb/llla durch Phabs wurden die Streifen 1 h lang mit 1 01 1 Phabs und anschließend 4 h lang mit AlTP Autoantikörpern in variablen Verdünnungen inkubiert. Gebundene Autoantikörper wurden durch Peroxidase-markierten Anti-human-lgG-Fc Antikörper und ECL nachgewiesen.
Die Bindung von Autoantikörpern aus 8 AlTP Patienten wurde durch Anti- GPIIb/llla Phabs inhibiert. Der Inhibierungsbereich war 10 bis 46 %, 32 bis 60 % und 20 bis 67 % für PTG1 6, PTG31 bzw. den Pool der beiden Phabs. Die Bindung von Autoantikörpern aus 4 AlTP Patienten wurde durch diese Phabs nicht verändert. In beiden Gruppen waren Autoantikörper von Patienten mit primärer und krankheitsassoziierter AlTP.
Eine Zusammenfassung der erhaltenen Ergebnisse ist in Tabelle 2 gezeigt. Tabelle 2
Figure imgf000034_0001
1 .10. DNA Sequenzanalyse
Plasmid DNA wurde aus vier Phabklonen der Gruppe A und 4 Klonen der Gruppe mit dem Nukleobond® AX Reinigungskit PC 20 (Macherey-Nagel AG, Oensingen, Schweiz) gereinigt. Die Nukleinsäuresequenzierung erfolgte auf einen ABI373A Sequenziersystem unter Verwendung eines PRISM Ready Reaction DyeDeoxy Terminator Cycle Sequencing Kit. Die Primer wurden von Microsynth, Balgach, Schweiz bezogen. Zur Sequenzierung der H Kette wurden folgende Primer ver- wendet: Ch 1 (5'-CGC TGT GCC CCC AGA GGT-3') und PCH (5'-GGC CGC AAA TTC TAT TTC AAG G-3') . Zur Sequenzierung der L-Kette wurden folgende Primer verwendet: Cλ (5'-GAG ACA CAC CAG TGT GGC-3'), Ck (5'-CAC AAC AGA GGC AGT TCC-3') und PCL(5'-CTA AAC TAG CTA GTC TCC-3') . Die von der DNA Sequenz abgeleiteten Aminosäuresequenzen wurden mit der GenEMBL-Genbank verglichen und Stammlinien VH und VΛ Familien zugeordnet.
Die VH und VΛ Nukleotidsequenzen der 4 Phabklone jeder Gruppe (Gruppe A: PDG7, PDG8, PDG 1 0, PDG 1 6; Gruppe B: PDG 1 3, PDG 1 7, PDG31 , PTG37) wurden durch automatisierte Sequenzierung analysiert und mit bekannten Stammlinien-Gensequenzen verglichen (Tabellen 3 und 4). Innerhalb jeder Gruppe war 100 % Homologie in den abgeleiteten Aminosäuresequenzen der H- und L-Ketten. Im Gegensatz dazu war die Homologie zwischen Gruppe A und B nur 36,9 % für die H-Kette und 81 ,9% für die L- Ketten-Aminosäurensequenzen.
In der H-Kette zeigen Klone der Gruppe A den höchsten Grad an Sequenzidentität mit dem Stammliniengen VH4.1 1 der VH4 Familie (Sanz, et al. EMBO J. 8 ( 1 989), 3741 -3748). Es gab 7 Aminosäureunterschiede in der Frameworkregion (FR) und 8 in der Komplement-bestimmenden Region (CDR) . Klone der Gruppe B unterschieden sich von der am meisten homologen Stammliniensequenz 1 .9111 der VH3-Familie (Berman et al., EMBO J. 7 ( 1 988), 727-738) durch vier Aminosäuren in FR und eine in CDR.
In der L-Kette zeigten die Klone der Gruppe A und B die höchste Homologie zu der Stammliniengensequenz der DPL2 der Vλ I Familie (Williams und Winter, Eur. J. Immunol. 323 (1 993), 1456). Es gab neun Aminosäureun- terschiede in FR und zehn in CDR für Klone der Gruppe A und einen in FR und zwei in CDR für Klone der Gruppe B. Die erhaltenen Ergebnisse sind in den Tabellen 3 und 4 zusammengefaßt.
Tabelle 3
A. Schwere Ketten KΪone ■■ EB1 CDR1 FR2 CDR2 FR3 CDR3 FR4
VH4.11 QVQ QESGPG VKPSETLSLTCTVSGGSIS SYYWS WIRQPPGKG EWIG YIYYSGSTNYNPSLKS RVTISVDTSKNQFSLKLSSVTAΛDTAVYYCAR
PDG7 --K-L N G-S-R s D-S K-K R- VLPFDPISMDV WGKGTTVTVSS
PDG8 VLPFDPISMDV WGKGTTVTVSS
PDG10 VLPFDPISHDV WGKGTTVTVSS
PDG16 VLPFDPISMDV WGKGTTVTVSS
1.9III OVQLVESGGGWQPGRSLRLSCAASGFTFS SYGMH HVRQAPGKGLEWVA VISYDGSNKYYADSVKG RFTISRDNSKNTLYLQMNSLRAEDTAVYYCΛK
PDG13 --A R ALGSWGQWDIIYMDV WGKGTTVTVSS
PDG17 ALGSWGGWDHYMDV WGKGTTVTVSS
PDG31 ALGSWGGWDIIYMDV WGKGTTVTVSS
PDG37 ALGSWGGWDHYMDV WGKGTTVTVSS
M8525S ._Q-V DRPIARWTYGGMDV WGQGTTVTVSS
B. Leichte Ketten Klone EE1 CDR1 FR2 CDR2 FR3 CDR3 FR4
DPL2 VLTQPPSΛSGTPGQRVTI SC SGSSSNIGSNTVN WYQQLPGTAPKLLIY SNNQRPS GVPDRFSGSKSGTSASLAISGLQSEDEΛDYYC AAWDDSLNG
PDG7 -V W R--P-S —II-V F GSH -T G PV FGGGTKLTVLSQP
PDGB FGGGTKLTVLSQP
PDG10 FGGGTKLTVLSQP
PDG16 FGGGTKLTVLSQP
DPL2 VLTQPPSASGTPGQRVTISC SGSSSNIGSNTVN WYQQLPGTAPKLLIY SNNQRPS GVPDRFSGSKSGTSASLAISGLQSEDEADYYC AAWDDSLNG
PDG13 _V -WV FGGGTKLTVLGQP
PDG17 FGGGTKLTVLGQP
PDG31 FGGGTKLTVLGQP
PDG37 FGGGTKLTVLGQP
FR: framework-Region; CDR: Komplement-bestimmende Region. Die oberen Sequenzen (VH4.1 1 ; 1.9111; DPL2) sind zu Vergleichszwecken angegeben und stellen die abgeleitete Aminosäurensequenz für die am nächsten verwandte veröffentlichte Stammlinien-Gensequenz dar. Striche 0 bedeuten Identität. M85255 bezieht sich auf die EMPL/GenBank Kennzeichnungsnummer und bedeutet die abgeleitete Aminosäurensequenz des humanen Anti-GPIIb-Autoantikörpers 2E7 (Kunicki et al., J. Autoimmun. 4 (1991 ), 433-446). Für die schwere Kette sind die ersten drei Aminosäuren (QVK) durch die Vektorsequenz von pComb3 bestimmt.
Tabelle 4 zeigt die Zuordnung von Klonen der Gruppe A und B zu bekannten Stammlinien V-Gensequenzen nach der Aminosäurehomologie
Figure imgf000038_0001
2. Identifizierung von antiidiotypischen Antikörpersequenzen
2.1 Phab-Klone Al-X
Nach der in Beispiel 1 angegebenen Methode wurden durch die Phagemid- technik Sequenzen für antiidiotypische Antikörper identifiziert. Dabei wurde der in Beispiel 1 selektionierte Klon PDG 1 6 als Antigen verwendet. Eine negative Vorselektion fand nicht statt.
Es wurde ein Pool von kombinatorischen Phab-Bibliotheken, die Spezifitäten einer nichtimmunen und einer mit roten Blutzellen immobilisierten Bibliothek peripherer B-Lymphozyten und einer nichtimmunen Bibliothek von B- Lymphozyten aus Tonsillen verwendet. Der nach der vierten Panningrunde erhaltene Pool von Phabs wurde analysiert. Hierzu wurden 40 Phab-Klone zufällig ausgewählt und ihre Bindespezifität ermittelt. 25 der ausgewählten Klone reagierten mit Anti- GPIIb/llla-Phab. Diese antiidiotypischen Phab-Klone gehörten zu zwei Gruppen: Gruppe I (drei Klone) zeigte eine Reaktion ausschließlich mit Autoantikörper-Phab-Klonen der Gruppe A (PDG 7, 8, 1 0 und 1 6), während die Phab-Klone der Gruppe II (insgesamt 22 Klone) sowohl mit Phab-Klonen der Gruppen A und B, mit murinen monoklonalen Anti-GPIIb/IIIa-Antikörpem, mit gereinigtem Serumimmunglobulin (IVIgG) oder F(ab')2 Fragmenten davon und mit Anti-lgE-Fab reagieren. 14 Phab-Klone (Gruppe III) reagierten mit keiner der genannten Substanzen. Ein Phab-Klon der Gruppe IV reagierte nur mit Anti-GPIIb/llla Antikörpern. Die Ergebnisse dieser Spezifitätsunter- suchungen sind in Tabelle 5a zusammengefaßt.
Eine DNA-Sequenzanalyse von Phab-Klonen der Gruppe I (AI-X1 6, 1 7 und 24) zeigte in den für die schwere Kette kodierenden Sequenzen eine bis auf eine Aminosäure in der CDR2 Region vollständige Identität und in den für die leichte Kette kodierenden Sequenzen eine vollständige Identität. Ein Vergleich mit bekannten Stammlinien-Gensequenzen zeigte ca. 85% Homologie zur H-Ketten-Sequenz VH3 und ca. 90% Homologie zur Sequenz der L-Kettenfamilie V-Λll. Von den Phab-Klonen der Gruppen II, III und IV wurde eine DNA-Sequenzanalyse des H-Kettengens jeweils an einem Vertreter durchgeführt. Die Ergebnisse dieser Sequenzanalyse und des Vergleichs mit bekannten Stammlinien-Gensequenzen ist in den Tabellen 6 und 7a zusammengefaßt.
Das Ergebnis einer Inhibitionsuntersuchung ist in Fig. 1 dargestellt. Die Hemmung der Bindung von AI-X1 7 an PDG-A durch gereinigtes GPIIb/llla wurde durch einen Immunodotassay bestimmt. 660 bzw. 220 ng PDG-A Phab wurden auf Nitrozellulose gegeben. Das Antigen wurde für 2 h mit GPIIb/llla in Konzentrationen im Bereich von 50 μg/ml bis 50 ng/ml sowie mit einer Pufferlösung als Kontrolle und dann für zwei weitere Stunden mit dem Phagenklon AI-X1 7 (Endkonzentration 1012/ml) inkubiert. Die gebundenen Phagen wurden mit Peroxidase-konjugiertem polyklonalen Kaninchen- Anti-Phage Antikörper und Elektrochemilumineszenz nachgewiesen.
Es wurde gefunden, daß der Phab AI-X1 7 (Gruppe I) die Bindung von Autoantikörper-Phabs der Gruppe A (PDG-X) an das Glykoprotein llb/llla hemmen kann. Dies bedeutet, daß AI-X1 7 die antigenbindende Stelle auf PDG-A erkennt.
Ein weiterer Klon AI-X2, der an PDG-A bindet, wurde sequenziert. Dieser Klon hat - wie auch die Klone AI-X20, 39 und 40 - nur eine schwere, aber keine leichte Kette. Die schwere Kette kann alleine, gegebenenfalls als Dimer, mit ausreichender Spezifität und Affinität an das Antigen, d.h. PDG- A, binden.
2.2 Phab-Klone Al-B
Nach der in Beispiel 2.1 angegebenen Methode wurden durch die Phagemid- Technik Sequenzen für weitere antiidiotypische Antikörper identifiziert. Dabei wurde ein in Beispiel 1 selektionierter Klon PDG-B als Antigen verwendet.
Es wurden insgesamt 40 Phab-Klone ausgewählt und ihre Bindespezifität ermittelt. 34 der ausgewählten Klone reagierten mit Anti-GPIIb/llla-PHAB. Diese antiidiotypischen Phabklone gehörten zu drei Gruppen:
Gruppe 1 ( 14 Klone) zeigte eine Reaktion ausschließlich mit Autoantikörper- Phab-Klonen der Gruppe B, während die Phab-Klone der Gruppe II (insgesamt 8 Klone) sowohl mit Phab-Klonen der Gruppen A und B reagierten. Die Phab-Klone der Gruppe III (insgesamt 1 2 Klone) reagierten darüber hinaus mit murinen monoklonalen Anti-GPIIb/llla-Antikörpern, mit gereinigtem Serumimmunglobulin (IVIgG) oder F(ab')2-Fragmenten davon und mit Anti-lgE-Fab. Sechs Phab-Klone (Gruppe IV) reagierten mit keiner der genannten Substanzen. Die Ergebnisse dieser Spezifitätsuntersuchungen sind in Tabelle 5b zusammengefaßt.
Das Ergebnis einer DNA Sequenzanalyse von Phab-Klonen der Gruppe I (Al- 14, 1 8,24 und 38) ist in den Tabellen 6 und 7b zusammengefaßt. Die Klone AI-B1 4, 1 8 und 38 haben nur eine schwere Kette.
AI-B1 4 und 1 7 sind identisch. Ebenso sind AI-B34 und 40 mit AI-B1 8 identisch.
Die Hemmung der PDG-B-Bindung an Plättchen durch Al-B-Phabs wird in Fig. 2 dargestellt. Die Bestimmung erfolgte mittels durchflußzytometrischer Analyse. Hierzu wurde ein an Plättchen reiches Plasma (insgesamt 107 Plättchen) mit biotinyliertem PDG-B in Gegenwart oder Abwesenheit von Al- B Phabs und unter Verwendung von Helferphagen als Kontrolle inkubiert. Die Plättchen wurden mit Paraformaldehyd fixiert und gebundenes PDG-B wurde mit R-Phycoerythrin (RPE)-markiertem Streptavidin nachgewiesen. 1 0.000 Vorgänge wurden in einem FACScan-Gerät gezählt und der mittlere Wert der Fluoreszenz ( ± SD) wurde aufgezeichnet. Die stärkste Inhibierung ( > 60%) wurde mit den Klonen AI-B1 8, 24 und 38 erzielt. Die Hemmung der Bindung zeigt eine Wechselwirkung von Al-B Klonen mit der Antigen- bindenden Stelle auf PDG-B.
Tabelle 5a
Bindung an
IX Phab-Klone PDG A PDGB antl-lgE-Fab anti-GPIIb/llla mAb SG F(ab')2
Gruppe I 16,17,24
Gruppe II
1 ,2,3,4,5,6,7,9,
11 ,13,14,23,26, 22
27,28,29,33,35,
36,37,38,40
Gruppe III 8,10,12,15,18,
19,21,22,25,30, 14
31 ,32,34,39
Gruppe IV 20
Tabelle 5b
Al-B
Phab-Klone Bindung an
MgG n PDG-X PDG-B anti-lgE-Fab anti-GPIIb/llla mAb MgG p
(Al-B5 1,74,8,14,17,18,23 24,30,31 ,33,34-38,40).
8 +
12 +
Tabelle 6 anti-ld H-Kette L-Kette phage clones antiidiotypische
Phab-Klone ie
VH Familie Stammlinieni Homolog Homologie
Vλ Familie Stammlinien(Al-X und Al-B) gen (%) * gen (%) * " "
A1-X16, AI-X24 VH3 DP47 88 λ2 DPL10 88
AI-X17 VH3 DP47 87 Λ DPL10 88 ^
AI-X39 VH3 DP49 94 - -
AI-X40 VH3 DP31 95 - - -
AI-X20 H DP71 78 - - -
AI-B14. AI-B17 VH3 DP46 91 - - -
AI-B18 H1 DP10 85 - - -
A1-B24 VH3 DP49 81 VΛ3 3h 82
AI-B38 H1 DP5 98 - - -
20 Höchste Homologie (in %) der Aminosäuresequenzen der jeweiligen Phab-Klone zu Sequenzen von bekannten Stammlinien-V-Genen
Tabelle 7a
A. Schwere Ketten Klone FRI CDR1 FR2 CDR2 FR3 CDR3 FR4
DP47 EVQLLESGGG VQPGGSLRLSCAASGFTFS SYAMS WVRQAPGKGLEWVS AISGSGGSTYYADSVKG RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK AIX16 Q-K H D NF G G-LL-H N—R--V VRDLGYRVLSTFTFDI WGQGTKVTVSS AIX24 AIX17 -N-
DP49 QVQ VESGGGWQPGRSLRLSCAASGΠTS SYG H WVRQAPGKGLEWVA VISYDGSNKYYADSVKG RFTISRDNSKNTI-YLQMNSLRAEDTAVYYCAK AIX39 L —-A K DGRSGSYARFDGMDV WGQGTTVTVSS
DP31 EVQLVESGGGLVQPGRS RLSCAASGΓΓFD DYAMH WVRQAPGKGLEWVS GISWNSGSIGYADSVKG RFTISRDNAKNSLYLQMNSLRAEDTALYYCAKD AIX40 D-T V~ MGSSWATYNAFDI WGQGTMVTVSS
DP71 QVQLQESGPGLVKPSETLSLTCTVSGGSIS SYYWS WIRQPPGKGLEWIG YIYYSGSTNYNPSLKS RVTISVDTSKNQFSLKLSSVTAADTAVYYCAR AIX20 — K- DV— R -H— _L F—DGAR-RF R- --SL-M-P-K G S DADGDGFSPYYFPY WGQGIPVSVSS
B. Leichte Ketten Klone FRI CDR1 FR2 CDR2 FR3 CDR3 FR4
DPL10 QSALTQPASVSGSPGQSITISC TGTSSDVGSYNLVS WYQQHPGKAPKLMIY EVSKRPS GVSNRFSGSKSGNTASLTISGLQAEDEADYYC CSYAGSSTF
AIX16 W AI-N—F-P _G E ___VH—N WVFGGGTKLTVLGQPKAAPSVTLFPPSS
AIX24
AIX17
25
FR: Framework-Region; CDR: Komplement-bestimmende Region. Die oberen Sequenzen (DP47, DP49, DP31 , DP71 und DPL10) sind zu Vergleichszwecken angegeben und stellen die am nächsten verwandte bekannte Stammliniensequenz dar. Striche bedeuten Identität. Für die schwere Kette sind die ersten drei Aminosäuren (QVK) durch die Vektorsequenz von
30 pComb3 bestimmt.
Tabelle 7b
Figure imgf000046_0001
A. Schwere Ketten Klone FRI CDR1 FR2 CDR2 FR3 CDR3 FR4
DP-46 QVQLVESGGGWQPGRSLRLSCAASGFTFS SYAMH WVRQAPGKGLEWVA VISYDGSNKYYADSVKG RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR
AI -B14 --K-L D-G-- A __s N ST F DSETAIAAAGRFDI WGQGTMVTVSS
AI -B17
DP-10 QVQLVQSGAEVKKPGSSVKVSCKASGGTFS SYAIS WVRQAPGQGLEWMG GIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRSEDTAVYYCAR
AI-B18 —K-LE M -HT— -_T v P R—T-DDSGI EDGTTVPSQPLEF WGQGTRVTVSS
DP- 9 QVQLVESGGGWQPGRSLRLSCAASGFTFS SYGMH WVRQAPGKGLEWVA VISYDGSNKYYADSVKG RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK
AI-B24 —K-L L G S N K-AI- Y-S A—SN-G-T V S VR GSGSYLGYYFDY WGQGTLVTVSS
DP-5 QVQLVQSGAEVKKPGASVKVSCKVSGYTLϊ ELSMH WVRQAPGKGLEWMG GFDPEDGETIYAQKFQG RVTMTEDTSTDTAYMELSSLRSEDTAVYYCAT
AI-B3Θ Q-K-LE GLRSYNYGRMLDY WGQGTLVTVSS
B. Leichte Ketten Klone FRj CDR1 FR2 CDR2 FR3 CDR3 FR4
VL3h SYVLTQPPSVSVAPGKTARITC GGNNIGSKSVH WYQQKPGQAPVLVIY YDSDRPS FI PERFSGSNSGNTATLTI SRVEAGDEADYYC QVWDSΞSDH AI-B24 -V RQ--T— —YK V- E— Y HT -Q TI FGGGTKLTVLRQPKAAPSVTLFPPSS
25
FR: Framework-Region; CDR: Komplement-bestimmende Region. Die oberen Sequenzen (DP46, DP10, DP49, DP5 und VL3h) sind zu Vergleichszwecken angegeben und stellen die am nächsten verwandte bekannte Stammliniensequenz dar. Striche bedeuten Identität. Für die schwere Kette sind die ersten drei Aminosäuren (QVK) durch die Vektorsequenz von pComb3 bestimmt.
3. Einfluß von Autoantikörper-Polypeptiden auf die Bindung von Fibrinogen an Blutplättchen
3.1 Methoden
Analyse der Fab-Bindung an EDTA-vorbehandelte Blutplättchen
Ein an Blutplättchen reiches Plasma wurde 30 min mit 10 mM EDTA inkubiert. Biotinylierte PDG-B und PDG-A Polypeptide wurden zugegeben und für 1 h bei Raumtemperatur inkubiert. Die Bindung von PDG-A und PDG-B an Blutplättchen wurden mittels durchflußzytometrischer Analyse unter Verwendung von Phycoerythrin-markiertem Streptavidin gemessen.
Aqqreqationsexperimente
An Blutplättchen reiches Plasma (250 x 1 09/l) wurde frisch hergestellt und unter 5% CO2 gehalten. Das Plasma wurde durch unterschiedliche Verdünnungen an ADP (maximale Konzentration 410 //M) in Abwesenheit oder in Gegenwart von PDG-A oder PDG-B (maximale Menge 10 μg Fab) aktiviert. Die Aggregation wurde in einem Aggregometer Rodell 300BD-5 (Baxter AG, Düdingen, CH) gemessen. In weiteren Experimenten wurde nach Zugabe von PDG-A oder PDG-B polyklonales Anti-Fab-Antiserum zu den aktivierten Plättchen gegeben.
Fibrinoqen-Bindetest
Vertiefungen von ELISA-Platten wurden mit 0,5μg/ml GPIIb/llla beschichtet und mit 3,5% Rinderserumalbumin in Tris-gepufferter Salzlösung blockiert. Dann wurde Fibrinogen (Kabi Diagnostics, Stockholm, Schweden) in unter- schiedlichen Konzentrationen (maximal 0,08 μg/ml) in Abwesenheit oder in Gegenwart von PDG-A, PDG-B oder Anti-lgE Fab zur Kontrolle zugegeben (maximale Konzentrationen 23 yg/ml) . Das gebundene Fibrinogen wurde mit Ratten-Anti-Humanfibrogen- Antikörper, biotinyliertem Maus-Anti-Ratten- Antikörper und einem Konjugat aus Streptavidin und biotinylierter Meerret- tichperoxidase (Amersham Pharmacia Biotech Europe GmbH, Dübendorf, CH) unter Verwendung eines ELISA-Easy-Ablesegeräts (EAR340AT, SLT- Instruments, Österreich) bei 405 nm gemessen.
Kompetitionsassay unter Verwendung des monoklonalen Antikörpers 7E3 und des Antikörperfraqments ReoPro®
An Plättchen reiches Plasma (230 x 109/l) wurde für 1 ,5 h mit PDG-B oder PDG-A (200 bzw. 400 //g/ml) mit oder ohne dem murinen monoklonalen Antikörper 7E3 oder dessen Fab-Fragment ReoPro® (Gesamtmenge an Fab im Bereich von 1014 bis 1010) inkubiert. Nach Fixieren mit einem gleichen Volumen an 1 % Paraformaldehyd wurde die Bindung von PDG-B und PDG-A an Plättchen mittels durchflußzytometrischer Analyse unter Verwendung von Phycoerythrin-markiertem Streptavidin gemessen.
3.2 Ergebnisse
Die getesteten rekombinanten Anti-GPIIb/llla Fab Autoantikörperfragmente zeigen keine Bindung an Blutplättchen, die mit 1 0 mM EDTA vorbehandelt worden waren. Dies zeigt, daß die Autoantikörperfragmente nur ein in seiner Konformation intaktes Antigen erkennen (Fig. 3).
In Aggregationexperimenten, bei denen an Plättchen angereichertes Plasma verwendet wurde, zeigten PDG-A oder PDG-B keine Hemmung der Aggregation. In einem Fibrinogenbindetest, bei dem die Fibrinogenkonzen- tration 104 bis 106 mal geringer als in Serum ist, wurde die Fibrinogenbindung durch PDG-A und PDG-B vollständig gehemmt (Fig. 4) . Bei Ver- wendung von Anti-lgE Fab als Kontrolle, das durch ein ähnliches Anreicherungsprotokoll erhalten wurde, trat keine Hemmung auf. Diese Ergebnisse zeigen, daß sowohl PDG-A als auch PDG-B eine starke Wechselwirkung mit der Fibrinogenbindestelle auf GPIIb/llla zeigen.
In Untersuchungen mit dem murinen monoklonalen Anti-GPIIb/llla Antikörper 7E3 und dessen kommerziell erhältlichen Fab-Fragment ReoPro®, die beide die Fibrinogenbindung an aktiviertes GPIIb/llla hemmen, wurde eine selektive und vollständige Hemmung der PDG-B Bindung an Blutplättchen gefunden (Figuren 5 bis 7) . In Gegensatz dazu wurde die Bindung von PDG- A an Blutplättchen weder durch 7E3 noch durch ReoPro® signifikant gehemmt.
SEQUENZPROTOKOLL
(1) ALLGEMEINE ANGABEN:
( i ) ANMELDER :
(A) NAME: ASAT AG Applied Science & Technology
(B) STRASSE: Baarerstrasse 77
(C) ORT: Zug
(E) LAND: CH
(F) POSTLEITZAHL: 6302
(ii) BEZEICHNUNG DER ERFINDUNG: Re ombinante Antikoerper (iii) ANZAHL DER SEQUENZEN: 30
(iv) COMPUTER-LESBARE FASSUNG:
(A) DATENTRÄGER: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: Patentin Release #1.0, Version #1.30 (EPA)
(vi) DATEN DER URANMELDUNG:
(A) ANMELDENUMMER: DE 19723904.8
(B) ANMELDETAG: 06-JUN-1997
(vi) DATEN DER URANMELDUNG:
(A) ANMELDENUMMER: DE 19755227.7
(B) ANMELDETAG: 12-DEC-1997
(vi) DATEN DER URANMELDUNG:
(A) ANMELDENUMMER: DE 19820663.1
(B) ANMELDETAG: 08 -MAY- 1998
(2) ANGABEN ZU SEQ ID NO : 1:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 357 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: beides
(D) TOPOLOGIE: linear
(ix) MERKMAL:
(A) NAME/SCHLÜSSEL: CDS
(B) LAGE :1..357
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:
CAG GTG AAA CTG CTC GAG TCG GGC CCA GGA CTG GTG AAG CCT TCG GAG 48 Gin Val Lys Leu Leu Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu 1 5 10 15
ACC CTG TCC CTC AAC TGC ACT GTC TCT GGT CGC TCC ATC AGT GGT TAC 96 Thr Leu Ser Leu Asn Cys Thr Val Ser Gly Arg Ser Ile Ser Gly Tyr 20 25 30
TCT TGG AGA TGG ATC CGG CAG TCT CCA GGG AAG GGA CTA GAG TGG ATT 144 Ser Trp Arg Trp Ile Arg Gin Ser Pro Gly Lys Gly Leu Glu Trp Ile 35 40 45
GGG GAT ATC TCT TAT AGT GGG AGT ACC AAG TAC AAA CCC TCC CTC AGG 192 Gly Asp Ile Ser Tyr Ser Gly Ser Thr Lys Tyr Lys Pro Ser Leu Arg 50 55 60
AGT CGA GTC ACC CTG TCA GTA GAC ACG TCC AAG AAC CAG TTC TCC CTG 240 Ser Arg Val Thr Leu Ser Val Asp Thr Ser Lys Asn Gin Phe Ser Leu 65 70 75 80
AAG CTG AAT TCG GTG ACC GCT GCG GAC ACG GCC GTC TAT TAC TGT GCG 288 Lys Leu Asn Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95
CGA GTC TTG CCC TTT GAC CCG ATC TCG ATG GAC GTC TGG GGC AAA GGG 336 Arg Val Leu Pro Phe Asp Pro Ile Ser Met Asp Val Trp Gly Lys Gly 100 105 110
ACC ACG GTC ACC GTC TCC TCA 357
Thr Thr Val Thr Val Ser Ser 115
(2 ) ANGABEN ZU SEQ ID NO : 2 :
( i ) SEQUENZKENNZEICHEN :
(A) LÄNGE: 119 Aminosäuren
(B) ART: Aminosäure (D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO : 2:
Gin Val Lys Leu Leu Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu 1 5 10 15
Thr Leu Ser Leu Asn Cys Thr Val Ser Gly Arg Ser Ile Ser Gly Tyr 20 25 30
Ser Trp Arg Trp Ile Arg Gin Ser Pro Gly Lys Gly Leu Glu Trp Ile 35 40 45
Gly Asp Ile Ser Tyr Ser Gly Ser Thr Lys Tyr Lys Pro Ser Leu Arg 50 55 60
Ser Arg Val Thr Leu Ser Val Asp Thr Ser Lys Asn Gin Phe Ser Leu 65 70 75 80
Lys Leu Asn Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95
Arg Val Leu Pro Phe Asp Pro Ile Ser Met Asp Val Trp Gly Lys Gly 100 105 110
Thr Thr Val Thr Val Ser Ser 115
(2) ANGABEN ZU SEQ ID NO: 3:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 333 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: beides
(D) TOPOLOGIE: linear
(ix) MERKMAL:
(A) NAME/SCHLÜSSEL: CDS
(B) LAGE :1..333
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO : 3:
GTG GTG ACT CAG CCA CCC TCA GCG TCT GGG ACC CCC GGG CAG TGG GTC 48 Val Val Thr Gin Pro Pro Ser Ala Ser Gly Thr Pro Gly Gin Trp Val 120 125 130 135
ACC ATC TCT TGT TCT GGG AGC AGC TCC AAC ATC AGA AGT AAT CCT GTT 96 Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Arg Ser Asn Pro Val 140 145 150
AGC TGG TAT CAC CAG GTC CCA GGC ACG GCC CCC AAA CTC CTC ATC TTT 144 Ser Trp Tyr His Gin Val Pro Gly Thr Ala Pro Lys Leu Leu Ile Phe 155 160 165
GGT AGT CAT CAG CGG CCC TCA GGG GTC CCT GAC CGA TTC TCT GGC TCC 192 Gly Ser His Gin Arg Pro Ser Gly Val Pro Asp Arg Phe Ser Gly Ser 170 175 180
AAG TCG GGC ACC TCC GCC TCC CTG GCC ATC CGT GGG CTC CAA TCT GGG 240 Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Arg Gly Leu Gin Ser Gly 185 190 195
GAT GCT GGT GAC TAT TAC TGT GCA ACA TGG GAT GAC GGC CTC AAT GGT 288 Asp Ala Gly Asp Tyr Tyr Cys Ala Thr Trp Asp Asp Gly Leu Asn Gly 200 205 210 215
CCG GTG TTC GGC GGA GGG ACC AAG CTG ACC GTC CTA AGT CAG CCC 333
Pro Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Ser Gin Pro 220 225 230
(2) ANGABEN ZU SEQ ID NO : 4:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 111 Aminosäuren
(B) ART: Aminosäure (D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO : 4:
Val Val Thr Gin Pro Pro Ser Ala Ser Gly Thr Pro Gly Gin Trp Val 1 5 10 15
Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Arg Ser Asn Pro Val 20 25 30
Ser Trp Tyr His Gin Val Pro Gly Thr Ala Pro Lys Leu Leu Ile Phe 35 40 45
Gly Ser His Gin Arg Pro Ser Gly Val Pro Asp Arg Phe Ser Gly Ser 50 55 60
Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Arg Gly Leu Gin Ser Gly 65 70 75 80
Asp Ala Gly Asp Tyr Tyr Cys Ala Thr Trp Asp Asp Gly Leu Asn Gly 85 90 95
Pro Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Ser Gin Pro 100 105 110
(2) ANGABEN ZU SEQ ID NO : 5:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 369 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: beides
(D) TOPOLOGIE: linear
(ix) MERKMAL: (A) NAME /SCHLÜSSEL : CDS
(B) LAGE : 1 . . 369
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO : 5:
CAG GTG AAA CTG CTC GAG TCT GGG GGA GGC GTG GTC CAG CCT GGG AGG 48 Gin Val Lys Leu Leu Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg 115 120 125
TCC CTG AGA CTC TCC TGT GCA GCC TCT GGA TTC ACC TTC AGT AGC TAT 96 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 130 135 140
GCT ATG CAC TGG GTC CGC CAG GCT CCA GGC AAG GGG CTG GAG TGG GTG 144 Ala Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 145 150 155
GCA GTT ATA TCA TAT GAT GGA AGC AAT AAA TAC TAC GCA GAC TCC GTG 192 Ala Val Ile Ser Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val 160 165 170 175
AAG GGC CGA TTC GCC ATC TCC AGA GAC AAT TCC AAG AAC ACG CTG TAT 240 Lys Gly Arg Phe Ala Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 180 185 190
CTG CAA ATG AAC AGC CTG AGA GCT GAG GAC ACG GCT GTG TAT TAC TGT 288 Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 195 200 205
GCG AGA GCG CTG GGG AGC TGG GGG GGT TGG GAC CAC TAC ATG GAC GTC 336 Ala Arg Ala Leu Gly Ser Trp Gly Gly Trp Asp His Tyr Met Asp Val 210 215 220
TGG GGC AAA GGG ACC ACG GTC ACC GTC TCC TCA 369
Trp Gly Lys Gly Thr Thr Val Thr Val Ser Ser 225 230
{2 ) ANGABEN ZU SEQ ID NO : 6 :
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 123 Aminosäuren
(B) ART: Aminosäure (D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO : 6:
Gin Val Lys Leu Leu Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Ala Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ala Val Ile Ser Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Ala Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Arg Ala Leu Gly Ser Trp Gly Gly Trp Asp His Tyr Met Asp Val 100 105 110 Trp Gly Lys Gly Thr Thr Val Thr Val Ser Ser 115 120
(2) ANGABEN ZU SEQ ID NO : 7:
(i) SEQUENZ-KENNZEICHEN:
(A) LÄNGE: 333 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: beides
(D) TOPOLOGIE: linear
(ix) MERKMAL:
(A) NAME/SCHLÜSSEL: CDS
(B) LAGE :1..333
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:
GTG GTG ACT CAG CCA CCC TCA GCG TCT GGG ACC CCC GGG CAG AGG GTC 48 Val Val Thr Gin Pro Pro Ser Ala Ser Gly Thr Pro Gly Gin Arg Val 125 130 135
ACC ATC TCT TGT TCT GGA AGC AGC TCC AAC ATC GGA AGT AAT ACT GTA 96 Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn Thr Val 140 145 150 155
AAC TGG TAC CAG CAG CTC CCA GGA ACG GCC CCC AAA CTC CTC ATC TAT 144 Asn Trp Tyr Gin Gin Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile Tyr 160 165 170
AGT AAT AAT CAG CGG CCC TCA GGG GTC CCT GAC CGA TTC TCT GGC TCC 192 Ser Asn Asn Gin Arg Pro Ser Gly Val Pro Asp Arg Phe Ser Gly Ser 175 180 185
AAG TCT GGC ACC TCA GCC TCC CTG GCC ATC AGT GGG CTC CAG TCT GAG 240 Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Ser Gly Leu Gin Ser Glu 190 195 200
GAT GAG GCT GAT TAT TAC TGT GCA GCA TGG GAT GAC AGC CTG AAT GGT 288 Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp Asp Asp Ser Leu Asn Gly 205 210 215
TGG GTG TTC GGC GGA GGG ACC AAG CTG ACC GTC CTA GGT CAG CCC 333
Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gin Pro 220 225 230
(2) ANGABEN ZU SEQ ID NO : 8:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 111 Aminosäuren
(B) ART: Aminosäure (D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:
Val Val Thr Gin Pro Pro Ser Ala Ser Gly Thr Pro Gly Gin Arg Val 1 5 10 15
Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn Thr Val 20 25 30
Asn Trp Tyr Gin Gin Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile Tyr 35 40 45
Ser Asn Asn Gin Arg Pro Ser Gly Val Pro Asp Arg Phe Ser Gly Ser 50 55 60
Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Ser Gly Leu Gin Ser Glu 65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp Asp Asp Ser Leu Asn Gly 85 90 95
Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gin Pro 100 105 110
(2) ANGABEN ZU SEQ ID NO : 9:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 369 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: beides
(D) TOPOLOGIE: linear
(ix) MERKMAL:
(A) NAME/SCHLÜSSEL: CDS
(B) LAGE:1..369
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO : 9:
CAG GTG AAA CTG CTC GAG TCT GGG GGA GGC TTG GTT CAC CCC GGG GGG 48 Gin Val Lys Leu Leu Glu Ser Gly Gly Gly Leu Val His Pro Gly Gly 115 120 125
TCC CTG AGA CTC TCT TGT GCA GCC TCT GGA TTT ACG TTT GAC AAC TTT 96 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asp Asn Phe 130 135 140
GCC ATG AGC . TGG GTC CGC CAG GCT CCA GGG AAG GGG CTG GAG TGG GTC 144 Ala Met Ser Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 145 150 155
TCA GGC ATT AGT GGT GGT GGT CTT TTG ACA CAC TAC GCA GAC TCC GTG 192 Ser Gly Ile Ser Gly Gly Gly Leu Leu Thr His Tyr Ala Asp Ser Val 160 165 170 175
AAG GGC CGG TTC ACC ATC TCC AGA AAC AAT TCC AGG AAC ACT GTA TAC 240 Lys Gly Arg Phe Thr Ile Ser Arg Asn Asn Ser Arg Asn Thr Val Tyr 180 185 190
CTA CAA ATG AAC AGC CTG AGA GCC GAA GAC ACG GCC GTG TAT TAT TGT 288 Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 195 200 205
GTG AGA GAT CTG GGC TAT AGA GTA CTT TCG ACT TTT ACT TTT GAT ATC 336 Val Arg Asp Leu Gly Tyr Arg Val Leu Ser Thr Phe Thr Phe Asp Ile 210 215 220
TGG GGC CAG GGG ACA AAG GTC ACC GTC TCT TCA 369
Trp Gly Gin Gly Thr Lys Val Thr Val Ser Ser 225 230
(2) ANGABEN ZU SEQ ID NO: 10:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 123 Aminosäuren
(B) ART: Aminosäure (D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 10:
Gin Val Lys Leu Leu Glu Ser Gly Gly Gly Leu Val His Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asp Asn Phe 20 25 30
Ala Met Ser Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ser Gly Ile Ser Gly Gly Gly Leu Leu Thr His Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asn Asn Ser Arg Asn Thr Val Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Val Arg Asp Leu Gly Tyr Arg Val Leu Ser Thr Phe Thr Phe Asp Ile 100 105 110
Trp Gly Gin Gly Thr Lys Val Thr Val Ser Ser 115 120
(2) ANGABEN ZU SEQ ID NO: 11:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 375 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: beides
(D) TOPOLOGIE: linear
(ix) MERKMAL:
(A) NAME/SCHLÜSSEL: CDS
(B) LAGE :1..375
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:
GTG GTG ACT CAG CCT GCC TCC GTG TCT GGG TCT CCT GGA CAG TCG ATC 48 Val Val Thr Gin Pro Ala Ser Val Ser Gly Ser Pro Gly Gin Ser Ile 125 130 135
ACC ATC TCC TGC ACT GGA ACC AGC AGT GCT ATT GGG AAT TAT AAC TTT 96 Thr Ile Ser Cys Thr Gly Thr Ser Ser Ala Ile Gly Asn Tyr Asn Phe 140 145 150 155
GTC CCC TGG TAC CAA CAG CAC CCA GGC AAA GCC CCC AAA CTC ATG ATT 144 Val Pro Trp Tyr Gin Gin His Pro Gly Lys Ala Pro Lys Leu Met Ile 160 165 170
TAT GAG GGC AGT AAG CGG CCC TCA GGG GTT TCT AAT CGC TTC TCT GGC 192 Tyr Glu Gly Ser Lys Arg Pro Ser Gly Val Ser Asn Arg Phe Ser Gly 175 180 185
TCC AAG TCT GGC AAC ACG GCC TCC CTG ACA ATC TCT GGG CTC CAG GCT 240 Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu Gin Ala 190 195 200
GAG GAC GAG GCT GAG TAT TAC TGC TGC TCA TAT GTT CAT AGT AGC ACT 288 Glu Asp Glu Ala Glu Tyr Tyr Cys Cys Ser Tyr Val His Ser Ser Thr 205 210 215
AAT TGG GTG TTC GGC GGA GGG ACC AAG CTG ACC GTC CTA GGT CAG CCC 336 Asn Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gin Pro 220 225 230 235
AAG GCT GCC CCC TCG GTC ACT CTG TTC CCA CCC TCC TCT 375
Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser 240 245
(2) ANGABEN ZU SEQ ID NO: 12:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 125 Aminosäuren
(B) ART: Aminosäure (D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 12:
Val Val Thr Gin Pro Ala Ser Val Ser Gly Ser Pro Gly Gin Ser Ile 1 5 10 15
Thr Ile Ser Cys Thr Gly Thr Ser Ser Ala Ile Gly Asn Tyr Asn Phe 20 25 30
Val Pro Trp Tyr Gin Gin His Pro Gly Lys Ala Pro Lys Leu Met Ile 35 40 45
Tyr Glu Gly Ser Lys Arg Pro Ser Gly Val Ser Asn Arg Phe Ser Gly 50 55 60
Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu Gin Ala 65 70 75 80
Glu Asp Glu Ala Glu Tyr Tyr Cys Cys Ser Tyr Val His Ser Ser Thr 85 90 95
Asn Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gin Pro .100 105 110
Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser 115 120 125
(2) ANGABEN ZU SEQ ID NO: 13:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 366 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: beides
(D) TOPOLOGIE: linear
(ix) MERKMAL:
(A) NAME/SCHLÜSSEL: CDS
(B) LAGE:1..366
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 13:
CAG GTG AAA CTG CTC GAG TCA GGA CCA GGA CTG GTG AAG CCC TCG GAG 48 Gin Val Lys Leu Leu Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu 130 135 140
ACC CTG TCT CTC ACC TGC ACT GTC TCT GAT GTC TCC ATC AGA AGT CAT 96 Thr Leu Ser Leu Thr Cys Thr Val Ser Asp Val Ser Ile Arg Ser His 145 150 155
TAC TGG AGT TGG CTC CGG CAG CCC CCA GGG AAG GGA CTG GAG TGG ATT 144 Tyr Trp Ser Trp Leu Arg Gin Pro Pro Gly Lys Gly Leu Glu Trp Ile 160 165 170 GGG TTT ATC TAT GAC GGT GCG AGA ACC AGG TTC AAC CCC TCC CTC AGG 192 Gly Phe Ile Tyr Asp Gly Ala Arg Thr Arg Phe Asn Pro Ser Leu Arg 175 180 185
AGT CGA GTC TCC CTT TCA ATG GAC CCA TCC AAG AAG CAG TTT TCC CTG 240 Ser Arg Val Ser Leu Ser Met Asp Pro Ser Lys Lys Gin Phe Ser Leu 190 195 200 205
AAA CTG GGG TCT GTG ACC GCT GCG GAC TCG GCC GTC TAC TAC TGT GCG 288 Lys Leu Gly Ser Val Thr Ala Ala Asp Ser Ala Val Tyr Tyr Cys Ala 210 215 220
AGA GAC GCG GAT GGA GAT GGC TTC AGC CCA TAC TAC TTT CCC TAC TGG 336 Arg Asp Ala Asp Gly Asp Gly Phe Ser Pro Tyr Tyr Phe Pro Tyr Trp 225 230 235
GGC CAG GGA ATC CCG GTC TCC GTC TCC TCG 366
Gly Gin Gly Ile Pro Val Ser Val Ser Ser 240 245
(2) ANGABEN ZU SEQ ID NO: 14:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 122 Aminosäuren
(B) ART: Aminosäure (D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 14:
Gin Val Lys Leu Leu Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu 1 5 10 15
Thr Leu Ser Leu Thr Cys Thr Val Ser Asp Val Ser Ile Arg Ser His 20 25 30
Tyr Trp Ser Trp Leu Arg Gin Pro Pro Gly Lys Gly Leu Glu Trp Ile 35 40 45
Gly Phe Ile Tyr Asp Gly Ala Arg Thr Arg Phe Asn Pro Ser Leu Arg 50 55 60
Ser Arg Val Ser Leu Ser Met Asp Pro Ser Lys Lys Gin Phe Ser Leu 65 70 75 80
Lys Leu Gly Ser Val Thr Ala Ala Asp Ser Ala Val Tyr Tyr Cys Ala 85 90 95
Arg Asp Ala Asp Gly Asp Gly Phe Ser Pro Tyr Tyr Phe Pro Tyr Trp 100 105 110
Gly Gin Gly Ile Pro Val Ser Val Ser Ser 115 120
(2) ANGABEN ZU SEQ ID NO: 15:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 372 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: beides
(D) TOPOLOGIE: linear
(ix) MERKMAL:
(A) NAME/SCHLÜSSEL: CDS
(B) LAGE :1..372 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 15:
CAG GTG AAA CTG CTC GAG TCT GGG GGA GGC GTG GTC CAC CCT GGG AGG 48 Gin Val Lys Leu Leu Glu Ser Gly Gly Gly Val Val His Pro Gly Arg 125 130 135
TCC CTG AGA CTC TCC TGT GCA GCC TCT GGA TTC ACC TTC AGT AGC TAT 96 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 140 145 150
ACT ATG CAC TGG GTC CGC CAG GCT CCA GGC AAG GGG CTG GAG TGG GTG 144 Thr Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 155 160 165 170
GCA CTT ATA TCA TAT GAT GGA AGC AAT AAA TAC TAC GCA GAC TCC GTG 192 Ala Leu Ile Ser Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val 175 180 185
AAG GGC CGA TTC GCC ATC TCC AGA GAC AAT TCC AAG AAC ACG CTA TAT 240 Lys Gly Arg Phe Ala Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 190 195 200
CTG CAA ATG AAC AGC CTG AGA GCT GAG GAC ACG GCT GTG TAT TAC TGT 288 Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 205 210 215
GCG AAA GAT GGC CGG AGT GGG AGC TAC GCC AGG TTC GAC GGT ATG GAC 336 Ala Lys Asp Gly Arg Ser Gly Ser Tyr Ala Arg Phe Asp Gly Met Asp 220 225 230
GTC TGG GGC CAA GGG ACC ACG GTC ACC GTC TCC TCA 372
Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser 235 240 245
(2) ANGABEN ZU SEQ ID NO: 16:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 124 Aminosäuren
(B) ART: Aminosäure (D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 16:
Gin Val Lys Leu Leu Glu Ser Gly Gly Gly Val Val His Pro Gly Arg 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
Thr Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ala Leu Ile Ser Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Ala Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Ala Lys Asp Gly Arg Ser Gly Ser Tyr Ala Arg Phe Asp Gly Met Asp 100 105 110
Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser 115 120 *~ o o
(2) ANGABEN ZU SEQ ID NO: 17:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 372 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: beides
(D) TOPOLOGIE: linear
(ix) MERKMAL:
(A) NAME/SCHLÜSSEL: CDS
(B) LAGE:1..372
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17:
CAG GTG AAA CTG CTC GAG TCT GGG GGA GGC TTG GTA CAG CCT GGC AGG 48 Gin Val Lys Leu Leu Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Arg 125 130 135 140
TCC CTG AGA CTC TCC TGT GCA GCC TCT GGA TTC ACC TTT GAT GAT TAT 96 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asp Asp Tyr 145 150 155
GCC CTG CAC TGG GTC CGT CAA GCT CCA GGG AAG GGC CTG GAG TGG GTC 144 Ala Leu His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 160 165 170
TCA GGT ATT AGT TGG GAT AGT GGT ACC ATA GGC TAT GCG GAC TCT GTG 192 Ser Gly Ile Ser Trp Asp Ser Gly Thr Ile Gly Tyr Ala Asp Ser Val 175 180 185
AAG GGC CGA TTC ACC ATC TCC AGA GAC AAC GCC AAG AAC TCC CTG TAT 240 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 190 195 200
CTG CAA ATG AAC AGT CTG AGA GCT GAG GAC ACG GCC TTG TAT TAC TGT 288 Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Leu Tyr Tyr Cys 205 210 215 220
GTA AAA GAT ATG GGG TCT TCG GTA GTG GCT ACG TAC AAT GCT TTT GAT 336 Val Lys Asp Met Gly Ser Ser Val Val Ala Thr Tyr Asn Ala Phe Asp 225 230 235
ATC TGG GGC CAA GGG ACA ATG GTC ACC GTC TCT TCA 372
Ile Trp Gly Gin Gly Thr Met Val Thr Val Ser Ser 240 245
(2) ANGABEN ZU SEQ ID NO: 18:
( i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 124 Aminosäuren
(B) ART: Aminosäure (D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 18:
Gin Val Lys Leu Leu Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Arg 1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asp Asp Tyr 20 25 30
Ala Leu His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45 Ser Gly Ile Ser Trp Asp Ser Gly Thr Ile Gly Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 65 70 75 80
Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Leu Tyr Tyr Cys 85 90 95
Val Lys Asp Met Gly Ser Ser Val Val Ala Thr Tyr Asn Ala Phe Asp 100 105 110
Ile Trp Gly Gin Gly Thr Met Val Thr Val Ser Ser 115 120
(2) ANGABEN ZU SEQ ID NO: 19:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 360 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: beides
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: cDNA zu mRNA
(vii) UNMITTELBARE HERKUNFT: (B) CLON(E) : AI-X2
(ix) MERKMAL:
(A) NAME/SCHLÜSSEL: CDS
(B) LAGE:1..360
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 19:
CAG GTG AAA CTG CTC GAG TCA GGC CCA GGA CTG GTG AAG CCT TCG GAG 48 Gin Val Lys Leu Leu Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu 125 130 135 140
ACC CTG TCC CTC ACC TGC ACT GTC TCT GGT GGC TCC TTC AGT ACT TAC 96 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Phe Ser Thr Tyr 145 150 155
TAT TGG AGC TGG ATC CGG CAG CCC CCA GGG AAG GGA CTG GAG TGG ATT 144 Tyr Trp Ser Trp Ile Arg Gin Pro Pro Gly Lys Gly Leu Glu Trp Ile 160 165 170
GGG TAT ATC TAT TAC AGT GGG AAC ACC AAC TAC AAC CCC TCC CTC AAG 192 Gly Tyr Ile Tyr Tyr Ser Gly Asn Thr Asn Tyr Asn Pro Ser Leu Lys 175 180 185
AGT CGA GCC ACC ATA TCA GTA GAC ACG TCC AAG AAC CAG TTC TCC CTG 240 Ser Arg Ala Thr Ile Ser Val Asp Thr Ser Lys Asn Gin Phe Ser Leu 190 195 200
AAG CTG AGC TCT GTT ACC GCC GCA GAC ACG GCC GTA TAT TAC TGT GCG 288 Lyε Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala 205 210 215 220
AGA CTG CGT AAC GAT GGC TGG AAT GAT GGC TTT GAT ATC TGG GGC CAA 336 Arg Leu Arg Asn Asp Gly Trp Asn Asp Gly Phe Asp Ile Trp Gly Gin 225 230 235
GGG ACA ATG GTC ACC GTC TCT TCA 360
Gly Thr Met Val Thr Val Ser Ser 240 (2) ANGABEN ZU SEQ ID NO : 20:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 120 Aminosäuren
(B) ART: Aminosäure (D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 20:
Gin Val Lys Leu Leu Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu 1 5 10 15
Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Phe Ser Thr Tyr 20 25 30
Tyr Trp Ser Trp Ile Arg Gin Pro Pro Gly Lys Gly Leu Glu Trp Ile 35 40 45
Gly Tyr Ile Tyr Tyr Ser Gly Asn Thr Asn Tyr Asn Pro Ser Leu Lys 50 55 60
Ser Arg Ala Thr Ile Ser Val Asp Thr Ser Lys Asn Gin Phe Ser Leu 65 70 75 80
Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95
Arg Leu Arg Asn Asp Gly Trp Asn Asp Gly Phe Asp Ile Trp Gly Gin 100 105 110
Gly Thr Met Val Thr Val Ser Ser 115 120
(2) ANGABEN ZU SEQ ID NO: 21:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 369 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: beides
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: cDNA zu mRNA
(vi) URSPRÜNLICHE HERKUNFT:
(A) ORGANISMUS : Homo sapiens
(vii) UNMITTELBARE HERKUNFT:
(B) CLON(E) : AI-B14
(viii) POSITION IM GENOM:
(A) CHROMOSOM/SEGMENT: 14
(B) KARTENPOSITION: g32.3
(ix) MERKMAL:
(A) NAME/SCHLÜSSEL: CDS
(B) LAGE:1..369
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO : 21:
CAG GTG AAA CTG CTC GAG TCT GGG GGA GGC GTG GTC CAG CCT GGG AGG 48 Gin Val Lys Leu Leu Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg 125 130 135
TCC CTG AGA CTC TCC TGT GCA GCC TCT GGA TTC ACC TTC AGT GAC TAT 96 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr 140 145 150 GGC ATG CAC TGG GTC CGC CAG GCT CCA GGC AAG GGG CTG GAG TGG GTG 144 Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 155 160 165
GCA GCT ATA TCA TAT GAT GGA AGT AAC AAA TAC TAT GCA GAC TCC GTG 192 Ala Ala Ile Ser Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val 170 175 180
AAG GGC CGA TTC TCC ATC TCC AGA GAC AAT TCC AAC AAT ACG CTA TAT 240 Lys Gly Arg Phe Ser Ile Ser Arg Asp Asn Ser Asn Asn Thr Leu Tyr 185 190 195 200
CTG CAA ATG AGC ACC CTG AGA GCT GAG GAC ACG GCT GTC TAT TTC TGT 288 Leu Gin Met Ser Thr Leu Arg Ala Glu Asp Thr Ala Val Tyr Phe Cys 205 210 215
GCG AGA GAT TCG GAA ACG GCA ATA GCG GCA GCT GGA CGG TTT GAT ATC 336 Ala Arg Asp Ser Glu Thr Ala Ile Ala Ala Ala Gly Arg Phe Asp Ile 220 225 230
TGG GGC CAA GGG ACA ATG GTC ACC GTC TCT TCA 369
Trp Gly Gin Gly Thr Met Val Thr Val Ser Ser 235 240
(2) ANGABEN ZU SEQ ID NO: 22:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 123 Aminosäuren
(B) ART: Aminosäure (D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 22:
Gin Val Lys Leu Leu Glu Ser Gly Gly Gly Val Val Gin Pro Gly Arg 1 . 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr 20 25 30
Gly Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
Ala Ala Ile Ser Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Ser Ile Ser Arg Asp Asn Ser Asn Asn Thr Leu Tyr 65 70 75 80
Leu Gin Met Ser Thr Leu Arg Ala Glu Asp Thr Ala Val Tyr Phe Cys 85 90 95
Ala Arg Asp Ser Glu Thr Ala Ile Ala Ala Ala Gly Arg Phe Asp Ile 100 105 110
Trp Gly Gin Gly Thr Met Val Thr Val Ser Ser 115 120
(2) ANGABEN ZU SEQ ID NO: 23:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 366 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: beides
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: cDNA zu mRNA _ ß 2 _
(vi) URSPRÜNLICHE HERKUNFT:
(A) ORGANISMUS : Homo sapiens
(vii) UNMITTELBARE HERKUNFT:
(B) CLON(E) : AI-B18
(viii) POSITION IM GENOM:
(A) CHROMOSOM/SEGMENT: 14
(B) KARTENPOSITION: q32.3
(ix) MERKMAL:
(A) NAME/SCHLÜSSEL: CDS
(B) LAGE:1..366
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 23:
CAG GTG AAA CTG CTC GAG TCT GGG GCT GAG GTG AAG AAG CCT GGG TCC 48 Gin Val Lys Leu Leu Glu Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 125 130 135
TCG GTG ATG GTC TCC TGC AAG GCT TCT GGA GGC ACC TTC AGC AGC CAT 96 Ser Val Met Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser His 140 145 150 155
ACT ATC AGC TGG GTG CGG CAG GCC CCT GGA CAA GGC CTT GAG TGG ATG 144 Thr Ile Ser Trp Val Arg Gin Ala Pro Gly Gin Gly Leu Glu Trp Met 160 165 170
GGA GGG ATC ACC CCT ATC TTT GGT ACA GTG AAC TAC GCA CAG AAG TTC 192 Gly Gly Ile Thr Pro Ile Phe Gly Thr Val Asn Tyr Ala Gin Lys Phe 175 180 185
CAG GGC AGA GTC ACC ATT ACC GCG GAC GAA CCC ACG AGC ACA GCC TAC 240 Gin Gly Arg Val Thr Ile Thr Ala Asp Glu Pro Thr Ser Thr Ala Tyr 190 195 200
ATG GAA CTG AGG AGC CTG ACA TCT GAC GAC TCG GGC ATC TAT TAC TGT 288 Met Glu Leu Arg Ser Leu Thr Ser Asp Asp Ser Gly Ile Tyr Tyr Cys 205 210 215
GCG AGA GAA GAT GGC ACT ACA GTA CCA AGT CAA CCC CTT GAG TTC TGG 336 Ala Arg Glu Asp Gly Thr Thr Val Pro Ser Gin Pro Leu Glu Phe Trp 220 225 230 235
GGC CAG GGA ACC CGG GTC ACC GTC TCC TCT 366
Gly Gin Gly Thr Arg Val Thr Val Ser Ser 240 245
(2) ANGABEN ZU SEQ ID NO: 24:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 122 Aminosäuren
(B) ART: Aminosäure (D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 24:
Gin Val Lys Leu Leu Glu Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5 10 15
Ser Val Met Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser His 20 25 30
Thr Ile Ser Trp Val Arg Gin Ala Pro Gly Gin Gly Leu Glu Trp Met 35 40 45 Gly Gly Ile Thr Pro Ile Phe Gly Thr Val Asn Tyr Ala Gin Lys Phe 50 55 60
Gin Gly Arg Val Thr Ile Thr Ala Asp Glu Pro Thr Ser Thr Ala Tyr 65 70 75 80
Met Glu Leu Arg Ser Leu Thr Ser Asp Asp Ser Gly Ile Tyr Tyr Cys 85 90 95
Ala Arg Glu Asp Gly Thr Thr Val Pro Ser Gin Pro Leu Glu Phe Trp 100 105 110
Gly Gin Gly Thr Arg Val Thr Val Ser Ser 115 120
(2) ANGABEN ZU SEQ ID NO : 25:
(i) ΞEQUENZKENNZEICHEN:
(A) LÄNGE: 363 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: beides
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: cDNA zu mRNA
(vi) URSPRÜNLICHE HERKUNFT:
(A) ORGANISMUS : Homo sapiens
(vii) UNMITTELBARE HERKUNFT:
(B) CLON(E) : AI-B24
(viii) POSITION IM GENOM:
(A) CHROMOSOM/SEGMENT: 14
(B) KARTENPOSITION: q32.3
(ix) MERKMAL:
(A) NAME/SCHLÜSSEL: CDS
(B) LAGE:1..363
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 25:
CAG GTG AAA CTG CTC GAG TCT GGG GGA GGC TTG GTC CAG CCT GGG GGG 48 Gin Val Lys Leu Leu Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 125 130 135
TCC CTG AGA CTC TCC TGT TCA GCC TCT GGA TTC ACC TTC AAT AAA TAT 96 Ser Leu Arg Leu Ser Cys Ser Ala Ser Gly Phe Thr Phe Asn Lys Tyr 140 145 150
GCA ATA CAC TGG GTC CGC CAG GCT CCA GGG AAG GGA CTG GAA TAT GTT 144 Ala Ile His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Tyr Val 155 160 165 170
TCA GCT ATT AGT AGT AAT GGG GGT AAC ACA TAC TAC GCA GAC TCC GTG 192 Ser Ala Ile Ser Ser Asn Gly Gly Asn Thr Tyr Tyr Ala Asp Ser Val 175 180 185
AAG GGC AGA TTC ACC ATC TCC AGA GAC AAT TCC AAG AAC ACG GTG TAT 240 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Val Tyr 190 195 200
CTT CAA ATG AGC AGT CTG AGA GCT GAG GAC ACG GCT GTG TAT TAC TGT 288 Leu Gin Met Ser Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 205 210 215
GTT AGA GGA AGT GGG AGC TAC TTA GGA TAC TAC TTT GAC TAC TGG GGC 336 Val Arg Gly Ser Gly Ser Tyr Leu Gly Tyr Tyr Phe Asp Tyr Trp Gly 220 225 230 ,. „
- 6 4 -
CAG GGA ACC CTG GTC ACC GTC TCC TCA 363
Gin Gly Thr Leu Val Thr Val Ser Ser 235 240
(2) ANGABEN ZU SEQ ID NO: 26:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 121 Aminosäuren
(B) ART: Aminosäure (D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 26:
Gin Val Lys Leu Leu Glu Ser Gly Gly Gly Leu Val Gin Pro Gly Gly 1 5 10 15
Ser Leu Arg Leu Ser Cys Ser Ala Ser Gly Phe Thr Phe Asn Lys Tyr 20 25 30
Ala Ile His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Tyr Val 35 40 45
Ser Ala Ile Ser Ser Asn Gly Gly Asn Thr Tyr Tyr Ala Asp Ser Val 50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Val Tyr 65 70 75 80
Leu Gin Met Ser Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Val Arg Gly Ser Gly Ser Tyr Leu Gly Tyr Tyr Phe Asp Tyr Trp Gly 100 105 110
Gin Gly Thr Leu Val Thr Val Ser Ser 115' 120
(2) ANGABEN ZU SEQ ID NO : 27:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 366 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: beides
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: cDNA ZU mRNA
(vi) URSPRÜNLICHE HERKUNFT:
(A) ORGANISMUS: Homo sapiens
(vii) UNMITTELBARE HERKUNFT:
(B) CLON(E) : AI-B24
(viii) POSITION IM GENOM:
(A) CHROMOSOM/SEGMENT : 22
(B) KARTENPOSITION: qll
(ix) MERKMAL:
(A) NAME/SCHLÜSSEL: CDS
(B) LAGE :1..366
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 27:
GTG GTG ACT CAG CCA CCC TCG GTG TCA GTG GCT CCA AGA CAG ACG GCC 48 Val Val Thr Gin Pro Pro Ser Val Ser Val Ala Pro Arg Gin Thr Ala 125 130 135 ACG ATT ACC TGT GGG GGA TAC AAG ATT GGA AGT AAA AGT GTC CAC TGG 96 Thr Ile Thr Cys Gly Gly Tyr Lys Ile Gly Ser Lys Ser Val His Trp 140 145 150
TAC CAA CAG AAG CCA GGC CAG GCC CCT GTA TTG GTC GTC TAT GAG GAT 144 Tyr Gin Gin Lys Pro Gly Gin Ala Pro Val Leu Val Val Tyr Glu Asp 155 160 165
TCC TAC CGG CCC TCA GAG ATC CCT GAG CGA TTC TCT GGC TCC AAC TCT 192 Ser Tyr Arg Pro Ser Glu Ile Pro Glu Arg Phe Ser Gly Ser Asn Ser 170 175 180 185
GGG AAC ATG GCC ACC CTG ACC ATC ACC GGG GTC GAA GCC GGG GAT GAG 240 Gly Asn Met Ala Thr Leu Thr Ile Thr Gly Val Glu Ala Gly Asp Glu 190 195 200
GCC GAC TAC TAC TGT CAG GTG TGG GAT AAT ACT AAT GAT CAG ACG ATA 288 Ala Asp Tyr Tyr Cys Gin Val Trp Asp Asn Thr Asn Asp Gin Thr Ile 205 210 215
TTC GGC GGA GGG ACC AAG CTG ACC GTC CTA CGT CAG CCC AAG GCT GCC 336 Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Arg Gin Pro Lys Ala Ala 220 225 230
CCC TCG GTC ACT CTG TTC CCG CCC TCC TCT 366
Pro Ser Val Thr Leu Phe Pro Pro Ser Ser 235 240
(2) ANGABEN ZU SEQ ID NO: 28:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 122 Aminosäuren
(B) ART: Aminosäure (D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 28:
Val Val Thr Gin Pro Pro Ser Val Ser Val Ala Pro Arg Gin Thr Ala 1 5 10 15
Thr Ile Thr Cys Gly Gly Tyr Lys Ile Gly Ser Lys Ser Val His Trp 20 25 30
Tyr Gin Gin Lys Pro Gly Gin Ala Pro Val Leu Val Val Tyr Glu Asp 35 40 45
Ser Tyr Arg Pro Ser Glu Ile Pro Glu Arg Phe Ser Gly Ser Asn Ser 50 55 60
Gly Asn Met Ala Thr Leu Thr Ile Thr Gly Val Glu Ala Gly Asp Glu 65 70 75 80
Ala Asp Tyr Tyr Cys Gin Val Trp Asp Asn Thr Asn Asp Gin Thr Ile 85 90 95
Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Arg Gin Pro Lys Ala Ala 100 105 110
Pro Ser Val Thr Leu Phe Pro Pro Ser Ser 115 120
(2) ANGABEN ZU SEQ ID NO: 29:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 366 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: beides (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: cDNA zu mRNA
(vi) URSPRÜNLICHE HERKUNFT:
(A) ORGANISMUS : Homo sapiens
(vii) UNMITTELBARE HERKUNFT:
(B) CLON(E) : AI-B38
(viii) POSITION IM GENOM:
(A) CHROMOSOM/SEGMENT: 14
(B) KARTENPOSITION: q32.3
(ix) MERKMAL:
(A) NAME/SCHLÜSSEL: CDS
(B) LAGE:1..366
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 29:
CAG GTG AAA CTG CTC GAG TCT GGG GCT GAG GTG AAG AAG CCT GGG GCC 48 Gin Val Lys Leu Leu Glu Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 125 130 135
TCA GTG AAG GTC TCC TGC AAG GTT TCC GGA TAC ACC CTC ACT GAA TTA 96 Ser Val Lys Val Ser Cys Lys Val Ser Gly Tyr Thr Leu Thr Glu Leu 140 145 150
TCC ATG CAC TGG GTG CGA CAG GCT CCT GGA AAA GGG CTT GAG TGG ATG 144 Ser Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Met 155 160 165 170
GGA GGT TTT GAT CCT GAA GAT GGT GAA ACA ATC TAC GCA CAG AAA TTC 192 Gly Gly Phe Asp Pro Glu Asp Gly Glu Thr Ile Tyr Ala Gin Lys Phe 175 180 185
CAG GGC AGA GTC ACC ATG ACC GAG GAC ACA TCT ACA GAC ACG GCC TAC 240 Gin Gly Arg Val Thr Met Thr Glu Asp Thr Ser Thr Asp Thr Ala Tyr 190 195 200
ATG GAG CTG AGC AGC CTG AGA TCT GAG GAC ACG GCC GTG TAT TAC TGT 288 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 205 210 215
GAG ACA GGT CTG AGG TCG TAC AAC TAT GGT CGT AAC CTT GAC TAT TGG 336 Glu Thr Gly Leu Arg Ser Tyr Asn Tyr Gly Arg Asn Leu Asp Tyr Trp 220 225 230
GGC CAG GGA ACC CTG GTC ACC GTC TCC TCA 366
Gly Gin Gly Thr Leu Val Thr Val Ser Ser 235 240
(2) ANGABEN ZU SEQ ID NO : 30:
( i ) SEQUENZKENNZEICHEN :
(A) LÄNGE: 122 Aminosäuren
(B) ART: Aminosäure (D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO : 30:
Gin Val Lys Leu Leu Glu Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15
Ser Val Lys Val Ser Cys Lys Val Ser Gly Tyr Thr Leu Thr Glu Leu 20 25 30 Ser Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp Met 35 40 45
Gly Gly Phe Asp Pro Glu Asp Gly Glu Thr Ile Tyr Ala Gin Lys Phe 50 55 60
Gin Gly Arg Val Thr Met Thr Glu Asp Thr Ser Thr Asp Thr Ala Tyr 65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
Glu Thr Gly Leu Arg Ser Tyr Asn Tyr Gly Arg Asn Leu Asp Tyr Trp 100 105 110
Gly Gin Gly Thr Leu Val Thr Val Ser Ser 115 120

Claims

Ansprüche
1. Nukleinsäure, die für die schwere Kette eines humanen Antikörpers, ein funktionelles Derivat oder ein Fragment davon kodiert und eine
CDR3-Region umfaßt, ausgewählt aus:
(a) einer für die Aminosäuresequenz: V L P F D P I S M D V (I) kodierenden Nukleotidsequenz,
(b) einer für die Aminosäuresequenz: A LG SW G G W D H Y M D V (II) kodierenden Nukleotidsequenz,
(c) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% zu einer Aminosäuresequenz aus (a) oder (b) kodiert und
(d) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer äquivalenten Bindefähigkeit an GPIIb/llla kodiert.
2. Nukleinsäure nach Anspruch 1, weiterhin umfassend eine CDR1- Region ausgewählt aus:
(a) einer für die Aminosäuresequenz: G Y S W R kodierenden Nukleotidsequenz,
(b) einer für die Aminosäuresequenz:
S Y A M H (IV) kodierenden Nukleotidsequenz, und (c) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% zu einer Aminosäuresequenz aus (a), oder (b) kodiert.
3. Nukleinsäure nach einem der Ansprüche 1 oder 2, weiterhin umfassend eine CDR2-Region, ausgewählt aus
(a) einer für die Aminosäuresequenz: D I SY SG ST KY K PSL R S (V) kodierenden Nukleotidsequenz,
(b) einer für die Aminosäuresequenz: V I SY D G S N KYYA D SV K G (VI) kodierenden Nukleotidsequenz und
(c) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% zu einer Aminosäuresequenz aus (a) oder (b) kodiert.
4. Nukleinsäure, die für die leichte Kette eines humanen Antikörpers, ein funktionelles Derivat oder ein Fragment davon kodiert und eine CDR 3-Region umfaßt, ausgewählt aus:
(a) einer für die Aminosäuresequenz: A T W D D G L N G P V (VII) kodierenden Nukleotidsequenz,
(b) einer für die Aminosäuresequenz: A A W D D S L N G W V (VIII) kodierenden Nukleotidsequenz, (c) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% zu einer Aminosäuresequenz aus (a) oder (b) kodiert, und
(d) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer äquivalenten Bindefähigkeit an GPIIb/llla kodiert.
5. Nukleinsäure nach Anspruch 4, weiterhin umfassend eine CDR1- Region ausgewählt aus:
(a) einer für die Aminosäuresequenz:
S G S S S N I R S N PV S (IX) kodierenden Nukleotidsequenz,
(b) einer für die Aminosäuresequenz:
S G S S S N I G S N TV N (X) kodierenden Nukleotidsequenz, und
(c) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% zu einer Aminosäuresequenz aus (a) oder (b) kodiert.
6. Nukleinsäure nach einem der Ansprüche 4 oder 5, weiterhin umfassend eine CDR2-Region ausgewählt aus:
(a) einer für die Aminosäuresequenz:
G S H Q R P S (XI) kodierenden Nukleotidsequenz,
(b) einer für die Aminosäuresequenz:
S N N Q R P S (XII) kodierenden Nukleotidsequenz, und (c) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% zu einer Aminosäuresequenz aus (a) oder (b) kodiert.
Nukleinsäure, die für die schwere Kette eines humanen Antikörpers, ein funktionelles Derivat oder ein Fragment davon kodiert und eine CDR3-Region umfaßt, ausgewählt aus:
(a) einer für die Aminosäuresequenz:
V R D L G Y R V L ST FT F D I (XIII) kodierenden Nukleotidsequenz,
(b) einer für die Aminosäuresequenz: D G R S G SY A R F D G M D V (XIV) kodierenden Nukleotidsequenz,
(c) einer für die Aminosäuresequenz: M G S SVV ATY N A F D I (XV) kodierenden Nukleotidsequenz,
(d) einer für die Aminosäuresequenz: D A D G D G F S PYY F PY (XVI) kodierenden Nukleotidsequenz,
(e) einer für die Aminosäuresequenz: L R N D G W N D G F D I (XVII) kodierenden Nukleotidsequenz,
(f) einer für die Aminosäuresequenz: D S ETA I AA A G R F D I (XVIII) kodierenden Nukleotidsequenz,
(g) einer für die Aminosäuresequenz: E D G TTV P S Q P LE F (XIX) kodierenden Nukleotidsequenz, (h) einer für die Aminosäuresequenz:
GSGSYLGYYFDY (XX) kodierenden Nukleotidsequenz, (i) einer für die Aminosäuresequenz: G L R SY N Y G R N L DY (XXI) kodierenden Nukleotidsequenz, (j) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% und vorzugsweise von mindestens 90% zu einer Aminosäuresequenz aus (a), (b), (c) oder (d) kodiert und
(k) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer äquivalenten Bindefähigkeit an Autoantikörper gegen
GPIIb/llla kodiert.
8. Nukleinsäure nach Anspruch 7, weiterhin umfassend eine CDR1- oder/und CDR2-Region ausgewählt aus einer für die in Tab.7a oder b gezeigten Aminosäuresequenzen oder dazu mindestens 80% homologen Aminosäuresequenz kodierenden Nukleotidsequenz.
9. Nukleinsäure, die für die leichte Kette eines humanen Antikörpers, ein funktionelles Derivat oder ein Fragment davon kodiert und eine CDR 3-Region umfaßt, ausgewählt aus:
(a) einer für die Aminosäuresequenz: C S Y V H S S T N (XXII) kodierenden Nukleotidsequenz,
(b) einer für die Aminosäuresequenz: QVW D N T N D Q (XXIII) kodierenden Nukleotidsequenz, (c) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer Homologie von mindestens 80% und vorzugsweise mindestens 90% zu einer Aminosäuresequenz aus (a) kodiert und (d) einer Nukleotidsequenz, die für eine Aminosäuresequenz mit einer äquivalenten Bindefähigkeit an Autoantikörper gegen GPIIb/llla kodiert.
10. Nukleinsäure aus Anspruch 9, weiterhin umfassend eine CDR1 - oder/und CDR2-Region ausgewählt aus einer für die in Tab. 7a oder b gezeigten Aminosäuresequenzen oder dazu mindestens 80% homologen Aminosäuresequenz kodierenden Nukleotidsequenz.
1 1 . Vektor, dadurch gekennzeichnet, daß er (a) mindestens eine Kopie einer Nukleinsäure nach einem der
Ansprüche 1 bis 3 oder/und mindestens eine Kopie einer
Nukleinsäure nach einem der Ansprüche 4 bis 6 enthält oder
(b) mindestens eine Kopie einer Nukleinsäure nach Anspruch 7 oder 8 oder/und mindestens eine Kopie einer Nukleinsäure nach Anspruch 9 oder 1 0 enthält.
1 2. Zelle, dadurch gekennzeichnet, daß sie (a) eine Nukleinsäure nach einem der Ansprüche 1 bis 3 oder/und eine Nukleinsäure nach einem der Ansprüche 4 bis 6 oder (b) eine Nukleinsäure nach Anspruch 7 oder 8 oder/und eine Nukleinsäure nach Anspruch 9 oder 10 exprimiert.
1 3. Polypeptid, dadurch gekennzeichnet, daß es
(a) von einer Nukleinsäure nach einem der Ansprüche 1 bis 3 oder/und einer Nukleinsäure nach einem der Ansprüche 4 bis
6 oder
(b) von einer Nukleinsäure nach Anspruch 7 oder 8 oder/und einer Nukleinsäure nach Anspruch 9 oder 10 kodiert ist.
14. Polypeptid nach Anspruch 1 3, dadurch gekennzeichnet, daß es die variable Domäne der H-Kette oder/und die variable Domäne der L-Kette eines humanen Antikörpers umfaßt.
1 5. Polypeptid nach Anspruch 14, dadurch gekennzeichnet, daß es sowohl die variable Domäne der H-Kette als auch die variable Domäne der L-Kette umfaßt.
1 6. Polypeptid nach einem der Ansprüche 1 3 bis 1 5, dadurch gekennzeichnet, daß es mit einer Markierungsgruppe oder einem Toxin gekoppelt ist.
1 7. Antikörper gegen ein Polypeptid nach einem der Ansprüche 1 3 bis 1 6.
1 8. Antikörper nach Anspruch 1 7, dadurch gekennzeichnet, daß er gegen die CDR3-Region der schweren oder/und leichten Antikörperkette des Polypeptids gerichtet ist.
1 9. Pharmazeutische Zusammensetzung, die als aktive Komponente eine Nukleinsäure nach einem der Ansprüche 1 bis 1 0, einen Vektor nach Anspruch 1 1 , eine Zelle nach Anspruch 1 2, ein Polypeptid nach einem der Ansprüche 1 3 bis 1 6 oder einen Antikörper nach einem der Ansprüche 1 7 oder 1 8, gegebenenfalls zusammen mit anderen aktiven Komponenten sowie pharmazeutisch üblichen Hilfs-, Zusatzoder Trägerstoffen enthält.
20. Verwendung einer Nukleinsäure nach einem der Ansprüche 1 bis 1 0 eines Vektors nach Anspruch 1 1 , einer Zelle nach Anspruch 1 2, eines Polypeptids nach einem der Ansprüche 1 3 bis 1 6, eines Antikörpers nach Anspruch 1 7 oder 1 8 oder einer pharmazeutischen Zusammensetzung nach Anspruch 1 9 zur Herstellung eines Mittels für die Diagnose oder für die Behandlung oder Prävention von AlTP.
21 . Verwendung einer Nukleinsäure nach einem der Ansprüche 1 bis 10, eines Vektors nach Anspruch 1 1 , einer Zelle nach Anspruch 1 2, eines Polypeptids nach einem der Ansprüche 1 3 bis 1 6 oder einer pharmazeutischen Zusammensetzung nach Anspruch 1 9 zur Herstellung eines Mittels zur Beeinflussung der Bindung von Fibrinogen an Blutplättchen.
22. Verwendung nach Anspruch 21 zur Herstellung eines Mittels für die Modulation der Blutgerinnung, insbesondere für die Auflösung von Thromben oder/und für die Prävention der Thrombenbildung.
23. Verfahren zur Gewinnung von Phagemid-Klonen, die Nukleinsäuren exprimieren, die für Autoantikörper gegen GPIIb/llla oder für gegen diese Autoantikörper gerichtete antiidiotypische Antikörper kodieren, dadurch gekennzeichnet, daß man eine Phagemid-Bibliothek aus Lymphozyten eines humanen Spenders herstellt und die gewünschten Phagemid-Klone durch Affinitätsselektion, umfassend negative und positive Selektionsschritte, gewinnt.
24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, daß man Antikörper-kodierende Nukleinsäuren aus den Klonen gewinnt.
25. Verfahren nach Anspruch 23 oder 24, dadurch gekennzeichnet, daß die Antikörper-kodierenden Nukleinsäuren zur Expression von rekombinanten Antikörperketten, Derivaten oder Fragmenten davon verwendet.
PCT/EP1998/003397 1997-06-06 1998-06-05 Anti-gpiib/iiia rekombinante antikörper WO1998055619A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP50154899A JP2001513652A (ja) 1997-06-06 1998-06-05 抗−gpiib/iiia組み換え抗体
CA002293693A CA2293693A1 (en) 1997-06-06 1998-06-05 Anti-gpiib/iiia recombinant antibodies
AU84367/98A AU745965B2 (en) 1997-06-06 1998-06-05 Anti-GPIIb/IIIa recombinant antibodies
EP98934922A EP0990034A1 (de) 1997-06-06 1998-06-05 Anti-gpiib/iiia rekombinante antikörper
US09/424,840 US6790938B1 (en) 1997-06-06 1998-06-05 Anti-GPIIb/IIIa recombinant antibodies

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE19723904.8 1997-06-06
DE19723904 1997-06-06
DE19755227.7 1997-12-12
DE19755227 1997-12-12
DE19820663.1 1998-05-08
DE19820663A DE19820663A1 (de) 1997-06-06 1998-05-08 Rekombinante Antikörper

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/424,840 A-371-Of-International US6790938B1 (en) 1997-06-06 1998-06-05 Anti-GPIIb/IIIa recombinant antibodies
US10/844,424 Division US20040202659A1 (en) 1997-06-06 2004-05-13 Recombinant anti-GPIIb/IIIa antibodies

Publications (1)

Publication Number Publication Date
WO1998055619A1 true WO1998055619A1 (de) 1998-12-10

Family

ID=27217444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/003397 WO1998055619A1 (de) 1997-06-06 1998-06-05 Anti-gpiib/iiia rekombinante antikörper

Country Status (7)

Country Link
US (2) US6790938B1 (de)
EP (1) EP0990034A1 (de)
JP (1) JP2001513652A (de)
CN (1) CN1163599C (de)
AU (1) AU745965B2 (de)
CA (1) CA2293693A1 (de)
WO (1) WO1998055619A1 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040048A2 (de) * 2000-11-20 2002-05-23 Asat Ag Applied Science & Technology Rekombinante anti-gpiib/iiia-antikörper als mittel zur hemmung der angiogenese
WO2002072619A1 (en) * 2001-03-12 2002-09-19 Ctt Cancer Targeting Technologies Oy INTEGRIN αIIbβ3 ACTIVATING PEPTIDES AND THEIR USE
EP1385864A1 (de) * 2001-04-13 2004-02-04 Human Genome Sciences, Inc. Vaskulärer endothelwachstumsfaktor 2
WO2004076658A1 (ja) * 2003-02-28 2004-09-10 Mitsubishi Pharma Corporation モノクローナル抗体およびそれをコードする遺伝子、ハイブリドーマ、医薬組成物ならびに診断試薬
EP1551453A2 (de) * 2002-06-17 2005-07-13 The Government of the United States of America, as represented by the Secretary of the Department of Health and Human Services Spezifitätsgrafting eines mäuseantikörpers auf ein menschliches gerüst
US7109308B1 (en) 1994-03-08 2006-09-19 Human Genome Sciences, Inc. Antibodies to human vascular endothelial growth factor 2
US7115392B2 (en) 1994-03-08 2006-10-03 Human Genome Sciences, Inc. Polynucleotides encoding human vascular endothelial growth factor 2
US7153827B1 (en) 1994-03-08 2006-12-26 Human Genome Sciences, Inc. Vascular endothelial growth factor 2 and methods of use
US7153942B2 (en) 1994-03-08 2006-12-26 Human Genome Sciences, Inc. Vascular endothelial growth factor 2
US7186688B1 (en) 1994-03-08 2007-03-06 Human Genome Sciences, Inc. Methods of stimulating angiogenesis in a patient by administering vascular endothelial growth factor 2
US7223724B1 (en) 1999-02-08 2007-05-29 Human Genome Sciences, Inc. Use of vascular endothelial growth factor to treat photoreceptor cells
US7227005B1 (en) 1994-03-08 2007-06-05 Human Genome Sciences, Inc. Vascular endothelial growth factor 2
US7273751B2 (en) 2000-08-04 2007-09-25 Human Genome Science, Inc. Vascular endothelial growth factor-2
US7402312B2 (en) 2001-04-13 2008-07-22 Human Genome Sciences, Inc. Antibodies to vascular endothelial growth factor 2 (VEGF-2)
US7498417B2 (en) 1994-03-08 2009-03-03 Human Genome Sciences, Inc. Antibodies to vascular endothelial growth factor 2 and methods of using same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2293693A1 (en) * 1997-06-06 1998-12-10 Asat Ag Applied Science & Technology Anti-gpiib/iiia recombinant antibodies
US20030228309A1 (en) * 2000-11-08 2003-12-11 Theodora Salcedo Antibodies that immunospecifically bind to TRAIL receptors
US20050129616A1 (en) * 2001-05-25 2005-06-16 Human Genome Sciences, Inc. Antibodies that immunospecifically bind to TRAIL receptors
US7361341B2 (en) * 2001-05-25 2008-04-22 Human Genome Sciences, Inc. Methods of treating cancer using antibodies that immunospecifically bind to trail receptors
US20090226429A1 (en) * 2001-05-25 2009-09-10 Human Genome Sciences, Inc. Antibodies That Immunospecifically Bind to TRAIL Receptors
EP1300419B1 (de) * 2001-10-05 2007-06-13 Affimed Therapeutics AG Antikörper menschlichen Ursprungs zur Hemmung der Thrombozytenaggregation
US8455627B2 (en) 2001-10-05 2013-06-04 Affimed Therapeutics, Ag Human antibody specific for activated state of platelet integrin receptor GPIIb/IIIa
WO2005062977A2 (en) * 2003-12-23 2005-07-14 The Regents Of The University Of California Prostate cancer specific internalizing human antibodies
ES2894398T3 (es) * 2011-06-03 2022-02-14 Xoma Technology Ltd Anticuerpos específicos para TGF-beta
US20130084301A1 (en) * 2011-08-30 2013-04-04 Steven Foung Cluster of Neutralizing Antibodies to Hepatitis C Virus
EP3445394A4 (de) 2016-04-22 2020-02-19 Acceleron Pharma Inc. Alk7-bindende proteine und deren verwendungen
CN107056942A (zh) * 2016-10-31 2017-08-18 华东师范大学 抗血小板整合素糖蛋白IIIa单克隆抗体5A10及制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990006134A1 (en) * 1988-12-01 1990-06-14 Centocor, Inc. Human platelet-specific antibodies
EP0557535A1 (de) * 1991-09-17 1993-09-01 Teijin Limited Humaner monoklonaler antikörper gegen glycoprotein-iib/iiia
EP0619324A1 (de) * 1991-12-20 1994-10-12 Yamanouchi Pharmaceutical Co. Ltd. Mit gp11b/iiia reaktive humane antikörper

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7809698A (en) 1997-06-05 1998-12-21 Johns Hopkins University, The Identification of human heavy chain antibody fragment directed against human platelet alloantigen 1a(hpa-1a)
CA2293693A1 (en) * 1997-06-06 1998-12-10 Asat Ag Applied Science & Technology Anti-gpiib/iiia recombinant antibodies
US6274143B1 (en) * 1997-06-13 2001-08-14 Malaya Chatterjee Methods of delaying development of HMFG-associated tumors using anti-idiotype antibody 11D10

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990006134A1 (en) * 1988-12-01 1990-06-14 Centocor, Inc. Human platelet-specific antibodies
EP0557535A1 (de) * 1991-09-17 1993-09-01 Teijin Limited Humaner monoklonaler antikörper gegen glycoprotein-iib/iiia
EP0619324A1 (de) * 1991-12-20 1994-10-12 Yamanouchi Pharmaceutical Co. Ltd. Mit gp11b/iiia reaktive humane antikörper

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BERCHTOLD P. ET AL.: "INHIBITION OF AUTOANTIBODY BINDING TO PLATELET GLYCOPROTEIN IIb/IIIa BY ANTI-IDIOTYPIC ANTIBODIES IN INTRAVENOUS GAMMAGLOBULIN", BLOOD, vol. 74, no. 7, 15 November 1989 (1989-11-15), pages 2414 - 2417, XP002082645 *
COMBRIATO G. AND KLOBECK H.G.: "Accession number: S25752", DATABASE PIR2, 1993, XP002082648 *
ESCHER R ET AL.: "RECOMBINANT HUMAN NATURAL AUTOANTIBODIES AGAINST GPIIb/IIIa INHIBIT BINDING OF AUTOANTIBODIES FROM PATIENTES WITH AITP", BRIT. J. HAEMATOL., vol. 102, no. 3, August 1998 (1998-08-01), pages 820 - 828, XP002082649 *
Eur.J.Immunol.(1991)21:1513-1522 *
HORN ET AL.: "ID:Q99506;AC:Q99506", DATABASE EMBL, 1 May 1997 (1997-05-01), XP002082647 *
PROULX C. ET AL.: "HUMAN MONOCLONAL FAB FRAGMENTS RECOVERED FROM A CONBINATORIAL LIBRARY BIND SPECIFICALLY TO THE PLATELET HPA-1A ALLOANTIGEN ON GLYCOPROTEIN IIb-IIIa", VOX SANGUINIS, vol. 72, January 1997 (1997-01-01), pages 52 - 60, XP002082646 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498417B2 (en) 1994-03-08 2009-03-03 Human Genome Sciences, Inc. Antibodies to vascular endothelial growth factor 2 and methods of using same
US7153827B1 (en) 1994-03-08 2006-12-26 Human Genome Sciences, Inc. Vascular endothelial growth factor 2 and methods of use
US7227005B1 (en) 1994-03-08 2007-06-05 Human Genome Sciences, Inc. Vascular endothelial growth factor 2
US7576189B2 (en) 1994-03-08 2009-08-18 Human Genome Sciences, Inc. Antibodies to human vascular endothelial growth factor 2 and methods of using the same
US7439333B2 (en) 1994-03-08 2008-10-21 Human Genome Sciences, Inc. Vascular endothelial growth factor 2
US7186688B1 (en) 1994-03-08 2007-03-06 Human Genome Sciences, Inc. Methods of stimulating angiogenesis in a patient by administering vascular endothelial growth factor 2
US7153942B2 (en) 1994-03-08 2006-12-26 Human Genome Sciences, Inc. Vascular endothelial growth factor 2
US7109308B1 (en) 1994-03-08 2006-09-19 Human Genome Sciences, Inc. Antibodies to human vascular endothelial growth factor 2
US7115392B2 (en) 1994-03-08 2006-10-03 Human Genome Sciences, Inc. Polynucleotides encoding human vascular endothelial growth factor 2
US7524501B2 (en) 1999-02-08 2009-04-28 Human Genome Sciences, Inc. Methods of treating an injury to, or disorder of, the eye involving photoreceptor proliferation by administering VEGF2 antibodies
US7223724B1 (en) 1999-02-08 2007-05-29 Human Genome Sciences, Inc. Use of vascular endothelial growth factor to treat photoreceptor cells
US7273751B2 (en) 2000-08-04 2007-09-25 Human Genome Science, Inc. Vascular endothelial growth factor-2
WO2002040048A3 (de) * 2000-11-20 2002-08-01 Asat Ag Applied Science & Tech Rekombinante anti-gpiib/iiia-antikörper als mittel zur hemmung der angiogenese
WO2002040048A2 (de) * 2000-11-20 2002-05-23 Asat Ag Applied Science & Technology Rekombinante anti-gpiib/iiia-antikörper als mittel zur hemmung der angiogenese
WO2002072619A1 (en) * 2001-03-12 2002-09-19 Ctt Cancer Targeting Technologies Oy INTEGRIN αIIbβ3 ACTIVATING PEPTIDES AND THEIR USE
US8206708B2 (en) 2001-04-13 2012-06-26 Human Genome Sciences, Inc. Vascular endothelial growth factor 2
US9403905B2 (en) 2001-04-13 2016-08-02 Human Genome Sciences, Inc. Vascular endothelial growth factor 2
EP1385864A4 (de) * 2001-04-13 2004-12-08 Human Genome Sciences Inc Vaskulärer endothelwachstumsfaktor 2
US7402312B2 (en) 2001-04-13 2008-07-22 Human Genome Sciences, Inc. Antibodies to vascular endothelial growth factor 2 (VEGF-2)
EP2228389B1 (de) * 2001-04-13 2015-07-08 Human Genome Sciences, Inc. Antikörper gegen vaskulären Endothelwachstumsfaktor 2
US8784809B2 (en) 2001-04-13 2014-07-22 Human Genome Sciences, Inc. Vascular endothelial growth factor 2
US8216569B2 (en) 2001-04-13 2012-07-10 Human Genome Sciences, Inc. Vascular endothelial growth factor 2
US7208582B2 (en) 2001-04-13 2007-04-24 Human Genome Sciences, Inc. Vascular endothelial growth factor 2
EP1385864A1 (de) * 2001-04-13 2004-02-04 Human Genome Sciences, Inc. Vaskulärer endothelwachstumsfaktor 2
US7850963B2 (en) 2001-04-13 2010-12-14 Human Genome Sciences, Inc. Vascular endothelial growth factor 2
EP1551453A2 (de) * 2002-06-17 2005-07-13 The Government of the United States of America, as represented by the Secretary of the Department of Health and Human Services Spezifitätsgrafting eines mäuseantikörpers auf ein menschliches gerüst
EP1551453A4 (de) * 2002-06-17 2007-04-25 Us Gov Health & Human Serv Spezifitätsgrafting eines mäuseantikörpers auf ein menschliches gerüst
US7456260B2 (en) 2002-06-17 2008-11-25 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Humanized antibody
WO2004076658A1 (ja) * 2003-02-28 2004-09-10 Mitsubishi Pharma Corporation モノクローナル抗体およびそれをコードする遺伝子、ハイブリドーマ、医薬組成物ならびに診断試薬
US7396915B2 (en) 2003-02-28 2008-07-08 Mitsubishi Pharma Corporation Monoclonal antibody and gene encoding the same, hybridoma, pharmaceutical composition, and diagnostic reagent

Also Published As

Publication number Publication date
EP0990034A1 (de) 2000-04-05
JP2001513652A (ja) 2001-09-04
US20040202659A1 (en) 2004-10-14
US6790938B1 (en) 2004-09-14
CA2293693A1 (en) 1998-12-10
CN1163599C (zh) 2004-08-25
AU8436798A (en) 1998-12-21
CN1263556A (zh) 2000-08-16
AU745965B2 (en) 2002-04-11

Similar Documents

Publication Publication Date Title
WO1998055619A1 (de) Anti-gpiib/iiia rekombinante antikörper
US20200002423A1 (en) Method of administering an antibody
DE69636748T2 (de) Bispezifischer antikörper zur effektiven behandlung von b-zell lymphomen und zellinien
Hooks et al. Muromonab CD‐3: a review of its pharmacology, pharmacokinetics, and clinical use in transplantation
DE69925909T2 (de) T-zell inhibierende rezeptorzusammensetzungen sowie deren verwendung
TWI344987B (en) Human epo mimetic hinge core mimetibodies, compositions, methods and uses
DE69605181T3 (de) Antikörper gegen cd30, die proteolytische spaltung und abgabe des membrangebundenen cd30 antigens verhindern
DE69637131T2 (de) Humanisierte antikörper gegen humanes gp39, zusammensetzungen die diese enthalten und deren therapeutische verwendungen
DE69433820T2 (de) Verwendung von löslichen oligomerischen cd40 liganden oder monoklonalen antikörpern zur herstellung eines arzneimitells zur vorbeugung oder behandlung von neoplastischen krankheiten
DE69637408T2 (de) Antikörper gegen cd-80
DE69633175T2 (de) Multimere proteine
CA2210751C (en) Anti-cd6 monoclonal antibodies and their uses
EP0538754B1 (de) Verwendung von Antikörper enthaltenden Präparationen zur Immunsuppression
CN108699145A (zh) 抗lag-3抗体
DE60217698T2 (de) Behandlung chronischer gelenkentzündung unter verwendung eines antikörpers gegen das cd3 antigenkomplex
JPH03501927A (ja) IgE産出性Bリンパ球上の独特な抗原決定基
CA1341477C (en) Method of reducing immunoglobulin e responses
DE69931944T2 (de) Umkehr des viral-induzierten systemischen schocks und des atemnotsyndroms durch blockierung des lymphotoxin-beta- aktivierungsweges
DE69630682T2 (de) Synthetische peptide und diese enthaltende arzneimittel zur behandlung des systemischen lupus erythematodes
EP0868197B1 (de) Antikörper gegen l-selectin zur vorbeugung von multiplem organversagen und akuter organschädigung
EP0686044B1 (de) Verwendung von antikörpern gegen pdgf-rezeptoren zur inhibierung von hyperplasie der intima
Newman et al. Immunobiological and immunochemical aspects of the T-200 family of glycoproteins
DE60033234T2 (de) Zelllinien, liganden und antikörperfragmente zur verwendung in pharmazeutischen zusammensetzungen zur vorbeugung und behandlung von krankhaften veränderungen der homöostase
DE19820663A1 (de) Rekombinante Antikörper
CN109415734A (zh) 抗CD11d抗体及其用途

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98807163.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 84367/98

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2293693

Country of ref document: CA

Ref document number: 2293693

Country of ref document: CA

Kind code of ref document: A

Ref document number: 1999 501548

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1998934922

Country of ref document: EP

Ref document number: 09424840

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998934922

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 84367/98

Country of ref document: AU