WO1998050685A1 - Pale stationnaire servant au refroidissement d'une turbine a gaz - Google Patents

Pale stationnaire servant au refroidissement d'une turbine a gaz Download PDF

Info

Publication number
WO1998050685A1
WO1998050685A1 PCT/JP1998/001959 JP9801959W WO9850685A1 WO 1998050685 A1 WO1998050685 A1 WO 1998050685A1 JP 9801959 W JP9801959 W JP 9801959W WO 9850685 A1 WO9850685 A1 WO 9850685A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
cooling
air
shroud
gas turbine
Prior art date
Application number
PCT/JP1998/001959
Other languages
English (en)
French (fr)
Inventor
Yasuoki Tomita
Kiyoshi Suenaga
Tsuyoshi Kitamura
Kenichi Arase
Hideki Murata
Hiroki Fukuno
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to US09/202,690 priority Critical patent/US6142730A/en
Priority to DE69825232T priority patent/DE69825232T2/de
Priority to CA002260230A priority patent/CA2260230C/en
Priority to EP98917727A priority patent/EP0911489B1/en
Publication of WO1998050685A1 publication Critical patent/WO1998050685A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • F05D2240/81Cooled platforms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a gas turbine cooling vane, and more particularly to a gas turbine cooling vane of a blade cooling type using both steam cooling and air cooling.
  • the cooling of gas turbine vanes is air cooling, which consumes a large amount of cooling air. For this reason, a large amount of cooling air was sent to the blades, and the amount of cooling air leaked was large, forcing the performance of the gas turbine to deteriorate.
  • a conventional typical air cooling method for a gas turbine stationary blade will be described.
  • FIG. 5 shows an example of the appearance of a gas turbine stationary blade
  • FIG. 6 is a cross-sectional view of the blade.
  • 30 is the entire stationary blade
  • 31 is the outer shroud
  • 32 is the inner shroud
  • 3 3, 3 4, 3 5 are inserts inside the stator vane and are divided into three sections
  • 36 is a fin on the trailing edge.
  • the outer shroud, inner shroud, insert and trailing edge fins Make up the wings.
  • Each of the inserts 33, 34, 35 is supplied with high-pressure cooling air 38 from the outer shroud 31 side, and a number of cooling air holes 3 provided in the inserts 33, 34, 35 are provided. From 3a, 34a, and 35a, high-pressure cooling air is blown toward the wing to cool the inner surface of the wing. After that, the cooling air is blown out of the wing from the cooling air holes 37a, 37b, 37c, and 37d provided on the wing surface, and each of the wings has a head at the leading edge. Cooling, film cooling at the back and abdomen of the wings, and pin fin cooling at the trailing edge fins 36 are performed.
  • FIG. 7 is a diagram showing another cooling method in a conventional gas turbine stationary blade
  • FIG. 8 is a sectional view of the blade.
  • 40 indicates the entire stator blade
  • 41 indicates the outer shroud
  • 42 indicates the inner shroud.
  • air passages 4 3 A, 4 3 B, 43C, 43D, and 43E communicate with each other at the top and bottom to form a sa-pentine cooling passage.
  • Numeral 45 denotes a fin on the trailing edge, which is provided with a number of air cooling holes 44 from which cooling air from the passage 43E blows.
  • Reference numeral 46 denotes a large number of turbulences provided inside the air passages 43A to 43E for improving heat transfer.
  • the cooling air 47 is supplied from the upper part of the air passage 43A located on the leading edge side of the outer shroud 41, flows downward, enters the air passage 43B, flows above the 43B, and then It enters 43C from the top, flows similarly to 43D and 43E, and cools the wing in each passage.
  • the cooled air flows out of the cooling air hole 44 of the trailing edge fin 45, and the rest flows out of the wing through the lower part of the air passage 43E.
  • cooling a stationary blade in a conventional gas turbine requires a large amount of cooling air and requires a large amount of power for the compressor and cooler. is the current situation.
  • a main object of the present invention is to cool the stationary blades of the gas turbine by air cooling as in the past, and to introduce steam.
  • To cool the blades and shroud greatly reduce the amount of cooling air used compared to conventional ones, reduce the load on the compressor and cooler, improve the performance of the gas turbine, and improve the efficiency of the shroud.
  • An object of the present invention is to provide a cooling vane for a gas turbine that can be cooled by steam.
  • Another object of the present invention is to use a combination of air cooling and steam cooling, use relatively high pressure cooling air for details that are difficult to pass steam, and use steam for the main part where steam is easy to pass. It is to provide gas turbine cooling vanes that cool by passing through and increase the cooling efficiency as a whole.
  • Still another object of the present invention is to provide a gas turbine-cooled vane that is devised so as to collect steam and return it to a steam supply source without leaking to the outside of the blade when steam cooling as described above is employed. That is.
  • Still another object of the present invention is to improve the steam inflow and outflow paths to improve the cooling efficiency by film cooling the trailing edge of the outer shroud, and installing the inbinge plate in the outer and inner shrouds. Therefore, the present invention provides the following means (1) and (7), respectively, in order to solve the above-mentioned problems. Summary of the Invention
  • a gas turbine cooling vane has an outer shroud, an inner shroud, a blade disposed between the outer and inner shrouds, and an air cooling means for cooling the blade. Further, a steam cooling means for cooling the outer shroud, the inner shroud and the inside of the blade is provided, and steam cooling and air cooling by the steam cooling means and the air cooling means are used in combination.
  • the outer shroud, the inner shroud and the blades are used not only for air cooling but also for introducing steam, so that the amount of air conventionally consumed in large amounts is reduced, and the compressor and The capacity of the cooler can also be reduced.
  • a combined cycle facility combining a gas turbine and a steam turbine, By extracting part of the steam from the steam turbine, steam for cooling the stationary blades can be easily obtained, the cooling air can be greatly reduced, and the performance of the gas turbine can be improved. Furthermore, since the steam flows into the shroud for cooling, the cooling performance is improved.
  • the air cooling means is applied to details that are difficult to pass the cooling steam, and the steam cooling means is provided at a main part where the cooling steam is easy to pass. It is characterized by being applied.
  • the steam cooling means is a steam passage
  • the air cooling means is an air passage
  • the steam passage is an outer and inner shroud.
  • the air passage is provided at a central portion where the wing is located and inside the wing, and the air passage is provided at a peripheral portion of the outer and inner shrouds and at a trailing edge of the wing. I do.
  • each means is a passage
  • the outer and inner shrouds and the blades can be efficiently cooled by cooling steam and cooling air.
  • the center of the outer and inner shrouds, which are the main parts of the vane, and the leading edge of the blade are steam-cooled. Uses air cooling with a relatively high pressure difference, so that effective cooling can be achieved as a whole.
  • the steam is introduced from the outer shroud, cools the outer and inner shrouds, and the inside of the blade. Effective use of steam and wings The effect of drain and the like due to the leakage of steam to the outside can be eliminated.
  • the inside of the outer shroud is divided into a steam inflow side and a steam outflow side, and the steam supply side and the recovery side are simplified, and cooling is performed efficiently.
  • FIG. 1 is a perspective view of a gas turbine cooling vane according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the cooling vane shown in FIG.
  • FIG. 3 is a plan view of the outer shaft of the gas turbine cooling vane according to the embodiment of the present invention.
  • FIG. 4 is a sectional view taken along line AA of FIG.
  • FIG. 5 is a perspective view of a conventional cooling vane.
  • FIG. 6 is a cross-sectional view of the conventional cooling vane shown in FIG.
  • FIG. 7 is a longitudinal sectional view of another conventional cooling vane.
  • FIG. 8 is a sectional view of the conventional cooling vane shown in FIG. Description of the preferred embodiment
  • FIG. 1 is a perspective view of a gas turbine cooling vane according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the vane.
  • 1 is an outer shroud, the upper side of which is closed by steam lids 3 and 4.
  • the steam lid 4 is provided with an inlet end of the seal air supply tube 2, and the tube 2 is provided so as to penetrate the upper and lower blades.
  • Reference numeral 5 denotes a steam supply port provided in the steam cover 3 for guiding steam to a space below the steam covers 3 and 4.
  • Reference numeral 6 denotes a cooling air supply port for supplying cooling air around the lower portion of the outer shroud 1.
  • Reference numeral 7 is also a cooling air supply port for sending cooling air to the trailing edge of the wing.
  • Reference numeral 8 denotes an impingement ⁇ , which is provided in the middle of the inner space of the outer shroud 1.
  • This inbinge plate has a large number of holes, and the steam introduced from the steam supply port 5 collides to be dispersed and uniform, and the steam is ejected to the lower portion of the large number of holes to cool the outer shroud in the inbinge. Things.
  • Reference numeral 9 denotes a cooling air passage. The cooling air is introduced into the outer periphery of the outer shroud 1, passes through the periphery of the shroud, and is discharged from the trailing edge side of the blade as shown by a dotted arrow.
  • 10 A, 1 OB, 10 C, 10 D, and 10 E are steam passages for cooling inside the blade, and steam S is introduced from above the passage 1 OA at the leading edge.
  • passage 10 The lower part of A communicates with passage 10B, the upper part of this passage 10B communicates with the upper part of passage 10C, and the lower part also communicates with passage 10D, and the lower part of passage 10D
  • the upper part communicates with the steam outlets 12 to form a sa-pentine cooling system.
  • Numeral 11 denotes a turbi-ure that is provided on the inner wall of each of the passages 10A to 10D to disturb the flowing steam and enhance heat transfer.
  • an orthogonal table is arranged perpendicular to the cooling steam flow, and an oblique table is arranged behind it.
  • 21 is an inner shroud
  • 22 and 23 are steam lids at the lower part
  • 24 is a steam reservoir at the upper part of the steam lid 22.
  • Reference numeral 25 denotes an ininge board, which has a number of holes and is provided in the middle of the inner space of the inner shroud 21.
  • the impingement plate 25 causes a part of the steam flowing into the steam reservoir 24 from the passage 10 A to be ejected from the steam reservoir 24 toward the inner shroud 21 through the many holes of the impingement ⁇ 25,
  • the inner shroud 21 is in-binge-cooled.
  • sealing air 13 is introduced from the seal air supply tube 2 and flows into the lower portion of the inner shroud 21 to be fed to the cavity (not shown). It guides the interior of the cavity to high pressure and seals against high-temperature gas from the external combustion gas passage.
  • the cooling steam flows into the outer shroud 1 from the steam supply port 5 and collides with the inbinge plate 8 as shown by the thick black lines in Figs. 1 and 2, and the shroud 1 blades It flows into the lower part and cools the lower part uniformly. Thereafter, the cooling steam enters the cooling steam passage 1 OA at the leading edge of the wing, cools the leading edge and flows downward into the next passage 10 B, where the steam Part of the air enters the steam pool 24 of the lower inner shroud 21 and is jetted out of the many holes in the inbinge plate 25 toward the inner shroud 21 to cool the lower part of the inner shroud 21 uniformly. Then, it is recovered from the steam outlet 12 together with the steam in the passage 10D.
  • the orthogonal and oblique turbulence in the passageway 10A is effective for cooling the leading edge of the wing.
  • the steam entering the passage 10B cools this part in the process of flowing upward, enters the next passage 10C from the upper part, similarly flows to the passage 10D, and is located above the passage 10D. From the steam outlet 12 to be installed, it flows into a steam recovery passage (not shown) and is collected. This The steam cools the inside of the stator vane and the portions of the outer shroud 1 and the inner shroud 21 where the blades are located, and the steam is collected and returned to the steam supply source.
  • cooling air is introduced into the outer shroud 1 via an air passage (not shown), passes through an air passage provided on the outer periphery of the outer shroud 1, and In FIG. 1, the air flows as shown by the dotted arrows to cool the periphery of the outer shroud 1, and is discharged through the air passage 9 to the side of the outer shroud 1 opposite to the cooling air supply port 6.
  • the main part of the outer shroud 1 where the blades are located is cooled with steam, and cooling air is flowed around the periphery where steam is difficult to pass, and the details around the outer shroud 1 are reduced by the pressure difference of the high-pressure air. It cools down.
  • Cooling air is also introduced from the cooling air supply port 26 of the inner shroud 21, and similarly flows around the inner shroud 21 as indicated by the dotted arrow, and cools the peripheral part of the inner shroud 21. Then, it is discharged outside from the rear cooling air outlet 27.
  • the lower surface where the wings are located is cooled by steam, and the surrounding area where steam is difficult to pass is cooled by flowing cooling air in the same manner as the outer shroud 1.
  • cooling air is guided to the passage 10E on the trailing edge of the wing, flows downward from the upper portion, and is blown out from the hole 60 on the trailing edge to cool the fin on the trailing edge to cool.
  • the remaining air exits to the lower part of the inner shroud 21. In this way, cooling air should be applied to the narrow trailing edge of the passageway and the area where steam is difficult to pass through.
  • FIG. 3 is a plan view of the outer shroud 1 described above.
  • the cooling air 50 flowing from the cooling air supply port 6 shown in FIG. 1 passes through air passages 6 a and 6 b at both ends of the outer shroud, respectively. It cools both ends of the outer shroud and flows out from the air passage 9 (in FIG. 3, one at each end, but multiple ones at each end may be provided), which becomes the film cooling hole on the trailing edge side. The film is cooled.
  • the cooling air supplied from the cooling air supply port 7 shown in FIG. 1 enters the slit 29, from which it enters the passage 10E at the trailing edge. Flows into In addition, the steam is supplied from the steam supply port 5 as described above, flows into the lower portion of the steam lids 3 and 4, cools the inner surface of the outer shroud 1, and is collected.
  • FIG. 4 is a cross-sectional view taken along the line A-A in FIG. 3, and has steam chambers 52 a and 52 b partitioned by the steam lids 3 and 4 and the rib 51 as described above.
  • the steam flows from the steam chamber 52a, and flows into the steam chamber 52b on the recovery side through the inside of the blade.
  • the steam entering the steam chambers 52 a and 52 b collides with the inbinge plate 8 and spills out from a number of holes provided in the inbinge plate 8 to uniformly cool the inner surface of the outer shroud. it can.
  • the cooling air enters the trailing edge passage 10E from the slit 29 and partly flows out from the air passage 9 to cool the film.
  • a serpentine cooling system composed of passages 10A to 10D is formed inside the vane through steam, and a The provision of evening 11 enhances the efficiency of steam cooling.
  • the in-binge plates 8, 25 are also provided in the main part where the outer shroud 1 and inner shroud 21 wings are located, and the in-binge cooling by steam is performed. I do.
  • Cooling air is passed through the periphery of the outer shroud 1 and inner shroud 21 where steam is difficult to pass, and the passage 10E on the trailing edge fin side, and the details are cooled by the pressure difference of high pressure air. It uses steam cooling and air cooling together. As a result, compared to the conventional air-cooling only method, the amount of cooling air is greatly reduced and the power of the compressor and cooler is also reduced, thereby improving the performance of the gas turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

明 細 書 ガス夕一ビン冷却静翼 発明の背景
発明の属する技術分野
本発明は、 ガスタービン冷却静翼に関し、 特に、 蒸気冷却と空気冷却とを 併用した翼冷却方式のガスタービン冷却静翼に関するものである。
関連技術の説明
現在、 ガスタービンの静翼の冷却は、 空気冷却であり、 多量の冷却空気を 使用し消費している。 このために、 多量の冷却空気を翼に送り、 又、 冷却空気の 漏れ量も多く、 ガスタービンの性能の低下を余儀なくされていた。 以下に、 従来 の代表的なガスタービン静翼の空気冷却方式について説明する。
図 5は、 ガスタービン静翼の外観の一例を示し、 図 6は、 その翼の断面図 である。 両図において、 3 0は静翼全体、 3 1は外側シュラウド、 3 2は内側シ ユラウドである。 3 3 , 3 4 , 3 5は、 静翼内部のインサートで、 内部が 3区分 されており、 3 6は後縁のフィンで、 外側シュラウド、 内側シュラウド、 インサ ート及び後縁フィンにより、 静翼を構成している。
各インサート 3 3, 3 4 , 3 5には、 外側シュラウド 3 1側から高圧の冷 却空気 3 8が供給され、 各インサート 3 3, 3 4 , 3 5に設けられた多数の冷却 空気穴 3 3 a , 3 4 a , 3 5 aから、 高圧の冷却空気を翼に向って噴出し、 翼内 面をインビンジ冷却する。 その後、 冷却空気は、 翼面に設けられた冷却空気穴 3 7 a, 3 7 b , 3 7 c , 3 7 dから翼外へ噴出し、 それぞれ翼の前縁部ではシャ ヮ一へッ ド冷却、 翼の背及び腹部ではフィルム冷却、 後縁フィン 3 6部ではピン フィ ン冷却を行っている。
図 7は、 従来のガスタービン静翼における他の冷却方式を示す図で、 図 8 は、 その翼の断面図である。 両図において、 4 0は静翼全体を示し、 4 1が外側 シュラウド、 4 2が内側シュラウドである。 翼内部には、 空気通路 4 3 A, 4 3 B, 4 3 C, 4 3 D, 4 3 Eが上下でそれぞれ互いに連通し、 サ一ペンタイン冷 却通路を形成している。 4 5は、 後縁のフィ ンで、 通路 4 3 Eからの冷却空気が 吹出す空気冷却穴 4 4が多数設けられている。 4 6は、 各空気通路 4 3 A〜4 3 E内部に設けられ、 熱伝達を向上させるための多数のタービュレ一夕である。
冷却空気 4 7は、 外側シュラウド 4 1の前縁側に位置する空気通路 4 3 A の上部より供給されて下部に流れ、 空気通路 4 3 Bに入って 4 3 Bの上方に流れ 、 次にその上部から 4 3 Cに入り、 同様に 4 3 D, 4 3 Eと流れて各通路で翼を 冷却する。 冷却後の空気は、 後縁フィ ン 4 5の冷却空気穴 4 4から流出し、 残り は空気通路 4 3 Eの下部から翼外へ流出する。
上記に説明の図 5乃至図 8の例からも分かる通り、 従来のガスタービンに おける静翼の冷却には、 多量の冷却空気を必要とし、 圧縮機やクーラに多くの動 力を必要としているのが現状である。
前述のように、 従来のガスタービンの静翼においては、 多量の冷却空気を 常に翼に流して翼を冷却しており、 又、 翼内部に高温の燃焼ガスがガス通路から 侵入しないように、 翼をシールするシール用にも空気を必要としている。 そのた めに、 空気を高圧とするための圧縮機やクーラに、 相当の動力を費やすことにな り、 ガス夕一ビンの性能の低下につながるという問題点があつた。
又、 近年、 ガスタービンと蒸気タービンとを組合せて発電効率を高めるコ ンバインドサイクルが実現しており、 翼の冷却に空気を用いる代わりに、 蒸気タ —ビンで発生する蒸気の一部を抽出し、 この蒸気を翼に導くことが種々の文献等 において考えられている。 し力、し、 蒸気をどのようにして静翼あるいはシュラウ ドに導く力、、 静翼とシュラウドのどの部分を有効に冷却すれば良いのか、 冷却通 路の構造や蒸気の回収方法はどのようにすれば良いのか等、 単に空気冷却のモデ ルを応用するだけでは、 蒸気冷却方式は実用化できないという問題点があった。 発明の目的
従って、 上記問題点を解決するために、 本発明の主たる目的は、 ガスター ビンの静翼の冷却に、 従来と同じく空気冷却を行うと共に、 更に、 蒸気も導入し て翼及びシュラウドを冷却し、 冷却空気の使用量を従来のものよりも大幅に低減 させ、 圧縮機やクーラの負担を軽減して、 ガスタービンの性能を向上させると共 に、 シュラウドも効率良く蒸気で冷却することができるガスタービンの冷却静翼 を提供することである。
本発明の別の目的は、 空気冷却と蒸気冷却とを併用して行う場合に、 蒸気 を通し難い細部には、 比較的圧力の高い冷却空気を用い、 蒸気の通しやすい主要 部には、 蒸気を通すことにより冷却し、 全体として冷却効率を高めるガスタービ ン冷却静翼を提供することである。
本発明の更に別の目的は、 上記のような蒸気冷却を採用する塌合に、 蒸気 を回収して翼外部に漏らすことなく蒸気供給源に戻すように工夫したガスタービ ン冷却静翼を提供することである。
本発明のまた別の目的は、 冷却効率を向上させるために、 蒸気の流入及び 流出の経路に改良を加え、 外側シュラウドの後縁部をフィルム冷却したり、 外側 及び内側シュラウド内にインビンジ板を用いたりする構成も提供することである そのため、 本発明は前述の課題を解決するために、 それぞれ次の (1 ) 乃 至 (7 ) の手段を提供する。 発明の概要
( 1 ) 本発明に係るガスタービン冷却静翼は、 外側シュラウドと、 内側シ ュラウドと、 該外側及び内側シュラウドの間に配設された翼と、 該翼を冷却する 空気冷却手段とを有する。 そして、 さらに前記外側シュラウド、 前記内側シユラ ゥド及び前記翼内部を冷却する蒸気冷却手段を設け、 該蒸気冷却手段及び前記空 気冷却手段による蒸気冷却及び空気冷却を併用したことを特徴とする。
上記 (1 ) の発明においては、 外側シュラウド、 内側シュラウド及び翼は 、 空気冷却だけでなく蒸気も導入して併用するので、 従来、 多量に消費していた 空気の量が軽減され、 圧縮機やクーラの容量も小さくすることができる。 又、 ガ スタービンと蒸気タービンとを組合せたコンバインドサイクルの設備においては 、 蒸気タービンからの蒸気を一部抽出することにより、 静翼冷却用の蒸気が容易 に得られ、 冷却空気を大幅に削減することができ、 ガスタービンの性能を向上す ることができる。 さらに、 シュラウドにも蒸気を流入させて冷却するため、 冷却 性能が良くなる。
( 2 ) 上記 (1 ) の発明に係るガスタービン冷却静翼は、 前記空気冷却手 段が、 冷却蒸気を通し難い細部に適用され、 前記蒸気冷却手段が、 前記冷却蒸気 を通しやすい主要部に適用されることを特徴とする。
上記 (2 ) の発明においては、 冷却空気の方が冷却蒸気に比して相対的に 圧力が高いので、 冷却の難しい細部も効率良く冷却する。
( 3 ) 上記 (2 ) の発明に係るガスタービン冷却静翼は、 前記蒸気冷却手 段が蒸気通路であると共に、 前記空気冷却手段が空気通路であり、 該蒸気通路は 、 前記外側及び内側シュラウドにおいて前記翼が位置する中央部と前記翼内部と に設けられ、 該空気通路は、 前記外側及び内側シュラウドの周辺部と前記翼の後 縁とに設けられたことを特徴とすることを特徴とする。
本発明の (3 ) においては、 各手段を通路としたことにより、 外側及び内 側シュラウドと、 翼とを冷却蒸気及び冷却空気で効率良く冷却することが可能と なる。 また、 静翼の主要部である外側及び内側シュラウドの中央部と翼の前縁部 とが蒸気冷却されると共に、 蒸気の通り難い外側及び内側シュラウドの周囲や翼 の後縁の狭い通路部分には、 比較的圧力差の高い空気冷却を用いるので、 全体と して効果的な冷却が可能となる。
( 4 ) 上記 (2 ) 又は (3 ) の発明に係るガスタービン冷却静翼は、 前記 蒸気冷却手段に用いる蒸気が、 前記外側シュラウドから導入され、 該外側シユラ ゥドの内部を通り、 前記翼内部に連通する前記蒸気通路を通ると共に、 前記蒸気 の一部が、 前記内側シュラウド内に入り、 前記翼内部を上方へ流れて前記外側シ ュラウドの蒸気出口より回収されることを特徴とする。
本発明の (4 ) においては、 蒸気は、 外側シュラウドより導入され、 外側 、 内側シュラウド及び翼内部を冷却した後、 外側シュラウドに設けた蒸気出口よ り回収されて、 蒸気供給源に戻されるので、 蒸気の有効利用がなされ、 且つ、 翼 の外部への蒸気の漏れによるドレン等の影響もなくすことができる。
( 5 ) 上記 (1 ) の発明に係るガスタービン冷却静翼は、 前記蒸気冷却手 段が、 前記外側シュラウドの内部において、 リブで蒸気流入側と蒸気流出側とに 2分割されていることを特徴とする。
本発明の (5 ) では、 外側シュラウド内が蒸気の流入側と流出側とで区分 されており、 蒸気供給側、 回収側が簡素化されると共に冷却も効率良く行なわれ る。
( 6 ) 上記 (1 ) の発明に係るガスタービン冷却静翼は、 前記外側シユラ ゥドの後縁側に、 前記空気冷却手段のためのフィルム冷却穴が設けられたことを 特徴とする。
本発明の (6 ) においては、 外側シュラウド後縁にフィルム冷却穴を設け ているので空気冷却によるシュラウド後縁の冷却効率が向上する。
( 7 ) 上記 (1 ) から (4 ) の発明に係るガスタービン冷却静翼は、 前記 外側及び内側シュラウドに、 前記蒸気冷却手段を画成する前記蒸気が溜る部屋が 設けられると共に、 該部屋の途中に、 インビンジ板が各シユラウドの底面と平行 に設けられたことを特徴とする。
本発明の (7 ) においては、 外側、 内側シュラウド内にインビンジ板が設 けられているので、 蒸気を均一に分散すると共に、 内側シュラウド内面をインピ ンジ冷却することができる。 図面の簡単な説明
図 1は、 本発明の実施の一形態に係るガスタービン冷却静翼の斜視図であ る。
図 2は、 図 1に示す冷却静翼の断面図である。
図 3は、 本発明の実施の一形態に係るガスタービン冷却静翼の外側シユラ ゥドの平面図である。
図 4は、 図 3の A— A断面図である。
図 5は、 従来の冷却静翼の斜視図である。 図 6は、 図 5に示す従来の冷却静翼の断面図である。
図 7は、 従来の他の方式の冷却静翼の縦断面図である。
図 8は、 図 7に示す従来の冷却静翼の断面図である。 好適な実施例の説明
以下に、 添付の図面を参照しながら、 本発明の現在好適であると考えられ る実施形態及びそれに代わる他の実施形態について、 詳細に説明する。 以下の説 明において、 各図面を通じて同様の構成要素には、 同一の参照符号を付する。 ま た、 以下の説明中、 「右」 、 「左」 、 「上」 、 「下」 等の用語は、 便宜上使用す るもので、 これらの用語を限定的に解釈すべきでないことを記しておく。
実施例 1
以下、 本発明の実施の形態について、 図面に基づいて具体的に説明する。 図 1は、 本発明の実施の一形態に係るガスタービン冷却静翼の斜視図、 図 2は、 その翼の断面図である。 両図において、 1は、 外側シュラウドであり、 その上側 を蒸気蓋 3, 4で塞がれている。 蒸気蓋 4には、 シール空気供給チューブ 2の入 口端が設けられ、 チューブ 2が翼上下を貫通するように設けられている。 5は、 蒸気蓋 3に設けられた蒸気供給口であり、 蒸気蓋 3 , 4の下部の空間に蒸気を導 くためのものである。 6は、 冷却空気供給口であり、 外側シュラウド 1の下部の 周囲に冷却空気を供給するためのものである。
7も冷却空気供給口で、 翼の後縁側に冷却空気を送るためのものである。 8は、 インピンジ扳であり、 外側シュラウド 1の内部空間の途中に設けられてい る。 このインビンジ板は、 多数の穴を有し、 蒸気供給口 5から導入した蒸気を衝 突させることにより、 分散させて均一にし、 多数の穴より下部へ蒸気を噴出させ て外側シュラウドをインビンジ冷却するものである。 9は、 冷却空気の通路であ り、 冷却空気は、 外側シュラウド 1の外周囲に導入され、 点線の矢印で示すよう に、 シュラウドの周囲を通って、 翼の後縁側より排出される。
1 0 A, 1 O B, 1 0 C, 1 0 D, 1 0 Eは、 翼内部の冷却用蒸気通路で あり、 蒸気 Sは、 前縁部の通路 1 O Aの上部から導入される。 そして、 通路 1 0 Aの下部は、 通路 1 0 Bに連通し、 この通路 1 0 Bの上部は、 通路 1 0 Cの上部 と連通し、 同様にその下部は通路 1 0 Dに連通し、 通路 1 0 Dの上部は蒸気出口 1 2へ連通して、 サ一ペンタイン冷却系を構成している。 1 1は、 各通路 1 0 A 〜1 0 D内壁に設けられ、 通過する蒸気流を乱し、 熱伝達を高めるためのタービ ユレ一夕である。 尚、 翼の前縁側には、 冷却蒸気流れに対し直交する直交タ一ビ ユレ一夕を配し、 その後方では、 斜めタービユレ一夕を配する。
2 1は、 内側シュラウドであり、 2 2 , 2 3は、 その下部の蒸気蓋、 2 4 は、 蒸気蓋 2 2上部の蒸気溜まりである。 2 5は、 インビンジ板であり、 多数の 穴を有し、 内側シュラウド 2 1の内部空間の途中に設けられている。 インビンジ 板 2 5は、 通路 1 0 Aから蒸気溜まり 2 4に流入する蒸気の一部を、 蒸気溜まり 2 4から内側シュラウド 2 1面へ向けて、 インピンジ扳 2 5の多数の穴より噴出 させ、 内側シュラウド 2 1をインビンジ冷却するものである。
上記のような構成のガスタービン冷却静翼において、 シール空気供給チュ —ブ 2からは、 シール用空気 1 3が導入され、 内側シュラウド 2 1の下部に流入 させて、 キヤビティ (図示せず) に導き、 キヤビティ内を高圧にして、 外部の燃 焼ガス通路からの高温ガスに対してシールを行うものである。
冷却用の蒸気は、 図 1及び図 2の黒ぬりの太線で示すように、 外側シユラ ウド 1へ蒸気供給口 5から流入し、 インビンジ板 8に衝突し、 多数の穴よりシュ ラウド 1の翼下部に流入し、 下部を均一に冷却する。 その後、 冷却用の蒸気は、 翼の前縁部における冷却蒸気用の通路 1 O Aに入り、 前縁部を冷却して下方へ流 れて次の通路 1 0 Bに入り、 ここで、 蒸気の一部は、 下方の内側シュラウド 2 1 の蒸気溜まり 2 4へ入って、 インビンジ板 2 5の多数の穴より内側シュラウド 2 1に向けてを噴出され、 内側シュラウド 2 1の翼下部を均一に冷却し、 通路 1 0 Dの蒸気と共に蒸気出口 1 2から回収される。 特に、 通路 1 0 A内での直交ター ビユレ一夕及び斜めタービユレ一タは、 翼の前縁側の冷却に効果が大き 、。
通路 1 0 Bに入った蒸気は、 上方へ流れる過程でこの部分を冷却し、 上部 より次の通路 1 0 Cに入り、 同様に通路 1 0 Dへと流れ、 通路 1 0 Dの上方に位 置する蒸気出口 1 2より、 蒸気回収用通路 (図示せず) に流れて回収される。 こ のように、 蒸気により静翼内部と、 外側シュラウド 1及び内側シュラウド 2 1の 翼の位置する部分が冷却され、 その蒸気は、 回収され、 再び蒸気供給源へ戻され o
一方、 外側シュラウド 1の冷却空気供給口 6からは、 空気通路 (図示せず ) を介して冷却空気が外側シュラウド 1内に導入され、 外側シュラウド 1の外周 囲に設けられた空気通路を通り、 図 1において点線の矢印で示すように流れて外 側シュラウド 1の周辺を冷却し、 空気通路 9を通って、 外側シュラウド 1の冷却 空気供給口 6とは反対側へ放出される。 このように、 外側シュラウド 1の翼の位 置する主要部は、 蒸気で冷却すると共に、 蒸気の通り難い周辺部には、 冷却空気 を流し、 高圧空気の圧力差により外側シュラウド 1周辺の細部を冷却するもので ある。
又、 内側シュラウド 2 1の冷却空気供給口 2 6からも冷却空気が導入され 、 同様に内側シュラウド 2 1の周辺部を点線の矢印で図示するように流れ、 内側 シュラウド 2 1の周辺部を冷却して、 後方の冷却空気出口 2 7より外部に放出さ れる。 このように内側シュラウド 2 1においても、 翼の位置する下面は、 蒸気に より冷却し、 蒸気の通り難い周辺部は、 外側シュラウド 1と同様に冷却空気を流 して、 冷却するものである。
更に、 冷却空気供給口 7からは、 翼の後縁の通路 1 0 Eへ冷却空気を導き 、 上部より下方へ流すと共に、 後縁の穴 6 0より吹出して後縁のフィンを冷却し 、 冷却後の残りの空気は、 内側シュラウド 2 1の下部へ流出する。 このように、 後縁の細い通路部分で且つ蒸気の通しにくい部分には、 冷却空気を通して冷却す o
図 3は、 上述した外側シュラウド 1の平面図であり、 図 1に示す冷却空気 供給口 6より流入した冷却空気 5 0は、 それぞれ外側シュラウドの両端側の空気 通路 6 a, 6 bを通り、 外側シュラウドの両端部を冷却して、 後縁側のフィルム 冷却穴となる空気通路 9 (図 3では、 各端部で各々 1つであるが、 全体に多数個 設けても良い) より流出し、 フィルム冷却を行う。 図 1に示す冷却空気供給口 7 より供給された冷却空気は、 スリッ ト 2 9に入り、 ここから後縁の通路 1 0 E内 へ流入する。 又、 蒸気は、 前述したように蒸気供給口 5から供給され、 蒸気蓋 3 , 4の下部に流入し、 外側シュラウド 1の内面を冷却した後、 回収される。
図 4は、 図 3における A— A断面図であり、 前述のように蒸気蓋 3 , 4と リブ 5 1とで仕切られた蒸気室 5 2 a, 5 2 bとを有し、 蒸気は、 蒸気室 5 2 a より流入し、 翼内部を通って回収側の蒸気室 5 2 b内へ流入する。 蒸気室 5 2 a 、 5 2 b内に入った蒸気は、 インビンジ板 8に衝突して、 インビンジ板 8に設け られた多数の穴より下部に噴出し、 外側シュラウド内面を均一に冷却することが できる。 又、 冷却空気は、 前述の通り、 スリッ ト 2 9より翼の後縁の通路 1 0 E に入ると共に、 一部は空気通路 9より流出し、 フィルム冷却を行う。
上述した一実施形態のガスタービン冷却静翼によれば、 静翼内部には、 蒸 気を通して、 通路 1 0 A〜l 0 Dによるサーペンタイン冷却系を構成し、 また、 各通路にタ一ビユレ一夕 1 1を設けることにより蒸気冷却の効率を高め、 更に、 外側シュラウド 1及び内側シュラウド 2 1の翼の位置する主要部にもインビンジ 板 8, 2 5を設け、 蒸気によるインビンジ冷却をする方式とする。
また、 蒸気の通り難い外側シュラウド 1及び内側シュラウド 2 1の周辺部 、 並びに翼の後縁フィン側の通路 1 0 Eには、 冷却空気を通し、 高圧空気の圧力 差により細部の冷却を行う方式とし、 蒸気冷却と空気冷却とを併用させるように したものである。 このために従来の空気冷却のみの方式と比べ、 冷却空気量を大 幅に削減し、 圧縮機やクーラの動力も少くてすむことから、 ガスタービンの性能 が向上するものである。
以上、 図面を参照し、 本発明の現在好適であると考えられる実施形態及び それに代わる他の実施形態について詳細に説明したが、 本発明は、 これ等の実施 形態に限定されるものではなく、 ガスタービン冷却静翼の種々の付加的な適用例 及び変更例は、 本発明の精神及び範囲から逸脱することなく、 当該技術分野にお ける当業者にとって容易に想到し実現し得るものであることを付記する。

Claims

請 求 の 範 囲
1. 外側シュラウド (1) と、 内側シュラウド (21) と、 該外側及び内側シ ユラウド (1、 21) の間に配設された翼と、 該翼を冷却する空気冷却手段とを 有するガスタービンの冷却静翼において、 前記外側シュラウド、 前記内側シユラ ゥド及び前記翼内部を冷却する蒸気冷却手段を設け、 該蒸気冷却手段及び前記空 気冷却手段による蒸気冷却及び空気冷却を併用したことを特徴とするガスタービ ン冷却静翼。
2. 前記空気冷却手段は、 冷却蒸気を通し難い細部に適用され、 前記蒸気冷却 手段は、 前記冷却蒸気を通しやすい主要部に適用されることを特徴とする請求項 1に記載のガス夕ービン冷却静翼。
3. 前記蒸気冷却手段は蒸気通路 (10 A〜l 0D) であると共に、 前記空気 冷却手段は空気通路 (6a、 6b、 10E)であり、 該蒸気通路は、 前記外側及 び内側シュラウド (1、 21) において前記翼が位置する中央部と前記翼内部と に設けられ、 該空気通路は、 前記外側及び内側シュラウドの周辺部と前記翼の後 縁とに設けられたことを特徴とする請求項 2記載のガスタービン冷却静翼。
4. 前記蒸気冷却手段に用いる蒸気 (S) は、 前記外側シュラウド (1) から 導入され、 該外側シュラウドの内部を通り、 前記翼内部に連通する前記蒸気通路
(10 A〜l 0D) を通ると共に、 前記蒸気の一部は前記内側シュラウド (21 ) 内に入り、 前記翼内部を上方へ流れて前記外側シュラウドの蒸気出口 (12) より回収されることを特徴とする請求項 2または 3記載のガスタービン冷却静翼
5. 前記蒸気冷却手段は、 前記外側シュラウド (1) の内部において、 リブ ( 51) で蒸気流入側 (52 a) と蒸気流出側 (52b) とに 2分割されているこ とを特徴とする請求項 1記載のガスタービン冷却静翼。
6. 前記外側シュラウド (1) の後縁側には、 前記空気冷却手段のためのフィ ルム冷却穴 (9) が設けられたことを特徴とする請求項 1記載のガスタービン冷 却静翼。
7. 前記外側及び内側シュラウド (1、 21) には、 前記蒸気冷却手段を画成 する前記蒸気が溜る部屋 (52a、 52b、 24) が設けられると共に、 該部屋 の途中には、 インビンジ板 (8、 25) が各シユラウドの底面と平行に設けられ たことを特徴とする請求項 1から 4の 、ずれかに記載のガスタービン冷却静翼。
PCT/JP1998/001959 1997-05-01 1998-04-28 Pale stationnaire servant au refroidissement d'une turbine a gaz WO1998050685A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/202,690 US6142730A (en) 1997-05-01 1998-04-28 Gas turbine cooling stationary blade
DE69825232T DE69825232T2 (de) 1997-05-01 1998-04-28 Kühlung einer statorschaufel bei einer gasturbine
CA002260230A CA2260230C (en) 1997-05-01 1998-04-28 Cooled stationary blade of a gas turbine
EP98917727A EP0911489B1 (en) 1997-05-01 1998-04-28 Gas turbine cooling stationary blade

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/113842 1997-05-01
JP11384297A JP3316415B2 (ja) 1997-05-01 1997-05-01 ガスタービン冷却静翼

Publications (1)

Publication Number Publication Date
WO1998050685A1 true WO1998050685A1 (fr) 1998-11-12

Family

ID=14622428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001959 WO1998050685A1 (fr) 1997-05-01 1998-04-28 Pale stationnaire servant au refroidissement d'une turbine a gaz

Country Status (6)

Country Link
US (1) US6142730A (ja)
EP (1) EP0911489B1 (ja)
JP (1) JP3316415B2 (ja)
CA (1) CA2260230C (ja)
DE (1) DE69825232T2 (ja)
WO (1) WO1998050685A1 (ja)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6019572A (en) * 1998-08-06 2000-02-01 Siemens Westinghouse Power Corporation Gas turbine row #1 steam cooled vane
GB2345942B (en) * 1998-12-24 2002-08-07 Rolls Royce Plc Gas turbine engine internal air system
JP3782637B2 (ja) * 2000-03-08 2006-06-07 三菱重工業株式会社 ガスタービン冷却静翼
US6517312B1 (en) * 2000-03-23 2003-02-11 General Electric Company Turbine stator vane segment having internal cooling circuits
US6331096B1 (en) * 2000-04-05 2001-12-18 General Electric Company Apparatus and methods for impingement cooling of an undercut region adjacent a side wall of a turbine nozzle segment
US6343911B1 (en) * 2000-04-05 2002-02-05 General Electric Company Side wall cooling for nozzle segments for a gas turbine
US6419445B1 (en) * 2000-04-11 2002-07-16 General Electric Company Apparatus for impingement cooling a side wall adjacent an undercut region of a turbine nozzle segment
US6386825B1 (en) * 2000-04-11 2002-05-14 General Electric Company Apparatus and methods for impingement cooling of a side wall of a turbine nozzle segment
US6413040B1 (en) * 2000-06-13 2002-07-02 General Electric Company Support pedestals for interconnecting a cover and nozzle band wall in a gas turbine nozzle segment
US6454526B1 (en) * 2000-09-28 2002-09-24 Siemens Westinghouse Power Corporation Cooled turbine vane with endcaps
DE10131073A1 (de) * 2000-12-16 2002-06-20 Alstom Switzerland Ltd Vorrichtung zur Kühlung eines Deckbandes einer Gasturbinenschaufel
US6431820B1 (en) * 2001-02-28 2002-08-13 General Electric Company Methods and apparatus for cooling gas turbine engine blade tips
US6530744B2 (en) 2001-05-29 2003-03-11 General Electric Company Integral nozzle and shroud
US6884023B2 (en) * 2002-09-27 2005-04-26 United Technologies Corporation Integral swirl knife edge injection assembly
US6892931B2 (en) * 2002-12-27 2005-05-17 General Electric Company Methods for replacing portions of turbine shroud supports
US6984101B2 (en) * 2003-07-14 2006-01-10 Siemens Westinghouse Power Corporation Turbine vane plate assembly
DE10336432A1 (de) * 2003-08-08 2005-03-10 Alstom Technology Ltd Baden Gasturbine und zugehöriges Kühlverfahren
US7303372B2 (en) * 2005-11-18 2007-12-04 General Electric Company Methods and apparatus for cooling combustion turbine engine components
US7578652B2 (en) * 2006-10-03 2009-08-25 United Technologies Corporation Hybrid vapor and film cooled turbine blade
JP4801618B2 (ja) * 2007-03-30 2011-10-26 三菱重工業株式会社 ガスタービンの静翼およびこれを備えたガスタービン
US8056345B2 (en) * 2007-06-13 2011-11-15 United Technologies Corporation Hybrid cooling of a gas turbine engine
US7785072B1 (en) 2007-09-07 2010-08-31 Florida Turbine Technologies, Inc. Large chord turbine vane with serpentine flow cooling circuit
US7926292B2 (en) * 2008-03-19 2011-04-19 Gas Technology Institute Partial oxidation gas turbine cooling
JP5180653B2 (ja) * 2008-03-31 2013-04-10 三菱重工業株式会社 ガスタービン翼およびこれを備えたガスタービン
US8292573B2 (en) * 2009-04-21 2012-10-23 General Electric Company Flange cooled turbine nozzle
EP2407639A1 (en) 2010-07-15 2012-01-18 Siemens Aktiengesellschaft Platform part for supporting a nozzle guide vane for a gas turbine
CN102425459B (zh) * 2011-11-21 2014-12-10 西安交通大学 一种重型燃机高温涡轮双工质冷却叶片
US9133724B2 (en) 2012-01-09 2015-09-15 General Electric Company Turbomachine component including a cover plate
US9039350B2 (en) * 2012-01-09 2015-05-26 General Electric Company Impingement cooling system for use with contoured surfaces
US9011079B2 (en) * 2012-01-09 2015-04-21 General Electric Company Turbine nozzle compartmentalized cooling system
EP2626519A1 (en) 2012-02-09 2013-08-14 Siemens Aktiengesellschaft Turbine assembly, corresponding impingement cooling tube and gas turbine engine
US9500099B2 (en) * 2012-07-02 2016-11-22 United Techologies Corporation Cover plate for a component of a gas turbine engine
JP5575279B2 (ja) * 2013-01-11 2014-08-20 三菱重工業株式会社 ガスタービン翼およびこれを備えたガスタービン
WO2015061152A1 (en) * 2013-10-21 2015-04-30 United Technologies Corporation Incident tolerant turbine vane cooling
EP3084137A4 (en) * 2013-12-19 2017-01-25 United Technologies Corporation Turbine airfoil cooling
US9771816B2 (en) 2014-05-07 2017-09-26 General Electric Company Blade cooling circuit feed duct, exhaust duct, and related cooling structure
US9638045B2 (en) * 2014-05-28 2017-05-02 General Electric Company Cooling structure for stationary blade
US9957815B2 (en) * 2015-03-05 2018-05-01 United Technologies Corporation Gas powered turbine component including serpentine cooling
US9909436B2 (en) 2015-07-16 2018-03-06 General Electric Company Cooling structure for stationary blade
US10273812B2 (en) 2015-12-18 2019-04-30 Pratt & Whitney Canada Corp. Turbine rotor coolant supply system
US9945562B2 (en) * 2015-12-22 2018-04-17 General Electric Company Staged fuel and air injection in combustion systems of gas turbines
US9995221B2 (en) * 2015-12-22 2018-06-12 General Electric Company Staged fuel and air injection in combustion systems of gas turbines
US9989260B2 (en) * 2015-12-22 2018-06-05 General Electric Company Staged fuel and air injection in combustion systems of gas turbines
US20170198602A1 (en) * 2016-01-11 2017-07-13 General Electric Company Gas turbine engine with a cooled nozzle segment
US20170328235A1 (en) * 2016-05-16 2017-11-16 General Electric Company Turbine nozzle assembly and method for forming turbine components
US10513947B2 (en) 2017-06-05 2019-12-24 United Technologies Corporation Adjustable flow split platform cooling for gas turbine engine
US11131212B2 (en) 2017-12-06 2021-09-28 Raytheon Technologies Corporation Gas turbine engine cooling component
US10648351B2 (en) * 2017-12-06 2020-05-12 United Technologies Corporation Gas turbine engine cooling component
US10787912B2 (en) * 2018-04-25 2020-09-29 Raytheon Technologies Corporation Spiral cavities for gas turbine engine components
CN112228168B (zh) * 2020-10-21 2022-09-30 中国航发沈阳发动机研究所 一种静子叶片内腔冷却用集气引流结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115702A (ja) * 1989-09-27 1991-05-16 Hitachi Ltd セラミック静翼
JPH04311604A (ja) * 1991-04-11 1992-11-04 Toshiba Corp タービン静翼
JPH0565802A (ja) * 1991-09-06 1993-03-19 Toshiba Corp ガスタービン
JPH0693801A (ja) * 1992-09-17 1994-04-05 Hitachi Ltd ガスタービン翼
JPH06257405A (ja) * 1992-12-30 1994-09-13 General Electric Co <Ge> タービン
JPH08177406A (ja) * 1994-08-23 1996-07-09 General Electric Co <Ge> ステータベーン・セグメント及びタービンベーン・セグメント

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE755567A (fr) * 1969-12-01 1971-02-15 Gen Electric Structure d'aube fixe, pour moteur a turbines a gaz et arrangement de reglage de temperature associe
US4353679A (en) * 1976-07-29 1982-10-12 General Electric Company Fluid-cooled element
JP2862536B2 (ja) * 1987-09-25 1999-03-03 株式会社東芝 ガスタービンの翼
JP3142850B2 (ja) * 1989-03-13 2001-03-07 株式会社東芝 タービンの冷却翼および複合発電プラント
JPH05240003A (ja) * 1992-03-02 1993-09-17 Toshiba Corp ガスタービン翼
FR2692318B1 (fr) * 1992-06-11 1994-08-19 Snecma Aubage fixe de distribution des gaz chauds d'une turbo-machine.
US5413458A (en) * 1994-03-29 1995-05-09 United Technologies Corporation Turbine vane with a platform cavity having a double feed for cooling fluid
US5464322A (en) * 1994-08-23 1995-11-07 General Electric Company Cooling circuit for turbine stator vane trailing edge
DE69505407T2 (de) * 1994-08-24 1999-05-27 Westinghouse Electric Corp Gasturbinenschaufel mit gekühlter plattform
US5488825A (en) * 1994-10-31 1996-02-06 Westinghouse Electric Corporation Gas turbine vane with enhanced cooling
US5611662A (en) * 1995-08-01 1997-03-18 General Electric Co. Impingement cooling for turbine stator vane trailing edge
JP2971386B2 (ja) * 1996-01-08 1999-11-02 三菱重工業株式会社 ガスタービン静翼
US5829245A (en) * 1996-12-31 1998-11-03 Westinghouse Electric Corporation Cooling system for gas turbine vane
US5848876A (en) * 1997-02-11 1998-12-15 Mitsubishi Heavy Industries, Ltd. Cooling system for cooling platform of gas turbine moving blade
JP3495554B2 (ja) * 1997-04-24 2004-02-09 三菱重工業株式会社 ガスタービン静翼の冷却シュラウド
US5827043A (en) * 1997-06-27 1998-10-27 United Technologies Corporation Coolable airfoil
US5980202A (en) * 1998-03-05 1999-11-09 Mitsubishi Heavy Industries, Ltd. Gas turbine stationary blade

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115702A (ja) * 1989-09-27 1991-05-16 Hitachi Ltd セラミック静翼
JPH04311604A (ja) * 1991-04-11 1992-11-04 Toshiba Corp タービン静翼
JPH0565802A (ja) * 1991-09-06 1993-03-19 Toshiba Corp ガスタービン
JPH0693801A (ja) * 1992-09-17 1994-04-05 Hitachi Ltd ガスタービン翼
JPH06257405A (ja) * 1992-12-30 1994-09-13 General Electric Co <Ge> タービン
JPH08177406A (ja) * 1994-08-23 1996-07-09 General Electric Co <Ge> ステータベーン・セグメント及びタービンベーン・セグメント

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0911489A4 *

Also Published As

Publication number Publication date
CA2260230C (en) 2002-07-09
EP0911489A1 (en) 1999-04-28
EP0911489A4 (en) 2000-11-29
US6142730A (en) 2000-11-07
CA2260230A1 (en) 1998-11-12
DE69825232T2 (de) 2005-08-04
EP0911489B1 (en) 2004-07-28
JPH10306705A (ja) 1998-11-17
JP3316415B2 (ja) 2002-08-19
DE69825232D1 (de) 2004-09-02

Similar Documents

Publication Publication Date Title
WO1998050685A1 (fr) Pale stationnaire servant au refroidissement d&#39;une turbine a gaz
JP3316405B2 (ja) ガスタービン冷却静翼
US5591002A (en) Closed or open air cooling circuits for nozzle segments with wheelspace purge
JP3416447B2 (ja) ガスタービンの翼冷却空気供給システム
US6435814B1 (en) Film cooling air pocket in a closed loop cooled airfoil
JP5898902B2 (ja) タービン動翼のプラットフォーム区域を冷却するための装置及び方法
JP3978143B2 (ja) 静翼の冷却構造及びガスタービン
JP3495554B2 (ja) ガスタービン静翼の冷却シュラウド
US6036440A (en) Gas turbine cooled moving blade
JP3238344B2 (ja) ガスタービン静翼
JP4087586B2 (ja) ガスタービン及びその静翼
JPH10252406A (ja) ガスタービン動翼の冷却プラットフォーム
JP3494879B2 (ja) ガスタービン及びガスタービンの静翼
US6092983A (en) Gas turbine cooling stationary blade
WO1998050684A1 (fr) Pale fixe de refroidissement de turbine a gaz
US20120063891A1 (en) Cooled component for a gas turbine
JPH1037704A (ja) ガスタービンの静翼
JPS5979006A (ja) ガスタ−ビン空冷翼
JPH11200893A (ja) 冷媒回収型ガスタービン
JP2007239756A (ja) ガスタービン及びその静翼
CN113586178B (zh) 一种自循环冷却的蜂窝座结构
JP2001152805A (ja) 蒸気冷却静翼及びガスタービン
JP2007198391A (ja) ガスタービンの静翼
JPH1181909A (ja) ガスタービン冷却翼

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09202690

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2260230

Country of ref document: CA

Ref country code: CA

Ref document number: 2260230

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1998917727

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998917727

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998917727

Country of ref document: EP